1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/SetVector.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/IR/Constants.h" 15 #include "llvm/IR/DebugInfo.h" 16 #include "llvm/IR/DiagnosticPrinter.h" 17 #include "llvm/IR/GVMaterializer.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/TypeFinder.h" 20 #include "llvm/Support/Error.h" 21 #include "llvm/Transforms/Utils/Cloning.h" 22 #include <utility> 23 using namespace llvm; 24 25 //===----------------------------------------------------------------------===// 26 // TypeMap implementation. 27 //===----------------------------------------------------------------------===// 28 29 namespace { 30 class TypeMapTy : public ValueMapTypeRemapper { 31 /// This is a mapping from a source type to a destination type to use. 32 DenseMap<Type *, Type *> MappedTypes; 33 34 /// When checking to see if two subgraphs are isomorphic, we speculatively 35 /// add types to MappedTypes, but keep track of them here in case we need to 36 /// roll back. 37 SmallVector<Type *, 16> SpeculativeTypes; 38 39 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 40 41 /// This is a list of non-opaque structs in the source module that are mapped 42 /// to an opaque struct in the destination module. 43 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 44 45 /// This is the set of opaque types in the destination modules who are 46 /// getting a body from the source module. 47 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 48 49 public: 50 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 51 : DstStructTypesSet(DstStructTypesSet) {} 52 53 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 54 /// Indicate that the specified type in the destination module is conceptually 55 /// equivalent to the specified type in the source module. 56 void addTypeMapping(Type *DstTy, Type *SrcTy); 57 58 /// Produce a body for an opaque type in the dest module from a type 59 /// definition in the source module. 60 void linkDefinedTypeBodies(); 61 62 /// Return the mapped type to use for the specified input type from the 63 /// source module. 64 Type *get(Type *SrcTy); 65 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 66 67 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 68 69 FunctionType *get(FunctionType *T) { 70 return cast<FunctionType>(get((Type *)T)); 71 } 72 73 private: 74 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 75 76 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 77 }; 78 } 79 80 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 81 assert(SpeculativeTypes.empty()); 82 assert(SpeculativeDstOpaqueTypes.empty()); 83 84 // Check to see if these types are recursively isomorphic and establish a 85 // mapping between them if so. 86 if (!areTypesIsomorphic(DstTy, SrcTy)) { 87 // Oops, they aren't isomorphic. Just discard this request by rolling out 88 // any speculative mappings we've established. 89 for (Type *Ty : SpeculativeTypes) 90 MappedTypes.erase(Ty); 91 92 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 93 SpeculativeDstOpaqueTypes.size()); 94 for (StructType *Ty : SpeculativeDstOpaqueTypes) 95 DstResolvedOpaqueTypes.erase(Ty); 96 } else { 97 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 98 // and all its descendants to lower amount of renaming in LLVM context 99 // Renaming occurs because we load all source modules to the same context 100 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 101 // As a result we may get several different types in the destination 102 // module, which are in fact the same. 103 for (Type *Ty : SpeculativeTypes) 104 if (auto *STy = dyn_cast<StructType>(Ty)) 105 if (STy->hasName()) 106 STy->setName(""); 107 } 108 SpeculativeTypes.clear(); 109 SpeculativeDstOpaqueTypes.clear(); 110 } 111 112 /// Recursively walk this pair of types, returning true if they are isomorphic, 113 /// false if they are not. 114 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 115 // Two types with differing kinds are clearly not isomorphic. 116 if (DstTy->getTypeID() != SrcTy->getTypeID()) 117 return false; 118 119 // If we have an entry in the MappedTypes table, then we have our answer. 120 Type *&Entry = MappedTypes[SrcTy]; 121 if (Entry) 122 return Entry == DstTy; 123 124 // Two identical types are clearly isomorphic. Remember this 125 // non-speculatively. 126 if (DstTy == SrcTy) { 127 Entry = DstTy; 128 return true; 129 } 130 131 // Okay, we have two types with identical kinds that we haven't seen before. 132 133 // If this is an opaque struct type, special case it. 134 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 135 // Mapping an opaque type to any struct, just keep the dest struct. 136 if (SSTy->isOpaque()) { 137 Entry = DstTy; 138 SpeculativeTypes.push_back(SrcTy); 139 return true; 140 } 141 142 // Mapping a non-opaque source type to an opaque dest. If this is the first 143 // type that we're mapping onto this destination type then we succeed. Keep 144 // the dest, but fill it in later. If this is the second (different) type 145 // that we're trying to map onto the same opaque type then we fail. 146 if (cast<StructType>(DstTy)->isOpaque()) { 147 // We can only map one source type onto the opaque destination type. 148 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 149 return false; 150 SrcDefinitionsToResolve.push_back(SSTy); 151 SpeculativeTypes.push_back(SrcTy); 152 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 153 Entry = DstTy; 154 return true; 155 } 156 } 157 158 // If the number of subtypes disagree between the two types, then we fail. 159 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 160 return false; 161 162 // Fail if any of the extra properties (e.g. array size) of the type disagree. 163 if (isa<IntegerType>(DstTy)) 164 return false; // bitwidth disagrees. 165 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 166 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 167 return false; 168 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 169 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 170 return false; 171 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 172 StructType *SSTy = cast<StructType>(SrcTy); 173 if (DSTy->isLiteral() != SSTy->isLiteral() || 174 DSTy->isPacked() != SSTy->isPacked()) 175 return false; 176 } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) { 177 if (DSeqTy->getNumElements() != 178 cast<SequentialType>(SrcTy)->getNumElements()) 179 return false; 180 } 181 182 // Otherwise, we speculate that these two types will line up and recursively 183 // check the subelements. 184 Entry = DstTy; 185 SpeculativeTypes.push_back(SrcTy); 186 187 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 188 if (!areTypesIsomorphic(DstTy->getContainedType(I), 189 SrcTy->getContainedType(I))) 190 return false; 191 192 // If everything seems to have lined up, then everything is great. 193 return true; 194 } 195 196 void TypeMapTy::linkDefinedTypeBodies() { 197 SmallVector<Type *, 16> Elements; 198 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 199 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 200 assert(DstSTy->isOpaque()); 201 202 // Map the body of the source type over to a new body for the dest type. 203 Elements.resize(SrcSTy->getNumElements()); 204 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 205 Elements[I] = get(SrcSTy->getElementType(I)); 206 207 DstSTy->setBody(Elements, SrcSTy->isPacked()); 208 DstStructTypesSet.switchToNonOpaque(DstSTy); 209 } 210 SrcDefinitionsToResolve.clear(); 211 DstResolvedOpaqueTypes.clear(); 212 } 213 214 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 215 ArrayRef<Type *> ETypes) { 216 DTy->setBody(ETypes, STy->isPacked()); 217 218 // Steal STy's name. 219 if (STy->hasName()) { 220 SmallString<16> TmpName = STy->getName(); 221 STy->setName(""); 222 DTy->setName(TmpName); 223 } 224 225 DstStructTypesSet.addNonOpaque(DTy); 226 } 227 228 Type *TypeMapTy::get(Type *Ty) { 229 SmallPtrSet<StructType *, 8> Visited; 230 return get(Ty, Visited); 231 } 232 233 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 234 // If we already have an entry for this type, return it. 235 Type **Entry = &MappedTypes[Ty]; 236 if (*Entry) 237 return *Entry; 238 239 // These are types that LLVM itself will unique. 240 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 241 242 if (!IsUniqued) { 243 StructType *STy = cast<StructType>(Ty); 244 // This is actually a type from the destination module, this can be reached 245 // when this type is loaded in another module, added to DstStructTypesSet, 246 // and then we reach the same type in another module where it has not been 247 // added to MappedTypes. (PR37684) 248 if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() && 249 DstStructTypesSet.hasType(STy)) 250 return *Entry = STy; 251 252 #ifndef NDEBUG 253 for (auto &Pair : MappedTypes) { 254 assert(!(Pair.first != Ty && Pair.second == Ty) && 255 "mapping to a source type"); 256 } 257 #endif 258 259 if (!Visited.insert(STy).second) { 260 StructType *DTy = StructType::create(Ty->getContext()); 261 return *Entry = DTy; 262 } 263 } 264 265 // If this is not a recursive type, then just map all of the elements and 266 // then rebuild the type from inside out. 267 SmallVector<Type *, 4> ElementTypes; 268 269 // If there are no element types to map, then the type is itself. This is 270 // true for the anonymous {} struct, things like 'float', integers, etc. 271 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 272 return *Entry = Ty; 273 274 // Remap all of the elements, keeping track of whether any of them change. 275 bool AnyChange = false; 276 ElementTypes.resize(Ty->getNumContainedTypes()); 277 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 278 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 279 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 280 } 281 282 // If we found our type while recursively processing stuff, just use it. 283 Entry = &MappedTypes[Ty]; 284 if (*Entry) { 285 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 286 if (DTy->isOpaque()) { 287 auto *STy = cast<StructType>(Ty); 288 finishType(DTy, STy, ElementTypes); 289 } 290 } 291 return *Entry; 292 } 293 294 // If all of the element types mapped directly over and the type is not 295 // a named struct, then the type is usable as-is. 296 if (!AnyChange && IsUniqued) 297 return *Entry = Ty; 298 299 // Otherwise, rebuild a modified type. 300 switch (Ty->getTypeID()) { 301 default: 302 llvm_unreachable("unknown derived type to remap"); 303 case Type::ArrayTyID: 304 return *Entry = ArrayType::get(ElementTypes[0], 305 cast<ArrayType>(Ty)->getNumElements()); 306 case Type::VectorTyID: 307 return *Entry = VectorType::get(ElementTypes[0], 308 cast<VectorType>(Ty)->getNumElements()); 309 case Type::PointerTyID: 310 return *Entry = PointerType::get(ElementTypes[0], 311 cast<PointerType>(Ty)->getAddressSpace()); 312 case Type::FunctionTyID: 313 return *Entry = FunctionType::get(ElementTypes[0], 314 makeArrayRef(ElementTypes).slice(1), 315 cast<FunctionType>(Ty)->isVarArg()); 316 case Type::StructTyID: { 317 auto *STy = cast<StructType>(Ty); 318 bool IsPacked = STy->isPacked(); 319 if (IsUniqued) 320 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 321 322 // If the type is opaque, we can just use it directly. 323 if (STy->isOpaque()) { 324 DstStructTypesSet.addOpaque(STy); 325 return *Entry = Ty; 326 } 327 328 if (StructType *OldT = 329 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 330 STy->setName(""); 331 return *Entry = OldT; 332 } 333 334 if (!AnyChange) { 335 DstStructTypesSet.addNonOpaque(STy); 336 return *Entry = Ty; 337 } 338 339 StructType *DTy = StructType::create(Ty->getContext()); 340 finishType(DTy, STy, ElementTypes); 341 return *Entry = DTy; 342 } 343 } 344 } 345 346 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 347 const Twine &Msg) 348 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 349 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 350 351 //===----------------------------------------------------------------------===// 352 // IRLinker implementation. 353 //===----------------------------------------------------------------------===// 354 355 namespace { 356 class IRLinker; 357 358 /// Creates prototypes for functions that are lazily linked on the fly. This 359 /// speeds up linking for modules with many/ lazily linked functions of which 360 /// few get used. 361 class GlobalValueMaterializer final : public ValueMaterializer { 362 IRLinker &TheIRLinker; 363 364 public: 365 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 366 Value *materialize(Value *V) override; 367 }; 368 369 class LocalValueMaterializer final : public ValueMaterializer { 370 IRLinker &TheIRLinker; 371 372 public: 373 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 374 Value *materialize(Value *V) override; 375 }; 376 377 /// Type of the Metadata map in \a ValueToValueMapTy. 378 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 379 380 /// This is responsible for keeping track of the state used for moving data 381 /// from SrcM to DstM. 382 class IRLinker { 383 Module &DstM; 384 std::unique_ptr<Module> SrcM; 385 386 /// See IRMover::move(). 387 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor; 388 389 TypeMapTy TypeMap; 390 GlobalValueMaterializer GValMaterializer; 391 LocalValueMaterializer LValMaterializer; 392 393 /// A metadata map that's shared between IRLinker instances. 394 MDMapT &SharedMDs; 395 396 /// Mapping of values from what they used to be in Src, to what they are now 397 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 398 /// due to the use of Value handles which the Linker doesn't actually need, 399 /// but this allows us to reuse the ValueMapper code. 400 ValueToValueMapTy ValueMap; 401 ValueToValueMapTy IndirectSymbolValueMap; 402 403 DenseSet<GlobalValue *> ValuesToLink; 404 std::vector<GlobalValue *> Worklist; 405 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 406 407 void maybeAdd(GlobalValue *GV) { 408 if (ValuesToLink.insert(GV).second) 409 Worklist.push_back(GV); 410 } 411 412 /// Whether we are importing globals for ThinLTO, as opposed to linking the 413 /// source module. If this flag is set, it means that we can rely on some 414 /// other object file to define any non-GlobalValue entities defined by the 415 /// source module. This currently causes us to not link retained types in 416 /// debug info metadata and module inline asm. 417 bool IsPerformingImport; 418 419 /// Set to true when all global value body linking is complete (including 420 /// lazy linking). Used to prevent metadata linking from creating new 421 /// references. 422 bool DoneLinkingBodies = false; 423 424 /// The Error encountered during materialization. We use an Optional here to 425 /// avoid needing to manage an unconsumed success value. 426 Optional<Error> FoundError; 427 void setError(Error E) { 428 if (E) 429 FoundError = std::move(E); 430 } 431 432 /// Most of the errors produced by this module are inconvertible StringErrors. 433 /// This convenience function lets us return one of those more easily. 434 Error stringErr(const Twine &T) { 435 return make_error<StringError>(T, inconvertibleErrorCode()); 436 } 437 438 /// Entry point for mapping values and alternate context for mapping aliases. 439 ValueMapper Mapper; 440 unsigned IndirectSymbolMCID; 441 442 /// Handles cloning of a global values from the source module into 443 /// the destination module, including setting the attributes and visibility. 444 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 445 446 void emitWarning(const Twine &Message) { 447 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 448 } 449 450 /// Given a global in the source module, return the global in the 451 /// destination module that is being linked to, if any. 452 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 453 // If the source has no name it can't link. If it has local linkage, 454 // there is no name match-up going on. 455 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 456 return nullptr; 457 458 // Otherwise see if we have a match in the destination module's symtab. 459 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 460 if (!DGV) 461 return nullptr; 462 463 // If we found a global with the same name in the dest module, but it has 464 // internal linkage, we are really not doing any linkage here. 465 if (DGV->hasLocalLinkage()) 466 return nullptr; 467 468 // Otherwise, we do in fact link to the destination global. 469 return DGV; 470 } 471 472 void computeTypeMapping(); 473 474 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 475 const GlobalVariable *SrcGV); 476 477 /// Given the GlobaValue \p SGV in the source module, and the matching 478 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 479 /// into the destination module. 480 /// 481 /// Note this code may call the client-provided \p AddLazyFor. 482 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 483 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, 484 bool ForIndirectSymbol); 485 486 Error linkModuleFlagsMetadata(); 487 488 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 489 Error linkFunctionBody(Function &Dst, Function &Src); 490 void linkIndirectSymbolBody(GlobalIndirectSymbol &Dst, 491 GlobalIndirectSymbol &Src); 492 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 493 494 /// Replace all types in the source AttributeList with the 495 /// corresponding destination type. 496 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 497 498 /// Functions that take care of cloning a specific global value type 499 /// into the destination module. 500 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 501 Function *copyFunctionProto(const Function *SF); 502 GlobalValue *copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS); 503 504 /// Perform "replace all uses with" operations. These work items need to be 505 /// performed as part of materialization, but we postpone them to happen after 506 /// materialization is done. The materializer called by ValueMapper is not 507 /// expected to delete constants, as ValueMapper is holding pointers to some 508 /// of them, but constant destruction may be indirectly triggered by RAUW. 509 /// Hence, the need to move this out of the materialization call chain. 510 void flushRAUWWorklist(); 511 512 /// When importing for ThinLTO, prevent importing of types listed on 513 /// the DICompileUnit that we don't need a copy of in the importing 514 /// module. 515 void prepareCompileUnitsForImport(); 516 void linkNamedMDNodes(); 517 518 public: 519 IRLinker(Module &DstM, MDMapT &SharedMDs, 520 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 521 ArrayRef<GlobalValue *> ValuesToLink, 522 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor, 523 bool IsPerformingImport) 524 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 525 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 526 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 527 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap, 528 &GValMaterializer), 529 IndirectSymbolMCID(Mapper.registerAlternateMappingContext( 530 IndirectSymbolValueMap, &LValMaterializer)) { 531 ValueMap.getMDMap() = std::move(SharedMDs); 532 for (GlobalValue *GV : ValuesToLink) 533 maybeAdd(GV); 534 if (IsPerformingImport) 535 prepareCompileUnitsForImport(); 536 } 537 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 538 539 Error run(); 540 Value *materialize(Value *V, bool ForIndirectSymbol); 541 }; 542 } 543 544 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 545 /// table. This is good for all clients except for us. Go through the trouble 546 /// to force this back. 547 static void forceRenaming(GlobalValue *GV, StringRef Name) { 548 // If the global doesn't force its name or if it already has the right name, 549 // there is nothing for us to do. 550 if (GV->hasLocalLinkage() || GV->getName() == Name) 551 return; 552 553 Module *M = GV->getParent(); 554 555 // If there is a conflict, rename the conflict. 556 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 557 GV->takeName(ConflictGV); 558 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 559 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 560 } else { 561 GV->setName(Name); // Force the name back 562 } 563 } 564 565 Value *GlobalValueMaterializer::materialize(Value *SGV) { 566 return TheIRLinker.materialize(SGV, false); 567 } 568 569 Value *LocalValueMaterializer::materialize(Value *SGV) { 570 return TheIRLinker.materialize(SGV, true); 571 } 572 573 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { 574 auto *SGV = dyn_cast<GlobalValue>(V); 575 if (!SGV) 576 return nullptr; 577 578 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); 579 if (!NewProto) { 580 setError(NewProto.takeError()); 581 return nullptr; 582 } 583 if (!*NewProto) 584 return nullptr; 585 586 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 587 if (!New) 588 return *NewProto; 589 590 // If we already created the body, just return. 591 if (auto *F = dyn_cast<Function>(New)) { 592 if (!F->isDeclaration()) 593 return New; 594 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 595 if (V->hasInitializer() || V->hasAppendingLinkage()) 596 return New; 597 } else { 598 auto *IS = cast<GlobalIndirectSymbol>(New); 599 if (IS->getIndirectSymbol()) 600 return New; 601 } 602 603 // When linking a global for an indirect symbol, it will always be linked. 604 // However we need to check if it was not already scheduled to satisfy a 605 // reference from a regular global value initializer. We know if it has been 606 // schedule if the "New" GlobalValue that is mapped here for the indirect 607 // symbol is the same as the one already mapped. If there is an entry in the 608 // ValueMap but the value is different, it means that the value already had a 609 // definition in the destination module (linkonce for instance), but we need a 610 // new definition for the indirect symbol ("New" will be different. 611 if (ForIndirectSymbol && ValueMap.lookup(SGV) == New) 612 return New; 613 614 if (ForIndirectSymbol || shouldLink(New, *SGV)) 615 setError(linkGlobalValueBody(*New, *SGV)); 616 617 return New; 618 } 619 620 /// Loop through the global variables in the src module and merge them into the 621 /// dest module. 622 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 623 // No linking to be performed or linking from the source: simply create an 624 // identical version of the symbol over in the dest module... the 625 // initializer will be filled in later by LinkGlobalInits. 626 GlobalVariable *NewDGV = 627 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 628 SGVar->isConstant(), GlobalValue::ExternalLinkage, 629 /*init*/ nullptr, SGVar->getName(), 630 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 631 SGVar->getAddressSpace()); 632 NewDGV->setAlignment(MaybeAlign(SGVar->getAlignment())); 633 NewDGV->copyAttributesFrom(SGVar); 634 return NewDGV; 635 } 636 637 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 638 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 639 if (Attrs.hasAttribute(i, Attribute::ByVal)) { 640 Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType(); 641 if (!Ty) 642 continue; 643 644 Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal); 645 Attrs = Attrs.addAttribute( 646 C, i, Attribute::getWithByValType(C, TypeMap.get(Ty))); 647 } 648 } 649 return Attrs; 650 } 651 652 /// Link the function in the source module into the destination module if 653 /// needed, setting up mapping information. 654 Function *IRLinker::copyFunctionProto(const Function *SF) { 655 // If there is no linkage to be performed or we are linking from the source, 656 // bring SF over. 657 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()), 658 GlobalValue::ExternalLinkage, 659 SF->getAddressSpace(), SF->getName(), &DstM); 660 F->copyAttributesFrom(SF); 661 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 662 return F; 663 } 664 665 /// Set up prototypes for any indirect symbols that come over from the source 666 /// module. 667 GlobalValue * 668 IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS) { 669 // If there is no linkage to be performed or we're linking from the source, 670 // bring over SGA. 671 auto *Ty = TypeMap.get(SGIS->getValueType()); 672 GlobalIndirectSymbol *GIS; 673 if (isa<GlobalAlias>(SGIS)) 674 GIS = GlobalAlias::create(Ty, SGIS->getAddressSpace(), 675 GlobalValue::ExternalLinkage, SGIS->getName(), 676 &DstM); 677 else 678 GIS = GlobalIFunc::create(Ty, SGIS->getAddressSpace(), 679 GlobalValue::ExternalLinkage, SGIS->getName(), 680 nullptr, &DstM); 681 GIS->copyAttributesFrom(SGIS); 682 return GIS; 683 } 684 685 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 686 bool ForDefinition) { 687 GlobalValue *NewGV; 688 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 689 NewGV = copyGlobalVariableProto(SGVar); 690 } else if (auto *SF = dyn_cast<Function>(SGV)) { 691 NewGV = copyFunctionProto(SF); 692 } else { 693 if (ForDefinition) 694 NewGV = copyGlobalIndirectSymbolProto(cast<GlobalIndirectSymbol>(SGV)); 695 else if (SGV->getValueType()->isFunctionTy()) 696 NewGV = 697 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 698 GlobalValue::ExternalLinkage, SGV->getAddressSpace(), 699 SGV->getName(), &DstM); 700 else 701 NewGV = 702 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()), 703 /*isConstant*/ false, GlobalValue::ExternalLinkage, 704 /*init*/ nullptr, SGV->getName(), 705 /*insertbefore*/ nullptr, 706 SGV->getThreadLocalMode(), SGV->getAddressSpace()); 707 } 708 709 if (ForDefinition) 710 NewGV->setLinkage(SGV->getLinkage()); 711 else if (SGV->hasExternalWeakLinkage()) 712 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 713 714 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 715 // Metadata for global variables and function declarations is copied eagerly. 716 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) 717 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 718 } 719 720 // Remove these copied constants in case this stays a declaration, since 721 // they point to the source module. If the def is linked the values will 722 // be mapped in during linkFunctionBody. 723 if (auto *NewF = dyn_cast<Function>(NewGV)) { 724 NewF->setPersonalityFn(nullptr); 725 NewF->setPrefixData(nullptr); 726 NewF->setPrologueData(nullptr); 727 } 728 729 return NewGV; 730 } 731 732 static StringRef getTypeNamePrefix(StringRef Name) { 733 size_t DotPos = Name.rfind('.'); 734 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 735 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 736 ? Name 737 : Name.substr(0, DotPos); 738 } 739 740 /// Loop over all of the linked values to compute type mappings. For example, 741 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 742 /// types 'Foo' but one got renamed when the module was loaded into the same 743 /// LLVMContext. 744 void IRLinker::computeTypeMapping() { 745 for (GlobalValue &SGV : SrcM->globals()) { 746 GlobalValue *DGV = getLinkedToGlobal(&SGV); 747 if (!DGV) 748 continue; 749 750 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 751 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 752 continue; 753 } 754 755 // Unify the element type of appending arrays. 756 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 757 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 758 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 759 } 760 761 for (GlobalValue &SGV : *SrcM) 762 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { 763 if (DGV->getType() == SGV.getType()) { 764 // If the types of DGV and SGV are the same, it means that DGV is from 765 // the source module and got added to DstM from a shared metadata. We 766 // shouldn't map this type to itself in case the type's components get 767 // remapped to a new type from DstM (for instance, during the loop over 768 // SrcM->getIdentifiedStructTypes() below). 769 continue; 770 } 771 772 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 773 } 774 775 for (GlobalValue &SGV : SrcM->aliases()) 776 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 777 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 778 779 // Incorporate types by name, scanning all the types in the source module. 780 // At this point, the destination module may have a type "%foo = { i32 }" for 781 // example. When the source module got loaded into the same LLVMContext, if 782 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 783 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 784 for (StructType *ST : Types) { 785 if (!ST->hasName()) 786 continue; 787 788 if (TypeMap.DstStructTypesSet.hasType(ST)) { 789 // This is actually a type from the destination module. 790 // getIdentifiedStructTypes() can have found it by walking debug info 791 // metadata nodes, some of which get linked by name when ODR Type Uniquing 792 // is enabled on the Context, from the source to the destination module. 793 continue; 794 } 795 796 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 797 if (STTypePrefix.size()== ST->getName().size()) 798 continue; 799 800 // Check to see if the destination module has a struct with the prefix name. 801 StructType *DST = DstM.getTypeByName(STTypePrefix); 802 if (!DST) 803 continue; 804 805 // Don't use it if this actually came from the source module. They're in 806 // the same LLVMContext after all. Also don't use it unless the type is 807 // actually used in the destination module. This can happen in situations 808 // like this: 809 // 810 // Module A Module B 811 // -------- -------- 812 // %Z = type { %A } %B = type { %C.1 } 813 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 814 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 815 // %C = type { i8* } %B.3 = type { %C.1 } 816 // 817 // When we link Module B with Module A, the '%B' in Module B is 818 // used. However, that would then use '%C.1'. But when we process '%C.1', 819 // we prefer to take the '%C' version. So we are then left with both 820 // '%C.1' and '%C' being used for the same types. This leads to some 821 // variables using one type and some using the other. 822 if (TypeMap.DstStructTypesSet.hasType(DST)) 823 TypeMap.addTypeMapping(DST, ST); 824 } 825 826 // Now that we have discovered all of the type equivalences, get a body for 827 // any 'opaque' types in the dest module that are now resolved. 828 TypeMap.linkDefinedTypeBodies(); 829 } 830 831 static void getArrayElements(const Constant *C, 832 SmallVectorImpl<Constant *> &Dest) { 833 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 834 835 for (unsigned i = 0; i != NumElements; ++i) 836 Dest.push_back(C->getAggregateElement(i)); 837 } 838 839 /// If there were any appending global variables, link them together now. 840 Expected<Constant *> 841 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 842 const GlobalVariable *SrcGV) { 843 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 844 ->getElementType(); 845 846 // FIXME: This upgrade is done during linking to support the C API. Once the 847 // old form is deprecated, we should move this upgrade to 848 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 849 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 850 StringRef Name = SrcGV->getName(); 851 bool IsNewStructor = false; 852 bool IsOldStructor = false; 853 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 854 if (cast<StructType>(EltTy)->getNumElements() == 3) 855 IsNewStructor = true; 856 else 857 IsOldStructor = true; 858 } 859 860 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); 861 if (IsOldStructor) { 862 auto &ST = *cast<StructType>(EltTy); 863 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 864 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 865 } 866 867 uint64_t DstNumElements = 0; 868 if (DstGV) { 869 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 870 DstNumElements = DstTy->getNumElements(); 871 872 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 873 return stringErr( 874 "Linking globals named '" + SrcGV->getName() + 875 "': can only link appending global with another appending " 876 "global!"); 877 878 // Check to see that they two arrays agree on type. 879 if (EltTy != DstTy->getElementType()) 880 return stringErr("Appending variables with different element types!"); 881 if (DstGV->isConstant() != SrcGV->isConstant()) 882 return stringErr("Appending variables linked with different const'ness!"); 883 884 if (DstGV->getAlignment() != SrcGV->getAlignment()) 885 return stringErr( 886 "Appending variables with different alignment need to be linked!"); 887 888 if (DstGV->getVisibility() != SrcGV->getVisibility()) 889 return stringErr( 890 "Appending variables with different visibility need to be linked!"); 891 892 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 893 return stringErr( 894 "Appending variables with different unnamed_addr need to be linked!"); 895 896 if (DstGV->getSection() != SrcGV->getSection()) 897 return stringErr( 898 "Appending variables with different section name need to be linked!"); 899 } 900 901 SmallVector<Constant *, 16> SrcElements; 902 getArrayElements(SrcGV->getInitializer(), SrcElements); 903 904 if (IsNewStructor) { 905 auto It = remove_if(SrcElements, [this](Constant *E) { 906 auto *Key = 907 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 908 if (!Key) 909 return false; 910 GlobalValue *DGV = getLinkedToGlobal(Key); 911 return !shouldLink(DGV, *Key); 912 }); 913 SrcElements.erase(It, SrcElements.end()); 914 } 915 uint64_t NewSize = DstNumElements + SrcElements.size(); 916 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 917 918 // Create the new global variable. 919 GlobalVariable *NG = new GlobalVariable( 920 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 921 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 922 SrcGV->getAddressSpace()); 923 924 NG->copyAttributesFrom(SrcGV); 925 forceRenaming(NG, SrcGV->getName()); 926 927 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 928 929 Mapper.scheduleMapAppendingVariable(*NG, 930 DstGV ? DstGV->getInitializer() : nullptr, 931 IsOldStructor, SrcElements); 932 933 // Replace any uses of the two global variables with uses of the new 934 // global. 935 if (DstGV) { 936 RAUWWorklist.push_back( 937 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType()))); 938 } 939 940 return Ret; 941 } 942 943 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 944 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 945 return true; 946 947 if (DGV && !DGV->isDeclarationForLinker()) 948 return false; 949 950 if (SGV.isDeclaration() || DoneLinkingBodies) 951 return false; 952 953 // Callback to the client to give a chance to lazily add the Global to the 954 // list of value to link. 955 bool LazilyAdded = false; 956 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 957 maybeAdd(&GV); 958 LazilyAdded = true; 959 }); 960 return LazilyAdded; 961 } 962 963 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 964 bool ForIndirectSymbol) { 965 GlobalValue *DGV = getLinkedToGlobal(SGV); 966 967 bool ShouldLink = shouldLink(DGV, *SGV); 968 969 // just missing from map 970 if (ShouldLink) { 971 auto I = ValueMap.find(SGV); 972 if (I != ValueMap.end()) 973 return cast<Constant>(I->second); 974 975 I = IndirectSymbolValueMap.find(SGV); 976 if (I != IndirectSymbolValueMap.end()) 977 return cast<Constant>(I->second); 978 } 979 980 if (!ShouldLink && ForIndirectSymbol) 981 DGV = nullptr; 982 983 // Handle the ultra special appending linkage case first. 984 assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage()); 985 if (SGV->hasAppendingLinkage()) 986 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 987 cast<GlobalVariable>(SGV)); 988 989 GlobalValue *NewGV; 990 if (DGV && !ShouldLink) { 991 NewGV = DGV; 992 } else { 993 // If we are done linking global value bodies (i.e. we are performing 994 // metadata linking), don't link in the global value due to this 995 // reference, simply map it to null. 996 if (DoneLinkingBodies) 997 return nullptr; 998 999 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); 1000 if (ShouldLink || !ForIndirectSymbol) 1001 forceRenaming(NewGV, SGV->getName()); 1002 } 1003 1004 // Overloaded intrinsics have overloaded types names as part of their 1005 // names. If we renamed overloaded types we should rename the intrinsic 1006 // as well. 1007 if (Function *F = dyn_cast<Function>(NewGV)) 1008 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) 1009 NewGV = Remangled.getValue(); 1010 1011 if (ShouldLink || ForIndirectSymbol) { 1012 if (const Comdat *SC = SGV->getComdat()) { 1013 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 1014 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 1015 DC->setSelectionKind(SC->getSelectionKind()); 1016 GO->setComdat(DC); 1017 } 1018 } 1019 } 1020 1021 if (!ShouldLink && ForIndirectSymbol) 1022 NewGV->setLinkage(GlobalValue::InternalLinkage); 1023 1024 Constant *C = NewGV; 1025 // Only create a bitcast if necessary. In particular, with 1026 // DebugTypeODRUniquing we may reach metadata in the destination module 1027 // containing a GV from the source module, in which case SGV will be 1028 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1029 // assumes it is being invoked on a type in the source module. 1030 if (DGV && NewGV != SGV) { 1031 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1032 NewGV, TypeMap.get(SGV->getType())); 1033 } 1034 1035 if (DGV && NewGV != DGV) { 1036 // Schedule "replace all uses with" to happen after materializing is 1037 // done. It is not safe to do it now, since ValueMapper may be holding 1038 // pointers to constants that will get deleted if RAUW runs. 1039 RAUWWorklist.push_back(std::make_pair( 1040 DGV, 1041 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1042 } 1043 1044 return C; 1045 } 1046 1047 /// Update the initializers in the Dest module now that all globals that may be 1048 /// referenced are in Dest. 1049 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1050 // Figure out what the initializer looks like in the dest module. 1051 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1052 } 1053 1054 /// Copy the source function over into the dest function and fix up references 1055 /// to values. At this point we know that Dest is an external function, and 1056 /// that Src is not. 1057 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1058 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1059 1060 // Materialize if needed. 1061 if (Error Err = Src.materialize()) 1062 return Err; 1063 1064 // Link in the operands without remapping. 1065 if (Src.hasPrefixData()) 1066 Dst.setPrefixData(Src.getPrefixData()); 1067 if (Src.hasPrologueData()) 1068 Dst.setPrologueData(Src.getPrologueData()); 1069 if (Src.hasPersonalityFn()) 1070 Dst.setPersonalityFn(Src.getPersonalityFn()); 1071 1072 // Copy over the metadata attachments without remapping. 1073 Dst.copyMetadata(&Src, 0); 1074 1075 // Steal arguments and splice the body of Src into Dst. 1076 Dst.stealArgumentListFrom(Src); 1077 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList()); 1078 1079 // Everything has been moved over. Remap it. 1080 Mapper.scheduleRemapFunction(Dst); 1081 return Error::success(); 1082 } 1083 1084 void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol &Dst, 1085 GlobalIndirectSymbol &Src) { 1086 Mapper.scheduleMapGlobalIndirectSymbol(Dst, *Src.getIndirectSymbol(), 1087 IndirectSymbolMCID); 1088 } 1089 1090 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1091 if (auto *F = dyn_cast<Function>(&Src)) 1092 return linkFunctionBody(cast<Function>(Dst), *F); 1093 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1094 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1095 return Error::success(); 1096 } 1097 linkIndirectSymbolBody(cast<GlobalIndirectSymbol>(Dst), cast<GlobalIndirectSymbol>(Src)); 1098 return Error::success(); 1099 } 1100 1101 void IRLinker::flushRAUWWorklist() { 1102 for (const auto &Elem : RAUWWorklist) { 1103 GlobalValue *Old; 1104 Value *New; 1105 std::tie(Old, New) = Elem; 1106 1107 Old->replaceAllUsesWith(New); 1108 Old->eraseFromParent(); 1109 } 1110 RAUWWorklist.clear(); 1111 } 1112 1113 void IRLinker::prepareCompileUnitsForImport() { 1114 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1115 if (!SrcCompileUnits) 1116 return; 1117 // When importing for ThinLTO, prevent importing of types listed on 1118 // the DICompileUnit that we don't need a copy of in the importing 1119 // module. They will be emitted by the originating module. 1120 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) { 1121 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I)); 1122 assert(CU && "Expected valid compile unit"); 1123 // Enums, macros, and retained types don't need to be listed on the 1124 // imported DICompileUnit. This means they will only be imported 1125 // if reached from the mapped IR. Do this by setting their value map 1126 // entries to nullptr, which will automatically prevent their importing 1127 // when reached from the DICompileUnit during metadata mapping. 1128 ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr); 1129 ValueMap.MD()[CU->getRawMacros()].reset(nullptr); 1130 ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr); 1131 // The original definition (or at least its debug info - if the variable is 1132 // internalized an optimized away) will remain in the source module, so 1133 // there's no need to import them. 1134 // If LLVM ever does more advanced optimizations on global variables 1135 // (removing/localizing write operations, for instance) that can track 1136 // through debug info, this decision may need to be revisited - but do so 1137 // with care when it comes to debug info size. Emitting small CUs containing 1138 // only a few imported entities into every destination module may be very 1139 // size inefficient. 1140 ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr); 1141 1142 // Imported entities only need to be mapped in if they have local 1143 // scope, as those might correspond to an imported entity inside a 1144 // function being imported (any locally scoped imported entities that 1145 // don't end up referenced by an imported function will not be emitted 1146 // into the object). Imported entities not in a local scope 1147 // (e.g. on the namespace) only need to be emitted by the originating 1148 // module. Create a list of the locally scoped imported entities, and 1149 // replace the source CUs imported entity list with the new list, so 1150 // only those are mapped in. 1151 // FIXME: Locally-scoped imported entities could be moved to the 1152 // functions they are local to instead of listing them on the CU, and 1153 // we would naturally only link in those needed by function importing. 1154 SmallVector<TrackingMDNodeRef, 4> AllImportedModules; 1155 bool ReplaceImportedEntities = false; 1156 for (auto *IE : CU->getImportedEntities()) { 1157 DIScope *Scope = IE->getScope(); 1158 assert(Scope && "Invalid Scope encoding!"); 1159 if (isa<DILocalScope>(Scope)) 1160 AllImportedModules.emplace_back(IE); 1161 else 1162 ReplaceImportedEntities = true; 1163 } 1164 if (ReplaceImportedEntities) { 1165 if (!AllImportedModules.empty()) 1166 CU->replaceImportedEntities(MDTuple::get( 1167 CU->getContext(), 1168 SmallVector<Metadata *, 16>(AllImportedModules.begin(), 1169 AllImportedModules.end()))); 1170 else 1171 // If there were no local scope imported entities, we can map 1172 // the whole list to nullptr. 1173 ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr); 1174 } 1175 } 1176 } 1177 1178 /// Insert all of the named MDNodes in Src into the Dest module. 1179 void IRLinker::linkNamedMDNodes() { 1180 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1181 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1182 // Don't link module flags here. Do them separately. 1183 if (&NMD == SrcModFlags) 1184 continue; 1185 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1186 // Add Src elements into Dest node. 1187 for (const MDNode *Op : NMD.operands()) 1188 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1189 } 1190 } 1191 1192 /// Merge the linker flags in Src into the Dest module. 1193 Error IRLinker::linkModuleFlagsMetadata() { 1194 // If the source module has no module flags, we are done. 1195 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1196 if (!SrcModFlags) 1197 return Error::success(); 1198 1199 // If the destination module doesn't have module flags yet, then just copy 1200 // over the source module's flags. 1201 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1202 if (DstModFlags->getNumOperands() == 0) { 1203 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1204 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1205 1206 return Error::success(); 1207 } 1208 1209 // First build a map of the existing module flags and requirements. 1210 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1211 SmallSetVector<MDNode *, 16> Requirements; 1212 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1213 MDNode *Op = DstModFlags->getOperand(I); 1214 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0)); 1215 MDString *ID = cast<MDString>(Op->getOperand(1)); 1216 1217 if (Behavior->getZExtValue() == Module::Require) { 1218 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1219 } else { 1220 Flags[ID] = std::make_pair(Op, I); 1221 } 1222 } 1223 1224 // Merge in the flags from the source module, and also collect its set of 1225 // requirements. 1226 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1227 MDNode *SrcOp = SrcModFlags->getOperand(I); 1228 ConstantInt *SrcBehavior = 1229 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1230 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1231 MDNode *DstOp; 1232 unsigned DstIndex; 1233 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1234 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1235 1236 // If this is a requirement, add it and continue. 1237 if (SrcBehaviorValue == Module::Require) { 1238 // If the destination module does not already have this requirement, add 1239 // it. 1240 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1241 DstModFlags->addOperand(SrcOp); 1242 } 1243 continue; 1244 } 1245 1246 // If there is no existing flag with this ID, just add it. 1247 if (!DstOp) { 1248 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1249 DstModFlags->addOperand(SrcOp); 1250 continue; 1251 } 1252 1253 // Otherwise, perform a merge. 1254 ConstantInt *DstBehavior = 1255 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1256 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1257 1258 auto overrideDstValue = [&]() { 1259 DstModFlags->setOperand(DstIndex, SrcOp); 1260 Flags[ID].first = SrcOp; 1261 }; 1262 1263 // If either flag has override behavior, handle it first. 1264 if (DstBehaviorValue == Module::Override) { 1265 // Diagnose inconsistent flags which both have override behavior. 1266 if (SrcBehaviorValue == Module::Override && 1267 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1268 return stringErr("linking module flags '" + ID->getString() + 1269 "': IDs have conflicting override values in '" + 1270 SrcM->getModuleIdentifier() + "' and '" + 1271 DstM.getModuleIdentifier() + "'"); 1272 continue; 1273 } else if (SrcBehaviorValue == Module::Override) { 1274 // Update the destination flag to that of the source. 1275 overrideDstValue(); 1276 continue; 1277 } 1278 1279 // Diagnose inconsistent merge behavior types. 1280 if (SrcBehaviorValue != DstBehaviorValue) { 1281 bool MaxAndWarn = (SrcBehaviorValue == Module::Max && 1282 DstBehaviorValue == Module::Warning) || 1283 (DstBehaviorValue == Module::Max && 1284 SrcBehaviorValue == Module::Warning); 1285 if (!MaxAndWarn) 1286 return stringErr("linking module flags '" + ID->getString() + 1287 "': IDs have conflicting behaviors in '" + 1288 SrcM->getModuleIdentifier() + "' and '" + 1289 DstM.getModuleIdentifier() + "'"); 1290 } 1291 1292 auto replaceDstValue = [&](MDNode *New) { 1293 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1294 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1295 DstModFlags->setOperand(DstIndex, Flag); 1296 Flags[ID].first = Flag; 1297 }; 1298 1299 // Emit a warning if the values differ and either source or destination 1300 // request Warning behavior. 1301 if ((DstBehaviorValue == Module::Warning || 1302 SrcBehaviorValue == Module::Warning) && 1303 SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1304 std::string Str; 1305 raw_string_ostream(Str) 1306 << "linking module flags '" << ID->getString() 1307 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1308 << "' from " << SrcM->getModuleIdentifier() << " with '" 1309 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1310 << ')'; 1311 emitWarning(Str); 1312 } 1313 1314 // Choose the maximum if either source or destination request Max behavior. 1315 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) { 1316 ConstantInt *DstValue = 1317 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1318 ConstantInt *SrcValue = 1319 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1320 1321 // The resulting flag should have a Max behavior, and contain the maximum 1322 // value from between the source and destination values. 1323 Metadata *FlagOps[] = { 1324 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID, 1325 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp) 1326 ->getOperand(2)}; 1327 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1328 DstModFlags->setOperand(DstIndex, Flag); 1329 Flags[ID].first = Flag; 1330 continue; 1331 } 1332 1333 // Perform the merge for standard behavior types. 1334 switch (SrcBehaviorValue) { 1335 case Module::Require: 1336 case Module::Override: 1337 llvm_unreachable("not possible"); 1338 case Module::Error: { 1339 // Emit an error if the values differ. 1340 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1341 return stringErr("linking module flags '" + ID->getString() + 1342 "': IDs have conflicting values in '" + 1343 SrcM->getModuleIdentifier() + "' and '" + 1344 DstM.getModuleIdentifier() + "'"); 1345 continue; 1346 } 1347 case Module::Warning: { 1348 break; 1349 } 1350 case Module::Max: { 1351 break; 1352 } 1353 case Module::Append: { 1354 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1355 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1356 SmallVector<Metadata *, 8> MDs; 1357 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands()); 1358 MDs.append(DstValue->op_begin(), DstValue->op_end()); 1359 MDs.append(SrcValue->op_begin(), SrcValue->op_end()); 1360 1361 replaceDstValue(MDNode::get(DstM.getContext(), MDs)); 1362 break; 1363 } 1364 case Module::AppendUnique: { 1365 SmallSetVector<Metadata *, 16> Elts; 1366 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1367 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1368 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1369 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1370 1371 replaceDstValue(MDNode::get(DstM.getContext(), 1372 makeArrayRef(Elts.begin(), Elts.end()))); 1373 break; 1374 } 1375 } 1376 1377 } 1378 1379 // Check all of the requirements. 1380 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 1381 MDNode *Requirement = Requirements[I]; 1382 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1383 Metadata *ReqValue = Requirement->getOperand(1); 1384 1385 MDNode *Op = Flags[Flag].first; 1386 if (!Op || Op->getOperand(2) != ReqValue) 1387 return stringErr("linking module flags '" + Flag->getString() + 1388 "': does not have the required value"); 1389 } 1390 return Error::success(); 1391 } 1392 1393 /// Return InlineAsm adjusted with target-specific directives if required. 1394 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1395 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1396 static std::string adjustInlineAsm(const std::string &InlineAsm, 1397 const Triple &Triple) { 1398 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1399 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1400 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1401 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1402 return InlineAsm; 1403 } 1404 1405 Error IRLinker::run() { 1406 // Ensure metadata materialized before value mapping. 1407 if (SrcM->getMaterializer()) 1408 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1409 return Err; 1410 1411 // Inherit the target data from the source module if the destination module 1412 // doesn't have one already. 1413 if (DstM.getDataLayout().isDefault()) 1414 DstM.setDataLayout(SrcM->getDataLayout()); 1415 1416 if (SrcM->getDataLayout() != DstM.getDataLayout()) { 1417 emitWarning("Linking two modules of different data layouts: '" + 1418 SrcM->getModuleIdentifier() + "' is '" + 1419 SrcM->getDataLayoutStr() + "' whereas '" + 1420 DstM.getModuleIdentifier() + "' is '" + 1421 DstM.getDataLayoutStr() + "'\n"); 1422 } 1423 1424 // Copy the target triple from the source to dest if the dest's is empty. 1425 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1426 DstM.setTargetTriple(SrcM->getTargetTriple()); 1427 1428 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1429 1430 if (!SrcM->getTargetTriple().empty()&& 1431 !SrcTriple.isCompatibleWith(DstTriple)) 1432 emitWarning("Linking two modules of different target triples: " + 1433 SrcM->getModuleIdentifier() + "' is '" + 1434 SrcM->getTargetTriple() + "' whereas '" + 1435 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1436 "'\n"); 1437 1438 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1439 1440 // Append the module inline asm string. 1441 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1442 std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(), 1443 SrcTriple); 1444 if (DstM.getModuleInlineAsm().empty()) 1445 DstM.setModuleInlineAsm(SrcModuleInlineAsm); 1446 else 1447 DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" + 1448 SrcModuleInlineAsm); 1449 } 1450 1451 // Loop over all of the linked values to compute type mappings. 1452 computeTypeMapping(); 1453 1454 std::reverse(Worklist.begin(), Worklist.end()); 1455 while (!Worklist.empty()) { 1456 GlobalValue *GV = Worklist.back(); 1457 Worklist.pop_back(); 1458 1459 // Already mapped. 1460 if (ValueMap.find(GV) != ValueMap.end() || 1461 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) 1462 continue; 1463 1464 assert(!GV->isDeclaration()); 1465 Mapper.mapValue(*GV); 1466 if (FoundError) 1467 return std::move(*FoundError); 1468 flushRAUWWorklist(); 1469 } 1470 1471 // Note that we are done linking global value bodies. This prevents 1472 // metadata linking from creating new references. 1473 DoneLinkingBodies = true; 1474 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1475 1476 // Remap all of the named MDNodes in Src into the DstM module. We do this 1477 // after linking GlobalValues so that MDNodes that reference GlobalValues 1478 // are properly remapped. 1479 linkNamedMDNodes(); 1480 1481 // Merge the module flags into the DstM module. 1482 return linkModuleFlagsMetadata(); 1483 } 1484 1485 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1486 : ETypes(E), IsPacked(P) {} 1487 1488 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1489 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1490 1491 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1492 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1493 } 1494 1495 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1496 return !this->operator==(That); 1497 } 1498 1499 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1500 return DenseMapInfo<StructType *>::getEmptyKey(); 1501 } 1502 1503 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1504 return DenseMapInfo<StructType *>::getTombstoneKey(); 1505 } 1506 1507 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1508 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1509 Key.IsPacked); 1510 } 1511 1512 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1513 return getHashValue(KeyTy(ST)); 1514 } 1515 1516 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1517 const StructType *RHS) { 1518 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1519 return false; 1520 return LHS == KeyTy(RHS); 1521 } 1522 1523 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1524 const StructType *RHS) { 1525 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1526 return LHS == RHS; 1527 return KeyTy(LHS) == KeyTy(RHS); 1528 } 1529 1530 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1531 assert(!Ty->isOpaque()); 1532 NonOpaqueStructTypes.insert(Ty); 1533 } 1534 1535 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1536 assert(!Ty->isOpaque()); 1537 NonOpaqueStructTypes.insert(Ty); 1538 bool Removed = OpaqueStructTypes.erase(Ty); 1539 (void)Removed; 1540 assert(Removed); 1541 } 1542 1543 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1544 assert(Ty->isOpaque()); 1545 OpaqueStructTypes.insert(Ty); 1546 } 1547 1548 StructType * 1549 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1550 bool IsPacked) { 1551 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1552 auto I = NonOpaqueStructTypes.find_as(Key); 1553 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1554 } 1555 1556 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1557 if (Ty->isOpaque()) 1558 return OpaqueStructTypes.count(Ty); 1559 auto I = NonOpaqueStructTypes.find(Ty); 1560 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1561 } 1562 1563 IRMover::IRMover(Module &M) : Composite(M) { 1564 TypeFinder StructTypes; 1565 StructTypes.run(M, /* OnlyNamed */ false); 1566 for (StructType *Ty : StructTypes) { 1567 if (Ty->isOpaque()) 1568 IdentifiedStructTypes.addOpaque(Ty); 1569 else 1570 IdentifiedStructTypes.addNonOpaque(Ty); 1571 } 1572 // Self-map metadatas in the destination module. This is needed when 1573 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1574 // destination module may be reached from the source module. 1575 for (auto *MD : StructTypes.getVisitedMetadata()) { 1576 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1577 } 1578 } 1579 1580 Error IRMover::move( 1581 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink, 1582 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor, 1583 bool IsPerformingImport) { 1584 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1585 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1586 IsPerformingImport); 1587 Error E = TheIRLinker.run(); 1588 Composite.dropTriviallyDeadConstantArrays(); 1589 return E; 1590 } 1591