1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/StackSafetyAnalysis.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeReader.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/DiagnosticPrinter.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMRemarkStreamer.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/LTO/LTOBackend.h" 34 #include "llvm/LTO/SummaryBasedOptimizations.h" 35 #include "llvm/Linker/IRMover.h" 36 #include "llvm/MC/TargetRegistry.h" 37 #include "llvm/Object/IRObjectFile.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/FileSystem.h" 41 #include "llvm/Support/ManagedStatic.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/SHA1.h" 45 #include "llvm/Support/SourceMgr.h" 46 #include "llvm/Support/ThreadPool.h" 47 #include "llvm/Support/Threading.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/ToolOutputFile.h" 50 #include "llvm/Support/VCSRevision.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Transforms/IPO.h" 54 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 55 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 56 #include "llvm/Transforms/Utils/SplitModule.h" 57 58 #include <optional> 59 #include <set> 60 61 using namespace llvm; 62 using namespace lto; 63 using namespace object; 64 65 #define DEBUG_TYPE "lto" 66 67 static cl::opt<bool> 68 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 69 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 70 71 namespace llvm { 72 /// Enable global value internalization in LTO. 73 cl::opt<bool> EnableLTOInternalization( 74 "enable-lto-internalization", cl::init(true), cl::Hidden, 75 cl::desc("Enable global value internalization in LTO")); 76 } 77 78 // Computes a unique hash for the Module considering the current list of 79 // export/import and other global analysis results. 80 // The hash is produced in \p Key. 81 void llvm::computeLTOCacheKey( 82 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 83 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 84 const FunctionImporter::ExportSetTy &ExportList, 85 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 86 const GVSummaryMapTy &DefinedGlobals, 87 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 88 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 89 // Compute the unique hash for this entry. 90 // This is based on the current compiler version, the module itself, the 91 // export list, the hash for every single module in the import list, the 92 // list of ResolvedODR for the module, and the list of preserved symbols. 93 SHA1 Hasher; 94 95 // Start with the compiler revision 96 Hasher.update(LLVM_VERSION_STRING); 97 #ifdef LLVM_REVISION 98 Hasher.update(LLVM_REVISION); 99 #endif 100 101 // Include the parts of the LTO configuration that affect code generation. 102 auto AddString = [&](StringRef Str) { 103 Hasher.update(Str); 104 Hasher.update(ArrayRef<uint8_t>{0}); 105 }; 106 auto AddUnsigned = [&](unsigned I) { 107 uint8_t Data[4]; 108 support::endian::write32le(Data, I); 109 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 110 }; 111 auto AddUint64 = [&](uint64_t I) { 112 uint8_t Data[8]; 113 support::endian::write64le(Data, I); 114 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 115 }; 116 AddString(Conf.CPU); 117 // FIXME: Hash more of Options. For now all clients initialize Options from 118 // command-line flags (which is unsupported in production), but may set 119 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 120 // DataSections and DebuggerTuning via command line flags. 121 AddUnsigned(Conf.Options.RelaxELFRelocations); 122 AddUnsigned(Conf.Options.FunctionSections); 123 AddUnsigned(Conf.Options.DataSections); 124 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 125 for (auto &A : Conf.MAttrs) 126 AddString(A); 127 if (Conf.RelocModel) 128 AddUnsigned(*Conf.RelocModel); 129 else 130 AddUnsigned(-1); 131 if (Conf.CodeModel) 132 AddUnsigned(*Conf.CodeModel); 133 else 134 AddUnsigned(-1); 135 for (const auto &S : Conf.MllvmArgs) 136 AddString(S); 137 AddUnsigned(Conf.CGOptLevel); 138 AddUnsigned(Conf.CGFileType); 139 AddUnsigned(Conf.OptLevel); 140 AddUnsigned(Conf.Freestanding); 141 AddString(Conf.OptPipeline); 142 AddString(Conf.AAPipeline); 143 AddString(Conf.OverrideTriple); 144 AddString(Conf.DefaultTriple); 145 AddString(Conf.DwoDir); 146 147 // Include the hash for the current module 148 auto ModHash = Index.getModuleHash(ModuleID); 149 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 150 151 std::vector<uint64_t> ExportsGUID; 152 ExportsGUID.reserve(ExportList.size()); 153 for (const auto &VI : ExportList) { 154 auto GUID = VI.getGUID(); 155 ExportsGUID.push_back(GUID); 156 } 157 158 // Sort the export list elements GUIDs. 159 llvm::sort(ExportsGUID); 160 for (uint64_t GUID : ExportsGUID) { 161 // The export list can impact the internalization, be conservative here 162 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 163 } 164 165 // Include the hash for every module we import functions from. The set of 166 // imported symbols for each module may affect code generation and is 167 // sensitive to link order, so include that as well. 168 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 169 std::vector<ImportMapIteratorTy> ImportModulesVector; 170 ImportModulesVector.reserve(ImportList.size()); 171 172 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 173 ++It) { 174 ImportModulesVector.push_back(It); 175 } 176 llvm::sort(ImportModulesVector, 177 [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs) 178 -> bool { return Lhs->getKey() < Rhs->getKey(); }); 179 for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) { 180 auto ModHash = Index.getModuleHash(EntryIt->first()); 181 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 182 183 AddUint64(EntryIt->second.size()); 184 for (auto &Fn : EntryIt->second) 185 AddUint64(Fn); 186 } 187 188 // Include the hash for the resolved ODR. 189 for (auto &Entry : ResolvedODR) { 190 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 191 sizeof(GlobalValue::GUID))); 192 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 193 sizeof(GlobalValue::LinkageTypes))); 194 } 195 196 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 197 // defined in this module. 198 std::set<GlobalValue::GUID> UsedCfiDefs; 199 std::set<GlobalValue::GUID> UsedCfiDecls; 200 201 // Typeids used in this module. 202 std::set<GlobalValue::GUID> UsedTypeIds; 203 204 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 205 if (CfiFunctionDefs.count(ValueGUID)) 206 UsedCfiDefs.insert(ValueGUID); 207 if (CfiFunctionDecls.count(ValueGUID)) 208 UsedCfiDecls.insert(ValueGUID); 209 }; 210 211 auto AddUsedThings = [&](GlobalValueSummary *GS) { 212 if (!GS) return; 213 AddUnsigned(GS->getVisibility()); 214 AddUnsigned(GS->isLive()); 215 AddUnsigned(GS->canAutoHide()); 216 for (const ValueInfo &VI : GS->refs()) { 217 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 218 AddUsedCfiGlobal(VI.getGUID()); 219 } 220 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 221 AddUnsigned(GVS->maybeReadOnly()); 222 AddUnsigned(GVS->maybeWriteOnly()); 223 } 224 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 225 for (auto &TT : FS->type_tests()) 226 UsedTypeIds.insert(TT); 227 for (auto &TT : FS->type_test_assume_vcalls()) 228 UsedTypeIds.insert(TT.GUID); 229 for (auto &TT : FS->type_checked_load_vcalls()) 230 UsedTypeIds.insert(TT.GUID); 231 for (auto &TT : FS->type_test_assume_const_vcalls()) 232 UsedTypeIds.insert(TT.VFunc.GUID); 233 for (auto &TT : FS->type_checked_load_const_vcalls()) 234 UsedTypeIds.insert(TT.VFunc.GUID); 235 for (auto &ET : FS->calls()) { 236 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 237 AddUsedCfiGlobal(ET.first.getGUID()); 238 } 239 } 240 }; 241 242 // Include the hash for the linkage type to reflect internalization and weak 243 // resolution, and collect any used type identifier resolutions. 244 for (auto &GS : DefinedGlobals) { 245 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 246 Hasher.update( 247 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 248 AddUsedCfiGlobal(GS.first); 249 AddUsedThings(GS.second); 250 } 251 252 // Imported functions may introduce new uses of type identifier resolutions, 253 // so we need to collect their used resolutions as well. 254 for (auto &ImpM : ImportList) 255 for (auto &ImpF : ImpM.second) { 256 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 257 AddUsedThings(S); 258 // If this is an alias, we also care about any types/etc. that the aliasee 259 // may reference. 260 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 261 AddUsedThings(AS->getBaseObject()); 262 } 263 264 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 265 AddString(TId); 266 267 AddUnsigned(S.TTRes.TheKind); 268 AddUnsigned(S.TTRes.SizeM1BitWidth); 269 270 AddUint64(S.TTRes.AlignLog2); 271 AddUint64(S.TTRes.SizeM1); 272 AddUint64(S.TTRes.BitMask); 273 AddUint64(S.TTRes.InlineBits); 274 275 AddUint64(S.WPDRes.size()); 276 for (auto &WPD : S.WPDRes) { 277 AddUnsigned(WPD.first); 278 AddUnsigned(WPD.second.TheKind); 279 AddString(WPD.second.SingleImplName); 280 281 AddUint64(WPD.second.ResByArg.size()); 282 for (auto &ByArg : WPD.second.ResByArg) { 283 AddUint64(ByArg.first.size()); 284 for (uint64_t Arg : ByArg.first) 285 AddUint64(Arg); 286 AddUnsigned(ByArg.second.TheKind); 287 AddUint64(ByArg.second.Info); 288 AddUnsigned(ByArg.second.Byte); 289 AddUnsigned(ByArg.second.Bit); 290 } 291 } 292 }; 293 294 // Include the hash for all type identifiers used by this module. 295 for (GlobalValue::GUID TId : UsedTypeIds) { 296 auto TidIter = Index.typeIds().equal_range(TId); 297 for (auto It = TidIter.first; It != TidIter.second; ++It) 298 AddTypeIdSummary(It->second.first, It->second.second); 299 } 300 301 AddUnsigned(UsedCfiDefs.size()); 302 for (auto &V : UsedCfiDefs) 303 AddUint64(V); 304 305 AddUnsigned(UsedCfiDecls.size()); 306 for (auto &V : UsedCfiDecls) 307 AddUint64(V); 308 309 if (!Conf.SampleProfile.empty()) { 310 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 311 if (FileOrErr) { 312 Hasher.update(FileOrErr.get()->getBuffer()); 313 314 if (!Conf.ProfileRemapping.empty()) { 315 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 316 if (FileOrErr) 317 Hasher.update(FileOrErr.get()->getBuffer()); 318 } 319 } 320 } 321 322 Key = toHex(Hasher.result()); 323 } 324 325 static void thinLTOResolvePrevailingGUID( 326 const Config &C, ValueInfo VI, 327 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 328 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 329 isPrevailing, 330 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 331 recordNewLinkage, 332 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 333 GlobalValue::VisibilityTypes Visibility = 334 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 335 : GlobalValue::DefaultVisibility; 336 for (auto &S : VI.getSummaryList()) { 337 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 338 // Ignore local and appending linkage values since the linker 339 // doesn't resolve them. 340 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 341 GlobalValue::isAppendingLinkage(S->linkage())) 342 continue; 343 // We need to emit only one of these. The prevailing module will keep it, 344 // but turned into a weak, while the others will drop it when possible. 345 // This is both a compile-time optimization and a correctness 346 // transformation. This is necessary for correctness when we have exported 347 // a reference - we need to convert the linkonce to weak to 348 // ensure a copy is kept to satisfy the exported reference. 349 // FIXME: We may want to split the compile time and correctness 350 // aspects into separate routines. 351 if (isPrevailing(VI.getGUID(), S.get())) { 352 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 353 S->setLinkage(GlobalValue::getWeakLinkage( 354 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 355 // The kept copy is eligible for auto-hiding (hidden visibility) if all 356 // copies were (i.e. they were all linkonce_odr global unnamed addr). 357 // If any copy is not (e.g. it was originally weak_odr), then the symbol 358 // must remain externally available (e.g. a weak_odr from an explicitly 359 // instantiated template). Additionally, if it is in the 360 // GUIDPreservedSymbols set, that means that it is visibile outside 361 // the summary (e.g. in a native object or a bitcode file without 362 // summary), and in that case we cannot hide it as it isn't possible to 363 // check all copies. 364 S->setCanAutoHide(VI.canAutoHide() && 365 !GUIDPreservedSymbols.count(VI.getGUID())); 366 } 367 if (C.VisibilityScheme == Config::FromPrevailing) 368 Visibility = S->getVisibility(); 369 } 370 // Alias and aliasee can't be turned into available_externally. 371 else if (!isa<AliasSummary>(S.get()) && 372 !GlobalInvolvedWithAlias.count(S.get())) 373 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 374 375 // For ELF, set visibility to the computed visibility from summaries. We 376 // don't track visibility from declarations so this may be more relaxed than 377 // the most constraining one. 378 if (C.VisibilityScheme == Config::ELF) 379 S->setVisibility(Visibility); 380 381 if (S->linkage() != OriginalLinkage) 382 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 383 } 384 385 if (C.VisibilityScheme == Config::FromPrevailing) { 386 for (auto &S : VI.getSummaryList()) { 387 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 388 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 389 GlobalValue::isAppendingLinkage(S->linkage())) 390 continue; 391 S->setVisibility(Visibility); 392 } 393 } 394 } 395 396 /// Resolve linkage for prevailing symbols in the \p Index. 397 // 398 // We'd like to drop these functions if they are no longer referenced in the 399 // current module. However there is a chance that another module is still 400 // referencing them because of the import. We make sure we always emit at least 401 // one copy. 402 void llvm::thinLTOResolvePrevailingInIndex( 403 const Config &C, ModuleSummaryIndex &Index, 404 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 405 isPrevailing, 406 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 407 recordNewLinkage, 408 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 409 // We won't optimize the globals that are referenced by an alias for now 410 // Ideally we should turn the alias into a global and duplicate the definition 411 // when needed. 412 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 413 for (auto &I : Index) 414 for (auto &S : I.second.SummaryList) 415 if (auto AS = dyn_cast<AliasSummary>(S.get())) 416 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 417 418 for (auto &I : Index) 419 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 420 GlobalInvolvedWithAlias, isPrevailing, 421 recordNewLinkage, GUIDPreservedSymbols); 422 } 423 424 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 425 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 426 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 427 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 428 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 429 return false; 430 } 431 432 static void thinLTOInternalizeAndPromoteGUID( 433 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 434 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 435 isPrevailing) { 436 for (auto &S : VI.getSummaryList()) { 437 if (isExported(S->modulePath(), VI)) { 438 if (GlobalValue::isLocalLinkage(S->linkage())) 439 S->setLinkage(GlobalValue::ExternalLinkage); 440 } else if (EnableLTOInternalization && 441 // Ignore local and appending linkage values since the linker 442 // doesn't resolve them. 443 !GlobalValue::isLocalLinkage(S->linkage()) && 444 (!GlobalValue::isInterposableLinkage(S->linkage()) || 445 isPrevailing(VI.getGUID(), S.get())) && 446 S->linkage() != GlobalValue::AppendingLinkage && 447 // We can't internalize available_externally globals because this 448 // can break function pointer equality. 449 S->linkage() != GlobalValue::AvailableExternallyLinkage && 450 // Functions and read-only variables with linkonce_odr and 451 // weak_odr linkage can be internalized. We can't internalize 452 // linkonce_odr and weak_odr variables which are both modified 453 // and read somewhere in the program because reads and writes 454 // will become inconsistent. 455 !isWeakObjectWithRWAccess(S.get())) 456 S->setLinkage(GlobalValue::InternalLinkage); 457 } 458 } 459 460 // Update the linkages in the given \p Index to mark exported values 461 // as external and non-exported values as internal. 462 void llvm::thinLTOInternalizeAndPromoteInIndex( 463 ModuleSummaryIndex &Index, 464 function_ref<bool(StringRef, ValueInfo)> isExported, 465 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 466 isPrevailing) { 467 for (auto &I : Index) 468 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 469 isPrevailing); 470 } 471 472 // Requires a destructor for std::vector<InputModule>. 473 InputFile::~InputFile() = default; 474 475 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 476 std::unique_ptr<InputFile> File(new InputFile); 477 478 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 479 if (!FOrErr) 480 return FOrErr.takeError(); 481 482 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 483 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 484 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 485 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 486 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 487 488 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 489 size_t Begin = File->Symbols.size(); 490 for (const irsymtab::Reader::SymbolRef &Sym : 491 FOrErr->TheReader.module_symbols(I)) 492 // Skip symbols that are irrelevant to LTO. Note that this condition needs 493 // to match the one in Skip() in LTO::addRegularLTO(). 494 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 495 File->Symbols.push_back(Sym); 496 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 497 } 498 499 File->Mods = FOrErr->Mods; 500 File->Strtab = std::move(FOrErr->Strtab); 501 return std::move(File); 502 } 503 504 StringRef InputFile::getName() const { 505 return Mods[0].getModuleIdentifier(); 506 } 507 508 BitcodeModule &InputFile::getSingleBitcodeModule() { 509 assert(Mods.size() == 1 && "Expect only one bitcode module"); 510 return Mods[0]; 511 } 512 513 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 514 const Config &Conf) 515 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 516 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 517 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 518 519 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 520 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 521 if (!Backend) 522 this->Backend = 523 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 524 } 525 526 LTO::LTO(Config Conf, ThinBackend Backend, 527 unsigned ParallelCodeGenParallelismLevel) 528 : Conf(std::move(Conf)), 529 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 530 ThinLTO(std::move(Backend)) {} 531 532 // Requires a destructor for MapVector<BitcodeModule>. 533 LTO::~LTO() = default; 534 535 // Add the symbols in the given module to the GlobalResolutions map, and resolve 536 // their partitions. 537 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 538 ArrayRef<SymbolResolution> Res, 539 unsigned Partition, bool InSummary) { 540 auto *ResI = Res.begin(); 541 auto *ResE = Res.end(); 542 (void)ResE; 543 const Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 544 for (const InputFile::Symbol &Sym : Syms) { 545 assert(ResI != ResE); 546 SymbolResolution Res = *ResI++; 547 548 StringRef Name = Sym.getName(); 549 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 550 // way they are handled by lld), otherwise we can end up with two 551 // global resolutions (one with and one for a copy of the symbol without). 552 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 553 Name = Name.substr(strlen("__imp_")); 554 auto &GlobalRes = GlobalResolutions[Name]; 555 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 556 if (Res.Prevailing) { 557 assert(!GlobalRes.Prevailing && 558 "Multiple prevailing defs are not allowed"); 559 GlobalRes.Prevailing = true; 560 GlobalRes.IRName = std::string(Sym.getIRName()); 561 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 562 // Sometimes it can be two copies of symbol in a module and prevailing 563 // symbol can have no IR name. That might happen if symbol is defined in 564 // module level inline asm block. In case we have multiple modules with 565 // the same symbol we want to use IR name of the prevailing symbol. 566 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 567 // we can later use it to check if there is any prevailing copy in IR. 568 GlobalRes.IRName = std::string(Sym.getIRName()); 569 } 570 571 // In rare occasion, the symbol used to initialize GlobalRes has a different 572 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a 573 // symbol is referenced through its mangled name, say @"\01_symbol" while 574 // the IRName is @symbol (the prefix underscore comes from MachO mangling). 575 // In that case, we have the same actual Symbol that can get two different 576 // GUID, leading to some invalid internalization. Workaround this by marking 577 // the GlobalRes external. 578 579 // FIXME: instead of this check, it would be desirable to compute GUIDs 580 // based on mangled name, but this requires an access to the Target Triple 581 // and would be relatively invasive on the codebase. 582 if (GlobalRes.IRName != Sym.getIRName()) { 583 GlobalRes.Partition = GlobalResolution::External; 584 GlobalRes.VisibleOutsideSummary = true; 585 } 586 587 // Set the partition to external if we know it is re-defined by the linker 588 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 589 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 590 // already recorded as being referenced from a different partition. 591 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 592 (GlobalRes.Partition != GlobalResolution::Unknown && 593 GlobalRes.Partition != Partition)) { 594 GlobalRes.Partition = GlobalResolution::External; 595 } else 596 // First recorded reference, save the current partition. 597 GlobalRes.Partition = Partition; 598 599 // Flag as visible outside of summary if visible from a regular object or 600 // from a module that does not have a summary. 601 GlobalRes.VisibleOutsideSummary |= 602 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 603 604 GlobalRes.ExportDynamic |= Res.ExportDynamic; 605 } 606 } 607 608 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 609 ArrayRef<SymbolResolution> Res) { 610 StringRef Path = Input->getName(); 611 OS << Path << '\n'; 612 auto ResI = Res.begin(); 613 for (const InputFile::Symbol &Sym : Input->symbols()) { 614 assert(ResI != Res.end()); 615 SymbolResolution Res = *ResI++; 616 617 OS << "-r=" << Path << ',' << Sym.getName() << ','; 618 if (Res.Prevailing) 619 OS << 'p'; 620 if (Res.FinalDefinitionInLinkageUnit) 621 OS << 'l'; 622 if (Res.VisibleToRegularObj) 623 OS << 'x'; 624 if (Res.LinkerRedefined) 625 OS << 'r'; 626 OS << '\n'; 627 } 628 OS.flush(); 629 assert(ResI == Res.end()); 630 } 631 632 Error LTO::add(std::unique_ptr<InputFile> Input, 633 ArrayRef<SymbolResolution> Res) { 634 assert(!CalledGetMaxTasks); 635 636 if (Conf.ResolutionFile) 637 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 638 639 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 640 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 641 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 642 Conf.VisibilityScheme = Config::ELF; 643 } 644 645 const SymbolResolution *ResI = Res.begin(); 646 for (unsigned I = 0; I != Input->Mods.size(); ++I) 647 if (Error Err = addModule(*Input, I, ResI, Res.end())) 648 return Err; 649 650 assert(ResI == Res.end()); 651 return Error::success(); 652 } 653 654 Error LTO::addModule(InputFile &Input, unsigned ModI, 655 const SymbolResolution *&ResI, 656 const SymbolResolution *ResE) { 657 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 658 if (!LTOInfo) 659 return LTOInfo.takeError(); 660 661 if (EnableSplitLTOUnit) { 662 // If only some modules were split, flag this in the index so that 663 // we can skip or error on optimizations that need consistently split 664 // modules (whole program devirt and lower type tests). 665 if (*EnableSplitLTOUnit != LTOInfo->EnableSplitLTOUnit) 666 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 667 } else 668 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 669 670 BitcodeModule BM = Input.Mods[ModI]; 671 auto ModSyms = Input.module_symbols(ModI); 672 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 673 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 674 LTOInfo->HasSummary); 675 676 if (LTOInfo->IsThinLTO) 677 return addThinLTO(BM, ModSyms, ResI, ResE); 678 679 RegularLTO.EmptyCombinedModule = false; 680 Expected<RegularLTOState::AddedModule> ModOrErr = 681 addRegularLTO(BM, ModSyms, ResI, ResE); 682 if (!ModOrErr) 683 return ModOrErr.takeError(); 684 685 if (!LTOInfo->HasSummary) 686 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 687 688 // Regular LTO module summaries are added to a dummy module that represents 689 // the combined regular LTO module. 690 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 691 return Err; 692 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 693 return Error::success(); 694 } 695 696 // Checks whether the given global value is in a non-prevailing comdat 697 // (comdat containing values the linker indicated were not prevailing, 698 // which we then dropped to available_externally), and if so, removes 699 // it from the comdat. This is called for all global values to ensure the 700 // comdat is empty rather than leaving an incomplete comdat. It is needed for 701 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 702 // and thin LTO modules) compilation. Since the regular LTO module will be 703 // linked first in the final native link, we want to make sure the linker 704 // doesn't select any of these incomplete comdats that would be left 705 // in the regular LTO module without this cleanup. 706 static void 707 handleNonPrevailingComdat(GlobalValue &GV, 708 std::set<const Comdat *> &NonPrevailingComdats) { 709 Comdat *C = GV.getComdat(); 710 if (!C) 711 return; 712 713 if (!NonPrevailingComdats.count(C)) 714 return; 715 716 // Additionally need to drop all global values from the comdat to 717 // available_externally, to satisfy the COMDAT requirement that all members 718 // are discarded as a unit. The non-local linkage global values avoid 719 // duplicate definition linker errors. 720 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 721 722 if (auto GO = dyn_cast<GlobalObject>(&GV)) 723 GO->setComdat(nullptr); 724 } 725 726 // Add a regular LTO object to the link. 727 // The resulting module needs to be linked into the combined LTO module with 728 // linkRegularLTO. 729 Expected<LTO::RegularLTOState::AddedModule> 730 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 731 const SymbolResolution *&ResI, 732 const SymbolResolution *ResE) { 733 RegularLTOState::AddedModule Mod; 734 Expected<std::unique_ptr<Module>> MOrErr = 735 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 736 /*IsImporting*/ false); 737 if (!MOrErr) 738 return MOrErr.takeError(); 739 Module &M = **MOrErr; 740 Mod.M = std::move(*MOrErr); 741 742 if (Error Err = M.materializeMetadata()) 743 return std::move(Err); 744 UpgradeDebugInfo(M); 745 746 ModuleSymbolTable SymTab; 747 SymTab.addModule(&M); 748 749 for (GlobalVariable &GV : M.globals()) 750 if (GV.hasAppendingLinkage()) 751 Mod.Keep.push_back(&GV); 752 753 DenseSet<GlobalObject *> AliasedGlobals; 754 for (auto &GA : M.aliases()) 755 if (GlobalObject *GO = GA.getAliaseeObject()) 756 AliasedGlobals.insert(GO); 757 758 // In this function we need IR GlobalValues matching the symbols in Syms 759 // (which is not backed by a module), so we need to enumerate them in the same 760 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 761 // matches the order of an irsymtab, but when we read the irsymtab in 762 // InputFile::create we omit some symbols that are irrelevant to LTO. The 763 // Skip() function skips the same symbols from the module as InputFile does 764 // from the symbol table. 765 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 766 auto Skip = [&]() { 767 while (MsymI != MsymE) { 768 auto Flags = SymTab.getSymbolFlags(*MsymI); 769 if ((Flags & object::BasicSymbolRef::SF_Global) && 770 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 771 return; 772 ++MsymI; 773 } 774 }; 775 Skip(); 776 777 std::set<const Comdat *> NonPrevailingComdats; 778 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 779 for (const InputFile::Symbol &Sym : Syms) { 780 assert(ResI != ResE); 781 SymbolResolution Res = *ResI++; 782 783 assert(MsymI != MsymE); 784 ModuleSymbolTable::Symbol Msym = *MsymI++; 785 Skip(); 786 787 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 788 if (Res.Prevailing) { 789 if (Sym.isUndefined()) 790 continue; 791 Mod.Keep.push_back(GV); 792 // For symbols re-defined with linker -wrap and -defsym options, 793 // set the linkage to weak to inhibit IPO. The linkage will be 794 // restored by the linker. 795 if (Res.LinkerRedefined) 796 GV->setLinkage(GlobalValue::WeakAnyLinkage); 797 798 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 799 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 800 GV->setLinkage(GlobalValue::getWeakLinkage( 801 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 802 } else if (isa<GlobalObject>(GV) && 803 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 804 GV->hasAvailableExternallyLinkage()) && 805 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 806 // Any of the above three types of linkage indicates that the 807 // chosen prevailing symbol will have the same semantics as this copy of 808 // the symbol, so we may be able to link it with available_externally 809 // linkage. We will decide later whether to do that when we link this 810 // module (in linkRegularLTO), based on whether it is undefined. 811 Mod.Keep.push_back(GV); 812 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 813 if (GV->hasComdat()) 814 NonPrevailingComdats.insert(GV->getComdat()); 815 cast<GlobalObject>(GV)->setComdat(nullptr); 816 } 817 818 // Set the 'local' flag based on the linker resolution for this symbol. 819 if (Res.FinalDefinitionInLinkageUnit) { 820 GV->setDSOLocal(true); 821 if (GV->hasDLLImportStorageClass()) 822 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 823 DefaultStorageClass); 824 } 825 } else if (auto *AS = Msym.dyn_cast<ModuleSymbolTable::AsmSymbol *>()) { 826 // Collect non-prevailing symbols. 827 if (!Res.Prevailing) 828 NonPrevailingAsmSymbols.insert(AS->first); 829 } else { 830 llvm_unreachable("unknown symbol type"); 831 } 832 833 // Common resolution: collect the maximum size/alignment over all commons. 834 // We also record if we see an instance of a common as prevailing, so that 835 // if none is prevailing we can ignore it later. 836 if (Sym.isCommon()) { 837 // FIXME: We should figure out what to do about commons defined by asm. 838 // For now they aren't reported correctly by ModuleSymbolTable. 839 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 840 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 841 if (uint32_t SymAlignValue = Sym.getCommonAlignment()) { 842 const Align SymAlign(SymAlignValue); 843 CommonRes.Align = std::max(SymAlign, CommonRes.Align.valueOrOne()); 844 } 845 CommonRes.Prevailing |= Res.Prevailing; 846 } 847 } 848 849 if (!M.getComdatSymbolTable().empty()) 850 for (GlobalValue &GV : M.global_values()) 851 handleNonPrevailingComdat(GV, NonPrevailingComdats); 852 853 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 854 // block. 855 if (!M.getModuleInlineAsm().empty()) { 856 std::string NewIA = ".lto_discard"; 857 if (!NonPrevailingAsmSymbols.empty()) { 858 // Don't dicard a symbol if there is a live .symver for it. 859 ModuleSymbolTable::CollectAsmSymvers( 860 M, [&](StringRef Name, StringRef Alias) { 861 if (!NonPrevailingAsmSymbols.count(Alias)) 862 NonPrevailingAsmSymbols.erase(Name); 863 }); 864 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 865 } 866 NewIA += "\n"; 867 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 868 } 869 870 assert(MsymI == MsymE); 871 return std::move(Mod); 872 } 873 874 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 875 bool LivenessFromIndex) { 876 std::vector<GlobalValue *> Keep; 877 for (GlobalValue *GV : Mod.Keep) { 878 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 879 if (Function *F = dyn_cast<Function>(GV)) { 880 if (DiagnosticOutputFile) { 881 if (Error Err = F->materialize()) 882 return Err; 883 OptimizationRemarkEmitter ORE(F, nullptr); 884 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 885 << ore::NV("Function", F) 886 << " not added to the combined module "); 887 } 888 } 889 continue; 890 } 891 892 if (!GV->hasAvailableExternallyLinkage()) { 893 Keep.push_back(GV); 894 continue; 895 } 896 897 // Only link available_externally definitions if we don't already have a 898 // definition. 899 GlobalValue *CombinedGV = 900 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 901 if (CombinedGV && !CombinedGV->isDeclaration()) 902 continue; 903 904 Keep.push_back(GV); 905 } 906 907 return RegularLTO.Mover->move(std::move(Mod.M), Keep, nullptr, 908 /* IsPerformingImport */ false); 909 } 910 911 // Add a ThinLTO module to the link. 912 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 913 const SymbolResolution *&ResI, 914 const SymbolResolution *ResE) { 915 const SymbolResolution *ResITmp = ResI; 916 for (const InputFile::Symbol &Sym : Syms) { 917 assert(ResITmp != ResE); 918 SymbolResolution Res = *ResITmp++; 919 920 if (!Sym.getIRName().empty()) { 921 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 922 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 923 if (Res.Prevailing) 924 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 925 } 926 } 927 928 if (Error Err = 929 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 930 ThinLTO.ModuleMap.size(), [&](GlobalValue::GUID GUID) { 931 return ThinLTO.PrevailingModuleForGUID[GUID] == 932 BM.getModuleIdentifier(); 933 })) 934 return Err; 935 936 for (const InputFile::Symbol &Sym : Syms) { 937 assert(ResI != ResE); 938 SymbolResolution Res = *ResI++; 939 940 if (!Sym.getIRName().empty()) { 941 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 942 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 943 if (Res.Prevailing) { 944 assert(ThinLTO.PrevailingModuleForGUID[GUID] == 945 BM.getModuleIdentifier()); 946 947 // For linker redefined symbols (via --wrap or --defsym) we want to 948 // switch the linkage to `weak` to prevent IPOs from happening. 949 // Find the summary in the module for this very GV and record the new 950 // linkage so that we can switch it when we import the GV. 951 if (Res.LinkerRedefined) 952 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 953 GUID, BM.getModuleIdentifier())) 954 S->setLinkage(GlobalValue::WeakAnyLinkage); 955 } 956 957 // If the linker resolved the symbol to a local definition then mark it 958 // as local in the summary for the module we are adding. 959 if (Res.FinalDefinitionInLinkageUnit) { 960 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 961 GUID, BM.getModuleIdentifier())) { 962 S->setDSOLocal(true); 963 } 964 } 965 } 966 } 967 968 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 969 return make_error<StringError>( 970 "Expected at most one ThinLTO module per bitcode file", 971 inconvertibleErrorCode()); 972 973 if (!Conf.ThinLTOModulesToCompile.empty()) { 974 if (!ThinLTO.ModulesToCompile) 975 ThinLTO.ModulesToCompile = ModuleMapType(); 976 // This is a fuzzy name matching where only modules with name containing the 977 // specified switch values are going to be compiled. 978 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 979 if (BM.getModuleIdentifier().contains(Name)) { 980 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 981 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 982 << " to compile\n"; 983 } 984 } 985 } 986 987 return Error::success(); 988 } 989 990 unsigned LTO::getMaxTasks() const { 991 CalledGetMaxTasks = true; 992 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 993 : ThinLTO.ModuleMap.size(); 994 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 995 } 996 997 // If only some of the modules were split, we cannot correctly handle 998 // code that contains type tests or type checked loads. 999 Error LTO::checkPartiallySplit() { 1000 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 1001 return Error::success(); 1002 1003 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 1004 Intrinsic::getName(Intrinsic::type_test)); 1005 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 1006 Intrinsic::getName(Intrinsic::type_checked_load)); 1007 1008 // First check if there are type tests / type checked loads in the 1009 // merged regular LTO module IR. 1010 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 1011 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 1012 return make_error<StringError>( 1013 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1014 inconvertibleErrorCode()); 1015 1016 // Otherwise check if there are any recorded in the combined summary from the 1017 // ThinLTO modules. 1018 for (auto &P : ThinLTO.CombinedIndex) { 1019 for (auto &S : P.second.SummaryList) { 1020 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1021 if (!FS) 1022 continue; 1023 if (!FS->type_test_assume_vcalls().empty() || 1024 !FS->type_checked_load_vcalls().empty() || 1025 !FS->type_test_assume_const_vcalls().empty() || 1026 !FS->type_checked_load_const_vcalls().empty() || 1027 !FS->type_tests().empty()) 1028 return make_error<StringError>( 1029 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1030 inconvertibleErrorCode()); 1031 } 1032 } 1033 return Error::success(); 1034 } 1035 1036 Error LTO::run(AddStreamFn AddStream, FileCache Cache) { 1037 // Compute "dead" symbols, we don't want to import/export these! 1038 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 1039 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 1040 for (auto &Res : GlobalResolutions) { 1041 // Normally resolution have IR name of symbol. We can do nothing here 1042 // otherwise. See comments in GlobalResolution struct for more details. 1043 if (Res.second.IRName.empty()) 1044 continue; 1045 1046 GlobalValue::GUID GUID = GlobalValue::getGUID( 1047 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1048 1049 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1050 GUIDPreservedSymbols.insert(GUID); 1051 1052 if (Res.second.ExportDynamic) 1053 DynamicExportSymbols.insert(GUID); 1054 1055 GUIDPrevailingResolutions[GUID] = 1056 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1057 } 1058 1059 auto isPrevailing = [&](GlobalValue::GUID G) { 1060 auto It = GUIDPrevailingResolutions.find(G); 1061 if (It == GUIDPrevailingResolutions.end()) 1062 return PrevailingType::Unknown; 1063 return It->second; 1064 }; 1065 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1066 isPrevailing, Conf.OptLevel > 0); 1067 1068 // Setup output file to emit statistics. 1069 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1070 if (!StatsFileOrErr) 1071 return StatsFileOrErr.takeError(); 1072 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1073 1074 Error Result = runRegularLTO(AddStream); 1075 if (!Result) 1076 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1077 1078 if (StatsFile) 1079 PrintStatisticsJSON(StatsFile->os()); 1080 1081 return Result; 1082 } 1083 1084 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1085 // Setup optimization remarks. 1086 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1087 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1088 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1089 Conf.RemarksHotnessThreshold); 1090 if (!DiagFileOrErr) 1091 return DiagFileOrErr.takeError(); 1092 DiagnosticOutputFile = std::move(*DiagFileOrErr); 1093 1094 // Finalize linking of regular LTO modules containing summaries now that 1095 // we have computed liveness information. 1096 for (auto &M : RegularLTO.ModsWithSummaries) 1097 if (Error Err = linkRegularLTO(std::move(M), 1098 /*LivenessFromIndex=*/true)) 1099 return Err; 1100 1101 // Ensure we don't have inconsistently split LTO units with type tests. 1102 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1103 // this path both cases but eventually this should be split into two and 1104 // do the ThinLTO checks in `runThinLTO`. 1105 if (Error Err = checkPartiallySplit()) 1106 return Err; 1107 1108 // Make sure commons have the right size/alignment: we kept the largest from 1109 // all the prevailing when adding the inputs, and we apply it here. 1110 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1111 for (auto &I : RegularLTO.Commons) { 1112 if (!I.second.Prevailing) 1113 // Don't do anything if no instance of this common was prevailing. 1114 continue; 1115 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1116 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1117 // Don't create a new global if the type is already correct, just make 1118 // sure the alignment is correct. 1119 OldGV->setAlignment(I.second.Align); 1120 continue; 1121 } 1122 ArrayType *Ty = 1123 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1124 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1125 GlobalValue::CommonLinkage, 1126 ConstantAggregateZero::get(Ty), ""); 1127 GV->setAlignment(I.second.Align); 1128 if (OldGV) { 1129 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 1130 GV->takeName(OldGV); 1131 OldGV->eraseFromParent(); 1132 } else { 1133 GV->setName(I.first); 1134 } 1135 } 1136 1137 // If allowed, upgrade public vcall visibility metadata to linkage unit 1138 // visibility before whole program devirtualization in the optimizer. 1139 updateVCallVisibilityInModule(*RegularLTO.CombinedModule, 1140 Conf.HasWholeProgramVisibility, 1141 DynamicExportSymbols); 1142 updatePublicTypeTestCalls(*RegularLTO.CombinedModule, 1143 Conf.HasWholeProgramVisibility); 1144 1145 if (Conf.PreOptModuleHook && 1146 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1147 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1148 1149 if (!Conf.CodeGenOnly) { 1150 for (const auto &R : GlobalResolutions) { 1151 if (!R.second.isPrevailingIRSymbol()) 1152 continue; 1153 if (R.second.Partition != 0 && 1154 R.second.Partition != GlobalResolution::External) 1155 continue; 1156 1157 GlobalValue *GV = 1158 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1159 // Ignore symbols defined in other partitions. 1160 // Also skip declarations, which are not allowed to have internal linkage. 1161 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1162 continue; 1163 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1164 : GlobalValue::UnnamedAddr::None); 1165 if (EnableLTOInternalization && R.second.Partition == 0) 1166 GV->setLinkage(GlobalValue::InternalLinkage); 1167 } 1168 1169 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); 1170 1171 if (Conf.PostInternalizeModuleHook && 1172 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1173 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1174 } 1175 1176 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1177 if (Error Err = 1178 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1179 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1180 return Err; 1181 } 1182 1183 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1184 } 1185 1186 static const char *libcallRoutineNames[] = { 1187 #define HANDLE_LIBCALL(code, name) name, 1188 #include "llvm/IR/RuntimeLibcalls.def" 1189 #undef HANDLE_LIBCALL 1190 }; 1191 1192 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1193 return ArrayRef(libcallRoutineNames); 1194 } 1195 1196 /// This class defines the interface to the ThinLTO backend. 1197 class lto::ThinBackendProc { 1198 protected: 1199 const Config &Conf; 1200 ModuleSummaryIndex &CombinedIndex; 1201 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1202 lto::IndexWriteCallback OnWrite; 1203 bool ShouldEmitImportsFiles; 1204 1205 public: 1206 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1207 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1208 lto::IndexWriteCallback OnWrite, bool ShouldEmitImportsFiles) 1209 : Conf(Conf), CombinedIndex(CombinedIndex), 1210 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries), 1211 OnWrite(OnWrite), ShouldEmitImportsFiles(ShouldEmitImportsFiles) {} 1212 1213 virtual ~ThinBackendProc() = default; 1214 virtual Error start( 1215 unsigned Task, BitcodeModule BM, 1216 const FunctionImporter::ImportMapTy &ImportList, 1217 const FunctionImporter::ExportSetTy &ExportList, 1218 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1219 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1220 virtual Error wait() = 0; 1221 virtual unsigned getThreadCount() = 0; 1222 1223 // Write sharded indices and (optionally) imports to disk 1224 Error emitFiles(const FunctionImporter::ImportMapTy &ImportList, 1225 llvm::StringRef ModulePath, 1226 const std::string &NewModulePath) { 1227 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1228 std::error_code EC; 1229 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1230 ImportList, ModuleToSummariesForIndex); 1231 1232 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1233 sys::fs::OpenFlags::OF_None); 1234 if (EC) 1235 return errorCodeToError(EC); 1236 writeIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1237 1238 if (ShouldEmitImportsFiles) { 1239 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1240 ModuleToSummariesForIndex); 1241 if (EC) 1242 return errorCodeToError(EC); 1243 } 1244 return Error::success(); 1245 } 1246 }; 1247 1248 namespace { 1249 class InProcessThinBackend : public ThinBackendProc { 1250 ThreadPool BackendThreadPool; 1251 AddStreamFn AddStream; 1252 FileCache Cache; 1253 std::set<GlobalValue::GUID> CfiFunctionDefs; 1254 std::set<GlobalValue::GUID> CfiFunctionDecls; 1255 1256 std::optional<Error> Err; 1257 std::mutex ErrMu; 1258 1259 bool ShouldEmitIndexFiles; 1260 1261 public: 1262 InProcessThinBackend( 1263 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1264 ThreadPoolStrategy ThinLTOParallelism, 1265 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1266 AddStreamFn AddStream, FileCache Cache, lto::IndexWriteCallback OnWrite, 1267 bool ShouldEmitIndexFiles, bool ShouldEmitImportsFiles) 1268 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1269 OnWrite, ShouldEmitImportsFiles), 1270 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1271 Cache(std::move(Cache)), ShouldEmitIndexFiles(ShouldEmitIndexFiles) { 1272 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1273 CfiFunctionDefs.insert( 1274 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1275 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1276 CfiFunctionDecls.insert( 1277 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1278 } 1279 1280 Error runThinLTOBackendThread( 1281 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM, 1282 ModuleSummaryIndex &CombinedIndex, 1283 const FunctionImporter::ImportMapTy &ImportList, 1284 const FunctionImporter::ExportSetTy &ExportList, 1285 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1286 const GVSummaryMapTy &DefinedGlobals, 1287 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1288 auto RunThinBackend = [&](AddStreamFn AddStream) { 1289 LTOLLVMContext BackendContext(Conf); 1290 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1291 if (!MOrErr) 1292 return MOrErr.takeError(); 1293 1294 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1295 ImportList, DefinedGlobals, &ModuleMap); 1296 }; 1297 1298 auto ModuleID = BM.getModuleIdentifier(); 1299 1300 if (ShouldEmitIndexFiles) { 1301 if (auto E = emitFiles(ImportList, ModuleID, ModuleID.str())) 1302 return E; 1303 } 1304 1305 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1306 all_of(CombinedIndex.getModuleHash(ModuleID), 1307 [](uint32_t V) { return V == 0; })) 1308 // Cache disabled or no entry for this module in the combined index or 1309 // no module hash. 1310 return RunThinBackend(AddStream); 1311 1312 SmallString<40> Key; 1313 // The module may be cached, this helps handling it. 1314 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1315 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1316 CfiFunctionDecls); 1317 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID); 1318 if (Error Err = CacheAddStreamOrErr.takeError()) 1319 return Err; 1320 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr; 1321 if (CacheAddStream) 1322 return RunThinBackend(CacheAddStream); 1323 1324 return Error::success(); 1325 } 1326 1327 Error start( 1328 unsigned Task, BitcodeModule BM, 1329 const FunctionImporter::ImportMapTy &ImportList, 1330 const FunctionImporter::ExportSetTy &ExportList, 1331 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1332 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1333 StringRef ModulePath = BM.getModuleIdentifier(); 1334 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1335 const GVSummaryMapTy &DefinedGlobals = 1336 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1337 BackendThreadPool.async( 1338 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1339 const FunctionImporter::ImportMapTy &ImportList, 1340 const FunctionImporter::ExportSetTy &ExportList, 1341 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1342 &ResolvedODR, 1343 const GVSummaryMapTy &DefinedGlobals, 1344 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1345 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1346 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1347 "thin backend"); 1348 Error E = runThinLTOBackendThread( 1349 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1350 ResolvedODR, DefinedGlobals, ModuleMap); 1351 if (E) { 1352 std::unique_lock<std::mutex> L(ErrMu); 1353 if (Err) 1354 Err = joinErrors(std::move(*Err), std::move(E)); 1355 else 1356 Err = std::move(E); 1357 } 1358 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1359 timeTraceProfilerFinishThread(); 1360 }, 1361 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1362 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1363 1364 if (OnWrite) 1365 OnWrite(std::string(ModulePath)); 1366 return Error::success(); 1367 } 1368 1369 Error wait() override { 1370 BackendThreadPool.wait(); 1371 if (Err) 1372 return std::move(*Err); 1373 else 1374 return Error::success(); 1375 } 1376 1377 unsigned getThreadCount() override { 1378 return BackendThreadPool.getThreadCount(); 1379 } 1380 }; 1381 } // end anonymous namespace 1382 1383 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism, 1384 lto::IndexWriteCallback OnWrite, 1385 bool ShouldEmitIndexFiles, 1386 bool ShouldEmitImportsFiles) { 1387 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1388 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1389 AddStreamFn AddStream, FileCache Cache) { 1390 return std::make_unique<InProcessThinBackend>( 1391 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream, 1392 Cache, OnWrite, ShouldEmitIndexFiles, ShouldEmitImportsFiles); 1393 }; 1394 } 1395 1396 // Given the original \p Path to an output file, replace any path 1397 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1398 // resulting directory if it does not yet exist. 1399 std::string lto::getThinLTOOutputFile(const std::string &Path, 1400 const std::string &OldPrefix, 1401 const std::string &NewPrefix) { 1402 if (OldPrefix.empty() && NewPrefix.empty()) 1403 return Path; 1404 SmallString<128> NewPath(Path); 1405 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1406 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1407 if (!ParentPath.empty()) { 1408 // Make sure the new directory exists, creating it if necessary. 1409 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1410 llvm::errs() << "warning: could not create directory '" << ParentPath 1411 << "': " << EC.message() << '\n'; 1412 } 1413 return std::string(NewPath.str()); 1414 } 1415 1416 namespace { 1417 class WriteIndexesThinBackend : public ThinBackendProc { 1418 std::string OldPrefix, NewPrefix; 1419 raw_fd_ostream *LinkedObjectsFile; 1420 1421 public: 1422 WriteIndexesThinBackend( 1423 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1424 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1425 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1426 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1427 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1428 OnWrite, ShouldEmitImportsFiles), 1429 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1430 LinkedObjectsFile(LinkedObjectsFile) {} 1431 1432 Error start( 1433 unsigned Task, BitcodeModule BM, 1434 const FunctionImporter::ImportMapTy &ImportList, 1435 const FunctionImporter::ExportSetTy &ExportList, 1436 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1437 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1438 StringRef ModulePath = BM.getModuleIdentifier(); 1439 std::string NewModulePath = 1440 getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix); 1441 1442 if (LinkedObjectsFile) 1443 *LinkedObjectsFile << NewModulePath << '\n'; 1444 1445 if (auto E = emitFiles(ImportList, ModulePath, NewModulePath)) 1446 return E; 1447 1448 if (OnWrite) 1449 OnWrite(std::string(ModulePath)); 1450 return Error::success(); 1451 } 1452 1453 Error wait() override { return Error::success(); } 1454 1455 // WriteIndexesThinBackend should always return 1 to prevent module 1456 // re-ordering and avoid non-determinism in the final link. 1457 unsigned getThreadCount() override { return 1; } 1458 }; 1459 } // end anonymous namespace 1460 1461 ThinBackend lto::createWriteIndexesThinBackend( 1462 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1463 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1464 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1465 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1466 AddStreamFn AddStream, FileCache Cache) { 1467 return std::make_unique<WriteIndexesThinBackend>( 1468 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1469 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1470 }; 1471 } 1472 1473 Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache, 1474 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1475 ThinLTO.CombinedIndex.releaseTemporaryMemory(); 1476 timeTraceProfilerBegin("ThinLink", StringRef("")); 1477 auto TimeTraceScopeExit = llvm::make_scope_exit([]() { 1478 if (llvm::timeTraceProfilerEnabled()) 1479 llvm::timeTraceProfilerEnd(); 1480 }); 1481 if (ThinLTO.ModuleMap.empty()) 1482 return Error::success(); 1483 1484 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1485 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1486 return Error::success(); 1487 } 1488 1489 if (Conf.CombinedIndexHook && 1490 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1491 return Error::success(); 1492 1493 // Collect for each module the list of function it defines (GUID -> 1494 // Summary). 1495 StringMap<GVSummaryMapTy> 1496 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1497 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1498 ModuleToDefinedGVSummaries); 1499 // Create entries for any modules that didn't have any GV summaries 1500 // (either they didn't have any GVs to start with, or we suppressed 1501 // generation of the summaries because they e.g. had inline assembly 1502 // uses that couldn't be promoted/renamed on export). This is so 1503 // InProcessThinBackend::start can still launch a backend thread, which 1504 // is passed the map of summaries for the module, without any special 1505 // handling for this case. 1506 for (auto &Mod : ThinLTO.ModuleMap) 1507 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1508 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1509 1510 // Synthesize entry counts for functions in the CombinedIndex. 1511 computeSyntheticCounts(ThinLTO.CombinedIndex); 1512 1513 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1514 ThinLTO.ModuleMap.size()); 1515 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1516 ThinLTO.ModuleMap.size()); 1517 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1518 1519 if (DumpThinCGSCCs) 1520 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1521 1522 std::set<GlobalValue::GUID> ExportedGUIDs; 1523 1524 if (hasWholeProgramVisibility(Conf.HasWholeProgramVisibility)) 1525 ThinLTO.CombinedIndex.setWithWholeProgramVisibility(); 1526 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1527 // the summaries before whole program devirtualization below. 1528 updateVCallVisibilityInIndex(ThinLTO.CombinedIndex, 1529 Conf.HasWholeProgramVisibility, 1530 DynamicExportSymbols); 1531 1532 // Perform index-based WPD. This will return immediately if there are 1533 // no index entries in the typeIdMetadata map (e.g. if we are instead 1534 // performing IR-based WPD in hybrid regular/thin LTO mode). 1535 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1536 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1537 LocalWPDTargetsMap); 1538 1539 if (Conf.OptLevel > 0) 1540 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1541 ImportLists, ExportLists); 1542 1543 // Figure out which symbols need to be internalized. This also needs to happen 1544 // at -O0 because summary-based DCE is implemented using internalization, and 1545 // we must apply DCE consistently with the full LTO module in order to avoid 1546 // undefined references during the final link. 1547 for (auto &Res : GlobalResolutions) { 1548 // If the symbol does not have external references or it is not prevailing, 1549 // then not need to mark it as exported from a ThinLTO partition. 1550 if (Res.second.Partition != GlobalResolution::External || 1551 !Res.second.isPrevailingIRSymbol()) 1552 continue; 1553 auto GUID = GlobalValue::getGUID( 1554 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1555 // Mark exported unless index-based analysis determined it to be dead. 1556 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1557 ExportedGUIDs.insert(GUID); 1558 } 1559 1560 // Any functions referenced by the jump table in the regular LTO object must 1561 // be exported. 1562 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1563 ExportedGUIDs.insert( 1564 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1565 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) 1566 ExportedGUIDs.insert( 1567 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl))); 1568 1569 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1570 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1571 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1572 ExportedGUIDs.count(VI.getGUID()); 1573 }; 1574 1575 // Update local devirtualized targets that were exported by cross-module 1576 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1577 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1578 LocalWPDTargetsMap); 1579 1580 auto isPrevailing = [&](GlobalValue::GUID GUID, 1581 const GlobalValueSummary *S) { 1582 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1583 }; 1584 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1585 isPrevailing); 1586 1587 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1588 GlobalValue::GUID GUID, 1589 GlobalValue::LinkageTypes NewLinkage) { 1590 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1591 }; 1592 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1593 recordNewLinkage, GUIDPreservedSymbols); 1594 1595 thinLTOPropagateFunctionAttrs(ThinLTO.CombinedIndex, isPrevailing); 1596 1597 generateParamAccessSummary(ThinLTO.CombinedIndex); 1598 1599 if (llvm::timeTraceProfilerEnabled()) 1600 llvm::timeTraceProfilerEnd(); 1601 1602 TimeTraceScopeExit.release(); 1603 1604 std::unique_ptr<ThinBackendProc> BackendProc = 1605 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1606 AddStream, Cache); 1607 1608 auto &ModuleMap = 1609 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1610 1611 auto ProcessOneModule = [&](int I) -> Error { 1612 auto &Mod = *(ModuleMap.begin() + I); 1613 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1614 // combined module and parallel code generation partitions. 1615 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1616 Mod.second, ImportLists[Mod.first], 1617 ExportLists[Mod.first], ResolvedODR[Mod.first], 1618 ThinLTO.ModuleMap); 1619 }; 1620 1621 if (BackendProc->getThreadCount() == 1) { 1622 // Process the modules in the order they were provided on the command-line. 1623 // It is important for this codepath to be used for WriteIndexesThinBackend, 1624 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1625 // order as the inputs, which otherwise would affect the final link order. 1626 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1627 if (Error E = ProcessOneModule(I)) 1628 return E; 1629 } else { 1630 // When executing in parallel, process largest bitsize modules first to 1631 // improve parallelism, and avoid starving the thread pool near the end. 1632 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1633 // of 100 sec). 1634 std::vector<BitcodeModule *> ModulesVec; 1635 ModulesVec.reserve(ModuleMap.size()); 1636 for (auto &Mod : ModuleMap) 1637 ModulesVec.push_back(&Mod.second); 1638 for (int I : generateModulesOrdering(ModulesVec)) 1639 if (Error E = ProcessOneModule(I)) 1640 return E; 1641 } 1642 return BackendProc->wait(); 1643 } 1644 1645 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1646 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1647 StringRef RemarksFormat, bool RemarksWithHotness, 1648 std::optional<uint64_t> RemarksHotnessThreshold, int Count) { 1649 std::string Filename = std::string(RemarksFilename); 1650 // For ThinLTO, file.opt.<format> becomes 1651 // file.opt.<format>.thin.<num>.<format>. 1652 if (!Filename.empty() && Count != -1) 1653 Filename = 1654 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1655 .str(); 1656 1657 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1658 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1659 RemarksHotnessThreshold); 1660 if (Error E = ResultOrErr.takeError()) 1661 return std::move(E); 1662 1663 if (*ResultOrErr) 1664 (*ResultOrErr)->keep(); 1665 1666 return ResultOrErr; 1667 } 1668 1669 Expected<std::unique_ptr<ToolOutputFile>> 1670 lto::setupStatsFile(StringRef StatsFilename) { 1671 // Setup output file to emit statistics. 1672 if (StatsFilename.empty()) 1673 return nullptr; 1674 1675 llvm::EnableStatistics(false); 1676 std::error_code EC; 1677 auto StatsFile = 1678 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1679 if (EC) 1680 return errorCodeToError(EC); 1681 1682 StatsFile->keep(); 1683 return std::move(StatsFile); 1684 } 1685 1686 // Compute the ordering we will process the inputs: the rough heuristic here 1687 // is to sort them per size so that the largest module get schedule as soon as 1688 // possible. This is purely a compile-time optimization. 1689 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1690 auto Seq = llvm::seq<int>(0, R.size()); 1691 std::vector<int> ModulesOrdering(Seq.begin(), Seq.end()); 1692 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1693 auto LSize = R[LeftIndex]->getBuffer().size(); 1694 auto RSize = R[RightIndex]->getBuffer().size(); 1695 return LSize > RSize; 1696 }); 1697 return ModulesOrdering; 1698 } 1699