1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/SetVector.h" 12 #include "llvm/ADT/SmallPtrSet.h" 13 #include "llvm/ADT/SmallString.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DebugInfoMetadata.h" 18 #include "llvm/IR/DiagnosticPrinter.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/GVMaterializer.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PseudoProbe.h" 27 #include "llvm/IR/TypeFinder.h" 28 #include "llvm/Object/ModuleSymbolTable.h" 29 #include "llvm/Support/Error.h" 30 #include "llvm/Support/Path.h" 31 #include "llvm/Transforms/Utils/ValueMapper.h" 32 #include <optional> 33 #include <utility> 34 using namespace llvm; 35 36 //===----------------------------------------------------------------------===// 37 // TypeMap implementation. 38 //===----------------------------------------------------------------------===// 39 40 namespace { 41 class TypeMapTy : public ValueMapTypeRemapper { 42 /// This is a mapping from a source type to a destination type to use. 43 DenseMap<Type *, Type *> MappedTypes; 44 45 /// When checking to see if two subgraphs are isomorphic, we speculatively 46 /// add types to MappedTypes, but keep track of them here in case we need to 47 /// roll back. 48 SmallVector<Type *, 16> SpeculativeTypes; 49 50 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 51 52 /// This is a list of non-opaque structs in the source module that are mapped 53 /// to an opaque struct in the destination module. 54 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 55 56 /// This is the set of opaque types in the destination modules who are 57 /// getting a body from the source module. 58 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 59 60 public: 61 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 62 : DstStructTypesSet(DstStructTypesSet) {} 63 64 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 65 /// Indicate that the specified type in the destination module is conceptually 66 /// equivalent to the specified type in the source module. 67 void addTypeMapping(Type *DstTy, Type *SrcTy); 68 69 /// Produce a body for an opaque type in the dest module from a type 70 /// definition in the source module. 71 void linkDefinedTypeBodies(); 72 73 /// Return the mapped type to use for the specified input type from the 74 /// source module. 75 Type *get(Type *SrcTy); 76 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 77 78 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 79 80 FunctionType *get(FunctionType *T) { 81 return cast<FunctionType>(get((Type *)T)); 82 } 83 84 private: 85 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 86 87 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 88 }; 89 } 90 91 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 92 assert(SpeculativeTypes.empty()); 93 assert(SpeculativeDstOpaqueTypes.empty()); 94 95 // Check to see if these types are recursively isomorphic and establish a 96 // mapping between them if so. 97 if (!areTypesIsomorphic(DstTy, SrcTy)) { 98 // Oops, they aren't isomorphic. Just discard this request by rolling out 99 // any speculative mappings we've established. 100 for (Type *Ty : SpeculativeTypes) 101 MappedTypes.erase(Ty); 102 103 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 104 SpeculativeDstOpaqueTypes.size()); 105 for (StructType *Ty : SpeculativeDstOpaqueTypes) 106 DstResolvedOpaqueTypes.erase(Ty); 107 } else { 108 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 109 // and all its descendants to lower amount of renaming in LLVM context 110 // Renaming occurs because we load all source modules to the same context 111 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 112 // As a result we may get several different types in the destination 113 // module, which are in fact the same. 114 for (Type *Ty : SpeculativeTypes) 115 if (auto *STy = dyn_cast<StructType>(Ty)) 116 if (STy->hasName()) 117 STy->setName(""); 118 } 119 SpeculativeTypes.clear(); 120 SpeculativeDstOpaqueTypes.clear(); 121 } 122 123 /// Recursively walk this pair of types, returning true if they are isomorphic, 124 /// false if they are not. 125 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 126 // Two types with differing kinds are clearly not isomorphic. 127 if (DstTy->getTypeID() != SrcTy->getTypeID()) 128 return false; 129 130 // If we have an entry in the MappedTypes table, then we have our answer. 131 Type *&Entry = MappedTypes[SrcTy]; 132 if (Entry) 133 return Entry == DstTy; 134 135 // Two identical types are clearly isomorphic. Remember this 136 // non-speculatively. 137 if (DstTy == SrcTy) { 138 Entry = DstTy; 139 return true; 140 } 141 142 // Okay, we have two types with identical kinds that we haven't seen before. 143 144 // If this is an opaque struct type, special case it. 145 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 146 // Mapping an opaque type to any struct, just keep the dest struct. 147 if (SSTy->isOpaque()) { 148 Entry = DstTy; 149 SpeculativeTypes.push_back(SrcTy); 150 return true; 151 } 152 153 // Mapping a non-opaque source type to an opaque dest. If this is the first 154 // type that we're mapping onto this destination type then we succeed. Keep 155 // the dest, but fill it in later. If this is the second (different) type 156 // that we're trying to map onto the same opaque type then we fail. 157 if (cast<StructType>(DstTy)->isOpaque()) { 158 // We can only map one source type onto the opaque destination type. 159 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 160 return false; 161 SrcDefinitionsToResolve.push_back(SSTy); 162 SpeculativeTypes.push_back(SrcTy); 163 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 164 Entry = DstTy; 165 return true; 166 } 167 } 168 169 // If the number of subtypes disagree between the two types, then we fail. 170 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 171 return false; 172 173 // Fail if any of the extra properties (e.g. array size) of the type disagree. 174 if (isa<IntegerType>(DstTy)) 175 return false; // bitwidth disagrees. 176 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 177 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 178 return false; 179 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 180 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 181 return false; 182 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 183 StructType *SSTy = cast<StructType>(SrcTy); 184 if (DSTy->isLiteral() != SSTy->isLiteral() || 185 DSTy->isPacked() != SSTy->isPacked()) 186 return false; 187 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) { 188 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 189 return false; 190 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) { 191 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount()) 192 return false; 193 } 194 195 // Otherwise, we speculate that these two types will line up and recursively 196 // check the subelements. 197 Entry = DstTy; 198 SpeculativeTypes.push_back(SrcTy); 199 200 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 201 if (!areTypesIsomorphic(DstTy->getContainedType(I), 202 SrcTy->getContainedType(I))) 203 return false; 204 205 // If everything seems to have lined up, then everything is great. 206 return true; 207 } 208 209 void TypeMapTy::linkDefinedTypeBodies() { 210 SmallVector<Type *, 16> Elements; 211 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 212 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 213 assert(DstSTy->isOpaque()); 214 215 // Map the body of the source type over to a new body for the dest type. 216 Elements.resize(SrcSTy->getNumElements()); 217 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 218 Elements[I] = get(SrcSTy->getElementType(I)); 219 220 DstSTy->setBody(Elements, SrcSTy->isPacked()); 221 DstStructTypesSet.switchToNonOpaque(DstSTy); 222 } 223 SrcDefinitionsToResolve.clear(); 224 DstResolvedOpaqueTypes.clear(); 225 } 226 227 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 228 ArrayRef<Type *> ETypes) { 229 DTy->setBody(ETypes, STy->isPacked()); 230 231 // Steal STy's name. 232 if (STy->hasName()) { 233 SmallString<16> TmpName = STy->getName(); 234 STy->setName(""); 235 DTy->setName(TmpName); 236 } 237 238 DstStructTypesSet.addNonOpaque(DTy); 239 } 240 241 Type *TypeMapTy::get(Type *Ty) { 242 SmallPtrSet<StructType *, 8> Visited; 243 return get(Ty, Visited); 244 } 245 246 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 247 // If we already have an entry for this type, return it. 248 Type **Entry = &MappedTypes[Ty]; 249 if (*Entry) 250 return *Entry; 251 252 // These are types that LLVM itself will unique. 253 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 254 255 if (!IsUniqued) { 256 #ifndef NDEBUG 257 for (auto &Pair : MappedTypes) { 258 assert(!(Pair.first != Ty && Pair.second == Ty) && 259 "mapping to a source type"); 260 } 261 #endif 262 263 if (!Visited.insert(cast<StructType>(Ty)).second) { 264 StructType *DTy = StructType::create(Ty->getContext()); 265 return *Entry = DTy; 266 } 267 } 268 269 // If this is not a recursive type, then just map all of the elements and 270 // then rebuild the type from inside out. 271 SmallVector<Type *, 4> ElementTypes; 272 273 // If there are no element types to map, then the type is itself. This is 274 // true for the anonymous {} struct, things like 'float', integers, etc. 275 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 276 return *Entry = Ty; 277 278 // Remap all of the elements, keeping track of whether any of them change. 279 bool AnyChange = false; 280 ElementTypes.resize(Ty->getNumContainedTypes()); 281 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 282 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 283 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 284 } 285 286 // If we found our type while recursively processing stuff, just use it. 287 Entry = &MappedTypes[Ty]; 288 if (*Entry) { 289 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 290 if (DTy->isOpaque()) { 291 auto *STy = cast<StructType>(Ty); 292 finishType(DTy, STy, ElementTypes); 293 } 294 } 295 return *Entry; 296 } 297 298 // If all of the element types mapped directly over and the type is not 299 // a named struct, then the type is usable as-is. 300 if (!AnyChange && IsUniqued) 301 return *Entry = Ty; 302 303 // Otherwise, rebuild a modified type. 304 switch (Ty->getTypeID()) { 305 default: 306 llvm_unreachable("unknown derived type to remap"); 307 case Type::ArrayTyID: 308 return *Entry = ArrayType::get(ElementTypes[0], 309 cast<ArrayType>(Ty)->getNumElements()); 310 case Type::ScalableVectorTyID: 311 case Type::FixedVectorTyID: 312 return *Entry = VectorType::get(ElementTypes[0], 313 cast<VectorType>(Ty)->getElementCount()); 314 case Type::PointerTyID: 315 return *Entry = PointerType::get(ElementTypes[0], 316 cast<PointerType>(Ty)->getAddressSpace()); 317 case Type::FunctionTyID: 318 return *Entry = FunctionType::get(ElementTypes[0], 319 ArrayRef(ElementTypes).slice(1), 320 cast<FunctionType>(Ty)->isVarArg()); 321 case Type::StructTyID: { 322 auto *STy = cast<StructType>(Ty); 323 bool IsPacked = STy->isPacked(); 324 if (IsUniqued) 325 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 326 327 // If the type is opaque, we can just use it directly. 328 if (STy->isOpaque()) { 329 DstStructTypesSet.addOpaque(STy); 330 return *Entry = Ty; 331 } 332 333 if (StructType *OldT = 334 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 335 STy->setName(""); 336 return *Entry = OldT; 337 } 338 339 if (!AnyChange) { 340 DstStructTypesSet.addNonOpaque(STy); 341 return *Entry = Ty; 342 } 343 344 StructType *DTy = StructType::create(Ty->getContext()); 345 finishType(DTy, STy, ElementTypes); 346 return *Entry = DTy; 347 } 348 } 349 } 350 351 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 352 const Twine &Msg) 353 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 354 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 355 356 //===----------------------------------------------------------------------===// 357 // IRLinker implementation. 358 //===----------------------------------------------------------------------===// 359 360 namespace { 361 class IRLinker; 362 363 /// Creates prototypes for functions that are lazily linked on the fly. This 364 /// speeds up linking for modules with many/ lazily linked functions of which 365 /// few get used. 366 class GlobalValueMaterializer final : public ValueMaterializer { 367 IRLinker &TheIRLinker; 368 369 public: 370 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 371 Value *materialize(Value *V) override; 372 }; 373 374 class LocalValueMaterializer final : public ValueMaterializer { 375 IRLinker &TheIRLinker; 376 377 public: 378 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 379 Value *materialize(Value *V) override; 380 }; 381 382 /// Type of the Metadata map in \a ValueToValueMapTy. 383 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 384 385 /// This is responsible for keeping track of the state used for moving data 386 /// from SrcM to DstM. 387 class IRLinker { 388 Module &DstM; 389 std::unique_ptr<Module> SrcM; 390 391 /// See IRMover::move(). 392 IRMover::LazyCallback AddLazyFor; 393 394 TypeMapTy TypeMap; 395 GlobalValueMaterializer GValMaterializer; 396 LocalValueMaterializer LValMaterializer; 397 398 /// A metadata map that's shared between IRLinker instances. 399 MDMapT &SharedMDs; 400 401 /// Mapping of values from what they used to be in Src, to what they are now 402 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 403 /// due to the use of Value handles which the Linker doesn't actually need, 404 /// but this allows us to reuse the ValueMapper code. 405 ValueToValueMapTy ValueMap; 406 ValueToValueMapTy IndirectSymbolValueMap; 407 408 DenseSet<GlobalValue *> ValuesToLink; 409 std::vector<GlobalValue *> Worklist; 410 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 411 412 void maybeAdd(GlobalValue *GV) { 413 if (ValuesToLink.insert(GV).second) 414 Worklist.push_back(GV); 415 } 416 417 /// Whether we are importing globals for ThinLTO, as opposed to linking the 418 /// source module. If this flag is set, it means that we can rely on some 419 /// other object file to define any non-GlobalValue entities defined by the 420 /// source module. This currently causes us to not link retained types in 421 /// debug info metadata and module inline asm. 422 bool IsPerformingImport; 423 424 /// Set to true when all global value body linking is complete (including 425 /// lazy linking). Used to prevent metadata linking from creating new 426 /// references. 427 bool DoneLinkingBodies = false; 428 429 /// The Error encountered during materialization. We use an Optional here to 430 /// avoid needing to manage an unconsumed success value. 431 std::optional<Error> FoundError; 432 void setError(Error E) { 433 if (E) 434 FoundError = std::move(E); 435 } 436 437 /// Most of the errors produced by this module are inconvertible StringErrors. 438 /// This convenience function lets us return one of those more easily. 439 Error stringErr(const Twine &T) { 440 return make_error<StringError>(T, inconvertibleErrorCode()); 441 } 442 443 /// Entry point for mapping values and alternate context for mapping aliases. 444 ValueMapper Mapper; 445 unsigned IndirectSymbolMCID; 446 447 /// Handles cloning of a global values from the source module into 448 /// the destination module, including setting the attributes and visibility. 449 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 450 451 void emitWarning(const Twine &Message) { 452 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 453 } 454 455 /// Given a global in the source module, return the global in the 456 /// destination module that is being linked to, if any. 457 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 458 // If the source has no name it can't link. If it has local linkage, 459 // there is no name match-up going on. 460 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 461 return nullptr; 462 463 // Otherwise see if we have a match in the destination module's symtab. 464 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 465 if (!DGV) 466 return nullptr; 467 468 // If we found a global with the same name in the dest module, but it has 469 // internal linkage, we are really not doing any linkage here. 470 if (DGV->hasLocalLinkage()) 471 return nullptr; 472 473 // If we found an intrinsic declaration with mismatching prototypes, we 474 // probably had a nameclash. Don't use that version. 475 if (auto *FDGV = dyn_cast<Function>(DGV)) 476 if (FDGV->isIntrinsic()) 477 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV)) 478 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType())) 479 return nullptr; 480 481 // Otherwise, we do in fact link to the destination global. 482 return DGV; 483 } 484 485 void computeTypeMapping(); 486 487 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 488 const GlobalVariable *SrcGV); 489 490 /// Given the GlobaValue \p SGV in the source module, and the matching 491 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 492 /// into the destination module. 493 /// 494 /// Note this code may call the client-provided \p AddLazyFor. 495 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 496 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, 497 bool ForIndirectSymbol); 498 499 Error linkModuleFlagsMetadata(); 500 501 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 502 Error linkFunctionBody(Function &Dst, Function &Src); 503 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src); 504 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src); 505 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 506 507 /// Replace all types in the source AttributeList with the 508 /// corresponding destination type. 509 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 510 511 /// Functions that take care of cloning a specific global value type 512 /// into the destination module. 513 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 514 Function *copyFunctionProto(const Function *SF); 515 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV); 516 517 /// Perform "replace all uses with" operations. These work items need to be 518 /// performed as part of materialization, but we postpone them to happen after 519 /// materialization is done. The materializer called by ValueMapper is not 520 /// expected to delete constants, as ValueMapper is holding pointers to some 521 /// of them, but constant destruction may be indirectly triggered by RAUW. 522 /// Hence, the need to move this out of the materialization call chain. 523 void flushRAUWWorklist(); 524 525 /// When importing for ThinLTO, prevent importing of types listed on 526 /// the DICompileUnit that we don't need a copy of in the importing 527 /// module. 528 void prepareCompileUnitsForImport(); 529 void linkNamedMDNodes(); 530 531 /// Update attributes while linking. 532 void updateAttributes(GlobalValue &GV); 533 534 public: 535 IRLinker(Module &DstM, MDMapT &SharedMDs, 536 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 537 ArrayRef<GlobalValue *> ValuesToLink, 538 IRMover::LazyCallback AddLazyFor, bool IsPerformingImport) 539 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 540 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 541 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 542 Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals, 543 &TypeMap, &GValMaterializer), 544 IndirectSymbolMCID(Mapper.registerAlternateMappingContext( 545 IndirectSymbolValueMap, &LValMaterializer)) { 546 ValueMap.getMDMap() = std::move(SharedMDs); 547 for (GlobalValue *GV : ValuesToLink) 548 maybeAdd(GV); 549 if (IsPerformingImport) 550 prepareCompileUnitsForImport(); 551 } 552 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 553 554 Error run(); 555 Value *materialize(Value *V, bool ForIndirectSymbol); 556 }; 557 } 558 559 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 560 /// table. This is good for all clients except for us. Go through the trouble 561 /// to force this back. 562 static void forceRenaming(GlobalValue *GV, StringRef Name) { 563 // If the global doesn't force its name or if it already has the right name, 564 // there is nothing for us to do. 565 if (GV->hasLocalLinkage() || GV->getName() == Name) 566 return; 567 568 Module *M = GV->getParent(); 569 570 // If there is a conflict, rename the conflict. 571 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 572 GV->takeName(ConflictGV); 573 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 574 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 575 } else { 576 GV->setName(Name); // Force the name back 577 } 578 } 579 580 Value *GlobalValueMaterializer::materialize(Value *SGV) { 581 return TheIRLinker.materialize(SGV, false); 582 } 583 584 Value *LocalValueMaterializer::materialize(Value *SGV) { 585 return TheIRLinker.materialize(SGV, true); 586 } 587 588 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { 589 auto *SGV = dyn_cast<GlobalValue>(V); 590 if (!SGV) 591 return nullptr; 592 593 // When linking a global from other modules than source & dest, skip 594 // materializing it because it would be mapped later when its containing 595 // module is linked. Linking it now would potentially pull in many types that 596 // may not be mapped properly. 597 if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get()) 598 return nullptr; 599 600 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); 601 if (!NewProto) { 602 setError(NewProto.takeError()); 603 return nullptr; 604 } 605 if (!*NewProto) 606 return nullptr; 607 608 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 609 if (!New) 610 return *NewProto; 611 612 // If we already created the body, just return. 613 if (auto *F = dyn_cast<Function>(New)) { 614 if (!F->isDeclaration()) 615 return New; 616 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 617 if (V->hasInitializer() || V->hasAppendingLinkage()) 618 return New; 619 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) { 620 if (GA->getAliasee()) 621 return New; 622 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) { 623 if (GI->getResolver()) 624 return New; 625 } else { 626 llvm_unreachable("Invalid GlobalValue type"); 627 } 628 629 // If the global is being linked for an indirect symbol, it may have already 630 // been scheduled to satisfy a regular symbol. Similarly, a global being linked 631 // for a regular symbol may have already been scheduled for an indirect 632 // symbol. Check for these cases by looking in the other value map and 633 // confirming the same value has been scheduled. If there is an entry in the 634 // ValueMap but the value is different, it means that the value already had a 635 // definition in the destination module (linkonce for instance), but we need a 636 // new definition for the indirect symbol ("New" will be different). 637 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) || 638 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New)) 639 return New; 640 641 if (ForIndirectSymbol || shouldLink(New, *SGV)) 642 setError(linkGlobalValueBody(*New, *SGV)); 643 644 updateAttributes(*New); 645 return New; 646 } 647 648 /// Loop through the global variables in the src module and merge them into the 649 /// dest module. 650 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 651 // No linking to be performed or linking from the source: simply create an 652 // identical version of the symbol over in the dest module... the 653 // initializer will be filled in later by LinkGlobalInits. 654 GlobalVariable *NewDGV = 655 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 656 SGVar->isConstant(), GlobalValue::ExternalLinkage, 657 /*init*/ nullptr, SGVar->getName(), 658 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 659 SGVar->getAddressSpace()); 660 NewDGV->setAlignment(SGVar->getAlign()); 661 NewDGV->copyAttributesFrom(SGVar); 662 return NewDGV; 663 } 664 665 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 666 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 667 for (int AttrIdx = Attribute::FirstTypeAttr; 668 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 669 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 670 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) { 671 if (Type *Ty = 672 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 673 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 674 TypeMap.get(Ty)); 675 break; 676 } 677 } 678 } 679 } 680 return Attrs; 681 } 682 683 /// Link the function in the source module into the destination module if 684 /// needed, setting up mapping information. 685 Function *IRLinker::copyFunctionProto(const Function *SF) { 686 // If there is no linkage to be performed or we are linking from the source, 687 // bring SF over. 688 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()), 689 GlobalValue::ExternalLinkage, 690 SF->getAddressSpace(), SF->getName(), &DstM); 691 F->copyAttributesFrom(SF); 692 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 693 return F; 694 } 695 696 /// Set up prototypes for any indirect symbols that come over from the source 697 /// module. 698 GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) { 699 // If there is no linkage to be performed or we're linking from the source, 700 // bring over SGA. 701 auto *Ty = TypeMap.get(SGV->getValueType()); 702 703 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) { 704 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(), 705 GlobalValue::ExternalLinkage, 706 SGV->getName(), &DstM); 707 DGA->copyAttributesFrom(GA); 708 return DGA; 709 } 710 711 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) { 712 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(), 713 GlobalValue::ExternalLinkage, 714 SGV->getName(), nullptr, &DstM); 715 DGI->copyAttributesFrom(GI); 716 return DGI; 717 } 718 719 llvm_unreachable("Invalid source global value type"); 720 } 721 722 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 723 bool ForDefinition) { 724 GlobalValue *NewGV; 725 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 726 NewGV = copyGlobalVariableProto(SGVar); 727 } else if (auto *SF = dyn_cast<Function>(SGV)) { 728 NewGV = copyFunctionProto(SF); 729 } else { 730 if (ForDefinition) 731 NewGV = copyIndirectSymbolProto(SGV); 732 else if (SGV->getValueType()->isFunctionTy()) 733 NewGV = 734 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 735 GlobalValue::ExternalLinkage, SGV->getAddressSpace(), 736 SGV->getName(), &DstM); 737 else 738 NewGV = 739 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()), 740 /*isConstant*/ false, GlobalValue::ExternalLinkage, 741 /*init*/ nullptr, SGV->getName(), 742 /*insertbefore*/ nullptr, 743 SGV->getThreadLocalMode(), SGV->getAddressSpace()); 744 } 745 746 if (ForDefinition) 747 NewGV->setLinkage(SGV->getLinkage()); 748 else if (SGV->hasExternalWeakLinkage()) 749 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 750 751 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 752 // Metadata for global variables and function declarations is copied eagerly. 753 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) 754 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 755 } 756 757 // Remove these copied constants in case this stays a declaration, since 758 // they point to the source module. If the def is linked the values will 759 // be mapped in during linkFunctionBody. 760 if (auto *NewF = dyn_cast<Function>(NewGV)) { 761 NewF->setPersonalityFn(nullptr); 762 NewF->setPrefixData(nullptr); 763 NewF->setPrologueData(nullptr); 764 } 765 766 return NewGV; 767 } 768 769 static StringRef getTypeNamePrefix(StringRef Name) { 770 size_t DotPos = Name.rfind('.'); 771 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 772 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 773 ? Name 774 : Name.substr(0, DotPos); 775 } 776 777 /// Loop over all of the linked values to compute type mappings. For example, 778 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 779 /// types 'Foo' but one got renamed when the module was loaded into the same 780 /// LLVMContext. 781 void IRLinker::computeTypeMapping() { 782 for (GlobalValue &SGV : SrcM->globals()) { 783 GlobalValue *DGV = getLinkedToGlobal(&SGV); 784 if (!DGV) 785 continue; 786 787 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 788 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 789 continue; 790 } 791 792 // Unify the element type of appending arrays. 793 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 794 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 795 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 796 } 797 798 for (GlobalValue &SGV : *SrcM) 799 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { 800 if (DGV->getType() == SGV.getType()) { 801 // If the types of DGV and SGV are the same, it means that DGV is from 802 // the source module and got added to DstM from a shared metadata. We 803 // shouldn't map this type to itself in case the type's components get 804 // remapped to a new type from DstM (for instance, during the loop over 805 // SrcM->getIdentifiedStructTypes() below). 806 continue; 807 } 808 809 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 810 } 811 812 for (GlobalValue &SGV : SrcM->aliases()) 813 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 814 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 815 816 // Incorporate types by name, scanning all the types in the source module. 817 // At this point, the destination module may have a type "%foo = { i32 }" for 818 // example. When the source module got loaded into the same LLVMContext, if 819 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 820 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 821 for (StructType *ST : Types) { 822 if (!ST->hasName()) 823 continue; 824 825 if (TypeMap.DstStructTypesSet.hasType(ST)) { 826 // This is actually a type from the destination module. 827 // getIdentifiedStructTypes() can have found it by walking debug info 828 // metadata nodes, some of which get linked by name when ODR Type Uniquing 829 // is enabled on the Context, from the source to the destination module. 830 continue; 831 } 832 833 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 834 if (STTypePrefix.size() == ST->getName().size()) 835 continue; 836 837 // Check to see if the destination module has a struct with the prefix name. 838 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix); 839 if (!DST) 840 continue; 841 842 // Don't use it if this actually came from the source module. They're in 843 // the same LLVMContext after all. Also don't use it unless the type is 844 // actually used in the destination module. This can happen in situations 845 // like this: 846 // 847 // Module A Module B 848 // -------- -------- 849 // %Z = type { %A } %B = type { %C.1 } 850 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 851 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 852 // %C = type { i8* } %B.3 = type { %C.1 } 853 // 854 // When we link Module B with Module A, the '%B' in Module B is 855 // used. However, that would then use '%C.1'. But when we process '%C.1', 856 // we prefer to take the '%C' version. So we are then left with both 857 // '%C.1' and '%C' being used for the same types. This leads to some 858 // variables using one type and some using the other. 859 if (TypeMap.DstStructTypesSet.hasType(DST)) 860 TypeMap.addTypeMapping(DST, ST); 861 } 862 863 // Now that we have discovered all of the type equivalences, get a body for 864 // any 'opaque' types in the dest module that are now resolved. 865 TypeMap.linkDefinedTypeBodies(); 866 } 867 868 static void getArrayElements(const Constant *C, 869 SmallVectorImpl<Constant *> &Dest) { 870 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 871 872 for (unsigned i = 0; i != NumElements; ++i) 873 Dest.push_back(C->getAggregateElement(i)); 874 } 875 876 /// If there were any appending global variables, link them together now. 877 Expected<Constant *> 878 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 879 const GlobalVariable *SrcGV) { 880 // Check that both variables have compatible properties. 881 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) { 882 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 883 return stringErr( 884 "Linking globals named '" + SrcGV->getName() + 885 "': can only link appending global with another appending " 886 "global!"); 887 888 if (DstGV->isConstant() != SrcGV->isConstant()) 889 return stringErr("Appending variables linked with different const'ness!"); 890 891 if (DstGV->getAlign() != SrcGV->getAlign()) 892 return stringErr( 893 "Appending variables with different alignment need to be linked!"); 894 895 if (DstGV->getVisibility() != SrcGV->getVisibility()) 896 return stringErr( 897 "Appending variables with different visibility need to be linked!"); 898 899 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 900 return stringErr( 901 "Appending variables with different unnamed_addr need to be linked!"); 902 903 if (DstGV->getSection() != SrcGV->getSection()) 904 return stringErr( 905 "Appending variables with different section name need to be linked!"); 906 907 if (DstGV->getAddressSpace() != SrcGV->getAddressSpace()) 908 return stringErr("Appending variables with different address spaces need " 909 "to be linked!"); 910 } 911 912 // Do not need to do anything if source is a declaration. 913 if (SrcGV->isDeclaration()) 914 return DstGV; 915 916 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 917 ->getElementType(); 918 919 // FIXME: This upgrade is done during linking to support the C API. Once the 920 // old form is deprecated, we should move this upgrade to 921 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 922 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 923 StringRef Name = SrcGV->getName(); 924 bool IsNewStructor = false; 925 bool IsOldStructor = false; 926 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 927 if (cast<StructType>(EltTy)->getNumElements() == 3) 928 IsNewStructor = true; 929 else 930 IsOldStructor = true; 931 } 932 933 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); 934 if (IsOldStructor) { 935 auto &ST = *cast<StructType>(EltTy); 936 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 937 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 938 } 939 940 uint64_t DstNumElements = 0; 941 if (DstGV && !DstGV->isDeclaration()) { 942 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 943 DstNumElements = DstTy->getNumElements(); 944 945 // Check to see that they two arrays agree on type. 946 if (EltTy != DstTy->getElementType()) 947 return stringErr("Appending variables with different element types!"); 948 } 949 950 SmallVector<Constant *, 16> SrcElements; 951 getArrayElements(SrcGV->getInitializer(), SrcElements); 952 953 if (IsNewStructor) { 954 erase_if(SrcElements, [this](Constant *E) { 955 auto *Key = 956 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 957 if (!Key) 958 return false; 959 GlobalValue *DGV = getLinkedToGlobal(Key); 960 return !shouldLink(DGV, *Key); 961 }); 962 } 963 uint64_t NewSize = DstNumElements + SrcElements.size(); 964 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 965 966 // Create the new global variable. 967 GlobalVariable *NG = new GlobalVariable( 968 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 969 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 970 SrcGV->getAddressSpace()); 971 972 NG->copyAttributesFrom(SrcGV); 973 forceRenaming(NG, SrcGV->getName()); 974 975 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 976 977 Mapper.scheduleMapAppendingVariable( 978 *NG, 979 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr, 980 IsOldStructor, SrcElements); 981 982 // Replace any uses of the two global variables with uses of the new 983 // global. 984 if (DstGV) { 985 RAUWWorklist.push_back( 986 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType()))); 987 } 988 989 return Ret; 990 } 991 992 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 993 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 994 return true; 995 996 if (DGV && !DGV->isDeclarationForLinker()) 997 return false; 998 999 if (SGV.isDeclaration() || DoneLinkingBodies) 1000 return false; 1001 1002 // Callback to the client to give a chance to lazily add the Global to the 1003 // list of value to link. 1004 bool LazilyAdded = false; 1005 if (AddLazyFor) 1006 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 1007 maybeAdd(&GV); 1008 LazilyAdded = true; 1009 }); 1010 return LazilyAdded; 1011 } 1012 1013 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 1014 bool ForIndirectSymbol) { 1015 GlobalValue *DGV = getLinkedToGlobal(SGV); 1016 1017 bool ShouldLink = shouldLink(DGV, *SGV); 1018 1019 // just missing from map 1020 if (ShouldLink) { 1021 auto I = ValueMap.find(SGV); 1022 if (I != ValueMap.end()) 1023 return cast<Constant>(I->second); 1024 1025 I = IndirectSymbolValueMap.find(SGV); 1026 if (I != IndirectSymbolValueMap.end()) 1027 return cast<Constant>(I->second); 1028 } 1029 1030 if (!ShouldLink && ForIndirectSymbol) 1031 DGV = nullptr; 1032 1033 // Handle the ultra special appending linkage case first. 1034 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage())) 1035 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 1036 cast<GlobalVariable>(SGV)); 1037 1038 bool NeedsRenaming = false; 1039 GlobalValue *NewGV; 1040 if (DGV && !ShouldLink) { 1041 NewGV = DGV; 1042 } else { 1043 // If we are done linking global value bodies (i.e. we are performing 1044 // metadata linking), don't link in the global value due to this 1045 // reference, simply map it to null. 1046 if (DoneLinkingBodies) 1047 return nullptr; 1048 1049 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); 1050 if (ShouldLink || !ForIndirectSymbol) 1051 NeedsRenaming = true; 1052 } 1053 1054 // Overloaded intrinsics have overloaded types names as part of their 1055 // names. If we renamed overloaded types we should rename the intrinsic 1056 // as well. 1057 if (Function *F = dyn_cast<Function>(NewGV)) 1058 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 1059 NewGV->eraseFromParent(); 1060 NewGV = *Remangled; 1061 NeedsRenaming = false; 1062 } 1063 1064 if (NeedsRenaming) 1065 forceRenaming(NewGV, SGV->getName()); 1066 1067 if (ShouldLink || ForIndirectSymbol) { 1068 if (const Comdat *SC = SGV->getComdat()) { 1069 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 1070 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 1071 DC->setSelectionKind(SC->getSelectionKind()); 1072 GO->setComdat(DC); 1073 } 1074 } 1075 } 1076 1077 if (!ShouldLink && ForIndirectSymbol) 1078 NewGV->setLinkage(GlobalValue::InternalLinkage); 1079 1080 Constant *C = NewGV; 1081 // Only create a bitcast if necessary. In particular, with 1082 // DebugTypeODRUniquing we may reach metadata in the destination module 1083 // containing a GV from the source module, in which case SGV will be 1084 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1085 // assumes it is being invoked on a type in the source module. 1086 if (DGV && NewGV != SGV) { 1087 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1088 NewGV, TypeMap.get(SGV->getType())); 1089 } 1090 1091 if (DGV && NewGV != DGV) { 1092 // Schedule "replace all uses with" to happen after materializing is 1093 // done. It is not safe to do it now, since ValueMapper may be holding 1094 // pointers to constants that will get deleted if RAUW runs. 1095 RAUWWorklist.push_back(std::make_pair( 1096 DGV, 1097 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1098 } 1099 1100 return C; 1101 } 1102 1103 /// Update the initializers in the Dest module now that all globals that may be 1104 /// referenced are in Dest. 1105 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1106 // Figure out what the initializer looks like in the dest module. 1107 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1108 } 1109 1110 /// Copy the source function over into the dest function and fix up references 1111 /// to values. At this point we know that Dest is an external function, and 1112 /// that Src is not. 1113 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1114 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1115 1116 // Materialize if needed. 1117 if (Error Err = Src.materialize()) 1118 return Err; 1119 1120 // Link in the operands without remapping. 1121 if (Src.hasPrefixData()) 1122 Dst.setPrefixData(Src.getPrefixData()); 1123 if (Src.hasPrologueData()) 1124 Dst.setPrologueData(Src.getPrologueData()); 1125 if (Src.hasPersonalityFn()) 1126 Dst.setPersonalityFn(Src.getPersonalityFn()); 1127 1128 // Copy over the metadata attachments without remapping. 1129 Dst.copyMetadata(&Src, 0); 1130 1131 // Steal arguments and splice the body of Src into Dst. 1132 Dst.stealArgumentListFrom(Src); 1133 Dst.splice(Dst.end(), &Src); 1134 1135 // Everything has been moved over. Remap it. 1136 Mapper.scheduleRemapFunction(Dst); 1137 return Error::success(); 1138 } 1139 1140 void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) { 1141 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID); 1142 } 1143 1144 void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) { 1145 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID); 1146 } 1147 1148 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1149 if (auto *F = dyn_cast<Function>(&Src)) 1150 return linkFunctionBody(cast<Function>(Dst), *F); 1151 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1152 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1153 return Error::success(); 1154 } 1155 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) { 1156 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA); 1157 return Error::success(); 1158 } 1159 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src)); 1160 return Error::success(); 1161 } 1162 1163 void IRLinker::flushRAUWWorklist() { 1164 for (const auto &Elem : RAUWWorklist) { 1165 GlobalValue *Old; 1166 Value *New; 1167 std::tie(Old, New) = Elem; 1168 1169 Old->replaceAllUsesWith(New); 1170 Old->eraseFromParent(); 1171 } 1172 RAUWWorklist.clear(); 1173 } 1174 1175 void IRLinker::prepareCompileUnitsForImport() { 1176 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1177 if (!SrcCompileUnits) 1178 return; 1179 // When importing for ThinLTO, prevent importing of types listed on 1180 // the DICompileUnit that we don't need a copy of in the importing 1181 // module. They will be emitted by the originating module. 1182 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) { 1183 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I)); 1184 assert(CU && "Expected valid compile unit"); 1185 // Enums, macros, and retained types don't need to be listed on the 1186 // imported DICompileUnit. This means they will only be imported 1187 // if reached from the mapped IR. 1188 CU->replaceEnumTypes(nullptr); 1189 CU->replaceMacros(nullptr); 1190 CU->replaceRetainedTypes(nullptr); 1191 1192 // The original definition (or at least its debug info - if the variable is 1193 // internalized and optimized away) will remain in the source module, so 1194 // there's no need to import them. 1195 // If LLVM ever does more advanced optimizations on global variables 1196 // (removing/localizing write operations, for instance) that can track 1197 // through debug info, this decision may need to be revisited - but do so 1198 // with care when it comes to debug info size. Emitting small CUs containing 1199 // only a few imported entities into every destination module may be very 1200 // size inefficient. 1201 CU->replaceGlobalVariables(nullptr); 1202 1203 // Imported entities only need to be mapped in if they have local 1204 // scope, as those might correspond to an imported entity inside a 1205 // function being imported (any locally scoped imported entities that 1206 // don't end up referenced by an imported function will not be emitted 1207 // into the object). Imported entities not in a local scope 1208 // (e.g. on the namespace) only need to be emitted by the originating 1209 // module. Create a list of the locally scoped imported entities, and 1210 // replace the source CUs imported entity list with the new list, so 1211 // only those are mapped in. 1212 // FIXME: Locally-scoped imported entities could be moved to the 1213 // functions they are local to instead of listing them on the CU, and 1214 // we would naturally only link in those needed by function importing. 1215 SmallVector<TrackingMDNodeRef, 4> AllImportedModules; 1216 bool ReplaceImportedEntities = false; 1217 for (auto *IE : CU->getImportedEntities()) { 1218 DIScope *Scope = IE->getScope(); 1219 assert(Scope && "Invalid Scope encoding!"); 1220 if (isa<DILocalScope>(Scope)) 1221 AllImportedModules.emplace_back(IE); 1222 else 1223 ReplaceImportedEntities = true; 1224 } 1225 if (ReplaceImportedEntities) { 1226 if (!AllImportedModules.empty()) 1227 CU->replaceImportedEntities(MDTuple::get( 1228 CU->getContext(), 1229 SmallVector<Metadata *, 16>(AllImportedModules.begin(), 1230 AllImportedModules.end()))); 1231 else 1232 // If there were no local scope imported entities, we can map 1233 // the whole list to nullptr. 1234 CU->replaceImportedEntities(nullptr); 1235 } 1236 } 1237 } 1238 1239 /// Insert all of the named MDNodes in Src into the Dest module. 1240 void IRLinker::linkNamedMDNodes() { 1241 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1242 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1243 // Don't link module flags here. Do them separately. 1244 if (&NMD == SrcModFlags) 1245 continue; 1246 // Don't import pseudo probe descriptors here for thinLTO. They will be 1247 // emitted by the originating module. 1248 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) { 1249 if (!DstM.getNamedMetadata(NMD.getName())) 1250 emitWarning("Pseudo-probe ignored: source module '" + 1251 SrcM->getModuleIdentifier() + 1252 "' is compiled with -fpseudo-probe-for-profiling while " 1253 "destination module '" + 1254 DstM.getModuleIdentifier() + "' is not\n"); 1255 continue; 1256 } 1257 // The stats are computed per module and will all be merged in the binary. 1258 // Importing the metadata will cause duplication of the stats. 1259 if (IsPerformingImport && NMD.getName() == "llvm.stats") 1260 continue; 1261 1262 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1263 // Add Src elements into Dest node. 1264 for (const MDNode *Op : NMD.operands()) 1265 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1266 } 1267 } 1268 1269 /// Merge the linker flags in Src into the Dest module. 1270 Error IRLinker::linkModuleFlagsMetadata() { 1271 // If the source module has no module flags, we are done. 1272 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1273 if (!SrcModFlags) 1274 return Error::success(); 1275 1276 // Check for module flag for updates before do anything. 1277 UpgradeModuleFlags(*SrcM); 1278 1279 // If the destination module doesn't have module flags yet, then just copy 1280 // over the source module's flags. 1281 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1282 if (DstModFlags->getNumOperands() == 0) { 1283 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1284 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1285 1286 return Error::success(); 1287 } 1288 1289 // First build a map of the existing module flags and requirements. 1290 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1291 SmallSetVector<MDNode *, 16> Requirements; 1292 SmallVector<unsigned, 0> Mins; 1293 DenseSet<MDString *> SeenMin; 1294 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1295 MDNode *Op = DstModFlags->getOperand(I); 1296 uint64_t Behavior = 1297 mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue(); 1298 MDString *ID = cast<MDString>(Op->getOperand(1)); 1299 1300 if (Behavior == Module::Require) { 1301 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1302 } else { 1303 if (Behavior == Module::Min) 1304 Mins.push_back(I); 1305 Flags[ID] = std::make_pair(Op, I); 1306 } 1307 } 1308 1309 // Merge in the flags from the source module, and also collect its set of 1310 // requirements. 1311 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1312 MDNode *SrcOp = SrcModFlags->getOperand(I); 1313 ConstantInt *SrcBehavior = 1314 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1315 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1316 MDNode *DstOp; 1317 unsigned DstIndex; 1318 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1319 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1320 SeenMin.insert(ID); 1321 1322 // If this is a requirement, add it and continue. 1323 if (SrcBehaviorValue == Module::Require) { 1324 // If the destination module does not already have this requirement, add 1325 // it. 1326 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1327 DstModFlags->addOperand(SrcOp); 1328 } 1329 continue; 1330 } 1331 1332 // If there is no existing flag with this ID, just add it. 1333 if (!DstOp) { 1334 if (SrcBehaviorValue == Module::Min) { 1335 Mins.push_back(DstModFlags->getNumOperands()); 1336 SeenMin.erase(ID); 1337 } 1338 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1339 DstModFlags->addOperand(SrcOp); 1340 continue; 1341 } 1342 1343 // Otherwise, perform a merge. 1344 ConstantInt *DstBehavior = 1345 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1346 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1347 1348 auto overrideDstValue = [&]() { 1349 DstModFlags->setOperand(DstIndex, SrcOp); 1350 Flags[ID].first = SrcOp; 1351 }; 1352 1353 // If either flag has override behavior, handle it first. 1354 if (DstBehaviorValue == Module::Override) { 1355 // Diagnose inconsistent flags which both have override behavior. 1356 if (SrcBehaviorValue == Module::Override && 1357 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1358 return stringErr("linking module flags '" + ID->getString() + 1359 "': IDs have conflicting override values in '" + 1360 SrcM->getModuleIdentifier() + "' and '" + 1361 DstM.getModuleIdentifier() + "'"); 1362 continue; 1363 } else if (SrcBehaviorValue == Module::Override) { 1364 // Update the destination flag to that of the source. 1365 overrideDstValue(); 1366 continue; 1367 } 1368 1369 // Diagnose inconsistent merge behavior types. 1370 if (SrcBehaviorValue != DstBehaviorValue) { 1371 bool MinAndWarn = (SrcBehaviorValue == Module::Min && 1372 DstBehaviorValue == Module::Warning) || 1373 (DstBehaviorValue == Module::Min && 1374 SrcBehaviorValue == Module::Warning); 1375 bool MaxAndWarn = (SrcBehaviorValue == Module::Max && 1376 DstBehaviorValue == Module::Warning) || 1377 (DstBehaviorValue == Module::Max && 1378 SrcBehaviorValue == Module::Warning); 1379 if (!(MaxAndWarn || MinAndWarn)) 1380 return stringErr("linking module flags '" + ID->getString() + 1381 "': IDs have conflicting behaviors in '" + 1382 SrcM->getModuleIdentifier() + "' and '" + 1383 DstM.getModuleIdentifier() + "'"); 1384 } 1385 1386 auto ensureDistinctOp = [&](MDNode *DstValue) { 1387 assert(isa<MDTuple>(DstValue) && 1388 "Expected MDTuple when appending module flags"); 1389 if (DstValue->isDistinct()) 1390 return dyn_cast<MDTuple>(DstValue); 1391 ArrayRef<MDOperand> DstOperands = DstValue->operands(); 1392 MDTuple *New = MDTuple::getDistinct( 1393 DstM.getContext(), 1394 SmallVector<Metadata *, 4>(DstOperands.begin(), DstOperands.end())); 1395 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1396 MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps); 1397 DstModFlags->setOperand(DstIndex, Flag); 1398 Flags[ID].first = Flag; 1399 return New; 1400 }; 1401 1402 // Emit a warning if the values differ and either source or destination 1403 // request Warning behavior. 1404 if ((DstBehaviorValue == Module::Warning || 1405 SrcBehaviorValue == Module::Warning) && 1406 SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1407 std::string Str; 1408 raw_string_ostream(Str) 1409 << "linking module flags '" << ID->getString() 1410 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1411 << "' from " << SrcM->getModuleIdentifier() << " with '" 1412 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1413 << ')'; 1414 emitWarning(Str); 1415 } 1416 1417 // Choose the minimum if either source or destination request Min behavior. 1418 if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) { 1419 ConstantInt *DstValue = 1420 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1421 ConstantInt *SrcValue = 1422 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1423 1424 // The resulting flag should have a Min behavior, and contain the minimum 1425 // value from between the source and destination values. 1426 Metadata *FlagOps[] = { 1427 (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID, 1428 (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp) 1429 ->getOperand(2)}; 1430 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1431 DstModFlags->setOperand(DstIndex, Flag); 1432 Flags[ID].first = Flag; 1433 continue; 1434 } 1435 1436 // Choose the maximum if either source or destination request Max behavior. 1437 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) { 1438 ConstantInt *DstValue = 1439 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1440 ConstantInt *SrcValue = 1441 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1442 1443 // The resulting flag should have a Max behavior, and contain the maximum 1444 // value from between the source and destination values. 1445 Metadata *FlagOps[] = { 1446 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID, 1447 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp) 1448 ->getOperand(2)}; 1449 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1450 DstModFlags->setOperand(DstIndex, Flag); 1451 Flags[ID].first = Flag; 1452 continue; 1453 } 1454 1455 // Perform the merge for standard behavior types. 1456 switch (SrcBehaviorValue) { 1457 case Module::Require: 1458 case Module::Override: 1459 llvm_unreachable("not possible"); 1460 case Module::Error: { 1461 // Emit an error if the values differ. 1462 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1463 return stringErr("linking module flags '" + ID->getString() + 1464 "': IDs have conflicting values in '" + 1465 SrcM->getModuleIdentifier() + "' and '" + 1466 DstM.getModuleIdentifier() + "'"); 1467 continue; 1468 } 1469 case Module::Warning: { 1470 break; 1471 } 1472 case Module::Max: { 1473 break; 1474 } 1475 case Module::Append: { 1476 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2))); 1477 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1478 for (const auto &O : SrcValue->operands()) 1479 DstValue->push_back(O); 1480 break; 1481 } 1482 case Module::AppendUnique: { 1483 SmallSetVector<Metadata *, 16> Elts; 1484 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2))); 1485 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1486 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1487 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1488 for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++) 1489 DstValue->push_back(Elts[I]); 1490 break; 1491 } 1492 } 1493 1494 } 1495 1496 // For the Min behavior, set the value to 0 if either module does not have the 1497 // flag. 1498 for (auto Idx : Mins) { 1499 MDNode *Op = DstModFlags->getOperand(Idx); 1500 MDString *ID = cast<MDString>(Op->getOperand(1)); 1501 if (!SeenMin.count(ID)) { 1502 ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2)); 1503 Metadata *FlagOps[] = { 1504 Op->getOperand(0), ID, 1505 ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))}; 1506 DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps)); 1507 } 1508 } 1509 1510 // Check all of the requirements. 1511 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 1512 MDNode *Requirement = Requirements[I]; 1513 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1514 Metadata *ReqValue = Requirement->getOperand(1); 1515 1516 MDNode *Op = Flags[Flag].first; 1517 if (!Op || Op->getOperand(2) != ReqValue) 1518 return stringErr("linking module flags '" + Flag->getString() + 1519 "': does not have the required value"); 1520 } 1521 return Error::success(); 1522 } 1523 1524 /// Return InlineAsm adjusted with target-specific directives if required. 1525 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1526 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1527 static std::string adjustInlineAsm(const std::string &InlineAsm, 1528 const Triple &Triple) { 1529 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1530 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1531 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1532 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1533 return InlineAsm; 1534 } 1535 1536 void IRLinker::updateAttributes(GlobalValue &GV) { 1537 /// Remove nocallback attribute while linking, because nocallback attribute 1538 /// indicates that the function is only allowed to jump back into caller's 1539 /// module only by a return or an exception. When modules are linked, this 1540 /// property cannot be guaranteed anymore. For example, the nocallback 1541 /// function may contain a call to another module. But if we merge its caller 1542 /// and callee module here, and not the module containing the nocallback 1543 /// function definition itself, the nocallback property will be violated 1544 /// (since the nocallback function will call back into the newly merged module 1545 /// containing both its caller and callee). This could happen if the module 1546 /// containing the nocallback function definition is native code, so it does 1547 /// not participate in the LTO link. Note if the nocallback function does 1548 /// participate in the LTO link, and thus ends up in the merged module 1549 /// containing its caller and callee, removing the attribute doesn't hurt as 1550 /// it has no effect on definitions in the same module. 1551 if (auto *F = dyn_cast<Function>(&GV)) { 1552 if (!F->isIntrinsic()) 1553 F->removeFnAttr(llvm::Attribute::NoCallback); 1554 1555 // Remove nocallback attribute when it is on a call-site. 1556 for (BasicBlock &BB : *F) 1557 for (Instruction &I : BB) 1558 if (CallBase *CI = dyn_cast<CallBase>(&I)) 1559 CI->removeFnAttr(Attribute::NoCallback); 1560 } 1561 } 1562 1563 Error IRLinker::run() { 1564 // Ensure metadata materialized before value mapping. 1565 if (SrcM->getMaterializer()) 1566 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1567 return Err; 1568 1569 // Inherit the target data from the source module if the destination module 1570 // doesn't have one already. 1571 if (DstM.getDataLayout().isDefault()) 1572 DstM.setDataLayout(SrcM->getDataLayout()); 1573 1574 // Copy the target triple from the source to dest if the dest's is empty. 1575 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1576 DstM.setTargetTriple(SrcM->getTargetTriple()); 1577 1578 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1579 1580 // During CUDA compilation we have to link with the bitcode supplied with 1581 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has 1582 // the layout that is different from the one used by LLVM/clang (it does not 1583 // include i128). Issuing a warning is not very helpful as there's not much 1584 // the user can do about it. 1585 bool EnableDLWarning = true; 1586 bool EnableTripleWarning = true; 1587 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) { 1588 std::string ModuleId = SrcM->getModuleIdentifier(); 1589 StringRef FileName = llvm::sys::path::filename(ModuleId); 1590 bool SrcIsLibDevice = 1591 FileName.startswith("libdevice") && FileName.endswith(".10.bc"); 1592 bool SrcHasLibDeviceDL = 1593 (SrcM->getDataLayoutStr().empty() || 1594 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64"); 1595 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just 1596 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with 1597 // all NVPTX variants. 1598 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA && 1599 SrcTriple.getOSName() == "gpulibs") || 1600 (SrcTriple.getVendorName() == "unknown" && 1601 SrcTriple.getOSName() == "unknown"); 1602 EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple); 1603 EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL); 1604 } 1605 1606 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) { 1607 emitWarning("Linking two modules of different data layouts: '" + 1608 SrcM->getModuleIdentifier() + "' is '" + 1609 SrcM->getDataLayoutStr() + "' whereas '" + 1610 DstM.getModuleIdentifier() + "' is '" + 1611 DstM.getDataLayoutStr() + "'\n"); 1612 } 1613 1614 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() && 1615 !SrcTriple.isCompatibleWith(DstTriple)) 1616 emitWarning("Linking two modules of different target triples: '" + 1617 SrcM->getModuleIdentifier() + "' is '" + 1618 SrcM->getTargetTriple() + "' whereas '" + 1619 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1620 "'\n"); 1621 1622 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1623 1624 // Loop over all of the linked values to compute type mappings. 1625 computeTypeMapping(); 1626 1627 std::reverse(Worklist.begin(), Worklist.end()); 1628 while (!Worklist.empty()) { 1629 GlobalValue *GV = Worklist.back(); 1630 Worklist.pop_back(); 1631 1632 // Already mapped. 1633 if (ValueMap.find(GV) != ValueMap.end() || 1634 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) 1635 continue; 1636 1637 assert(!GV->isDeclaration()); 1638 Mapper.mapValue(*GV); 1639 if (FoundError) 1640 return std::move(*FoundError); 1641 flushRAUWWorklist(); 1642 } 1643 1644 // Note that we are done linking global value bodies. This prevents 1645 // metadata linking from creating new references. 1646 DoneLinkingBodies = true; 1647 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1648 1649 // Remap all of the named MDNodes in Src into the DstM module. We do this 1650 // after linking GlobalValues so that MDNodes that reference GlobalValues 1651 // are properly remapped. 1652 linkNamedMDNodes(); 1653 1654 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1655 // Append the module inline asm string. 1656 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(), 1657 SrcTriple)); 1658 } else if (IsPerformingImport) { 1659 // Import any symver directives for symbols in DstM. 1660 ModuleSymbolTable::CollectAsmSymvers(*SrcM, 1661 [&](StringRef Name, StringRef Alias) { 1662 if (DstM.getNamedValue(Name)) { 1663 SmallString<256> S(".symver "); 1664 S += Name; 1665 S += ", "; 1666 S += Alias; 1667 DstM.appendModuleInlineAsm(S); 1668 } 1669 }); 1670 } 1671 1672 // Reorder the globals just added to the destination module to match their 1673 // original order in the source module. 1674 Module::GlobalListType &Globals = DstM.getGlobalList(); 1675 for (GlobalVariable &GV : SrcM->globals()) { 1676 if (GV.hasAppendingLinkage()) 1677 continue; 1678 Value *NewValue = Mapper.mapValue(GV); 1679 if (NewValue) { 1680 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts()); 1681 if (NewGV) 1682 Globals.splice(Globals.end(), Globals, NewGV->getIterator()); 1683 } 1684 } 1685 1686 // Merge the module flags into the DstM module. 1687 return linkModuleFlagsMetadata(); 1688 } 1689 1690 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1691 : ETypes(E), IsPacked(P) {} 1692 1693 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1694 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1695 1696 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1697 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1698 } 1699 1700 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1701 return !this->operator==(That); 1702 } 1703 1704 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1705 return DenseMapInfo<StructType *>::getEmptyKey(); 1706 } 1707 1708 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1709 return DenseMapInfo<StructType *>::getTombstoneKey(); 1710 } 1711 1712 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1713 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1714 Key.IsPacked); 1715 } 1716 1717 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1718 return getHashValue(KeyTy(ST)); 1719 } 1720 1721 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1722 const StructType *RHS) { 1723 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1724 return false; 1725 return LHS == KeyTy(RHS); 1726 } 1727 1728 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1729 const StructType *RHS) { 1730 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1731 return LHS == RHS; 1732 return KeyTy(LHS) == KeyTy(RHS); 1733 } 1734 1735 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1736 assert(!Ty->isOpaque()); 1737 NonOpaqueStructTypes.insert(Ty); 1738 } 1739 1740 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1741 assert(!Ty->isOpaque()); 1742 NonOpaqueStructTypes.insert(Ty); 1743 bool Removed = OpaqueStructTypes.erase(Ty); 1744 (void)Removed; 1745 assert(Removed); 1746 } 1747 1748 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1749 assert(Ty->isOpaque()); 1750 OpaqueStructTypes.insert(Ty); 1751 } 1752 1753 StructType * 1754 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1755 bool IsPacked) { 1756 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1757 auto I = NonOpaqueStructTypes.find_as(Key); 1758 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1759 } 1760 1761 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1762 if (Ty->isOpaque()) 1763 return OpaqueStructTypes.count(Ty); 1764 auto I = NonOpaqueStructTypes.find(Ty); 1765 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1766 } 1767 1768 IRMover::IRMover(Module &M) : Composite(M) { 1769 TypeFinder StructTypes; 1770 StructTypes.run(M, /* OnlyNamed */ false); 1771 for (StructType *Ty : StructTypes) { 1772 if (Ty->isOpaque()) 1773 IdentifiedStructTypes.addOpaque(Ty); 1774 else 1775 IdentifiedStructTypes.addNonOpaque(Ty); 1776 } 1777 // Self-map metadatas in the destination module. This is needed when 1778 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1779 // destination module may be reached from the source module. 1780 for (const auto *MD : StructTypes.getVisitedMetadata()) { 1781 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1782 } 1783 } 1784 1785 Error IRMover::move(std::unique_ptr<Module> Src, 1786 ArrayRef<GlobalValue *> ValuesToLink, 1787 LazyCallback AddLazyFor, bool IsPerformingImport) { 1788 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1789 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1790 IsPerformingImport); 1791 Error E = TheIRLinker.run(); 1792 Composite.dropTriviallyDeadConstantArrays(); 1793 return E; 1794 } 1795