1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/StackSafetyAnalysis.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeReader.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/DiagnosticPrinter.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMRemarkStreamer.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/RuntimeLibcalls.h" 34 #include "llvm/LTO/LTOBackend.h" 35 #include "llvm/LTO/SummaryBasedOptimizations.h" 36 #include "llvm/Linker/IRMover.h" 37 #include "llvm/MC/TargetRegistry.h" 38 #include "llvm/Object/IRObjectFile.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Error.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/ManagedStatic.h" 43 #include "llvm/Support/MemoryBuffer.h" 44 #include "llvm/Support/Path.h" 45 #include "llvm/Support/SHA1.h" 46 #include "llvm/Support/SourceMgr.h" 47 #include "llvm/Support/ThreadPool.h" 48 #include "llvm/Support/Threading.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/VCSRevision.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h" 56 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 57 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 58 #include "llvm/Transforms/Utils/SplitModule.h" 59 60 #include <optional> 61 #include <set> 62 63 using namespace llvm; 64 using namespace lto; 65 using namespace object; 66 67 #define DEBUG_TYPE "lto" 68 69 extern cl::opt<bool> UseNewDbgInfoFormat; 70 71 static cl::opt<bool> 72 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 73 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 74 75 namespace llvm { 76 /// Enable global value internalization in LTO. 77 cl::opt<bool> EnableLTOInternalization( 78 "enable-lto-internalization", cl::init(true), cl::Hidden, 79 cl::desc("Enable global value internalization in LTO")); 80 81 /// Indicate we are linking with an allocator that supports hot/cold operator 82 /// new interfaces. 83 extern cl::opt<bool> SupportsHotColdNew; 84 85 /// Enable MemProf context disambiguation for thin link. 86 extern cl::opt<bool> EnableMemProfContextDisambiguation; 87 } // namespace llvm 88 89 // Computes a unique hash for the Module considering the current list of 90 // export/import and other global analysis results. 91 // The hash is produced in \p Key. 92 void llvm::computeLTOCacheKey( 93 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 94 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 95 const FunctionImporter::ExportSetTy &ExportList, 96 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 97 const GVSummaryMapTy &DefinedGlobals, 98 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 99 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 100 // Compute the unique hash for this entry. 101 // This is based on the current compiler version, the module itself, the 102 // export list, the hash for every single module in the import list, the 103 // list of ResolvedODR for the module, and the list of preserved symbols. 104 SHA1 Hasher; 105 106 // Start with the compiler revision 107 Hasher.update(LLVM_VERSION_STRING); 108 #ifdef LLVM_REVISION 109 Hasher.update(LLVM_REVISION); 110 #endif 111 112 // Include the parts of the LTO configuration that affect code generation. 113 auto AddString = [&](StringRef Str) { 114 Hasher.update(Str); 115 Hasher.update(ArrayRef<uint8_t>{0}); 116 }; 117 auto AddUnsigned = [&](unsigned I) { 118 uint8_t Data[4]; 119 support::endian::write32le(Data, I); 120 Hasher.update(Data); 121 }; 122 auto AddUint64 = [&](uint64_t I) { 123 uint8_t Data[8]; 124 support::endian::write64le(Data, I); 125 Hasher.update(Data); 126 }; 127 auto AddUint8 = [&](const uint8_t I) { 128 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&I, 1)); 129 }; 130 AddString(Conf.CPU); 131 // FIXME: Hash more of Options. For now all clients initialize Options from 132 // command-line flags (which is unsupported in production), but may set 133 // X86RelaxRelocations. The clang driver can also pass FunctionSections, 134 // DataSections and DebuggerTuning via command line flags. 135 AddUnsigned(Conf.Options.MCOptions.X86RelaxRelocations); 136 AddUnsigned(Conf.Options.FunctionSections); 137 AddUnsigned(Conf.Options.DataSections); 138 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 139 for (auto &A : Conf.MAttrs) 140 AddString(A); 141 if (Conf.RelocModel) 142 AddUnsigned(*Conf.RelocModel); 143 else 144 AddUnsigned(-1); 145 if (Conf.CodeModel) 146 AddUnsigned(*Conf.CodeModel); 147 else 148 AddUnsigned(-1); 149 for (const auto &S : Conf.MllvmArgs) 150 AddString(S); 151 AddUnsigned(static_cast<int>(Conf.CGOptLevel)); 152 AddUnsigned(static_cast<int>(Conf.CGFileType)); 153 AddUnsigned(Conf.OptLevel); 154 AddUnsigned(Conf.Freestanding); 155 AddString(Conf.OptPipeline); 156 AddString(Conf.AAPipeline); 157 AddString(Conf.OverrideTriple); 158 AddString(Conf.DefaultTriple); 159 AddString(Conf.DwoDir); 160 161 // Include the hash for the current module 162 auto ModHash = Index.getModuleHash(ModuleID); 163 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 164 165 // TODO: `ExportList` is determined by `ImportList`. Since `ImportList` is 166 // used to compute cache key, we could omit hashing `ExportList` here. 167 std::vector<uint64_t> ExportsGUID; 168 ExportsGUID.reserve(ExportList.size()); 169 for (const auto &VI : ExportList) 170 ExportsGUID.push_back(VI.getGUID()); 171 172 // Sort the export list elements GUIDs. 173 llvm::sort(ExportsGUID); 174 for (auto GUID : ExportsGUID) 175 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 176 177 // Include the hash for every module we import functions from. The set of 178 // imported symbols for each module may affect code generation and is 179 // sensitive to link order, so include that as well. 180 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 181 struct ImportModule { 182 ImportMapIteratorTy ModIt; 183 const ModuleSummaryIndex::ModuleInfo *ModInfo; 184 185 StringRef getIdentifier() const { return ModIt->getFirst(); } 186 const FunctionImporter::FunctionsToImportTy &getFunctions() const { 187 return ModIt->second; 188 } 189 190 const ModuleHash &getHash() const { return ModInfo->second; } 191 }; 192 193 std::vector<ImportModule> ImportModulesVector; 194 ImportModulesVector.reserve(ImportList.size()); 195 196 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 197 ++It) { 198 ImportModulesVector.push_back({It, Index.getModule(It->getFirst())}); 199 } 200 // Order using module hash, to be both independent of module name and 201 // module order. 202 llvm::sort(ImportModulesVector, 203 [](const ImportModule &Lhs, const ImportModule &Rhs) -> bool { 204 return Lhs.getHash() < Rhs.getHash(); 205 }); 206 std::vector<std::pair<uint64_t, uint8_t>> ImportedGUIDs; 207 for (const ImportModule &Entry : ImportModulesVector) { 208 auto ModHash = Entry.getHash(); 209 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 210 211 AddUint64(Entry.getFunctions().size()); 212 213 ImportedGUIDs.clear(); 214 for (auto &[Fn, ImportType] : Entry.getFunctions()) 215 ImportedGUIDs.push_back(std::make_pair(Fn, ImportType)); 216 llvm::sort(ImportedGUIDs); 217 for (auto &[GUID, Type] : ImportedGUIDs) { 218 AddUint64(GUID); 219 AddUint8(Type); 220 } 221 } 222 223 // Include the hash for the resolved ODR. 224 for (auto &Entry : ResolvedODR) { 225 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 226 sizeof(GlobalValue::GUID))); 227 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 228 sizeof(GlobalValue::LinkageTypes))); 229 } 230 231 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 232 // defined in this module. 233 std::set<GlobalValue::GUID> UsedCfiDefs; 234 std::set<GlobalValue::GUID> UsedCfiDecls; 235 236 // Typeids used in this module. 237 std::set<GlobalValue::GUID> UsedTypeIds; 238 239 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 240 if (CfiFunctionDefs.count(ValueGUID)) 241 UsedCfiDefs.insert(ValueGUID); 242 if (CfiFunctionDecls.count(ValueGUID)) 243 UsedCfiDecls.insert(ValueGUID); 244 }; 245 246 auto AddUsedThings = [&](GlobalValueSummary *GS) { 247 if (!GS) return; 248 AddUnsigned(GS->getVisibility()); 249 AddUnsigned(GS->isLive()); 250 AddUnsigned(GS->canAutoHide()); 251 for (const ValueInfo &VI : GS->refs()) { 252 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 253 AddUsedCfiGlobal(VI.getGUID()); 254 } 255 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 256 AddUnsigned(GVS->maybeReadOnly()); 257 AddUnsigned(GVS->maybeWriteOnly()); 258 } 259 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 260 for (auto &TT : FS->type_tests()) 261 UsedTypeIds.insert(TT); 262 for (auto &TT : FS->type_test_assume_vcalls()) 263 UsedTypeIds.insert(TT.GUID); 264 for (auto &TT : FS->type_checked_load_vcalls()) 265 UsedTypeIds.insert(TT.GUID); 266 for (auto &TT : FS->type_test_assume_const_vcalls()) 267 UsedTypeIds.insert(TT.VFunc.GUID); 268 for (auto &TT : FS->type_checked_load_const_vcalls()) 269 UsedTypeIds.insert(TT.VFunc.GUID); 270 for (auto &ET : FS->calls()) { 271 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 272 AddUsedCfiGlobal(ET.first.getGUID()); 273 } 274 } 275 }; 276 277 // Include the hash for the linkage type to reflect internalization and weak 278 // resolution, and collect any used type identifier resolutions. 279 for (auto &GS : DefinedGlobals) { 280 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 281 Hasher.update( 282 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 283 AddUsedCfiGlobal(GS.first); 284 AddUsedThings(GS.second); 285 } 286 287 // Imported functions may introduce new uses of type identifier resolutions, 288 // so we need to collect their used resolutions as well. 289 for (const ImportModule &ImpM : ImportModulesVector) 290 for (auto &[GUID, UnusedImportType] : ImpM.getFunctions()) { 291 GlobalValueSummary *S = 292 Index.findSummaryInModule(GUID, ImpM.getIdentifier()); 293 AddUsedThings(S); 294 // If this is an alias, we also care about any types/etc. that the aliasee 295 // may reference. 296 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 297 AddUsedThings(AS->getBaseObject()); 298 } 299 300 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 301 AddString(TId); 302 303 AddUnsigned(S.TTRes.TheKind); 304 AddUnsigned(S.TTRes.SizeM1BitWidth); 305 306 AddUint64(S.TTRes.AlignLog2); 307 AddUint64(S.TTRes.SizeM1); 308 AddUint64(S.TTRes.BitMask); 309 AddUint64(S.TTRes.InlineBits); 310 311 AddUint64(S.WPDRes.size()); 312 for (auto &WPD : S.WPDRes) { 313 AddUnsigned(WPD.first); 314 AddUnsigned(WPD.second.TheKind); 315 AddString(WPD.second.SingleImplName); 316 317 AddUint64(WPD.second.ResByArg.size()); 318 for (auto &ByArg : WPD.second.ResByArg) { 319 AddUint64(ByArg.first.size()); 320 for (uint64_t Arg : ByArg.first) 321 AddUint64(Arg); 322 AddUnsigned(ByArg.second.TheKind); 323 AddUint64(ByArg.second.Info); 324 AddUnsigned(ByArg.second.Byte); 325 AddUnsigned(ByArg.second.Bit); 326 } 327 } 328 }; 329 330 // Include the hash for all type identifiers used by this module. 331 for (GlobalValue::GUID TId : UsedTypeIds) { 332 auto TidIter = Index.typeIds().equal_range(TId); 333 for (auto It = TidIter.first; It != TidIter.second; ++It) 334 AddTypeIdSummary(It->second.first, It->second.second); 335 } 336 337 AddUnsigned(UsedCfiDefs.size()); 338 for (auto &V : UsedCfiDefs) 339 AddUint64(V); 340 341 AddUnsigned(UsedCfiDecls.size()); 342 for (auto &V : UsedCfiDecls) 343 AddUint64(V); 344 345 if (!Conf.SampleProfile.empty()) { 346 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 347 if (FileOrErr) { 348 Hasher.update(FileOrErr.get()->getBuffer()); 349 350 if (!Conf.ProfileRemapping.empty()) { 351 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 352 if (FileOrErr) 353 Hasher.update(FileOrErr.get()->getBuffer()); 354 } 355 } 356 } 357 358 Key = toHex(Hasher.result()); 359 } 360 361 static void thinLTOResolvePrevailingGUID( 362 const Config &C, ValueInfo VI, 363 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 364 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 365 isPrevailing, 366 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 367 recordNewLinkage, 368 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 369 GlobalValue::VisibilityTypes Visibility = 370 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 371 : GlobalValue::DefaultVisibility; 372 for (auto &S : VI.getSummaryList()) { 373 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 374 // Ignore local and appending linkage values since the linker 375 // doesn't resolve them. 376 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 377 GlobalValue::isAppendingLinkage(S->linkage())) 378 continue; 379 // We need to emit only one of these. The prevailing module will keep it, 380 // but turned into a weak, while the others will drop it when possible. 381 // This is both a compile-time optimization and a correctness 382 // transformation. This is necessary for correctness when we have exported 383 // a reference - we need to convert the linkonce to weak to 384 // ensure a copy is kept to satisfy the exported reference. 385 // FIXME: We may want to split the compile time and correctness 386 // aspects into separate routines. 387 if (isPrevailing(VI.getGUID(), S.get())) { 388 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 389 S->setLinkage(GlobalValue::getWeakLinkage( 390 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 391 // The kept copy is eligible for auto-hiding (hidden visibility) if all 392 // copies were (i.e. they were all linkonce_odr global unnamed addr). 393 // If any copy is not (e.g. it was originally weak_odr), then the symbol 394 // must remain externally available (e.g. a weak_odr from an explicitly 395 // instantiated template). Additionally, if it is in the 396 // GUIDPreservedSymbols set, that means that it is visibile outside 397 // the summary (e.g. in a native object or a bitcode file without 398 // summary), and in that case we cannot hide it as it isn't possible to 399 // check all copies. 400 S->setCanAutoHide(VI.canAutoHide() && 401 !GUIDPreservedSymbols.count(VI.getGUID())); 402 } 403 if (C.VisibilityScheme == Config::FromPrevailing) 404 Visibility = S->getVisibility(); 405 } 406 // Alias and aliasee can't be turned into available_externally. 407 else if (!isa<AliasSummary>(S.get()) && 408 !GlobalInvolvedWithAlias.count(S.get())) 409 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 410 411 // For ELF, set visibility to the computed visibility from summaries. We 412 // don't track visibility from declarations so this may be more relaxed than 413 // the most constraining one. 414 if (C.VisibilityScheme == Config::ELF) 415 S->setVisibility(Visibility); 416 417 if (S->linkage() != OriginalLinkage) 418 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 419 } 420 421 if (C.VisibilityScheme == Config::FromPrevailing) { 422 for (auto &S : VI.getSummaryList()) { 423 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 424 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 425 GlobalValue::isAppendingLinkage(S->linkage())) 426 continue; 427 S->setVisibility(Visibility); 428 } 429 } 430 } 431 432 /// Resolve linkage for prevailing symbols in the \p Index. 433 // 434 // We'd like to drop these functions if they are no longer referenced in the 435 // current module. However there is a chance that another module is still 436 // referencing them because of the import. We make sure we always emit at least 437 // one copy. 438 void llvm::thinLTOResolvePrevailingInIndex( 439 const Config &C, ModuleSummaryIndex &Index, 440 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 441 isPrevailing, 442 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 443 recordNewLinkage, 444 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 445 // We won't optimize the globals that are referenced by an alias for now 446 // Ideally we should turn the alias into a global and duplicate the definition 447 // when needed. 448 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 449 for (auto &I : Index) 450 for (auto &S : I.second.SummaryList) 451 if (auto AS = dyn_cast<AliasSummary>(S.get())) 452 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 453 454 for (auto &I : Index) 455 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 456 GlobalInvolvedWithAlias, isPrevailing, 457 recordNewLinkage, GUIDPreservedSymbols); 458 } 459 460 static void thinLTOInternalizeAndPromoteGUID( 461 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 462 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 463 isPrevailing) { 464 auto ExternallyVisibleCopies = 465 llvm::count_if(VI.getSummaryList(), 466 [](const std::unique_ptr<GlobalValueSummary> &Summary) { 467 return !GlobalValue::isLocalLinkage(Summary->linkage()); 468 }); 469 470 for (auto &S : VI.getSummaryList()) { 471 // First see if we need to promote an internal value because it is not 472 // exported. 473 if (isExported(S->modulePath(), VI)) { 474 if (GlobalValue::isLocalLinkage(S->linkage())) 475 S->setLinkage(GlobalValue::ExternalLinkage); 476 continue; 477 } 478 479 // Otherwise, see if we can internalize. 480 if (!EnableLTOInternalization) 481 continue; 482 483 // Non-exported values with external linkage can be internalized. 484 if (GlobalValue::isExternalLinkage(S->linkage())) { 485 S->setLinkage(GlobalValue::InternalLinkage); 486 continue; 487 } 488 489 // Non-exported function and variable definitions with a weak-for-linker 490 // linkage can be internalized in certain cases. The minimum legality 491 // requirements would be that they are not address taken to ensure that we 492 // don't break pointer equality checks, and that variables are either read- 493 // or write-only. For functions, this is the case if either all copies are 494 // [local_]unnamed_addr, or we can propagate reference edge attributes 495 // (which is how this is guaranteed for variables, when analyzing whether 496 // they are read or write-only). 497 // 498 // However, we only get to this code for weak-for-linkage values in one of 499 // two cases: 500 // 1) The prevailing copy is not in IR (it is in native code). 501 // 2) The prevailing copy in IR is not exported from its module. 502 // Additionally, at least for the new LTO API, case 2 will only happen if 503 // there is exactly one definition of the value (i.e. in exactly one 504 // module), as duplicate defs are result in the value being marked exported. 505 // Likely, users of the legacy LTO API are similar, however, currently there 506 // are llvm-lto based tests of the legacy LTO API that do not mark 507 // duplicate linkonce_odr copies as exported via the tool, so we need 508 // to handle that case below by checking the number of copies. 509 // 510 // Generally, we only want to internalize a weak-for-linker value in case 511 // 2, because in case 1 we cannot see how the value is used to know if it 512 // is read or write-only. We also don't want to bloat the binary with 513 // multiple internalized copies of non-prevailing linkonce/weak functions. 514 // Note if we don't internalize, we will convert non-prevailing copies to 515 // available_externally anyway, so that we drop them after inlining. The 516 // only reason to internalize such a function is if we indeed have a single 517 // copy, because internalizing it won't increase binary size, and enables 518 // use of inliner heuristics that are more aggressive in the face of a 519 // single call to a static (local). For variables, internalizing a read or 520 // write only variable can enable more aggressive optimization. However, we 521 // already perform this elsewhere in the ThinLTO backend handling for 522 // read or write-only variables (processGlobalForThinLTO). 523 // 524 // Therefore, only internalize linkonce/weak if there is a single copy, that 525 // is prevailing in this IR module. We can do so aggressively, without 526 // requiring the address to be insignificant, or that a variable be read or 527 // write-only. 528 if (!GlobalValue::isWeakForLinker(S->linkage()) || 529 GlobalValue::isExternalWeakLinkage(S->linkage())) 530 continue; 531 532 if (isPrevailing(VI.getGUID(), S.get()) && ExternallyVisibleCopies == 1) 533 S->setLinkage(GlobalValue::InternalLinkage); 534 } 535 } 536 537 // Update the linkages in the given \p Index to mark exported values 538 // as external and non-exported values as internal. 539 void llvm::thinLTOInternalizeAndPromoteInIndex( 540 ModuleSummaryIndex &Index, 541 function_ref<bool(StringRef, ValueInfo)> isExported, 542 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 543 isPrevailing) { 544 for (auto &I : Index) 545 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 546 isPrevailing); 547 } 548 549 // Requires a destructor for std::vector<InputModule>. 550 InputFile::~InputFile() = default; 551 552 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 553 std::unique_ptr<InputFile> File(new InputFile); 554 555 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 556 if (!FOrErr) 557 return FOrErr.takeError(); 558 559 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 560 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 561 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 562 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 563 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 564 565 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 566 size_t Begin = File->Symbols.size(); 567 for (const irsymtab::Reader::SymbolRef &Sym : 568 FOrErr->TheReader.module_symbols(I)) 569 // Skip symbols that are irrelevant to LTO. Note that this condition needs 570 // to match the one in Skip() in LTO::addRegularLTO(). 571 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 572 File->Symbols.push_back(Sym); 573 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 574 } 575 576 File->Mods = FOrErr->Mods; 577 File->Strtab = std::move(FOrErr->Strtab); 578 return std::move(File); 579 } 580 581 StringRef InputFile::getName() const { 582 return Mods[0].getModuleIdentifier(); 583 } 584 585 BitcodeModule &InputFile::getSingleBitcodeModule() { 586 assert(Mods.size() == 1 && "Expect only one bitcode module"); 587 return Mods[0]; 588 } 589 590 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 591 const Config &Conf) 592 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 593 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 594 Mover(std::make_unique<IRMover>(*CombinedModule)) { 595 CombinedModule->IsNewDbgInfoFormat = UseNewDbgInfoFormat; 596 } 597 598 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 599 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 600 if (!Backend) 601 this->Backend = 602 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 603 } 604 605 LTO::LTO(Config Conf, ThinBackend Backend, 606 unsigned ParallelCodeGenParallelismLevel, LTOKind LTOMode) 607 : Conf(std::move(Conf)), 608 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 609 ThinLTO(std::move(Backend)), 610 GlobalResolutions(std::make_optional<StringMap<GlobalResolution>>()), 611 LTOMode(LTOMode) {} 612 613 // Requires a destructor for MapVector<BitcodeModule>. 614 LTO::~LTO() = default; 615 616 // Add the symbols in the given module to the GlobalResolutions map, and resolve 617 // their partitions. 618 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 619 ArrayRef<SymbolResolution> Res, 620 unsigned Partition, bool InSummary) { 621 auto *ResI = Res.begin(); 622 auto *ResE = Res.end(); 623 (void)ResE; 624 const Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 625 for (const InputFile::Symbol &Sym : Syms) { 626 assert(ResI != ResE); 627 SymbolResolution Res = *ResI++; 628 629 auto &GlobalRes = (*GlobalResolutions)[Sym.getName()]; 630 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 631 if (Res.Prevailing) { 632 assert(!GlobalRes.Prevailing && 633 "Multiple prevailing defs are not allowed"); 634 GlobalRes.Prevailing = true; 635 GlobalRes.IRName = std::string(Sym.getIRName()); 636 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 637 // Sometimes it can be two copies of symbol in a module and prevailing 638 // symbol can have no IR name. That might happen if symbol is defined in 639 // module level inline asm block. In case we have multiple modules with 640 // the same symbol we want to use IR name of the prevailing symbol. 641 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 642 // we can later use it to check if there is any prevailing copy in IR. 643 GlobalRes.IRName = std::string(Sym.getIRName()); 644 } 645 646 // In rare occasion, the symbol used to initialize GlobalRes has a different 647 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a 648 // symbol is referenced through its mangled name, say @"\01_symbol" while 649 // the IRName is @symbol (the prefix underscore comes from MachO mangling). 650 // In that case, we have the same actual Symbol that can get two different 651 // GUID, leading to some invalid internalization. Workaround this by marking 652 // the GlobalRes external. 653 654 // FIXME: instead of this check, it would be desirable to compute GUIDs 655 // based on mangled name, but this requires an access to the Target Triple 656 // and would be relatively invasive on the codebase. 657 if (GlobalRes.IRName != Sym.getIRName()) { 658 GlobalRes.Partition = GlobalResolution::External; 659 GlobalRes.VisibleOutsideSummary = true; 660 } 661 662 // Set the partition to external if we know it is re-defined by the linker 663 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 664 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 665 // already recorded as being referenced from a different partition. 666 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 667 (GlobalRes.Partition != GlobalResolution::Unknown && 668 GlobalRes.Partition != Partition)) { 669 GlobalRes.Partition = GlobalResolution::External; 670 } else 671 // First recorded reference, save the current partition. 672 GlobalRes.Partition = Partition; 673 674 // Flag as visible outside of summary if visible from a regular object or 675 // from a module that does not have a summary. 676 GlobalRes.VisibleOutsideSummary |= 677 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 678 679 GlobalRes.ExportDynamic |= Res.ExportDynamic; 680 } 681 } 682 683 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 684 ArrayRef<SymbolResolution> Res) { 685 StringRef Path = Input->getName(); 686 OS << Path << '\n'; 687 auto ResI = Res.begin(); 688 for (const InputFile::Symbol &Sym : Input->symbols()) { 689 assert(ResI != Res.end()); 690 SymbolResolution Res = *ResI++; 691 692 OS << "-r=" << Path << ',' << Sym.getName() << ','; 693 if (Res.Prevailing) 694 OS << 'p'; 695 if (Res.FinalDefinitionInLinkageUnit) 696 OS << 'l'; 697 if (Res.VisibleToRegularObj) 698 OS << 'x'; 699 if (Res.LinkerRedefined) 700 OS << 'r'; 701 OS << '\n'; 702 } 703 OS.flush(); 704 assert(ResI == Res.end()); 705 } 706 707 Error LTO::add(std::unique_ptr<InputFile> Input, 708 ArrayRef<SymbolResolution> Res) { 709 assert(!CalledGetMaxTasks); 710 711 if (Conf.ResolutionFile) 712 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 713 714 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 715 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 716 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 717 Conf.VisibilityScheme = Config::ELF; 718 } 719 720 const SymbolResolution *ResI = Res.begin(); 721 for (unsigned I = 0; I != Input->Mods.size(); ++I) 722 if (Error Err = addModule(*Input, I, ResI, Res.end())) 723 return Err; 724 725 assert(ResI == Res.end()); 726 return Error::success(); 727 } 728 729 Error LTO::addModule(InputFile &Input, unsigned ModI, 730 const SymbolResolution *&ResI, 731 const SymbolResolution *ResE) { 732 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 733 if (!LTOInfo) 734 return LTOInfo.takeError(); 735 736 if (EnableSplitLTOUnit) { 737 // If only some modules were split, flag this in the index so that 738 // we can skip or error on optimizations that need consistently split 739 // modules (whole program devirt and lower type tests). 740 if (*EnableSplitLTOUnit != LTOInfo->EnableSplitLTOUnit) 741 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 742 } else 743 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 744 745 BitcodeModule BM = Input.Mods[ModI]; 746 747 if ((LTOMode == LTOK_UnifiedRegular || LTOMode == LTOK_UnifiedThin) && 748 !LTOInfo->UnifiedLTO) 749 return make_error<StringError>( 750 "unified LTO compilation must use " 751 "compatible bitcode modules (use -funified-lto)", 752 inconvertibleErrorCode()); 753 754 if (LTOInfo->UnifiedLTO && LTOMode == LTOK_Default) 755 LTOMode = LTOK_UnifiedThin; 756 757 bool IsThinLTO = LTOInfo->IsThinLTO && (LTOMode != LTOK_UnifiedRegular); 758 759 auto ModSyms = Input.module_symbols(ModI); 760 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 761 IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 762 LTOInfo->HasSummary); 763 764 if (IsThinLTO) 765 return addThinLTO(BM, ModSyms, ResI, ResE); 766 767 RegularLTO.EmptyCombinedModule = false; 768 Expected<RegularLTOState::AddedModule> ModOrErr = 769 addRegularLTO(BM, ModSyms, ResI, ResE); 770 if (!ModOrErr) 771 return ModOrErr.takeError(); 772 773 if (!LTOInfo->HasSummary) 774 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 775 776 // Regular LTO module summaries are added to a dummy module that represents 777 // the combined regular LTO module. 778 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "")) 779 return Err; 780 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 781 return Error::success(); 782 } 783 784 // Checks whether the given global value is in a non-prevailing comdat 785 // (comdat containing values the linker indicated were not prevailing, 786 // which we then dropped to available_externally), and if so, removes 787 // it from the comdat. This is called for all global values to ensure the 788 // comdat is empty rather than leaving an incomplete comdat. It is needed for 789 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 790 // and thin LTO modules) compilation. Since the regular LTO module will be 791 // linked first in the final native link, we want to make sure the linker 792 // doesn't select any of these incomplete comdats that would be left 793 // in the regular LTO module without this cleanup. 794 static void 795 handleNonPrevailingComdat(GlobalValue &GV, 796 std::set<const Comdat *> &NonPrevailingComdats) { 797 Comdat *C = GV.getComdat(); 798 if (!C) 799 return; 800 801 if (!NonPrevailingComdats.count(C)) 802 return; 803 804 // Additionally need to drop all global values from the comdat to 805 // available_externally, to satisfy the COMDAT requirement that all members 806 // are discarded as a unit. The non-local linkage global values avoid 807 // duplicate definition linker errors. 808 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 809 810 if (auto GO = dyn_cast<GlobalObject>(&GV)) 811 GO->setComdat(nullptr); 812 } 813 814 // Add a regular LTO object to the link. 815 // The resulting module needs to be linked into the combined LTO module with 816 // linkRegularLTO. 817 Expected<LTO::RegularLTOState::AddedModule> 818 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 819 const SymbolResolution *&ResI, 820 const SymbolResolution *ResE) { 821 RegularLTOState::AddedModule Mod; 822 Expected<std::unique_ptr<Module>> MOrErr = 823 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 824 /*IsImporting*/ false); 825 if (!MOrErr) 826 return MOrErr.takeError(); 827 Module &M = **MOrErr; 828 Mod.M = std::move(*MOrErr); 829 830 if (Error Err = M.materializeMetadata()) 831 return std::move(Err); 832 833 // If cfi.functions is present and we are in regular LTO mode, LowerTypeTests 834 // will rename local functions in the merged module as "<function name>.1". 835 // This causes linking errors, since other parts of the module expect the 836 // original function name. 837 if (LTOMode == LTOK_UnifiedRegular) 838 if (NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions")) 839 M.eraseNamedMetadata(CfiFunctionsMD); 840 841 UpgradeDebugInfo(M); 842 843 ModuleSymbolTable SymTab; 844 SymTab.addModule(&M); 845 846 for (GlobalVariable &GV : M.globals()) 847 if (GV.hasAppendingLinkage()) 848 Mod.Keep.push_back(&GV); 849 850 DenseSet<GlobalObject *> AliasedGlobals; 851 for (auto &GA : M.aliases()) 852 if (GlobalObject *GO = GA.getAliaseeObject()) 853 AliasedGlobals.insert(GO); 854 855 // In this function we need IR GlobalValues matching the symbols in Syms 856 // (which is not backed by a module), so we need to enumerate them in the same 857 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 858 // matches the order of an irsymtab, but when we read the irsymtab in 859 // InputFile::create we omit some symbols that are irrelevant to LTO. The 860 // Skip() function skips the same symbols from the module as InputFile does 861 // from the symbol table. 862 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 863 auto Skip = [&]() { 864 while (MsymI != MsymE) { 865 auto Flags = SymTab.getSymbolFlags(*MsymI); 866 if ((Flags & object::BasicSymbolRef::SF_Global) && 867 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 868 return; 869 ++MsymI; 870 } 871 }; 872 Skip(); 873 874 std::set<const Comdat *> NonPrevailingComdats; 875 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 876 for (const InputFile::Symbol &Sym : Syms) { 877 assert(ResI != ResE); 878 SymbolResolution Res = *ResI++; 879 880 assert(MsymI != MsymE); 881 ModuleSymbolTable::Symbol Msym = *MsymI++; 882 Skip(); 883 884 if (GlobalValue *GV = dyn_cast_if_present<GlobalValue *>(Msym)) { 885 if (Res.Prevailing) { 886 if (Sym.isUndefined()) 887 continue; 888 Mod.Keep.push_back(GV); 889 // For symbols re-defined with linker -wrap and -defsym options, 890 // set the linkage to weak to inhibit IPO. The linkage will be 891 // restored by the linker. 892 if (Res.LinkerRedefined) 893 GV->setLinkage(GlobalValue::WeakAnyLinkage); 894 895 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 896 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 897 GV->setLinkage(GlobalValue::getWeakLinkage( 898 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 899 } else if (isa<GlobalObject>(GV) && 900 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 901 GV->hasAvailableExternallyLinkage()) && 902 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 903 // Any of the above three types of linkage indicates that the 904 // chosen prevailing symbol will have the same semantics as this copy of 905 // the symbol, so we may be able to link it with available_externally 906 // linkage. We will decide later whether to do that when we link this 907 // module (in linkRegularLTO), based on whether it is undefined. 908 Mod.Keep.push_back(GV); 909 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 910 if (GV->hasComdat()) 911 NonPrevailingComdats.insert(GV->getComdat()); 912 cast<GlobalObject>(GV)->setComdat(nullptr); 913 } 914 915 // Set the 'local' flag based on the linker resolution for this symbol. 916 if (Res.FinalDefinitionInLinkageUnit) { 917 GV->setDSOLocal(true); 918 if (GV->hasDLLImportStorageClass()) 919 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 920 DefaultStorageClass); 921 } 922 } else if (auto *AS = 923 dyn_cast_if_present<ModuleSymbolTable::AsmSymbol *>(Msym)) { 924 // Collect non-prevailing symbols. 925 if (!Res.Prevailing) 926 NonPrevailingAsmSymbols.insert(AS->first); 927 } else { 928 llvm_unreachable("unknown symbol type"); 929 } 930 931 // Common resolution: collect the maximum size/alignment over all commons. 932 // We also record if we see an instance of a common as prevailing, so that 933 // if none is prevailing we can ignore it later. 934 if (Sym.isCommon()) { 935 // FIXME: We should figure out what to do about commons defined by asm. 936 // For now they aren't reported correctly by ModuleSymbolTable. 937 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 938 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 939 if (uint32_t SymAlignValue = Sym.getCommonAlignment()) { 940 CommonRes.Alignment = 941 std::max(Align(SymAlignValue), CommonRes.Alignment); 942 } 943 CommonRes.Prevailing |= Res.Prevailing; 944 } 945 } 946 947 if (!M.getComdatSymbolTable().empty()) 948 for (GlobalValue &GV : M.global_values()) 949 handleNonPrevailingComdat(GV, NonPrevailingComdats); 950 951 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 952 // block. 953 if (!M.getModuleInlineAsm().empty()) { 954 std::string NewIA = ".lto_discard"; 955 if (!NonPrevailingAsmSymbols.empty()) { 956 // Don't dicard a symbol if there is a live .symver for it. 957 ModuleSymbolTable::CollectAsmSymvers( 958 M, [&](StringRef Name, StringRef Alias) { 959 if (!NonPrevailingAsmSymbols.count(Alias)) 960 NonPrevailingAsmSymbols.erase(Name); 961 }); 962 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 963 } 964 NewIA += "\n"; 965 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 966 } 967 968 assert(MsymI == MsymE); 969 return std::move(Mod); 970 } 971 972 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 973 bool LivenessFromIndex) { 974 std::vector<GlobalValue *> Keep; 975 for (GlobalValue *GV : Mod.Keep) { 976 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 977 if (Function *F = dyn_cast<Function>(GV)) { 978 if (DiagnosticOutputFile) { 979 if (Error Err = F->materialize()) 980 return Err; 981 OptimizationRemarkEmitter ORE(F, nullptr); 982 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 983 << ore::NV("Function", F) 984 << " not added to the combined module "); 985 } 986 } 987 continue; 988 } 989 990 if (!GV->hasAvailableExternallyLinkage()) { 991 Keep.push_back(GV); 992 continue; 993 } 994 995 // Only link available_externally definitions if we don't already have a 996 // definition. 997 GlobalValue *CombinedGV = 998 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 999 if (CombinedGV && !CombinedGV->isDeclaration()) 1000 continue; 1001 1002 Keep.push_back(GV); 1003 } 1004 1005 return RegularLTO.Mover->move(std::move(Mod.M), Keep, nullptr, 1006 /* IsPerformingImport */ false); 1007 } 1008 1009 // Add a ThinLTO module to the link. 1010 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 1011 const SymbolResolution *&ResI, 1012 const SymbolResolution *ResE) { 1013 const SymbolResolution *ResITmp = ResI; 1014 for (const InputFile::Symbol &Sym : Syms) { 1015 assert(ResITmp != ResE); 1016 SymbolResolution Res = *ResITmp++; 1017 1018 if (!Sym.getIRName().empty()) { 1019 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 1020 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 1021 if (Res.Prevailing) 1022 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 1023 } 1024 } 1025 1026 if (Error Err = 1027 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 1028 [&](GlobalValue::GUID GUID) { 1029 return ThinLTO.PrevailingModuleForGUID[GUID] == 1030 BM.getModuleIdentifier(); 1031 })) 1032 return Err; 1033 LLVM_DEBUG(dbgs() << "Module " << BM.getModuleIdentifier() << "\n"); 1034 1035 for (const InputFile::Symbol &Sym : Syms) { 1036 assert(ResI != ResE); 1037 SymbolResolution Res = *ResI++; 1038 1039 if (!Sym.getIRName().empty()) { 1040 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 1041 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 1042 if (Res.Prevailing) { 1043 assert(ThinLTO.PrevailingModuleForGUID[GUID] == 1044 BM.getModuleIdentifier()); 1045 1046 // For linker redefined symbols (via --wrap or --defsym) we want to 1047 // switch the linkage to `weak` to prevent IPOs from happening. 1048 // Find the summary in the module for this very GV and record the new 1049 // linkage so that we can switch it when we import the GV. 1050 if (Res.LinkerRedefined) 1051 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 1052 GUID, BM.getModuleIdentifier())) 1053 S->setLinkage(GlobalValue::WeakAnyLinkage); 1054 } 1055 1056 // If the linker resolved the symbol to a local definition then mark it 1057 // as local in the summary for the module we are adding. 1058 if (Res.FinalDefinitionInLinkageUnit) { 1059 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 1060 GUID, BM.getModuleIdentifier())) { 1061 S->setDSOLocal(true); 1062 } 1063 } 1064 } 1065 } 1066 1067 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 1068 return make_error<StringError>( 1069 "Expected at most one ThinLTO module per bitcode file", 1070 inconvertibleErrorCode()); 1071 1072 if (!Conf.ThinLTOModulesToCompile.empty()) { 1073 if (!ThinLTO.ModulesToCompile) 1074 ThinLTO.ModulesToCompile = ModuleMapType(); 1075 // This is a fuzzy name matching where only modules with name containing the 1076 // specified switch values are going to be compiled. 1077 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 1078 if (BM.getModuleIdentifier().contains(Name)) { 1079 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 1080 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 1081 << " to compile\n"; 1082 } 1083 } 1084 } 1085 1086 return Error::success(); 1087 } 1088 1089 unsigned LTO::getMaxTasks() const { 1090 CalledGetMaxTasks = true; 1091 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 1092 : ThinLTO.ModuleMap.size(); 1093 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 1094 } 1095 1096 // If only some of the modules were split, we cannot correctly handle 1097 // code that contains type tests or type checked loads. 1098 Error LTO::checkPartiallySplit() { 1099 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 1100 return Error::success(); 1101 1102 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 1103 Intrinsic::getName(Intrinsic::type_test)); 1104 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 1105 Intrinsic::getName(Intrinsic::type_checked_load)); 1106 Function *TypeCheckedLoadRelativeFunc = 1107 RegularLTO.CombinedModule->getFunction( 1108 Intrinsic::getName(Intrinsic::type_checked_load_relative)); 1109 1110 // First check if there are type tests / type checked loads in the 1111 // merged regular LTO module IR. 1112 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 1113 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()) || 1114 (TypeCheckedLoadRelativeFunc && 1115 !TypeCheckedLoadRelativeFunc->use_empty())) 1116 return make_error<StringError>( 1117 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1118 inconvertibleErrorCode()); 1119 1120 // Otherwise check if there are any recorded in the combined summary from the 1121 // ThinLTO modules. 1122 for (auto &P : ThinLTO.CombinedIndex) { 1123 for (auto &S : P.second.SummaryList) { 1124 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1125 if (!FS) 1126 continue; 1127 if (!FS->type_test_assume_vcalls().empty() || 1128 !FS->type_checked_load_vcalls().empty() || 1129 !FS->type_test_assume_const_vcalls().empty() || 1130 !FS->type_checked_load_const_vcalls().empty() || 1131 !FS->type_tests().empty()) 1132 return make_error<StringError>( 1133 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1134 inconvertibleErrorCode()); 1135 } 1136 } 1137 return Error::success(); 1138 } 1139 1140 Error LTO::run(AddStreamFn AddStream, FileCache Cache) { 1141 // Compute "dead" symbols, we don't want to import/export these! 1142 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 1143 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 1144 for (auto &Res : *GlobalResolutions) { 1145 // Normally resolution have IR name of symbol. We can do nothing here 1146 // otherwise. See comments in GlobalResolution struct for more details. 1147 if (Res.second.IRName.empty()) 1148 continue; 1149 1150 GlobalValue::GUID GUID = GlobalValue::getGUID( 1151 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1152 1153 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1154 GUIDPreservedSymbols.insert(GUID); 1155 1156 if (Res.second.ExportDynamic) 1157 DynamicExportSymbols.insert(GUID); 1158 1159 GUIDPrevailingResolutions[GUID] = 1160 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1161 } 1162 1163 auto isPrevailing = [&](GlobalValue::GUID G) { 1164 auto It = GUIDPrevailingResolutions.find(G); 1165 if (It == GUIDPrevailingResolutions.end()) 1166 return PrevailingType::Unknown; 1167 return It->second; 1168 }; 1169 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1170 isPrevailing, Conf.OptLevel > 0); 1171 1172 // Setup output file to emit statistics. 1173 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1174 if (!StatsFileOrErr) 1175 return StatsFileOrErr.takeError(); 1176 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1177 1178 // TODO: Ideally this would be controlled automatically by detecting that we 1179 // are linking with an allocator that supports these interfaces, rather than 1180 // an internal option (which would still be needed for tests, however). For 1181 // example, if the library exported a symbol like __malloc_hot_cold the linker 1182 // could recognize that and set a flag in the lto::Config. 1183 if (SupportsHotColdNew) 1184 ThinLTO.CombinedIndex.setWithSupportsHotColdNew(); 1185 1186 Error Result = runRegularLTO(AddStream); 1187 if (!Result) 1188 // This will reset the GlobalResolutions optional once done with it to 1189 // reduce peak memory before importing. 1190 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1191 1192 if (StatsFile) 1193 PrintStatisticsJSON(StatsFile->os()); 1194 1195 return Result; 1196 } 1197 1198 void lto::updateMemProfAttributes(Module &Mod, 1199 const ModuleSummaryIndex &Index) { 1200 if (Index.withSupportsHotColdNew()) 1201 return; 1202 1203 // The profile matcher applies hotness attributes directly for allocations, 1204 // and those will cause us to generate calls to the hot/cold interfaces 1205 // unconditionally. If supports-hot-cold-new was not enabled in the LTO 1206 // link then assume we don't want these calls (e.g. not linking with 1207 // the appropriate library, or otherwise trying to disable this behavior). 1208 for (auto &F : Mod) { 1209 for (auto &BB : F) { 1210 for (auto &I : BB) { 1211 auto *CI = dyn_cast<CallBase>(&I); 1212 if (!CI) 1213 continue; 1214 if (CI->hasFnAttr("memprof")) 1215 CI->removeFnAttr("memprof"); 1216 // Strip off all memprof metadata as it is no longer needed. 1217 // Importantly, this avoids the addition of new memprof attributes 1218 // after inlining propagation. 1219 // TODO: If we support additional types of MemProf metadata beyond hot 1220 // and cold, we will need to update the metadata based on the allocator 1221 // APIs supported instead of completely stripping all. 1222 CI->setMetadata(LLVMContext::MD_memprof, nullptr); 1223 CI->setMetadata(LLVMContext::MD_callsite, nullptr); 1224 } 1225 } 1226 } 1227 } 1228 1229 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1230 // Setup optimization remarks. 1231 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1232 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1233 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1234 Conf.RemarksHotnessThreshold); 1235 LLVM_DEBUG(dbgs() << "Running regular LTO\n"); 1236 if (!DiagFileOrErr) 1237 return DiagFileOrErr.takeError(); 1238 DiagnosticOutputFile = std::move(*DiagFileOrErr); 1239 1240 // Finalize linking of regular LTO modules containing summaries now that 1241 // we have computed liveness information. 1242 for (auto &M : RegularLTO.ModsWithSummaries) 1243 if (Error Err = linkRegularLTO(std::move(M), 1244 /*LivenessFromIndex=*/true)) 1245 return Err; 1246 1247 // Ensure we don't have inconsistently split LTO units with type tests. 1248 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1249 // this path both cases but eventually this should be split into two and 1250 // do the ThinLTO checks in `runThinLTO`. 1251 if (Error Err = checkPartiallySplit()) 1252 return Err; 1253 1254 // Make sure commons have the right size/alignment: we kept the largest from 1255 // all the prevailing when adding the inputs, and we apply it here. 1256 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1257 for (auto &I : RegularLTO.Commons) { 1258 if (!I.second.Prevailing) 1259 // Don't do anything if no instance of this common was prevailing. 1260 continue; 1261 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1262 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1263 // Don't create a new global if the type is already correct, just make 1264 // sure the alignment is correct. 1265 OldGV->setAlignment(I.second.Alignment); 1266 continue; 1267 } 1268 ArrayType *Ty = 1269 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1270 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1271 GlobalValue::CommonLinkage, 1272 ConstantAggregateZero::get(Ty), ""); 1273 GV->setAlignment(I.second.Alignment); 1274 if (OldGV) { 1275 OldGV->replaceAllUsesWith(GV); 1276 GV->takeName(OldGV); 1277 OldGV->eraseFromParent(); 1278 } else { 1279 GV->setName(I.first); 1280 } 1281 } 1282 1283 updateMemProfAttributes(*RegularLTO.CombinedModule, ThinLTO.CombinedIndex); 1284 1285 bool WholeProgramVisibilityEnabledInLTO = 1286 Conf.HasWholeProgramVisibility && 1287 // If validation is enabled, upgrade visibility only when all vtables 1288 // have typeinfos. 1289 (!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos); 1290 1291 // This returns true when the name is local or not defined. Locals are 1292 // expected to be handled separately. 1293 auto IsVisibleToRegularObj = [&](StringRef name) { 1294 auto It = GlobalResolutions->find(name); 1295 return (It == GlobalResolutions->end() || It->second.VisibleOutsideSummary); 1296 }; 1297 1298 // If allowed, upgrade public vcall visibility metadata to linkage unit 1299 // visibility before whole program devirtualization in the optimizer. 1300 updateVCallVisibilityInModule( 1301 *RegularLTO.CombinedModule, WholeProgramVisibilityEnabledInLTO, 1302 DynamicExportSymbols, Conf.ValidateAllVtablesHaveTypeInfos, 1303 IsVisibleToRegularObj); 1304 updatePublicTypeTestCalls(*RegularLTO.CombinedModule, 1305 WholeProgramVisibilityEnabledInLTO); 1306 1307 if (Conf.PreOptModuleHook && 1308 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1309 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1310 1311 if (!Conf.CodeGenOnly) { 1312 for (const auto &R : *GlobalResolutions) { 1313 GlobalValue *GV = 1314 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1315 if (!R.second.isPrevailingIRSymbol()) 1316 continue; 1317 if (R.second.Partition != 0 && 1318 R.second.Partition != GlobalResolution::External) 1319 continue; 1320 1321 // Ignore symbols defined in other partitions. 1322 // Also skip declarations, which are not allowed to have internal linkage. 1323 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1324 continue; 1325 1326 // Symbols that are marked DLLImport or DLLExport should not be 1327 // internalized, as they are either externally visible or referencing 1328 // external symbols. Symbols that have AvailableExternally or Appending 1329 // linkage might be used by future passes and should be kept as is. 1330 // These linkages are seen in Unified regular LTO, because the process 1331 // of creating split LTO units introduces symbols with that linkage into 1332 // one of the created modules. Normally, only the ThinLTO backend would 1333 // compile this module, but Unified Regular LTO processes both 1334 // modules created by the splitting process as regular LTO modules. 1335 if ((LTOMode == LTOKind::LTOK_UnifiedRegular) && 1336 ((GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) || 1337 GV->hasAvailableExternallyLinkage() || GV->hasAppendingLinkage())) 1338 continue; 1339 1340 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1341 : GlobalValue::UnnamedAddr::None); 1342 if (EnableLTOInternalization && R.second.Partition == 0) 1343 GV->setLinkage(GlobalValue::InternalLinkage); 1344 } 1345 1346 if (Conf.PostInternalizeModuleHook && 1347 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1348 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1349 } 1350 1351 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1352 if (Error Err = 1353 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1354 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1355 return Err; 1356 } 1357 1358 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1359 } 1360 1361 SmallVector<const char *> LTO::getRuntimeLibcallSymbols(const Triple &TT) { 1362 RTLIB::RuntimeLibcallsInfo Libcalls(TT); 1363 SmallVector<const char *> LibcallSymbols; 1364 copy_if(Libcalls.getLibcallNames(), std::back_inserter(LibcallSymbols), 1365 [](const char *Name) { return Name; }); 1366 return LibcallSymbols; 1367 } 1368 1369 /// This class defines the interface to the ThinLTO backend. 1370 class lto::ThinBackendProc { 1371 protected: 1372 const Config &Conf; 1373 ModuleSummaryIndex &CombinedIndex; 1374 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1375 lto::IndexWriteCallback OnWrite; 1376 bool ShouldEmitImportsFiles; 1377 1378 public: 1379 ThinBackendProc( 1380 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1381 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1382 lto::IndexWriteCallback OnWrite, bool ShouldEmitImportsFiles) 1383 : Conf(Conf), CombinedIndex(CombinedIndex), 1384 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries), 1385 OnWrite(OnWrite), ShouldEmitImportsFiles(ShouldEmitImportsFiles) {} 1386 1387 virtual ~ThinBackendProc() = default; 1388 virtual Error start( 1389 unsigned Task, BitcodeModule BM, 1390 const FunctionImporter::ImportMapTy &ImportList, 1391 const FunctionImporter::ExportSetTy &ExportList, 1392 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1393 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1394 virtual Error wait() = 0; 1395 virtual unsigned getThreadCount() = 0; 1396 1397 // Write sharded indices and (optionally) imports to disk 1398 Error emitFiles(const FunctionImporter::ImportMapTy &ImportList, 1399 llvm::StringRef ModulePath, 1400 const std::string &NewModulePath) { 1401 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1402 GVSummaryPtrSet DeclarationSummaries; 1403 1404 std::error_code EC; 1405 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1406 ImportList, ModuleToSummariesForIndex, 1407 DeclarationSummaries); 1408 1409 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1410 sys::fs::OpenFlags::OF_None); 1411 if (EC) 1412 return errorCodeToError(EC); 1413 1414 writeIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex, 1415 &DeclarationSummaries); 1416 1417 if (ShouldEmitImportsFiles) { 1418 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1419 ModuleToSummariesForIndex); 1420 if (EC) 1421 return errorCodeToError(EC); 1422 } 1423 return Error::success(); 1424 } 1425 }; 1426 1427 namespace { 1428 class InProcessThinBackend : public ThinBackendProc { 1429 DefaultThreadPool BackendThreadPool; 1430 AddStreamFn AddStream; 1431 FileCache Cache; 1432 std::set<GlobalValue::GUID> CfiFunctionDefs; 1433 std::set<GlobalValue::GUID> CfiFunctionDecls; 1434 1435 std::optional<Error> Err; 1436 std::mutex ErrMu; 1437 1438 bool ShouldEmitIndexFiles; 1439 1440 public: 1441 InProcessThinBackend( 1442 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1443 ThreadPoolStrategy ThinLTOParallelism, 1444 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1445 AddStreamFn AddStream, FileCache Cache, lto::IndexWriteCallback OnWrite, 1446 bool ShouldEmitIndexFiles, bool ShouldEmitImportsFiles) 1447 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1448 OnWrite, ShouldEmitImportsFiles), 1449 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1450 Cache(std::move(Cache)), ShouldEmitIndexFiles(ShouldEmitIndexFiles) { 1451 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1452 CfiFunctionDefs.insert( 1453 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1454 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1455 CfiFunctionDecls.insert( 1456 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1457 } 1458 1459 Error runThinLTOBackendThread( 1460 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM, 1461 ModuleSummaryIndex &CombinedIndex, 1462 const FunctionImporter::ImportMapTy &ImportList, 1463 const FunctionImporter::ExportSetTy &ExportList, 1464 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1465 const GVSummaryMapTy &DefinedGlobals, 1466 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1467 auto RunThinBackend = [&](AddStreamFn AddStream) { 1468 LTOLLVMContext BackendContext(Conf); 1469 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1470 if (!MOrErr) 1471 return MOrErr.takeError(); 1472 1473 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1474 ImportList, DefinedGlobals, &ModuleMap); 1475 }; 1476 1477 auto ModuleID = BM.getModuleIdentifier(); 1478 1479 if (ShouldEmitIndexFiles) { 1480 if (auto E = emitFiles(ImportList, ModuleID, ModuleID.str())) 1481 return E; 1482 } 1483 1484 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1485 all_of(CombinedIndex.getModuleHash(ModuleID), 1486 [](uint32_t V) { return V == 0; })) 1487 // Cache disabled or no entry for this module in the combined index or 1488 // no module hash. 1489 return RunThinBackend(AddStream); 1490 1491 SmallString<40> Key; 1492 // The module may be cached, this helps handling it. 1493 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1494 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1495 CfiFunctionDecls); 1496 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID); 1497 if (Error Err = CacheAddStreamOrErr.takeError()) 1498 return Err; 1499 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr; 1500 if (CacheAddStream) 1501 return RunThinBackend(CacheAddStream); 1502 1503 return Error::success(); 1504 } 1505 1506 Error start( 1507 unsigned Task, BitcodeModule BM, 1508 const FunctionImporter::ImportMapTy &ImportList, 1509 const FunctionImporter::ExportSetTy &ExportList, 1510 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1511 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1512 StringRef ModulePath = BM.getModuleIdentifier(); 1513 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1514 const GVSummaryMapTy &DefinedGlobals = 1515 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1516 BackendThreadPool.async( 1517 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1518 const FunctionImporter::ImportMapTy &ImportList, 1519 const FunctionImporter::ExportSetTy &ExportList, 1520 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1521 &ResolvedODR, 1522 const GVSummaryMapTy &DefinedGlobals, 1523 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1524 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1525 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1526 "thin backend"); 1527 Error E = runThinLTOBackendThread( 1528 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1529 ResolvedODR, DefinedGlobals, ModuleMap); 1530 if (E) { 1531 std::unique_lock<std::mutex> L(ErrMu); 1532 if (Err) 1533 Err = joinErrors(std::move(*Err), std::move(E)); 1534 else 1535 Err = std::move(E); 1536 } 1537 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1538 timeTraceProfilerFinishThread(); 1539 }, 1540 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1541 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1542 1543 if (OnWrite) 1544 OnWrite(std::string(ModulePath)); 1545 return Error::success(); 1546 } 1547 1548 Error wait() override { 1549 BackendThreadPool.wait(); 1550 if (Err) 1551 return std::move(*Err); 1552 else 1553 return Error::success(); 1554 } 1555 1556 unsigned getThreadCount() override { 1557 return BackendThreadPool.getMaxConcurrency(); 1558 } 1559 }; 1560 } // end anonymous namespace 1561 1562 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism, 1563 lto::IndexWriteCallback OnWrite, 1564 bool ShouldEmitIndexFiles, 1565 bool ShouldEmitImportsFiles) { 1566 return 1567 [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1568 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1569 AddStreamFn AddStream, FileCache Cache) { 1570 return std::make_unique<InProcessThinBackend>( 1571 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, 1572 AddStream, Cache, OnWrite, ShouldEmitIndexFiles, 1573 ShouldEmitImportsFiles); 1574 }; 1575 } 1576 1577 StringLiteral lto::getThinLTODefaultCPU(const Triple &TheTriple) { 1578 if (!TheTriple.isOSDarwin()) 1579 return ""; 1580 if (TheTriple.getArch() == Triple::x86_64) 1581 return "core2"; 1582 if (TheTriple.getArch() == Triple::x86) 1583 return "yonah"; 1584 if (TheTriple.isArm64e()) 1585 return "apple-a12"; 1586 if (TheTriple.getArch() == Triple::aarch64 || 1587 TheTriple.getArch() == Triple::aarch64_32) 1588 return "cyclone"; 1589 return ""; 1590 } 1591 1592 // Given the original \p Path to an output file, replace any path 1593 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1594 // resulting directory if it does not yet exist. 1595 std::string lto::getThinLTOOutputFile(StringRef Path, StringRef OldPrefix, 1596 StringRef NewPrefix) { 1597 if (OldPrefix.empty() && NewPrefix.empty()) 1598 return std::string(Path); 1599 SmallString<128> NewPath(Path); 1600 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1601 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1602 if (!ParentPath.empty()) { 1603 // Make sure the new directory exists, creating it if necessary. 1604 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1605 llvm::errs() << "warning: could not create directory '" << ParentPath 1606 << "': " << EC.message() << '\n'; 1607 } 1608 return std::string(NewPath); 1609 } 1610 1611 namespace { 1612 class WriteIndexesThinBackend : public ThinBackendProc { 1613 std::string OldPrefix, NewPrefix, NativeObjectPrefix; 1614 raw_fd_ostream *LinkedObjectsFile; 1615 1616 public: 1617 WriteIndexesThinBackend( 1618 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1619 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1620 std::string OldPrefix, std::string NewPrefix, 1621 std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, 1622 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1623 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1624 OnWrite, ShouldEmitImportsFiles), 1625 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1626 NativeObjectPrefix(NativeObjectPrefix), 1627 LinkedObjectsFile(LinkedObjectsFile) {} 1628 1629 Error start( 1630 unsigned Task, BitcodeModule BM, 1631 const FunctionImporter::ImportMapTy &ImportList, 1632 const FunctionImporter::ExportSetTy &ExportList, 1633 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1634 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1635 StringRef ModulePath = BM.getModuleIdentifier(); 1636 std::string NewModulePath = 1637 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); 1638 1639 if (LinkedObjectsFile) { 1640 std::string ObjectPrefix = 1641 NativeObjectPrefix.empty() ? NewPrefix : NativeObjectPrefix; 1642 std::string LinkedObjectsFilePath = 1643 getThinLTOOutputFile(ModulePath, OldPrefix, ObjectPrefix); 1644 *LinkedObjectsFile << LinkedObjectsFilePath << '\n'; 1645 } 1646 1647 if (auto E = emitFiles(ImportList, ModulePath, NewModulePath)) 1648 return E; 1649 1650 if (OnWrite) 1651 OnWrite(std::string(ModulePath)); 1652 return Error::success(); 1653 } 1654 1655 Error wait() override { return Error::success(); } 1656 1657 // WriteIndexesThinBackend should always return 1 to prevent module 1658 // re-ordering and avoid non-determinism in the final link. 1659 unsigned getThreadCount() override { return 1; } 1660 }; 1661 } // end anonymous namespace 1662 1663 ThinBackend lto::createWriteIndexesThinBackend( 1664 std::string OldPrefix, std::string NewPrefix, 1665 std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, 1666 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1667 return 1668 [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1669 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1670 AddStreamFn AddStream, FileCache Cache) { 1671 return std::make_unique<WriteIndexesThinBackend>( 1672 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, 1673 NewPrefix, NativeObjectPrefix, ShouldEmitImportsFiles, 1674 LinkedObjectsFile, OnWrite); 1675 }; 1676 } 1677 1678 Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache, 1679 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1680 LLVM_DEBUG(dbgs() << "Running ThinLTO\n"); 1681 ThinLTO.CombinedIndex.releaseTemporaryMemory(); 1682 timeTraceProfilerBegin("ThinLink", StringRef("")); 1683 auto TimeTraceScopeExit = llvm::make_scope_exit([]() { 1684 if (llvm::timeTraceProfilerEnabled()) 1685 llvm::timeTraceProfilerEnd(); 1686 }); 1687 if (ThinLTO.ModuleMap.empty()) 1688 return Error::success(); 1689 1690 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1691 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1692 return Error::success(); 1693 } 1694 1695 if (Conf.CombinedIndexHook && 1696 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1697 return Error::success(); 1698 1699 // Collect for each module the list of function it defines (GUID -> 1700 // Summary). 1701 DenseMap<StringRef, GVSummaryMapTy> ModuleToDefinedGVSummaries( 1702 ThinLTO.ModuleMap.size()); 1703 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1704 ModuleToDefinedGVSummaries); 1705 // Create entries for any modules that didn't have any GV summaries 1706 // (either they didn't have any GVs to start with, or we suppressed 1707 // generation of the summaries because they e.g. had inline assembly 1708 // uses that couldn't be promoted/renamed on export). This is so 1709 // InProcessThinBackend::start can still launch a backend thread, which 1710 // is passed the map of summaries for the module, without any special 1711 // handling for this case. 1712 for (auto &Mod : ThinLTO.ModuleMap) 1713 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1714 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1715 1716 // Synthesize entry counts for functions in the CombinedIndex. 1717 computeSyntheticCounts(ThinLTO.CombinedIndex); 1718 1719 DenseMap<StringRef, FunctionImporter::ImportMapTy> ImportLists( 1720 ThinLTO.ModuleMap.size()); 1721 DenseMap<StringRef, FunctionImporter::ExportSetTy> ExportLists( 1722 ThinLTO.ModuleMap.size()); 1723 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1724 1725 if (DumpThinCGSCCs) 1726 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1727 1728 std::set<GlobalValue::GUID> ExportedGUIDs; 1729 1730 bool WholeProgramVisibilityEnabledInLTO = 1731 Conf.HasWholeProgramVisibility && 1732 // If validation is enabled, upgrade visibility only when all vtables 1733 // have typeinfos. 1734 (!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos); 1735 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 1736 ThinLTO.CombinedIndex.setWithWholeProgramVisibility(); 1737 1738 // If we're validating, get the vtable symbols that should not be 1739 // upgraded because they correspond to typeIDs outside of index-based 1740 // WPD info. 1741 DenseSet<GlobalValue::GUID> VisibleToRegularObjSymbols; 1742 if (WholeProgramVisibilityEnabledInLTO && 1743 Conf.ValidateAllVtablesHaveTypeInfos) { 1744 // This returns true when the name is local or not defined. Locals are 1745 // expected to be handled separately. 1746 auto IsVisibleToRegularObj = [&](StringRef name) { 1747 auto It = GlobalResolutions->find(name); 1748 return (It == GlobalResolutions->end() || 1749 It->second.VisibleOutsideSummary); 1750 }; 1751 1752 getVisibleToRegularObjVtableGUIDs(ThinLTO.CombinedIndex, 1753 VisibleToRegularObjSymbols, 1754 IsVisibleToRegularObj); 1755 } 1756 1757 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1758 // the summaries before whole program devirtualization below. 1759 updateVCallVisibilityInIndex( 1760 ThinLTO.CombinedIndex, WholeProgramVisibilityEnabledInLTO, 1761 DynamicExportSymbols, VisibleToRegularObjSymbols); 1762 1763 // Perform index-based WPD. This will return immediately if there are 1764 // no index entries in the typeIdMetadata map (e.g. if we are instead 1765 // performing IR-based WPD in hybrid regular/thin LTO mode). 1766 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1767 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1768 LocalWPDTargetsMap); 1769 1770 auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) { 1771 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1772 }; 1773 if (EnableMemProfContextDisambiguation) { 1774 MemProfContextDisambiguation ContextDisambiguation; 1775 ContextDisambiguation.run(ThinLTO.CombinedIndex, isPrevailing); 1776 } 1777 1778 // Figure out which symbols need to be internalized. This also needs to happen 1779 // at -O0 because summary-based DCE is implemented using internalization, and 1780 // we must apply DCE consistently with the full LTO module in order to avoid 1781 // undefined references during the final link. 1782 for (auto &Res : *GlobalResolutions) { 1783 // If the symbol does not have external references or it is not prevailing, 1784 // then not need to mark it as exported from a ThinLTO partition. 1785 if (Res.second.Partition != GlobalResolution::External || 1786 !Res.second.isPrevailingIRSymbol()) 1787 continue; 1788 auto GUID = GlobalValue::getGUID( 1789 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1790 // Mark exported unless index-based analysis determined it to be dead. 1791 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1792 ExportedGUIDs.insert(GUID); 1793 } 1794 1795 // Reset the GlobalResolutions to deallocate the associated memory, as there 1796 // are no further accesses. We specifically want to do this before computing 1797 // cross module importing, which adds to peak memory via the computed import 1798 // and export lists. 1799 GlobalResolutions.reset(); 1800 1801 if (Conf.OptLevel > 0) 1802 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1803 isPrevailing, ImportLists, ExportLists); 1804 1805 // Any functions referenced by the jump table in the regular LTO object must 1806 // be exported. 1807 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1808 ExportedGUIDs.insert( 1809 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1810 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) 1811 ExportedGUIDs.insert( 1812 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl))); 1813 1814 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1815 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1816 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1817 ExportedGUIDs.count(VI.getGUID()); 1818 }; 1819 1820 // Update local devirtualized targets that were exported by cross-module 1821 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1822 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1823 LocalWPDTargetsMap); 1824 1825 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1826 isPrevailing); 1827 1828 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1829 GlobalValue::GUID GUID, 1830 GlobalValue::LinkageTypes NewLinkage) { 1831 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1832 }; 1833 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1834 recordNewLinkage, GUIDPreservedSymbols); 1835 1836 thinLTOPropagateFunctionAttrs(ThinLTO.CombinedIndex, isPrevailing); 1837 1838 generateParamAccessSummary(ThinLTO.CombinedIndex); 1839 1840 if (llvm::timeTraceProfilerEnabled()) 1841 llvm::timeTraceProfilerEnd(); 1842 1843 TimeTraceScopeExit.release(); 1844 1845 std::unique_ptr<ThinBackendProc> BackendProc = 1846 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1847 AddStream, Cache); 1848 1849 auto &ModuleMap = 1850 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1851 1852 auto ProcessOneModule = [&](int I) -> Error { 1853 auto &Mod = *(ModuleMap.begin() + I); 1854 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1855 // combined module and parallel code generation partitions. 1856 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1857 Mod.second, ImportLists[Mod.first], 1858 ExportLists[Mod.first], ResolvedODR[Mod.first], 1859 ThinLTO.ModuleMap); 1860 }; 1861 1862 if (BackendProc->getThreadCount() == 1) { 1863 // Process the modules in the order they were provided on the command-line. 1864 // It is important for this codepath to be used for WriteIndexesThinBackend, 1865 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1866 // order as the inputs, which otherwise would affect the final link order. 1867 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1868 if (Error E = ProcessOneModule(I)) 1869 return E; 1870 } else { 1871 // When executing in parallel, process largest bitsize modules first to 1872 // improve parallelism, and avoid starving the thread pool near the end. 1873 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1874 // of 100 sec). 1875 std::vector<BitcodeModule *> ModulesVec; 1876 ModulesVec.reserve(ModuleMap.size()); 1877 for (auto &Mod : ModuleMap) 1878 ModulesVec.push_back(&Mod.second); 1879 for (int I : generateModulesOrdering(ModulesVec)) 1880 if (Error E = ProcessOneModule(I)) 1881 return E; 1882 } 1883 return BackendProc->wait(); 1884 } 1885 1886 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1887 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1888 StringRef RemarksFormat, bool RemarksWithHotness, 1889 std::optional<uint64_t> RemarksHotnessThreshold, int Count) { 1890 std::string Filename = std::string(RemarksFilename); 1891 // For ThinLTO, file.opt.<format> becomes 1892 // file.opt.<format>.thin.<num>.<format>. 1893 if (!Filename.empty() && Count != -1) 1894 Filename = 1895 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1896 .str(); 1897 1898 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1899 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1900 RemarksHotnessThreshold); 1901 if (Error E = ResultOrErr.takeError()) 1902 return std::move(E); 1903 1904 if (*ResultOrErr) 1905 (*ResultOrErr)->keep(); 1906 1907 return ResultOrErr; 1908 } 1909 1910 Expected<std::unique_ptr<ToolOutputFile>> 1911 lto::setupStatsFile(StringRef StatsFilename) { 1912 // Setup output file to emit statistics. 1913 if (StatsFilename.empty()) 1914 return nullptr; 1915 1916 llvm::EnableStatistics(false); 1917 std::error_code EC; 1918 auto StatsFile = 1919 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1920 if (EC) 1921 return errorCodeToError(EC); 1922 1923 StatsFile->keep(); 1924 return std::move(StatsFile); 1925 } 1926 1927 // Compute the ordering we will process the inputs: the rough heuristic here 1928 // is to sort them per size so that the largest module get schedule as soon as 1929 // possible. This is purely a compile-time optimization. 1930 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1931 auto Seq = llvm::seq<int>(0, R.size()); 1932 std::vector<int> ModulesOrdering(Seq.begin(), Seq.end()); 1933 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1934 auto LSize = R[LeftIndex]->getBuffer().size(); 1935 auto RSize = R[RightIndex]->getBuffer().size(); 1936 return LSize > RSize; 1937 }); 1938 return ModulesOrdering; 1939 } 1940