xref: /freebsd/contrib/llvm-project/llvm/lib/LTO/LTO.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions and classes used to support LTO.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/TargetLibraryInfo.h"
16 #include "llvm/Analysis/TargetTransformInfo.h"
17 #include "llvm/Bitcode/BitcodeReader.h"
18 #include "llvm/Bitcode/BitcodeWriter.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/AutoUpgrade.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/LegacyPassManager.h"
25 #include "llvm/IR/Mangler.h"
26 #include "llvm/IR/Metadata.h"
27 #include "llvm/IR/RemarkStreamer.h"
28 #include "llvm/LTO/LTOBackend.h"
29 #include "llvm/LTO/SummaryBasedOptimizations.h"
30 #include "llvm/Linker/IRMover.h"
31 #include "llvm/Object/IRObjectFile.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Error.h"
34 #include "llvm/Support/ManagedStatic.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/Path.h"
37 #include "llvm/Support/SHA1.h"
38 #include "llvm/Support/SourceMgr.h"
39 #include "llvm/Support/TargetRegistry.h"
40 #include "llvm/Support/ThreadPool.h"
41 #include "llvm/Support/Threading.h"
42 #include "llvm/Support/VCSRevision.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetOptions.h"
46 #include "llvm/Transforms/IPO.h"
47 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
48 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
49 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
50 #include "llvm/Transforms/Utils/SplitModule.h"
51 
52 #include <set>
53 
54 using namespace llvm;
55 using namespace lto;
56 using namespace object;
57 
58 #define DEBUG_TYPE "lto"
59 
60 static cl::opt<bool>
61     DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden,
62                    cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
63 
64 /// Enable global value internalization in LTO.
65 cl::opt<bool> EnableLTOInternalization(
66     "enable-lto-internalization", cl::init(true), cl::Hidden,
67     cl::desc("Enable global value internalization in LTO"));
68 
69 // Computes a unique hash for the Module considering the current list of
70 // export/import and other global analysis results.
71 // The hash is produced in \p Key.
72 void llvm::computeLTOCacheKey(
73     SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index,
74     StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList,
75     const FunctionImporter::ExportSetTy &ExportList,
76     const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
77     const GVSummaryMapTy &DefinedGlobals,
78     const std::set<GlobalValue::GUID> &CfiFunctionDefs,
79     const std::set<GlobalValue::GUID> &CfiFunctionDecls) {
80   // Compute the unique hash for this entry.
81   // This is based on the current compiler version, the module itself, the
82   // export list, the hash for every single module in the import list, the
83   // list of ResolvedODR for the module, and the list of preserved symbols.
84   SHA1 Hasher;
85 
86   // Start with the compiler revision
87   Hasher.update(LLVM_VERSION_STRING);
88 #ifdef LLVM_REVISION
89   Hasher.update(LLVM_REVISION);
90 #endif
91 
92   // Include the parts of the LTO configuration that affect code generation.
93   auto AddString = [&](StringRef Str) {
94     Hasher.update(Str);
95     Hasher.update(ArrayRef<uint8_t>{0});
96   };
97   auto AddUnsigned = [&](unsigned I) {
98     uint8_t Data[4];
99     Data[0] = I;
100     Data[1] = I >> 8;
101     Data[2] = I >> 16;
102     Data[3] = I >> 24;
103     Hasher.update(ArrayRef<uint8_t>{Data, 4});
104   };
105   auto AddUint64 = [&](uint64_t I) {
106     uint8_t Data[8];
107     Data[0] = I;
108     Data[1] = I >> 8;
109     Data[2] = I >> 16;
110     Data[3] = I >> 24;
111     Data[4] = I >> 32;
112     Data[5] = I >> 40;
113     Data[6] = I >> 48;
114     Data[7] = I >> 56;
115     Hasher.update(ArrayRef<uint8_t>{Data, 8});
116   };
117   AddString(Conf.CPU);
118   // FIXME: Hash more of Options. For now all clients initialize Options from
119   // command-line flags (which is unsupported in production), but may set
120   // RelaxELFRelocations. The clang driver can also pass FunctionSections,
121   // DataSections and DebuggerTuning via command line flags.
122   AddUnsigned(Conf.Options.RelaxELFRelocations);
123   AddUnsigned(Conf.Options.FunctionSections);
124   AddUnsigned(Conf.Options.DataSections);
125   AddUnsigned((unsigned)Conf.Options.DebuggerTuning);
126   for (auto &A : Conf.MAttrs)
127     AddString(A);
128   if (Conf.RelocModel)
129     AddUnsigned(*Conf.RelocModel);
130   else
131     AddUnsigned(-1);
132   if (Conf.CodeModel)
133     AddUnsigned(*Conf.CodeModel);
134   else
135     AddUnsigned(-1);
136   AddUnsigned(Conf.CGOptLevel);
137   AddUnsigned(Conf.CGFileType);
138   AddUnsigned(Conf.OptLevel);
139   AddUnsigned(Conf.UseNewPM);
140   AddUnsigned(Conf.Freestanding);
141   AddString(Conf.OptPipeline);
142   AddString(Conf.AAPipeline);
143   AddString(Conf.OverrideTriple);
144   AddString(Conf.DefaultTriple);
145   AddString(Conf.DwoDir);
146 
147   // Include the hash for the current module
148   auto ModHash = Index.getModuleHash(ModuleID);
149   Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
150 
151   std::vector<uint64_t> ExportsGUID;
152   ExportsGUID.reserve(ExportList.size());
153   for (const auto &VI : ExportList) {
154     auto GUID = VI.getGUID();
155     ExportsGUID.push_back(GUID);
156   }
157 
158   // Sort the export list elements GUIDs.
159   llvm::sort(ExportsGUID);
160   for (uint64_t GUID : ExportsGUID) {
161     // The export list can impact the internalization, be conservative here
162     Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID)));
163   }
164 
165   // Include the hash for every module we import functions from. The set of
166   // imported symbols for each module may affect code generation and is
167   // sensitive to link order, so include that as well.
168   using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator;
169   std::vector<ImportMapIteratorTy> ImportModulesVector;
170   ImportModulesVector.reserve(ImportList.size());
171 
172   for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end();
173        ++It) {
174     ImportModulesVector.push_back(It);
175   }
176   llvm::sort(ImportModulesVector,
177              [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs)
178                  -> bool { return Lhs->getKey() < Rhs->getKey(); });
179   for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) {
180     auto ModHash = Index.getModuleHash(EntryIt->first());
181     Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
182 
183     AddUint64(EntryIt->second.size());
184     for (auto &Fn : EntryIt->second)
185       AddUint64(Fn);
186   }
187 
188   // Include the hash for the resolved ODR.
189   for (auto &Entry : ResolvedODR) {
190     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
191                                     sizeof(GlobalValue::GUID)));
192     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
193                                     sizeof(GlobalValue::LinkageTypes)));
194   }
195 
196   // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
197   // defined in this module.
198   std::set<GlobalValue::GUID> UsedCfiDefs;
199   std::set<GlobalValue::GUID> UsedCfiDecls;
200 
201   // Typeids used in this module.
202   std::set<GlobalValue::GUID> UsedTypeIds;
203 
204   auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) {
205     if (CfiFunctionDefs.count(ValueGUID))
206       UsedCfiDefs.insert(ValueGUID);
207     if (CfiFunctionDecls.count(ValueGUID))
208       UsedCfiDecls.insert(ValueGUID);
209   };
210 
211   auto AddUsedThings = [&](GlobalValueSummary *GS) {
212     if (!GS) return;
213     AddUnsigned(GS->isLive());
214     AddUnsigned(GS->canAutoHide());
215     for (const ValueInfo &VI : GS->refs()) {
216       AddUnsigned(VI.isDSOLocal());
217       AddUsedCfiGlobal(VI.getGUID());
218     }
219     if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) {
220       AddUnsigned(GVS->maybeReadOnly());
221       AddUnsigned(GVS->maybeWriteOnly());
222     }
223     if (auto *FS = dyn_cast<FunctionSummary>(GS)) {
224       for (auto &TT : FS->type_tests())
225         UsedTypeIds.insert(TT);
226       for (auto &TT : FS->type_test_assume_vcalls())
227         UsedTypeIds.insert(TT.GUID);
228       for (auto &TT : FS->type_checked_load_vcalls())
229         UsedTypeIds.insert(TT.GUID);
230       for (auto &TT : FS->type_test_assume_const_vcalls())
231         UsedTypeIds.insert(TT.VFunc.GUID);
232       for (auto &TT : FS->type_checked_load_const_vcalls())
233         UsedTypeIds.insert(TT.VFunc.GUID);
234       for (auto &ET : FS->calls()) {
235         AddUnsigned(ET.first.isDSOLocal());
236         AddUsedCfiGlobal(ET.first.getGUID());
237       }
238     }
239   };
240 
241   // Include the hash for the linkage type to reflect internalization and weak
242   // resolution, and collect any used type identifier resolutions.
243   for (auto &GS : DefinedGlobals) {
244     GlobalValue::LinkageTypes Linkage = GS.second->linkage();
245     Hasher.update(
246         ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage)));
247     AddUsedCfiGlobal(GS.first);
248     AddUsedThings(GS.second);
249   }
250 
251   // Imported functions may introduce new uses of type identifier resolutions,
252   // so we need to collect their used resolutions as well.
253   for (auto &ImpM : ImportList)
254     for (auto &ImpF : ImpM.second) {
255       GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first());
256       AddUsedThings(S);
257       // If this is an alias, we also care about any types/etc. that the aliasee
258       // may reference.
259       if (auto *AS = dyn_cast_or_null<AliasSummary>(S))
260         AddUsedThings(AS->getBaseObject());
261     }
262 
263   auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) {
264     AddString(TId);
265 
266     AddUnsigned(S.TTRes.TheKind);
267     AddUnsigned(S.TTRes.SizeM1BitWidth);
268 
269     AddUint64(S.TTRes.AlignLog2);
270     AddUint64(S.TTRes.SizeM1);
271     AddUint64(S.TTRes.BitMask);
272     AddUint64(S.TTRes.InlineBits);
273 
274     AddUint64(S.WPDRes.size());
275     for (auto &WPD : S.WPDRes) {
276       AddUnsigned(WPD.first);
277       AddUnsigned(WPD.second.TheKind);
278       AddString(WPD.second.SingleImplName);
279 
280       AddUint64(WPD.second.ResByArg.size());
281       for (auto &ByArg : WPD.second.ResByArg) {
282         AddUint64(ByArg.first.size());
283         for (uint64_t Arg : ByArg.first)
284           AddUint64(Arg);
285         AddUnsigned(ByArg.second.TheKind);
286         AddUint64(ByArg.second.Info);
287         AddUnsigned(ByArg.second.Byte);
288         AddUnsigned(ByArg.second.Bit);
289       }
290     }
291   };
292 
293   // Include the hash for all type identifiers used by this module.
294   for (GlobalValue::GUID TId : UsedTypeIds) {
295     auto TidIter = Index.typeIds().equal_range(TId);
296     for (auto It = TidIter.first; It != TidIter.second; ++It)
297       AddTypeIdSummary(It->second.first, It->second.second);
298   }
299 
300   AddUnsigned(UsedCfiDefs.size());
301   for (auto &V : UsedCfiDefs)
302     AddUint64(V);
303 
304   AddUnsigned(UsedCfiDecls.size());
305   for (auto &V : UsedCfiDecls)
306     AddUint64(V);
307 
308   if (!Conf.SampleProfile.empty()) {
309     auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile);
310     if (FileOrErr) {
311       Hasher.update(FileOrErr.get()->getBuffer());
312 
313       if (!Conf.ProfileRemapping.empty()) {
314         FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping);
315         if (FileOrErr)
316           Hasher.update(FileOrErr.get()->getBuffer());
317       }
318     }
319   }
320 
321   Key = toHex(Hasher.result());
322 }
323 
324 static void thinLTOResolvePrevailingGUID(
325     ValueInfo VI, DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias,
326     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
327         isPrevailing,
328     function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
329         recordNewLinkage,
330     const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
331   for (auto &S : VI.getSummaryList()) {
332     GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
333     // Ignore local and appending linkage values since the linker
334     // doesn't resolve them.
335     if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
336         GlobalValue::isAppendingLinkage(S->linkage()))
337       continue;
338     // We need to emit only one of these. The prevailing module will keep it,
339     // but turned into a weak, while the others will drop it when possible.
340     // This is both a compile-time optimization and a correctness
341     // transformation. This is necessary for correctness when we have exported
342     // a reference - we need to convert the linkonce to weak to
343     // ensure a copy is kept to satisfy the exported reference.
344     // FIXME: We may want to split the compile time and correctness
345     // aspects into separate routines.
346     if (isPrevailing(VI.getGUID(), S.get())) {
347       if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) {
348         S->setLinkage(GlobalValue::getWeakLinkage(
349             GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
350         // The kept copy is eligible for auto-hiding (hidden visibility) if all
351         // copies were (i.e. they were all linkonce_odr global unnamed addr).
352         // If any copy is not (e.g. it was originally weak_odr), then the symbol
353         // must remain externally available (e.g. a weak_odr from an explicitly
354         // instantiated template). Additionally, if it is in the
355         // GUIDPreservedSymbols set, that means that it is visibile outside
356         // the summary (e.g. in a native object or a bitcode file without
357         // summary), and in that case we cannot hide it as it isn't possible to
358         // check all copies.
359         S->setCanAutoHide(VI.canAutoHide() &&
360                           !GUIDPreservedSymbols.count(VI.getGUID()));
361       }
362     }
363     // Alias and aliasee can't be turned into available_externally.
364     else if (!isa<AliasSummary>(S.get()) &&
365              !GlobalInvolvedWithAlias.count(S.get()))
366       S->setLinkage(GlobalValue::AvailableExternallyLinkage);
367     if (S->linkage() != OriginalLinkage)
368       recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage());
369   }
370 }
371 
372 /// Resolve linkage for prevailing symbols in the \p Index.
373 //
374 // We'd like to drop these functions if they are no longer referenced in the
375 // current module. However there is a chance that another module is still
376 // referencing them because of the import. We make sure we always emit at least
377 // one copy.
378 void llvm::thinLTOResolvePrevailingInIndex(
379     ModuleSummaryIndex &Index,
380     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
381         isPrevailing,
382     function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
383         recordNewLinkage,
384     const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
385   // We won't optimize the globals that are referenced by an alias for now
386   // Ideally we should turn the alias into a global and duplicate the definition
387   // when needed.
388   DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias;
389   for (auto &I : Index)
390     for (auto &S : I.second.SummaryList)
391       if (auto AS = dyn_cast<AliasSummary>(S.get()))
392         GlobalInvolvedWithAlias.insert(&AS->getAliasee());
393 
394   for (auto &I : Index)
395     thinLTOResolvePrevailingGUID(Index.getValueInfo(I), GlobalInvolvedWithAlias,
396                                  isPrevailing, recordNewLinkage,
397                                  GUIDPreservedSymbols);
398 }
399 
400 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) {
401   if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject()))
402     return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() &&
403            (VarSummary->linkage() == GlobalValue::WeakODRLinkage ||
404             VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage);
405   return false;
406 }
407 
408 static void thinLTOInternalizeAndPromoteGUID(
409     ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported,
410     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
411         isPrevailing) {
412   for (auto &S : VI.getSummaryList()) {
413     if (isExported(S->modulePath(), VI)) {
414       if (GlobalValue::isLocalLinkage(S->linkage()))
415         S->setLinkage(GlobalValue::ExternalLinkage);
416     } else if (EnableLTOInternalization &&
417                // Ignore local and appending linkage values since the linker
418                // doesn't resolve them.
419                !GlobalValue::isLocalLinkage(S->linkage()) &&
420                (!GlobalValue::isInterposableLinkage(S->linkage()) ||
421                 isPrevailing(VI.getGUID(), S.get())) &&
422                S->linkage() != GlobalValue::AppendingLinkage &&
423                // We can't internalize available_externally globals because this
424                // can break function pointer equality.
425                S->linkage() != GlobalValue::AvailableExternallyLinkage &&
426                // Functions and read-only variables with linkonce_odr and
427                // weak_odr linkage can be internalized. We can't internalize
428                // linkonce_odr and weak_odr variables which are both modified
429                // and read somewhere in the program because reads and writes
430                // will become inconsistent.
431                !isWeakObjectWithRWAccess(S.get()))
432       S->setLinkage(GlobalValue::InternalLinkage);
433   }
434 }
435 
436 // Update the linkages in the given \p Index to mark exported values
437 // as external and non-exported values as internal.
438 void llvm::thinLTOInternalizeAndPromoteInIndex(
439     ModuleSummaryIndex &Index,
440     function_ref<bool(StringRef, ValueInfo)> isExported,
441     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
442         isPrevailing) {
443   for (auto &I : Index)
444     thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported,
445                                      isPrevailing);
446 }
447 
448 // Requires a destructor for std::vector<InputModule>.
449 InputFile::~InputFile() = default;
450 
451 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) {
452   std::unique_ptr<InputFile> File(new InputFile);
453 
454   Expected<IRSymtabFile> FOrErr = readIRSymtab(Object);
455   if (!FOrErr)
456     return FOrErr.takeError();
457 
458   File->TargetTriple = FOrErr->TheReader.getTargetTriple();
459   File->SourceFileName = FOrErr->TheReader.getSourceFileName();
460   File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts();
461   File->DependentLibraries = FOrErr->TheReader.getDependentLibraries();
462   File->ComdatTable = FOrErr->TheReader.getComdatTable();
463 
464   for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) {
465     size_t Begin = File->Symbols.size();
466     for (const irsymtab::Reader::SymbolRef &Sym :
467          FOrErr->TheReader.module_symbols(I))
468       // Skip symbols that are irrelevant to LTO. Note that this condition needs
469       // to match the one in Skip() in LTO::addRegularLTO().
470       if (Sym.isGlobal() && !Sym.isFormatSpecific())
471         File->Symbols.push_back(Sym);
472     File->ModuleSymIndices.push_back({Begin, File->Symbols.size()});
473   }
474 
475   File->Mods = FOrErr->Mods;
476   File->Strtab = std::move(FOrErr->Strtab);
477   return std::move(File);
478 }
479 
480 StringRef InputFile::getName() const {
481   return Mods[0].getModuleIdentifier();
482 }
483 
484 BitcodeModule &InputFile::getSingleBitcodeModule() {
485   assert(Mods.size() == 1 && "Expect only one bitcode module");
486   return Mods[0];
487 }
488 
489 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
490                                       const Config &Conf)
491     : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel),
492       Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)),
493       Mover(std::make_unique<IRMover>(*CombinedModule)) {}
494 
495 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend)
496     : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) {
497   if (!Backend)
498     this->Backend =
499         createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
500 }
501 
502 LTO::LTO(Config Conf, ThinBackend Backend,
503          unsigned ParallelCodeGenParallelismLevel)
504     : Conf(std::move(Conf)),
505       RegularLTO(ParallelCodeGenParallelismLevel, this->Conf),
506       ThinLTO(std::move(Backend)) {}
507 
508 // Requires a destructor for MapVector<BitcodeModule>.
509 LTO::~LTO() = default;
510 
511 // Add the symbols in the given module to the GlobalResolutions map, and resolve
512 // their partitions.
513 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
514                                ArrayRef<SymbolResolution> Res,
515                                unsigned Partition, bool InSummary) {
516   auto *ResI = Res.begin();
517   auto *ResE = Res.end();
518   (void)ResE;
519   for (const InputFile::Symbol &Sym : Syms) {
520     assert(ResI != ResE);
521     SymbolResolution Res = *ResI++;
522 
523     StringRef Name = Sym.getName();
524     Triple TT(RegularLTO.CombinedModule->getTargetTriple());
525     // Strip the __imp_ prefix from COFF dllimport symbols (similar to the
526     // way they are handled by lld), otherwise we can end up with two
527     // global resolutions (one with and one for a copy of the symbol without).
528     if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_"))
529       Name = Name.substr(strlen("__imp_"));
530     auto &GlobalRes = GlobalResolutions[Name];
531     GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr();
532     if (Res.Prevailing) {
533       assert(!GlobalRes.Prevailing &&
534              "Multiple prevailing defs are not allowed");
535       GlobalRes.Prevailing = true;
536       GlobalRes.IRName = Sym.getIRName();
537     } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) {
538       // Sometimes it can be two copies of symbol in a module and prevailing
539       // symbol can have no IR name. That might happen if symbol is defined in
540       // module level inline asm block. In case we have multiple modules with
541       // the same symbol we want to use IR name of the prevailing symbol.
542       // Otherwise, if we haven't seen a prevailing symbol, set the name so that
543       // we can later use it to check if there is any prevailing copy in IR.
544       GlobalRes.IRName = Sym.getIRName();
545     }
546 
547     // Set the partition to external if we know it is re-defined by the linker
548     // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
549     // regular object, is referenced from llvm.compiler_used, or was already
550     // recorded as being referenced from a different partition.
551     if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() ||
552         (GlobalRes.Partition != GlobalResolution::Unknown &&
553          GlobalRes.Partition != Partition)) {
554       GlobalRes.Partition = GlobalResolution::External;
555     } else
556       // First recorded reference, save the current partition.
557       GlobalRes.Partition = Partition;
558 
559     // Flag as visible outside of summary if visible from a regular object or
560     // from a module that does not have a summary.
561     GlobalRes.VisibleOutsideSummary |=
562         (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary);
563   }
564 }
565 
566 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input,
567                                   ArrayRef<SymbolResolution> Res) {
568   StringRef Path = Input->getName();
569   OS << Path << '\n';
570   auto ResI = Res.begin();
571   for (const InputFile::Symbol &Sym : Input->symbols()) {
572     assert(ResI != Res.end());
573     SymbolResolution Res = *ResI++;
574 
575     OS << "-r=" << Path << ',' << Sym.getName() << ',';
576     if (Res.Prevailing)
577       OS << 'p';
578     if (Res.FinalDefinitionInLinkageUnit)
579       OS << 'l';
580     if (Res.VisibleToRegularObj)
581       OS << 'x';
582     if (Res.LinkerRedefined)
583       OS << 'r';
584     OS << '\n';
585   }
586   OS.flush();
587   assert(ResI == Res.end());
588 }
589 
590 Error LTO::add(std::unique_ptr<InputFile> Input,
591                ArrayRef<SymbolResolution> Res) {
592   assert(!CalledGetMaxTasks);
593 
594   if (Conf.ResolutionFile)
595     writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res);
596 
597   if (RegularLTO.CombinedModule->getTargetTriple().empty())
598     RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple());
599 
600   const SymbolResolution *ResI = Res.begin();
601   for (unsigned I = 0; I != Input->Mods.size(); ++I)
602     if (Error Err = addModule(*Input, I, ResI, Res.end()))
603       return Err;
604 
605   assert(ResI == Res.end());
606   return Error::success();
607 }
608 
609 Error LTO::addModule(InputFile &Input, unsigned ModI,
610                      const SymbolResolution *&ResI,
611                      const SymbolResolution *ResE) {
612   Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo();
613   if (!LTOInfo)
614     return LTOInfo.takeError();
615 
616   if (EnableSplitLTOUnit.hasValue()) {
617     // If only some modules were split, flag this in the index so that
618     // we can skip or error on optimizations that need consistently split
619     // modules (whole program devirt and lower type tests).
620     if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit)
621       ThinLTO.CombinedIndex.setPartiallySplitLTOUnits();
622   } else
623     EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit;
624 
625   BitcodeModule BM = Input.Mods[ModI];
626   auto ModSyms = Input.module_symbols(ModI);
627   addModuleToGlobalRes(ModSyms, {ResI, ResE},
628                        LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0,
629                        LTOInfo->HasSummary);
630 
631   if (LTOInfo->IsThinLTO)
632     return addThinLTO(BM, ModSyms, ResI, ResE);
633 
634   Expected<RegularLTOState::AddedModule> ModOrErr =
635       addRegularLTO(BM, ModSyms, ResI, ResE);
636   if (!ModOrErr)
637     return ModOrErr.takeError();
638 
639   if (!LTOInfo->HasSummary)
640     return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false);
641 
642   // Regular LTO module summaries are added to a dummy module that represents
643   // the combined regular LTO module.
644   if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull))
645     return Err;
646   RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr));
647   return Error::success();
648 }
649 
650 // Checks whether the given global value is in a non-prevailing comdat
651 // (comdat containing values the linker indicated were not prevailing,
652 // which we then dropped to available_externally), and if so, removes
653 // it from the comdat. This is called for all global values to ensure the
654 // comdat is empty rather than leaving an incomplete comdat. It is needed for
655 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
656 // and thin LTO modules) compilation. Since the regular LTO module will be
657 // linked first in the final native link, we want to make sure the linker
658 // doesn't select any of these incomplete comdats that would be left
659 // in the regular LTO module without this cleanup.
660 static void
661 handleNonPrevailingComdat(GlobalValue &GV,
662                           std::set<const Comdat *> &NonPrevailingComdats) {
663   Comdat *C = GV.getComdat();
664   if (!C)
665     return;
666 
667   if (!NonPrevailingComdats.count(C))
668     return;
669 
670   // Additionally need to drop externally visible global values from the comdat
671   // to available_externally, so that there aren't multiply defined linker
672   // errors.
673   if (!GV.hasLocalLinkage())
674     GV.setLinkage(GlobalValue::AvailableExternallyLinkage);
675 
676   if (auto GO = dyn_cast<GlobalObject>(&GV))
677     GO->setComdat(nullptr);
678 }
679 
680 // Add a regular LTO object to the link.
681 // The resulting module needs to be linked into the combined LTO module with
682 // linkRegularLTO.
683 Expected<LTO::RegularLTOState::AddedModule>
684 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
685                    const SymbolResolution *&ResI,
686                    const SymbolResolution *ResE) {
687   RegularLTOState::AddedModule Mod;
688   Expected<std::unique_ptr<Module>> MOrErr =
689       BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true,
690                        /*IsImporting*/ false);
691   if (!MOrErr)
692     return MOrErr.takeError();
693   Module &M = **MOrErr;
694   Mod.M = std::move(*MOrErr);
695 
696   if (Error Err = M.materializeMetadata())
697     return std::move(Err);
698   UpgradeDebugInfo(M);
699 
700   ModuleSymbolTable SymTab;
701   SymTab.addModule(&M);
702 
703   for (GlobalVariable &GV : M.globals())
704     if (GV.hasAppendingLinkage())
705       Mod.Keep.push_back(&GV);
706 
707   DenseSet<GlobalObject *> AliasedGlobals;
708   for (auto &GA : M.aliases())
709     if (GlobalObject *GO = GA.getBaseObject())
710       AliasedGlobals.insert(GO);
711 
712   // In this function we need IR GlobalValues matching the symbols in Syms
713   // (which is not backed by a module), so we need to enumerate them in the same
714   // order. The symbol enumeration order of a ModuleSymbolTable intentionally
715   // matches the order of an irsymtab, but when we read the irsymtab in
716   // InputFile::create we omit some symbols that are irrelevant to LTO. The
717   // Skip() function skips the same symbols from the module as InputFile does
718   // from the symbol table.
719   auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end();
720   auto Skip = [&]() {
721     while (MsymI != MsymE) {
722       auto Flags = SymTab.getSymbolFlags(*MsymI);
723       if ((Flags & object::BasicSymbolRef::SF_Global) &&
724           !(Flags & object::BasicSymbolRef::SF_FormatSpecific))
725         return;
726       ++MsymI;
727     }
728   };
729   Skip();
730 
731   std::set<const Comdat *> NonPrevailingComdats;
732   for (const InputFile::Symbol &Sym : Syms) {
733     assert(ResI != ResE);
734     SymbolResolution Res = *ResI++;
735 
736     assert(MsymI != MsymE);
737     ModuleSymbolTable::Symbol Msym = *MsymI++;
738     Skip();
739 
740     if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) {
741       if (Res.Prevailing) {
742         if (Sym.isUndefined())
743           continue;
744         Mod.Keep.push_back(GV);
745         // For symbols re-defined with linker -wrap and -defsym options,
746         // set the linkage to weak to inhibit IPO. The linkage will be
747         // restored by the linker.
748         if (Res.LinkerRedefined)
749           GV->setLinkage(GlobalValue::WeakAnyLinkage);
750 
751         GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage();
752         if (GlobalValue::isLinkOnceLinkage(OriginalLinkage))
753           GV->setLinkage(GlobalValue::getWeakLinkage(
754               GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
755       } else if (isa<GlobalObject>(GV) &&
756                  (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() ||
757                   GV->hasAvailableExternallyLinkage()) &&
758                  !AliasedGlobals.count(cast<GlobalObject>(GV))) {
759         // Any of the above three types of linkage indicates that the
760         // chosen prevailing symbol will have the same semantics as this copy of
761         // the symbol, so we may be able to link it with available_externally
762         // linkage. We will decide later whether to do that when we link this
763         // module (in linkRegularLTO), based on whether it is undefined.
764         Mod.Keep.push_back(GV);
765         GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
766         if (GV->hasComdat())
767           NonPrevailingComdats.insert(GV->getComdat());
768         cast<GlobalObject>(GV)->setComdat(nullptr);
769       }
770 
771       // Set the 'local' flag based on the linker resolution for this symbol.
772       if (Res.FinalDefinitionInLinkageUnit) {
773         GV->setDSOLocal(true);
774         if (GV->hasDLLImportStorageClass())
775           GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
776                                  DefaultStorageClass);
777       }
778     }
779     // Common resolution: collect the maximum size/alignment over all commons.
780     // We also record if we see an instance of a common as prevailing, so that
781     // if none is prevailing we can ignore it later.
782     if (Sym.isCommon()) {
783       // FIXME: We should figure out what to do about commons defined by asm.
784       // For now they aren't reported correctly by ModuleSymbolTable.
785       auto &CommonRes = RegularLTO.Commons[Sym.getIRName()];
786       CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize());
787       CommonRes.Align =
788           std::max(CommonRes.Align, MaybeAlign(Sym.getCommonAlignment()));
789       CommonRes.Prevailing |= Res.Prevailing;
790     }
791 
792   }
793   if (!M.getComdatSymbolTable().empty())
794     for (GlobalValue &GV : M.global_values())
795       handleNonPrevailingComdat(GV, NonPrevailingComdats);
796   assert(MsymI == MsymE);
797   return std::move(Mod);
798 }
799 
800 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod,
801                           bool LivenessFromIndex) {
802   std::vector<GlobalValue *> Keep;
803   for (GlobalValue *GV : Mod.Keep) {
804     if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID()))
805       continue;
806 
807     if (!GV->hasAvailableExternallyLinkage()) {
808       Keep.push_back(GV);
809       continue;
810     }
811 
812     // Only link available_externally definitions if we don't already have a
813     // definition.
814     GlobalValue *CombinedGV =
815         RegularLTO.CombinedModule->getNamedValue(GV->getName());
816     if (CombinedGV && !CombinedGV->isDeclaration())
817       continue;
818 
819     Keep.push_back(GV);
820   }
821 
822   return RegularLTO.Mover->move(std::move(Mod.M), Keep,
823                                 [](GlobalValue &, IRMover::ValueAdder) {},
824                                 /* IsPerformingImport */ false);
825 }
826 
827 // Add a ThinLTO module to the link.
828 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
829                       const SymbolResolution *&ResI,
830                       const SymbolResolution *ResE) {
831   if (Error Err =
832           BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(),
833                          ThinLTO.ModuleMap.size()))
834     return Err;
835 
836   for (const InputFile::Symbol &Sym : Syms) {
837     assert(ResI != ResE);
838     SymbolResolution Res = *ResI++;
839 
840     if (!Sym.getIRName().empty()) {
841       auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
842           Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
843       if (Res.Prevailing) {
844         ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier();
845 
846         // For linker redefined symbols (via --wrap or --defsym) we want to
847         // switch the linkage to `weak` to prevent IPOs from happening.
848         // Find the summary in the module for this very GV and record the new
849         // linkage so that we can switch it when we import the GV.
850         if (Res.LinkerRedefined)
851           if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
852                   GUID, BM.getModuleIdentifier()))
853             S->setLinkage(GlobalValue::WeakAnyLinkage);
854       }
855 
856       // If the linker resolved the symbol to a local definition then mark it
857       // as local in the summary for the module we are adding.
858       if (Res.FinalDefinitionInLinkageUnit) {
859         if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
860                 GUID, BM.getModuleIdentifier())) {
861           S->setDSOLocal(true);
862         }
863       }
864     }
865   }
866 
867   if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second)
868     return make_error<StringError>(
869         "Expected at most one ThinLTO module per bitcode file",
870         inconvertibleErrorCode());
871 
872   return Error::success();
873 }
874 
875 unsigned LTO::getMaxTasks() const {
876   CalledGetMaxTasks = true;
877   return RegularLTO.ParallelCodeGenParallelismLevel + ThinLTO.ModuleMap.size();
878 }
879 
880 // If only some of the modules were split, we cannot correctly handle
881 // code that contains type tests or type checked loads.
882 Error LTO::checkPartiallySplit() {
883   if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits())
884     return Error::success();
885 
886   Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction(
887       Intrinsic::getName(Intrinsic::type_test));
888   Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction(
889       Intrinsic::getName(Intrinsic::type_checked_load));
890 
891   // First check if there are type tests / type checked loads in the
892   // merged regular LTO module IR.
893   if ((TypeTestFunc && !TypeTestFunc->use_empty()) ||
894       (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()))
895     return make_error<StringError>(
896         "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
897         inconvertibleErrorCode());
898 
899   // Otherwise check if there are any recorded in the combined summary from the
900   // ThinLTO modules.
901   for (auto &P : ThinLTO.CombinedIndex) {
902     for (auto &S : P.second.SummaryList) {
903       auto *FS = dyn_cast<FunctionSummary>(S.get());
904       if (!FS)
905         continue;
906       if (!FS->type_test_assume_vcalls().empty() ||
907           !FS->type_checked_load_vcalls().empty() ||
908           !FS->type_test_assume_const_vcalls().empty() ||
909           !FS->type_checked_load_const_vcalls().empty() ||
910           !FS->type_tests().empty())
911         return make_error<StringError>(
912             "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
913             inconvertibleErrorCode());
914     }
915   }
916   return Error::success();
917 }
918 
919 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) {
920   // Compute "dead" symbols, we don't want to import/export these!
921   DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
922   DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions;
923   for (auto &Res : GlobalResolutions) {
924     // Normally resolution have IR name of symbol. We can do nothing here
925     // otherwise. See comments in GlobalResolution struct for more details.
926     if (Res.second.IRName.empty())
927       continue;
928 
929     GlobalValue::GUID GUID = GlobalValue::getGUID(
930         GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
931 
932     if (Res.second.VisibleOutsideSummary && Res.second.Prevailing)
933       GUIDPreservedSymbols.insert(GUID);
934 
935     GUIDPrevailingResolutions[GUID] =
936         Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No;
937   }
938 
939   auto isPrevailing = [&](GlobalValue::GUID G) {
940     auto It = GUIDPrevailingResolutions.find(G);
941     if (It == GUIDPrevailingResolutions.end())
942       return PrevailingType::Unknown;
943     return It->second;
944   };
945   computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols,
946                                   isPrevailing, Conf.OptLevel > 0);
947 
948   // Setup output file to emit statistics.
949   auto StatsFileOrErr = setupStatsFile(Conf.StatsFile);
950   if (!StatsFileOrErr)
951     return StatsFileOrErr.takeError();
952   std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get());
953 
954   // Finalize linking of regular LTO modules containing summaries now that
955   // we have computed liveness information.
956   for (auto &M : RegularLTO.ModsWithSummaries)
957     if (Error Err = linkRegularLTO(std::move(M),
958                                    /*LivenessFromIndex=*/true))
959       return Err;
960 
961   // Ensure we don't have inconsistently split LTO units with type tests.
962   if (Error Err = checkPartiallySplit())
963     return Err;
964 
965   Error Result = runRegularLTO(AddStream);
966   if (!Result)
967     Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols);
968 
969   if (StatsFile)
970     PrintStatisticsJSON(StatsFile->os());
971 
972   return Result;
973 }
974 
975 Error LTO::runRegularLTO(AddStreamFn AddStream) {
976   // Make sure commons have the right size/alignment: we kept the largest from
977   // all the prevailing when adding the inputs, and we apply it here.
978   const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout();
979   for (auto &I : RegularLTO.Commons) {
980     if (!I.second.Prevailing)
981       // Don't do anything if no instance of this common was prevailing.
982       continue;
983     GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first);
984     if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) {
985       // Don't create a new global if the type is already correct, just make
986       // sure the alignment is correct.
987       OldGV->setAlignment(I.second.Align);
988       continue;
989     }
990     ArrayType *Ty =
991         ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size);
992     auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false,
993                                   GlobalValue::CommonLinkage,
994                                   ConstantAggregateZero::get(Ty), "");
995     GV->setAlignment(I.second.Align);
996     if (OldGV) {
997       OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType()));
998       GV->takeName(OldGV);
999       OldGV->eraseFromParent();
1000     } else {
1001       GV->setName(I.first);
1002     }
1003   }
1004 
1005   if (Conf.PreOptModuleHook &&
1006       !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule))
1007     return Error::success();
1008 
1009   if (!Conf.CodeGenOnly) {
1010     for (const auto &R : GlobalResolutions) {
1011       if (!R.second.isPrevailingIRSymbol())
1012         continue;
1013       if (R.second.Partition != 0 &&
1014           R.second.Partition != GlobalResolution::External)
1015         continue;
1016 
1017       GlobalValue *GV =
1018           RegularLTO.CombinedModule->getNamedValue(R.second.IRName);
1019       // Ignore symbols defined in other partitions.
1020       // Also skip declarations, which are not allowed to have internal linkage.
1021       if (!GV || GV->hasLocalLinkage() || GV->isDeclaration())
1022         continue;
1023       GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global
1024                                               : GlobalValue::UnnamedAddr::None);
1025       if (EnableLTOInternalization && R.second.Partition == 0)
1026         GV->setLinkage(GlobalValue::InternalLinkage);
1027     }
1028 
1029     RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1);
1030 
1031     if (Conf.PostInternalizeModuleHook &&
1032         !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule))
1033       return Error::success();
1034   }
1035   return backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel,
1036                  std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex);
1037 }
1038 
1039 static const char *libcallRoutineNames[] = {
1040 #define HANDLE_LIBCALL(code, name) name,
1041 #include "llvm/IR/RuntimeLibcalls.def"
1042 #undef HANDLE_LIBCALL
1043 };
1044 
1045 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() {
1046   return makeArrayRef(libcallRoutineNames);
1047 }
1048 
1049 /// This class defines the interface to the ThinLTO backend.
1050 class lto::ThinBackendProc {
1051 protected:
1052   const Config &Conf;
1053   ModuleSummaryIndex &CombinedIndex;
1054   const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries;
1055 
1056 public:
1057   ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1058                   const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries)
1059       : Conf(Conf), CombinedIndex(CombinedIndex),
1060         ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {}
1061 
1062   virtual ~ThinBackendProc() {}
1063   virtual Error start(
1064       unsigned Task, BitcodeModule BM,
1065       const FunctionImporter::ImportMapTy &ImportList,
1066       const FunctionImporter::ExportSetTy &ExportList,
1067       const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1068       MapVector<StringRef, BitcodeModule> &ModuleMap) = 0;
1069   virtual Error wait() = 0;
1070 };
1071 
1072 namespace {
1073 class InProcessThinBackend : public ThinBackendProc {
1074   ThreadPool BackendThreadPool;
1075   AddStreamFn AddStream;
1076   NativeObjectCache Cache;
1077   std::set<GlobalValue::GUID> CfiFunctionDefs;
1078   std::set<GlobalValue::GUID> CfiFunctionDecls;
1079 
1080   Optional<Error> Err;
1081   std::mutex ErrMu;
1082 
1083 public:
1084   InProcessThinBackend(
1085       const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1086       unsigned ThinLTOParallelismLevel,
1087       const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1088       AddStreamFn AddStream, NativeObjectCache Cache)
1089       : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
1090         BackendThreadPool(ThinLTOParallelismLevel),
1091         AddStream(std::move(AddStream)), Cache(std::move(Cache)) {
1092     for (auto &Name : CombinedIndex.cfiFunctionDefs())
1093       CfiFunctionDefs.insert(
1094           GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1095     for (auto &Name : CombinedIndex.cfiFunctionDecls())
1096       CfiFunctionDecls.insert(
1097           GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1098   }
1099 
1100   Error runThinLTOBackendThread(
1101       AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task,
1102       BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1103       const FunctionImporter::ImportMapTy &ImportList,
1104       const FunctionImporter::ExportSetTy &ExportList,
1105       const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1106       const GVSummaryMapTy &DefinedGlobals,
1107       MapVector<StringRef, BitcodeModule> &ModuleMap) {
1108     auto RunThinBackend = [&](AddStreamFn AddStream) {
1109       LTOLLVMContext BackendContext(Conf);
1110       Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext);
1111       if (!MOrErr)
1112         return MOrErr.takeError();
1113 
1114       return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex,
1115                          ImportList, DefinedGlobals, ModuleMap);
1116     };
1117 
1118     auto ModuleID = BM.getModuleIdentifier();
1119 
1120     if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) ||
1121         all_of(CombinedIndex.getModuleHash(ModuleID),
1122                [](uint32_t V) { return V == 0; }))
1123       // Cache disabled or no entry for this module in the combined index or
1124       // no module hash.
1125       return RunThinBackend(AddStream);
1126 
1127     SmallString<40> Key;
1128     // The module may be cached, this helps handling it.
1129     computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList,
1130                        ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs,
1131                        CfiFunctionDecls);
1132     if (AddStreamFn CacheAddStream = Cache(Task, Key))
1133       return RunThinBackend(CacheAddStream);
1134 
1135     return Error::success();
1136   }
1137 
1138   Error start(
1139       unsigned Task, BitcodeModule BM,
1140       const FunctionImporter::ImportMapTy &ImportList,
1141       const FunctionImporter::ExportSetTy &ExportList,
1142       const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1143       MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1144     StringRef ModulePath = BM.getModuleIdentifier();
1145     assert(ModuleToDefinedGVSummaries.count(ModulePath));
1146     const GVSummaryMapTy &DefinedGlobals =
1147         ModuleToDefinedGVSummaries.find(ModulePath)->second;
1148     BackendThreadPool.async(
1149         [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1150             const FunctionImporter::ImportMapTy &ImportList,
1151             const FunctionImporter::ExportSetTy &ExportList,
1152             const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>
1153                 &ResolvedODR,
1154             const GVSummaryMapTy &DefinedGlobals,
1155             MapVector<StringRef, BitcodeModule> &ModuleMap) {
1156           Error E = runThinLTOBackendThread(
1157               AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList,
1158               ResolvedODR, DefinedGlobals, ModuleMap);
1159           if (E) {
1160             std::unique_lock<std::mutex> L(ErrMu);
1161             if (Err)
1162               Err = joinErrors(std::move(*Err), std::move(E));
1163             else
1164               Err = std::move(E);
1165           }
1166         },
1167         BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList),
1168         std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap));
1169     return Error::success();
1170   }
1171 
1172   Error wait() override {
1173     BackendThreadPool.wait();
1174     if (Err)
1175       return std::move(*Err);
1176     else
1177       return Error::success();
1178   }
1179 };
1180 } // end anonymous namespace
1181 
1182 ThinBackend lto::createInProcessThinBackend(unsigned ParallelismLevel) {
1183   return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1184              const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1185              AddStreamFn AddStream, NativeObjectCache Cache) {
1186     return std::make_unique<InProcessThinBackend>(
1187         Conf, CombinedIndex, ParallelismLevel, ModuleToDefinedGVSummaries,
1188         AddStream, Cache);
1189   };
1190 }
1191 
1192 // Given the original \p Path to an output file, replace any path
1193 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1194 // resulting directory if it does not yet exist.
1195 std::string lto::getThinLTOOutputFile(const std::string &Path,
1196                                       const std::string &OldPrefix,
1197                                       const std::string &NewPrefix) {
1198   if (OldPrefix.empty() && NewPrefix.empty())
1199     return Path;
1200   SmallString<128> NewPath(Path);
1201   llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix);
1202   StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str());
1203   if (!ParentPath.empty()) {
1204     // Make sure the new directory exists, creating it if necessary.
1205     if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath))
1206       llvm::errs() << "warning: could not create directory '" << ParentPath
1207                    << "': " << EC.message() << '\n';
1208   }
1209   return NewPath.str();
1210 }
1211 
1212 namespace {
1213 class WriteIndexesThinBackend : public ThinBackendProc {
1214   std::string OldPrefix, NewPrefix;
1215   bool ShouldEmitImportsFiles;
1216   raw_fd_ostream *LinkedObjectsFile;
1217   lto::IndexWriteCallback OnWrite;
1218 
1219 public:
1220   WriteIndexesThinBackend(
1221       const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1222       const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1223       std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
1224       raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite)
1225       : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
1226         OldPrefix(OldPrefix), NewPrefix(NewPrefix),
1227         ShouldEmitImportsFiles(ShouldEmitImportsFiles),
1228         LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {}
1229 
1230   Error start(
1231       unsigned Task, BitcodeModule BM,
1232       const FunctionImporter::ImportMapTy &ImportList,
1233       const FunctionImporter::ExportSetTy &ExportList,
1234       const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1235       MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1236     StringRef ModulePath = BM.getModuleIdentifier();
1237     std::string NewModulePath =
1238         getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix);
1239 
1240     if (LinkedObjectsFile)
1241       *LinkedObjectsFile << NewModulePath << '\n';
1242 
1243     std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex;
1244     gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
1245                                      ImportList, ModuleToSummariesForIndex);
1246 
1247     std::error_code EC;
1248     raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC,
1249                       sys::fs::OpenFlags::OF_None);
1250     if (EC)
1251       return errorCodeToError(EC);
1252     WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex);
1253 
1254     if (ShouldEmitImportsFiles) {
1255       EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports",
1256                             ModuleToSummariesForIndex);
1257       if (EC)
1258         return errorCodeToError(EC);
1259     }
1260 
1261     if (OnWrite)
1262       OnWrite(ModulePath);
1263     return Error::success();
1264   }
1265 
1266   Error wait() override { return Error::success(); }
1267 };
1268 } // end anonymous namespace
1269 
1270 ThinBackend lto::createWriteIndexesThinBackend(
1271     std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
1272     raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) {
1273   return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1274              const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1275              AddStreamFn AddStream, NativeObjectCache Cache) {
1276     return std::make_unique<WriteIndexesThinBackend>(
1277         Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix,
1278         ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite);
1279   };
1280 }
1281 
1282 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache,
1283                       const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
1284   if (ThinLTO.ModuleMap.empty())
1285     return Error::success();
1286 
1287   if (Conf.CombinedIndexHook &&
1288       !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols))
1289     return Error::success();
1290 
1291   // Collect for each module the list of function it defines (GUID ->
1292   // Summary).
1293   StringMap<GVSummaryMapTy>
1294       ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size());
1295   ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule(
1296       ModuleToDefinedGVSummaries);
1297   // Create entries for any modules that didn't have any GV summaries
1298   // (either they didn't have any GVs to start with, or we suppressed
1299   // generation of the summaries because they e.g. had inline assembly
1300   // uses that couldn't be promoted/renamed on export). This is so
1301   // InProcessThinBackend::start can still launch a backend thread, which
1302   // is passed the map of summaries for the module, without any special
1303   // handling for this case.
1304   for (auto &Mod : ThinLTO.ModuleMap)
1305     if (!ModuleToDefinedGVSummaries.count(Mod.first))
1306       ModuleToDefinedGVSummaries.try_emplace(Mod.first);
1307 
1308   // Synthesize entry counts for functions in the CombinedIndex.
1309   computeSyntheticCounts(ThinLTO.CombinedIndex);
1310 
1311   StringMap<FunctionImporter::ImportMapTy> ImportLists(
1312       ThinLTO.ModuleMap.size());
1313   StringMap<FunctionImporter::ExportSetTy> ExportLists(
1314       ThinLTO.ModuleMap.size());
1315   StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
1316 
1317   if (DumpThinCGSCCs)
1318     ThinLTO.CombinedIndex.dumpSCCs(outs());
1319 
1320   std::set<GlobalValue::GUID> ExportedGUIDs;
1321 
1322   // Perform index-based WPD. This will return immediately if there are
1323   // no index entries in the typeIdMetadata map (e.g. if we are instead
1324   // performing IR-based WPD in hybrid regular/thin LTO mode).
1325   std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap;
1326   runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs,
1327                                LocalWPDTargetsMap);
1328 
1329   if (Conf.OptLevel > 0)
1330     ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1331                              ImportLists, ExportLists);
1332 
1333   // Figure out which symbols need to be internalized. This also needs to happen
1334   // at -O0 because summary-based DCE is implemented using internalization, and
1335   // we must apply DCE consistently with the full LTO module in order to avoid
1336   // undefined references during the final link.
1337   for (auto &Res : GlobalResolutions) {
1338     // If the symbol does not have external references or it is not prevailing,
1339     // then not need to mark it as exported from a ThinLTO partition.
1340     if (Res.second.Partition != GlobalResolution::External ||
1341         !Res.second.isPrevailingIRSymbol())
1342       continue;
1343     auto GUID = GlobalValue::getGUID(
1344         GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
1345     // Mark exported unless index-based analysis determined it to be dead.
1346     if (ThinLTO.CombinedIndex.isGUIDLive(GUID))
1347       ExportedGUIDs.insert(GUID);
1348   }
1349 
1350   // Any functions referenced by the jump table in the regular LTO object must
1351   // be exported.
1352   for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs())
1353     ExportedGUIDs.insert(
1354         GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def)));
1355 
1356   auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) {
1357     const auto &ExportList = ExportLists.find(ModuleIdentifier);
1358     return (ExportList != ExportLists.end() && ExportList->second.count(VI)) ||
1359            ExportedGUIDs.count(VI.getGUID());
1360   };
1361 
1362   // Update local devirtualized targets that were exported by cross-module
1363   // importing or by other devirtualizations marked in the ExportedGUIDs set.
1364   updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported,
1365                            LocalWPDTargetsMap);
1366 
1367   auto isPrevailing = [&](GlobalValue::GUID GUID,
1368                           const GlobalValueSummary *S) {
1369     return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath();
1370   };
1371   thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported,
1372                                       isPrevailing);
1373 
1374   auto recordNewLinkage = [&](StringRef ModuleIdentifier,
1375                               GlobalValue::GUID GUID,
1376                               GlobalValue::LinkageTypes NewLinkage) {
1377     ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
1378   };
1379   thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing,
1380                                   recordNewLinkage, GUIDPreservedSymbols);
1381 
1382   std::unique_ptr<ThinBackendProc> BackendProc =
1383       ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1384                       AddStream, Cache);
1385 
1386   // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for combined
1387   // module and parallel code generation partitions.
1388   unsigned Task = RegularLTO.ParallelCodeGenParallelismLevel;
1389   for (auto &Mod : ThinLTO.ModuleMap) {
1390     if (Error E = BackendProc->start(Task, Mod.second, ImportLists[Mod.first],
1391                                      ExportLists[Mod.first],
1392                                      ResolvedODR[Mod.first], ThinLTO.ModuleMap))
1393       return E;
1394     ++Task;
1395   }
1396 
1397   return BackendProc->wait();
1398 }
1399 
1400 Expected<std::unique_ptr<ToolOutputFile>>
1401 lto::setupOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename,
1402                               StringRef RemarksPasses, StringRef RemarksFormat,
1403                               bool RemarksWithHotness, int Count) {
1404   std::string Filename = RemarksFilename;
1405   // For ThinLTO, file.opt.<format> becomes
1406   // file.opt.<format>.thin.<num>.<format>.
1407   if (!Filename.empty() && Count != -1)
1408     Filename =
1409         (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat)
1410             .str();
1411 
1412   auto ResultOrErr = llvm::setupOptimizationRemarks(
1413       Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness);
1414   if (Error E = ResultOrErr.takeError())
1415     return std::move(E);
1416 
1417   if (*ResultOrErr)
1418     (*ResultOrErr)->keep();
1419 
1420   return ResultOrErr;
1421 }
1422 
1423 Expected<std::unique_ptr<ToolOutputFile>>
1424 lto::setupStatsFile(StringRef StatsFilename) {
1425   // Setup output file to emit statistics.
1426   if (StatsFilename.empty())
1427     return nullptr;
1428 
1429   llvm::EnableStatistics(false);
1430   std::error_code EC;
1431   auto StatsFile =
1432       std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None);
1433   if (EC)
1434     return errorCodeToError(EC);
1435 
1436   StatsFile->keep();
1437   return std::move(StatsFile);
1438 }
1439