1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/StackSafetyAnalysis.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeReader.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/DiagnosticPrinter.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMRemarkStreamer.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/LTO/LTOBackend.h" 34 #include "llvm/LTO/SummaryBasedOptimizations.h" 35 #include "llvm/Linker/IRMover.h" 36 #include "llvm/MC/TargetRegistry.h" 37 #include "llvm/Object/IRObjectFile.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/FileSystem.h" 41 #include "llvm/Support/ManagedStatic.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/SHA1.h" 45 #include "llvm/Support/SourceMgr.h" 46 #include "llvm/Support/ThreadPool.h" 47 #include "llvm/Support/Threading.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/ToolOutputFile.h" 50 #include "llvm/Support/VCSRevision.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 56 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 57 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 58 #include "llvm/Transforms/Utils/SplitModule.h" 59 60 #include <set> 61 62 using namespace llvm; 63 using namespace lto; 64 using namespace object; 65 66 #define DEBUG_TYPE "lto" 67 68 static cl::opt<bool> 69 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 70 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 71 72 /// Enable global value internalization in LTO. 73 cl::opt<bool> EnableLTOInternalization( 74 "enable-lto-internalization", cl::init(true), cl::Hidden, 75 cl::desc("Enable global value internalization in LTO")); 76 77 // Computes a unique hash for the Module considering the current list of 78 // export/import and other global analysis results. 79 // The hash is produced in \p Key. 80 void llvm::computeLTOCacheKey( 81 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 82 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 83 const FunctionImporter::ExportSetTy &ExportList, 84 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 85 const GVSummaryMapTy &DefinedGlobals, 86 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 87 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 88 // Compute the unique hash for this entry. 89 // This is based on the current compiler version, the module itself, the 90 // export list, the hash for every single module in the import list, the 91 // list of ResolvedODR for the module, and the list of preserved symbols. 92 SHA1 Hasher; 93 94 // Start with the compiler revision 95 Hasher.update(LLVM_VERSION_STRING); 96 #ifdef LLVM_REVISION 97 Hasher.update(LLVM_REVISION); 98 #endif 99 100 // Include the parts of the LTO configuration that affect code generation. 101 auto AddString = [&](StringRef Str) { 102 Hasher.update(Str); 103 Hasher.update(ArrayRef<uint8_t>{0}); 104 }; 105 auto AddUnsigned = [&](unsigned I) { 106 uint8_t Data[4]; 107 support::endian::write32le(Data, I); 108 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 109 }; 110 auto AddUint64 = [&](uint64_t I) { 111 uint8_t Data[8]; 112 support::endian::write64le(Data, I); 113 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 114 }; 115 AddString(Conf.CPU); 116 // FIXME: Hash more of Options. For now all clients initialize Options from 117 // command-line flags (which is unsupported in production), but may set 118 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 119 // DataSections and DebuggerTuning via command line flags. 120 AddUnsigned(Conf.Options.RelaxELFRelocations); 121 AddUnsigned(Conf.Options.FunctionSections); 122 AddUnsigned(Conf.Options.DataSections); 123 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 124 for (auto &A : Conf.MAttrs) 125 AddString(A); 126 if (Conf.RelocModel) 127 AddUnsigned(*Conf.RelocModel); 128 else 129 AddUnsigned(-1); 130 if (Conf.CodeModel) 131 AddUnsigned(*Conf.CodeModel); 132 else 133 AddUnsigned(-1); 134 AddUnsigned(Conf.CGOptLevel); 135 AddUnsigned(Conf.CGFileType); 136 AddUnsigned(Conf.OptLevel); 137 AddUnsigned(Conf.UseNewPM); 138 AddUnsigned(Conf.Freestanding); 139 AddString(Conf.OptPipeline); 140 AddString(Conf.AAPipeline); 141 AddString(Conf.OverrideTriple); 142 AddString(Conf.DefaultTriple); 143 AddString(Conf.DwoDir); 144 145 // Include the hash for the current module 146 auto ModHash = Index.getModuleHash(ModuleID); 147 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 148 149 std::vector<uint64_t> ExportsGUID; 150 ExportsGUID.reserve(ExportList.size()); 151 for (const auto &VI : ExportList) { 152 auto GUID = VI.getGUID(); 153 ExportsGUID.push_back(GUID); 154 } 155 156 // Sort the export list elements GUIDs. 157 llvm::sort(ExportsGUID); 158 for (uint64_t GUID : ExportsGUID) { 159 // The export list can impact the internalization, be conservative here 160 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 161 } 162 163 // Include the hash for every module we import functions from. The set of 164 // imported symbols for each module may affect code generation and is 165 // sensitive to link order, so include that as well. 166 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 167 std::vector<ImportMapIteratorTy> ImportModulesVector; 168 ImportModulesVector.reserve(ImportList.size()); 169 170 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 171 ++It) { 172 ImportModulesVector.push_back(It); 173 } 174 llvm::sort(ImportModulesVector, 175 [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs) 176 -> bool { return Lhs->getKey() < Rhs->getKey(); }); 177 for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) { 178 auto ModHash = Index.getModuleHash(EntryIt->first()); 179 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 180 181 AddUint64(EntryIt->second.size()); 182 for (auto &Fn : EntryIt->second) 183 AddUint64(Fn); 184 } 185 186 // Include the hash for the resolved ODR. 187 for (auto &Entry : ResolvedODR) { 188 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 189 sizeof(GlobalValue::GUID))); 190 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 191 sizeof(GlobalValue::LinkageTypes))); 192 } 193 194 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 195 // defined in this module. 196 std::set<GlobalValue::GUID> UsedCfiDefs; 197 std::set<GlobalValue::GUID> UsedCfiDecls; 198 199 // Typeids used in this module. 200 std::set<GlobalValue::GUID> UsedTypeIds; 201 202 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 203 if (CfiFunctionDefs.count(ValueGUID)) 204 UsedCfiDefs.insert(ValueGUID); 205 if (CfiFunctionDecls.count(ValueGUID)) 206 UsedCfiDecls.insert(ValueGUID); 207 }; 208 209 auto AddUsedThings = [&](GlobalValueSummary *GS) { 210 if (!GS) return; 211 AddUnsigned(GS->getVisibility()); 212 AddUnsigned(GS->isLive()); 213 AddUnsigned(GS->canAutoHide()); 214 for (const ValueInfo &VI : GS->refs()) { 215 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 216 AddUsedCfiGlobal(VI.getGUID()); 217 } 218 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 219 AddUnsigned(GVS->maybeReadOnly()); 220 AddUnsigned(GVS->maybeWriteOnly()); 221 } 222 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 223 for (auto &TT : FS->type_tests()) 224 UsedTypeIds.insert(TT); 225 for (auto &TT : FS->type_test_assume_vcalls()) 226 UsedTypeIds.insert(TT.GUID); 227 for (auto &TT : FS->type_checked_load_vcalls()) 228 UsedTypeIds.insert(TT.GUID); 229 for (auto &TT : FS->type_test_assume_const_vcalls()) 230 UsedTypeIds.insert(TT.VFunc.GUID); 231 for (auto &TT : FS->type_checked_load_const_vcalls()) 232 UsedTypeIds.insert(TT.VFunc.GUID); 233 for (auto &ET : FS->calls()) { 234 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 235 AddUsedCfiGlobal(ET.first.getGUID()); 236 } 237 } 238 }; 239 240 // Include the hash for the linkage type to reflect internalization and weak 241 // resolution, and collect any used type identifier resolutions. 242 for (auto &GS : DefinedGlobals) { 243 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 244 Hasher.update( 245 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 246 AddUsedCfiGlobal(GS.first); 247 AddUsedThings(GS.second); 248 } 249 250 // Imported functions may introduce new uses of type identifier resolutions, 251 // so we need to collect their used resolutions as well. 252 for (auto &ImpM : ImportList) 253 for (auto &ImpF : ImpM.second) { 254 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 255 AddUsedThings(S); 256 // If this is an alias, we also care about any types/etc. that the aliasee 257 // may reference. 258 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 259 AddUsedThings(AS->getBaseObject()); 260 } 261 262 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 263 AddString(TId); 264 265 AddUnsigned(S.TTRes.TheKind); 266 AddUnsigned(S.TTRes.SizeM1BitWidth); 267 268 AddUint64(S.TTRes.AlignLog2); 269 AddUint64(S.TTRes.SizeM1); 270 AddUint64(S.TTRes.BitMask); 271 AddUint64(S.TTRes.InlineBits); 272 273 AddUint64(S.WPDRes.size()); 274 for (auto &WPD : S.WPDRes) { 275 AddUnsigned(WPD.first); 276 AddUnsigned(WPD.second.TheKind); 277 AddString(WPD.second.SingleImplName); 278 279 AddUint64(WPD.second.ResByArg.size()); 280 for (auto &ByArg : WPD.second.ResByArg) { 281 AddUint64(ByArg.first.size()); 282 for (uint64_t Arg : ByArg.first) 283 AddUint64(Arg); 284 AddUnsigned(ByArg.second.TheKind); 285 AddUint64(ByArg.second.Info); 286 AddUnsigned(ByArg.second.Byte); 287 AddUnsigned(ByArg.second.Bit); 288 } 289 } 290 }; 291 292 // Include the hash for all type identifiers used by this module. 293 for (GlobalValue::GUID TId : UsedTypeIds) { 294 auto TidIter = Index.typeIds().equal_range(TId); 295 for (auto It = TidIter.first; It != TidIter.second; ++It) 296 AddTypeIdSummary(It->second.first, It->second.second); 297 } 298 299 AddUnsigned(UsedCfiDefs.size()); 300 for (auto &V : UsedCfiDefs) 301 AddUint64(V); 302 303 AddUnsigned(UsedCfiDecls.size()); 304 for (auto &V : UsedCfiDecls) 305 AddUint64(V); 306 307 if (!Conf.SampleProfile.empty()) { 308 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 309 if (FileOrErr) { 310 Hasher.update(FileOrErr.get()->getBuffer()); 311 312 if (!Conf.ProfileRemapping.empty()) { 313 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 314 if (FileOrErr) 315 Hasher.update(FileOrErr.get()->getBuffer()); 316 } 317 } 318 } 319 320 Key = toHex(Hasher.result()); 321 } 322 323 static void thinLTOResolvePrevailingGUID( 324 const Config &C, ValueInfo VI, 325 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 326 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 327 isPrevailing, 328 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 329 recordNewLinkage, 330 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 331 GlobalValue::VisibilityTypes Visibility = 332 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 333 : GlobalValue::DefaultVisibility; 334 for (auto &S : VI.getSummaryList()) { 335 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 336 // Ignore local and appending linkage values since the linker 337 // doesn't resolve them. 338 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 339 GlobalValue::isAppendingLinkage(S->linkage())) 340 continue; 341 // We need to emit only one of these. The prevailing module will keep it, 342 // but turned into a weak, while the others will drop it when possible. 343 // This is both a compile-time optimization and a correctness 344 // transformation. This is necessary for correctness when we have exported 345 // a reference - we need to convert the linkonce to weak to 346 // ensure a copy is kept to satisfy the exported reference. 347 // FIXME: We may want to split the compile time and correctness 348 // aspects into separate routines. 349 if (isPrevailing(VI.getGUID(), S.get())) { 350 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 351 S->setLinkage(GlobalValue::getWeakLinkage( 352 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 353 // The kept copy is eligible for auto-hiding (hidden visibility) if all 354 // copies were (i.e. they were all linkonce_odr global unnamed addr). 355 // If any copy is not (e.g. it was originally weak_odr), then the symbol 356 // must remain externally available (e.g. a weak_odr from an explicitly 357 // instantiated template). Additionally, if it is in the 358 // GUIDPreservedSymbols set, that means that it is visibile outside 359 // the summary (e.g. in a native object or a bitcode file without 360 // summary), and in that case we cannot hide it as it isn't possible to 361 // check all copies. 362 S->setCanAutoHide(VI.canAutoHide() && 363 !GUIDPreservedSymbols.count(VI.getGUID())); 364 } 365 if (C.VisibilityScheme == Config::FromPrevailing) 366 Visibility = S->getVisibility(); 367 } 368 // Alias and aliasee can't be turned into available_externally. 369 else if (!isa<AliasSummary>(S.get()) && 370 !GlobalInvolvedWithAlias.count(S.get())) 371 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 372 373 // For ELF, set visibility to the computed visibility from summaries. We 374 // don't track visibility from declarations so this may be more relaxed than 375 // the most constraining one. 376 if (C.VisibilityScheme == Config::ELF) 377 S->setVisibility(Visibility); 378 379 if (S->linkage() != OriginalLinkage) 380 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 381 } 382 383 if (C.VisibilityScheme == Config::FromPrevailing) { 384 for (auto &S : VI.getSummaryList()) { 385 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 386 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 387 GlobalValue::isAppendingLinkage(S->linkage())) 388 continue; 389 S->setVisibility(Visibility); 390 } 391 } 392 } 393 394 /// Resolve linkage for prevailing symbols in the \p Index. 395 // 396 // We'd like to drop these functions if they are no longer referenced in the 397 // current module. However there is a chance that another module is still 398 // referencing them because of the import. We make sure we always emit at least 399 // one copy. 400 void llvm::thinLTOResolvePrevailingInIndex( 401 const Config &C, ModuleSummaryIndex &Index, 402 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 403 isPrevailing, 404 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 405 recordNewLinkage, 406 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 407 // We won't optimize the globals that are referenced by an alias for now 408 // Ideally we should turn the alias into a global and duplicate the definition 409 // when needed. 410 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 411 for (auto &I : Index) 412 for (auto &S : I.second.SummaryList) 413 if (auto AS = dyn_cast<AliasSummary>(S.get())) 414 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 415 416 for (auto &I : Index) 417 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 418 GlobalInvolvedWithAlias, isPrevailing, 419 recordNewLinkage, GUIDPreservedSymbols); 420 } 421 422 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 423 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 424 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 425 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 426 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 427 return false; 428 } 429 430 static void thinLTOInternalizeAndPromoteGUID( 431 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 432 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 433 isPrevailing) { 434 for (auto &S : VI.getSummaryList()) { 435 if (isExported(S->modulePath(), VI)) { 436 if (GlobalValue::isLocalLinkage(S->linkage())) 437 S->setLinkage(GlobalValue::ExternalLinkage); 438 } else if (EnableLTOInternalization && 439 // Ignore local and appending linkage values since the linker 440 // doesn't resolve them. 441 !GlobalValue::isLocalLinkage(S->linkage()) && 442 (!GlobalValue::isInterposableLinkage(S->linkage()) || 443 isPrevailing(VI.getGUID(), S.get())) && 444 S->linkage() != GlobalValue::AppendingLinkage && 445 // We can't internalize available_externally globals because this 446 // can break function pointer equality. 447 S->linkage() != GlobalValue::AvailableExternallyLinkage && 448 // Functions and read-only variables with linkonce_odr and 449 // weak_odr linkage can be internalized. We can't internalize 450 // linkonce_odr and weak_odr variables which are both modified 451 // and read somewhere in the program because reads and writes 452 // will become inconsistent. 453 !isWeakObjectWithRWAccess(S.get())) 454 S->setLinkage(GlobalValue::InternalLinkage); 455 } 456 } 457 458 // Update the linkages in the given \p Index to mark exported values 459 // as external and non-exported values as internal. 460 void llvm::thinLTOInternalizeAndPromoteInIndex( 461 ModuleSummaryIndex &Index, 462 function_ref<bool(StringRef, ValueInfo)> isExported, 463 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 464 isPrevailing) { 465 for (auto &I : Index) 466 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 467 isPrevailing); 468 } 469 470 // Requires a destructor for std::vector<InputModule>. 471 InputFile::~InputFile() = default; 472 473 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 474 std::unique_ptr<InputFile> File(new InputFile); 475 476 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 477 if (!FOrErr) 478 return FOrErr.takeError(); 479 480 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 481 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 482 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 483 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 484 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 485 486 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 487 size_t Begin = File->Symbols.size(); 488 for (const irsymtab::Reader::SymbolRef &Sym : 489 FOrErr->TheReader.module_symbols(I)) 490 // Skip symbols that are irrelevant to LTO. Note that this condition needs 491 // to match the one in Skip() in LTO::addRegularLTO(). 492 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 493 File->Symbols.push_back(Sym); 494 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 495 } 496 497 File->Mods = FOrErr->Mods; 498 File->Strtab = std::move(FOrErr->Strtab); 499 return std::move(File); 500 } 501 502 StringRef InputFile::getName() const { 503 return Mods[0].getModuleIdentifier(); 504 } 505 506 BitcodeModule &InputFile::getSingleBitcodeModule() { 507 assert(Mods.size() == 1 && "Expect only one bitcode module"); 508 return Mods[0]; 509 } 510 511 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 512 const Config &Conf) 513 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 514 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 515 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 516 517 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 518 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 519 if (!Backend) 520 this->Backend = 521 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 522 } 523 524 LTO::LTO(Config Conf, ThinBackend Backend, 525 unsigned ParallelCodeGenParallelismLevel) 526 : Conf(std::move(Conf)), 527 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 528 ThinLTO(std::move(Backend)) {} 529 530 // Requires a destructor for MapVector<BitcodeModule>. 531 LTO::~LTO() = default; 532 533 // Add the symbols in the given module to the GlobalResolutions map, and resolve 534 // their partitions. 535 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 536 ArrayRef<SymbolResolution> Res, 537 unsigned Partition, bool InSummary) { 538 auto *ResI = Res.begin(); 539 auto *ResE = Res.end(); 540 (void)ResE; 541 const Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 542 for (const InputFile::Symbol &Sym : Syms) { 543 assert(ResI != ResE); 544 SymbolResolution Res = *ResI++; 545 546 StringRef Name = Sym.getName(); 547 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 548 // way they are handled by lld), otherwise we can end up with two 549 // global resolutions (one with and one for a copy of the symbol without). 550 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 551 Name = Name.substr(strlen("__imp_")); 552 auto &GlobalRes = GlobalResolutions[Name]; 553 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 554 if (Res.Prevailing) { 555 assert(!GlobalRes.Prevailing && 556 "Multiple prevailing defs are not allowed"); 557 GlobalRes.Prevailing = true; 558 GlobalRes.IRName = std::string(Sym.getIRName()); 559 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 560 // Sometimes it can be two copies of symbol in a module and prevailing 561 // symbol can have no IR name. That might happen if symbol is defined in 562 // module level inline asm block. In case we have multiple modules with 563 // the same symbol we want to use IR name of the prevailing symbol. 564 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 565 // we can later use it to check if there is any prevailing copy in IR. 566 GlobalRes.IRName = std::string(Sym.getIRName()); 567 } 568 569 // Set the partition to external if we know it is re-defined by the linker 570 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 571 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 572 // already recorded as being referenced from a different partition. 573 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 574 (GlobalRes.Partition != GlobalResolution::Unknown && 575 GlobalRes.Partition != Partition)) { 576 GlobalRes.Partition = GlobalResolution::External; 577 } else 578 // First recorded reference, save the current partition. 579 GlobalRes.Partition = Partition; 580 581 // Flag as visible outside of summary if visible from a regular object or 582 // from a module that does not have a summary. 583 GlobalRes.VisibleOutsideSummary |= 584 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 585 586 GlobalRes.ExportDynamic |= Res.ExportDynamic; 587 } 588 } 589 590 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 591 ArrayRef<SymbolResolution> Res) { 592 StringRef Path = Input->getName(); 593 OS << Path << '\n'; 594 auto ResI = Res.begin(); 595 for (const InputFile::Symbol &Sym : Input->symbols()) { 596 assert(ResI != Res.end()); 597 SymbolResolution Res = *ResI++; 598 599 OS << "-r=" << Path << ',' << Sym.getName() << ','; 600 if (Res.Prevailing) 601 OS << 'p'; 602 if (Res.FinalDefinitionInLinkageUnit) 603 OS << 'l'; 604 if (Res.VisibleToRegularObj) 605 OS << 'x'; 606 if (Res.LinkerRedefined) 607 OS << 'r'; 608 OS << '\n'; 609 } 610 OS.flush(); 611 assert(ResI == Res.end()); 612 } 613 614 Error LTO::add(std::unique_ptr<InputFile> Input, 615 ArrayRef<SymbolResolution> Res) { 616 assert(!CalledGetMaxTasks); 617 618 if (Conf.ResolutionFile) 619 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 620 621 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 622 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 623 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 624 Conf.VisibilityScheme = Config::ELF; 625 } 626 627 const SymbolResolution *ResI = Res.begin(); 628 for (unsigned I = 0; I != Input->Mods.size(); ++I) 629 if (Error Err = addModule(*Input, I, ResI, Res.end())) 630 return Err; 631 632 assert(ResI == Res.end()); 633 return Error::success(); 634 } 635 636 Error LTO::addModule(InputFile &Input, unsigned ModI, 637 const SymbolResolution *&ResI, 638 const SymbolResolution *ResE) { 639 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 640 if (!LTOInfo) 641 return LTOInfo.takeError(); 642 643 if (EnableSplitLTOUnit.hasValue()) { 644 // If only some modules were split, flag this in the index so that 645 // we can skip or error on optimizations that need consistently split 646 // modules (whole program devirt and lower type tests). 647 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 648 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 649 } else 650 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 651 652 BitcodeModule BM = Input.Mods[ModI]; 653 auto ModSyms = Input.module_symbols(ModI); 654 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 655 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 656 LTOInfo->HasSummary); 657 658 if (LTOInfo->IsThinLTO) 659 return addThinLTO(BM, ModSyms, ResI, ResE); 660 661 RegularLTO.EmptyCombinedModule = false; 662 Expected<RegularLTOState::AddedModule> ModOrErr = 663 addRegularLTO(BM, ModSyms, ResI, ResE); 664 if (!ModOrErr) 665 return ModOrErr.takeError(); 666 667 if (!LTOInfo->HasSummary) 668 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 669 670 // Regular LTO module summaries are added to a dummy module that represents 671 // the combined regular LTO module. 672 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 673 return Err; 674 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 675 return Error::success(); 676 } 677 678 // Checks whether the given global value is in a non-prevailing comdat 679 // (comdat containing values the linker indicated were not prevailing, 680 // which we then dropped to available_externally), and if so, removes 681 // it from the comdat. This is called for all global values to ensure the 682 // comdat is empty rather than leaving an incomplete comdat. It is needed for 683 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 684 // and thin LTO modules) compilation. Since the regular LTO module will be 685 // linked first in the final native link, we want to make sure the linker 686 // doesn't select any of these incomplete comdats that would be left 687 // in the regular LTO module without this cleanup. 688 static void 689 handleNonPrevailingComdat(GlobalValue &GV, 690 std::set<const Comdat *> &NonPrevailingComdats) { 691 Comdat *C = GV.getComdat(); 692 if (!C) 693 return; 694 695 if (!NonPrevailingComdats.count(C)) 696 return; 697 698 // Additionally need to drop externally visible global values from the comdat 699 // to available_externally, so that there aren't multiply defined linker 700 // errors. 701 if (!GV.hasLocalLinkage()) 702 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 703 704 if (auto GO = dyn_cast<GlobalObject>(&GV)) 705 GO->setComdat(nullptr); 706 } 707 708 // Add a regular LTO object to the link. 709 // The resulting module needs to be linked into the combined LTO module with 710 // linkRegularLTO. 711 Expected<LTO::RegularLTOState::AddedModule> 712 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 713 const SymbolResolution *&ResI, 714 const SymbolResolution *ResE) { 715 RegularLTOState::AddedModule Mod; 716 Expected<std::unique_ptr<Module>> MOrErr = 717 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 718 /*IsImporting*/ false); 719 if (!MOrErr) 720 return MOrErr.takeError(); 721 Module &M = **MOrErr; 722 Mod.M = std::move(*MOrErr); 723 724 if (Error Err = M.materializeMetadata()) 725 return std::move(Err); 726 UpgradeDebugInfo(M); 727 728 ModuleSymbolTable SymTab; 729 SymTab.addModule(&M); 730 731 for (GlobalVariable &GV : M.globals()) 732 if (GV.hasAppendingLinkage()) 733 Mod.Keep.push_back(&GV); 734 735 DenseSet<GlobalObject *> AliasedGlobals; 736 for (auto &GA : M.aliases()) 737 if (GlobalObject *GO = GA.getAliaseeObject()) 738 AliasedGlobals.insert(GO); 739 740 // In this function we need IR GlobalValues matching the symbols in Syms 741 // (which is not backed by a module), so we need to enumerate them in the same 742 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 743 // matches the order of an irsymtab, but when we read the irsymtab in 744 // InputFile::create we omit some symbols that are irrelevant to LTO. The 745 // Skip() function skips the same symbols from the module as InputFile does 746 // from the symbol table. 747 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 748 auto Skip = [&]() { 749 while (MsymI != MsymE) { 750 auto Flags = SymTab.getSymbolFlags(*MsymI); 751 if ((Flags & object::BasicSymbolRef::SF_Global) && 752 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 753 return; 754 ++MsymI; 755 } 756 }; 757 Skip(); 758 759 std::set<const Comdat *> NonPrevailingComdats; 760 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 761 for (const InputFile::Symbol &Sym : Syms) { 762 assert(ResI != ResE); 763 SymbolResolution Res = *ResI++; 764 765 assert(MsymI != MsymE); 766 ModuleSymbolTable::Symbol Msym = *MsymI++; 767 Skip(); 768 769 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 770 if (Res.Prevailing) { 771 if (Sym.isUndefined()) 772 continue; 773 Mod.Keep.push_back(GV); 774 // For symbols re-defined with linker -wrap and -defsym options, 775 // set the linkage to weak to inhibit IPO. The linkage will be 776 // restored by the linker. 777 if (Res.LinkerRedefined) 778 GV->setLinkage(GlobalValue::WeakAnyLinkage); 779 780 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 781 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 782 GV->setLinkage(GlobalValue::getWeakLinkage( 783 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 784 } else if (isa<GlobalObject>(GV) && 785 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 786 GV->hasAvailableExternallyLinkage()) && 787 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 788 // Any of the above three types of linkage indicates that the 789 // chosen prevailing symbol will have the same semantics as this copy of 790 // the symbol, so we may be able to link it with available_externally 791 // linkage. We will decide later whether to do that when we link this 792 // module (in linkRegularLTO), based on whether it is undefined. 793 Mod.Keep.push_back(GV); 794 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 795 if (GV->hasComdat()) 796 NonPrevailingComdats.insert(GV->getComdat()); 797 cast<GlobalObject>(GV)->setComdat(nullptr); 798 } 799 800 // Set the 'local' flag based on the linker resolution for this symbol. 801 if (Res.FinalDefinitionInLinkageUnit) { 802 GV->setDSOLocal(true); 803 if (GV->hasDLLImportStorageClass()) 804 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 805 DefaultStorageClass); 806 } 807 } else if (auto *AS = Msym.dyn_cast<ModuleSymbolTable::AsmSymbol *>()) { 808 // Collect non-prevailing symbols. 809 if (!Res.Prevailing) 810 NonPrevailingAsmSymbols.insert(AS->first); 811 } else { 812 llvm_unreachable("unknown symbol type"); 813 } 814 815 // Common resolution: collect the maximum size/alignment over all commons. 816 // We also record if we see an instance of a common as prevailing, so that 817 // if none is prevailing we can ignore it later. 818 if (Sym.isCommon()) { 819 // FIXME: We should figure out what to do about commons defined by asm. 820 // For now they aren't reported correctly by ModuleSymbolTable. 821 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 822 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 823 MaybeAlign SymAlign(Sym.getCommonAlignment()); 824 if (SymAlign) 825 CommonRes.Align = max(*SymAlign, CommonRes.Align); 826 CommonRes.Prevailing |= Res.Prevailing; 827 } 828 } 829 830 if (!M.getComdatSymbolTable().empty()) 831 for (GlobalValue &GV : M.global_values()) 832 handleNonPrevailingComdat(GV, NonPrevailingComdats); 833 834 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 835 // block. 836 if (!M.getModuleInlineAsm().empty()) { 837 std::string NewIA = ".lto_discard"; 838 if (!NonPrevailingAsmSymbols.empty()) { 839 // Don't dicard a symbol if there is a live .symver for it. 840 ModuleSymbolTable::CollectAsmSymvers( 841 M, [&](StringRef Name, StringRef Alias) { 842 if (!NonPrevailingAsmSymbols.count(Alias)) 843 NonPrevailingAsmSymbols.erase(Name); 844 }); 845 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 846 } 847 NewIA += "\n"; 848 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 849 } 850 851 assert(MsymI == MsymE); 852 return std::move(Mod); 853 } 854 855 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 856 bool LivenessFromIndex) { 857 std::vector<GlobalValue *> Keep; 858 for (GlobalValue *GV : Mod.Keep) { 859 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 860 if (Function *F = dyn_cast<Function>(GV)) { 861 if (DiagnosticOutputFile) { 862 if (Error Err = F->materialize()) 863 return Err; 864 OptimizationRemarkEmitter ORE(F, nullptr); 865 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 866 << ore::NV("Function", F) 867 << " not added to the combined module "); 868 } 869 } 870 continue; 871 } 872 873 if (!GV->hasAvailableExternallyLinkage()) { 874 Keep.push_back(GV); 875 continue; 876 } 877 878 // Only link available_externally definitions if we don't already have a 879 // definition. 880 GlobalValue *CombinedGV = 881 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 882 if (CombinedGV && !CombinedGV->isDeclaration()) 883 continue; 884 885 Keep.push_back(GV); 886 } 887 888 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 889 [](GlobalValue &, IRMover::ValueAdder) {}, 890 /* IsPerformingImport */ false); 891 } 892 893 // Add a ThinLTO module to the link. 894 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 895 const SymbolResolution *&ResI, 896 const SymbolResolution *ResE) { 897 if (Error Err = 898 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 899 ThinLTO.ModuleMap.size())) 900 return Err; 901 902 for (const InputFile::Symbol &Sym : Syms) { 903 assert(ResI != ResE); 904 SymbolResolution Res = *ResI++; 905 906 if (!Sym.getIRName().empty()) { 907 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 908 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 909 if (Res.Prevailing) { 910 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 911 912 // For linker redefined symbols (via --wrap or --defsym) we want to 913 // switch the linkage to `weak` to prevent IPOs from happening. 914 // Find the summary in the module for this very GV and record the new 915 // linkage so that we can switch it when we import the GV. 916 if (Res.LinkerRedefined) 917 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 918 GUID, BM.getModuleIdentifier())) 919 S->setLinkage(GlobalValue::WeakAnyLinkage); 920 } 921 922 // If the linker resolved the symbol to a local definition then mark it 923 // as local in the summary for the module we are adding. 924 if (Res.FinalDefinitionInLinkageUnit) { 925 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 926 GUID, BM.getModuleIdentifier())) { 927 S->setDSOLocal(true); 928 } 929 } 930 } 931 } 932 933 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 934 return make_error<StringError>( 935 "Expected at most one ThinLTO module per bitcode file", 936 inconvertibleErrorCode()); 937 938 if (!Conf.ThinLTOModulesToCompile.empty()) { 939 if (!ThinLTO.ModulesToCompile) 940 ThinLTO.ModulesToCompile = ModuleMapType(); 941 // This is a fuzzy name matching where only modules with name containing the 942 // specified switch values are going to be compiled. 943 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 944 if (BM.getModuleIdentifier().contains(Name)) { 945 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 946 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 947 << " to compile\n"; 948 } 949 } 950 } 951 952 return Error::success(); 953 } 954 955 unsigned LTO::getMaxTasks() const { 956 CalledGetMaxTasks = true; 957 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 958 : ThinLTO.ModuleMap.size(); 959 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 960 } 961 962 // If only some of the modules were split, we cannot correctly handle 963 // code that contains type tests or type checked loads. 964 Error LTO::checkPartiallySplit() { 965 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 966 return Error::success(); 967 968 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 969 Intrinsic::getName(Intrinsic::type_test)); 970 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 971 Intrinsic::getName(Intrinsic::type_checked_load)); 972 973 // First check if there are type tests / type checked loads in the 974 // merged regular LTO module IR. 975 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 976 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 977 return make_error<StringError>( 978 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 979 inconvertibleErrorCode()); 980 981 // Otherwise check if there are any recorded in the combined summary from the 982 // ThinLTO modules. 983 for (auto &P : ThinLTO.CombinedIndex) { 984 for (auto &S : P.second.SummaryList) { 985 auto *FS = dyn_cast<FunctionSummary>(S.get()); 986 if (!FS) 987 continue; 988 if (!FS->type_test_assume_vcalls().empty() || 989 !FS->type_checked_load_vcalls().empty() || 990 !FS->type_test_assume_const_vcalls().empty() || 991 !FS->type_checked_load_const_vcalls().empty() || 992 !FS->type_tests().empty()) 993 return make_error<StringError>( 994 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 995 inconvertibleErrorCode()); 996 } 997 } 998 return Error::success(); 999 } 1000 1001 Error LTO::run(AddStreamFn AddStream, FileCache Cache) { 1002 // Compute "dead" symbols, we don't want to import/export these! 1003 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 1004 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 1005 for (auto &Res : GlobalResolutions) { 1006 // Normally resolution have IR name of symbol. We can do nothing here 1007 // otherwise. See comments in GlobalResolution struct for more details. 1008 if (Res.second.IRName.empty()) 1009 continue; 1010 1011 GlobalValue::GUID GUID = GlobalValue::getGUID( 1012 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1013 1014 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1015 GUIDPreservedSymbols.insert(GUID); 1016 1017 if (Res.second.ExportDynamic) 1018 DynamicExportSymbols.insert(GUID); 1019 1020 GUIDPrevailingResolutions[GUID] = 1021 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1022 } 1023 1024 auto isPrevailing = [&](GlobalValue::GUID G) { 1025 auto It = GUIDPrevailingResolutions.find(G); 1026 if (It == GUIDPrevailingResolutions.end()) 1027 return PrevailingType::Unknown; 1028 return It->second; 1029 }; 1030 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1031 isPrevailing, Conf.OptLevel > 0); 1032 1033 // Setup output file to emit statistics. 1034 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1035 if (!StatsFileOrErr) 1036 return StatsFileOrErr.takeError(); 1037 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1038 1039 Error Result = runRegularLTO(AddStream); 1040 if (!Result) 1041 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1042 1043 if (StatsFile) 1044 PrintStatisticsJSON(StatsFile->os()); 1045 1046 return Result; 1047 } 1048 1049 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1050 // Setup optimization remarks. 1051 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1052 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1053 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1054 Conf.RemarksHotnessThreshold); 1055 if (!DiagFileOrErr) 1056 return DiagFileOrErr.takeError(); 1057 DiagnosticOutputFile = std::move(*DiagFileOrErr); 1058 1059 // Finalize linking of regular LTO modules containing summaries now that 1060 // we have computed liveness information. 1061 for (auto &M : RegularLTO.ModsWithSummaries) 1062 if (Error Err = linkRegularLTO(std::move(M), 1063 /*LivenessFromIndex=*/true)) 1064 return Err; 1065 1066 // Ensure we don't have inconsistently split LTO units with type tests. 1067 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1068 // this path both cases but eventually this should be split into two and 1069 // do the ThinLTO checks in `runThinLTO`. 1070 if (Error Err = checkPartiallySplit()) 1071 return Err; 1072 1073 // Make sure commons have the right size/alignment: we kept the largest from 1074 // all the prevailing when adding the inputs, and we apply it here. 1075 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1076 for (auto &I : RegularLTO.Commons) { 1077 if (!I.second.Prevailing) 1078 // Don't do anything if no instance of this common was prevailing. 1079 continue; 1080 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1081 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1082 // Don't create a new global if the type is already correct, just make 1083 // sure the alignment is correct. 1084 OldGV->setAlignment(I.second.Align); 1085 continue; 1086 } 1087 ArrayType *Ty = 1088 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1089 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1090 GlobalValue::CommonLinkage, 1091 ConstantAggregateZero::get(Ty), ""); 1092 GV->setAlignment(I.second.Align); 1093 if (OldGV) { 1094 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 1095 GV->takeName(OldGV); 1096 OldGV->eraseFromParent(); 1097 } else { 1098 GV->setName(I.first); 1099 } 1100 } 1101 1102 // If allowed, upgrade public vcall visibility metadata to linkage unit 1103 // visibility before whole program devirtualization in the optimizer. 1104 updateVCallVisibilityInModule(*RegularLTO.CombinedModule, 1105 Conf.HasWholeProgramVisibility, 1106 DynamicExportSymbols); 1107 1108 if (Conf.PreOptModuleHook && 1109 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1110 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1111 1112 if (!Conf.CodeGenOnly) { 1113 for (const auto &R : GlobalResolutions) { 1114 if (!R.second.isPrevailingIRSymbol()) 1115 continue; 1116 if (R.second.Partition != 0 && 1117 R.second.Partition != GlobalResolution::External) 1118 continue; 1119 1120 GlobalValue *GV = 1121 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1122 // Ignore symbols defined in other partitions. 1123 // Also skip declarations, which are not allowed to have internal linkage. 1124 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1125 continue; 1126 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1127 : GlobalValue::UnnamedAddr::None); 1128 if (EnableLTOInternalization && R.second.Partition == 0) 1129 GV->setLinkage(GlobalValue::InternalLinkage); 1130 } 1131 1132 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); 1133 1134 if (Conf.PostInternalizeModuleHook && 1135 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1136 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1137 } 1138 1139 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1140 if (Error Err = 1141 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1142 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1143 return Err; 1144 } 1145 1146 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1147 } 1148 1149 static const char *libcallRoutineNames[] = { 1150 #define HANDLE_LIBCALL(code, name) name, 1151 #include "llvm/IR/RuntimeLibcalls.def" 1152 #undef HANDLE_LIBCALL 1153 }; 1154 1155 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1156 return makeArrayRef(libcallRoutineNames); 1157 } 1158 1159 /// This class defines the interface to the ThinLTO backend. 1160 class lto::ThinBackendProc { 1161 protected: 1162 const Config &Conf; 1163 ModuleSummaryIndex &CombinedIndex; 1164 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1165 1166 public: 1167 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1168 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1169 : Conf(Conf), CombinedIndex(CombinedIndex), 1170 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1171 1172 virtual ~ThinBackendProc() {} 1173 virtual Error start( 1174 unsigned Task, BitcodeModule BM, 1175 const FunctionImporter::ImportMapTy &ImportList, 1176 const FunctionImporter::ExportSetTy &ExportList, 1177 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1178 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1179 virtual Error wait() = 0; 1180 virtual unsigned getThreadCount() = 0; 1181 }; 1182 1183 namespace { 1184 class InProcessThinBackend : public ThinBackendProc { 1185 ThreadPool BackendThreadPool; 1186 AddStreamFn AddStream; 1187 FileCache Cache; 1188 std::set<GlobalValue::GUID> CfiFunctionDefs; 1189 std::set<GlobalValue::GUID> CfiFunctionDecls; 1190 1191 Optional<Error> Err; 1192 std::mutex ErrMu; 1193 1194 public: 1195 InProcessThinBackend( 1196 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1197 ThreadPoolStrategy ThinLTOParallelism, 1198 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1199 AddStreamFn AddStream, FileCache Cache) 1200 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1201 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1202 Cache(std::move(Cache)) { 1203 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1204 CfiFunctionDefs.insert( 1205 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1206 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1207 CfiFunctionDecls.insert( 1208 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1209 } 1210 1211 Error runThinLTOBackendThread( 1212 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM, 1213 ModuleSummaryIndex &CombinedIndex, 1214 const FunctionImporter::ImportMapTy &ImportList, 1215 const FunctionImporter::ExportSetTy &ExportList, 1216 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1217 const GVSummaryMapTy &DefinedGlobals, 1218 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1219 auto RunThinBackend = [&](AddStreamFn AddStream) { 1220 LTOLLVMContext BackendContext(Conf); 1221 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1222 if (!MOrErr) 1223 return MOrErr.takeError(); 1224 1225 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1226 ImportList, DefinedGlobals, &ModuleMap); 1227 }; 1228 1229 auto ModuleID = BM.getModuleIdentifier(); 1230 1231 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1232 all_of(CombinedIndex.getModuleHash(ModuleID), 1233 [](uint32_t V) { return V == 0; })) 1234 // Cache disabled or no entry for this module in the combined index or 1235 // no module hash. 1236 return RunThinBackend(AddStream); 1237 1238 SmallString<40> Key; 1239 // The module may be cached, this helps handling it. 1240 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1241 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1242 CfiFunctionDecls); 1243 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key); 1244 if (Error Err = CacheAddStreamOrErr.takeError()) 1245 return Err; 1246 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr; 1247 if (CacheAddStream) 1248 return RunThinBackend(CacheAddStream); 1249 1250 return Error::success(); 1251 } 1252 1253 Error start( 1254 unsigned Task, BitcodeModule BM, 1255 const FunctionImporter::ImportMapTy &ImportList, 1256 const FunctionImporter::ExportSetTy &ExportList, 1257 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1258 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1259 StringRef ModulePath = BM.getModuleIdentifier(); 1260 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1261 const GVSummaryMapTy &DefinedGlobals = 1262 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1263 BackendThreadPool.async( 1264 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1265 const FunctionImporter::ImportMapTy &ImportList, 1266 const FunctionImporter::ExportSetTy &ExportList, 1267 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1268 &ResolvedODR, 1269 const GVSummaryMapTy &DefinedGlobals, 1270 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1271 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1272 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1273 "thin backend"); 1274 Error E = runThinLTOBackendThread( 1275 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1276 ResolvedODR, DefinedGlobals, ModuleMap); 1277 if (E) { 1278 std::unique_lock<std::mutex> L(ErrMu); 1279 if (Err) 1280 Err = joinErrors(std::move(*Err), std::move(E)); 1281 else 1282 Err = std::move(E); 1283 } 1284 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1285 timeTraceProfilerFinishThread(); 1286 }, 1287 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1288 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1289 return Error::success(); 1290 } 1291 1292 Error wait() override { 1293 BackendThreadPool.wait(); 1294 if (Err) 1295 return std::move(*Err); 1296 else 1297 return Error::success(); 1298 } 1299 1300 unsigned getThreadCount() override { 1301 return BackendThreadPool.getThreadCount(); 1302 } 1303 }; 1304 } // end anonymous namespace 1305 1306 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism) { 1307 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1308 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1309 AddStreamFn AddStream, FileCache Cache) { 1310 return std::make_unique<InProcessThinBackend>( 1311 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream, 1312 Cache); 1313 }; 1314 } 1315 1316 // Given the original \p Path to an output file, replace any path 1317 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1318 // resulting directory if it does not yet exist. 1319 std::string lto::getThinLTOOutputFile(const std::string &Path, 1320 const std::string &OldPrefix, 1321 const std::string &NewPrefix) { 1322 if (OldPrefix.empty() && NewPrefix.empty()) 1323 return Path; 1324 SmallString<128> NewPath(Path); 1325 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1326 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1327 if (!ParentPath.empty()) { 1328 // Make sure the new directory exists, creating it if necessary. 1329 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1330 llvm::errs() << "warning: could not create directory '" << ParentPath 1331 << "': " << EC.message() << '\n'; 1332 } 1333 return std::string(NewPath.str()); 1334 } 1335 1336 namespace { 1337 class WriteIndexesThinBackend : public ThinBackendProc { 1338 std::string OldPrefix, NewPrefix; 1339 bool ShouldEmitImportsFiles; 1340 raw_fd_ostream *LinkedObjectsFile; 1341 lto::IndexWriteCallback OnWrite; 1342 1343 public: 1344 WriteIndexesThinBackend( 1345 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1346 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1347 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1348 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1349 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1350 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1351 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1352 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1353 1354 Error start( 1355 unsigned Task, BitcodeModule BM, 1356 const FunctionImporter::ImportMapTy &ImportList, 1357 const FunctionImporter::ExportSetTy &ExportList, 1358 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1359 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1360 StringRef ModulePath = BM.getModuleIdentifier(); 1361 std::string NewModulePath = 1362 getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix); 1363 1364 if (LinkedObjectsFile) 1365 *LinkedObjectsFile << NewModulePath << '\n'; 1366 1367 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1368 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1369 ImportList, ModuleToSummariesForIndex); 1370 1371 std::error_code EC; 1372 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1373 sys::fs::OpenFlags::OF_None); 1374 if (EC) 1375 return errorCodeToError(EC); 1376 writeIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1377 1378 if (ShouldEmitImportsFiles) { 1379 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1380 ModuleToSummariesForIndex); 1381 if (EC) 1382 return errorCodeToError(EC); 1383 } 1384 1385 if (OnWrite) 1386 OnWrite(std::string(ModulePath)); 1387 return Error::success(); 1388 } 1389 1390 Error wait() override { return Error::success(); } 1391 1392 // WriteIndexesThinBackend should always return 1 to prevent module 1393 // re-ordering and avoid non-determinism in the final link. 1394 unsigned getThreadCount() override { return 1; } 1395 }; 1396 } // end anonymous namespace 1397 1398 ThinBackend lto::createWriteIndexesThinBackend( 1399 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1400 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1401 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1402 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1403 AddStreamFn AddStream, FileCache Cache) { 1404 return std::make_unique<WriteIndexesThinBackend>( 1405 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1406 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1407 }; 1408 } 1409 1410 Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache, 1411 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1412 timeTraceProfilerBegin("ThinLink", StringRef("")); 1413 auto TimeTraceScopeExit = llvm::make_scope_exit([]() { 1414 if (llvm::timeTraceProfilerEnabled()) 1415 llvm::timeTraceProfilerEnd(); 1416 }); 1417 if (ThinLTO.ModuleMap.empty()) 1418 return Error::success(); 1419 1420 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1421 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1422 return Error::success(); 1423 } 1424 1425 if (Conf.CombinedIndexHook && 1426 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1427 return Error::success(); 1428 1429 // Collect for each module the list of function it defines (GUID -> 1430 // Summary). 1431 StringMap<GVSummaryMapTy> 1432 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1433 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1434 ModuleToDefinedGVSummaries); 1435 // Create entries for any modules that didn't have any GV summaries 1436 // (either they didn't have any GVs to start with, or we suppressed 1437 // generation of the summaries because they e.g. had inline assembly 1438 // uses that couldn't be promoted/renamed on export). This is so 1439 // InProcessThinBackend::start can still launch a backend thread, which 1440 // is passed the map of summaries for the module, without any special 1441 // handling for this case. 1442 for (auto &Mod : ThinLTO.ModuleMap) 1443 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1444 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1445 1446 // Synthesize entry counts for functions in the CombinedIndex. 1447 computeSyntheticCounts(ThinLTO.CombinedIndex); 1448 1449 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1450 ThinLTO.ModuleMap.size()); 1451 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1452 ThinLTO.ModuleMap.size()); 1453 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1454 1455 if (DumpThinCGSCCs) 1456 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1457 1458 std::set<GlobalValue::GUID> ExportedGUIDs; 1459 1460 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1461 // the summaries before whole program devirtualization below. 1462 updateVCallVisibilityInIndex(ThinLTO.CombinedIndex, 1463 Conf.HasWholeProgramVisibility, 1464 DynamicExportSymbols); 1465 1466 // Perform index-based WPD. This will return immediately if there are 1467 // no index entries in the typeIdMetadata map (e.g. if we are instead 1468 // performing IR-based WPD in hybrid regular/thin LTO mode). 1469 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1470 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1471 LocalWPDTargetsMap); 1472 1473 if (Conf.OptLevel > 0) 1474 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1475 ImportLists, ExportLists); 1476 1477 // Figure out which symbols need to be internalized. This also needs to happen 1478 // at -O0 because summary-based DCE is implemented using internalization, and 1479 // we must apply DCE consistently with the full LTO module in order to avoid 1480 // undefined references during the final link. 1481 for (auto &Res : GlobalResolutions) { 1482 // If the symbol does not have external references or it is not prevailing, 1483 // then not need to mark it as exported from a ThinLTO partition. 1484 if (Res.second.Partition != GlobalResolution::External || 1485 !Res.second.isPrevailingIRSymbol()) 1486 continue; 1487 auto GUID = GlobalValue::getGUID( 1488 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1489 // Mark exported unless index-based analysis determined it to be dead. 1490 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1491 ExportedGUIDs.insert(GUID); 1492 } 1493 1494 // Any functions referenced by the jump table in the regular LTO object must 1495 // be exported. 1496 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1497 ExportedGUIDs.insert( 1498 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1499 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) 1500 ExportedGUIDs.insert( 1501 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl))); 1502 1503 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1504 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1505 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1506 ExportedGUIDs.count(VI.getGUID()); 1507 }; 1508 1509 // Update local devirtualized targets that were exported by cross-module 1510 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1511 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1512 LocalWPDTargetsMap); 1513 1514 auto isPrevailing = [&](GlobalValue::GUID GUID, 1515 const GlobalValueSummary *S) { 1516 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1517 }; 1518 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1519 isPrevailing); 1520 1521 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1522 GlobalValue::GUID GUID, 1523 GlobalValue::LinkageTypes NewLinkage) { 1524 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1525 }; 1526 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1527 recordNewLinkage, GUIDPreservedSymbols); 1528 1529 thinLTOPropagateFunctionAttrs(ThinLTO.CombinedIndex, isPrevailing); 1530 1531 generateParamAccessSummary(ThinLTO.CombinedIndex); 1532 1533 if (llvm::timeTraceProfilerEnabled()) 1534 llvm::timeTraceProfilerEnd(); 1535 1536 TimeTraceScopeExit.release(); 1537 1538 std::unique_ptr<ThinBackendProc> BackendProc = 1539 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1540 AddStream, Cache); 1541 1542 auto &ModuleMap = 1543 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1544 1545 auto ProcessOneModule = [&](int I) -> Error { 1546 auto &Mod = *(ModuleMap.begin() + I); 1547 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1548 // combined module and parallel code generation partitions. 1549 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1550 Mod.second, ImportLists[Mod.first], 1551 ExportLists[Mod.first], ResolvedODR[Mod.first], 1552 ThinLTO.ModuleMap); 1553 }; 1554 1555 if (BackendProc->getThreadCount() == 1) { 1556 // Process the modules in the order they were provided on the command-line. 1557 // It is important for this codepath to be used for WriteIndexesThinBackend, 1558 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1559 // order as the inputs, which otherwise would affect the final link order. 1560 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1561 if (Error E = ProcessOneModule(I)) 1562 return E; 1563 } else { 1564 // When executing in parallel, process largest bitsize modules first to 1565 // improve parallelism, and avoid starving the thread pool near the end. 1566 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1567 // of 100 sec). 1568 std::vector<BitcodeModule *> ModulesVec; 1569 ModulesVec.reserve(ModuleMap.size()); 1570 for (auto &Mod : ModuleMap) 1571 ModulesVec.push_back(&Mod.second); 1572 for (int I : generateModulesOrdering(ModulesVec)) 1573 if (Error E = ProcessOneModule(I)) 1574 return E; 1575 } 1576 return BackendProc->wait(); 1577 } 1578 1579 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1580 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1581 StringRef RemarksFormat, bool RemarksWithHotness, 1582 Optional<uint64_t> RemarksHotnessThreshold, int Count) { 1583 std::string Filename = std::string(RemarksFilename); 1584 // For ThinLTO, file.opt.<format> becomes 1585 // file.opt.<format>.thin.<num>.<format>. 1586 if (!Filename.empty() && Count != -1) 1587 Filename = 1588 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1589 .str(); 1590 1591 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1592 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1593 RemarksHotnessThreshold); 1594 if (Error E = ResultOrErr.takeError()) 1595 return std::move(E); 1596 1597 if (*ResultOrErr) 1598 (*ResultOrErr)->keep(); 1599 1600 return ResultOrErr; 1601 } 1602 1603 Expected<std::unique_ptr<ToolOutputFile>> 1604 lto::setupStatsFile(StringRef StatsFilename) { 1605 // Setup output file to emit statistics. 1606 if (StatsFilename.empty()) 1607 return nullptr; 1608 1609 llvm::EnableStatistics(false); 1610 std::error_code EC; 1611 auto StatsFile = 1612 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1613 if (EC) 1614 return errorCodeToError(EC); 1615 1616 StatsFile->keep(); 1617 return std::move(StatsFile); 1618 } 1619 1620 // Compute the ordering we will process the inputs: the rough heuristic here 1621 // is to sort them per size so that the largest module get schedule as soon as 1622 // possible. This is purely a compile-time optimization. 1623 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1624 std::vector<int> ModulesOrdering; 1625 ModulesOrdering.resize(R.size()); 1626 std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0); 1627 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1628 auto LSize = R[LeftIndex]->getBuffer().size(); 1629 auto RSize = R[RightIndex]->getBuffer().size(); 1630 return LSize > RSize; 1631 }); 1632 return ModulesOrdering; 1633 } 1634