xref: /freebsd/contrib/llvm-project/llvm/lib/LTO/LTO.cpp (revision 833a452e9f082a7982a31c21f0da437dbbe0a39d)
1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions and classes used to support LTO.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/SmallSet.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
18 #include "llvm/Analysis/StackSafetyAnalysis.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Bitcode/BitcodeReader.h"
22 #include "llvm/Bitcode/BitcodeWriter.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/AutoUpgrade.h"
26 #include "llvm/IR/DiagnosticPrinter.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMRemarkStreamer.h"
29 #include "llvm/IR/LegacyPassManager.h"
30 #include "llvm/IR/Mangler.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/LTO/LTOBackend.h"
33 #include "llvm/LTO/SummaryBasedOptimizations.h"
34 #include "llvm/Linker/IRMover.h"
35 #include "llvm/Object/IRObjectFile.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Error.h"
38 #include "llvm/Support/FileSystem.h"
39 #include "llvm/Support/ManagedStatic.h"
40 #include "llvm/Support/MemoryBuffer.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SHA1.h"
43 #include "llvm/Support/SourceMgr.h"
44 #include "llvm/Support/TargetRegistry.h"
45 #include "llvm/Support/ThreadPool.h"
46 #include "llvm/Support/Threading.h"
47 #include "llvm/Support/TimeProfiler.h"
48 #include "llvm/Support/VCSRevision.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include "llvm/Target/TargetOptions.h"
52 #include "llvm/Transforms/IPO.h"
53 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
54 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
55 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
56 #include "llvm/Transforms/Utils/SplitModule.h"
57 
58 #include <set>
59 
60 using namespace llvm;
61 using namespace lto;
62 using namespace object;
63 
64 #define DEBUG_TYPE "lto"
65 
66 static cl::opt<bool>
67     DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden,
68                    cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
69 
70 /// Enable global value internalization in LTO.
71 cl::opt<bool> EnableLTOInternalization(
72     "enable-lto-internalization", cl::init(true), cl::Hidden,
73     cl::desc("Enable global value internalization in LTO"));
74 
75 // Computes a unique hash for the Module considering the current list of
76 // export/import and other global analysis results.
77 // The hash is produced in \p Key.
78 void llvm::computeLTOCacheKey(
79     SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index,
80     StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList,
81     const FunctionImporter::ExportSetTy &ExportList,
82     const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
83     const GVSummaryMapTy &DefinedGlobals,
84     const std::set<GlobalValue::GUID> &CfiFunctionDefs,
85     const std::set<GlobalValue::GUID> &CfiFunctionDecls) {
86   // Compute the unique hash for this entry.
87   // This is based on the current compiler version, the module itself, the
88   // export list, the hash for every single module in the import list, the
89   // list of ResolvedODR for the module, and the list of preserved symbols.
90   SHA1 Hasher;
91 
92   // Start with the compiler revision
93   Hasher.update(LLVM_VERSION_STRING);
94 #ifdef LLVM_REVISION
95   Hasher.update(LLVM_REVISION);
96 #endif
97 
98   // Include the parts of the LTO configuration that affect code generation.
99   auto AddString = [&](StringRef Str) {
100     Hasher.update(Str);
101     Hasher.update(ArrayRef<uint8_t>{0});
102   };
103   auto AddUnsigned = [&](unsigned I) {
104     uint8_t Data[4];
105     support::endian::write32le(Data, I);
106     Hasher.update(ArrayRef<uint8_t>{Data, 4});
107   };
108   auto AddUint64 = [&](uint64_t I) {
109     uint8_t Data[8];
110     support::endian::write64le(Data, I);
111     Hasher.update(ArrayRef<uint8_t>{Data, 8});
112   };
113   AddString(Conf.CPU);
114   // FIXME: Hash more of Options. For now all clients initialize Options from
115   // command-line flags (which is unsupported in production), but may set
116   // RelaxELFRelocations. The clang driver can also pass FunctionSections,
117   // DataSections and DebuggerTuning via command line flags.
118   AddUnsigned(Conf.Options.RelaxELFRelocations);
119   AddUnsigned(Conf.Options.FunctionSections);
120   AddUnsigned(Conf.Options.DataSections);
121   AddUnsigned((unsigned)Conf.Options.DebuggerTuning);
122   for (auto &A : Conf.MAttrs)
123     AddString(A);
124   if (Conf.RelocModel)
125     AddUnsigned(*Conf.RelocModel);
126   else
127     AddUnsigned(-1);
128   if (Conf.CodeModel)
129     AddUnsigned(*Conf.CodeModel);
130   else
131     AddUnsigned(-1);
132   AddUnsigned(Conf.CGOptLevel);
133   AddUnsigned(Conf.CGFileType);
134   AddUnsigned(Conf.OptLevel);
135   AddUnsigned(Conf.UseNewPM);
136   AddUnsigned(Conf.Freestanding);
137   AddString(Conf.OptPipeline);
138   AddString(Conf.AAPipeline);
139   AddString(Conf.OverrideTriple);
140   AddString(Conf.DefaultTriple);
141   AddString(Conf.DwoDir);
142 
143   // Include the hash for the current module
144   auto ModHash = Index.getModuleHash(ModuleID);
145   Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
146 
147   std::vector<uint64_t> ExportsGUID;
148   ExportsGUID.reserve(ExportList.size());
149   for (const auto &VI : ExportList) {
150     auto GUID = VI.getGUID();
151     ExportsGUID.push_back(GUID);
152   }
153 
154   // Sort the export list elements GUIDs.
155   llvm::sort(ExportsGUID);
156   for (uint64_t GUID : ExportsGUID) {
157     // The export list can impact the internalization, be conservative here
158     Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID)));
159   }
160 
161   // Include the hash for every module we import functions from. The set of
162   // imported symbols for each module may affect code generation and is
163   // sensitive to link order, so include that as well.
164   using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator;
165   std::vector<ImportMapIteratorTy> ImportModulesVector;
166   ImportModulesVector.reserve(ImportList.size());
167 
168   for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end();
169        ++It) {
170     ImportModulesVector.push_back(It);
171   }
172   llvm::sort(ImportModulesVector,
173              [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs)
174                  -> bool { return Lhs->getKey() < Rhs->getKey(); });
175   for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) {
176     auto ModHash = Index.getModuleHash(EntryIt->first());
177     Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
178 
179     AddUint64(EntryIt->second.size());
180     for (auto &Fn : EntryIt->second)
181       AddUint64(Fn);
182   }
183 
184   // Include the hash for the resolved ODR.
185   for (auto &Entry : ResolvedODR) {
186     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
187                                     sizeof(GlobalValue::GUID)));
188     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
189                                     sizeof(GlobalValue::LinkageTypes)));
190   }
191 
192   // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
193   // defined in this module.
194   std::set<GlobalValue::GUID> UsedCfiDefs;
195   std::set<GlobalValue::GUID> UsedCfiDecls;
196 
197   // Typeids used in this module.
198   std::set<GlobalValue::GUID> UsedTypeIds;
199 
200   auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) {
201     if (CfiFunctionDefs.count(ValueGUID))
202       UsedCfiDefs.insert(ValueGUID);
203     if (CfiFunctionDecls.count(ValueGUID))
204       UsedCfiDecls.insert(ValueGUID);
205   };
206 
207   auto AddUsedThings = [&](GlobalValueSummary *GS) {
208     if (!GS) return;
209     AddUnsigned(GS->getVisibility());
210     AddUnsigned(GS->isLive());
211     AddUnsigned(GS->canAutoHide());
212     for (const ValueInfo &VI : GS->refs()) {
213       AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation()));
214       AddUsedCfiGlobal(VI.getGUID());
215     }
216     if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) {
217       AddUnsigned(GVS->maybeReadOnly());
218       AddUnsigned(GVS->maybeWriteOnly());
219     }
220     if (auto *FS = dyn_cast<FunctionSummary>(GS)) {
221       for (auto &TT : FS->type_tests())
222         UsedTypeIds.insert(TT);
223       for (auto &TT : FS->type_test_assume_vcalls())
224         UsedTypeIds.insert(TT.GUID);
225       for (auto &TT : FS->type_checked_load_vcalls())
226         UsedTypeIds.insert(TT.GUID);
227       for (auto &TT : FS->type_test_assume_const_vcalls())
228         UsedTypeIds.insert(TT.VFunc.GUID);
229       for (auto &TT : FS->type_checked_load_const_vcalls())
230         UsedTypeIds.insert(TT.VFunc.GUID);
231       for (auto &ET : FS->calls()) {
232         AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation()));
233         AddUsedCfiGlobal(ET.first.getGUID());
234       }
235     }
236   };
237 
238   // Include the hash for the linkage type to reflect internalization and weak
239   // resolution, and collect any used type identifier resolutions.
240   for (auto &GS : DefinedGlobals) {
241     GlobalValue::LinkageTypes Linkage = GS.second->linkage();
242     Hasher.update(
243         ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage)));
244     AddUsedCfiGlobal(GS.first);
245     AddUsedThings(GS.second);
246   }
247 
248   // Imported functions may introduce new uses of type identifier resolutions,
249   // so we need to collect their used resolutions as well.
250   for (auto &ImpM : ImportList)
251     for (auto &ImpF : ImpM.second) {
252       GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first());
253       AddUsedThings(S);
254       // If this is an alias, we also care about any types/etc. that the aliasee
255       // may reference.
256       if (auto *AS = dyn_cast_or_null<AliasSummary>(S))
257         AddUsedThings(AS->getBaseObject());
258     }
259 
260   auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) {
261     AddString(TId);
262 
263     AddUnsigned(S.TTRes.TheKind);
264     AddUnsigned(S.TTRes.SizeM1BitWidth);
265 
266     AddUint64(S.TTRes.AlignLog2);
267     AddUint64(S.TTRes.SizeM1);
268     AddUint64(S.TTRes.BitMask);
269     AddUint64(S.TTRes.InlineBits);
270 
271     AddUint64(S.WPDRes.size());
272     for (auto &WPD : S.WPDRes) {
273       AddUnsigned(WPD.first);
274       AddUnsigned(WPD.second.TheKind);
275       AddString(WPD.second.SingleImplName);
276 
277       AddUint64(WPD.second.ResByArg.size());
278       for (auto &ByArg : WPD.second.ResByArg) {
279         AddUint64(ByArg.first.size());
280         for (uint64_t Arg : ByArg.first)
281           AddUint64(Arg);
282         AddUnsigned(ByArg.second.TheKind);
283         AddUint64(ByArg.second.Info);
284         AddUnsigned(ByArg.second.Byte);
285         AddUnsigned(ByArg.second.Bit);
286       }
287     }
288   };
289 
290   // Include the hash for all type identifiers used by this module.
291   for (GlobalValue::GUID TId : UsedTypeIds) {
292     auto TidIter = Index.typeIds().equal_range(TId);
293     for (auto It = TidIter.first; It != TidIter.second; ++It)
294       AddTypeIdSummary(It->second.first, It->second.second);
295   }
296 
297   AddUnsigned(UsedCfiDefs.size());
298   for (auto &V : UsedCfiDefs)
299     AddUint64(V);
300 
301   AddUnsigned(UsedCfiDecls.size());
302   for (auto &V : UsedCfiDecls)
303     AddUint64(V);
304 
305   if (!Conf.SampleProfile.empty()) {
306     auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile);
307     if (FileOrErr) {
308       Hasher.update(FileOrErr.get()->getBuffer());
309 
310       if (!Conf.ProfileRemapping.empty()) {
311         FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping);
312         if (FileOrErr)
313           Hasher.update(FileOrErr.get()->getBuffer());
314       }
315     }
316   }
317 
318   Key = toHex(Hasher.result());
319 }
320 
321 static void thinLTOResolvePrevailingGUID(
322     const Config &C, ValueInfo VI,
323     DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias,
324     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
325         isPrevailing,
326     function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
327         recordNewLinkage,
328     const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
329   GlobalValue::VisibilityTypes Visibility =
330       C.VisibilityScheme == Config::ELF ? VI.getELFVisibility()
331                                         : GlobalValue::DefaultVisibility;
332   for (auto &S : VI.getSummaryList()) {
333     GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
334     // Ignore local and appending linkage values since the linker
335     // doesn't resolve them.
336     if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
337         GlobalValue::isAppendingLinkage(S->linkage()))
338       continue;
339     // We need to emit only one of these. The prevailing module will keep it,
340     // but turned into a weak, while the others will drop it when possible.
341     // This is both a compile-time optimization and a correctness
342     // transformation. This is necessary for correctness when we have exported
343     // a reference - we need to convert the linkonce to weak to
344     // ensure a copy is kept to satisfy the exported reference.
345     // FIXME: We may want to split the compile time and correctness
346     // aspects into separate routines.
347     if (isPrevailing(VI.getGUID(), S.get())) {
348       if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) {
349         S->setLinkage(GlobalValue::getWeakLinkage(
350             GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
351         // The kept copy is eligible for auto-hiding (hidden visibility) if all
352         // copies were (i.e. they were all linkonce_odr global unnamed addr).
353         // If any copy is not (e.g. it was originally weak_odr), then the symbol
354         // must remain externally available (e.g. a weak_odr from an explicitly
355         // instantiated template). Additionally, if it is in the
356         // GUIDPreservedSymbols set, that means that it is visibile outside
357         // the summary (e.g. in a native object or a bitcode file without
358         // summary), and in that case we cannot hide it as it isn't possible to
359         // check all copies.
360         S->setCanAutoHide(VI.canAutoHide() &&
361                           !GUIDPreservedSymbols.count(VI.getGUID()));
362       }
363       if (C.VisibilityScheme == Config::FromPrevailing)
364         Visibility = S->getVisibility();
365     }
366     // Alias and aliasee can't be turned into available_externally.
367     else if (!isa<AliasSummary>(S.get()) &&
368              !GlobalInvolvedWithAlias.count(S.get()))
369       S->setLinkage(GlobalValue::AvailableExternallyLinkage);
370 
371     // For ELF, set visibility to the computed visibility from summaries. We
372     // don't track visibility from declarations so this may be more relaxed than
373     // the most constraining one.
374     if (C.VisibilityScheme == Config::ELF)
375       S->setVisibility(Visibility);
376 
377     if (S->linkage() != OriginalLinkage)
378       recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage());
379   }
380 
381   if (C.VisibilityScheme == Config::FromPrevailing) {
382     for (auto &S : VI.getSummaryList()) {
383       GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
384       if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
385           GlobalValue::isAppendingLinkage(S->linkage()))
386         continue;
387       S->setVisibility(Visibility);
388     }
389   }
390 }
391 
392 /// Resolve linkage for prevailing symbols in the \p Index.
393 //
394 // We'd like to drop these functions if they are no longer referenced in the
395 // current module. However there is a chance that another module is still
396 // referencing them because of the import. We make sure we always emit at least
397 // one copy.
398 void llvm::thinLTOResolvePrevailingInIndex(
399     const Config &C, ModuleSummaryIndex &Index,
400     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
401         isPrevailing,
402     function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
403         recordNewLinkage,
404     const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
405   // We won't optimize the globals that are referenced by an alias for now
406   // Ideally we should turn the alias into a global and duplicate the definition
407   // when needed.
408   DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias;
409   for (auto &I : Index)
410     for (auto &S : I.second.SummaryList)
411       if (auto AS = dyn_cast<AliasSummary>(S.get()))
412         GlobalInvolvedWithAlias.insert(&AS->getAliasee());
413 
414   for (auto &I : Index)
415     thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I),
416                                  GlobalInvolvedWithAlias, isPrevailing,
417                                  recordNewLinkage, GUIDPreservedSymbols);
418 }
419 
420 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) {
421   if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject()))
422     return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() &&
423            (VarSummary->linkage() == GlobalValue::WeakODRLinkage ||
424             VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage);
425   return false;
426 }
427 
428 static void thinLTOInternalizeAndPromoteGUID(
429     ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported,
430     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
431         isPrevailing) {
432   for (auto &S : VI.getSummaryList()) {
433     if (isExported(S->modulePath(), VI)) {
434       if (GlobalValue::isLocalLinkage(S->linkage()))
435         S->setLinkage(GlobalValue::ExternalLinkage);
436     } else if (EnableLTOInternalization &&
437                // Ignore local and appending linkage values since the linker
438                // doesn't resolve them.
439                !GlobalValue::isLocalLinkage(S->linkage()) &&
440                (!GlobalValue::isInterposableLinkage(S->linkage()) ||
441                 isPrevailing(VI.getGUID(), S.get())) &&
442                S->linkage() != GlobalValue::AppendingLinkage &&
443                // We can't internalize available_externally globals because this
444                // can break function pointer equality.
445                S->linkage() != GlobalValue::AvailableExternallyLinkage &&
446                // Functions and read-only variables with linkonce_odr and
447                // weak_odr linkage can be internalized. We can't internalize
448                // linkonce_odr and weak_odr variables which are both modified
449                // and read somewhere in the program because reads and writes
450                // will become inconsistent.
451                !isWeakObjectWithRWAccess(S.get()))
452       S->setLinkage(GlobalValue::InternalLinkage);
453   }
454 }
455 
456 // Update the linkages in the given \p Index to mark exported values
457 // as external and non-exported values as internal.
458 void llvm::thinLTOInternalizeAndPromoteInIndex(
459     ModuleSummaryIndex &Index,
460     function_ref<bool(StringRef, ValueInfo)> isExported,
461     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
462         isPrevailing) {
463   for (auto &I : Index)
464     thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported,
465                                      isPrevailing);
466 }
467 
468 // Requires a destructor for std::vector<InputModule>.
469 InputFile::~InputFile() = default;
470 
471 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) {
472   std::unique_ptr<InputFile> File(new InputFile);
473 
474   Expected<IRSymtabFile> FOrErr = readIRSymtab(Object);
475   if (!FOrErr)
476     return FOrErr.takeError();
477 
478   File->TargetTriple = FOrErr->TheReader.getTargetTriple();
479   File->SourceFileName = FOrErr->TheReader.getSourceFileName();
480   File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts();
481   File->DependentLibraries = FOrErr->TheReader.getDependentLibraries();
482   File->ComdatTable = FOrErr->TheReader.getComdatTable();
483 
484   for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) {
485     size_t Begin = File->Symbols.size();
486     for (const irsymtab::Reader::SymbolRef &Sym :
487          FOrErr->TheReader.module_symbols(I))
488       // Skip symbols that are irrelevant to LTO. Note that this condition needs
489       // to match the one in Skip() in LTO::addRegularLTO().
490       if (Sym.isGlobal() && !Sym.isFormatSpecific())
491         File->Symbols.push_back(Sym);
492     File->ModuleSymIndices.push_back({Begin, File->Symbols.size()});
493   }
494 
495   File->Mods = FOrErr->Mods;
496   File->Strtab = std::move(FOrErr->Strtab);
497   return std::move(File);
498 }
499 
500 StringRef InputFile::getName() const {
501   return Mods[0].getModuleIdentifier();
502 }
503 
504 BitcodeModule &InputFile::getSingleBitcodeModule() {
505   assert(Mods.size() == 1 && "Expect only one bitcode module");
506   return Mods[0];
507 }
508 
509 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
510                                       const Config &Conf)
511     : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel),
512       Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)),
513       Mover(std::make_unique<IRMover>(*CombinedModule)) {}
514 
515 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend)
516     : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) {
517   if (!Backend)
518     this->Backend =
519         createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
520 }
521 
522 LTO::LTO(Config Conf, ThinBackend Backend,
523          unsigned ParallelCodeGenParallelismLevel)
524     : Conf(std::move(Conf)),
525       RegularLTO(ParallelCodeGenParallelismLevel, this->Conf),
526       ThinLTO(std::move(Backend)) {}
527 
528 // Requires a destructor for MapVector<BitcodeModule>.
529 LTO::~LTO() = default;
530 
531 // Add the symbols in the given module to the GlobalResolutions map, and resolve
532 // their partitions.
533 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
534                                ArrayRef<SymbolResolution> Res,
535                                unsigned Partition, bool InSummary) {
536   auto *ResI = Res.begin();
537   auto *ResE = Res.end();
538   (void)ResE;
539   for (const InputFile::Symbol &Sym : Syms) {
540     assert(ResI != ResE);
541     SymbolResolution Res = *ResI++;
542 
543     StringRef Name = Sym.getName();
544     Triple TT(RegularLTO.CombinedModule->getTargetTriple());
545     // Strip the __imp_ prefix from COFF dllimport symbols (similar to the
546     // way they are handled by lld), otherwise we can end up with two
547     // global resolutions (one with and one for a copy of the symbol without).
548     if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_"))
549       Name = Name.substr(strlen("__imp_"));
550     auto &GlobalRes = GlobalResolutions[Name];
551     GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr();
552     if (Res.Prevailing) {
553       assert(!GlobalRes.Prevailing &&
554              "Multiple prevailing defs are not allowed");
555       GlobalRes.Prevailing = true;
556       GlobalRes.IRName = std::string(Sym.getIRName());
557     } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) {
558       // Sometimes it can be two copies of symbol in a module and prevailing
559       // symbol can have no IR name. That might happen if symbol is defined in
560       // module level inline asm block. In case we have multiple modules with
561       // the same symbol we want to use IR name of the prevailing symbol.
562       // Otherwise, if we haven't seen a prevailing symbol, set the name so that
563       // we can later use it to check if there is any prevailing copy in IR.
564       GlobalRes.IRName = std::string(Sym.getIRName());
565     }
566 
567     // Set the partition to external if we know it is re-defined by the linker
568     // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
569     // regular object, is referenced from llvm.compiler.used/llvm.used, or was
570     // already recorded as being referenced from a different partition.
571     if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() ||
572         (GlobalRes.Partition != GlobalResolution::Unknown &&
573          GlobalRes.Partition != Partition)) {
574       GlobalRes.Partition = GlobalResolution::External;
575     } else
576       // First recorded reference, save the current partition.
577       GlobalRes.Partition = Partition;
578 
579     // Flag as visible outside of summary if visible from a regular object or
580     // from a module that does not have a summary.
581     GlobalRes.VisibleOutsideSummary |=
582         (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary);
583 
584     GlobalRes.ExportDynamic |= Res.ExportDynamic;
585   }
586 }
587 
588 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input,
589                                   ArrayRef<SymbolResolution> Res) {
590   StringRef Path = Input->getName();
591   OS << Path << '\n';
592   auto ResI = Res.begin();
593   for (const InputFile::Symbol &Sym : Input->symbols()) {
594     assert(ResI != Res.end());
595     SymbolResolution Res = *ResI++;
596 
597     OS << "-r=" << Path << ',' << Sym.getName() << ',';
598     if (Res.Prevailing)
599       OS << 'p';
600     if (Res.FinalDefinitionInLinkageUnit)
601       OS << 'l';
602     if (Res.VisibleToRegularObj)
603       OS << 'x';
604     if (Res.LinkerRedefined)
605       OS << 'r';
606     OS << '\n';
607   }
608   OS.flush();
609   assert(ResI == Res.end());
610 }
611 
612 Error LTO::add(std::unique_ptr<InputFile> Input,
613                ArrayRef<SymbolResolution> Res) {
614   assert(!CalledGetMaxTasks);
615 
616   if (Conf.ResolutionFile)
617     writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res);
618 
619   if (RegularLTO.CombinedModule->getTargetTriple().empty()) {
620     RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple());
621     if (Triple(Input->getTargetTriple()).isOSBinFormatELF())
622       Conf.VisibilityScheme = Config::ELF;
623   }
624 
625   const SymbolResolution *ResI = Res.begin();
626   for (unsigned I = 0; I != Input->Mods.size(); ++I)
627     if (Error Err = addModule(*Input, I, ResI, Res.end()))
628       return Err;
629 
630   assert(ResI == Res.end());
631   return Error::success();
632 }
633 
634 Error LTO::addModule(InputFile &Input, unsigned ModI,
635                      const SymbolResolution *&ResI,
636                      const SymbolResolution *ResE) {
637   Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo();
638   if (!LTOInfo)
639     return LTOInfo.takeError();
640 
641   if (EnableSplitLTOUnit.hasValue()) {
642     // If only some modules were split, flag this in the index so that
643     // we can skip or error on optimizations that need consistently split
644     // modules (whole program devirt and lower type tests).
645     if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit)
646       ThinLTO.CombinedIndex.setPartiallySplitLTOUnits();
647   } else
648     EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit;
649 
650   BitcodeModule BM = Input.Mods[ModI];
651   auto ModSyms = Input.module_symbols(ModI);
652   addModuleToGlobalRes(ModSyms, {ResI, ResE},
653                        LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0,
654                        LTOInfo->HasSummary);
655 
656   if (LTOInfo->IsThinLTO)
657     return addThinLTO(BM, ModSyms, ResI, ResE);
658 
659   RegularLTO.EmptyCombinedModule = false;
660   Expected<RegularLTOState::AddedModule> ModOrErr =
661       addRegularLTO(BM, ModSyms, ResI, ResE);
662   if (!ModOrErr)
663     return ModOrErr.takeError();
664 
665   if (!LTOInfo->HasSummary)
666     return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false);
667 
668   // Regular LTO module summaries are added to a dummy module that represents
669   // the combined regular LTO module.
670   if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull))
671     return Err;
672   RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr));
673   return Error::success();
674 }
675 
676 // Checks whether the given global value is in a non-prevailing comdat
677 // (comdat containing values the linker indicated were not prevailing,
678 // which we then dropped to available_externally), and if so, removes
679 // it from the comdat. This is called for all global values to ensure the
680 // comdat is empty rather than leaving an incomplete comdat. It is needed for
681 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
682 // and thin LTO modules) compilation. Since the regular LTO module will be
683 // linked first in the final native link, we want to make sure the linker
684 // doesn't select any of these incomplete comdats that would be left
685 // in the regular LTO module without this cleanup.
686 static void
687 handleNonPrevailingComdat(GlobalValue &GV,
688                           std::set<const Comdat *> &NonPrevailingComdats) {
689   Comdat *C = GV.getComdat();
690   if (!C)
691     return;
692 
693   if (!NonPrevailingComdats.count(C))
694     return;
695 
696   // Additionally need to drop externally visible global values from the comdat
697   // to available_externally, so that there aren't multiply defined linker
698   // errors.
699   if (!GV.hasLocalLinkage())
700     GV.setLinkage(GlobalValue::AvailableExternallyLinkage);
701 
702   if (auto GO = dyn_cast<GlobalObject>(&GV))
703     GO->setComdat(nullptr);
704 }
705 
706 // Add a regular LTO object to the link.
707 // The resulting module needs to be linked into the combined LTO module with
708 // linkRegularLTO.
709 Expected<LTO::RegularLTOState::AddedModule>
710 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
711                    const SymbolResolution *&ResI,
712                    const SymbolResolution *ResE) {
713   RegularLTOState::AddedModule Mod;
714   Expected<std::unique_ptr<Module>> MOrErr =
715       BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true,
716                        /*IsImporting*/ false);
717   if (!MOrErr)
718     return MOrErr.takeError();
719   Module &M = **MOrErr;
720   Mod.M = std::move(*MOrErr);
721 
722   if (Error Err = M.materializeMetadata())
723     return std::move(Err);
724   UpgradeDebugInfo(M);
725 
726   ModuleSymbolTable SymTab;
727   SymTab.addModule(&M);
728 
729   for (GlobalVariable &GV : M.globals())
730     if (GV.hasAppendingLinkage())
731       Mod.Keep.push_back(&GV);
732 
733   DenseSet<GlobalObject *> AliasedGlobals;
734   for (auto &GA : M.aliases())
735     if (GlobalObject *GO = GA.getBaseObject())
736       AliasedGlobals.insert(GO);
737 
738   // In this function we need IR GlobalValues matching the symbols in Syms
739   // (which is not backed by a module), so we need to enumerate them in the same
740   // order. The symbol enumeration order of a ModuleSymbolTable intentionally
741   // matches the order of an irsymtab, but when we read the irsymtab in
742   // InputFile::create we omit some symbols that are irrelevant to LTO. The
743   // Skip() function skips the same symbols from the module as InputFile does
744   // from the symbol table.
745   auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end();
746   auto Skip = [&]() {
747     while (MsymI != MsymE) {
748       auto Flags = SymTab.getSymbolFlags(*MsymI);
749       if ((Flags & object::BasicSymbolRef::SF_Global) &&
750           !(Flags & object::BasicSymbolRef::SF_FormatSpecific))
751         return;
752       ++MsymI;
753     }
754   };
755   Skip();
756 
757   std::set<const Comdat *> NonPrevailingComdats;
758   SmallSet<StringRef, 2> NonPrevailingAsmSymbols;
759   for (const InputFile::Symbol &Sym : Syms) {
760     assert(ResI != ResE);
761     SymbolResolution Res = *ResI++;
762 
763     assert(MsymI != MsymE);
764     ModuleSymbolTable::Symbol Msym = *MsymI++;
765     Skip();
766 
767     if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) {
768       if (Res.Prevailing) {
769         if (Sym.isUndefined())
770           continue;
771         Mod.Keep.push_back(GV);
772         // For symbols re-defined with linker -wrap and -defsym options,
773         // set the linkage to weak to inhibit IPO. The linkage will be
774         // restored by the linker.
775         if (Res.LinkerRedefined)
776           GV->setLinkage(GlobalValue::WeakAnyLinkage);
777 
778         GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage();
779         if (GlobalValue::isLinkOnceLinkage(OriginalLinkage))
780           GV->setLinkage(GlobalValue::getWeakLinkage(
781               GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
782       } else if (isa<GlobalObject>(GV) &&
783                  (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() ||
784                   GV->hasAvailableExternallyLinkage()) &&
785                  !AliasedGlobals.count(cast<GlobalObject>(GV))) {
786         // Any of the above three types of linkage indicates that the
787         // chosen prevailing symbol will have the same semantics as this copy of
788         // the symbol, so we may be able to link it with available_externally
789         // linkage. We will decide later whether to do that when we link this
790         // module (in linkRegularLTO), based on whether it is undefined.
791         Mod.Keep.push_back(GV);
792         GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
793         if (GV->hasComdat())
794           NonPrevailingComdats.insert(GV->getComdat());
795         cast<GlobalObject>(GV)->setComdat(nullptr);
796       }
797 
798       // Set the 'local' flag based on the linker resolution for this symbol.
799       if (Res.FinalDefinitionInLinkageUnit) {
800         GV->setDSOLocal(true);
801         if (GV->hasDLLImportStorageClass())
802           GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
803                                  DefaultStorageClass);
804       }
805     } else if (auto *AS = Msym.dyn_cast<ModuleSymbolTable::AsmSymbol *>()) {
806       // Collect non-prevailing symbols.
807       if (!Res.Prevailing)
808         NonPrevailingAsmSymbols.insert(AS->first);
809     } else {
810       llvm_unreachable("unknown symbol type");
811     }
812 
813     // Common resolution: collect the maximum size/alignment over all commons.
814     // We also record if we see an instance of a common as prevailing, so that
815     // if none is prevailing we can ignore it later.
816     if (Sym.isCommon()) {
817       // FIXME: We should figure out what to do about commons defined by asm.
818       // For now they aren't reported correctly by ModuleSymbolTable.
819       auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())];
820       CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize());
821       MaybeAlign SymAlign(Sym.getCommonAlignment());
822       if (SymAlign)
823         CommonRes.Align = max(*SymAlign, CommonRes.Align);
824       CommonRes.Prevailing |= Res.Prevailing;
825     }
826   }
827 
828   if (!M.getComdatSymbolTable().empty())
829     for (GlobalValue &GV : M.global_values())
830       handleNonPrevailingComdat(GV, NonPrevailingComdats);
831 
832   // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm
833   // block.
834   if (!M.getModuleInlineAsm().empty()) {
835     std::string NewIA = ".lto_discard";
836     if (!NonPrevailingAsmSymbols.empty()) {
837       // Don't dicard a symbol if there is a live .symver for it.
838       ModuleSymbolTable::CollectAsmSymvers(
839           M, [&](StringRef Name, StringRef Alias) {
840             if (!NonPrevailingAsmSymbols.count(Alias))
841               NonPrevailingAsmSymbols.erase(Name);
842           });
843       NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", ");
844     }
845     NewIA += "\n";
846     M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm());
847   }
848 
849   assert(MsymI == MsymE);
850   return std::move(Mod);
851 }
852 
853 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod,
854                           bool LivenessFromIndex) {
855   std::vector<GlobalValue *> Keep;
856   for (GlobalValue *GV : Mod.Keep) {
857     if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) {
858       if (Function *F = dyn_cast<Function>(GV)) {
859         OptimizationRemarkEmitter ORE(F, nullptr);
860         ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F)
861                  << ore::NV("Function", F)
862                  << " not added to the combined module ");
863       }
864       continue;
865     }
866 
867     if (!GV->hasAvailableExternallyLinkage()) {
868       Keep.push_back(GV);
869       continue;
870     }
871 
872     // Only link available_externally definitions if we don't already have a
873     // definition.
874     GlobalValue *CombinedGV =
875         RegularLTO.CombinedModule->getNamedValue(GV->getName());
876     if (CombinedGV && !CombinedGV->isDeclaration())
877       continue;
878 
879     Keep.push_back(GV);
880   }
881 
882   return RegularLTO.Mover->move(std::move(Mod.M), Keep,
883                                 [](GlobalValue &, IRMover::ValueAdder) {},
884                                 /* IsPerformingImport */ false);
885 }
886 
887 // Add a ThinLTO module to the link.
888 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
889                       const SymbolResolution *&ResI,
890                       const SymbolResolution *ResE) {
891   if (Error Err =
892           BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(),
893                          ThinLTO.ModuleMap.size()))
894     return Err;
895 
896   for (const InputFile::Symbol &Sym : Syms) {
897     assert(ResI != ResE);
898     SymbolResolution Res = *ResI++;
899 
900     if (!Sym.getIRName().empty()) {
901       auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
902           Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
903       if (Res.Prevailing) {
904         ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier();
905 
906         // For linker redefined symbols (via --wrap or --defsym) we want to
907         // switch the linkage to `weak` to prevent IPOs from happening.
908         // Find the summary in the module for this very GV and record the new
909         // linkage so that we can switch it when we import the GV.
910         if (Res.LinkerRedefined)
911           if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
912                   GUID, BM.getModuleIdentifier()))
913             S->setLinkage(GlobalValue::WeakAnyLinkage);
914       }
915 
916       // If the linker resolved the symbol to a local definition then mark it
917       // as local in the summary for the module we are adding.
918       if (Res.FinalDefinitionInLinkageUnit) {
919         if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
920                 GUID, BM.getModuleIdentifier())) {
921           S->setDSOLocal(true);
922         }
923       }
924     }
925   }
926 
927   if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second)
928     return make_error<StringError>(
929         "Expected at most one ThinLTO module per bitcode file",
930         inconvertibleErrorCode());
931 
932   if (!Conf.ThinLTOModulesToCompile.empty()) {
933     if (!ThinLTO.ModulesToCompile)
934       ThinLTO.ModulesToCompile = ModuleMapType();
935     // This is a fuzzy name matching where only modules with name containing the
936     // specified switch values are going to be compiled.
937     for (const std::string &Name : Conf.ThinLTOModulesToCompile) {
938       if (BM.getModuleIdentifier().contains(Name)) {
939         ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM});
940         llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier()
941                      << " to compile\n";
942       }
943     }
944   }
945 
946   return Error::success();
947 }
948 
949 unsigned LTO::getMaxTasks() const {
950   CalledGetMaxTasks = true;
951   auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size()
952                                               : ThinLTO.ModuleMap.size();
953   return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount;
954 }
955 
956 // If only some of the modules were split, we cannot correctly handle
957 // code that contains type tests or type checked loads.
958 Error LTO::checkPartiallySplit() {
959   if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits())
960     return Error::success();
961 
962   Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction(
963       Intrinsic::getName(Intrinsic::type_test));
964   Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction(
965       Intrinsic::getName(Intrinsic::type_checked_load));
966 
967   // First check if there are type tests / type checked loads in the
968   // merged regular LTO module IR.
969   if ((TypeTestFunc && !TypeTestFunc->use_empty()) ||
970       (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()))
971     return make_error<StringError>(
972         "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
973         inconvertibleErrorCode());
974 
975   // Otherwise check if there are any recorded in the combined summary from the
976   // ThinLTO modules.
977   for (auto &P : ThinLTO.CombinedIndex) {
978     for (auto &S : P.second.SummaryList) {
979       auto *FS = dyn_cast<FunctionSummary>(S.get());
980       if (!FS)
981         continue;
982       if (!FS->type_test_assume_vcalls().empty() ||
983           !FS->type_checked_load_vcalls().empty() ||
984           !FS->type_test_assume_const_vcalls().empty() ||
985           !FS->type_checked_load_const_vcalls().empty() ||
986           !FS->type_tests().empty())
987         return make_error<StringError>(
988             "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
989             inconvertibleErrorCode());
990     }
991   }
992   return Error::success();
993 }
994 
995 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) {
996   // Compute "dead" symbols, we don't want to import/export these!
997   DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
998   DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions;
999   for (auto &Res : GlobalResolutions) {
1000     // Normally resolution have IR name of symbol. We can do nothing here
1001     // otherwise. See comments in GlobalResolution struct for more details.
1002     if (Res.second.IRName.empty())
1003       continue;
1004 
1005     GlobalValue::GUID GUID = GlobalValue::getGUID(
1006         GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
1007 
1008     if (Res.second.VisibleOutsideSummary && Res.second.Prevailing)
1009       GUIDPreservedSymbols.insert(GUID);
1010 
1011     if (Res.second.ExportDynamic)
1012       DynamicExportSymbols.insert(GUID);
1013 
1014     GUIDPrevailingResolutions[GUID] =
1015         Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No;
1016   }
1017 
1018   auto isPrevailing = [&](GlobalValue::GUID G) {
1019     auto It = GUIDPrevailingResolutions.find(G);
1020     if (It == GUIDPrevailingResolutions.end())
1021       return PrevailingType::Unknown;
1022     return It->second;
1023   };
1024   computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols,
1025                                   isPrevailing, Conf.OptLevel > 0);
1026 
1027   // Setup output file to emit statistics.
1028   auto StatsFileOrErr = setupStatsFile(Conf.StatsFile);
1029   if (!StatsFileOrErr)
1030     return StatsFileOrErr.takeError();
1031   std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get());
1032 
1033   Error Result = runRegularLTO(AddStream);
1034   if (!Result)
1035     Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols);
1036 
1037   if (StatsFile)
1038     PrintStatisticsJSON(StatsFile->os());
1039 
1040   return Result;
1041 }
1042 
1043 Error LTO::runRegularLTO(AddStreamFn AddStream) {
1044   // Setup optimization remarks.
1045   auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks(
1046       RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename,
1047       Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness,
1048       Conf.RemarksHotnessThreshold);
1049   if (!DiagFileOrErr)
1050     return DiagFileOrErr.takeError();
1051 
1052   // Finalize linking of regular LTO modules containing summaries now that
1053   // we have computed liveness information.
1054   for (auto &M : RegularLTO.ModsWithSummaries)
1055     if (Error Err = linkRegularLTO(std::move(M),
1056                                    /*LivenessFromIndex=*/true))
1057       return Err;
1058 
1059   // Ensure we don't have inconsistently split LTO units with type tests.
1060   // FIXME: this checks both LTO and ThinLTO. It happens to work as we take
1061   // this path both cases but eventually this should be split into two and
1062   // do the ThinLTO checks in `runThinLTO`.
1063   if (Error Err = checkPartiallySplit())
1064     return Err;
1065 
1066   // Make sure commons have the right size/alignment: we kept the largest from
1067   // all the prevailing when adding the inputs, and we apply it here.
1068   const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout();
1069   for (auto &I : RegularLTO.Commons) {
1070     if (!I.second.Prevailing)
1071       // Don't do anything if no instance of this common was prevailing.
1072       continue;
1073     GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first);
1074     if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) {
1075       // Don't create a new global if the type is already correct, just make
1076       // sure the alignment is correct.
1077       OldGV->setAlignment(I.second.Align);
1078       continue;
1079     }
1080     ArrayType *Ty =
1081         ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size);
1082     auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false,
1083                                   GlobalValue::CommonLinkage,
1084                                   ConstantAggregateZero::get(Ty), "");
1085     GV->setAlignment(I.second.Align);
1086     if (OldGV) {
1087       OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType()));
1088       GV->takeName(OldGV);
1089       OldGV->eraseFromParent();
1090     } else {
1091       GV->setName(I.first);
1092     }
1093   }
1094 
1095   // If allowed, upgrade public vcall visibility metadata to linkage unit
1096   // visibility before whole program devirtualization in the optimizer.
1097   updateVCallVisibilityInModule(*RegularLTO.CombinedModule,
1098                                 Conf.HasWholeProgramVisibility,
1099                                 DynamicExportSymbols);
1100 
1101   if (Conf.PreOptModuleHook &&
1102       !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule))
1103     return Error::success();
1104 
1105   if (!Conf.CodeGenOnly) {
1106     for (const auto &R : GlobalResolutions) {
1107       if (!R.second.isPrevailingIRSymbol())
1108         continue;
1109       if (R.second.Partition != 0 &&
1110           R.second.Partition != GlobalResolution::External)
1111         continue;
1112 
1113       GlobalValue *GV =
1114           RegularLTO.CombinedModule->getNamedValue(R.second.IRName);
1115       // Ignore symbols defined in other partitions.
1116       // Also skip declarations, which are not allowed to have internal linkage.
1117       if (!GV || GV->hasLocalLinkage() || GV->isDeclaration())
1118         continue;
1119       GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global
1120                                               : GlobalValue::UnnamedAddr::None);
1121       if (EnableLTOInternalization && R.second.Partition == 0)
1122         GV->setLinkage(GlobalValue::InternalLinkage);
1123     }
1124 
1125     RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1);
1126 
1127     if (Conf.PostInternalizeModuleHook &&
1128         !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule))
1129       return Error::success();
1130   }
1131 
1132   if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) {
1133     if (Error Err =
1134             backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel,
1135                     *RegularLTO.CombinedModule, ThinLTO.CombinedIndex))
1136       return Err;
1137   }
1138 
1139   return finalizeOptimizationRemarks(std::move(*DiagFileOrErr));
1140 }
1141 
1142 static const char *libcallRoutineNames[] = {
1143 #define HANDLE_LIBCALL(code, name) name,
1144 #include "llvm/IR/RuntimeLibcalls.def"
1145 #undef HANDLE_LIBCALL
1146 };
1147 
1148 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() {
1149   return makeArrayRef(libcallRoutineNames);
1150 }
1151 
1152 /// This class defines the interface to the ThinLTO backend.
1153 class lto::ThinBackendProc {
1154 protected:
1155   const Config &Conf;
1156   ModuleSummaryIndex &CombinedIndex;
1157   const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries;
1158 
1159 public:
1160   ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1161                   const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries)
1162       : Conf(Conf), CombinedIndex(CombinedIndex),
1163         ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {}
1164 
1165   virtual ~ThinBackendProc() {}
1166   virtual Error start(
1167       unsigned Task, BitcodeModule BM,
1168       const FunctionImporter::ImportMapTy &ImportList,
1169       const FunctionImporter::ExportSetTy &ExportList,
1170       const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1171       MapVector<StringRef, BitcodeModule> &ModuleMap) = 0;
1172   virtual Error wait() = 0;
1173   virtual unsigned getThreadCount() = 0;
1174 };
1175 
1176 namespace {
1177 class InProcessThinBackend : public ThinBackendProc {
1178   ThreadPool BackendThreadPool;
1179   AddStreamFn AddStream;
1180   NativeObjectCache Cache;
1181   std::set<GlobalValue::GUID> CfiFunctionDefs;
1182   std::set<GlobalValue::GUID> CfiFunctionDecls;
1183 
1184   Optional<Error> Err;
1185   std::mutex ErrMu;
1186 
1187 public:
1188   InProcessThinBackend(
1189       const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1190       ThreadPoolStrategy ThinLTOParallelism,
1191       const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1192       AddStreamFn AddStream, NativeObjectCache Cache)
1193       : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
1194         BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)),
1195         Cache(std::move(Cache)) {
1196     for (auto &Name : CombinedIndex.cfiFunctionDefs())
1197       CfiFunctionDefs.insert(
1198           GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1199     for (auto &Name : CombinedIndex.cfiFunctionDecls())
1200       CfiFunctionDecls.insert(
1201           GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1202   }
1203 
1204   Error runThinLTOBackendThread(
1205       AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task,
1206       BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1207       const FunctionImporter::ImportMapTy &ImportList,
1208       const FunctionImporter::ExportSetTy &ExportList,
1209       const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1210       const GVSummaryMapTy &DefinedGlobals,
1211       MapVector<StringRef, BitcodeModule> &ModuleMap) {
1212     auto RunThinBackend = [&](AddStreamFn AddStream) {
1213       LTOLLVMContext BackendContext(Conf);
1214       Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext);
1215       if (!MOrErr)
1216         return MOrErr.takeError();
1217 
1218       return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex,
1219                          ImportList, DefinedGlobals, &ModuleMap);
1220     };
1221 
1222     auto ModuleID = BM.getModuleIdentifier();
1223 
1224     if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) ||
1225         all_of(CombinedIndex.getModuleHash(ModuleID),
1226                [](uint32_t V) { return V == 0; }))
1227       // Cache disabled or no entry for this module in the combined index or
1228       // no module hash.
1229       return RunThinBackend(AddStream);
1230 
1231     SmallString<40> Key;
1232     // The module may be cached, this helps handling it.
1233     computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList,
1234                        ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs,
1235                        CfiFunctionDecls);
1236     if (AddStreamFn CacheAddStream = Cache(Task, Key))
1237       return RunThinBackend(CacheAddStream);
1238 
1239     return Error::success();
1240   }
1241 
1242   Error start(
1243       unsigned Task, BitcodeModule BM,
1244       const FunctionImporter::ImportMapTy &ImportList,
1245       const FunctionImporter::ExportSetTy &ExportList,
1246       const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1247       MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1248     StringRef ModulePath = BM.getModuleIdentifier();
1249     assert(ModuleToDefinedGVSummaries.count(ModulePath));
1250     const GVSummaryMapTy &DefinedGlobals =
1251         ModuleToDefinedGVSummaries.find(ModulePath)->second;
1252     BackendThreadPool.async(
1253         [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1254             const FunctionImporter::ImportMapTy &ImportList,
1255             const FunctionImporter::ExportSetTy &ExportList,
1256             const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>
1257                 &ResolvedODR,
1258             const GVSummaryMapTy &DefinedGlobals,
1259             MapVector<StringRef, BitcodeModule> &ModuleMap) {
1260           if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled)
1261             timeTraceProfilerInitialize(Conf.TimeTraceGranularity,
1262                                         "thin backend");
1263           Error E = runThinLTOBackendThread(
1264               AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList,
1265               ResolvedODR, DefinedGlobals, ModuleMap);
1266           if (E) {
1267             std::unique_lock<std::mutex> L(ErrMu);
1268             if (Err)
1269               Err = joinErrors(std::move(*Err), std::move(E));
1270             else
1271               Err = std::move(E);
1272           }
1273           if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled)
1274             timeTraceProfilerFinishThread();
1275         },
1276         BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList),
1277         std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap));
1278     return Error::success();
1279   }
1280 
1281   Error wait() override {
1282     BackendThreadPool.wait();
1283     if (Err)
1284       return std::move(*Err);
1285     else
1286       return Error::success();
1287   }
1288 
1289   unsigned getThreadCount() override {
1290     return BackendThreadPool.getThreadCount();
1291   }
1292 };
1293 } // end anonymous namespace
1294 
1295 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism) {
1296   return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1297              const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1298              AddStreamFn AddStream, NativeObjectCache Cache) {
1299     return std::make_unique<InProcessThinBackend>(
1300         Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream,
1301         Cache);
1302   };
1303 }
1304 
1305 // Given the original \p Path to an output file, replace any path
1306 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1307 // resulting directory if it does not yet exist.
1308 std::string lto::getThinLTOOutputFile(const std::string &Path,
1309                                       const std::string &OldPrefix,
1310                                       const std::string &NewPrefix) {
1311   if (OldPrefix.empty() && NewPrefix.empty())
1312     return Path;
1313   SmallString<128> NewPath(Path);
1314   llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix);
1315   StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str());
1316   if (!ParentPath.empty()) {
1317     // Make sure the new directory exists, creating it if necessary.
1318     if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath))
1319       llvm::errs() << "warning: could not create directory '" << ParentPath
1320                    << "': " << EC.message() << '\n';
1321   }
1322   return std::string(NewPath.str());
1323 }
1324 
1325 namespace {
1326 class WriteIndexesThinBackend : public ThinBackendProc {
1327   std::string OldPrefix, NewPrefix;
1328   bool ShouldEmitImportsFiles;
1329   raw_fd_ostream *LinkedObjectsFile;
1330   lto::IndexWriteCallback OnWrite;
1331 
1332 public:
1333   WriteIndexesThinBackend(
1334       const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1335       const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1336       std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
1337       raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite)
1338       : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
1339         OldPrefix(OldPrefix), NewPrefix(NewPrefix),
1340         ShouldEmitImportsFiles(ShouldEmitImportsFiles),
1341         LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {}
1342 
1343   Error start(
1344       unsigned Task, BitcodeModule BM,
1345       const FunctionImporter::ImportMapTy &ImportList,
1346       const FunctionImporter::ExportSetTy &ExportList,
1347       const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1348       MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1349     StringRef ModulePath = BM.getModuleIdentifier();
1350     std::string NewModulePath =
1351         getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix);
1352 
1353     if (LinkedObjectsFile)
1354       *LinkedObjectsFile << NewModulePath << '\n';
1355 
1356     std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex;
1357     gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
1358                                      ImportList, ModuleToSummariesForIndex);
1359 
1360     std::error_code EC;
1361     raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC,
1362                       sys::fs::OpenFlags::OF_None);
1363     if (EC)
1364       return errorCodeToError(EC);
1365     WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex);
1366 
1367     if (ShouldEmitImportsFiles) {
1368       EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports",
1369                             ModuleToSummariesForIndex);
1370       if (EC)
1371         return errorCodeToError(EC);
1372     }
1373 
1374     if (OnWrite)
1375       OnWrite(std::string(ModulePath));
1376     return Error::success();
1377   }
1378 
1379   Error wait() override { return Error::success(); }
1380 
1381   // WriteIndexesThinBackend should always return 1 to prevent module
1382   // re-ordering and avoid non-determinism in the final link.
1383   unsigned getThreadCount() override { return 1; }
1384 };
1385 } // end anonymous namespace
1386 
1387 ThinBackend lto::createWriteIndexesThinBackend(
1388     std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
1389     raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) {
1390   return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1391              const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1392              AddStreamFn AddStream, NativeObjectCache Cache) {
1393     return std::make_unique<WriteIndexesThinBackend>(
1394         Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix,
1395         ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite);
1396   };
1397 }
1398 
1399 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache,
1400                       const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
1401   if (ThinLTO.ModuleMap.empty())
1402     return Error::success();
1403 
1404   if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) {
1405     llvm::errs() << "warning: [ThinLTO] No module compiled\n";
1406     return Error::success();
1407   }
1408 
1409   if (Conf.CombinedIndexHook &&
1410       !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols))
1411     return Error::success();
1412 
1413   // Collect for each module the list of function it defines (GUID ->
1414   // Summary).
1415   StringMap<GVSummaryMapTy>
1416       ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size());
1417   ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule(
1418       ModuleToDefinedGVSummaries);
1419   // Create entries for any modules that didn't have any GV summaries
1420   // (either they didn't have any GVs to start with, or we suppressed
1421   // generation of the summaries because they e.g. had inline assembly
1422   // uses that couldn't be promoted/renamed on export). This is so
1423   // InProcessThinBackend::start can still launch a backend thread, which
1424   // is passed the map of summaries for the module, without any special
1425   // handling for this case.
1426   for (auto &Mod : ThinLTO.ModuleMap)
1427     if (!ModuleToDefinedGVSummaries.count(Mod.first))
1428       ModuleToDefinedGVSummaries.try_emplace(Mod.first);
1429 
1430   // Synthesize entry counts for functions in the CombinedIndex.
1431   computeSyntheticCounts(ThinLTO.CombinedIndex);
1432 
1433   StringMap<FunctionImporter::ImportMapTy> ImportLists(
1434       ThinLTO.ModuleMap.size());
1435   StringMap<FunctionImporter::ExportSetTy> ExportLists(
1436       ThinLTO.ModuleMap.size());
1437   StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
1438 
1439   if (DumpThinCGSCCs)
1440     ThinLTO.CombinedIndex.dumpSCCs(outs());
1441 
1442   std::set<GlobalValue::GUID> ExportedGUIDs;
1443 
1444   // If allowed, upgrade public vcall visibility to linkage unit visibility in
1445   // the summaries before whole program devirtualization below.
1446   updateVCallVisibilityInIndex(ThinLTO.CombinedIndex,
1447                                Conf.HasWholeProgramVisibility,
1448                                DynamicExportSymbols);
1449 
1450   // Perform index-based WPD. This will return immediately if there are
1451   // no index entries in the typeIdMetadata map (e.g. if we are instead
1452   // performing IR-based WPD in hybrid regular/thin LTO mode).
1453   std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap;
1454   runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs,
1455                                LocalWPDTargetsMap);
1456 
1457   if (Conf.OptLevel > 0)
1458     ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1459                              ImportLists, ExportLists);
1460 
1461   // Figure out which symbols need to be internalized. This also needs to happen
1462   // at -O0 because summary-based DCE is implemented using internalization, and
1463   // we must apply DCE consistently with the full LTO module in order to avoid
1464   // undefined references during the final link.
1465   for (auto &Res : GlobalResolutions) {
1466     // If the symbol does not have external references or it is not prevailing,
1467     // then not need to mark it as exported from a ThinLTO partition.
1468     if (Res.second.Partition != GlobalResolution::External ||
1469         !Res.second.isPrevailingIRSymbol())
1470       continue;
1471     auto GUID = GlobalValue::getGUID(
1472         GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
1473     // Mark exported unless index-based analysis determined it to be dead.
1474     if (ThinLTO.CombinedIndex.isGUIDLive(GUID))
1475       ExportedGUIDs.insert(GUID);
1476   }
1477 
1478   // Any functions referenced by the jump table in the regular LTO object must
1479   // be exported.
1480   for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs())
1481     ExportedGUIDs.insert(
1482         GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def)));
1483   for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls())
1484     ExportedGUIDs.insert(
1485         GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl)));
1486 
1487   auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) {
1488     const auto &ExportList = ExportLists.find(ModuleIdentifier);
1489     return (ExportList != ExportLists.end() && ExportList->second.count(VI)) ||
1490            ExportedGUIDs.count(VI.getGUID());
1491   };
1492 
1493   // Update local devirtualized targets that were exported by cross-module
1494   // importing or by other devirtualizations marked in the ExportedGUIDs set.
1495   updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported,
1496                            LocalWPDTargetsMap);
1497 
1498   auto isPrevailing = [&](GlobalValue::GUID GUID,
1499                           const GlobalValueSummary *S) {
1500     return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath();
1501   };
1502   thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported,
1503                                       isPrevailing);
1504 
1505   auto recordNewLinkage = [&](StringRef ModuleIdentifier,
1506                               GlobalValue::GUID GUID,
1507                               GlobalValue::LinkageTypes NewLinkage) {
1508     ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
1509   };
1510   thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing,
1511                                   recordNewLinkage, GUIDPreservedSymbols);
1512 
1513   generateParamAccessSummary(ThinLTO.CombinedIndex);
1514 
1515   std::unique_ptr<ThinBackendProc> BackendProc =
1516       ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1517                       AddStream, Cache);
1518 
1519   auto &ModuleMap =
1520       ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap;
1521 
1522   auto ProcessOneModule = [&](int I) -> Error {
1523     auto &Mod = *(ModuleMap.begin() + I);
1524     // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for
1525     // combined module and parallel code generation partitions.
1526     return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I,
1527                               Mod.second, ImportLists[Mod.first],
1528                               ExportLists[Mod.first], ResolvedODR[Mod.first],
1529                               ThinLTO.ModuleMap);
1530   };
1531 
1532   if (BackendProc->getThreadCount() == 1) {
1533     // Process the modules in the order they were provided on the command-line.
1534     // It is important for this codepath to be used for WriteIndexesThinBackend,
1535     // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same
1536     // order as the inputs, which otherwise would affect the final link order.
1537     for (int I = 0, E = ModuleMap.size(); I != E; ++I)
1538       if (Error E = ProcessOneModule(I))
1539         return E;
1540   } else {
1541     // When executing in parallel, process largest bitsize modules first to
1542     // improve parallelism, and avoid starving the thread pool near the end.
1543     // This saves about 15 sec on a 36-core machine while link `clang.exe` (out
1544     // of 100 sec).
1545     std::vector<BitcodeModule *> ModulesVec;
1546     ModulesVec.reserve(ModuleMap.size());
1547     for (auto &Mod : ModuleMap)
1548       ModulesVec.push_back(&Mod.second);
1549     for (int I : generateModulesOrdering(ModulesVec))
1550       if (Error E = ProcessOneModule(I))
1551         return E;
1552   }
1553   return BackendProc->wait();
1554 }
1555 
1556 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks(
1557     LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses,
1558     StringRef RemarksFormat, bool RemarksWithHotness,
1559     Optional<uint64_t> RemarksHotnessThreshold, int Count) {
1560   std::string Filename = std::string(RemarksFilename);
1561   // For ThinLTO, file.opt.<format> becomes
1562   // file.opt.<format>.thin.<num>.<format>.
1563   if (!Filename.empty() && Count != -1)
1564     Filename =
1565         (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat)
1566             .str();
1567 
1568   auto ResultOrErr = llvm::setupLLVMOptimizationRemarks(
1569       Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness,
1570       RemarksHotnessThreshold);
1571   if (Error E = ResultOrErr.takeError())
1572     return std::move(E);
1573 
1574   if (*ResultOrErr)
1575     (*ResultOrErr)->keep();
1576 
1577   return ResultOrErr;
1578 }
1579 
1580 Expected<std::unique_ptr<ToolOutputFile>>
1581 lto::setupStatsFile(StringRef StatsFilename) {
1582   // Setup output file to emit statistics.
1583   if (StatsFilename.empty())
1584     return nullptr;
1585 
1586   llvm::EnableStatistics(false);
1587   std::error_code EC;
1588   auto StatsFile =
1589       std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None);
1590   if (EC)
1591     return errorCodeToError(EC);
1592 
1593   StatsFile->keep();
1594   return std::move(StatsFile);
1595 }
1596 
1597 // Compute the ordering we will process the inputs: the rough heuristic here
1598 // is to sort them per size so that the largest module get schedule as soon as
1599 // possible. This is purely a compile-time optimization.
1600 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) {
1601   std::vector<int> ModulesOrdering;
1602   ModulesOrdering.resize(R.size());
1603   std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0);
1604   llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) {
1605     auto LSize = R[LeftIndex]->getBuffer().size();
1606     auto RSize = R[RightIndex]->getBuffer().size();
1607     return LSize > RSize;
1608   });
1609   return ModulesOrdering;
1610 }
1611