1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/SetVector.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/IR/Constants.h" 15 #include "llvm/IR/DebugInfo.h" 16 #include "llvm/IR/DiagnosticPrinter.h" 17 #include "llvm/IR/GVMaterializer.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/TypeFinder.h" 20 #include "llvm/Object/ModuleSymbolTable.h" 21 #include "llvm/Support/Error.h" 22 #include "llvm/Transforms/Utils/Cloning.h" 23 #include <utility> 24 using namespace llvm; 25 26 //===----------------------------------------------------------------------===// 27 // TypeMap implementation. 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 class TypeMapTy : public ValueMapTypeRemapper { 32 /// This is a mapping from a source type to a destination type to use. 33 DenseMap<Type *, Type *> MappedTypes; 34 35 /// When checking to see if two subgraphs are isomorphic, we speculatively 36 /// add types to MappedTypes, but keep track of them here in case we need to 37 /// roll back. 38 SmallVector<Type *, 16> SpeculativeTypes; 39 40 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 41 42 /// This is a list of non-opaque structs in the source module that are mapped 43 /// to an opaque struct in the destination module. 44 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 45 46 /// This is the set of opaque types in the destination modules who are 47 /// getting a body from the source module. 48 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 49 50 public: 51 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 52 : DstStructTypesSet(DstStructTypesSet) {} 53 54 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 55 /// Indicate that the specified type in the destination module is conceptually 56 /// equivalent to the specified type in the source module. 57 void addTypeMapping(Type *DstTy, Type *SrcTy); 58 59 /// Produce a body for an opaque type in the dest module from a type 60 /// definition in the source module. 61 void linkDefinedTypeBodies(); 62 63 /// Return the mapped type to use for the specified input type from the 64 /// source module. 65 Type *get(Type *SrcTy); 66 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 67 68 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 69 70 FunctionType *get(FunctionType *T) { 71 return cast<FunctionType>(get((Type *)T)); 72 } 73 74 private: 75 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 76 77 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 78 }; 79 } 80 81 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 82 assert(SpeculativeTypes.empty()); 83 assert(SpeculativeDstOpaqueTypes.empty()); 84 85 // Check to see if these types are recursively isomorphic and establish a 86 // mapping between them if so. 87 if (!areTypesIsomorphic(DstTy, SrcTy)) { 88 // Oops, they aren't isomorphic. Just discard this request by rolling out 89 // any speculative mappings we've established. 90 for (Type *Ty : SpeculativeTypes) 91 MappedTypes.erase(Ty); 92 93 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 94 SpeculativeDstOpaqueTypes.size()); 95 for (StructType *Ty : SpeculativeDstOpaqueTypes) 96 DstResolvedOpaqueTypes.erase(Ty); 97 } else { 98 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 99 // and all its descendants to lower amount of renaming in LLVM context 100 // Renaming occurs because we load all source modules to the same context 101 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 102 // As a result we may get several different types in the destination 103 // module, which are in fact the same. 104 for (Type *Ty : SpeculativeTypes) 105 if (auto *STy = dyn_cast<StructType>(Ty)) 106 if (STy->hasName()) 107 STy->setName(""); 108 } 109 SpeculativeTypes.clear(); 110 SpeculativeDstOpaqueTypes.clear(); 111 } 112 113 /// Recursively walk this pair of types, returning true if they are isomorphic, 114 /// false if they are not. 115 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 116 // Two types with differing kinds are clearly not isomorphic. 117 if (DstTy->getTypeID() != SrcTy->getTypeID()) 118 return false; 119 120 // If we have an entry in the MappedTypes table, then we have our answer. 121 Type *&Entry = MappedTypes[SrcTy]; 122 if (Entry) 123 return Entry == DstTy; 124 125 // Two identical types are clearly isomorphic. Remember this 126 // non-speculatively. 127 if (DstTy == SrcTy) { 128 Entry = DstTy; 129 return true; 130 } 131 132 // Okay, we have two types with identical kinds that we haven't seen before. 133 134 // If this is an opaque struct type, special case it. 135 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 136 // Mapping an opaque type to any struct, just keep the dest struct. 137 if (SSTy->isOpaque()) { 138 Entry = DstTy; 139 SpeculativeTypes.push_back(SrcTy); 140 return true; 141 } 142 143 // Mapping a non-opaque source type to an opaque dest. If this is the first 144 // type that we're mapping onto this destination type then we succeed. Keep 145 // the dest, but fill it in later. If this is the second (different) type 146 // that we're trying to map onto the same opaque type then we fail. 147 if (cast<StructType>(DstTy)->isOpaque()) { 148 // We can only map one source type onto the opaque destination type. 149 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 150 return false; 151 SrcDefinitionsToResolve.push_back(SSTy); 152 SpeculativeTypes.push_back(SrcTy); 153 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 154 Entry = DstTy; 155 return true; 156 } 157 } 158 159 // If the number of subtypes disagree between the two types, then we fail. 160 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 161 return false; 162 163 // Fail if any of the extra properties (e.g. array size) of the type disagree. 164 if (isa<IntegerType>(DstTy)) 165 return false; // bitwidth disagrees. 166 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 167 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 168 return false; 169 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 170 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 171 return false; 172 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 173 StructType *SSTy = cast<StructType>(SrcTy); 174 if (DSTy->isLiteral() != SSTy->isLiteral() || 175 DSTy->isPacked() != SSTy->isPacked()) 176 return false; 177 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) { 178 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 179 return false; 180 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) { 181 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount()) 182 return false; 183 } 184 185 // Otherwise, we speculate that these two types will line up and recursively 186 // check the subelements. 187 Entry = DstTy; 188 SpeculativeTypes.push_back(SrcTy); 189 190 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 191 if (!areTypesIsomorphic(DstTy->getContainedType(I), 192 SrcTy->getContainedType(I))) 193 return false; 194 195 // If everything seems to have lined up, then everything is great. 196 return true; 197 } 198 199 void TypeMapTy::linkDefinedTypeBodies() { 200 SmallVector<Type *, 16> Elements; 201 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 202 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 203 assert(DstSTy->isOpaque()); 204 205 // Map the body of the source type over to a new body for the dest type. 206 Elements.resize(SrcSTy->getNumElements()); 207 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 208 Elements[I] = get(SrcSTy->getElementType(I)); 209 210 DstSTy->setBody(Elements, SrcSTy->isPacked()); 211 DstStructTypesSet.switchToNonOpaque(DstSTy); 212 } 213 SrcDefinitionsToResolve.clear(); 214 DstResolvedOpaqueTypes.clear(); 215 } 216 217 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 218 ArrayRef<Type *> ETypes) { 219 DTy->setBody(ETypes, STy->isPacked()); 220 221 // Steal STy's name. 222 if (STy->hasName()) { 223 SmallString<16> TmpName = STy->getName(); 224 STy->setName(""); 225 DTy->setName(TmpName); 226 } 227 228 DstStructTypesSet.addNonOpaque(DTy); 229 } 230 231 Type *TypeMapTy::get(Type *Ty) { 232 SmallPtrSet<StructType *, 8> Visited; 233 return get(Ty, Visited); 234 } 235 236 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 237 // If we already have an entry for this type, return it. 238 Type **Entry = &MappedTypes[Ty]; 239 if (*Entry) 240 return *Entry; 241 242 // These are types that LLVM itself will unique. 243 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 244 245 if (!IsUniqued) { 246 #ifndef NDEBUG 247 for (auto &Pair : MappedTypes) { 248 assert(!(Pair.first != Ty && Pair.second == Ty) && 249 "mapping to a source type"); 250 } 251 #endif 252 253 if (!Visited.insert(cast<StructType>(Ty)).second) { 254 StructType *DTy = StructType::create(Ty->getContext()); 255 return *Entry = DTy; 256 } 257 } 258 259 // If this is not a recursive type, then just map all of the elements and 260 // then rebuild the type from inside out. 261 SmallVector<Type *, 4> ElementTypes; 262 263 // If there are no element types to map, then the type is itself. This is 264 // true for the anonymous {} struct, things like 'float', integers, etc. 265 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 266 return *Entry = Ty; 267 268 // Remap all of the elements, keeping track of whether any of them change. 269 bool AnyChange = false; 270 ElementTypes.resize(Ty->getNumContainedTypes()); 271 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 272 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 273 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 274 } 275 276 // If we found our type while recursively processing stuff, just use it. 277 Entry = &MappedTypes[Ty]; 278 if (*Entry) { 279 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 280 if (DTy->isOpaque()) { 281 auto *STy = cast<StructType>(Ty); 282 finishType(DTy, STy, ElementTypes); 283 } 284 } 285 return *Entry; 286 } 287 288 // If all of the element types mapped directly over and the type is not 289 // a named struct, then the type is usable as-is. 290 if (!AnyChange && IsUniqued) 291 return *Entry = Ty; 292 293 // Otherwise, rebuild a modified type. 294 switch (Ty->getTypeID()) { 295 default: 296 llvm_unreachable("unknown derived type to remap"); 297 case Type::ArrayTyID: 298 return *Entry = ArrayType::get(ElementTypes[0], 299 cast<ArrayType>(Ty)->getNumElements()); 300 case Type::ScalableVectorTyID: 301 // FIXME: handle scalable vectors 302 case Type::FixedVectorTyID: 303 return *Entry = FixedVectorType::get( 304 ElementTypes[0], cast<FixedVectorType>(Ty)->getNumElements()); 305 case Type::PointerTyID: 306 return *Entry = PointerType::get(ElementTypes[0], 307 cast<PointerType>(Ty)->getAddressSpace()); 308 case Type::FunctionTyID: 309 return *Entry = FunctionType::get(ElementTypes[0], 310 makeArrayRef(ElementTypes).slice(1), 311 cast<FunctionType>(Ty)->isVarArg()); 312 case Type::StructTyID: { 313 auto *STy = cast<StructType>(Ty); 314 bool IsPacked = STy->isPacked(); 315 if (IsUniqued) 316 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 317 318 // If the type is opaque, we can just use it directly. 319 if (STy->isOpaque()) { 320 DstStructTypesSet.addOpaque(STy); 321 return *Entry = Ty; 322 } 323 324 if (StructType *OldT = 325 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 326 STy->setName(""); 327 return *Entry = OldT; 328 } 329 330 if (!AnyChange) { 331 DstStructTypesSet.addNonOpaque(STy); 332 return *Entry = Ty; 333 } 334 335 StructType *DTy = StructType::create(Ty->getContext()); 336 finishType(DTy, STy, ElementTypes); 337 return *Entry = DTy; 338 } 339 } 340 } 341 342 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 343 const Twine &Msg) 344 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 345 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 346 347 //===----------------------------------------------------------------------===// 348 // IRLinker implementation. 349 //===----------------------------------------------------------------------===// 350 351 namespace { 352 class IRLinker; 353 354 /// Creates prototypes for functions that are lazily linked on the fly. This 355 /// speeds up linking for modules with many/ lazily linked functions of which 356 /// few get used. 357 class GlobalValueMaterializer final : public ValueMaterializer { 358 IRLinker &TheIRLinker; 359 360 public: 361 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 362 Value *materialize(Value *V) override; 363 }; 364 365 class LocalValueMaterializer final : public ValueMaterializer { 366 IRLinker &TheIRLinker; 367 368 public: 369 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 370 Value *materialize(Value *V) override; 371 }; 372 373 /// Type of the Metadata map in \a ValueToValueMapTy. 374 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 375 376 /// This is responsible for keeping track of the state used for moving data 377 /// from SrcM to DstM. 378 class IRLinker { 379 Module &DstM; 380 std::unique_ptr<Module> SrcM; 381 382 /// See IRMover::move(). 383 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor; 384 385 TypeMapTy TypeMap; 386 GlobalValueMaterializer GValMaterializer; 387 LocalValueMaterializer LValMaterializer; 388 389 /// A metadata map that's shared between IRLinker instances. 390 MDMapT &SharedMDs; 391 392 /// Mapping of values from what they used to be in Src, to what they are now 393 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 394 /// due to the use of Value handles which the Linker doesn't actually need, 395 /// but this allows us to reuse the ValueMapper code. 396 ValueToValueMapTy ValueMap; 397 ValueToValueMapTy IndirectSymbolValueMap; 398 399 DenseSet<GlobalValue *> ValuesToLink; 400 std::vector<GlobalValue *> Worklist; 401 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 402 403 void maybeAdd(GlobalValue *GV) { 404 if (ValuesToLink.insert(GV).second) 405 Worklist.push_back(GV); 406 } 407 408 /// Whether we are importing globals for ThinLTO, as opposed to linking the 409 /// source module. If this flag is set, it means that we can rely on some 410 /// other object file to define any non-GlobalValue entities defined by the 411 /// source module. This currently causes us to not link retained types in 412 /// debug info metadata and module inline asm. 413 bool IsPerformingImport; 414 415 /// Set to true when all global value body linking is complete (including 416 /// lazy linking). Used to prevent metadata linking from creating new 417 /// references. 418 bool DoneLinkingBodies = false; 419 420 /// The Error encountered during materialization. We use an Optional here to 421 /// avoid needing to manage an unconsumed success value. 422 Optional<Error> FoundError; 423 void setError(Error E) { 424 if (E) 425 FoundError = std::move(E); 426 } 427 428 /// Most of the errors produced by this module are inconvertible StringErrors. 429 /// This convenience function lets us return one of those more easily. 430 Error stringErr(const Twine &T) { 431 return make_error<StringError>(T, inconvertibleErrorCode()); 432 } 433 434 /// Entry point for mapping values and alternate context for mapping aliases. 435 ValueMapper Mapper; 436 unsigned IndirectSymbolMCID; 437 438 /// Handles cloning of a global values from the source module into 439 /// the destination module, including setting the attributes and visibility. 440 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 441 442 void emitWarning(const Twine &Message) { 443 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 444 } 445 446 /// Given a global in the source module, return the global in the 447 /// destination module that is being linked to, if any. 448 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 449 // If the source has no name it can't link. If it has local linkage, 450 // there is no name match-up going on. 451 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 452 return nullptr; 453 454 // Otherwise see if we have a match in the destination module's symtab. 455 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 456 if (!DGV) 457 return nullptr; 458 459 // If we found a global with the same name in the dest module, but it has 460 // internal linkage, we are really not doing any linkage here. 461 if (DGV->hasLocalLinkage()) 462 return nullptr; 463 464 // Otherwise, we do in fact link to the destination global. 465 return DGV; 466 } 467 468 void computeTypeMapping(); 469 470 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 471 const GlobalVariable *SrcGV); 472 473 /// Given the GlobaValue \p SGV in the source module, and the matching 474 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 475 /// into the destination module. 476 /// 477 /// Note this code may call the client-provided \p AddLazyFor. 478 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 479 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, 480 bool ForIndirectSymbol); 481 482 Error linkModuleFlagsMetadata(); 483 484 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 485 Error linkFunctionBody(Function &Dst, Function &Src); 486 void linkIndirectSymbolBody(GlobalIndirectSymbol &Dst, 487 GlobalIndirectSymbol &Src); 488 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 489 490 /// Replace all types in the source AttributeList with the 491 /// corresponding destination type. 492 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 493 494 /// Functions that take care of cloning a specific global value type 495 /// into the destination module. 496 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 497 Function *copyFunctionProto(const Function *SF); 498 GlobalValue *copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS); 499 500 /// Perform "replace all uses with" operations. These work items need to be 501 /// performed as part of materialization, but we postpone them to happen after 502 /// materialization is done. The materializer called by ValueMapper is not 503 /// expected to delete constants, as ValueMapper is holding pointers to some 504 /// of them, but constant destruction may be indirectly triggered by RAUW. 505 /// Hence, the need to move this out of the materialization call chain. 506 void flushRAUWWorklist(); 507 508 /// When importing for ThinLTO, prevent importing of types listed on 509 /// the DICompileUnit that we don't need a copy of in the importing 510 /// module. 511 void prepareCompileUnitsForImport(); 512 void linkNamedMDNodes(); 513 514 public: 515 IRLinker(Module &DstM, MDMapT &SharedMDs, 516 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 517 ArrayRef<GlobalValue *> ValuesToLink, 518 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor, 519 bool IsPerformingImport) 520 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 521 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 522 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 523 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap, 524 &GValMaterializer), 525 IndirectSymbolMCID(Mapper.registerAlternateMappingContext( 526 IndirectSymbolValueMap, &LValMaterializer)) { 527 ValueMap.getMDMap() = std::move(SharedMDs); 528 for (GlobalValue *GV : ValuesToLink) 529 maybeAdd(GV); 530 if (IsPerformingImport) 531 prepareCompileUnitsForImport(); 532 } 533 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 534 535 Error run(); 536 Value *materialize(Value *V, bool ForIndirectSymbol); 537 }; 538 } 539 540 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 541 /// table. This is good for all clients except for us. Go through the trouble 542 /// to force this back. 543 static void forceRenaming(GlobalValue *GV, StringRef Name) { 544 // If the global doesn't force its name or if it already has the right name, 545 // there is nothing for us to do. 546 if (GV->hasLocalLinkage() || GV->getName() == Name) 547 return; 548 549 Module *M = GV->getParent(); 550 551 // If there is a conflict, rename the conflict. 552 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 553 GV->takeName(ConflictGV); 554 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 555 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 556 } else { 557 GV->setName(Name); // Force the name back 558 } 559 } 560 561 Value *GlobalValueMaterializer::materialize(Value *SGV) { 562 return TheIRLinker.materialize(SGV, false); 563 } 564 565 Value *LocalValueMaterializer::materialize(Value *SGV) { 566 return TheIRLinker.materialize(SGV, true); 567 } 568 569 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { 570 auto *SGV = dyn_cast<GlobalValue>(V); 571 if (!SGV) 572 return nullptr; 573 574 // When linking a global from other modules than source & dest, skip 575 // materializing it because it would be mapped later when its containing 576 // module is linked. Linking it now would potentially pull in many types that 577 // may not be mapped properly. 578 if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get()) 579 return nullptr; 580 581 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); 582 if (!NewProto) { 583 setError(NewProto.takeError()); 584 return nullptr; 585 } 586 if (!*NewProto) 587 return nullptr; 588 589 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 590 if (!New) 591 return *NewProto; 592 593 // If we already created the body, just return. 594 if (auto *F = dyn_cast<Function>(New)) { 595 if (!F->isDeclaration()) 596 return New; 597 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 598 if (V->hasInitializer() || V->hasAppendingLinkage()) 599 return New; 600 } else { 601 auto *IS = cast<GlobalIndirectSymbol>(New); 602 if (IS->getIndirectSymbol()) 603 return New; 604 } 605 606 // When linking a global for an indirect symbol, it will always be linked. 607 // However we need to check if it was not already scheduled to satisfy a 608 // reference from a regular global value initializer. We know if it has been 609 // schedule if the "New" GlobalValue that is mapped here for the indirect 610 // symbol is the same as the one already mapped. If there is an entry in the 611 // ValueMap but the value is different, it means that the value already had a 612 // definition in the destination module (linkonce for instance), but we need a 613 // new definition for the indirect symbol ("New" will be different. 614 if (ForIndirectSymbol && ValueMap.lookup(SGV) == New) 615 return New; 616 617 if (ForIndirectSymbol || shouldLink(New, *SGV)) 618 setError(linkGlobalValueBody(*New, *SGV)); 619 620 return New; 621 } 622 623 /// Loop through the global variables in the src module and merge them into the 624 /// dest module. 625 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 626 // No linking to be performed or linking from the source: simply create an 627 // identical version of the symbol over in the dest module... the 628 // initializer will be filled in later by LinkGlobalInits. 629 GlobalVariable *NewDGV = 630 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 631 SGVar->isConstant(), GlobalValue::ExternalLinkage, 632 /*init*/ nullptr, SGVar->getName(), 633 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 634 SGVar->getAddressSpace()); 635 NewDGV->setAlignment(MaybeAlign(SGVar->getAlignment())); 636 NewDGV->copyAttributesFrom(SGVar); 637 return NewDGV; 638 } 639 640 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 641 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 642 for (Attribute::AttrKind TypedAttr : 643 {Attribute::ByVal, Attribute::StructRet, Attribute::ByRef}) { 644 if (Attrs.hasAttribute(i, TypedAttr)) { 645 if (Type *Ty = Attrs.getAttribute(i, TypedAttr).getValueAsType()) { 646 Attrs = Attrs.replaceAttributeType(C, i, TypedAttr, TypeMap.get(Ty)); 647 break; 648 } 649 } 650 } 651 } 652 return Attrs; 653 } 654 655 /// Link the function in the source module into the destination module if 656 /// needed, setting up mapping information. 657 Function *IRLinker::copyFunctionProto(const Function *SF) { 658 // If there is no linkage to be performed or we are linking from the source, 659 // bring SF over. 660 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()), 661 GlobalValue::ExternalLinkage, 662 SF->getAddressSpace(), SF->getName(), &DstM); 663 F->copyAttributesFrom(SF); 664 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 665 return F; 666 } 667 668 /// Set up prototypes for any indirect symbols that come over from the source 669 /// module. 670 GlobalValue * 671 IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS) { 672 // If there is no linkage to be performed or we're linking from the source, 673 // bring over SGA. 674 auto *Ty = TypeMap.get(SGIS->getValueType()); 675 GlobalIndirectSymbol *GIS; 676 if (isa<GlobalAlias>(SGIS)) 677 GIS = GlobalAlias::create(Ty, SGIS->getAddressSpace(), 678 GlobalValue::ExternalLinkage, SGIS->getName(), 679 &DstM); 680 else 681 GIS = GlobalIFunc::create(Ty, SGIS->getAddressSpace(), 682 GlobalValue::ExternalLinkage, SGIS->getName(), 683 nullptr, &DstM); 684 GIS->copyAttributesFrom(SGIS); 685 return GIS; 686 } 687 688 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 689 bool ForDefinition) { 690 GlobalValue *NewGV; 691 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 692 NewGV = copyGlobalVariableProto(SGVar); 693 } else if (auto *SF = dyn_cast<Function>(SGV)) { 694 NewGV = copyFunctionProto(SF); 695 } else { 696 if (ForDefinition) 697 NewGV = copyGlobalIndirectSymbolProto(cast<GlobalIndirectSymbol>(SGV)); 698 else if (SGV->getValueType()->isFunctionTy()) 699 NewGV = 700 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 701 GlobalValue::ExternalLinkage, SGV->getAddressSpace(), 702 SGV->getName(), &DstM); 703 else 704 NewGV = 705 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()), 706 /*isConstant*/ false, GlobalValue::ExternalLinkage, 707 /*init*/ nullptr, SGV->getName(), 708 /*insertbefore*/ nullptr, 709 SGV->getThreadLocalMode(), SGV->getAddressSpace()); 710 } 711 712 if (ForDefinition) 713 NewGV->setLinkage(SGV->getLinkage()); 714 else if (SGV->hasExternalWeakLinkage()) 715 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 716 717 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 718 // Metadata for global variables and function declarations is copied eagerly. 719 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) 720 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 721 } 722 723 // Remove these copied constants in case this stays a declaration, since 724 // they point to the source module. If the def is linked the values will 725 // be mapped in during linkFunctionBody. 726 if (auto *NewF = dyn_cast<Function>(NewGV)) { 727 NewF->setPersonalityFn(nullptr); 728 NewF->setPrefixData(nullptr); 729 NewF->setPrologueData(nullptr); 730 } 731 732 return NewGV; 733 } 734 735 static StringRef getTypeNamePrefix(StringRef Name) { 736 size_t DotPos = Name.rfind('.'); 737 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 738 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 739 ? Name 740 : Name.substr(0, DotPos); 741 } 742 743 /// Loop over all of the linked values to compute type mappings. For example, 744 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 745 /// types 'Foo' but one got renamed when the module was loaded into the same 746 /// LLVMContext. 747 void IRLinker::computeTypeMapping() { 748 for (GlobalValue &SGV : SrcM->globals()) { 749 GlobalValue *DGV = getLinkedToGlobal(&SGV); 750 if (!DGV) 751 continue; 752 753 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 754 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 755 continue; 756 } 757 758 // Unify the element type of appending arrays. 759 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 760 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 761 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 762 } 763 764 for (GlobalValue &SGV : *SrcM) 765 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { 766 if (DGV->getType() == SGV.getType()) { 767 // If the types of DGV and SGV are the same, it means that DGV is from 768 // the source module and got added to DstM from a shared metadata. We 769 // shouldn't map this type to itself in case the type's components get 770 // remapped to a new type from DstM (for instance, during the loop over 771 // SrcM->getIdentifiedStructTypes() below). 772 continue; 773 } 774 775 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 776 } 777 778 for (GlobalValue &SGV : SrcM->aliases()) 779 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 780 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 781 782 // Incorporate types by name, scanning all the types in the source module. 783 // At this point, the destination module may have a type "%foo = { i32 }" for 784 // example. When the source module got loaded into the same LLVMContext, if 785 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 786 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 787 for (StructType *ST : Types) { 788 if (!ST->hasName()) 789 continue; 790 791 if (TypeMap.DstStructTypesSet.hasType(ST)) { 792 // This is actually a type from the destination module. 793 // getIdentifiedStructTypes() can have found it by walking debug info 794 // metadata nodes, some of which get linked by name when ODR Type Uniquing 795 // is enabled on the Context, from the source to the destination module. 796 continue; 797 } 798 799 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 800 if (STTypePrefix.size() == ST->getName().size()) 801 continue; 802 803 // Check to see if the destination module has a struct with the prefix name. 804 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix); 805 if (!DST) 806 continue; 807 808 // Don't use it if this actually came from the source module. They're in 809 // the same LLVMContext after all. Also don't use it unless the type is 810 // actually used in the destination module. This can happen in situations 811 // like this: 812 // 813 // Module A Module B 814 // -------- -------- 815 // %Z = type { %A } %B = type { %C.1 } 816 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 817 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 818 // %C = type { i8* } %B.3 = type { %C.1 } 819 // 820 // When we link Module B with Module A, the '%B' in Module B is 821 // used. However, that would then use '%C.1'. But when we process '%C.1', 822 // we prefer to take the '%C' version. So we are then left with both 823 // '%C.1' and '%C' being used for the same types. This leads to some 824 // variables using one type and some using the other. 825 if (TypeMap.DstStructTypesSet.hasType(DST)) 826 TypeMap.addTypeMapping(DST, ST); 827 } 828 829 // Now that we have discovered all of the type equivalences, get a body for 830 // any 'opaque' types in the dest module that are now resolved. 831 TypeMap.linkDefinedTypeBodies(); 832 } 833 834 static void getArrayElements(const Constant *C, 835 SmallVectorImpl<Constant *> &Dest) { 836 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 837 838 for (unsigned i = 0; i != NumElements; ++i) 839 Dest.push_back(C->getAggregateElement(i)); 840 } 841 842 /// If there were any appending global variables, link them together now. 843 Expected<Constant *> 844 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 845 const GlobalVariable *SrcGV) { 846 // Check that both variables have compatible properties. 847 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) { 848 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 849 return stringErr( 850 "Linking globals named '" + SrcGV->getName() + 851 "': can only link appending global with another appending " 852 "global!"); 853 854 if (DstGV->isConstant() != SrcGV->isConstant()) 855 return stringErr("Appending variables linked with different const'ness!"); 856 857 if (DstGV->getAlignment() != SrcGV->getAlignment()) 858 return stringErr( 859 "Appending variables with different alignment need to be linked!"); 860 861 if (DstGV->getVisibility() != SrcGV->getVisibility()) 862 return stringErr( 863 "Appending variables with different visibility need to be linked!"); 864 865 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 866 return stringErr( 867 "Appending variables with different unnamed_addr need to be linked!"); 868 869 if (DstGV->getSection() != SrcGV->getSection()) 870 return stringErr( 871 "Appending variables with different section name need to be linked!"); 872 } 873 874 // Do not need to do anything if source is a declaration. 875 if (SrcGV->isDeclaration()) 876 return DstGV; 877 878 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 879 ->getElementType(); 880 881 // FIXME: This upgrade is done during linking to support the C API. Once the 882 // old form is deprecated, we should move this upgrade to 883 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 884 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 885 StringRef Name = SrcGV->getName(); 886 bool IsNewStructor = false; 887 bool IsOldStructor = false; 888 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 889 if (cast<StructType>(EltTy)->getNumElements() == 3) 890 IsNewStructor = true; 891 else 892 IsOldStructor = true; 893 } 894 895 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); 896 if (IsOldStructor) { 897 auto &ST = *cast<StructType>(EltTy); 898 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 899 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 900 } 901 902 uint64_t DstNumElements = 0; 903 if (DstGV && !DstGV->isDeclaration()) { 904 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 905 DstNumElements = DstTy->getNumElements(); 906 907 // Check to see that they two arrays agree on type. 908 if (EltTy != DstTy->getElementType()) 909 return stringErr("Appending variables with different element types!"); 910 } 911 912 SmallVector<Constant *, 16> SrcElements; 913 getArrayElements(SrcGV->getInitializer(), SrcElements); 914 915 if (IsNewStructor) { 916 erase_if(SrcElements, [this](Constant *E) { 917 auto *Key = 918 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 919 if (!Key) 920 return false; 921 GlobalValue *DGV = getLinkedToGlobal(Key); 922 return !shouldLink(DGV, *Key); 923 }); 924 } 925 uint64_t NewSize = DstNumElements + SrcElements.size(); 926 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 927 928 // Create the new global variable. 929 GlobalVariable *NG = new GlobalVariable( 930 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 931 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 932 SrcGV->getAddressSpace()); 933 934 NG->copyAttributesFrom(SrcGV); 935 forceRenaming(NG, SrcGV->getName()); 936 937 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 938 939 Mapper.scheduleMapAppendingVariable( 940 *NG, 941 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr, 942 IsOldStructor, SrcElements); 943 944 // Replace any uses of the two global variables with uses of the new 945 // global. 946 if (DstGV) { 947 RAUWWorklist.push_back( 948 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType()))); 949 } 950 951 return Ret; 952 } 953 954 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 955 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 956 return true; 957 958 if (DGV && !DGV->isDeclarationForLinker()) 959 return false; 960 961 if (SGV.isDeclaration() || DoneLinkingBodies) 962 return false; 963 964 // Callback to the client to give a chance to lazily add the Global to the 965 // list of value to link. 966 bool LazilyAdded = false; 967 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 968 maybeAdd(&GV); 969 LazilyAdded = true; 970 }); 971 return LazilyAdded; 972 } 973 974 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 975 bool ForIndirectSymbol) { 976 GlobalValue *DGV = getLinkedToGlobal(SGV); 977 978 bool ShouldLink = shouldLink(DGV, *SGV); 979 980 // just missing from map 981 if (ShouldLink) { 982 auto I = ValueMap.find(SGV); 983 if (I != ValueMap.end()) 984 return cast<Constant>(I->second); 985 986 I = IndirectSymbolValueMap.find(SGV); 987 if (I != IndirectSymbolValueMap.end()) 988 return cast<Constant>(I->second); 989 } 990 991 if (!ShouldLink && ForIndirectSymbol) 992 DGV = nullptr; 993 994 // Handle the ultra special appending linkage case first. 995 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage())) 996 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 997 cast<GlobalVariable>(SGV)); 998 999 GlobalValue *NewGV; 1000 if (DGV && !ShouldLink) { 1001 NewGV = DGV; 1002 } else { 1003 // If we are done linking global value bodies (i.e. we are performing 1004 // metadata linking), don't link in the global value due to this 1005 // reference, simply map it to null. 1006 if (DoneLinkingBodies) 1007 return nullptr; 1008 1009 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); 1010 if (ShouldLink || !ForIndirectSymbol) 1011 forceRenaming(NewGV, SGV->getName()); 1012 } 1013 1014 // Overloaded intrinsics have overloaded types names as part of their 1015 // names. If we renamed overloaded types we should rename the intrinsic 1016 // as well. 1017 if (Function *F = dyn_cast<Function>(NewGV)) 1018 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) 1019 NewGV = Remangled.getValue(); 1020 1021 if (ShouldLink || ForIndirectSymbol) { 1022 if (const Comdat *SC = SGV->getComdat()) { 1023 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 1024 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 1025 DC->setSelectionKind(SC->getSelectionKind()); 1026 GO->setComdat(DC); 1027 } 1028 } 1029 } 1030 1031 if (!ShouldLink && ForIndirectSymbol) 1032 NewGV->setLinkage(GlobalValue::InternalLinkage); 1033 1034 Constant *C = NewGV; 1035 // Only create a bitcast if necessary. In particular, with 1036 // DebugTypeODRUniquing we may reach metadata in the destination module 1037 // containing a GV from the source module, in which case SGV will be 1038 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1039 // assumes it is being invoked on a type in the source module. 1040 if (DGV && NewGV != SGV) { 1041 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1042 NewGV, TypeMap.get(SGV->getType())); 1043 } 1044 1045 if (DGV && NewGV != DGV) { 1046 // Schedule "replace all uses with" to happen after materializing is 1047 // done. It is not safe to do it now, since ValueMapper may be holding 1048 // pointers to constants that will get deleted if RAUW runs. 1049 RAUWWorklist.push_back(std::make_pair( 1050 DGV, 1051 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1052 } 1053 1054 return C; 1055 } 1056 1057 /// Update the initializers in the Dest module now that all globals that may be 1058 /// referenced are in Dest. 1059 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1060 // Figure out what the initializer looks like in the dest module. 1061 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1062 } 1063 1064 /// Copy the source function over into the dest function and fix up references 1065 /// to values. At this point we know that Dest is an external function, and 1066 /// that Src is not. 1067 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1068 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1069 1070 // Materialize if needed. 1071 if (Error Err = Src.materialize()) 1072 return Err; 1073 1074 // Link in the operands without remapping. 1075 if (Src.hasPrefixData()) 1076 Dst.setPrefixData(Src.getPrefixData()); 1077 if (Src.hasPrologueData()) 1078 Dst.setPrologueData(Src.getPrologueData()); 1079 if (Src.hasPersonalityFn()) 1080 Dst.setPersonalityFn(Src.getPersonalityFn()); 1081 1082 // Copy over the metadata attachments without remapping. 1083 Dst.copyMetadata(&Src, 0); 1084 1085 // Steal arguments and splice the body of Src into Dst. 1086 Dst.stealArgumentListFrom(Src); 1087 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList()); 1088 1089 // Everything has been moved over. Remap it. 1090 Mapper.scheduleRemapFunction(Dst); 1091 return Error::success(); 1092 } 1093 1094 void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol &Dst, 1095 GlobalIndirectSymbol &Src) { 1096 Mapper.scheduleMapGlobalIndirectSymbol(Dst, *Src.getIndirectSymbol(), 1097 IndirectSymbolMCID); 1098 } 1099 1100 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1101 if (auto *F = dyn_cast<Function>(&Src)) 1102 return linkFunctionBody(cast<Function>(Dst), *F); 1103 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1104 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1105 return Error::success(); 1106 } 1107 linkIndirectSymbolBody(cast<GlobalIndirectSymbol>(Dst), cast<GlobalIndirectSymbol>(Src)); 1108 return Error::success(); 1109 } 1110 1111 void IRLinker::flushRAUWWorklist() { 1112 for (const auto &Elem : RAUWWorklist) { 1113 GlobalValue *Old; 1114 Value *New; 1115 std::tie(Old, New) = Elem; 1116 1117 Old->replaceAllUsesWith(New); 1118 Old->eraseFromParent(); 1119 } 1120 RAUWWorklist.clear(); 1121 } 1122 1123 void IRLinker::prepareCompileUnitsForImport() { 1124 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1125 if (!SrcCompileUnits) 1126 return; 1127 // When importing for ThinLTO, prevent importing of types listed on 1128 // the DICompileUnit that we don't need a copy of in the importing 1129 // module. They will be emitted by the originating module. 1130 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) { 1131 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I)); 1132 assert(CU && "Expected valid compile unit"); 1133 // Enums, macros, and retained types don't need to be listed on the 1134 // imported DICompileUnit. This means they will only be imported 1135 // if reached from the mapped IR. 1136 CU->replaceEnumTypes(nullptr); 1137 CU->replaceMacros(nullptr); 1138 CU->replaceRetainedTypes(nullptr); 1139 1140 // The original definition (or at least its debug info - if the variable is 1141 // internalized and optimized away) will remain in the source module, so 1142 // there's no need to import them. 1143 // If LLVM ever does more advanced optimizations on global variables 1144 // (removing/localizing write operations, for instance) that can track 1145 // through debug info, this decision may need to be revisited - but do so 1146 // with care when it comes to debug info size. Emitting small CUs containing 1147 // only a few imported entities into every destination module may be very 1148 // size inefficient. 1149 CU->replaceGlobalVariables(nullptr); 1150 1151 // Imported entities only need to be mapped in if they have local 1152 // scope, as those might correspond to an imported entity inside a 1153 // function being imported (any locally scoped imported entities that 1154 // don't end up referenced by an imported function will not be emitted 1155 // into the object). Imported entities not in a local scope 1156 // (e.g. on the namespace) only need to be emitted by the originating 1157 // module. Create a list of the locally scoped imported entities, and 1158 // replace the source CUs imported entity list with the new list, so 1159 // only those are mapped in. 1160 // FIXME: Locally-scoped imported entities could be moved to the 1161 // functions they are local to instead of listing them on the CU, and 1162 // we would naturally only link in those needed by function importing. 1163 SmallVector<TrackingMDNodeRef, 4> AllImportedModules; 1164 bool ReplaceImportedEntities = false; 1165 for (auto *IE : CU->getImportedEntities()) { 1166 DIScope *Scope = IE->getScope(); 1167 assert(Scope && "Invalid Scope encoding!"); 1168 if (isa<DILocalScope>(Scope)) 1169 AllImportedModules.emplace_back(IE); 1170 else 1171 ReplaceImportedEntities = true; 1172 } 1173 if (ReplaceImportedEntities) { 1174 if (!AllImportedModules.empty()) 1175 CU->replaceImportedEntities(MDTuple::get( 1176 CU->getContext(), 1177 SmallVector<Metadata *, 16>(AllImportedModules.begin(), 1178 AllImportedModules.end()))); 1179 else 1180 // If there were no local scope imported entities, we can map 1181 // the whole list to nullptr. 1182 CU->replaceImportedEntities(nullptr); 1183 } 1184 } 1185 } 1186 1187 /// Insert all of the named MDNodes in Src into the Dest module. 1188 void IRLinker::linkNamedMDNodes() { 1189 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1190 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1191 // Don't link module flags here. Do them separately. 1192 if (&NMD == SrcModFlags) 1193 continue; 1194 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1195 // Add Src elements into Dest node. 1196 for (const MDNode *Op : NMD.operands()) 1197 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1198 } 1199 } 1200 1201 /// Merge the linker flags in Src into the Dest module. 1202 Error IRLinker::linkModuleFlagsMetadata() { 1203 // If the source module has no module flags, we are done. 1204 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1205 if (!SrcModFlags) 1206 return Error::success(); 1207 1208 // If the destination module doesn't have module flags yet, then just copy 1209 // over the source module's flags. 1210 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1211 if (DstModFlags->getNumOperands() == 0) { 1212 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1213 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1214 1215 return Error::success(); 1216 } 1217 1218 // First build a map of the existing module flags and requirements. 1219 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1220 SmallSetVector<MDNode *, 16> Requirements; 1221 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1222 MDNode *Op = DstModFlags->getOperand(I); 1223 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0)); 1224 MDString *ID = cast<MDString>(Op->getOperand(1)); 1225 1226 if (Behavior->getZExtValue() == Module::Require) { 1227 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1228 } else { 1229 Flags[ID] = std::make_pair(Op, I); 1230 } 1231 } 1232 1233 // Merge in the flags from the source module, and also collect its set of 1234 // requirements. 1235 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1236 MDNode *SrcOp = SrcModFlags->getOperand(I); 1237 ConstantInt *SrcBehavior = 1238 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1239 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1240 MDNode *DstOp; 1241 unsigned DstIndex; 1242 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1243 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1244 1245 // If this is a requirement, add it and continue. 1246 if (SrcBehaviorValue == Module::Require) { 1247 // If the destination module does not already have this requirement, add 1248 // it. 1249 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1250 DstModFlags->addOperand(SrcOp); 1251 } 1252 continue; 1253 } 1254 1255 // If there is no existing flag with this ID, just add it. 1256 if (!DstOp) { 1257 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1258 DstModFlags->addOperand(SrcOp); 1259 continue; 1260 } 1261 1262 // Otherwise, perform a merge. 1263 ConstantInt *DstBehavior = 1264 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1265 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1266 1267 auto overrideDstValue = [&]() { 1268 DstModFlags->setOperand(DstIndex, SrcOp); 1269 Flags[ID].first = SrcOp; 1270 }; 1271 1272 // If either flag has override behavior, handle it first. 1273 if (DstBehaviorValue == Module::Override) { 1274 // Diagnose inconsistent flags which both have override behavior. 1275 if (SrcBehaviorValue == Module::Override && 1276 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1277 return stringErr("linking module flags '" + ID->getString() + 1278 "': IDs have conflicting override values in '" + 1279 SrcM->getModuleIdentifier() + "' and '" + 1280 DstM.getModuleIdentifier() + "'"); 1281 continue; 1282 } else if (SrcBehaviorValue == Module::Override) { 1283 // Update the destination flag to that of the source. 1284 overrideDstValue(); 1285 continue; 1286 } 1287 1288 // Diagnose inconsistent merge behavior types. 1289 if (SrcBehaviorValue != DstBehaviorValue) { 1290 bool MaxAndWarn = (SrcBehaviorValue == Module::Max && 1291 DstBehaviorValue == Module::Warning) || 1292 (DstBehaviorValue == Module::Max && 1293 SrcBehaviorValue == Module::Warning); 1294 if (!MaxAndWarn) 1295 return stringErr("linking module flags '" + ID->getString() + 1296 "': IDs have conflicting behaviors in '" + 1297 SrcM->getModuleIdentifier() + "' and '" + 1298 DstM.getModuleIdentifier() + "'"); 1299 } 1300 1301 auto replaceDstValue = [&](MDNode *New) { 1302 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1303 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1304 DstModFlags->setOperand(DstIndex, Flag); 1305 Flags[ID].first = Flag; 1306 }; 1307 1308 // Emit a warning if the values differ and either source or destination 1309 // request Warning behavior. 1310 if ((DstBehaviorValue == Module::Warning || 1311 SrcBehaviorValue == Module::Warning) && 1312 SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1313 std::string Str; 1314 raw_string_ostream(Str) 1315 << "linking module flags '" << ID->getString() 1316 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1317 << "' from " << SrcM->getModuleIdentifier() << " with '" 1318 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1319 << ')'; 1320 emitWarning(Str); 1321 } 1322 1323 // Choose the maximum if either source or destination request Max behavior. 1324 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) { 1325 ConstantInt *DstValue = 1326 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1327 ConstantInt *SrcValue = 1328 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1329 1330 // The resulting flag should have a Max behavior, and contain the maximum 1331 // value from between the source and destination values. 1332 Metadata *FlagOps[] = { 1333 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID, 1334 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp) 1335 ->getOperand(2)}; 1336 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1337 DstModFlags->setOperand(DstIndex, Flag); 1338 Flags[ID].first = Flag; 1339 continue; 1340 } 1341 1342 // Perform the merge for standard behavior types. 1343 switch (SrcBehaviorValue) { 1344 case Module::Require: 1345 case Module::Override: 1346 llvm_unreachable("not possible"); 1347 case Module::Error: { 1348 // Emit an error if the values differ. 1349 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1350 return stringErr("linking module flags '" + ID->getString() + 1351 "': IDs have conflicting values in '" + 1352 SrcM->getModuleIdentifier() + "' and '" + 1353 DstM.getModuleIdentifier() + "'"); 1354 continue; 1355 } 1356 case Module::Warning: { 1357 break; 1358 } 1359 case Module::Max: { 1360 break; 1361 } 1362 case Module::Append: { 1363 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1364 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1365 SmallVector<Metadata *, 8> MDs; 1366 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands()); 1367 MDs.append(DstValue->op_begin(), DstValue->op_end()); 1368 MDs.append(SrcValue->op_begin(), SrcValue->op_end()); 1369 1370 replaceDstValue(MDNode::get(DstM.getContext(), MDs)); 1371 break; 1372 } 1373 case Module::AppendUnique: { 1374 SmallSetVector<Metadata *, 16> Elts; 1375 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1376 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1377 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1378 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1379 1380 replaceDstValue(MDNode::get(DstM.getContext(), 1381 makeArrayRef(Elts.begin(), Elts.end()))); 1382 break; 1383 } 1384 } 1385 1386 } 1387 1388 // Check all of the requirements. 1389 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 1390 MDNode *Requirement = Requirements[I]; 1391 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1392 Metadata *ReqValue = Requirement->getOperand(1); 1393 1394 MDNode *Op = Flags[Flag].first; 1395 if (!Op || Op->getOperand(2) != ReqValue) 1396 return stringErr("linking module flags '" + Flag->getString() + 1397 "': does not have the required value"); 1398 } 1399 return Error::success(); 1400 } 1401 1402 /// Return InlineAsm adjusted with target-specific directives if required. 1403 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1404 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1405 static std::string adjustInlineAsm(const std::string &InlineAsm, 1406 const Triple &Triple) { 1407 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1408 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1409 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1410 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1411 return InlineAsm; 1412 } 1413 1414 Error IRLinker::run() { 1415 // Ensure metadata materialized before value mapping. 1416 if (SrcM->getMaterializer()) 1417 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1418 return Err; 1419 1420 // Inherit the target data from the source module if the destination module 1421 // doesn't have one already. 1422 if (DstM.getDataLayout().isDefault()) 1423 DstM.setDataLayout(SrcM->getDataLayout()); 1424 1425 if (SrcM->getDataLayout() != DstM.getDataLayout()) { 1426 emitWarning("Linking two modules of different data layouts: '" + 1427 SrcM->getModuleIdentifier() + "' is '" + 1428 SrcM->getDataLayoutStr() + "' whereas '" + 1429 DstM.getModuleIdentifier() + "' is '" + 1430 DstM.getDataLayoutStr() + "'\n"); 1431 } 1432 1433 // Copy the target triple from the source to dest if the dest's is empty. 1434 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1435 DstM.setTargetTriple(SrcM->getTargetTriple()); 1436 1437 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1438 1439 if (!SrcM->getTargetTriple().empty()&& 1440 !SrcTriple.isCompatibleWith(DstTriple)) 1441 emitWarning("Linking two modules of different target triples: '" + 1442 SrcM->getModuleIdentifier() + "' is '" + 1443 SrcM->getTargetTriple() + "' whereas '" + 1444 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1445 "'\n"); 1446 1447 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1448 1449 // Loop over all of the linked values to compute type mappings. 1450 computeTypeMapping(); 1451 1452 std::reverse(Worklist.begin(), Worklist.end()); 1453 while (!Worklist.empty()) { 1454 GlobalValue *GV = Worklist.back(); 1455 Worklist.pop_back(); 1456 1457 // Already mapped. 1458 if (ValueMap.find(GV) != ValueMap.end() || 1459 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) 1460 continue; 1461 1462 assert(!GV->isDeclaration()); 1463 Mapper.mapValue(*GV); 1464 if (FoundError) 1465 return std::move(*FoundError); 1466 flushRAUWWorklist(); 1467 } 1468 1469 // Note that we are done linking global value bodies. This prevents 1470 // metadata linking from creating new references. 1471 DoneLinkingBodies = true; 1472 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1473 1474 // Remap all of the named MDNodes in Src into the DstM module. We do this 1475 // after linking GlobalValues so that MDNodes that reference GlobalValues 1476 // are properly remapped. 1477 linkNamedMDNodes(); 1478 1479 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1480 // Append the module inline asm string. 1481 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(), 1482 SrcTriple)); 1483 } else if (IsPerformingImport) { 1484 // Import any symver directives for symbols in DstM. 1485 ModuleSymbolTable::CollectAsmSymvers(*SrcM, 1486 [&](StringRef Name, StringRef Alias) { 1487 if (DstM.getNamedValue(Name)) { 1488 SmallString<256> S(".symver "); 1489 S += Name; 1490 S += ", "; 1491 S += Alias; 1492 DstM.appendModuleInlineAsm(S); 1493 } 1494 }); 1495 } 1496 1497 // Merge the module flags into the DstM module. 1498 return linkModuleFlagsMetadata(); 1499 } 1500 1501 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1502 : ETypes(E), IsPacked(P) {} 1503 1504 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1505 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1506 1507 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1508 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1509 } 1510 1511 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1512 return !this->operator==(That); 1513 } 1514 1515 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1516 return DenseMapInfo<StructType *>::getEmptyKey(); 1517 } 1518 1519 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1520 return DenseMapInfo<StructType *>::getTombstoneKey(); 1521 } 1522 1523 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1524 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1525 Key.IsPacked); 1526 } 1527 1528 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1529 return getHashValue(KeyTy(ST)); 1530 } 1531 1532 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1533 const StructType *RHS) { 1534 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1535 return false; 1536 return LHS == KeyTy(RHS); 1537 } 1538 1539 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1540 const StructType *RHS) { 1541 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1542 return LHS == RHS; 1543 return KeyTy(LHS) == KeyTy(RHS); 1544 } 1545 1546 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1547 assert(!Ty->isOpaque()); 1548 NonOpaqueStructTypes.insert(Ty); 1549 } 1550 1551 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1552 assert(!Ty->isOpaque()); 1553 NonOpaqueStructTypes.insert(Ty); 1554 bool Removed = OpaqueStructTypes.erase(Ty); 1555 (void)Removed; 1556 assert(Removed); 1557 } 1558 1559 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1560 assert(Ty->isOpaque()); 1561 OpaqueStructTypes.insert(Ty); 1562 } 1563 1564 StructType * 1565 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1566 bool IsPacked) { 1567 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1568 auto I = NonOpaqueStructTypes.find_as(Key); 1569 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1570 } 1571 1572 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1573 if (Ty->isOpaque()) 1574 return OpaqueStructTypes.count(Ty); 1575 auto I = NonOpaqueStructTypes.find(Ty); 1576 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1577 } 1578 1579 IRMover::IRMover(Module &M) : Composite(M) { 1580 TypeFinder StructTypes; 1581 StructTypes.run(M, /* OnlyNamed */ false); 1582 for (StructType *Ty : StructTypes) { 1583 if (Ty->isOpaque()) 1584 IdentifiedStructTypes.addOpaque(Ty); 1585 else 1586 IdentifiedStructTypes.addNonOpaque(Ty); 1587 } 1588 // Self-map metadatas in the destination module. This is needed when 1589 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1590 // destination module may be reached from the source module. 1591 for (auto *MD : StructTypes.getVisitedMetadata()) { 1592 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1593 } 1594 } 1595 1596 Error IRMover::move( 1597 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink, 1598 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor, 1599 bool IsPerformingImport) { 1600 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1601 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1602 IsPerformingImport); 1603 Error E = TheIRLinker.run(); 1604 Composite.dropTriviallyDeadConstantArrays(); 1605 return E; 1606 } 1607