1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 16 #include "llvm/Analysis/StackSafetyAnalysis.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/Bitcode/BitcodeReader.h" 20 #include "llvm/Bitcode/BitcodeWriter.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/DiagnosticPrinter.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/LLVMRemarkStreamer.h" 27 #include "llvm/IR/LegacyPassManager.h" 28 #include "llvm/IR/Mangler.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/LTO/LTOBackend.h" 31 #include "llvm/LTO/SummaryBasedOptimizations.h" 32 #include "llvm/Linker/IRMover.h" 33 #include "llvm/Object/IRObjectFile.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Error.h" 36 #include "llvm/Support/ManagedStatic.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Support/SHA1.h" 40 #include "llvm/Support/SourceMgr.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Support/ThreadPool.h" 43 #include "llvm/Support/Threading.h" 44 #include "llvm/Support/TimeProfiler.h" 45 #include "llvm/Support/VCSRevision.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 51 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 52 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 53 #include "llvm/Transforms/Utils/SplitModule.h" 54 55 #include <set> 56 57 using namespace llvm; 58 using namespace lto; 59 using namespace object; 60 61 #define DEBUG_TYPE "lto" 62 63 static cl::opt<bool> 64 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 65 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 66 67 /// Enable global value internalization in LTO. 68 cl::opt<bool> EnableLTOInternalization( 69 "enable-lto-internalization", cl::init(true), cl::Hidden, 70 cl::desc("Enable global value internalization in LTO")); 71 72 // Computes a unique hash for the Module considering the current list of 73 // export/import and other global analysis results. 74 // The hash is produced in \p Key. 75 void llvm::computeLTOCacheKey( 76 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 77 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 78 const FunctionImporter::ExportSetTy &ExportList, 79 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 80 const GVSummaryMapTy &DefinedGlobals, 81 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 82 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 83 // Compute the unique hash for this entry. 84 // This is based on the current compiler version, the module itself, the 85 // export list, the hash for every single module in the import list, the 86 // list of ResolvedODR for the module, and the list of preserved symbols. 87 SHA1 Hasher; 88 89 // Start with the compiler revision 90 Hasher.update(LLVM_VERSION_STRING); 91 #ifdef LLVM_REVISION 92 Hasher.update(LLVM_REVISION); 93 #endif 94 95 // Include the parts of the LTO configuration that affect code generation. 96 auto AddString = [&](StringRef Str) { 97 Hasher.update(Str); 98 Hasher.update(ArrayRef<uint8_t>{0}); 99 }; 100 auto AddUnsigned = [&](unsigned I) { 101 uint8_t Data[4]; 102 support::endian::write32le(Data, I); 103 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 104 }; 105 auto AddUint64 = [&](uint64_t I) { 106 uint8_t Data[8]; 107 support::endian::write64le(Data, I); 108 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 109 }; 110 AddString(Conf.CPU); 111 // FIXME: Hash more of Options. For now all clients initialize Options from 112 // command-line flags (which is unsupported in production), but may set 113 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 114 // DataSections and DebuggerTuning via command line flags. 115 AddUnsigned(Conf.Options.RelaxELFRelocations); 116 AddUnsigned(Conf.Options.FunctionSections); 117 AddUnsigned(Conf.Options.DataSections); 118 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 119 for (auto &A : Conf.MAttrs) 120 AddString(A); 121 if (Conf.RelocModel) 122 AddUnsigned(*Conf.RelocModel); 123 else 124 AddUnsigned(-1); 125 if (Conf.CodeModel) 126 AddUnsigned(*Conf.CodeModel); 127 else 128 AddUnsigned(-1); 129 AddUnsigned(Conf.CGOptLevel); 130 AddUnsigned(Conf.CGFileType); 131 AddUnsigned(Conf.OptLevel); 132 AddUnsigned(Conf.UseNewPM); 133 AddUnsigned(Conf.Freestanding); 134 AddString(Conf.OptPipeline); 135 AddString(Conf.AAPipeline); 136 AddString(Conf.OverrideTriple); 137 AddString(Conf.DefaultTriple); 138 AddString(Conf.DwoDir); 139 140 // Include the hash for the current module 141 auto ModHash = Index.getModuleHash(ModuleID); 142 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 143 144 std::vector<uint64_t> ExportsGUID; 145 ExportsGUID.reserve(ExportList.size()); 146 for (const auto &VI : ExportList) { 147 auto GUID = VI.getGUID(); 148 ExportsGUID.push_back(GUID); 149 } 150 151 // Sort the export list elements GUIDs. 152 llvm::sort(ExportsGUID); 153 for (uint64_t GUID : ExportsGUID) { 154 // The export list can impact the internalization, be conservative here 155 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 156 } 157 158 // Include the hash for every module we import functions from. The set of 159 // imported symbols for each module may affect code generation and is 160 // sensitive to link order, so include that as well. 161 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 162 std::vector<ImportMapIteratorTy> ImportModulesVector; 163 ImportModulesVector.reserve(ImportList.size()); 164 165 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 166 ++It) { 167 ImportModulesVector.push_back(It); 168 } 169 llvm::sort(ImportModulesVector, 170 [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs) 171 -> bool { return Lhs->getKey() < Rhs->getKey(); }); 172 for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) { 173 auto ModHash = Index.getModuleHash(EntryIt->first()); 174 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 175 176 AddUint64(EntryIt->second.size()); 177 for (auto &Fn : EntryIt->second) 178 AddUint64(Fn); 179 } 180 181 // Include the hash for the resolved ODR. 182 for (auto &Entry : ResolvedODR) { 183 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 184 sizeof(GlobalValue::GUID))); 185 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 186 sizeof(GlobalValue::LinkageTypes))); 187 } 188 189 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 190 // defined in this module. 191 std::set<GlobalValue::GUID> UsedCfiDefs; 192 std::set<GlobalValue::GUID> UsedCfiDecls; 193 194 // Typeids used in this module. 195 std::set<GlobalValue::GUID> UsedTypeIds; 196 197 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 198 if (CfiFunctionDefs.count(ValueGUID)) 199 UsedCfiDefs.insert(ValueGUID); 200 if (CfiFunctionDecls.count(ValueGUID)) 201 UsedCfiDecls.insert(ValueGUID); 202 }; 203 204 auto AddUsedThings = [&](GlobalValueSummary *GS) { 205 if (!GS) return; 206 AddUnsigned(GS->isLive()); 207 AddUnsigned(GS->canAutoHide()); 208 for (const ValueInfo &VI : GS->refs()) { 209 AddUnsigned(VI.isDSOLocal()); 210 AddUsedCfiGlobal(VI.getGUID()); 211 } 212 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 213 AddUnsigned(GVS->maybeReadOnly()); 214 AddUnsigned(GVS->maybeWriteOnly()); 215 } 216 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 217 for (auto &TT : FS->type_tests()) 218 UsedTypeIds.insert(TT); 219 for (auto &TT : FS->type_test_assume_vcalls()) 220 UsedTypeIds.insert(TT.GUID); 221 for (auto &TT : FS->type_checked_load_vcalls()) 222 UsedTypeIds.insert(TT.GUID); 223 for (auto &TT : FS->type_test_assume_const_vcalls()) 224 UsedTypeIds.insert(TT.VFunc.GUID); 225 for (auto &TT : FS->type_checked_load_const_vcalls()) 226 UsedTypeIds.insert(TT.VFunc.GUID); 227 for (auto &ET : FS->calls()) { 228 AddUnsigned(ET.first.isDSOLocal()); 229 AddUsedCfiGlobal(ET.first.getGUID()); 230 } 231 } 232 }; 233 234 // Include the hash for the linkage type to reflect internalization and weak 235 // resolution, and collect any used type identifier resolutions. 236 for (auto &GS : DefinedGlobals) { 237 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 238 Hasher.update( 239 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 240 AddUsedCfiGlobal(GS.first); 241 AddUsedThings(GS.second); 242 } 243 244 // Imported functions may introduce new uses of type identifier resolutions, 245 // so we need to collect their used resolutions as well. 246 for (auto &ImpM : ImportList) 247 for (auto &ImpF : ImpM.second) { 248 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 249 AddUsedThings(S); 250 // If this is an alias, we also care about any types/etc. that the aliasee 251 // may reference. 252 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 253 AddUsedThings(AS->getBaseObject()); 254 } 255 256 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 257 AddString(TId); 258 259 AddUnsigned(S.TTRes.TheKind); 260 AddUnsigned(S.TTRes.SizeM1BitWidth); 261 262 AddUint64(S.TTRes.AlignLog2); 263 AddUint64(S.TTRes.SizeM1); 264 AddUint64(S.TTRes.BitMask); 265 AddUint64(S.TTRes.InlineBits); 266 267 AddUint64(S.WPDRes.size()); 268 for (auto &WPD : S.WPDRes) { 269 AddUnsigned(WPD.first); 270 AddUnsigned(WPD.second.TheKind); 271 AddString(WPD.second.SingleImplName); 272 273 AddUint64(WPD.second.ResByArg.size()); 274 for (auto &ByArg : WPD.second.ResByArg) { 275 AddUint64(ByArg.first.size()); 276 for (uint64_t Arg : ByArg.first) 277 AddUint64(Arg); 278 AddUnsigned(ByArg.second.TheKind); 279 AddUint64(ByArg.second.Info); 280 AddUnsigned(ByArg.second.Byte); 281 AddUnsigned(ByArg.second.Bit); 282 } 283 } 284 }; 285 286 // Include the hash for all type identifiers used by this module. 287 for (GlobalValue::GUID TId : UsedTypeIds) { 288 auto TidIter = Index.typeIds().equal_range(TId); 289 for (auto It = TidIter.first; It != TidIter.second; ++It) 290 AddTypeIdSummary(It->second.first, It->second.second); 291 } 292 293 AddUnsigned(UsedCfiDefs.size()); 294 for (auto &V : UsedCfiDefs) 295 AddUint64(V); 296 297 AddUnsigned(UsedCfiDecls.size()); 298 for (auto &V : UsedCfiDecls) 299 AddUint64(V); 300 301 if (!Conf.SampleProfile.empty()) { 302 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 303 if (FileOrErr) { 304 Hasher.update(FileOrErr.get()->getBuffer()); 305 306 if (!Conf.ProfileRemapping.empty()) { 307 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 308 if (FileOrErr) 309 Hasher.update(FileOrErr.get()->getBuffer()); 310 } 311 } 312 } 313 314 Key = toHex(Hasher.result()); 315 } 316 317 static void thinLTOResolvePrevailingGUID( 318 ValueInfo VI, DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 319 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 320 isPrevailing, 321 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 322 recordNewLinkage, 323 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 324 for (auto &S : VI.getSummaryList()) { 325 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 326 // Ignore local and appending linkage values since the linker 327 // doesn't resolve them. 328 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 329 GlobalValue::isAppendingLinkage(S->linkage())) 330 continue; 331 // We need to emit only one of these. The prevailing module will keep it, 332 // but turned into a weak, while the others will drop it when possible. 333 // This is both a compile-time optimization and a correctness 334 // transformation. This is necessary for correctness when we have exported 335 // a reference - we need to convert the linkonce to weak to 336 // ensure a copy is kept to satisfy the exported reference. 337 // FIXME: We may want to split the compile time and correctness 338 // aspects into separate routines. 339 if (isPrevailing(VI.getGUID(), S.get())) { 340 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 341 S->setLinkage(GlobalValue::getWeakLinkage( 342 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 343 // The kept copy is eligible for auto-hiding (hidden visibility) if all 344 // copies were (i.e. they were all linkonce_odr global unnamed addr). 345 // If any copy is not (e.g. it was originally weak_odr), then the symbol 346 // must remain externally available (e.g. a weak_odr from an explicitly 347 // instantiated template). Additionally, if it is in the 348 // GUIDPreservedSymbols set, that means that it is visibile outside 349 // the summary (e.g. in a native object or a bitcode file without 350 // summary), and in that case we cannot hide it as it isn't possible to 351 // check all copies. 352 S->setCanAutoHide(VI.canAutoHide() && 353 !GUIDPreservedSymbols.count(VI.getGUID())); 354 } 355 } 356 // Alias and aliasee can't be turned into available_externally. 357 else if (!isa<AliasSummary>(S.get()) && 358 !GlobalInvolvedWithAlias.count(S.get())) 359 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 360 if (S->linkage() != OriginalLinkage) 361 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 362 } 363 } 364 365 /// Resolve linkage for prevailing symbols in the \p Index. 366 // 367 // We'd like to drop these functions if they are no longer referenced in the 368 // current module. However there is a chance that another module is still 369 // referencing them because of the import. We make sure we always emit at least 370 // one copy. 371 void llvm::thinLTOResolvePrevailingInIndex( 372 ModuleSummaryIndex &Index, 373 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 374 isPrevailing, 375 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 376 recordNewLinkage, 377 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 378 // We won't optimize the globals that are referenced by an alias for now 379 // Ideally we should turn the alias into a global and duplicate the definition 380 // when needed. 381 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 382 for (auto &I : Index) 383 for (auto &S : I.second.SummaryList) 384 if (auto AS = dyn_cast<AliasSummary>(S.get())) 385 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 386 387 for (auto &I : Index) 388 thinLTOResolvePrevailingGUID(Index.getValueInfo(I), GlobalInvolvedWithAlias, 389 isPrevailing, recordNewLinkage, 390 GUIDPreservedSymbols); 391 } 392 393 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 394 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 395 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 396 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 397 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 398 return false; 399 } 400 401 static void thinLTOInternalizeAndPromoteGUID( 402 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 403 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 404 isPrevailing) { 405 for (auto &S : VI.getSummaryList()) { 406 if (isExported(S->modulePath(), VI)) { 407 if (GlobalValue::isLocalLinkage(S->linkage())) 408 S->setLinkage(GlobalValue::ExternalLinkage); 409 } else if (EnableLTOInternalization && 410 // Ignore local and appending linkage values since the linker 411 // doesn't resolve them. 412 !GlobalValue::isLocalLinkage(S->linkage()) && 413 (!GlobalValue::isInterposableLinkage(S->linkage()) || 414 isPrevailing(VI.getGUID(), S.get())) && 415 S->linkage() != GlobalValue::AppendingLinkage && 416 // We can't internalize available_externally globals because this 417 // can break function pointer equality. 418 S->linkage() != GlobalValue::AvailableExternallyLinkage && 419 // Functions and read-only variables with linkonce_odr and 420 // weak_odr linkage can be internalized. We can't internalize 421 // linkonce_odr and weak_odr variables which are both modified 422 // and read somewhere in the program because reads and writes 423 // will become inconsistent. 424 !isWeakObjectWithRWAccess(S.get())) 425 S->setLinkage(GlobalValue::InternalLinkage); 426 } 427 } 428 429 // Update the linkages in the given \p Index to mark exported values 430 // as external and non-exported values as internal. 431 void llvm::thinLTOInternalizeAndPromoteInIndex( 432 ModuleSummaryIndex &Index, 433 function_ref<bool(StringRef, ValueInfo)> isExported, 434 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 435 isPrevailing) { 436 for (auto &I : Index) 437 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 438 isPrevailing); 439 } 440 441 // Requires a destructor for std::vector<InputModule>. 442 InputFile::~InputFile() = default; 443 444 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 445 std::unique_ptr<InputFile> File(new InputFile); 446 447 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 448 if (!FOrErr) 449 return FOrErr.takeError(); 450 451 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 452 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 453 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 454 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 455 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 456 457 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 458 size_t Begin = File->Symbols.size(); 459 for (const irsymtab::Reader::SymbolRef &Sym : 460 FOrErr->TheReader.module_symbols(I)) 461 // Skip symbols that are irrelevant to LTO. Note that this condition needs 462 // to match the one in Skip() in LTO::addRegularLTO(). 463 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 464 File->Symbols.push_back(Sym); 465 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 466 } 467 468 File->Mods = FOrErr->Mods; 469 File->Strtab = std::move(FOrErr->Strtab); 470 return std::move(File); 471 } 472 473 StringRef InputFile::getName() const { 474 return Mods[0].getModuleIdentifier(); 475 } 476 477 BitcodeModule &InputFile::getSingleBitcodeModule() { 478 assert(Mods.size() == 1 && "Expect only one bitcode module"); 479 return Mods[0]; 480 } 481 482 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 483 const Config &Conf) 484 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 485 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 486 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 487 488 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 489 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 490 if (!Backend) 491 this->Backend = 492 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 493 } 494 495 LTO::LTO(Config Conf, ThinBackend Backend, 496 unsigned ParallelCodeGenParallelismLevel) 497 : Conf(std::move(Conf)), 498 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 499 ThinLTO(std::move(Backend)) {} 500 501 // Requires a destructor for MapVector<BitcodeModule>. 502 LTO::~LTO() = default; 503 504 // Add the symbols in the given module to the GlobalResolutions map, and resolve 505 // their partitions. 506 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 507 ArrayRef<SymbolResolution> Res, 508 unsigned Partition, bool InSummary) { 509 auto *ResI = Res.begin(); 510 auto *ResE = Res.end(); 511 (void)ResE; 512 for (const InputFile::Symbol &Sym : Syms) { 513 assert(ResI != ResE); 514 SymbolResolution Res = *ResI++; 515 516 StringRef Name = Sym.getName(); 517 Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 518 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 519 // way they are handled by lld), otherwise we can end up with two 520 // global resolutions (one with and one for a copy of the symbol without). 521 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 522 Name = Name.substr(strlen("__imp_")); 523 auto &GlobalRes = GlobalResolutions[Name]; 524 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 525 if (Res.Prevailing) { 526 assert(!GlobalRes.Prevailing && 527 "Multiple prevailing defs are not allowed"); 528 GlobalRes.Prevailing = true; 529 GlobalRes.IRName = std::string(Sym.getIRName()); 530 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 531 // Sometimes it can be two copies of symbol in a module and prevailing 532 // symbol can have no IR name. That might happen if symbol is defined in 533 // module level inline asm block. In case we have multiple modules with 534 // the same symbol we want to use IR name of the prevailing symbol. 535 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 536 // we can later use it to check if there is any prevailing copy in IR. 537 GlobalRes.IRName = std::string(Sym.getIRName()); 538 } 539 540 // Set the partition to external if we know it is re-defined by the linker 541 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 542 // regular object, is referenced from llvm.compiler_used, or was already 543 // recorded as being referenced from a different partition. 544 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 545 (GlobalRes.Partition != GlobalResolution::Unknown && 546 GlobalRes.Partition != Partition)) { 547 GlobalRes.Partition = GlobalResolution::External; 548 } else 549 // First recorded reference, save the current partition. 550 GlobalRes.Partition = Partition; 551 552 // Flag as visible outside of summary if visible from a regular object or 553 // from a module that does not have a summary. 554 GlobalRes.VisibleOutsideSummary |= 555 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 556 } 557 } 558 559 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 560 ArrayRef<SymbolResolution> Res) { 561 StringRef Path = Input->getName(); 562 OS << Path << '\n'; 563 auto ResI = Res.begin(); 564 for (const InputFile::Symbol &Sym : Input->symbols()) { 565 assert(ResI != Res.end()); 566 SymbolResolution Res = *ResI++; 567 568 OS << "-r=" << Path << ',' << Sym.getName() << ','; 569 if (Res.Prevailing) 570 OS << 'p'; 571 if (Res.FinalDefinitionInLinkageUnit) 572 OS << 'l'; 573 if (Res.VisibleToRegularObj) 574 OS << 'x'; 575 if (Res.LinkerRedefined) 576 OS << 'r'; 577 OS << '\n'; 578 } 579 OS.flush(); 580 assert(ResI == Res.end()); 581 } 582 583 Error LTO::add(std::unique_ptr<InputFile> Input, 584 ArrayRef<SymbolResolution> Res) { 585 assert(!CalledGetMaxTasks); 586 587 if (Conf.ResolutionFile) 588 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 589 590 if (RegularLTO.CombinedModule->getTargetTriple().empty()) 591 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 592 593 const SymbolResolution *ResI = Res.begin(); 594 for (unsigned I = 0; I != Input->Mods.size(); ++I) 595 if (Error Err = addModule(*Input, I, ResI, Res.end())) 596 return Err; 597 598 assert(ResI == Res.end()); 599 return Error::success(); 600 } 601 602 Error LTO::addModule(InputFile &Input, unsigned ModI, 603 const SymbolResolution *&ResI, 604 const SymbolResolution *ResE) { 605 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 606 if (!LTOInfo) 607 return LTOInfo.takeError(); 608 609 if (EnableSplitLTOUnit.hasValue()) { 610 // If only some modules were split, flag this in the index so that 611 // we can skip or error on optimizations that need consistently split 612 // modules (whole program devirt and lower type tests). 613 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 614 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 615 } else 616 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 617 618 BitcodeModule BM = Input.Mods[ModI]; 619 auto ModSyms = Input.module_symbols(ModI); 620 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 621 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 622 LTOInfo->HasSummary); 623 624 if (LTOInfo->IsThinLTO) 625 return addThinLTO(BM, ModSyms, ResI, ResE); 626 627 RegularLTO.EmptyCombinedModule = false; 628 Expected<RegularLTOState::AddedModule> ModOrErr = 629 addRegularLTO(BM, ModSyms, ResI, ResE); 630 if (!ModOrErr) 631 return ModOrErr.takeError(); 632 633 if (!LTOInfo->HasSummary) 634 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 635 636 // Regular LTO module summaries are added to a dummy module that represents 637 // the combined regular LTO module. 638 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 639 return Err; 640 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 641 return Error::success(); 642 } 643 644 // Checks whether the given global value is in a non-prevailing comdat 645 // (comdat containing values the linker indicated were not prevailing, 646 // which we then dropped to available_externally), and if so, removes 647 // it from the comdat. This is called for all global values to ensure the 648 // comdat is empty rather than leaving an incomplete comdat. It is needed for 649 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 650 // and thin LTO modules) compilation. Since the regular LTO module will be 651 // linked first in the final native link, we want to make sure the linker 652 // doesn't select any of these incomplete comdats that would be left 653 // in the regular LTO module without this cleanup. 654 static void 655 handleNonPrevailingComdat(GlobalValue &GV, 656 std::set<const Comdat *> &NonPrevailingComdats) { 657 Comdat *C = GV.getComdat(); 658 if (!C) 659 return; 660 661 if (!NonPrevailingComdats.count(C)) 662 return; 663 664 // Additionally need to drop externally visible global values from the comdat 665 // to available_externally, so that there aren't multiply defined linker 666 // errors. 667 if (!GV.hasLocalLinkage()) 668 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 669 670 if (auto GO = dyn_cast<GlobalObject>(&GV)) 671 GO->setComdat(nullptr); 672 } 673 674 // Add a regular LTO object to the link. 675 // The resulting module needs to be linked into the combined LTO module with 676 // linkRegularLTO. 677 Expected<LTO::RegularLTOState::AddedModule> 678 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 679 const SymbolResolution *&ResI, 680 const SymbolResolution *ResE) { 681 RegularLTOState::AddedModule Mod; 682 Expected<std::unique_ptr<Module>> MOrErr = 683 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 684 /*IsImporting*/ false); 685 if (!MOrErr) 686 return MOrErr.takeError(); 687 Module &M = **MOrErr; 688 Mod.M = std::move(*MOrErr); 689 690 if (Error Err = M.materializeMetadata()) 691 return std::move(Err); 692 UpgradeDebugInfo(M); 693 694 ModuleSymbolTable SymTab; 695 SymTab.addModule(&M); 696 697 for (GlobalVariable &GV : M.globals()) 698 if (GV.hasAppendingLinkage()) 699 Mod.Keep.push_back(&GV); 700 701 DenseSet<GlobalObject *> AliasedGlobals; 702 for (auto &GA : M.aliases()) 703 if (GlobalObject *GO = GA.getBaseObject()) 704 AliasedGlobals.insert(GO); 705 706 // In this function we need IR GlobalValues matching the symbols in Syms 707 // (which is not backed by a module), so we need to enumerate them in the same 708 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 709 // matches the order of an irsymtab, but when we read the irsymtab in 710 // InputFile::create we omit some symbols that are irrelevant to LTO. The 711 // Skip() function skips the same symbols from the module as InputFile does 712 // from the symbol table. 713 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 714 auto Skip = [&]() { 715 while (MsymI != MsymE) { 716 auto Flags = SymTab.getSymbolFlags(*MsymI); 717 if ((Flags & object::BasicSymbolRef::SF_Global) && 718 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 719 return; 720 ++MsymI; 721 } 722 }; 723 Skip(); 724 725 std::set<const Comdat *> NonPrevailingComdats; 726 for (const InputFile::Symbol &Sym : Syms) { 727 assert(ResI != ResE); 728 SymbolResolution Res = *ResI++; 729 730 assert(MsymI != MsymE); 731 ModuleSymbolTable::Symbol Msym = *MsymI++; 732 Skip(); 733 734 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 735 if (Res.Prevailing) { 736 if (Sym.isUndefined()) 737 continue; 738 Mod.Keep.push_back(GV); 739 // For symbols re-defined with linker -wrap and -defsym options, 740 // set the linkage to weak to inhibit IPO. The linkage will be 741 // restored by the linker. 742 if (Res.LinkerRedefined) 743 GV->setLinkage(GlobalValue::WeakAnyLinkage); 744 745 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 746 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 747 GV->setLinkage(GlobalValue::getWeakLinkage( 748 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 749 } else if (isa<GlobalObject>(GV) && 750 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 751 GV->hasAvailableExternallyLinkage()) && 752 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 753 // Any of the above three types of linkage indicates that the 754 // chosen prevailing symbol will have the same semantics as this copy of 755 // the symbol, so we may be able to link it with available_externally 756 // linkage. We will decide later whether to do that when we link this 757 // module (in linkRegularLTO), based on whether it is undefined. 758 Mod.Keep.push_back(GV); 759 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 760 if (GV->hasComdat()) 761 NonPrevailingComdats.insert(GV->getComdat()); 762 cast<GlobalObject>(GV)->setComdat(nullptr); 763 } 764 765 // Set the 'local' flag based on the linker resolution for this symbol. 766 if (Res.FinalDefinitionInLinkageUnit) { 767 GV->setDSOLocal(true); 768 if (GV->hasDLLImportStorageClass()) 769 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 770 DefaultStorageClass); 771 } 772 } 773 // Common resolution: collect the maximum size/alignment over all commons. 774 // We also record if we see an instance of a common as prevailing, so that 775 // if none is prevailing we can ignore it later. 776 if (Sym.isCommon()) { 777 // FIXME: We should figure out what to do about commons defined by asm. 778 // For now they aren't reported correctly by ModuleSymbolTable. 779 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 780 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 781 MaybeAlign SymAlign(Sym.getCommonAlignment()); 782 if (SymAlign) 783 CommonRes.Align = max(*SymAlign, CommonRes.Align); 784 CommonRes.Prevailing |= Res.Prevailing; 785 } 786 787 } 788 if (!M.getComdatSymbolTable().empty()) 789 for (GlobalValue &GV : M.global_values()) 790 handleNonPrevailingComdat(GV, NonPrevailingComdats); 791 assert(MsymI == MsymE); 792 return std::move(Mod); 793 } 794 795 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 796 bool LivenessFromIndex) { 797 std::vector<GlobalValue *> Keep; 798 for (GlobalValue *GV : Mod.Keep) { 799 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 800 if (Function *F = dyn_cast<Function>(GV)) { 801 OptimizationRemarkEmitter ORE(F, nullptr); 802 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 803 << ore::NV("Function", F) 804 << " not added to the combined module "); 805 } 806 continue; 807 } 808 809 if (!GV->hasAvailableExternallyLinkage()) { 810 Keep.push_back(GV); 811 continue; 812 } 813 814 // Only link available_externally definitions if we don't already have a 815 // definition. 816 GlobalValue *CombinedGV = 817 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 818 if (CombinedGV && !CombinedGV->isDeclaration()) 819 continue; 820 821 Keep.push_back(GV); 822 } 823 824 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 825 [](GlobalValue &, IRMover::ValueAdder) {}, 826 /* IsPerformingImport */ false); 827 } 828 829 // Add a ThinLTO module to the link. 830 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 831 const SymbolResolution *&ResI, 832 const SymbolResolution *ResE) { 833 if (Error Err = 834 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 835 ThinLTO.ModuleMap.size())) 836 return Err; 837 838 for (const InputFile::Symbol &Sym : Syms) { 839 assert(ResI != ResE); 840 SymbolResolution Res = *ResI++; 841 842 if (!Sym.getIRName().empty()) { 843 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 844 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 845 if (Res.Prevailing) { 846 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 847 848 // For linker redefined symbols (via --wrap or --defsym) we want to 849 // switch the linkage to `weak` to prevent IPOs from happening. 850 // Find the summary in the module for this very GV and record the new 851 // linkage so that we can switch it when we import the GV. 852 if (Res.LinkerRedefined) 853 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 854 GUID, BM.getModuleIdentifier())) 855 S->setLinkage(GlobalValue::WeakAnyLinkage); 856 } 857 858 // If the linker resolved the symbol to a local definition then mark it 859 // as local in the summary for the module we are adding. 860 if (Res.FinalDefinitionInLinkageUnit) { 861 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 862 GUID, BM.getModuleIdentifier())) { 863 S->setDSOLocal(true); 864 } 865 } 866 } 867 } 868 869 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 870 return make_error<StringError>( 871 "Expected at most one ThinLTO module per bitcode file", 872 inconvertibleErrorCode()); 873 874 if (!Conf.ThinLTOModulesToCompile.empty()) { 875 if (!ThinLTO.ModulesToCompile) 876 ThinLTO.ModulesToCompile = ModuleMapType(); 877 // This is a fuzzy name matching where only modules with name containing the 878 // specified switch values are going to be compiled. 879 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 880 if (BM.getModuleIdentifier().contains(Name)) { 881 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 882 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 883 << " to compile\n"; 884 } 885 } 886 } 887 888 return Error::success(); 889 } 890 891 unsigned LTO::getMaxTasks() const { 892 CalledGetMaxTasks = true; 893 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 894 : ThinLTO.ModuleMap.size(); 895 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 896 } 897 898 // If only some of the modules were split, we cannot correctly handle 899 // code that contains type tests or type checked loads. 900 Error LTO::checkPartiallySplit() { 901 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 902 return Error::success(); 903 904 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 905 Intrinsic::getName(Intrinsic::type_test)); 906 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 907 Intrinsic::getName(Intrinsic::type_checked_load)); 908 909 // First check if there are type tests / type checked loads in the 910 // merged regular LTO module IR. 911 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 912 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 913 return make_error<StringError>( 914 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 915 inconvertibleErrorCode()); 916 917 // Otherwise check if there are any recorded in the combined summary from the 918 // ThinLTO modules. 919 for (auto &P : ThinLTO.CombinedIndex) { 920 for (auto &S : P.second.SummaryList) { 921 auto *FS = dyn_cast<FunctionSummary>(S.get()); 922 if (!FS) 923 continue; 924 if (!FS->type_test_assume_vcalls().empty() || 925 !FS->type_checked_load_vcalls().empty() || 926 !FS->type_test_assume_const_vcalls().empty() || 927 !FS->type_checked_load_const_vcalls().empty() || 928 !FS->type_tests().empty()) 929 return make_error<StringError>( 930 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 931 inconvertibleErrorCode()); 932 } 933 } 934 return Error::success(); 935 } 936 937 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { 938 // Compute "dead" symbols, we don't want to import/export these! 939 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 940 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 941 for (auto &Res : GlobalResolutions) { 942 // Normally resolution have IR name of symbol. We can do nothing here 943 // otherwise. See comments in GlobalResolution struct for more details. 944 if (Res.second.IRName.empty()) 945 continue; 946 947 GlobalValue::GUID GUID = GlobalValue::getGUID( 948 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 949 950 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 951 GUIDPreservedSymbols.insert(GUID); 952 953 GUIDPrevailingResolutions[GUID] = 954 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 955 } 956 957 auto isPrevailing = [&](GlobalValue::GUID G) { 958 auto It = GUIDPrevailingResolutions.find(G); 959 if (It == GUIDPrevailingResolutions.end()) 960 return PrevailingType::Unknown; 961 return It->second; 962 }; 963 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 964 isPrevailing, Conf.OptLevel > 0); 965 966 // Setup output file to emit statistics. 967 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 968 if (!StatsFileOrErr) 969 return StatsFileOrErr.takeError(); 970 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 971 972 Error Result = runRegularLTO(AddStream); 973 if (!Result) 974 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 975 976 if (StatsFile) 977 PrintStatisticsJSON(StatsFile->os()); 978 979 return Result; 980 } 981 982 Error LTO::runRegularLTO(AddStreamFn AddStream) { 983 // Setup optimization remarks. 984 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 985 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 986 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 987 Conf.RemarksHotnessThreshold); 988 if (!DiagFileOrErr) 989 return DiagFileOrErr.takeError(); 990 991 // Finalize linking of regular LTO modules containing summaries now that 992 // we have computed liveness information. 993 for (auto &M : RegularLTO.ModsWithSummaries) 994 if (Error Err = linkRegularLTO(std::move(M), 995 /*LivenessFromIndex=*/true)) 996 return Err; 997 998 // Ensure we don't have inconsistently split LTO units with type tests. 999 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1000 // this path both cases but eventually this should be split into two and 1001 // do the ThinLTO checks in `runThinLTO`. 1002 if (Error Err = checkPartiallySplit()) 1003 return Err; 1004 1005 // Make sure commons have the right size/alignment: we kept the largest from 1006 // all the prevailing when adding the inputs, and we apply it here. 1007 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1008 for (auto &I : RegularLTO.Commons) { 1009 if (!I.second.Prevailing) 1010 // Don't do anything if no instance of this common was prevailing. 1011 continue; 1012 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1013 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1014 // Don't create a new global if the type is already correct, just make 1015 // sure the alignment is correct. 1016 OldGV->setAlignment(I.second.Align); 1017 continue; 1018 } 1019 ArrayType *Ty = 1020 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1021 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1022 GlobalValue::CommonLinkage, 1023 ConstantAggregateZero::get(Ty), ""); 1024 GV->setAlignment(I.second.Align); 1025 if (OldGV) { 1026 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 1027 GV->takeName(OldGV); 1028 OldGV->eraseFromParent(); 1029 } else { 1030 GV->setName(I.first); 1031 } 1032 } 1033 1034 // If allowed, upgrade public vcall visibility metadata to linkage unit 1035 // visibility before whole program devirtualization in the optimizer. 1036 updateVCallVisibilityInModule(*RegularLTO.CombinedModule, 1037 Conf.HasWholeProgramVisibility); 1038 1039 if (Conf.PreOptModuleHook && 1040 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1041 return Error::success(); 1042 1043 if (!Conf.CodeGenOnly) { 1044 for (const auto &R : GlobalResolutions) { 1045 if (!R.second.isPrevailingIRSymbol()) 1046 continue; 1047 if (R.second.Partition != 0 && 1048 R.second.Partition != GlobalResolution::External) 1049 continue; 1050 1051 GlobalValue *GV = 1052 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1053 // Ignore symbols defined in other partitions. 1054 // Also skip declarations, which are not allowed to have internal linkage. 1055 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1056 continue; 1057 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1058 : GlobalValue::UnnamedAddr::None); 1059 if (EnableLTOInternalization && R.second.Partition == 0) 1060 GV->setLinkage(GlobalValue::InternalLinkage); 1061 } 1062 1063 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); 1064 1065 if (Conf.PostInternalizeModuleHook && 1066 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1067 return Error::success(); 1068 } 1069 1070 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1071 if (Error Err = backend( 1072 Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1073 std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex)) 1074 return Err; 1075 } 1076 1077 return finalizeOptimizationRemarks(std::move(*DiagFileOrErr)); 1078 } 1079 1080 static const char *libcallRoutineNames[] = { 1081 #define HANDLE_LIBCALL(code, name) name, 1082 #include "llvm/IR/RuntimeLibcalls.def" 1083 #undef HANDLE_LIBCALL 1084 }; 1085 1086 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1087 return makeArrayRef(libcallRoutineNames); 1088 } 1089 1090 /// This class defines the interface to the ThinLTO backend. 1091 class lto::ThinBackendProc { 1092 protected: 1093 const Config &Conf; 1094 ModuleSummaryIndex &CombinedIndex; 1095 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1096 1097 public: 1098 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1099 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1100 : Conf(Conf), CombinedIndex(CombinedIndex), 1101 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1102 1103 virtual ~ThinBackendProc() {} 1104 virtual Error start( 1105 unsigned Task, BitcodeModule BM, 1106 const FunctionImporter::ImportMapTy &ImportList, 1107 const FunctionImporter::ExportSetTy &ExportList, 1108 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1109 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1110 virtual Error wait() = 0; 1111 virtual unsigned getThreadCount() = 0; 1112 }; 1113 1114 namespace { 1115 class InProcessThinBackend : public ThinBackendProc { 1116 ThreadPool BackendThreadPool; 1117 AddStreamFn AddStream; 1118 NativeObjectCache Cache; 1119 std::set<GlobalValue::GUID> CfiFunctionDefs; 1120 std::set<GlobalValue::GUID> CfiFunctionDecls; 1121 1122 Optional<Error> Err; 1123 std::mutex ErrMu; 1124 1125 public: 1126 InProcessThinBackend( 1127 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1128 ThreadPoolStrategy ThinLTOParallelism, 1129 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1130 AddStreamFn AddStream, NativeObjectCache Cache) 1131 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1132 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1133 Cache(std::move(Cache)) { 1134 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1135 CfiFunctionDefs.insert( 1136 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1137 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1138 CfiFunctionDecls.insert( 1139 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1140 } 1141 1142 Error runThinLTOBackendThread( 1143 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, 1144 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1145 const FunctionImporter::ImportMapTy &ImportList, 1146 const FunctionImporter::ExportSetTy &ExportList, 1147 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1148 const GVSummaryMapTy &DefinedGlobals, 1149 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1150 auto RunThinBackend = [&](AddStreamFn AddStream) { 1151 LTOLLVMContext BackendContext(Conf); 1152 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1153 if (!MOrErr) 1154 return MOrErr.takeError(); 1155 1156 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1157 ImportList, DefinedGlobals, ModuleMap); 1158 }; 1159 1160 auto ModuleID = BM.getModuleIdentifier(); 1161 1162 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1163 all_of(CombinedIndex.getModuleHash(ModuleID), 1164 [](uint32_t V) { return V == 0; })) 1165 // Cache disabled or no entry for this module in the combined index or 1166 // no module hash. 1167 return RunThinBackend(AddStream); 1168 1169 SmallString<40> Key; 1170 // The module may be cached, this helps handling it. 1171 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1172 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1173 CfiFunctionDecls); 1174 if (AddStreamFn CacheAddStream = Cache(Task, Key)) 1175 return RunThinBackend(CacheAddStream); 1176 1177 return Error::success(); 1178 } 1179 1180 Error start( 1181 unsigned Task, BitcodeModule BM, 1182 const FunctionImporter::ImportMapTy &ImportList, 1183 const FunctionImporter::ExportSetTy &ExportList, 1184 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1185 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1186 StringRef ModulePath = BM.getModuleIdentifier(); 1187 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1188 const GVSummaryMapTy &DefinedGlobals = 1189 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1190 BackendThreadPool.async( 1191 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1192 const FunctionImporter::ImportMapTy &ImportList, 1193 const FunctionImporter::ExportSetTy &ExportList, 1194 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1195 &ResolvedODR, 1196 const GVSummaryMapTy &DefinedGlobals, 1197 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1198 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1199 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1200 "thin backend"); 1201 Error E = runThinLTOBackendThread( 1202 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1203 ResolvedODR, DefinedGlobals, ModuleMap); 1204 if (E) { 1205 std::unique_lock<std::mutex> L(ErrMu); 1206 if (Err) 1207 Err = joinErrors(std::move(*Err), std::move(E)); 1208 else 1209 Err = std::move(E); 1210 } 1211 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1212 timeTraceProfilerFinishThread(); 1213 }, 1214 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1215 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1216 return Error::success(); 1217 } 1218 1219 Error wait() override { 1220 BackendThreadPool.wait(); 1221 if (Err) 1222 return std::move(*Err); 1223 else 1224 return Error::success(); 1225 } 1226 1227 unsigned getThreadCount() override { 1228 return BackendThreadPool.getThreadCount(); 1229 } 1230 }; 1231 } // end anonymous namespace 1232 1233 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism) { 1234 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1235 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1236 AddStreamFn AddStream, NativeObjectCache Cache) { 1237 return std::make_unique<InProcessThinBackend>( 1238 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream, 1239 Cache); 1240 }; 1241 } 1242 1243 // Given the original \p Path to an output file, replace any path 1244 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1245 // resulting directory if it does not yet exist. 1246 std::string lto::getThinLTOOutputFile(const std::string &Path, 1247 const std::string &OldPrefix, 1248 const std::string &NewPrefix) { 1249 if (OldPrefix.empty() && NewPrefix.empty()) 1250 return Path; 1251 SmallString<128> NewPath(Path); 1252 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1253 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1254 if (!ParentPath.empty()) { 1255 // Make sure the new directory exists, creating it if necessary. 1256 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1257 llvm::errs() << "warning: could not create directory '" << ParentPath 1258 << "': " << EC.message() << '\n'; 1259 } 1260 return std::string(NewPath.str()); 1261 } 1262 1263 namespace { 1264 class WriteIndexesThinBackend : public ThinBackendProc { 1265 std::string OldPrefix, NewPrefix; 1266 bool ShouldEmitImportsFiles; 1267 raw_fd_ostream *LinkedObjectsFile; 1268 lto::IndexWriteCallback OnWrite; 1269 1270 public: 1271 WriteIndexesThinBackend( 1272 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1273 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1274 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1275 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1276 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1277 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1278 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1279 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1280 1281 Error start( 1282 unsigned Task, BitcodeModule BM, 1283 const FunctionImporter::ImportMapTy &ImportList, 1284 const FunctionImporter::ExportSetTy &ExportList, 1285 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1286 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1287 StringRef ModulePath = BM.getModuleIdentifier(); 1288 std::string NewModulePath = 1289 getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix); 1290 1291 if (LinkedObjectsFile) 1292 *LinkedObjectsFile << NewModulePath << '\n'; 1293 1294 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1295 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1296 ImportList, ModuleToSummariesForIndex); 1297 1298 std::error_code EC; 1299 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1300 sys::fs::OpenFlags::OF_None); 1301 if (EC) 1302 return errorCodeToError(EC); 1303 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1304 1305 if (ShouldEmitImportsFiles) { 1306 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1307 ModuleToSummariesForIndex); 1308 if (EC) 1309 return errorCodeToError(EC); 1310 } 1311 1312 if (OnWrite) 1313 OnWrite(std::string(ModulePath)); 1314 return Error::success(); 1315 } 1316 1317 Error wait() override { return Error::success(); } 1318 1319 // WriteIndexesThinBackend should always return 1 to prevent module 1320 // re-ordering and avoid non-determinism in the final link. 1321 unsigned getThreadCount() override { return 1; } 1322 }; 1323 } // end anonymous namespace 1324 1325 ThinBackend lto::createWriteIndexesThinBackend( 1326 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1327 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1328 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1329 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1330 AddStreamFn AddStream, NativeObjectCache Cache) { 1331 return std::make_unique<WriteIndexesThinBackend>( 1332 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1333 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1334 }; 1335 } 1336 1337 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 1338 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1339 if (ThinLTO.ModuleMap.empty()) 1340 return Error::success(); 1341 1342 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1343 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1344 return Error::success(); 1345 } 1346 1347 if (Conf.CombinedIndexHook && 1348 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1349 return Error::success(); 1350 1351 // Collect for each module the list of function it defines (GUID -> 1352 // Summary). 1353 StringMap<GVSummaryMapTy> 1354 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1355 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1356 ModuleToDefinedGVSummaries); 1357 // Create entries for any modules that didn't have any GV summaries 1358 // (either they didn't have any GVs to start with, or we suppressed 1359 // generation of the summaries because they e.g. had inline assembly 1360 // uses that couldn't be promoted/renamed on export). This is so 1361 // InProcessThinBackend::start can still launch a backend thread, which 1362 // is passed the map of summaries for the module, without any special 1363 // handling for this case. 1364 for (auto &Mod : ThinLTO.ModuleMap) 1365 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1366 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1367 1368 // Synthesize entry counts for functions in the CombinedIndex. 1369 computeSyntheticCounts(ThinLTO.CombinedIndex); 1370 1371 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1372 ThinLTO.ModuleMap.size()); 1373 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1374 ThinLTO.ModuleMap.size()); 1375 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1376 1377 if (DumpThinCGSCCs) 1378 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1379 1380 std::set<GlobalValue::GUID> ExportedGUIDs; 1381 1382 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1383 // the summaries before whole program devirtualization below. 1384 updateVCallVisibilityInIndex(ThinLTO.CombinedIndex, 1385 Conf.HasWholeProgramVisibility); 1386 1387 // Perform index-based WPD. This will return immediately if there are 1388 // no index entries in the typeIdMetadata map (e.g. if we are instead 1389 // performing IR-based WPD in hybrid regular/thin LTO mode). 1390 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1391 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1392 LocalWPDTargetsMap); 1393 1394 if (Conf.OptLevel > 0) 1395 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1396 ImportLists, ExportLists); 1397 1398 // Figure out which symbols need to be internalized. This also needs to happen 1399 // at -O0 because summary-based DCE is implemented using internalization, and 1400 // we must apply DCE consistently with the full LTO module in order to avoid 1401 // undefined references during the final link. 1402 for (auto &Res : GlobalResolutions) { 1403 // If the symbol does not have external references or it is not prevailing, 1404 // then not need to mark it as exported from a ThinLTO partition. 1405 if (Res.second.Partition != GlobalResolution::External || 1406 !Res.second.isPrevailingIRSymbol()) 1407 continue; 1408 auto GUID = GlobalValue::getGUID( 1409 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1410 // Mark exported unless index-based analysis determined it to be dead. 1411 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1412 ExportedGUIDs.insert(GUID); 1413 } 1414 1415 // Any functions referenced by the jump table in the regular LTO object must 1416 // be exported. 1417 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1418 ExportedGUIDs.insert( 1419 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1420 1421 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1422 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1423 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1424 ExportedGUIDs.count(VI.getGUID()); 1425 }; 1426 1427 // Update local devirtualized targets that were exported by cross-module 1428 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1429 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1430 LocalWPDTargetsMap); 1431 1432 auto isPrevailing = [&](GlobalValue::GUID GUID, 1433 const GlobalValueSummary *S) { 1434 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1435 }; 1436 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1437 isPrevailing); 1438 1439 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1440 GlobalValue::GUID GUID, 1441 GlobalValue::LinkageTypes NewLinkage) { 1442 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1443 }; 1444 thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing, 1445 recordNewLinkage, GUIDPreservedSymbols); 1446 1447 generateParamAccessSummary(ThinLTO.CombinedIndex); 1448 1449 std::unique_ptr<ThinBackendProc> BackendProc = 1450 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1451 AddStream, Cache); 1452 1453 auto &ModuleMap = 1454 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1455 1456 auto ProcessOneModule = [&](int I) -> Error { 1457 auto &Mod = *(ModuleMap.begin() + I); 1458 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1459 // combined module and parallel code generation partitions. 1460 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1461 Mod.second, ImportLists[Mod.first], 1462 ExportLists[Mod.first], ResolvedODR[Mod.first], 1463 ThinLTO.ModuleMap); 1464 }; 1465 1466 if (BackendProc->getThreadCount() == 1) { 1467 // Process the modules in the order they were provided on the command-line. 1468 // It is important for this codepath to be used for WriteIndexesThinBackend, 1469 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1470 // order as the inputs, which otherwise would affect the final link order. 1471 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1472 if (Error E = ProcessOneModule(I)) 1473 return E; 1474 } else { 1475 // When executing in parallel, process largest bitsize modules first to 1476 // improve parallelism, and avoid starving the thread pool near the end. 1477 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1478 // of 100 sec). 1479 std::vector<BitcodeModule *> ModulesVec; 1480 ModulesVec.reserve(ModuleMap.size()); 1481 for (auto &Mod : ModuleMap) 1482 ModulesVec.push_back(&Mod.second); 1483 for (int I : generateModulesOrdering(ModulesVec)) 1484 if (Error E = ProcessOneModule(I)) 1485 return E; 1486 } 1487 return BackendProc->wait(); 1488 } 1489 1490 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1491 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1492 StringRef RemarksFormat, bool RemarksWithHotness, 1493 Optional<uint64_t> RemarksHotnessThreshold, int Count) { 1494 std::string Filename = std::string(RemarksFilename); 1495 // For ThinLTO, file.opt.<format> becomes 1496 // file.opt.<format>.thin.<num>.<format>. 1497 if (!Filename.empty() && Count != -1) 1498 Filename = 1499 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1500 .str(); 1501 1502 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1503 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1504 RemarksHotnessThreshold); 1505 if (Error E = ResultOrErr.takeError()) 1506 return std::move(E); 1507 1508 if (*ResultOrErr) 1509 (*ResultOrErr)->keep(); 1510 1511 return ResultOrErr; 1512 } 1513 1514 Expected<std::unique_ptr<ToolOutputFile>> 1515 lto::setupStatsFile(StringRef StatsFilename) { 1516 // Setup output file to emit statistics. 1517 if (StatsFilename.empty()) 1518 return nullptr; 1519 1520 llvm::EnableStatistics(false); 1521 std::error_code EC; 1522 auto StatsFile = 1523 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1524 if (EC) 1525 return errorCodeToError(EC); 1526 1527 StatsFile->keep(); 1528 return std::move(StatsFile); 1529 } 1530 1531 // Compute the ordering we will process the inputs: the rough heuristic here 1532 // is to sort them per size so that the largest module get schedule as soon as 1533 // possible. This is purely a compile-time optimization. 1534 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1535 std::vector<int> ModulesOrdering; 1536 ModulesOrdering.resize(R.size()); 1537 std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0); 1538 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1539 auto LSize = R[LeftIndex]->getBuffer().size(); 1540 auto RSize = R[RightIndex]->getBuffer().size(); 1541 return LSize > RSize; 1542 }); 1543 return ModulesOrdering; 1544 } 1545