xref: /freebsd/contrib/llvm-project/llvm/lib/Linker/IRMover.cpp (revision 2f9966ff63d65bd474478888c9088eeae3f9c669)
1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/IR/AutoUpgrade.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfoMetadata.h"
17 #include "llvm/IR/DiagnosticPrinter.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/GVMaterializer.h"
20 #include "llvm/IR/GlobalValue.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PseudoProbe.h"
26 #include "llvm/IR/TypeFinder.h"
27 #include "llvm/Object/ModuleSymbolTable.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/TargetParser/Triple.h"
31 #include "llvm/Transforms/Utils/ValueMapper.h"
32 #include <optional>
33 #include <utility>
34 using namespace llvm;
35 
36 //===----------------------------------------------------------------------===//
37 // TypeMap implementation.
38 //===----------------------------------------------------------------------===//
39 
40 namespace {
41 class TypeMapTy : public ValueMapTypeRemapper {
42   /// This is a mapping from a source type to a destination type to use.
43   DenseMap<Type *, Type *> MappedTypes;
44 
45   /// When checking to see if two subgraphs are isomorphic, we speculatively
46   /// add types to MappedTypes, but keep track of them here in case we need to
47   /// roll back.
48   SmallVector<Type *, 16> SpeculativeTypes;
49 
50   SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
51 
52   /// This is a list of non-opaque structs in the source module that are mapped
53   /// to an opaque struct in the destination module.
54   SmallVector<StructType *, 16> SrcDefinitionsToResolve;
55 
56   /// This is the set of opaque types in the destination modules who are
57   /// getting a body from the source module.
58   SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
59 
60 public:
61   TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
62       : DstStructTypesSet(DstStructTypesSet) {}
63 
64   IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
65   /// Indicate that the specified type in the destination module is conceptually
66   /// equivalent to the specified type in the source module.
67   void addTypeMapping(Type *DstTy, Type *SrcTy);
68 
69   /// Produce a body for an opaque type in the dest module from a type
70   /// definition in the source module.
71   void linkDefinedTypeBodies();
72 
73   /// Return the mapped type to use for the specified input type from the
74   /// source module.
75   Type *get(Type *SrcTy);
76   Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
77 
78   void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
79 
80   FunctionType *get(FunctionType *T) {
81     return cast<FunctionType>(get((Type *)T));
82   }
83 
84 private:
85   Type *remapType(Type *SrcTy) override { return get(SrcTy); }
86 
87   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
88 };
89 }
90 
91 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
92   assert(SpeculativeTypes.empty());
93   assert(SpeculativeDstOpaqueTypes.empty());
94 
95   // Check to see if these types are recursively isomorphic and establish a
96   // mapping between them if so.
97   if (!areTypesIsomorphic(DstTy, SrcTy)) {
98     // Oops, they aren't isomorphic.  Just discard this request by rolling out
99     // any speculative mappings we've established.
100     for (Type *Ty : SpeculativeTypes)
101       MappedTypes.erase(Ty);
102 
103     SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
104                                    SpeculativeDstOpaqueTypes.size());
105     for (StructType *Ty : SpeculativeDstOpaqueTypes)
106       DstResolvedOpaqueTypes.erase(Ty);
107   } else {
108     // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
109     // and all its descendants to lower amount of renaming in LLVM context
110     // Renaming occurs because we load all source modules to the same context
111     // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
112     // As a result we may get several different types in the destination
113     // module, which are in fact the same.
114     for (Type *Ty : SpeculativeTypes)
115       if (auto *STy = dyn_cast<StructType>(Ty))
116         if (STy->hasName())
117           STy->setName("");
118   }
119   SpeculativeTypes.clear();
120   SpeculativeDstOpaqueTypes.clear();
121 }
122 
123 /// Recursively walk this pair of types, returning true if they are isomorphic,
124 /// false if they are not.
125 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
126   // Two types with differing kinds are clearly not isomorphic.
127   if (DstTy->getTypeID() != SrcTy->getTypeID())
128     return false;
129 
130   // If we have an entry in the MappedTypes table, then we have our answer.
131   Type *&Entry = MappedTypes[SrcTy];
132   if (Entry)
133     return Entry == DstTy;
134 
135   // Two identical types are clearly isomorphic.  Remember this
136   // non-speculatively.
137   if (DstTy == SrcTy) {
138     Entry = DstTy;
139     return true;
140   }
141 
142   // Okay, we have two types with identical kinds that we haven't seen before.
143 
144   // If this is an opaque struct type, special case it.
145   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
146     // Mapping an opaque type to any struct, just keep the dest struct.
147     if (SSTy->isOpaque()) {
148       Entry = DstTy;
149       SpeculativeTypes.push_back(SrcTy);
150       return true;
151     }
152 
153     // Mapping a non-opaque source type to an opaque dest.  If this is the first
154     // type that we're mapping onto this destination type then we succeed.  Keep
155     // the dest, but fill it in later. If this is the second (different) type
156     // that we're trying to map onto the same opaque type then we fail.
157     if (cast<StructType>(DstTy)->isOpaque()) {
158       // We can only map one source type onto the opaque destination type.
159       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
160         return false;
161       SrcDefinitionsToResolve.push_back(SSTy);
162       SpeculativeTypes.push_back(SrcTy);
163       SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
164       Entry = DstTy;
165       return true;
166     }
167   }
168 
169   // If the number of subtypes disagree between the two types, then we fail.
170   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
171     return false;
172 
173   // Fail if any of the extra properties (e.g. array size) of the type disagree.
174   if (isa<IntegerType>(DstTy))
175     return false; // bitwidth disagrees.
176   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
177     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
178       return false;
179   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
180     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
181       return false;
182   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
183     StructType *SSTy = cast<StructType>(SrcTy);
184     if (DSTy->isLiteral() != SSTy->isLiteral() ||
185         DSTy->isPacked() != SSTy->isPacked())
186       return false;
187   } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
188     if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
189       return false;
190   } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
191     if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
192       return false;
193   }
194 
195   // Otherwise, we speculate that these two types will line up and recursively
196   // check the subelements.
197   Entry = DstTy;
198   SpeculativeTypes.push_back(SrcTy);
199 
200   for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
201     if (!areTypesIsomorphic(DstTy->getContainedType(I),
202                             SrcTy->getContainedType(I)))
203       return false;
204 
205   // If everything seems to have lined up, then everything is great.
206   return true;
207 }
208 
209 void TypeMapTy::linkDefinedTypeBodies() {
210   SmallVector<Type *, 16> Elements;
211   for (StructType *SrcSTy : SrcDefinitionsToResolve) {
212     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
213     assert(DstSTy->isOpaque());
214 
215     // Map the body of the source type over to a new body for the dest type.
216     Elements.resize(SrcSTy->getNumElements());
217     for (unsigned I = 0, E = Elements.size(); I != E; ++I)
218       Elements[I] = get(SrcSTy->getElementType(I));
219 
220     DstSTy->setBody(Elements, SrcSTy->isPacked());
221     DstStructTypesSet.switchToNonOpaque(DstSTy);
222   }
223   SrcDefinitionsToResolve.clear();
224   DstResolvedOpaqueTypes.clear();
225 }
226 
227 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
228                            ArrayRef<Type *> ETypes) {
229   DTy->setBody(ETypes, STy->isPacked());
230 
231   // Steal STy's name.
232   if (STy->hasName()) {
233     SmallString<16> TmpName = STy->getName();
234     STy->setName("");
235     DTy->setName(TmpName);
236   }
237 
238   DstStructTypesSet.addNonOpaque(DTy);
239 }
240 
241 Type *TypeMapTy::get(Type *Ty) {
242   SmallPtrSet<StructType *, 8> Visited;
243   return get(Ty, Visited);
244 }
245 
246 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
247   // If we already have an entry for this type, return it.
248   Type **Entry = &MappedTypes[Ty];
249   if (*Entry)
250     return *Entry;
251 
252   // These are types that LLVM itself will unique.
253   bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
254 
255   if (!IsUniqued) {
256 #ifndef NDEBUG
257     for (auto &Pair : MappedTypes) {
258       assert(!(Pair.first != Ty && Pair.second == Ty) &&
259              "mapping to a source type");
260     }
261 #endif
262 
263     if (!Visited.insert(cast<StructType>(Ty)).second) {
264       StructType *DTy = StructType::create(Ty->getContext());
265       return *Entry = DTy;
266     }
267   }
268 
269   // If this is not a recursive type, then just map all of the elements and
270   // then rebuild the type from inside out.
271   SmallVector<Type *, 4> ElementTypes;
272 
273   // If there are no element types to map, then the type is itself.  This is
274   // true for the anonymous {} struct, things like 'float', integers, etc.
275   if (Ty->getNumContainedTypes() == 0 && IsUniqued)
276     return *Entry = Ty;
277 
278   // Remap all of the elements, keeping track of whether any of them change.
279   bool AnyChange = false;
280   ElementTypes.resize(Ty->getNumContainedTypes());
281   for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
282     ElementTypes[I] = get(Ty->getContainedType(I), Visited);
283     AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
284   }
285 
286   // If we found our type while recursively processing stuff, just use it.
287   Entry = &MappedTypes[Ty];
288   if (*Entry) {
289     if (auto *DTy = dyn_cast<StructType>(*Entry)) {
290       if (DTy->isOpaque()) {
291         auto *STy = cast<StructType>(Ty);
292         finishType(DTy, STy, ElementTypes);
293       }
294     }
295     return *Entry;
296   }
297 
298   // If all of the element types mapped directly over and the type is not
299   // a named struct, then the type is usable as-is.
300   if (!AnyChange && IsUniqued)
301     return *Entry = Ty;
302 
303   // Otherwise, rebuild a modified type.
304   switch (Ty->getTypeID()) {
305   default:
306     llvm_unreachable("unknown derived type to remap");
307   case Type::ArrayTyID:
308     return *Entry = ArrayType::get(ElementTypes[0],
309                                    cast<ArrayType>(Ty)->getNumElements());
310   case Type::ScalableVectorTyID:
311   case Type::FixedVectorTyID:
312     return *Entry = VectorType::get(ElementTypes[0],
313                                     cast<VectorType>(Ty)->getElementCount());
314   case Type::PointerTyID:
315     return *Entry = PointerType::get(ElementTypes[0],
316                                      cast<PointerType>(Ty)->getAddressSpace());
317   case Type::FunctionTyID:
318     return *Entry = FunctionType::get(ElementTypes[0],
319                                       ArrayRef(ElementTypes).slice(1),
320                                       cast<FunctionType>(Ty)->isVarArg());
321   case Type::StructTyID: {
322     auto *STy = cast<StructType>(Ty);
323     bool IsPacked = STy->isPacked();
324     if (IsUniqued)
325       return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
326 
327     // If the type is opaque, we can just use it directly.
328     if (STy->isOpaque()) {
329       DstStructTypesSet.addOpaque(STy);
330       return *Entry = Ty;
331     }
332 
333     if (StructType *OldT =
334             DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
335       STy->setName("");
336       return *Entry = OldT;
337     }
338 
339     if (!AnyChange) {
340       DstStructTypesSet.addNonOpaque(STy);
341       return *Entry = Ty;
342     }
343 
344     StructType *DTy = StructType::create(Ty->getContext());
345     finishType(DTy, STy, ElementTypes);
346     return *Entry = DTy;
347   }
348   }
349 }
350 
351 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
352                                        const Twine &Msg)
353     : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
354 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
355 
356 //===----------------------------------------------------------------------===//
357 // IRLinker implementation.
358 //===----------------------------------------------------------------------===//
359 
360 namespace {
361 class IRLinker;
362 
363 /// Creates prototypes for functions that are lazily linked on the fly. This
364 /// speeds up linking for modules with many/ lazily linked functions of which
365 /// few get used.
366 class GlobalValueMaterializer final : public ValueMaterializer {
367   IRLinker &TheIRLinker;
368 
369 public:
370   GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
371   Value *materialize(Value *V) override;
372 };
373 
374 class LocalValueMaterializer final : public ValueMaterializer {
375   IRLinker &TheIRLinker;
376 
377 public:
378   LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
379   Value *materialize(Value *V) override;
380 };
381 
382 /// Type of the Metadata map in \a ValueToValueMapTy.
383 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
384 
385 /// This is responsible for keeping track of the state used for moving data
386 /// from SrcM to DstM.
387 class IRLinker {
388   Module &DstM;
389   std::unique_ptr<Module> SrcM;
390 
391   /// See IRMover::move().
392   IRMover::LazyCallback AddLazyFor;
393 
394   TypeMapTy TypeMap;
395   GlobalValueMaterializer GValMaterializer;
396   LocalValueMaterializer LValMaterializer;
397 
398   /// A metadata map that's shared between IRLinker instances.
399   MDMapT &SharedMDs;
400 
401   /// Mapping of values from what they used to be in Src, to what they are now
402   /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
403   /// due to the use of Value handles which the Linker doesn't actually need,
404   /// but this allows us to reuse the ValueMapper code.
405   ValueToValueMapTy ValueMap;
406   ValueToValueMapTy IndirectSymbolValueMap;
407 
408   DenseSet<GlobalValue *> ValuesToLink;
409   std::vector<GlobalValue *> Worklist;
410   std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
411 
412   /// Set of globals with eagerly copied metadata that may require remapping.
413   /// This remapping is performed after metadata linking.
414   DenseSet<GlobalObject *> UnmappedMetadata;
415 
416   void maybeAdd(GlobalValue *GV) {
417     if (ValuesToLink.insert(GV).second)
418       Worklist.push_back(GV);
419   }
420 
421   /// Whether we are importing globals for ThinLTO, as opposed to linking the
422   /// source module. If this flag is set, it means that we can rely on some
423   /// other object file to define any non-GlobalValue entities defined by the
424   /// source module. This currently causes us to not link retained types in
425   /// debug info metadata and module inline asm.
426   bool IsPerformingImport;
427 
428   /// Set to true when all global value body linking is complete (including
429   /// lazy linking). Used to prevent metadata linking from creating new
430   /// references.
431   bool DoneLinkingBodies = false;
432 
433   /// The Error encountered during materialization. We use an Optional here to
434   /// avoid needing to manage an unconsumed success value.
435   std::optional<Error> FoundError;
436   void setError(Error E) {
437     if (E)
438       FoundError = std::move(E);
439   }
440 
441   /// Most of the errors produced by this module are inconvertible StringErrors.
442   /// This convenience function lets us return one of those more easily.
443   Error stringErr(const Twine &T) {
444     return make_error<StringError>(T, inconvertibleErrorCode());
445   }
446 
447   /// Entry point for mapping values and alternate context for mapping aliases.
448   ValueMapper Mapper;
449   unsigned IndirectSymbolMCID;
450 
451   /// Handles cloning of a global values from the source module into
452   /// the destination module, including setting the attributes and visibility.
453   GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
454 
455   void emitWarning(const Twine &Message) {
456     SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
457   }
458 
459   /// Given a global in the source module, return the global in the
460   /// destination module that is being linked to, if any.
461   GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
462     // If the source has no name it can't link.  If it has local linkage,
463     // there is no name match-up going on.
464     if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
465       return nullptr;
466 
467     // Otherwise see if we have a match in the destination module's symtab.
468     GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
469     if (!DGV)
470       return nullptr;
471 
472     // If we found a global with the same name in the dest module, but it has
473     // internal linkage, we are really not doing any linkage here.
474     if (DGV->hasLocalLinkage())
475       return nullptr;
476 
477     // If we found an intrinsic declaration with mismatching prototypes, we
478     // probably had a nameclash. Don't use that version.
479     if (auto *FDGV = dyn_cast<Function>(DGV))
480       if (FDGV->isIntrinsic())
481         if (const auto *FSrcGV = dyn_cast<Function>(SrcGV))
482           if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType()))
483             return nullptr;
484 
485     // Otherwise, we do in fact link to the destination global.
486     return DGV;
487   }
488 
489   void computeTypeMapping();
490 
491   Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
492                                              const GlobalVariable *SrcGV);
493 
494   /// Given the GlobaValue \p SGV in the source module, and the matching
495   /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
496   /// into the destination module.
497   ///
498   /// Note this code may call the client-provided \p AddLazyFor.
499   bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
500   Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
501                                             bool ForIndirectSymbol);
502 
503   Error linkModuleFlagsMetadata();
504 
505   void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
506   Error linkFunctionBody(Function &Dst, Function &Src);
507   void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src);
508   void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src);
509   Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
510 
511   /// Replace all types in the source AttributeList with the
512   /// corresponding destination type.
513   AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
514 
515   /// Functions that take care of cloning a specific global value type
516   /// into the destination module.
517   GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
518   Function *copyFunctionProto(const Function *SF);
519   GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV);
520 
521   /// Perform "replace all uses with" operations. These work items need to be
522   /// performed as part of materialization, but we postpone them to happen after
523   /// materialization is done. The materializer called by ValueMapper is not
524   /// expected to delete constants, as ValueMapper is holding pointers to some
525   /// of them, but constant destruction may be indirectly triggered by RAUW.
526   /// Hence, the need to move this out of the materialization call chain.
527   void flushRAUWWorklist();
528 
529   /// When importing for ThinLTO, prevent importing of types listed on
530   /// the DICompileUnit that we don't need a copy of in the importing
531   /// module.
532   void prepareCompileUnitsForImport();
533   void linkNamedMDNodes();
534 
535   ///  Update attributes while linking.
536   void updateAttributes(GlobalValue &GV);
537 
538 public:
539   IRLinker(Module &DstM, MDMapT &SharedMDs,
540            IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
541            ArrayRef<GlobalValue *> ValuesToLink,
542            IRMover::LazyCallback AddLazyFor, bool IsPerformingImport)
543       : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
544         TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
545         SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
546         Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals,
547                &TypeMap, &GValMaterializer),
548         IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
549             IndirectSymbolValueMap, &LValMaterializer)) {
550     ValueMap.getMDMap() = std::move(SharedMDs);
551     for (GlobalValue *GV : ValuesToLink)
552       maybeAdd(GV);
553     if (IsPerformingImport)
554       prepareCompileUnitsForImport();
555   }
556   ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
557 
558   Error run();
559   Value *materialize(Value *V, bool ForIndirectSymbol);
560 };
561 }
562 
563 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
564 /// table. This is good for all clients except for us. Go through the trouble
565 /// to force this back.
566 static void forceRenaming(GlobalValue *GV, StringRef Name) {
567   // If the global doesn't force its name or if it already has the right name,
568   // there is nothing for us to do.
569   if (GV->hasLocalLinkage() || GV->getName() == Name)
570     return;
571 
572   Module *M = GV->getParent();
573 
574   // If there is a conflict, rename the conflict.
575   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
576     GV->takeName(ConflictGV);
577     ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
578     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
579   } else {
580     GV->setName(Name); // Force the name back
581   }
582 }
583 
584 Value *GlobalValueMaterializer::materialize(Value *SGV) {
585   return TheIRLinker.materialize(SGV, false);
586 }
587 
588 Value *LocalValueMaterializer::materialize(Value *SGV) {
589   return TheIRLinker.materialize(SGV, true);
590 }
591 
592 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
593   auto *SGV = dyn_cast<GlobalValue>(V);
594   if (!SGV)
595     return nullptr;
596 
597   // When linking a global from other modules than source & dest, skip
598   // materializing it because it would be mapped later when its containing
599   // module is linked. Linking it now would potentially pull in many types that
600   // may not be mapped properly.
601   if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get())
602     return nullptr;
603 
604   Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
605   if (!NewProto) {
606     setError(NewProto.takeError());
607     return nullptr;
608   }
609   if (!*NewProto)
610     return nullptr;
611 
612   GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
613   if (!New)
614     return *NewProto;
615 
616   // If we already created the body, just return.
617   if (auto *F = dyn_cast<Function>(New)) {
618     if (!F->isDeclaration())
619       return New;
620   } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
621     if (V->hasInitializer() || V->hasAppendingLinkage())
622       return New;
623   } else if (auto *GA = dyn_cast<GlobalAlias>(New)) {
624     if (GA->getAliasee())
625       return New;
626   } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) {
627     if (GI->getResolver())
628       return New;
629   } else {
630     llvm_unreachable("Invalid GlobalValue type");
631   }
632 
633   // If the global is being linked for an indirect symbol, it may have already
634   // been scheduled to satisfy a regular symbol. Similarly, a global being linked
635   // for a regular symbol may have already been scheduled for an indirect
636   // symbol. Check for these cases by looking in the other value map and
637   // confirming the same value has been scheduled.  If there is an entry in the
638   // ValueMap but the value is different, it means that the value already had a
639   // definition in the destination module (linkonce for instance), but we need a
640   // new definition for the indirect symbol ("New" will be different).
641   if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) ||
642       (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New))
643     return New;
644 
645   if (ForIndirectSymbol || shouldLink(New, *SGV))
646     setError(linkGlobalValueBody(*New, *SGV));
647 
648   updateAttributes(*New);
649   return New;
650 }
651 
652 /// Loop through the global variables in the src module and merge them into the
653 /// dest module.
654 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
655   // No linking to be performed or linking from the source: simply create an
656   // identical version of the symbol over in the dest module... the
657   // initializer will be filled in later by LinkGlobalInits.
658   GlobalVariable *NewDGV =
659       new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
660                          SGVar->isConstant(), GlobalValue::ExternalLinkage,
661                          /*init*/ nullptr, SGVar->getName(),
662                          /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
663                          SGVar->getAddressSpace());
664   NewDGV->setAlignment(SGVar->getAlign());
665   NewDGV->copyAttributesFrom(SGVar);
666   return NewDGV;
667 }
668 
669 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
670   for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
671     for (int AttrIdx = Attribute::FirstTypeAttr;
672          AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
673       Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
674       if (Attrs.hasAttributeAtIndex(i, TypedAttr)) {
675         if (Type *Ty =
676                 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
677           Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
678                                                     TypeMap.get(Ty));
679           break;
680         }
681       }
682     }
683   }
684   return Attrs;
685 }
686 
687 /// Link the function in the source module into the destination module if
688 /// needed, setting up mapping information.
689 Function *IRLinker::copyFunctionProto(const Function *SF) {
690   // If there is no linkage to be performed or we are linking from the source,
691   // bring SF over.
692   auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
693                              GlobalValue::ExternalLinkage,
694                              SF->getAddressSpace(), SF->getName(), &DstM);
695   F->copyAttributesFrom(SF);
696   F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
697   return F;
698 }
699 
700 /// Set up prototypes for any indirect symbols that come over from the source
701 /// module.
702 GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) {
703   // If there is no linkage to be performed or we're linking from the source,
704   // bring over SGA.
705   auto *Ty = TypeMap.get(SGV->getValueType());
706 
707   if (auto *GA = dyn_cast<GlobalAlias>(SGV)) {
708     auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(),
709                                     GlobalValue::ExternalLinkage,
710                                     SGV->getName(), &DstM);
711     DGA->copyAttributesFrom(GA);
712     return DGA;
713   }
714 
715   if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) {
716     auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(),
717                                     GlobalValue::ExternalLinkage,
718                                     SGV->getName(), nullptr, &DstM);
719     DGI->copyAttributesFrom(GI);
720     return DGI;
721   }
722 
723   llvm_unreachable("Invalid source global value type");
724 }
725 
726 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
727                                             bool ForDefinition) {
728   GlobalValue *NewGV;
729   if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
730     NewGV = copyGlobalVariableProto(SGVar);
731   } else if (auto *SF = dyn_cast<Function>(SGV)) {
732     NewGV = copyFunctionProto(SF);
733   } else {
734     if (ForDefinition)
735       NewGV = copyIndirectSymbolProto(SGV);
736     else if (SGV->getValueType()->isFunctionTy())
737       NewGV =
738           Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
739                            GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
740                            SGV->getName(), &DstM);
741     else
742       NewGV =
743           new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
744                              /*isConstant*/ false, GlobalValue::ExternalLinkage,
745                              /*init*/ nullptr, SGV->getName(),
746                              /*insertbefore*/ nullptr,
747                              SGV->getThreadLocalMode(), SGV->getAddressSpace());
748   }
749 
750   if (ForDefinition)
751     NewGV->setLinkage(SGV->getLinkage());
752   else if (SGV->hasExternalWeakLinkage())
753     NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
754 
755   if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
756     // Metadata for global variables and function declarations is copied eagerly.
757     if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) {
758       NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
759       if (SGV->isDeclaration() && NewGO->hasMetadata())
760         UnmappedMetadata.insert(NewGO);
761     }
762   }
763 
764   // Remove these copied constants in case this stays a declaration, since
765   // they point to the source module. If the def is linked the values will
766   // be mapped in during linkFunctionBody.
767   if (auto *NewF = dyn_cast<Function>(NewGV)) {
768     NewF->setPersonalityFn(nullptr);
769     NewF->setPrefixData(nullptr);
770     NewF->setPrologueData(nullptr);
771   }
772 
773   return NewGV;
774 }
775 
776 static StringRef getTypeNamePrefix(StringRef Name) {
777   size_t DotPos = Name.rfind('.');
778   return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
779           !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
780              ? Name
781              : Name.substr(0, DotPos);
782 }
783 
784 /// Loop over all of the linked values to compute type mappings.  For example,
785 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
786 /// types 'Foo' but one got renamed when the module was loaded into the same
787 /// LLVMContext.
788 void IRLinker::computeTypeMapping() {
789   for (GlobalValue &SGV : SrcM->globals()) {
790     GlobalValue *DGV = getLinkedToGlobal(&SGV);
791     if (!DGV)
792       continue;
793 
794     if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
795       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
796       continue;
797     }
798 
799     // Unify the element type of appending arrays.
800     ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
801     ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
802     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
803   }
804 
805   for (GlobalValue &SGV : *SrcM)
806     if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
807       if (DGV->getType() == SGV.getType()) {
808         // If the types of DGV and SGV are the same, it means that DGV is from
809         // the source module and got added to DstM from a shared metadata.  We
810         // shouldn't map this type to itself in case the type's components get
811         // remapped to a new type from DstM (for instance, during the loop over
812         // SrcM->getIdentifiedStructTypes() below).
813         continue;
814       }
815 
816       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
817     }
818 
819   for (GlobalValue &SGV : SrcM->aliases())
820     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
821       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
822 
823   // Incorporate types by name, scanning all the types in the source module.
824   // At this point, the destination module may have a type "%foo = { i32 }" for
825   // example.  When the source module got loaded into the same LLVMContext, if
826   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
827   std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
828   for (StructType *ST : Types) {
829     if (!ST->hasName())
830       continue;
831 
832     if (TypeMap.DstStructTypesSet.hasType(ST)) {
833       // This is actually a type from the destination module.
834       // getIdentifiedStructTypes() can have found it by walking debug info
835       // metadata nodes, some of which get linked by name when ODR Type Uniquing
836       // is enabled on the Context, from the source to the destination module.
837       continue;
838     }
839 
840     auto STTypePrefix = getTypeNamePrefix(ST->getName());
841     if (STTypePrefix.size() == ST->getName().size())
842       continue;
843 
844     // Check to see if the destination module has a struct with the prefix name.
845     StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix);
846     if (!DST)
847       continue;
848 
849     // Don't use it if this actually came from the source module. They're in
850     // the same LLVMContext after all. Also don't use it unless the type is
851     // actually used in the destination module. This can happen in situations
852     // like this:
853     //
854     //      Module A                         Module B
855     //      --------                         --------
856     //   %Z = type { %A }                %B = type { %C.1 }
857     //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
858     //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
859     //   %C = type { i8* }               %B.3 = type { %C.1 }
860     //
861     // When we link Module B with Module A, the '%B' in Module B is
862     // used. However, that would then use '%C.1'. But when we process '%C.1',
863     // we prefer to take the '%C' version. So we are then left with both
864     // '%C.1' and '%C' being used for the same types. This leads to some
865     // variables using one type and some using the other.
866     if (TypeMap.DstStructTypesSet.hasType(DST))
867       TypeMap.addTypeMapping(DST, ST);
868   }
869 
870   // Now that we have discovered all of the type equivalences, get a body for
871   // any 'opaque' types in the dest module that are now resolved.
872   TypeMap.linkDefinedTypeBodies();
873 }
874 
875 static void getArrayElements(const Constant *C,
876                              SmallVectorImpl<Constant *> &Dest) {
877   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
878 
879   for (unsigned i = 0; i != NumElements; ++i)
880     Dest.push_back(C->getAggregateElement(i));
881 }
882 
883 /// If there were any appending global variables, link them together now.
884 Expected<Constant *>
885 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
886                                 const GlobalVariable *SrcGV) {
887   // Check that both variables have compatible properties.
888   if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) {
889     if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
890       return stringErr(
891           "Linking globals named '" + SrcGV->getName() +
892           "': can only link appending global with another appending "
893           "global!");
894 
895     if (DstGV->isConstant() != SrcGV->isConstant())
896       return stringErr("Appending variables linked with different const'ness!");
897 
898     if (DstGV->getAlign() != SrcGV->getAlign())
899       return stringErr(
900           "Appending variables with different alignment need to be linked!");
901 
902     if (DstGV->getVisibility() != SrcGV->getVisibility())
903       return stringErr(
904           "Appending variables with different visibility need to be linked!");
905 
906     if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
907       return stringErr(
908           "Appending variables with different unnamed_addr need to be linked!");
909 
910     if (DstGV->getSection() != SrcGV->getSection())
911       return stringErr(
912           "Appending variables with different section name need to be linked!");
913 
914     if (DstGV->getAddressSpace() != SrcGV->getAddressSpace())
915       return stringErr("Appending variables with different address spaces need "
916                        "to be linked!");
917   }
918 
919   // Do not need to do anything if source is a declaration.
920   if (SrcGV->isDeclaration())
921     return DstGV;
922 
923   Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
924                     ->getElementType();
925 
926   // FIXME: This upgrade is done during linking to support the C API.  Once the
927   // old form is deprecated, we should move this upgrade to
928   // llvm::UpgradeGlobalVariable() and simplify the logic here and in
929   // Mapper::mapAppendingVariable() in ValueMapper.cpp.
930   StringRef Name = SrcGV->getName();
931   bool IsNewStructor = false;
932   bool IsOldStructor = false;
933   if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
934     if (cast<StructType>(EltTy)->getNumElements() == 3)
935       IsNewStructor = true;
936     else
937       IsOldStructor = true;
938   }
939 
940   PointerType *VoidPtrTy = PointerType::get(SrcGV->getContext(), 0);
941   if (IsOldStructor) {
942     auto &ST = *cast<StructType>(EltTy);
943     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
944     EltTy = StructType::get(SrcGV->getContext(), Tys, false);
945   }
946 
947   uint64_t DstNumElements = 0;
948   if (DstGV && !DstGV->isDeclaration()) {
949     ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
950     DstNumElements = DstTy->getNumElements();
951 
952     // Check to see that they two arrays agree on type.
953     if (EltTy != DstTy->getElementType())
954       return stringErr("Appending variables with different element types!");
955   }
956 
957   SmallVector<Constant *, 16> SrcElements;
958   getArrayElements(SrcGV->getInitializer(), SrcElements);
959 
960   if (IsNewStructor) {
961     erase_if(SrcElements, [this](Constant *E) {
962       auto *Key =
963           dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
964       if (!Key)
965         return false;
966       GlobalValue *DGV = getLinkedToGlobal(Key);
967       return !shouldLink(DGV, *Key);
968     });
969   }
970   uint64_t NewSize = DstNumElements + SrcElements.size();
971   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
972 
973   // Create the new global variable.
974   GlobalVariable *NG = new GlobalVariable(
975       DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
976       /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
977       SrcGV->getAddressSpace());
978 
979   NG->copyAttributesFrom(SrcGV);
980   forceRenaming(NG, SrcGV->getName());
981 
982   Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
983 
984   Mapper.scheduleMapAppendingVariable(
985       *NG,
986       (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr,
987       IsOldStructor, SrcElements);
988 
989   // Replace any uses of the two global variables with uses of the new
990   // global.
991   if (DstGV) {
992     RAUWWorklist.push_back(std::make_pair(DstGV, NG));
993   }
994 
995   return Ret;
996 }
997 
998 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
999   if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
1000     return true;
1001 
1002   if (DGV && !DGV->isDeclarationForLinker())
1003     return false;
1004 
1005   if (SGV.isDeclaration() || DoneLinkingBodies)
1006     return false;
1007 
1008   // Callback to the client to give a chance to lazily add the Global to the
1009   // list of value to link.
1010   bool LazilyAdded = false;
1011   if (AddLazyFor)
1012     AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
1013       maybeAdd(&GV);
1014       LazilyAdded = true;
1015     });
1016   return LazilyAdded;
1017 }
1018 
1019 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
1020                                                     bool ForIndirectSymbol) {
1021   GlobalValue *DGV = getLinkedToGlobal(SGV);
1022 
1023   bool ShouldLink = shouldLink(DGV, *SGV);
1024 
1025   // just missing from map
1026   if (ShouldLink) {
1027     auto I = ValueMap.find(SGV);
1028     if (I != ValueMap.end())
1029       return cast<Constant>(I->second);
1030 
1031     I = IndirectSymbolValueMap.find(SGV);
1032     if (I != IndirectSymbolValueMap.end())
1033       return cast<Constant>(I->second);
1034   }
1035 
1036   if (!ShouldLink && ForIndirectSymbol)
1037     DGV = nullptr;
1038 
1039   // Handle the ultra special appending linkage case first.
1040   if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage()))
1041     return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
1042                                  cast<GlobalVariable>(SGV));
1043 
1044   bool NeedsRenaming = false;
1045   GlobalValue *NewGV;
1046   if (DGV && !ShouldLink) {
1047     NewGV = DGV;
1048   } else {
1049     // If we are done linking global value bodies (i.e. we are performing
1050     // metadata linking), don't link in the global value due to this
1051     // reference, simply map it to null.
1052     if (DoneLinkingBodies)
1053       return nullptr;
1054 
1055     NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
1056     if (ShouldLink || !ForIndirectSymbol)
1057       NeedsRenaming = true;
1058   }
1059 
1060   // Overloaded intrinsics have overloaded types names as part of their
1061   // names. If we renamed overloaded types we should rename the intrinsic
1062   // as well.
1063   if (Function *F = dyn_cast<Function>(NewGV))
1064     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
1065       // Note: remangleIntrinsicFunction does not copy metadata and as such
1066       // F should not occur in the set of objects with unmapped metadata.
1067       // If this assertion fails then remangleIntrinsicFunction needs updating.
1068       assert(!UnmappedMetadata.count(F) && "intrinsic has unmapped metadata");
1069       NewGV->eraseFromParent();
1070       NewGV = *Remangled;
1071       NeedsRenaming = false;
1072     }
1073 
1074   if (NeedsRenaming)
1075     forceRenaming(NewGV, SGV->getName());
1076 
1077   if (ShouldLink || ForIndirectSymbol) {
1078     if (const Comdat *SC = SGV->getComdat()) {
1079       if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
1080         Comdat *DC = DstM.getOrInsertComdat(SC->getName());
1081         DC->setSelectionKind(SC->getSelectionKind());
1082         GO->setComdat(DC);
1083       }
1084     }
1085   }
1086 
1087   if (!ShouldLink && ForIndirectSymbol)
1088     NewGV->setLinkage(GlobalValue::InternalLinkage);
1089 
1090   Constant *C = NewGV;
1091   // Only create a bitcast if necessary. In particular, with
1092   // DebugTypeODRUniquing we may reach metadata in the destination module
1093   // containing a GV from the source module, in which case SGV will be
1094   // the same as DGV and NewGV, and TypeMap.get() will assert since it
1095   // assumes it is being invoked on a type in the source module.
1096   if (DGV && NewGV != SGV) {
1097     C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1098       NewGV, TypeMap.get(SGV->getType()));
1099   }
1100 
1101   if (DGV && NewGV != DGV) {
1102     // Schedule "replace all uses with" to happen after materializing is
1103     // done. It is not safe to do it now, since ValueMapper may be holding
1104     // pointers to constants that will get deleted if RAUW runs.
1105     RAUWWorklist.push_back(std::make_pair(
1106         DGV,
1107         ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
1108   }
1109 
1110   return C;
1111 }
1112 
1113 /// Update the initializers in the Dest module now that all globals that may be
1114 /// referenced are in Dest.
1115 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1116   // Figure out what the initializer looks like in the dest module.
1117   Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1118 }
1119 
1120 /// Copy the source function over into the dest function and fix up references
1121 /// to values. At this point we know that Dest is an external function, and
1122 /// that Src is not.
1123 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1124   assert(Dst.isDeclaration() && !Src.isDeclaration());
1125 
1126   // Materialize if needed.
1127   if (Error Err = Src.materialize())
1128     return Err;
1129 
1130   // Link in the operands without remapping.
1131   if (Src.hasPrefixData())
1132     Dst.setPrefixData(Src.getPrefixData());
1133   if (Src.hasPrologueData())
1134     Dst.setPrologueData(Src.getPrologueData());
1135   if (Src.hasPersonalityFn())
1136     Dst.setPersonalityFn(Src.getPersonalityFn());
1137   assert(Src.IsNewDbgInfoFormat == Dst.IsNewDbgInfoFormat);
1138 
1139   // Copy over the metadata attachments without remapping.
1140   Dst.copyMetadata(&Src, 0);
1141 
1142   // Steal arguments and splice the body of Src into Dst.
1143   Dst.stealArgumentListFrom(Src);
1144   Dst.splice(Dst.end(), &Src);
1145 
1146   // Everything has been moved over.  Remap it.
1147   Mapper.scheduleRemapFunction(Dst);
1148   return Error::success();
1149 }
1150 
1151 void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) {
1152   Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID);
1153 }
1154 
1155 void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) {
1156   Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID);
1157 }
1158 
1159 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1160   if (auto *F = dyn_cast<Function>(&Src))
1161     return linkFunctionBody(cast<Function>(Dst), *F);
1162   if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1163     linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1164     return Error::success();
1165   }
1166   if (auto *GA = dyn_cast<GlobalAlias>(&Src)) {
1167     linkAliasAliasee(cast<GlobalAlias>(Dst), *GA);
1168     return Error::success();
1169   }
1170   linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src));
1171   return Error::success();
1172 }
1173 
1174 void IRLinker::flushRAUWWorklist() {
1175   for (const auto &Elem : RAUWWorklist) {
1176     GlobalValue *Old;
1177     Value *New;
1178     std::tie(Old, New) = Elem;
1179 
1180     Old->replaceAllUsesWith(New);
1181     Old->eraseFromParent();
1182   }
1183   RAUWWorklist.clear();
1184 }
1185 
1186 void IRLinker::prepareCompileUnitsForImport() {
1187   NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1188   if (!SrcCompileUnits)
1189     return;
1190   // When importing for ThinLTO, prevent importing of types listed on
1191   // the DICompileUnit that we don't need a copy of in the importing
1192   // module. They will be emitted by the originating module.
1193   for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1194     auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1195     assert(CU && "Expected valid compile unit");
1196     // Enums, macros, and retained types don't need to be listed on the
1197     // imported DICompileUnit. This means they will only be imported
1198     // if reached from the mapped IR.
1199     CU->replaceEnumTypes(nullptr);
1200     CU->replaceMacros(nullptr);
1201     CU->replaceRetainedTypes(nullptr);
1202 
1203     // The original definition (or at least its debug info - if the variable is
1204     // internalized and optimized away) will remain in the source module, so
1205     // there's no need to import them.
1206     // If LLVM ever does more advanced optimizations on global variables
1207     // (removing/localizing write operations, for instance) that can track
1208     // through debug info, this decision may need to be revisited - but do so
1209     // with care when it comes to debug info size. Emitting small CUs containing
1210     // only a few imported entities into every destination module may be very
1211     // size inefficient.
1212     CU->replaceGlobalVariables(nullptr);
1213 
1214     CU->replaceImportedEntities(nullptr);
1215   }
1216 }
1217 
1218 /// Insert all of the named MDNodes in Src into the Dest module.
1219 void IRLinker::linkNamedMDNodes() {
1220   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1221   for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1222     // Don't link module flags here. Do them separately.
1223     if (&NMD == SrcModFlags)
1224       continue;
1225     // Don't import pseudo probe descriptors here for thinLTO. They will be
1226     // emitted by the originating module.
1227     if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) {
1228       if (!DstM.getNamedMetadata(NMD.getName()))
1229         emitWarning("Pseudo-probe ignored: source module '" +
1230                     SrcM->getModuleIdentifier() +
1231                     "' is compiled with -fpseudo-probe-for-profiling while "
1232                     "destination module '" +
1233                     DstM.getModuleIdentifier() + "' is not\n");
1234       continue;
1235     }
1236     // The stats are computed per module and will all be merged in the binary.
1237     // Importing the metadata will cause duplication of the stats.
1238     if (IsPerformingImport && NMD.getName() == "llvm.stats")
1239       continue;
1240 
1241     NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1242     // Add Src elements into Dest node.
1243     for (const MDNode *Op : NMD.operands())
1244       DestNMD->addOperand(Mapper.mapMDNode(*Op));
1245   }
1246 }
1247 
1248 /// Merge the linker flags in Src into the Dest module.
1249 Error IRLinker::linkModuleFlagsMetadata() {
1250   // If the source module has no module flags, we are done.
1251   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1252   if (!SrcModFlags)
1253     return Error::success();
1254 
1255   // Check for module flag for updates before do anything.
1256   UpgradeModuleFlags(*SrcM);
1257 
1258   // If the destination module doesn't have module flags yet, then just copy
1259   // over the source module's flags.
1260   NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1261   if (DstModFlags->getNumOperands() == 0) {
1262     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1263       DstModFlags->addOperand(SrcModFlags->getOperand(I));
1264 
1265     return Error::success();
1266   }
1267 
1268   // First build a map of the existing module flags and requirements.
1269   DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1270   SmallSetVector<MDNode *, 16> Requirements;
1271   SmallVector<unsigned, 0> Mins;
1272   DenseSet<MDString *> SeenMin;
1273   for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1274     MDNode *Op = DstModFlags->getOperand(I);
1275     uint64_t Behavior =
1276         mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue();
1277     MDString *ID = cast<MDString>(Op->getOperand(1));
1278 
1279     if (Behavior == Module::Require) {
1280       Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1281     } else {
1282       if (Behavior == Module::Min)
1283         Mins.push_back(I);
1284       Flags[ID] = std::make_pair(Op, I);
1285     }
1286   }
1287 
1288   // Merge in the flags from the source module, and also collect its set of
1289   // requirements.
1290   for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1291     MDNode *SrcOp = SrcModFlags->getOperand(I);
1292     ConstantInt *SrcBehavior =
1293         mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1294     MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1295     MDNode *DstOp;
1296     unsigned DstIndex;
1297     std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1298     unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1299     SeenMin.insert(ID);
1300 
1301     // If this is a requirement, add it and continue.
1302     if (SrcBehaviorValue == Module::Require) {
1303       // If the destination module does not already have this requirement, add
1304       // it.
1305       if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1306         DstModFlags->addOperand(SrcOp);
1307       }
1308       continue;
1309     }
1310 
1311     // If there is no existing flag with this ID, just add it.
1312     if (!DstOp) {
1313       if (SrcBehaviorValue == Module::Min) {
1314         Mins.push_back(DstModFlags->getNumOperands());
1315         SeenMin.erase(ID);
1316       }
1317       Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1318       DstModFlags->addOperand(SrcOp);
1319       continue;
1320     }
1321 
1322     // Otherwise, perform a merge.
1323     ConstantInt *DstBehavior =
1324         mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1325     unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1326 
1327     auto overrideDstValue = [&]() {
1328       DstModFlags->setOperand(DstIndex, SrcOp);
1329       Flags[ID].first = SrcOp;
1330     };
1331 
1332     // If either flag has override behavior, handle it first.
1333     if (DstBehaviorValue == Module::Override) {
1334       // Diagnose inconsistent flags which both have override behavior.
1335       if (SrcBehaviorValue == Module::Override &&
1336           SrcOp->getOperand(2) != DstOp->getOperand(2))
1337         return stringErr("linking module flags '" + ID->getString() +
1338                          "': IDs have conflicting override values in '" +
1339                          SrcM->getModuleIdentifier() + "' and '" +
1340                          DstM.getModuleIdentifier() + "'");
1341       continue;
1342     } else if (SrcBehaviorValue == Module::Override) {
1343       // Update the destination flag to that of the source.
1344       overrideDstValue();
1345       continue;
1346     }
1347 
1348     // Diagnose inconsistent merge behavior types.
1349     if (SrcBehaviorValue != DstBehaviorValue) {
1350       bool MinAndWarn = (SrcBehaviorValue == Module::Min &&
1351                          DstBehaviorValue == Module::Warning) ||
1352                         (DstBehaviorValue == Module::Min &&
1353                          SrcBehaviorValue == Module::Warning);
1354       bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
1355                          DstBehaviorValue == Module::Warning) ||
1356                         (DstBehaviorValue == Module::Max &&
1357                          SrcBehaviorValue == Module::Warning);
1358       if (!(MaxAndWarn || MinAndWarn))
1359         return stringErr("linking module flags '" + ID->getString() +
1360                          "': IDs have conflicting behaviors in '" +
1361                          SrcM->getModuleIdentifier() + "' and '" +
1362                          DstM.getModuleIdentifier() + "'");
1363     }
1364 
1365     auto ensureDistinctOp = [&](MDNode *DstValue) {
1366       assert(isa<MDTuple>(DstValue) &&
1367              "Expected MDTuple when appending module flags");
1368       if (DstValue->isDistinct())
1369         return dyn_cast<MDTuple>(DstValue);
1370       ArrayRef<MDOperand> DstOperands = DstValue->operands();
1371       MDTuple *New = MDTuple::getDistinct(
1372           DstM.getContext(),
1373           SmallVector<Metadata *, 4>(DstOperands.begin(), DstOperands.end()));
1374       Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1375       MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps);
1376       DstModFlags->setOperand(DstIndex, Flag);
1377       Flags[ID].first = Flag;
1378       return New;
1379     };
1380 
1381     // Emit a warning if the values differ and either source or destination
1382     // request Warning behavior.
1383     if ((DstBehaviorValue == Module::Warning ||
1384          SrcBehaviorValue == Module::Warning) &&
1385         SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1386       std::string Str;
1387       raw_string_ostream(Str)
1388           << "linking module flags '" << ID->getString()
1389           << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1390           << "' from " << SrcM->getModuleIdentifier() << " with '"
1391           << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1392           << ')';
1393       emitWarning(Str);
1394     }
1395 
1396     // Choose the minimum if either source or destination request Min behavior.
1397     if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) {
1398       ConstantInt *DstValue =
1399           mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1400       ConstantInt *SrcValue =
1401           mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1402 
1403       // The resulting flag should have a Min behavior, and contain the minimum
1404       // value from between the source and destination values.
1405       Metadata *FlagOps[] = {
1406           (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID,
1407           (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp)
1408               ->getOperand(2)};
1409       MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1410       DstModFlags->setOperand(DstIndex, Flag);
1411       Flags[ID].first = Flag;
1412       continue;
1413     }
1414 
1415     // Choose the maximum if either source or destination request Max behavior.
1416     if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
1417       ConstantInt *DstValue =
1418           mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1419       ConstantInt *SrcValue =
1420           mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1421 
1422       // The resulting flag should have a Max behavior, and contain the maximum
1423       // value from between the source and destination values.
1424       Metadata *FlagOps[] = {
1425           (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
1426           (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
1427               ->getOperand(2)};
1428       MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1429       DstModFlags->setOperand(DstIndex, Flag);
1430       Flags[ID].first = Flag;
1431       continue;
1432     }
1433 
1434     // Perform the merge for standard behavior types.
1435     switch (SrcBehaviorValue) {
1436     case Module::Require:
1437     case Module::Override:
1438       llvm_unreachable("not possible");
1439     case Module::Error: {
1440       // Emit an error if the values differ.
1441       if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1442         return stringErr("linking module flags '" + ID->getString() +
1443                          "': IDs have conflicting values in '" +
1444                          SrcM->getModuleIdentifier() + "' and '" +
1445                          DstM.getModuleIdentifier() + "'");
1446       continue;
1447     }
1448     case Module::Warning: {
1449       break;
1450     }
1451     case Module::Max: {
1452       break;
1453     }
1454     case Module::Append: {
1455       MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1456       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1457       for (const auto &O : SrcValue->operands())
1458         DstValue->push_back(O);
1459       break;
1460     }
1461     case Module::AppendUnique: {
1462       SmallSetVector<Metadata *, 16> Elts;
1463       MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1464       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1465       Elts.insert(DstValue->op_begin(), DstValue->op_end());
1466       Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1467       for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++)
1468         DstValue->push_back(Elts[I]);
1469       break;
1470     }
1471     }
1472 
1473   }
1474 
1475   // For the Min behavior, set the value to 0 if either module does not have the
1476   // flag.
1477   for (auto Idx : Mins) {
1478     MDNode *Op = DstModFlags->getOperand(Idx);
1479     MDString *ID = cast<MDString>(Op->getOperand(1));
1480     if (!SeenMin.count(ID)) {
1481       ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2));
1482       Metadata *FlagOps[] = {
1483           Op->getOperand(0), ID,
1484           ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))};
1485       DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps));
1486     }
1487   }
1488 
1489   // Check all of the requirements.
1490   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1491     MDNode *Requirement = Requirements[I];
1492     MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1493     Metadata *ReqValue = Requirement->getOperand(1);
1494 
1495     MDNode *Op = Flags[Flag].first;
1496     if (!Op || Op->getOperand(2) != ReqValue)
1497       return stringErr("linking module flags '" + Flag->getString() +
1498                        "': does not have the required value");
1499   }
1500   return Error::success();
1501 }
1502 
1503 /// Return InlineAsm adjusted with target-specific directives if required.
1504 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1505 /// to support mixing module-level inline assembly from ARM and Thumb modules.
1506 static std::string adjustInlineAsm(const std::string &InlineAsm,
1507                                    const Triple &Triple) {
1508   if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1509     return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1510   if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1511     return ".text\n.balign 4\n.arm\n" + InlineAsm;
1512   return InlineAsm;
1513 }
1514 
1515 void IRLinker::updateAttributes(GlobalValue &GV) {
1516   /// Remove nocallback attribute while linking, because nocallback attribute
1517   /// indicates that the function is only allowed to jump back into caller's
1518   /// module only by a return or an exception. When modules are linked, this
1519   /// property cannot be guaranteed anymore. For example, the nocallback
1520   /// function may contain a call to another module. But if we merge its caller
1521   /// and callee module here, and not the module containing the nocallback
1522   /// function definition itself, the nocallback property will be violated
1523   /// (since the nocallback function will call back into the newly merged module
1524   /// containing both its caller and callee). This could happen if the module
1525   /// containing the nocallback function definition is native code, so it does
1526   /// not participate in the LTO link. Note if the nocallback function does
1527   /// participate in the LTO link, and thus ends up in the merged module
1528   /// containing its caller and callee, removing the attribute doesn't hurt as
1529   /// it has no effect on definitions in the same module.
1530   if (auto *F = dyn_cast<Function>(&GV)) {
1531     if (!F->isIntrinsic())
1532       F->removeFnAttr(llvm::Attribute::NoCallback);
1533 
1534     // Remove nocallback attribute when it is on a call-site.
1535     for (BasicBlock &BB : *F)
1536       for (Instruction &I : BB)
1537         if (CallBase *CI = dyn_cast<CallBase>(&I))
1538           CI->removeFnAttr(Attribute::NoCallback);
1539   }
1540 }
1541 
1542 Error IRLinker::run() {
1543   // Ensure metadata materialized before value mapping.
1544   if (SrcM->getMaterializer())
1545     if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1546       return Err;
1547 
1548   DstM.IsNewDbgInfoFormat = SrcM->IsNewDbgInfoFormat;
1549 
1550   // Inherit the target data from the source module if the destination module
1551   // doesn't have one already.
1552   if (DstM.getDataLayout().isDefault())
1553     DstM.setDataLayout(SrcM->getDataLayout());
1554 
1555   // Copy the target triple from the source to dest if the dest's is empty.
1556   if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1557     DstM.setTargetTriple(SrcM->getTargetTriple());
1558 
1559   Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1560 
1561   // During CUDA compilation we have to link with the bitcode supplied with
1562   // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has
1563   // the layout that is different from the one used by LLVM/clang (it does not
1564   // include i128). Issuing a warning is not very helpful as there's not much
1565   // the user can do about it.
1566   bool EnableDLWarning = true;
1567   bool EnableTripleWarning = true;
1568   if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) {
1569     std::string ModuleId = SrcM->getModuleIdentifier();
1570     StringRef FileName = llvm::sys::path::filename(ModuleId);
1571     bool SrcIsLibDevice =
1572         FileName.starts_with("libdevice") && FileName.ends_with(".10.bc");
1573     bool SrcHasLibDeviceDL =
1574         (SrcM->getDataLayoutStr().empty() ||
1575          SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64");
1576     // libdevice bitcode uses nvptx64-nvidia-gpulibs or just
1577     // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with
1578     // all NVPTX variants.
1579     bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA &&
1580                                   SrcTriple.getOSName() == "gpulibs") ||
1581                                  (SrcTriple.getVendorName() == "unknown" &&
1582                                   SrcTriple.getOSName() == "unknown");
1583     EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple);
1584     EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL);
1585   }
1586 
1587   if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) {
1588     emitWarning("Linking two modules of different data layouts: '" +
1589                 SrcM->getModuleIdentifier() + "' is '" +
1590                 SrcM->getDataLayoutStr() + "' whereas '" +
1591                 DstM.getModuleIdentifier() + "' is '" +
1592                 DstM.getDataLayoutStr() + "'\n");
1593   }
1594 
1595   if (EnableTripleWarning && !SrcM->getTargetTriple().empty() &&
1596       !SrcTriple.isCompatibleWith(DstTriple))
1597     emitWarning("Linking two modules of different target triples: '" +
1598                 SrcM->getModuleIdentifier() + "' is '" +
1599                 SrcM->getTargetTriple() + "' whereas '" +
1600                 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1601                 "'\n");
1602 
1603   DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1604 
1605   // Loop over all of the linked values to compute type mappings.
1606   computeTypeMapping();
1607 
1608   std::reverse(Worklist.begin(), Worklist.end());
1609   while (!Worklist.empty()) {
1610     GlobalValue *GV = Worklist.back();
1611     Worklist.pop_back();
1612 
1613     // Already mapped.
1614     if (ValueMap.find(GV) != ValueMap.end() ||
1615         IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
1616       continue;
1617 
1618     assert(!GV->isDeclaration());
1619     Mapper.mapValue(*GV);
1620     if (FoundError)
1621       return std::move(*FoundError);
1622     flushRAUWWorklist();
1623   }
1624 
1625   // Note that we are done linking global value bodies. This prevents
1626   // metadata linking from creating new references.
1627   DoneLinkingBodies = true;
1628   Mapper.addFlags(RF_NullMapMissingGlobalValues);
1629 
1630   // Remap all of the named MDNodes in Src into the DstM module. We do this
1631   // after linking GlobalValues so that MDNodes that reference GlobalValues
1632   // are properly remapped.
1633   linkNamedMDNodes();
1634 
1635   // Clean up any global objects with potentially unmapped metadata.
1636   // Specifically declarations which did not become definitions.
1637   for (GlobalObject *NGO : UnmappedMetadata) {
1638     if (NGO->isDeclaration())
1639       Mapper.remapGlobalObjectMetadata(*NGO);
1640   }
1641 
1642   if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1643     // Append the module inline asm string.
1644     DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(),
1645                                                SrcTriple));
1646   } else if (IsPerformingImport) {
1647     // Import any symver directives for symbols in DstM.
1648     ModuleSymbolTable::CollectAsmSymvers(*SrcM,
1649                                          [&](StringRef Name, StringRef Alias) {
1650       if (DstM.getNamedValue(Name)) {
1651         SmallString<256> S(".symver ");
1652         S += Name;
1653         S += ", ";
1654         S += Alias;
1655         DstM.appendModuleInlineAsm(S);
1656       }
1657     });
1658   }
1659 
1660   // Reorder the globals just added to the destination module to match their
1661   // original order in the source module.
1662   for (GlobalVariable &GV : SrcM->globals()) {
1663     if (GV.hasAppendingLinkage())
1664       continue;
1665     Value *NewValue = Mapper.mapValue(GV);
1666     if (NewValue) {
1667       auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts());
1668       if (NewGV) {
1669         NewGV->removeFromParent();
1670         DstM.insertGlobalVariable(NewGV);
1671       }
1672     }
1673   }
1674 
1675   // Merge the module flags into the DstM module.
1676   return linkModuleFlagsMetadata();
1677 }
1678 
1679 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1680     : ETypes(E), IsPacked(P) {}
1681 
1682 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1683     : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1684 
1685 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1686   return IsPacked == That.IsPacked && ETypes == That.ETypes;
1687 }
1688 
1689 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1690   return !this->operator==(That);
1691 }
1692 
1693 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1694   return DenseMapInfo<StructType *>::getEmptyKey();
1695 }
1696 
1697 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1698   return DenseMapInfo<StructType *>::getTombstoneKey();
1699 }
1700 
1701 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1702   return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1703                       Key.IsPacked);
1704 }
1705 
1706 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1707   return getHashValue(KeyTy(ST));
1708 }
1709 
1710 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1711                                          const StructType *RHS) {
1712   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1713     return false;
1714   return LHS == KeyTy(RHS);
1715 }
1716 
1717 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1718                                          const StructType *RHS) {
1719   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1720     return LHS == RHS;
1721   return KeyTy(LHS) == KeyTy(RHS);
1722 }
1723 
1724 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1725   assert(!Ty->isOpaque());
1726   NonOpaqueStructTypes.insert(Ty);
1727 }
1728 
1729 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1730   assert(!Ty->isOpaque());
1731   NonOpaqueStructTypes.insert(Ty);
1732   bool Removed = OpaqueStructTypes.erase(Ty);
1733   (void)Removed;
1734   assert(Removed);
1735 }
1736 
1737 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1738   assert(Ty->isOpaque());
1739   OpaqueStructTypes.insert(Ty);
1740 }
1741 
1742 StructType *
1743 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1744                                                 bool IsPacked) {
1745   IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1746   auto I = NonOpaqueStructTypes.find_as(Key);
1747   return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1748 }
1749 
1750 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1751   if (Ty->isOpaque())
1752     return OpaqueStructTypes.count(Ty);
1753   auto I = NonOpaqueStructTypes.find(Ty);
1754   return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1755 }
1756 
1757 IRMover::IRMover(Module &M) : Composite(M) {
1758   TypeFinder StructTypes;
1759   StructTypes.run(M, /* OnlyNamed */ false);
1760   for (StructType *Ty : StructTypes) {
1761     if (Ty->isOpaque())
1762       IdentifiedStructTypes.addOpaque(Ty);
1763     else
1764       IdentifiedStructTypes.addNonOpaque(Ty);
1765   }
1766   // Self-map metadatas in the destination module. This is needed when
1767   // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1768   // destination module may be reached from the source module.
1769   for (const auto *MD : StructTypes.getVisitedMetadata()) {
1770     SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1771   }
1772 }
1773 
1774 Error IRMover::move(std::unique_ptr<Module> Src,
1775                     ArrayRef<GlobalValue *> ValuesToLink,
1776                     LazyCallback AddLazyFor, bool IsPerformingImport) {
1777   IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1778                        std::move(Src), ValuesToLink, std::move(AddLazyFor),
1779                        IsPerformingImport);
1780   Error E = TheIRLinker.run();
1781   Composite.dropTriviallyDeadConstantArrays();
1782   return E;
1783 }
1784