1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/SetVector.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/IR/Constants.h" 15 #include "llvm/IR/DebugInfo.h" 16 #include "llvm/IR/DiagnosticPrinter.h" 17 #include "llvm/IR/GVMaterializer.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/TypeFinder.h" 20 #include "llvm/Support/Error.h" 21 #include "llvm/Transforms/Utils/Cloning.h" 22 #include <utility> 23 using namespace llvm; 24 25 //===----------------------------------------------------------------------===// 26 // TypeMap implementation. 27 //===----------------------------------------------------------------------===// 28 29 namespace { 30 class TypeMapTy : public ValueMapTypeRemapper { 31 /// This is a mapping from a source type to a destination type to use. 32 DenseMap<Type *, Type *> MappedTypes; 33 34 /// When checking to see if two subgraphs are isomorphic, we speculatively 35 /// add types to MappedTypes, but keep track of them here in case we need to 36 /// roll back. 37 SmallVector<Type *, 16> SpeculativeTypes; 38 39 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 40 41 /// This is a list of non-opaque structs in the source module that are mapped 42 /// to an opaque struct in the destination module. 43 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 44 45 /// This is the set of opaque types in the destination modules who are 46 /// getting a body from the source module. 47 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 48 49 public: 50 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 51 : DstStructTypesSet(DstStructTypesSet) {} 52 53 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 54 /// Indicate that the specified type in the destination module is conceptually 55 /// equivalent to the specified type in the source module. 56 void addTypeMapping(Type *DstTy, Type *SrcTy); 57 58 /// Produce a body for an opaque type in the dest module from a type 59 /// definition in the source module. 60 void linkDefinedTypeBodies(); 61 62 /// Return the mapped type to use for the specified input type from the 63 /// source module. 64 Type *get(Type *SrcTy); 65 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 66 67 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 68 69 FunctionType *get(FunctionType *T) { 70 return cast<FunctionType>(get((Type *)T)); 71 } 72 73 private: 74 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 75 76 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 77 }; 78 } 79 80 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 81 assert(SpeculativeTypes.empty()); 82 assert(SpeculativeDstOpaqueTypes.empty()); 83 84 // Check to see if these types are recursively isomorphic and establish a 85 // mapping between them if so. 86 if (!areTypesIsomorphic(DstTy, SrcTy)) { 87 // Oops, they aren't isomorphic. Just discard this request by rolling out 88 // any speculative mappings we've established. 89 for (Type *Ty : SpeculativeTypes) 90 MappedTypes.erase(Ty); 91 92 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 93 SpeculativeDstOpaqueTypes.size()); 94 for (StructType *Ty : SpeculativeDstOpaqueTypes) 95 DstResolvedOpaqueTypes.erase(Ty); 96 } else { 97 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 98 // and all its descendants to lower amount of renaming in LLVM context 99 // Renaming occurs because we load all source modules to the same context 100 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 101 // As a result we may get several different types in the destination 102 // module, which are in fact the same. 103 for (Type *Ty : SpeculativeTypes) 104 if (auto *STy = dyn_cast<StructType>(Ty)) 105 if (STy->hasName()) 106 STy->setName(""); 107 } 108 SpeculativeTypes.clear(); 109 SpeculativeDstOpaqueTypes.clear(); 110 } 111 112 /// Recursively walk this pair of types, returning true if they are isomorphic, 113 /// false if they are not. 114 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 115 // Two types with differing kinds are clearly not isomorphic. 116 if (DstTy->getTypeID() != SrcTy->getTypeID()) 117 return false; 118 119 // If we have an entry in the MappedTypes table, then we have our answer. 120 Type *&Entry = MappedTypes[SrcTy]; 121 if (Entry) 122 return Entry == DstTy; 123 124 // Two identical types are clearly isomorphic. Remember this 125 // non-speculatively. 126 if (DstTy == SrcTy) { 127 Entry = DstTy; 128 return true; 129 } 130 131 // Okay, we have two types with identical kinds that we haven't seen before. 132 133 // If this is an opaque struct type, special case it. 134 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 135 // Mapping an opaque type to any struct, just keep the dest struct. 136 if (SSTy->isOpaque()) { 137 Entry = DstTy; 138 SpeculativeTypes.push_back(SrcTy); 139 return true; 140 } 141 142 // Mapping a non-opaque source type to an opaque dest. If this is the first 143 // type that we're mapping onto this destination type then we succeed. Keep 144 // the dest, but fill it in later. If this is the second (different) type 145 // that we're trying to map onto the same opaque type then we fail. 146 if (cast<StructType>(DstTy)->isOpaque()) { 147 // We can only map one source type onto the opaque destination type. 148 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 149 return false; 150 SrcDefinitionsToResolve.push_back(SSTy); 151 SpeculativeTypes.push_back(SrcTy); 152 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 153 Entry = DstTy; 154 return true; 155 } 156 } 157 158 // If the number of subtypes disagree between the two types, then we fail. 159 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 160 return false; 161 162 // Fail if any of the extra properties (e.g. array size) of the type disagree. 163 if (isa<IntegerType>(DstTy)) 164 return false; // bitwidth disagrees. 165 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 166 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 167 return false; 168 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 169 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 170 return false; 171 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 172 StructType *SSTy = cast<StructType>(SrcTy); 173 if (DSTy->isLiteral() != SSTy->isLiteral() || 174 DSTy->isPacked() != SSTy->isPacked()) 175 return false; 176 } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) { 177 if (DSeqTy->getNumElements() != 178 cast<SequentialType>(SrcTy)->getNumElements()) 179 return false; 180 } 181 182 // Otherwise, we speculate that these two types will line up and recursively 183 // check the subelements. 184 Entry = DstTy; 185 SpeculativeTypes.push_back(SrcTy); 186 187 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 188 if (!areTypesIsomorphic(DstTy->getContainedType(I), 189 SrcTy->getContainedType(I))) 190 return false; 191 192 // If everything seems to have lined up, then everything is great. 193 return true; 194 } 195 196 void TypeMapTy::linkDefinedTypeBodies() { 197 SmallVector<Type *, 16> Elements; 198 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 199 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 200 assert(DstSTy->isOpaque()); 201 202 // Map the body of the source type over to a new body for the dest type. 203 Elements.resize(SrcSTy->getNumElements()); 204 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 205 Elements[I] = get(SrcSTy->getElementType(I)); 206 207 DstSTy->setBody(Elements, SrcSTy->isPacked()); 208 DstStructTypesSet.switchToNonOpaque(DstSTy); 209 } 210 SrcDefinitionsToResolve.clear(); 211 DstResolvedOpaqueTypes.clear(); 212 } 213 214 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 215 ArrayRef<Type *> ETypes) { 216 DTy->setBody(ETypes, STy->isPacked()); 217 218 // Steal STy's name. 219 if (STy->hasName()) { 220 SmallString<16> TmpName = STy->getName(); 221 STy->setName(""); 222 DTy->setName(TmpName); 223 } 224 225 DstStructTypesSet.addNonOpaque(DTy); 226 } 227 228 Type *TypeMapTy::get(Type *Ty) { 229 SmallPtrSet<StructType *, 8> Visited; 230 return get(Ty, Visited); 231 } 232 233 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 234 // If we already have an entry for this type, return it. 235 Type **Entry = &MappedTypes[Ty]; 236 if (*Entry) 237 return *Entry; 238 239 // These are types that LLVM itself will unique. 240 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 241 242 if (!IsUniqued) { 243 StructType *STy = cast<StructType>(Ty); 244 // This is actually a type from the destination module, this can be reached 245 // when this type is loaded in another module, added to DstStructTypesSet, 246 // and then we reach the same type in another module where it has not been 247 // added to MappedTypes. (PR37684) 248 if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() && 249 DstStructTypesSet.hasType(STy)) 250 return *Entry = STy; 251 252 #ifndef NDEBUG 253 for (auto &Pair : MappedTypes) { 254 assert(!(Pair.first != Ty && Pair.second == Ty) && 255 "mapping to a source type"); 256 } 257 #endif 258 259 if (!Visited.insert(STy).second) { 260 StructType *DTy = StructType::create(Ty->getContext()); 261 return *Entry = DTy; 262 } 263 } 264 265 // If this is not a recursive type, then just map all of the elements and 266 // then rebuild the type from inside out. 267 SmallVector<Type *, 4> ElementTypes; 268 269 // If there are no element types to map, then the type is itself. This is 270 // true for the anonymous {} struct, things like 'float', integers, etc. 271 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 272 return *Entry = Ty; 273 274 // Remap all of the elements, keeping track of whether any of them change. 275 bool AnyChange = false; 276 ElementTypes.resize(Ty->getNumContainedTypes()); 277 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 278 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 279 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 280 } 281 282 // If we found our type while recursively processing stuff, just use it. 283 Entry = &MappedTypes[Ty]; 284 if (*Entry) { 285 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 286 if (DTy->isOpaque()) { 287 auto *STy = cast<StructType>(Ty); 288 finishType(DTy, STy, ElementTypes); 289 } 290 } 291 return *Entry; 292 } 293 294 // If all of the element types mapped directly over and the type is not 295 // a named struct, then the type is usable as-is. 296 if (!AnyChange && IsUniqued) 297 return *Entry = Ty; 298 299 // Otherwise, rebuild a modified type. 300 switch (Ty->getTypeID()) { 301 default: 302 llvm_unreachable("unknown derived type to remap"); 303 case Type::ArrayTyID: 304 return *Entry = ArrayType::get(ElementTypes[0], 305 cast<ArrayType>(Ty)->getNumElements()); 306 case Type::VectorTyID: 307 return *Entry = VectorType::get(ElementTypes[0], 308 cast<VectorType>(Ty)->getNumElements()); 309 case Type::PointerTyID: 310 return *Entry = PointerType::get(ElementTypes[0], 311 cast<PointerType>(Ty)->getAddressSpace()); 312 case Type::FunctionTyID: 313 return *Entry = FunctionType::get(ElementTypes[0], 314 makeArrayRef(ElementTypes).slice(1), 315 cast<FunctionType>(Ty)->isVarArg()); 316 case Type::StructTyID: { 317 auto *STy = cast<StructType>(Ty); 318 bool IsPacked = STy->isPacked(); 319 if (IsUniqued) 320 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 321 322 // If the type is opaque, we can just use it directly. 323 if (STy->isOpaque()) { 324 DstStructTypesSet.addOpaque(STy); 325 return *Entry = Ty; 326 } 327 328 if (StructType *OldT = 329 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 330 STy->setName(""); 331 return *Entry = OldT; 332 } 333 334 if (!AnyChange) { 335 DstStructTypesSet.addNonOpaque(STy); 336 return *Entry = Ty; 337 } 338 339 StructType *DTy = StructType::create(Ty->getContext()); 340 finishType(DTy, STy, ElementTypes); 341 return *Entry = DTy; 342 } 343 } 344 } 345 346 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 347 const Twine &Msg) 348 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 349 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 350 351 //===----------------------------------------------------------------------===// 352 // IRLinker implementation. 353 //===----------------------------------------------------------------------===// 354 355 namespace { 356 class IRLinker; 357 358 /// Creates prototypes for functions that are lazily linked on the fly. This 359 /// speeds up linking for modules with many/ lazily linked functions of which 360 /// few get used. 361 class GlobalValueMaterializer final : public ValueMaterializer { 362 IRLinker &TheIRLinker; 363 364 public: 365 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 366 Value *materialize(Value *V) override; 367 }; 368 369 class LocalValueMaterializer final : public ValueMaterializer { 370 IRLinker &TheIRLinker; 371 372 public: 373 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 374 Value *materialize(Value *V) override; 375 }; 376 377 /// Type of the Metadata map in \a ValueToValueMapTy. 378 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 379 380 /// This is responsible for keeping track of the state used for moving data 381 /// from SrcM to DstM. 382 class IRLinker { 383 Module &DstM; 384 std::unique_ptr<Module> SrcM; 385 386 /// See IRMover::move(). 387 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor; 388 389 TypeMapTy TypeMap; 390 GlobalValueMaterializer GValMaterializer; 391 LocalValueMaterializer LValMaterializer; 392 393 /// A metadata map that's shared between IRLinker instances. 394 MDMapT &SharedMDs; 395 396 /// Mapping of values from what they used to be in Src, to what they are now 397 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 398 /// due to the use of Value handles which the Linker doesn't actually need, 399 /// but this allows us to reuse the ValueMapper code. 400 ValueToValueMapTy ValueMap; 401 ValueToValueMapTy IndirectSymbolValueMap; 402 403 DenseSet<GlobalValue *> ValuesToLink; 404 std::vector<GlobalValue *> Worklist; 405 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 406 407 void maybeAdd(GlobalValue *GV) { 408 if (ValuesToLink.insert(GV).second) 409 Worklist.push_back(GV); 410 } 411 412 /// Whether we are importing globals for ThinLTO, as opposed to linking the 413 /// source module. If this flag is set, it means that we can rely on some 414 /// other object file to define any non-GlobalValue entities defined by the 415 /// source module. This currently causes us to not link retained types in 416 /// debug info metadata and module inline asm. 417 bool IsPerformingImport; 418 419 /// Set to true when all global value body linking is complete (including 420 /// lazy linking). Used to prevent metadata linking from creating new 421 /// references. 422 bool DoneLinkingBodies = false; 423 424 /// The Error encountered during materialization. We use an Optional here to 425 /// avoid needing to manage an unconsumed success value. 426 Optional<Error> FoundError; 427 void setError(Error E) { 428 if (E) 429 FoundError = std::move(E); 430 } 431 432 /// Most of the errors produced by this module are inconvertible StringErrors. 433 /// This convenience function lets us return one of those more easily. 434 Error stringErr(const Twine &T) { 435 return make_error<StringError>(T, inconvertibleErrorCode()); 436 } 437 438 /// Entry point for mapping values and alternate context for mapping aliases. 439 ValueMapper Mapper; 440 unsigned IndirectSymbolMCID; 441 442 /// Handles cloning of a global values from the source module into 443 /// the destination module, including setting the attributes and visibility. 444 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 445 446 void emitWarning(const Twine &Message) { 447 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 448 } 449 450 /// Given a global in the source module, return the global in the 451 /// destination module that is being linked to, if any. 452 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 453 // If the source has no name it can't link. If it has local linkage, 454 // there is no name match-up going on. 455 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 456 return nullptr; 457 458 // Otherwise see if we have a match in the destination module's symtab. 459 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 460 if (!DGV) 461 return nullptr; 462 463 // If we found a global with the same name in the dest module, but it has 464 // internal linkage, we are really not doing any linkage here. 465 if (DGV->hasLocalLinkage()) 466 return nullptr; 467 468 // Otherwise, we do in fact link to the destination global. 469 return DGV; 470 } 471 472 void computeTypeMapping(); 473 474 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 475 const GlobalVariable *SrcGV); 476 477 /// Given the GlobaValue \p SGV in the source module, and the matching 478 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 479 /// into the destination module. 480 /// 481 /// Note this code may call the client-provided \p AddLazyFor. 482 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 483 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, 484 bool ForIndirectSymbol); 485 486 Error linkModuleFlagsMetadata(); 487 488 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 489 Error linkFunctionBody(Function &Dst, Function &Src); 490 void linkIndirectSymbolBody(GlobalIndirectSymbol &Dst, 491 GlobalIndirectSymbol &Src); 492 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 493 494 /// Replace all types in the source AttributeList with the 495 /// corresponding destination type. 496 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 497 498 /// Functions that take care of cloning a specific global value type 499 /// into the destination module. 500 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 501 Function *copyFunctionProto(const Function *SF); 502 GlobalValue *copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS); 503 504 /// Perform "replace all uses with" operations. These work items need to be 505 /// performed as part of materialization, but we postpone them to happen after 506 /// materialization is done. The materializer called by ValueMapper is not 507 /// expected to delete constants, as ValueMapper is holding pointers to some 508 /// of them, but constant destruction may be indirectly triggered by RAUW. 509 /// Hence, the need to move this out of the materialization call chain. 510 void flushRAUWWorklist(); 511 512 /// When importing for ThinLTO, prevent importing of types listed on 513 /// the DICompileUnit that we don't need a copy of in the importing 514 /// module. 515 void prepareCompileUnitsForImport(); 516 void linkNamedMDNodes(); 517 518 public: 519 IRLinker(Module &DstM, MDMapT &SharedMDs, 520 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 521 ArrayRef<GlobalValue *> ValuesToLink, 522 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor, 523 bool IsPerformingImport) 524 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 525 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 526 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 527 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap, 528 &GValMaterializer), 529 IndirectSymbolMCID(Mapper.registerAlternateMappingContext( 530 IndirectSymbolValueMap, &LValMaterializer)) { 531 ValueMap.getMDMap() = std::move(SharedMDs); 532 for (GlobalValue *GV : ValuesToLink) 533 maybeAdd(GV); 534 if (IsPerformingImport) 535 prepareCompileUnitsForImport(); 536 } 537 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 538 539 Error run(); 540 Value *materialize(Value *V, bool ForIndirectSymbol); 541 }; 542 } 543 544 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 545 /// table. This is good for all clients except for us. Go through the trouble 546 /// to force this back. 547 static void forceRenaming(GlobalValue *GV, StringRef Name) { 548 // If the global doesn't force its name or if it already has the right name, 549 // there is nothing for us to do. 550 if (GV->hasLocalLinkage() || GV->getName() == Name) 551 return; 552 553 Module *M = GV->getParent(); 554 555 // If there is a conflict, rename the conflict. 556 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 557 GV->takeName(ConflictGV); 558 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 559 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 560 } else { 561 GV->setName(Name); // Force the name back 562 } 563 } 564 565 Value *GlobalValueMaterializer::materialize(Value *SGV) { 566 return TheIRLinker.materialize(SGV, false); 567 } 568 569 Value *LocalValueMaterializer::materialize(Value *SGV) { 570 return TheIRLinker.materialize(SGV, true); 571 } 572 573 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { 574 auto *SGV = dyn_cast<GlobalValue>(V); 575 if (!SGV) 576 return nullptr; 577 578 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); 579 if (!NewProto) { 580 setError(NewProto.takeError()); 581 return nullptr; 582 } 583 if (!*NewProto) 584 return nullptr; 585 586 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 587 if (!New) 588 return *NewProto; 589 590 // If we already created the body, just return. 591 if (auto *F = dyn_cast<Function>(New)) { 592 if (!F->isDeclaration()) 593 return New; 594 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 595 if (V->hasInitializer() || V->hasAppendingLinkage()) 596 return New; 597 } else { 598 auto *IS = cast<GlobalIndirectSymbol>(New); 599 if (IS->getIndirectSymbol()) 600 return New; 601 } 602 603 // When linking a global for an indirect symbol, it will always be linked. 604 // However we need to check if it was not already scheduled to satisfy a 605 // reference from a regular global value initializer. We know if it has been 606 // schedule if the "New" GlobalValue that is mapped here for the indirect 607 // symbol is the same as the one already mapped. If there is an entry in the 608 // ValueMap but the value is different, it means that the value already had a 609 // definition in the destination module (linkonce for instance), but we need a 610 // new definition for the indirect symbol ("New" will be different. 611 if (ForIndirectSymbol && ValueMap.lookup(SGV) == New) 612 return New; 613 614 if (ForIndirectSymbol || shouldLink(New, *SGV)) 615 setError(linkGlobalValueBody(*New, *SGV)); 616 617 return New; 618 } 619 620 /// Loop through the global variables in the src module and merge them into the 621 /// dest module. 622 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 623 // No linking to be performed or linking from the source: simply create an 624 // identical version of the symbol over in the dest module... the 625 // initializer will be filled in later by LinkGlobalInits. 626 GlobalVariable *NewDGV = 627 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 628 SGVar->isConstant(), GlobalValue::ExternalLinkage, 629 /*init*/ nullptr, SGVar->getName(), 630 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 631 SGVar->getType()->getAddressSpace()); 632 NewDGV->setAlignment(MaybeAlign(SGVar->getAlignment())); 633 NewDGV->copyAttributesFrom(SGVar); 634 return NewDGV; 635 } 636 637 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 638 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 639 if (Attrs.hasAttribute(i, Attribute::ByVal)) { 640 Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType(); 641 if (!Ty) 642 continue; 643 644 Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal); 645 Attrs = Attrs.addAttribute( 646 C, i, Attribute::getWithByValType(C, TypeMap.get(Ty))); 647 } 648 } 649 return Attrs; 650 } 651 652 /// Link the function in the source module into the destination module if 653 /// needed, setting up mapping information. 654 Function *IRLinker::copyFunctionProto(const Function *SF) { 655 // If there is no linkage to be performed or we are linking from the source, 656 // bring SF over. 657 auto *F = 658 Function::Create(TypeMap.get(SF->getFunctionType()), 659 GlobalValue::ExternalLinkage, SF->getName(), &DstM); 660 F->copyAttributesFrom(SF); 661 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 662 return F; 663 } 664 665 /// Set up prototypes for any indirect symbols that come over from the source 666 /// module. 667 GlobalValue * 668 IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS) { 669 // If there is no linkage to be performed or we're linking from the source, 670 // bring over SGA. 671 auto *Ty = TypeMap.get(SGIS->getValueType()); 672 GlobalIndirectSymbol *GIS; 673 if (isa<GlobalAlias>(SGIS)) 674 GIS = GlobalAlias::create(Ty, SGIS->getType()->getPointerAddressSpace(), 675 GlobalValue::ExternalLinkage, SGIS->getName(), 676 &DstM); 677 else 678 GIS = GlobalIFunc::create(Ty, SGIS->getType()->getPointerAddressSpace(), 679 GlobalValue::ExternalLinkage, SGIS->getName(), 680 nullptr, &DstM); 681 GIS->copyAttributesFrom(SGIS); 682 return GIS; 683 } 684 685 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 686 bool ForDefinition) { 687 GlobalValue *NewGV; 688 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 689 NewGV = copyGlobalVariableProto(SGVar); 690 } else if (auto *SF = dyn_cast<Function>(SGV)) { 691 NewGV = copyFunctionProto(SF); 692 } else { 693 if (ForDefinition) 694 NewGV = copyGlobalIndirectSymbolProto(cast<GlobalIndirectSymbol>(SGV)); 695 else if (SGV->getValueType()->isFunctionTy()) 696 NewGV = 697 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 698 GlobalValue::ExternalLinkage, SGV->getName(), &DstM); 699 else 700 NewGV = new GlobalVariable( 701 DstM, TypeMap.get(SGV->getValueType()), 702 /*isConstant*/ false, GlobalValue::ExternalLinkage, 703 /*init*/ nullptr, SGV->getName(), 704 /*insertbefore*/ nullptr, SGV->getThreadLocalMode(), 705 SGV->getType()->getAddressSpace()); 706 } 707 708 if (ForDefinition) 709 NewGV->setLinkage(SGV->getLinkage()); 710 else if (SGV->hasExternalWeakLinkage()) 711 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 712 713 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 714 // Metadata for global variables and function declarations is copied eagerly. 715 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) 716 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 717 } 718 719 // Remove these copied constants in case this stays a declaration, since 720 // they point to the source module. If the def is linked the values will 721 // be mapped in during linkFunctionBody. 722 if (auto *NewF = dyn_cast<Function>(NewGV)) { 723 NewF->setPersonalityFn(nullptr); 724 NewF->setPrefixData(nullptr); 725 NewF->setPrologueData(nullptr); 726 } 727 728 return NewGV; 729 } 730 731 static StringRef getTypeNamePrefix(StringRef Name) { 732 size_t DotPos = Name.rfind('.'); 733 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 734 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 735 ? Name 736 : Name.substr(0, DotPos); 737 } 738 739 /// Loop over all of the linked values to compute type mappings. For example, 740 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 741 /// types 'Foo' but one got renamed when the module was loaded into the same 742 /// LLVMContext. 743 void IRLinker::computeTypeMapping() { 744 for (GlobalValue &SGV : SrcM->globals()) { 745 GlobalValue *DGV = getLinkedToGlobal(&SGV); 746 if (!DGV) 747 continue; 748 749 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 750 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 751 continue; 752 } 753 754 // Unify the element type of appending arrays. 755 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 756 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 757 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 758 } 759 760 for (GlobalValue &SGV : *SrcM) 761 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { 762 if (DGV->getType() == SGV.getType()) { 763 // If the types of DGV and SGV are the same, it means that DGV is from 764 // the source module and got added to DstM from a shared metadata. We 765 // shouldn't map this type to itself in case the type's components get 766 // remapped to a new type from DstM (for instance, during the loop over 767 // SrcM->getIdentifiedStructTypes() below). 768 continue; 769 } 770 771 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 772 } 773 774 for (GlobalValue &SGV : SrcM->aliases()) 775 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 776 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 777 778 // Incorporate types by name, scanning all the types in the source module. 779 // At this point, the destination module may have a type "%foo = { i32 }" for 780 // example. When the source module got loaded into the same LLVMContext, if 781 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 782 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 783 for (StructType *ST : Types) { 784 if (!ST->hasName()) 785 continue; 786 787 if (TypeMap.DstStructTypesSet.hasType(ST)) { 788 // This is actually a type from the destination module. 789 // getIdentifiedStructTypes() can have found it by walking debug info 790 // metadata nodes, some of which get linked by name when ODR Type Uniquing 791 // is enabled on the Context, from the source to the destination module. 792 continue; 793 } 794 795 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 796 if (STTypePrefix.size()== ST->getName().size()) 797 continue; 798 799 // Check to see if the destination module has a struct with the prefix name. 800 StructType *DST = DstM.getTypeByName(STTypePrefix); 801 if (!DST) 802 continue; 803 804 // Don't use it if this actually came from the source module. They're in 805 // the same LLVMContext after all. Also don't use it unless the type is 806 // actually used in the destination module. This can happen in situations 807 // like this: 808 // 809 // Module A Module B 810 // -------- -------- 811 // %Z = type { %A } %B = type { %C.1 } 812 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 813 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 814 // %C = type { i8* } %B.3 = type { %C.1 } 815 // 816 // When we link Module B with Module A, the '%B' in Module B is 817 // used. However, that would then use '%C.1'. But when we process '%C.1', 818 // we prefer to take the '%C' version. So we are then left with both 819 // '%C.1' and '%C' being used for the same types. This leads to some 820 // variables using one type and some using the other. 821 if (TypeMap.DstStructTypesSet.hasType(DST)) 822 TypeMap.addTypeMapping(DST, ST); 823 } 824 825 // Now that we have discovered all of the type equivalences, get a body for 826 // any 'opaque' types in the dest module that are now resolved. 827 TypeMap.linkDefinedTypeBodies(); 828 } 829 830 static void getArrayElements(const Constant *C, 831 SmallVectorImpl<Constant *> &Dest) { 832 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 833 834 for (unsigned i = 0; i != NumElements; ++i) 835 Dest.push_back(C->getAggregateElement(i)); 836 } 837 838 /// If there were any appending global variables, link them together now. 839 Expected<Constant *> 840 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 841 const GlobalVariable *SrcGV) { 842 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 843 ->getElementType(); 844 845 // FIXME: This upgrade is done during linking to support the C API. Once the 846 // old form is deprecated, we should move this upgrade to 847 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 848 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 849 StringRef Name = SrcGV->getName(); 850 bool IsNewStructor = false; 851 bool IsOldStructor = false; 852 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 853 if (cast<StructType>(EltTy)->getNumElements() == 3) 854 IsNewStructor = true; 855 else 856 IsOldStructor = true; 857 } 858 859 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); 860 if (IsOldStructor) { 861 auto &ST = *cast<StructType>(EltTy); 862 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 863 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 864 } 865 866 uint64_t DstNumElements = 0; 867 if (DstGV) { 868 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 869 DstNumElements = DstTy->getNumElements(); 870 871 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 872 return stringErr( 873 "Linking globals named '" + SrcGV->getName() + 874 "': can only link appending global with another appending " 875 "global!"); 876 877 // Check to see that they two arrays agree on type. 878 if (EltTy != DstTy->getElementType()) 879 return stringErr("Appending variables with different element types!"); 880 if (DstGV->isConstant() != SrcGV->isConstant()) 881 return stringErr("Appending variables linked with different const'ness!"); 882 883 if (DstGV->getAlignment() != SrcGV->getAlignment()) 884 return stringErr( 885 "Appending variables with different alignment need to be linked!"); 886 887 if (DstGV->getVisibility() != SrcGV->getVisibility()) 888 return stringErr( 889 "Appending variables with different visibility need to be linked!"); 890 891 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 892 return stringErr( 893 "Appending variables with different unnamed_addr need to be linked!"); 894 895 if (DstGV->getSection() != SrcGV->getSection()) 896 return stringErr( 897 "Appending variables with different section name need to be linked!"); 898 } 899 900 SmallVector<Constant *, 16> SrcElements; 901 getArrayElements(SrcGV->getInitializer(), SrcElements); 902 903 if (IsNewStructor) { 904 auto It = remove_if(SrcElements, [this](Constant *E) { 905 auto *Key = 906 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 907 if (!Key) 908 return false; 909 GlobalValue *DGV = getLinkedToGlobal(Key); 910 return !shouldLink(DGV, *Key); 911 }); 912 SrcElements.erase(It, SrcElements.end()); 913 } 914 uint64_t NewSize = DstNumElements + SrcElements.size(); 915 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 916 917 // Create the new global variable. 918 GlobalVariable *NG = new GlobalVariable( 919 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 920 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 921 SrcGV->getType()->getAddressSpace()); 922 923 NG->copyAttributesFrom(SrcGV); 924 forceRenaming(NG, SrcGV->getName()); 925 926 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 927 928 Mapper.scheduleMapAppendingVariable(*NG, 929 DstGV ? DstGV->getInitializer() : nullptr, 930 IsOldStructor, SrcElements); 931 932 // Replace any uses of the two global variables with uses of the new 933 // global. 934 if (DstGV) { 935 RAUWWorklist.push_back( 936 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType()))); 937 } 938 939 return Ret; 940 } 941 942 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 943 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 944 return true; 945 946 if (DGV && !DGV->isDeclarationForLinker()) 947 return false; 948 949 if (SGV.isDeclaration() || DoneLinkingBodies) 950 return false; 951 952 // Callback to the client to give a chance to lazily add the Global to the 953 // list of value to link. 954 bool LazilyAdded = false; 955 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 956 maybeAdd(&GV); 957 LazilyAdded = true; 958 }); 959 return LazilyAdded; 960 } 961 962 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 963 bool ForIndirectSymbol) { 964 GlobalValue *DGV = getLinkedToGlobal(SGV); 965 966 bool ShouldLink = shouldLink(DGV, *SGV); 967 968 // just missing from map 969 if (ShouldLink) { 970 auto I = ValueMap.find(SGV); 971 if (I != ValueMap.end()) 972 return cast<Constant>(I->second); 973 974 I = IndirectSymbolValueMap.find(SGV); 975 if (I != IndirectSymbolValueMap.end()) 976 return cast<Constant>(I->second); 977 } 978 979 if (!ShouldLink && ForIndirectSymbol) 980 DGV = nullptr; 981 982 // Handle the ultra special appending linkage case first. 983 assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage()); 984 if (SGV->hasAppendingLinkage()) 985 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 986 cast<GlobalVariable>(SGV)); 987 988 GlobalValue *NewGV; 989 if (DGV && !ShouldLink) { 990 NewGV = DGV; 991 } else { 992 // If we are done linking global value bodies (i.e. we are performing 993 // metadata linking), don't link in the global value due to this 994 // reference, simply map it to null. 995 if (DoneLinkingBodies) 996 return nullptr; 997 998 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); 999 if (ShouldLink || !ForIndirectSymbol) 1000 forceRenaming(NewGV, SGV->getName()); 1001 } 1002 1003 // Overloaded intrinsics have overloaded types names as part of their 1004 // names. If we renamed overloaded types we should rename the intrinsic 1005 // as well. 1006 if (Function *F = dyn_cast<Function>(NewGV)) 1007 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) 1008 NewGV = Remangled.getValue(); 1009 1010 if (ShouldLink || ForIndirectSymbol) { 1011 if (const Comdat *SC = SGV->getComdat()) { 1012 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 1013 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 1014 DC->setSelectionKind(SC->getSelectionKind()); 1015 GO->setComdat(DC); 1016 } 1017 } 1018 } 1019 1020 if (!ShouldLink && ForIndirectSymbol) 1021 NewGV->setLinkage(GlobalValue::InternalLinkage); 1022 1023 Constant *C = NewGV; 1024 // Only create a bitcast if necessary. In particular, with 1025 // DebugTypeODRUniquing we may reach metadata in the destination module 1026 // containing a GV from the source module, in which case SGV will be 1027 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1028 // assumes it is being invoked on a type in the source module. 1029 if (DGV && NewGV != SGV) { 1030 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1031 NewGV, TypeMap.get(SGV->getType())); 1032 } 1033 1034 if (DGV && NewGV != DGV) { 1035 // Schedule "replace all uses with" to happen after materializing is 1036 // done. It is not safe to do it now, since ValueMapper may be holding 1037 // pointers to constants that will get deleted if RAUW runs. 1038 RAUWWorklist.push_back(std::make_pair( 1039 DGV, 1040 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1041 } 1042 1043 return C; 1044 } 1045 1046 /// Update the initializers in the Dest module now that all globals that may be 1047 /// referenced are in Dest. 1048 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1049 // Figure out what the initializer looks like in the dest module. 1050 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1051 } 1052 1053 /// Copy the source function over into the dest function and fix up references 1054 /// to values. At this point we know that Dest is an external function, and 1055 /// that Src is not. 1056 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1057 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1058 1059 // Materialize if needed. 1060 if (Error Err = Src.materialize()) 1061 return Err; 1062 1063 // Link in the operands without remapping. 1064 if (Src.hasPrefixData()) 1065 Dst.setPrefixData(Src.getPrefixData()); 1066 if (Src.hasPrologueData()) 1067 Dst.setPrologueData(Src.getPrologueData()); 1068 if (Src.hasPersonalityFn()) 1069 Dst.setPersonalityFn(Src.getPersonalityFn()); 1070 1071 // Copy over the metadata attachments without remapping. 1072 Dst.copyMetadata(&Src, 0); 1073 1074 // Steal arguments and splice the body of Src into Dst. 1075 Dst.stealArgumentListFrom(Src); 1076 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList()); 1077 1078 // Everything has been moved over. Remap it. 1079 Mapper.scheduleRemapFunction(Dst); 1080 return Error::success(); 1081 } 1082 1083 void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol &Dst, 1084 GlobalIndirectSymbol &Src) { 1085 Mapper.scheduleMapGlobalIndirectSymbol(Dst, *Src.getIndirectSymbol(), 1086 IndirectSymbolMCID); 1087 } 1088 1089 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1090 if (auto *F = dyn_cast<Function>(&Src)) 1091 return linkFunctionBody(cast<Function>(Dst), *F); 1092 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1093 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1094 return Error::success(); 1095 } 1096 linkIndirectSymbolBody(cast<GlobalIndirectSymbol>(Dst), cast<GlobalIndirectSymbol>(Src)); 1097 return Error::success(); 1098 } 1099 1100 void IRLinker::flushRAUWWorklist() { 1101 for (const auto Elem : RAUWWorklist) { 1102 GlobalValue *Old; 1103 Value *New; 1104 std::tie(Old, New) = Elem; 1105 1106 Old->replaceAllUsesWith(New); 1107 Old->eraseFromParent(); 1108 } 1109 RAUWWorklist.clear(); 1110 } 1111 1112 void IRLinker::prepareCompileUnitsForImport() { 1113 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1114 if (!SrcCompileUnits) 1115 return; 1116 // When importing for ThinLTO, prevent importing of types listed on 1117 // the DICompileUnit that we don't need a copy of in the importing 1118 // module. They will be emitted by the originating module. 1119 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) { 1120 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I)); 1121 assert(CU && "Expected valid compile unit"); 1122 // Enums, macros, and retained types don't need to be listed on the 1123 // imported DICompileUnit. This means they will only be imported 1124 // if reached from the mapped IR. Do this by setting their value map 1125 // entries to nullptr, which will automatically prevent their importing 1126 // when reached from the DICompileUnit during metadata mapping. 1127 ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr); 1128 ValueMap.MD()[CU->getRawMacros()].reset(nullptr); 1129 ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr); 1130 // The original definition (or at least its debug info - if the variable is 1131 // internalized an optimized away) will remain in the source module, so 1132 // there's no need to import them. 1133 // If LLVM ever does more advanced optimizations on global variables 1134 // (removing/localizing write operations, for instance) that can track 1135 // through debug info, this decision may need to be revisited - but do so 1136 // with care when it comes to debug info size. Emitting small CUs containing 1137 // only a few imported entities into every destination module may be very 1138 // size inefficient. 1139 ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr); 1140 1141 // Imported entities only need to be mapped in if they have local 1142 // scope, as those might correspond to an imported entity inside a 1143 // function being imported (any locally scoped imported entities that 1144 // don't end up referenced by an imported function will not be emitted 1145 // into the object). Imported entities not in a local scope 1146 // (e.g. on the namespace) only need to be emitted by the originating 1147 // module. Create a list of the locally scoped imported entities, and 1148 // replace the source CUs imported entity list with the new list, so 1149 // only those are mapped in. 1150 // FIXME: Locally-scoped imported entities could be moved to the 1151 // functions they are local to instead of listing them on the CU, and 1152 // we would naturally only link in those needed by function importing. 1153 SmallVector<TrackingMDNodeRef, 4> AllImportedModules; 1154 bool ReplaceImportedEntities = false; 1155 for (auto *IE : CU->getImportedEntities()) { 1156 DIScope *Scope = IE->getScope(); 1157 assert(Scope && "Invalid Scope encoding!"); 1158 if (isa<DILocalScope>(Scope)) 1159 AllImportedModules.emplace_back(IE); 1160 else 1161 ReplaceImportedEntities = true; 1162 } 1163 if (ReplaceImportedEntities) { 1164 if (!AllImportedModules.empty()) 1165 CU->replaceImportedEntities(MDTuple::get( 1166 CU->getContext(), 1167 SmallVector<Metadata *, 16>(AllImportedModules.begin(), 1168 AllImportedModules.end()))); 1169 else 1170 // If there were no local scope imported entities, we can map 1171 // the whole list to nullptr. 1172 ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr); 1173 } 1174 } 1175 } 1176 1177 /// Insert all of the named MDNodes in Src into the Dest module. 1178 void IRLinker::linkNamedMDNodes() { 1179 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1180 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1181 // Don't link module flags here. Do them separately. 1182 if (&NMD == SrcModFlags) 1183 continue; 1184 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1185 // Add Src elements into Dest node. 1186 for (const MDNode *Op : NMD.operands()) 1187 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1188 } 1189 } 1190 1191 /// Merge the linker flags in Src into the Dest module. 1192 Error IRLinker::linkModuleFlagsMetadata() { 1193 // If the source module has no module flags, we are done. 1194 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1195 if (!SrcModFlags) 1196 return Error::success(); 1197 1198 // If the destination module doesn't have module flags yet, then just copy 1199 // over the source module's flags. 1200 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1201 if (DstModFlags->getNumOperands() == 0) { 1202 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1203 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1204 1205 return Error::success(); 1206 } 1207 1208 // First build a map of the existing module flags and requirements. 1209 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1210 SmallSetVector<MDNode *, 16> Requirements; 1211 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1212 MDNode *Op = DstModFlags->getOperand(I); 1213 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0)); 1214 MDString *ID = cast<MDString>(Op->getOperand(1)); 1215 1216 if (Behavior->getZExtValue() == Module::Require) { 1217 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1218 } else { 1219 Flags[ID] = std::make_pair(Op, I); 1220 } 1221 } 1222 1223 // Merge in the flags from the source module, and also collect its set of 1224 // requirements. 1225 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1226 MDNode *SrcOp = SrcModFlags->getOperand(I); 1227 ConstantInt *SrcBehavior = 1228 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1229 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1230 MDNode *DstOp; 1231 unsigned DstIndex; 1232 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1233 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1234 1235 // If this is a requirement, add it and continue. 1236 if (SrcBehaviorValue == Module::Require) { 1237 // If the destination module does not already have this requirement, add 1238 // it. 1239 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1240 DstModFlags->addOperand(SrcOp); 1241 } 1242 continue; 1243 } 1244 1245 // If there is no existing flag with this ID, just add it. 1246 if (!DstOp) { 1247 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1248 DstModFlags->addOperand(SrcOp); 1249 continue; 1250 } 1251 1252 // Otherwise, perform a merge. 1253 ConstantInt *DstBehavior = 1254 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1255 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1256 1257 auto overrideDstValue = [&]() { 1258 DstModFlags->setOperand(DstIndex, SrcOp); 1259 Flags[ID].first = SrcOp; 1260 }; 1261 1262 // If either flag has override behavior, handle it first. 1263 if (DstBehaviorValue == Module::Override) { 1264 // Diagnose inconsistent flags which both have override behavior. 1265 if (SrcBehaviorValue == Module::Override && 1266 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1267 return stringErr("linking module flags '" + ID->getString() + 1268 "': IDs have conflicting override values in '" + 1269 SrcM->getModuleIdentifier() + "' and '" + 1270 DstM.getModuleIdentifier() + "'"); 1271 continue; 1272 } else if (SrcBehaviorValue == Module::Override) { 1273 // Update the destination flag to that of the source. 1274 overrideDstValue(); 1275 continue; 1276 } 1277 1278 // Diagnose inconsistent merge behavior types. 1279 if (SrcBehaviorValue != DstBehaviorValue) 1280 return stringErr("linking module flags '" + ID->getString() + 1281 "': IDs have conflicting behaviors in '" + 1282 SrcM->getModuleIdentifier() + "' and '" + 1283 DstM.getModuleIdentifier() + "'"); 1284 1285 auto replaceDstValue = [&](MDNode *New) { 1286 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1287 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1288 DstModFlags->setOperand(DstIndex, Flag); 1289 Flags[ID].first = Flag; 1290 }; 1291 1292 // Perform the merge for standard behavior types. 1293 switch (SrcBehaviorValue) { 1294 case Module::Require: 1295 case Module::Override: 1296 llvm_unreachable("not possible"); 1297 case Module::Error: { 1298 // Emit an error if the values differ. 1299 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1300 return stringErr("linking module flags '" + ID->getString() + 1301 "': IDs have conflicting values in '" + 1302 SrcM->getModuleIdentifier() + "' and '" + 1303 DstM.getModuleIdentifier() + "'"); 1304 continue; 1305 } 1306 case Module::Warning: { 1307 // Emit a warning if the values differ. 1308 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1309 std::string str; 1310 raw_string_ostream(str) 1311 << "linking module flags '" << ID->getString() 1312 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1313 << "' from " << SrcM->getModuleIdentifier() << " with '" 1314 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1315 << ')'; 1316 emitWarning(str); 1317 } 1318 continue; 1319 } 1320 case Module::Max: { 1321 ConstantInt *DstValue = 1322 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1323 ConstantInt *SrcValue = 1324 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1325 if (SrcValue->getZExtValue() > DstValue->getZExtValue()) 1326 overrideDstValue(); 1327 break; 1328 } 1329 case Module::Append: { 1330 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1331 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1332 SmallVector<Metadata *, 8> MDs; 1333 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands()); 1334 MDs.append(DstValue->op_begin(), DstValue->op_end()); 1335 MDs.append(SrcValue->op_begin(), SrcValue->op_end()); 1336 1337 replaceDstValue(MDNode::get(DstM.getContext(), MDs)); 1338 break; 1339 } 1340 case Module::AppendUnique: { 1341 SmallSetVector<Metadata *, 16> Elts; 1342 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1343 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1344 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1345 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1346 1347 replaceDstValue(MDNode::get(DstM.getContext(), 1348 makeArrayRef(Elts.begin(), Elts.end()))); 1349 break; 1350 } 1351 } 1352 } 1353 1354 // Check all of the requirements. 1355 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 1356 MDNode *Requirement = Requirements[I]; 1357 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1358 Metadata *ReqValue = Requirement->getOperand(1); 1359 1360 MDNode *Op = Flags[Flag].first; 1361 if (!Op || Op->getOperand(2) != ReqValue) 1362 return stringErr("linking module flags '" + Flag->getString() + 1363 "': does not have the required value"); 1364 } 1365 return Error::success(); 1366 } 1367 1368 /// Return InlineAsm adjusted with target-specific directives if required. 1369 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1370 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1371 static std::string adjustInlineAsm(const std::string &InlineAsm, 1372 const Triple &Triple) { 1373 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1374 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1375 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1376 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1377 return InlineAsm; 1378 } 1379 1380 Error IRLinker::run() { 1381 // Ensure metadata materialized before value mapping. 1382 if (SrcM->getMaterializer()) 1383 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1384 return Err; 1385 1386 // Inherit the target data from the source module if the destination module 1387 // doesn't have one already. 1388 if (DstM.getDataLayout().isDefault()) 1389 DstM.setDataLayout(SrcM->getDataLayout()); 1390 1391 if (SrcM->getDataLayout() != DstM.getDataLayout()) { 1392 emitWarning("Linking two modules of different data layouts: '" + 1393 SrcM->getModuleIdentifier() + "' is '" + 1394 SrcM->getDataLayoutStr() + "' whereas '" + 1395 DstM.getModuleIdentifier() + "' is '" + 1396 DstM.getDataLayoutStr() + "'\n"); 1397 } 1398 1399 // Copy the target triple from the source to dest if the dest's is empty. 1400 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1401 DstM.setTargetTriple(SrcM->getTargetTriple()); 1402 1403 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1404 1405 if (!SrcM->getTargetTriple().empty()&& 1406 !SrcTriple.isCompatibleWith(DstTriple)) 1407 emitWarning("Linking two modules of different target triples: " + 1408 SrcM->getModuleIdentifier() + "' is '" + 1409 SrcM->getTargetTriple() + "' whereas '" + 1410 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1411 "'\n"); 1412 1413 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1414 1415 // Append the module inline asm string. 1416 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1417 std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(), 1418 SrcTriple); 1419 if (DstM.getModuleInlineAsm().empty()) 1420 DstM.setModuleInlineAsm(SrcModuleInlineAsm); 1421 else 1422 DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" + 1423 SrcModuleInlineAsm); 1424 } 1425 1426 // Loop over all of the linked values to compute type mappings. 1427 computeTypeMapping(); 1428 1429 std::reverse(Worklist.begin(), Worklist.end()); 1430 while (!Worklist.empty()) { 1431 GlobalValue *GV = Worklist.back(); 1432 Worklist.pop_back(); 1433 1434 // Already mapped. 1435 if (ValueMap.find(GV) != ValueMap.end() || 1436 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) 1437 continue; 1438 1439 assert(!GV->isDeclaration()); 1440 Mapper.mapValue(*GV); 1441 if (FoundError) 1442 return std::move(*FoundError); 1443 flushRAUWWorklist(); 1444 } 1445 1446 // Note that we are done linking global value bodies. This prevents 1447 // metadata linking from creating new references. 1448 DoneLinkingBodies = true; 1449 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1450 1451 // Remap all of the named MDNodes in Src into the DstM module. We do this 1452 // after linking GlobalValues so that MDNodes that reference GlobalValues 1453 // are properly remapped. 1454 linkNamedMDNodes(); 1455 1456 // Merge the module flags into the DstM module. 1457 return linkModuleFlagsMetadata(); 1458 } 1459 1460 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1461 : ETypes(E), IsPacked(P) {} 1462 1463 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1464 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1465 1466 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1467 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1468 } 1469 1470 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1471 return !this->operator==(That); 1472 } 1473 1474 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1475 return DenseMapInfo<StructType *>::getEmptyKey(); 1476 } 1477 1478 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1479 return DenseMapInfo<StructType *>::getTombstoneKey(); 1480 } 1481 1482 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1483 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1484 Key.IsPacked); 1485 } 1486 1487 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1488 return getHashValue(KeyTy(ST)); 1489 } 1490 1491 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1492 const StructType *RHS) { 1493 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1494 return false; 1495 return LHS == KeyTy(RHS); 1496 } 1497 1498 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1499 const StructType *RHS) { 1500 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1501 return LHS == RHS; 1502 return KeyTy(LHS) == KeyTy(RHS); 1503 } 1504 1505 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1506 assert(!Ty->isOpaque()); 1507 NonOpaqueStructTypes.insert(Ty); 1508 } 1509 1510 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1511 assert(!Ty->isOpaque()); 1512 NonOpaqueStructTypes.insert(Ty); 1513 bool Removed = OpaqueStructTypes.erase(Ty); 1514 (void)Removed; 1515 assert(Removed); 1516 } 1517 1518 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1519 assert(Ty->isOpaque()); 1520 OpaqueStructTypes.insert(Ty); 1521 } 1522 1523 StructType * 1524 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1525 bool IsPacked) { 1526 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1527 auto I = NonOpaqueStructTypes.find_as(Key); 1528 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1529 } 1530 1531 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1532 if (Ty->isOpaque()) 1533 return OpaqueStructTypes.count(Ty); 1534 auto I = NonOpaqueStructTypes.find(Ty); 1535 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1536 } 1537 1538 IRMover::IRMover(Module &M) : Composite(M) { 1539 TypeFinder StructTypes; 1540 StructTypes.run(M, /* OnlyNamed */ false); 1541 for (StructType *Ty : StructTypes) { 1542 if (Ty->isOpaque()) 1543 IdentifiedStructTypes.addOpaque(Ty); 1544 else 1545 IdentifiedStructTypes.addNonOpaque(Ty); 1546 } 1547 // Self-map metadatas in the destination module. This is needed when 1548 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1549 // destination module may be reached from the source module. 1550 for (auto *MD : StructTypes.getVisitedMetadata()) { 1551 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1552 } 1553 } 1554 1555 Error IRMover::move( 1556 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink, 1557 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor, 1558 bool IsPerformingImport) { 1559 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1560 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1561 IsPerformingImport); 1562 Error E = TheIRLinker.run(); 1563 Composite.dropTriviallyDeadConstantArrays(); 1564 return E; 1565 } 1566