1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/StackSafetyAnalysis.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeReader.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/DiagnosticPrinter.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMRemarkStreamer.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/LTO/LTOBackend.h" 34 #include "llvm/LTO/SummaryBasedOptimizations.h" 35 #include "llvm/Linker/IRMover.h" 36 #include "llvm/MC/TargetRegistry.h" 37 #include "llvm/Object/IRObjectFile.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/FileSystem.h" 41 #include "llvm/Support/ManagedStatic.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/SHA1.h" 45 #include "llvm/Support/SourceMgr.h" 46 #include "llvm/Support/ThreadPool.h" 47 #include "llvm/Support/Threading.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/ToolOutputFile.h" 50 #include "llvm/Support/VCSRevision.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Transforms/IPO.h" 54 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h" 55 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 56 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 57 #include "llvm/Transforms/Utils/SplitModule.h" 58 59 #include <optional> 60 #include <set> 61 62 using namespace llvm; 63 using namespace lto; 64 using namespace object; 65 66 #define DEBUG_TYPE "lto" 67 68 static cl::opt<bool> 69 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 70 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 71 72 namespace llvm { 73 /// Enable global value internalization in LTO. 74 cl::opt<bool> EnableLTOInternalization( 75 "enable-lto-internalization", cl::init(true), cl::Hidden, 76 cl::desc("Enable global value internalization in LTO")); 77 } 78 79 /// Indicate we are linking with an allocator that supports hot/cold operator 80 /// new interfaces. 81 extern cl::opt<bool> SupportsHotColdNew; 82 83 /// Enable MemProf context disambiguation for thin link. 84 extern cl::opt<bool> EnableMemProfContextDisambiguation; 85 86 // Computes a unique hash for the Module considering the current list of 87 // export/import and other global analysis results. 88 // The hash is produced in \p Key. 89 void llvm::computeLTOCacheKey( 90 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 91 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 92 const FunctionImporter::ExportSetTy &ExportList, 93 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 94 const GVSummaryMapTy &DefinedGlobals, 95 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 96 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 97 // Compute the unique hash for this entry. 98 // This is based on the current compiler version, the module itself, the 99 // export list, the hash for every single module in the import list, the 100 // list of ResolvedODR for the module, and the list of preserved symbols. 101 SHA1 Hasher; 102 103 // Start with the compiler revision 104 Hasher.update(LLVM_VERSION_STRING); 105 #ifdef LLVM_REVISION 106 Hasher.update(LLVM_REVISION); 107 #endif 108 109 // Include the parts of the LTO configuration that affect code generation. 110 auto AddString = [&](StringRef Str) { 111 Hasher.update(Str); 112 Hasher.update(ArrayRef<uint8_t>{0}); 113 }; 114 auto AddUnsigned = [&](unsigned I) { 115 uint8_t Data[4]; 116 support::endian::write32le(Data, I); 117 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 118 }; 119 auto AddUint64 = [&](uint64_t I) { 120 uint8_t Data[8]; 121 support::endian::write64le(Data, I); 122 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 123 }; 124 AddString(Conf.CPU); 125 // FIXME: Hash more of Options. For now all clients initialize Options from 126 // command-line flags (which is unsupported in production), but may set 127 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 128 // DataSections and DebuggerTuning via command line flags. 129 AddUnsigned(Conf.Options.RelaxELFRelocations); 130 AddUnsigned(Conf.Options.FunctionSections); 131 AddUnsigned(Conf.Options.DataSections); 132 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 133 for (auto &A : Conf.MAttrs) 134 AddString(A); 135 if (Conf.RelocModel) 136 AddUnsigned(*Conf.RelocModel); 137 else 138 AddUnsigned(-1); 139 if (Conf.CodeModel) 140 AddUnsigned(*Conf.CodeModel); 141 else 142 AddUnsigned(-1); 143 for (const auto &S : Conf.MllvmArgs) 144 AddString(S); 145 AddUnsigned(Conf.CGOptLevel); 146 AddUnsigned(Conf.CGFileType); 147 AddUnsigned(Conf.OptLevel); 148 AddUnsigned(Conf.Freestanding); 149 AddString(Conf.OptPipeline); 150 AddString(Conf.AAPipeline); 151 AddString(Conf.OverrideTriple); 152 AddString(Conf.DefaultTriple); 153 AddString(Conf.DwoDir); 154 155 // Include the hash for the current module 156 auto ModHash = Index.getModuleHash(ModuleID); 157 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 158 159 std::vector<uint64_t> ExportsGUID; 160 ExportsGUID.reserve(ExportList.size()); 161 for (const auto &VI : ExportList) { 162 auto GUID = VI.getGUID(); 163 ExportsGUID.push_back(GUID); 164 } 165 166 // Sort the export list elements GUIDs. 167 llvm::sort(ExportsGUID); 168 for (uint64_t GUID : ExportsGUID) { 169 // The export list can impact the internalization, be conservative here 170 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 171 } 172 173 // Include the hash for every module we import functions from. The set of 174 // imported symbols for each module may affect code generation and is 175 // sensitive to link order, so include that as well. 176 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 177 struct ImportModule { 178 ImportMapIteratorTy ModIt; 179 const ModuleSummaryIndex::ModuleInfo *ModInfo; 180 181 StringRef getIdentifier() const { return ModIt->getKey(); } 182 const FunctionImporter::FunctionsToImportTy &getFunctions() const { 183 return ModIt->second; 184 } 185 186 const ModuleHash &getHash() const { return ModInfo->second.second; } 187 }; 188 189 std::vector<ImportModule> ImportModulesVector; 190 ImportModulesVector.reserve(ImportList.size()); 191 192 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 193 ++It) { 194 ImportModulesVector.push_back({It, Index.getModule(It->getKey())}); 195 } 196 // Order using module hash, to be both independent of module name and 197 // module order. 198 llvm::sort(ImportModulesVector, 199 [](const ImportModule &Lhs, const ImportModule &Rhs) -> bool { 200 return Lhs.getHash() < Rhs.getHash(); 201 }); 202 for (const ImportModule &Entry : ImportModulesVector) { 203 auto ModHash = Entry.getHash(); 204 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 205 206 AddUint64(Entry.getFunctions().size()); 207 for (auto &Fn : Entry.getFunctions()) 208 AddUint64(Fn); 209 } 210 211 // Include the hash for the resolved ODR. 212 for (auto &Entry : ResolvedODR) { 213 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 214 sizeof(GlobalValue::GUID))); 215 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 216 sizeof(GlobalValue::LinkageTypes))); 217 } 218 219 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 220 // defined in this module. 221 std::set<GlobalValue::GUID> UsedCfiDefs; 222 std::set<GlobalValue::GUID> UsedCfiDecls; 223 224 // Typeids used in this module. 225 std::set<GlobalValue::GUID> UsedTypeIds; 226 227 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 228 if (CfiFunctionDefs.count(ValueGUID)) 229 UsedCfiDefs.insert(ValueGUID); 230 if (CfiFunctionDecls.count(ValueGUID)) 231 UsedCfiDecls.insert(ValueGUID); 232 }; 233 234 auto AddUsedThings = [&](GlobalValueSummary *GS) { 235 if (!GS) return; 236 AddUnsigned(GS->getVisibility()); 237 AddUnsigned(GS->isLive()); 238 AddUnsigned(GS->canAutoHide()); 239 for (const ValueInfo &VI : GS->refs()) { 240 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 241 AddUsedCfiGlobal(VI.getGUID()); 242 } 243 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 244 AddUnsigned(GVS->maybeReadOnly()); 245 AddUnsigned(GVS->maybeWriteOnly()); 246 } 247 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 248 for (auto &TT : FS->type_tests()) 249 UsedTypeIds.insert(TT); 250 for (auto &TT : FS->type_test_assume_vcalls()) 251 UsedTypeIds.insert(TT.GUID); 252 for (auto &TT : FS->type_checked_load_vcalls()) 253 UsedTypeIds.insert(TT.GUID); 254 for (auto &TT : FS->type_test_assume_const_vcalls()) 255 UsedTypeIds.insert(TT.VFunc.GUID); 256 for (auto &TT : FS->type_checked_load_const_vcalls()) 257 UsedTypeIds.insert(TT.VFunc.GUID); 258 for (auto &ET : FS->calls()) { 259 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 260 AddUsedCfiGlobal(ET.first.getGUID()); 261 } 262 } 263 }; 264 265 // Include the hash for the linkage type to reflect internalization and weak 266 // resolution, and collect any used type identifier resolutions. 267 for (auto &GS : DefinedGlobals) { 268 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 269 Hasher.update( 270 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 271 AddUsedCfiGlobal(GS.first); 272 AddUsedThings(GS.second); 273 } 274 275 // Imported functions may introduce new uses of type identifier resolutions, 276 // so we need to collect their used resolutions as well. 277 for (const ImportModule &ImpM : ImportModulesVector) 278 for (auto &ImpF : ImpM.getFunctions()) { 279 GlobalValueSummary *S = 280 Index.findSummaryInModule(ImpF, ImpM.getIdentifier()); 281 AddUsedThings(S); 282 // If this is an alias, we also care about any types/etc. that the aliasee 283 // may reference. 284 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 285 AddUsedThings(AS->getBaseObject()); 286 } 287 288 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 289 AddString(TId); 290 291 AddUnsigned(S.TTRes.TheKind); 292 AddUnsigned(S.TTRes.SizeM1BitWidth); 293 294 AddUint64(S.TTRes.AlignLog2); 295 AddUint64(S.TTRes.SizeM1); 296 AddUint64(S.TTRes.BitMask); 297 AddUint64(S.TTRes.InlineBits); 298 299 AddUint64(S.WPDRes.size()); 300 for (auto &WPD : S.WPDRes) { 301 AddUnsigned(WPD.first); 302 AddUnsigned(WPD.second.TheKind); 303 AddString(WPD.second.SingleImplName); 304 305 AddUint64(WPD.second.ResByArg.size()); 306 for (auto &ByArg : WPD.second.ResByArg) { 307 AddUint64(ByArg.first.size()); 308 for (uint64_t Arg : ByArg.first) 309 AddUint64(Arg); 310 AddUnsigned(ByArg.second.TheKind); 311 AddUint64(ByArg.second.Info); 312 AddUnsigned(ByArg.second.Byte); 313 AddUnsigned(ByArg.second.Bit); 314 } 315 } 316 }; 317 318 // Include the hash for all type identifiers used by this module. 319 for (GlobalValue::GUID TId : UsedTypeIds) { 320 auto TidIter = Index.typeIds().equal_range(TId); 321 for (auto It = TidIter.first; It != TidIter.second; ++It) 322 AddTypeIdSummary(It->second.first, It->second.second); 323 } 324 325 AddUnsigned(UsedCfiDefs.size()); 326 for (auto &V : UsedCfiDefs) 327 AddUint64(V); 328 329 AddUnsigned(UsedCfiDecls.size()); 330 for (auto &V : UsedCfiDecls) 331 AddUint64(V); 332 333 if (!Conf.SampleProfile.empty()) { 334 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 335 if (FileOrErr) { 336 Hasher.update(FileOrErr.get()->getBuffer()); 337 338 if (!Conf.ProfileRemapping.empty()) { 339 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 340 if (FileOrErr) 341 Hasher.update(FileOrErr.get()->getBuffer()); 342 } 343 } 344 } 345 346 Key = toHex(Hasher.result()); 347 } 348 349 static void thinLTOResolvePrevailingGUID( 350 const Config &C, ValueInfo VI, 351 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 352 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 353 isPrevailing, 354 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 355 recordNewLinkage, 356 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 357 GlobalValue::VisibilityTypes Visibility = 358 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 359 : GlobalValue::DefaultVisibility; 360 for (auto &S : VI.getSummaryList()) { 361 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 362 // Ignore local and appending linkage values since the linker 363 // doesn't resolve them. 364 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 365 GlobalValue::isAppendingLinkage(S->linkage())) 366 continue; 367 // We need to emit only one of these. The prevailing module will keep it, 368 // but turned into a weak, while the others will drop it when possible. 369 // This is both a compile-time optimization and a correctness 370 // transformation. This is necessary for correctness when we have exported 371 // a reference - we need to convert the linkonce to weak to 372 // ensure a copy is kept to satisfy the exported reference. 373 // FIXME: We may want to split the compile time and correctness 374 // aspects into separate routines. 375 if (isPrevailing(VI.getGUID(), S.get())) { 376 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 377 S->setLinkage(GlobalValue::getWeakLinkage( 378 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 379 // The kept copy is eligible for auto-hiding (hidden visibility) if all 380 // copies were (i.e. they were all linkonce_odr global unnamed addr). 381 // If any copy is not (e.g. it was originally weak_odr), then the symbol 382 // must remain externally available (e.g. a weak_odr from an explicitly 383 // instantiated template). Additionally, if it is in the 384 // GUIDPreservedSymbols set, that means that it is visibile outside 385 // the summary (e.g. in a native object or a bitcode file without 386 // summary), and in that case we cannot hide it as it isn't possible to 387 // check all copies. 388 S->setCanAutoHide(VI.canAutoHide() && 389 !GUIDPreservedSymbols.count(VI.getGUID())); 390 } 391 if (C.VisibilityScheme == Config::FromPrevailing) 392 Visibility = S->getVisibility(); 393 } 394 // Alias and aliasee can't be turned into available_externally. 395 else if (!isa<AliasSummary>(S.get()) && 396 !GlobalInvolvedWithAlias.count(S.get())) 397 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 398 399 // For ELF, set visibility to the computed visibility from summaries. We 400 // don't track visibility from declarations so this may be more relaxed than 401 // the most constraining one. 402 if (C.VisibilityScheme == Config::ELF) 403 S->setVisibility(Visibility); 404 405 if (S->linkage() != OriginalLinkage) 406 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 407 } 408 409 if (C.VisibilityScheme == Config::FromPrevailing) { 410 for (auto &S : VI.getSummaryList()) { 411 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 412 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 413 GlobalValue::isAppendingLinkage(S->linkage())) 414 continue; 415 S->setVisibility(Visibility); 416 } 417 } 418 } 419 420 /// Resolve linkage for prevailing symbols in the \p Index. 421 // 422 // We'd like to drop these functions if they are no longer referenced in the 423 // current module. However there is a chance that another module is still 424 // referencing them because of the import. We make sure we always emit at least 425 // one copy. 426 void llvm::thinLTOResolvePrevailingInIndex( 427 const Config &C, ModuleSummaryIndex &Index, 428 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 429 isPrevailing, 430 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 431 recordNewLinkage, 432 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 433 // We won't optimize the globals that are referenced by an alias for now 434 // Ideally we should turn the alias into a global and duplicate the definition 435 // when needed. 436 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 437 for (auto &I : Index) 438 for (auto &S : I.second.SummaryList) 439 if (auto AS = dyn_cast<AliasSummary>(S.get())) 440 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 441 442 for (auto &I : Index) 443 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 444 GlobalInvolvedWithAlias, isPrevailing, 445 recordNewLinkage, GUIDPreservedSymbols); 446 } 447 448 static void thinLTOInternalizeAndPromoteGUID( 449 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 450 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 451 isPrevailing) { 452 auto ExternallyVisibleCopies = 453 llvm::count_if(VI.getSummaryList(), 454 [](const std::unique_ptr<GlobalValueSummary> &Summary) { 455 return !GlobalValue::isLocalLinkage(Summary->linkage()); 456 }); 457 458 for (auto &S : VI.getSummaryList()) { 459 // First see if we need to promote an internal value because it is not 460 // exported. 461 if (isExported(S->modulePath(), VI)) { 462 if (GlobalValue::isLocalLinkage(S->linkage())) 463 S->setLinkage(GlobalValue::ExternalLinkage); 464 continue; 465 } 466 467 // Otherwise, see if we can internalize. 468 if (!EnableLTOInternalization) 469 continue; 470 471 // Ignore local and appending linkage values since the linker 472 // doesn't resolve them (and there is no need to internalize if this is 473 // already internal). 474 if (GlobalValue::isLocalLinkage(S->linkage()) || 475 S->linkage() == GlobalValue::AppendingLinkage) 476 continue; 477 478 // We can't internalize available_externally globals because this 479 // can break function pointer equality. 480 if (S->linkage() == GlobalValue::AvailableExternallyLinkage) 481 continue; 482 483 bool IsPrevailing = isPrevailing(VI.getGUID(), S.get()); 484 485 if (GlobalValue::isInterposableLinkage(S->linkage()) && !IsPrevailing) 486 continue; 487 488 // Non-exported functions and variables with linkonce_odr or weak_odr 489 // linkage can be internalized in certain cases. The minimum legality 490 // requirements would be that they are not address taken to ensure that we 491 // don't break pointer equality checks, and that variables are either read- 492 // or write-only. For functions, this is the case if either all copies are 493 // [local_]unnamed_addr, or we can propagate reference edge attributes 494 // (which is how this is guaranteed for variables, when analyzing whether 495 // they are read or write-only). 496 // 497 // However, we only get to this code for weak/linkonce ODR values in one of 498 // two cases: 499 // 1) The prevailing copy is not in IR (it is in native code). 500 // 2) The prevailing copy in IR is not exported from its module. 501 // Additionally, at least for the new LTO API, case 2 will only happen if 502 // there is exactly one definition of the value (i.e. in exactly one 503 // module), as duplicate defs are result in the value being marked exported. 504 // Likely, users of the legacy LTO API are similar, however, currently there 505 // are llvm-lto based tests of the legacy LTO API that do not mark 506 // duplicate linkonce_odr copies as exported via the tool, so we need 507 // to handle that case below by checking the number of copies. 508 // 509 // Generally, we only want to internalize a linkonce/weak ODR value in case 510 // 2, because in case 1 we cannot see how the value is used to know if it 511 // is read or write-only. We also don't want to bloat the binary with 512 // multiple internalized copies of non-prevailing linkonce_odr functions. 513 // Note if we don't internalize, we will convert non-prevailing copies to 514 // available_externally anyway, so that we drop them after inlining. The 515 // only reason to internalize such a function is if we indeed have a single 516 // copy, because internalizing it won't increase binary size, and enables 517 // use of inliner heuristics that are more aggressive in the face of a 518 // single call to a static (local). For variables, internalizing a read or 519 // write only variable can enable more aggressive optimization. However, we 520 // already perform this elsewhere in the ThinLTO backend handling for 521 // read or write-only variables (processGlobalForThinLTO). 522 // 523 // Therefore, only internalize linkonce/weak ODR if there is a single copy, 524 // that is prevailing in this IR module. We can do so aggressively, without 525 // requiring the address to be insignificant, or that a variable be read or 526 // write-only. 527 if ((S->linkage() == GlobalValue::WeakODRLinkage || 528 S->linkage() == GlobalValue::LinkOnceODRLinkage) && 529 // We can have only one copy in ThinLTO that isn't prevailing, if the 530 // prevailing copy is in a native object. 531 (!IsPrevailing || ExternallyVisibleCopies > 1)) 532 continue; 533 534 S->setLinkage(GlobalValue::InternalLinkage); 535 } 536 } 537 538 // Update the linkages in the given \p Index to mark exported values 539 // as external and non-exported values as internal. 540 void llvm::thinLTOInternalizeAndPromoteInIndex( 541 ModuleSummaryIndex &Index, 542 function_ref<bool(StringRef, ValueInfo)> isExported, 543 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 544 isPrevailing) { 545 for (auto &I : Index) 546 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 547 isPrevailing); 548 } 549 550 // Requires a destructor for std::vector<InputModule>. 551 InputFile::~InputFile() = default; 552 553 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 554 std::unique_ptr<InputFile> File(new InputFile); 555 556 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 557 if (!FOrErr) 558 return FOrErr.takeError(); 559 560 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 561 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 562 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 563 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 564 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 565 566 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 567 size_t Begin = File->Symbols.size(); 568 for (const irsymtab::Reader::SymbolRef &Sym : 569 FOrErr->TheReader.module_symbols(I)) 570 // Skip symbols that are irrelevant to LTO. Note that this condition needs 571 // to match the one in Skip() in LTO::addRegularLTO(). 572 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 573 File->Symbols.push_back(Sym); 574 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 575 } 576 577 File->Mods = FOrErr->Mods; 578 File->Strtab = std::move(FOrErr->Strtab); 579 return std::move(File); 580 } 581 582 StringRef InputFile::getName() const { 583 return Mods[0].getModuleIdentifier(); 584 } 585 586 BitcodeModule &InputFile::getSingleBitcodeModule() { 587 assert(Mods.size() == 1 && "Expect only one bitcode module"); 588 return Mods[0]; 589 } 590 591 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 592 const Config &Conf) 593 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 594 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 595 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 596 597 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 598 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 599 if (!Backend) 600 this->Backend = 601 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 602 } 603 604 LTO::LTO(Config Conf, ThinBackend Backend, 605 unsigned ParallelCodeGenParallelismLevel, LTOKind LTOMode) 606 : Conf(std::move(Conf)), 607 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 608 ThinLTO(std::move(Backend)), LTOMode(LTOMode) {} 609 610 // Requires a destructor for MapVector<BitcodeModule>. 611 LTO::~LTO() = default; 612 613 // Add the symbols in the given module to the GlobalResolutions map, and resolve 614 // their partitions. 615 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 616 ArrayRef<SymbolResolution> Res, 617 unsigned Partition, bool InSummary) { 618 auto *ResI = Res.begin(); 619 auto *ResE = Res.end(); 620 (void)ResE; 621 const Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 622 for (const InputFile::Symbol &Sym : Syms) { 623 assert(ResI != ResE); 624 SymbolResolution Res = *ResI++; 625 626 StringRef Name = Sym.getName(); 627 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 628 // way they are handled by lld), otherwise we can end up with two 629 // global resolutions (one with and one for a copy of the symbol without). 630 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 631 Name = Name.substr(strlen("__imp_")); 632 auto &GlobalRes = GlobalResolutions[Name]; 633 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 634 if (Res.Prevailing) { 635 assert(!GlobalRes.Prevailing && 636 "Multiple prevailing defs are not allowed"); 637 GlobalRes.Prevailing = true; 638 GlobalRes.IRName = std::string(Sym.getIRName()); 639 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 640 // Sometimes it can be two copies of symbol in a module and prevailing 641 // symbol can have no IR name. That might happen if symbol is defined in 642 // module level inline asm block. In case we have multiple modules with 643 // the same symbol we want to use IR name of the prevailing symbol. 644 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 645 // we can later use it to check if there is any prevailing copy in IR. 646 GlobalRes.IRName = std::string(Sym.getIRName()); 647 } 648 649 // In rare occasion, the symbol used to initialize GlobalRes has a different 650 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a 651 // symbol is referenced through its mangled name, say @"\01_symbol" while 652 // the IRName is @symbol (the prefix underscore comes from MachO mangling). 653 // In that case, we have the same actual Symbol that can get two different 654 // GUID, leading to some invalid internalization. Workaround this by marking 655 // the GlobalRes external. 656 657 // FIXME: instead of this check, it would be desirable to compute GUIDs 658 // based on mangled name, but this requires an access to the Target Triple 659 // and would be relatively invasive on the codebase. 660 if (GlobalRes.IRName != Sym.getIRName()) { 661 GlobalRes.Partition = GlobalResolution::External; 662 GlobalRes.VisibleOutsideSummary = true; 663 } 664 665 // Set the partition to external if we know it is re-defined by the linker 666 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 667 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 668 // already recorded as being referenced from a different partition. 669 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 670 (GlobalRes.Partition != GlobalResolution::Unknown && 671 GlobalRes.Partition != Partition)) { 672 GlobalRes.Partition = GlobalResolution::External; 673 } else 674 // First recorded reference, save the current partition. 675 GlobalRes.Partition = Partition; 676 677 // Flag as visible outside of summary if visible from a regular object or 678 // from a module that does not have a summary. 679 GlobalRes.VisibleOutsideSummary |= 680 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 681 682 GlobalRes.ExportDynamic |= Res.ExportDynamic; 683 } 684 } 685 686 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 687 ArrayRef<SymbolResolution> Res) { 688 StringRef Path = Input->getName(); 689 OS << Path << '\n'; 690 auto ResI = Res.begin(); 691 for (const InputFile::Symbol &Sym : Input->symbols()) { 692 assert(ResI != Res.end()); 693 SymbolResolution Res = *ResI++; 694 695 OS << "-r=" << Path << ',' << Sym.getName() << ','; 696 if (Res.Prevailing) 697 OS << 'p'; 698 if (Res.FinalDefinitionInLinkageUnit) 699 OS << 'l'; 700 if (Res.VisibleToRegularObj) 701 OS << 'x'; 702 if (Res.LinkerRedefined) 703 OS << 'r'; 704 OS << '\n'; 705 } 706 OS.flush(); 707 assert(ResI == Res.end()); 708 } 709 710 Error LTO::add(std::unique_ptr<InputFile> Input, 711 ArrayRef<SymbolResolution> Res) { 712 assert(!CalledGetMaxTasks); 713 714 if (Conf.ResolutionFile) 715 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 716 717 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 718 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 719 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 720 Conf.VisibilityScheme = Config::ELF; 721 } 722 723 const SymbolResolution *ResI = Res.begin(); 724 for (unsigned I = 0; I != Input->Mods.size(); ++I) 725 if (Error Err = addModule(*Input, I, ResI, Res.end())) 726 return Err; 727 728 assert(ResI == Res.end()); 729 return Error::success(); 730 } 731 732 Error LTO::addModule(InputFile &Input, unsigned ModI, 733 const SymbolResolution *&ResI, 734 const SymbolResolution *ResE) { 735 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 736 if (!LTOInfo) 737 return LTOInfo.takeError(); 738 739 if (EnableSplitLTOUnit) { 740 // If only some modules were split, flag this in the index so that 741 // we can skip or error on optimizations that need consistently split 742 // modules (whole program devirt and lower type tests). 743 if (*EnableSplitLTOUnit != LTOInfo->EnableSplitLTOUnit) 744 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 745 } else 746 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 747 748 BitcodeModule BM = Input.Mods[ModI]; 749 750 if ((LTOMode == LTOK_UnifiedRegular || LTOMode == LTOK_UnifiedThin) && 751 !LTOInfo->UnifiedLTO) 752 return make_error<StringError>( 753 "unified LTO compilation must use " 754 "compatible bitcode modules (use -funified-lto)", 755 inconvertibleErrorCode()); 756 757 if (LTOInfo->UnifiedLTO && LTOMode == LTOK_Default) 758 LTOMode = LTOK_UnifiedThin; 759 760 bool IsThinLTO = LTOInfo->IsThinLTO && (LTOMode != LTOK_UnifiedRegular); 761 762 auto ModSyms = Input.module_symbols(ModI); 763 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 764 IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 765 LTOInfo->HasSummary); 766 767 if (IsThinLTO) 768 return addThinLTO(BM, ModSyms, ResI, ResE); 769 770 RegularLTO.EmptyCombinedModule = false; 771 Expected<RegularLTOState::AddedModule> ModOrErr = 772 addRegularLTO(BM, ModSyms, ResI, ResE); 773 if (!ModOrErr) 774 return ModOrErr.takeError(); 775 776 if (!LTOInfo->HasSummary) 777 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 778 779 // Regular LTO module summaries are added to a dummy module that represents 780 // the combined regular LTO module. 781 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 782 return Err; 783 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 784 return Error::success(); 785 } 786 787 // Checks whether the given global value is in a non-prevailing comdat 788 // (comdat containing values the linker indicated were not prevailing, 789 // which we then dropped to available_externally), and if so, removes 790 // it from the comdat. This is called for all global values to ensure the 791 // comdat is empty rather than leaving an incomplete comdat. It is needed for 792 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 793 // and thin LTO modules) compilation. Since the regular LTO module will be 794 // linked first in the final native link, we want to make sure the linker 795 // doesn't select any of these incomplete comdats that would be left 796 // in the regular LTO module without this cleanup. 797 static void 798 handleNonPrevailingComdat(GlobalValue &GV, 799 std::set<const Comdat *> &NonPrevailingComdats) { 800 Comdat *C = GV.getComdat(); 801 if (!C) 802 return; 803 804 if (!NonPrevailingComdats.count(C)) 805 return; 806 807 // Additionally need to drop all global values from the comdat to 808 // available_externally, to satisfy the COMDAT requirement that all members 809 // are discarded as a unit. The non-local linkage global values avoid 810 // duplicate definition linker errors. 811 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 812 813 if (auto GO = dyn_cast<GlobalObject>(&GV)) 814 GO->setComdat(nullptr); 815 } 816 817 // Add a regular LTO object to the link. 818 // The resulting module needs to be linked into the combined LTO module with 819 // linkRegularLTO. 820 Expected<LTO::RegularLTOState::AddedModule> 821 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 822 const SymbolResolution *&ResI, 823 const SymbolResolution *ResE) { 824 RegularLTOState::AddedModule Mod; 825 Expected<std::unique_ptr<Module>> MOrErr = 826 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 827 /*IsImporting*/ false); 828 if (!MOrErr) 829 return MOrErr.takeError(); 830 Module &M = **MOrErr; 831 Mod.M = std::move(*MOrErr); 832 833 if (Error Err = M.materializeMetadata()) 834 return std::move(Err); 835 836 // If cfi.functions is present and we are in regular LTO mode, LowerTypeTests 837 // will rename local functions in the merged module as "<function name>.1". 838 // This causes linking errors, since other parts of the module expect the 839 // original function name. 840 if (LTOMode == LTOK_UnifiedRegular) 841 if (NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions")) 842 M.eraseNamedMetadata(CfiFunctionsMD); 843 844 UpgradeDebugInfo(M); 845 846 ModuleSymbolTable SymTab; 847 SymTab.addModule(&M); 848 849 for (GlobalVariable &GV : M.globals()) 850 if (GV.hasAppendingLinkage()) 851 Mod.Keep.push_back(&GV); 852 853 DenseSet<GlobalObject *> AliasedGlobals; 854 for (auto &GA : M.aliases()) 855 if (GlobalObject *GO = GA.getAliaseeObject()) 856 AliasedGlobals.insert(GO); 857 858 // In this function we need IR GlobalValues matching the symbols in Syms 859 // (which is not backed by a module), so we need to enumerate them in the same 860 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 861 // matches the order of an irsymtab, but when we read the irsymtab in 862 // InputFile::create we omit some symbols that are irrelevant to LTO. The 863 // Skip() function skips the same symbols from the module as InputFile does 864 // from the symbol table. 865 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 866 auto Skip = [&]() { 867 while (MsymI != MsymE) { 868 auto Flags = SymTab.getSymbolFlags(*MsymI); 869 if ((Flags & object::BasicSymbolRef::SF_Global) && 870 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 871 return; 872 ++MsymI; 873 } 874 }; 875 Skip(); 876 877 std::set<const Comdat *> NonPrevailingComdats; 878 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 879 for (const InputFile::Symbol &Sym : Syms) { 880 assert(ResI != ResE); 881 SymbolResolution Res = *ResI++; 882 883 assert(MsymI != MsymE); 884 ModuleSymbolTable::Symbol Msym = *MsymI++; 885 Skip(); 886 887 if (GlobalValue *GV = dyn_cast_if_present<GlobalValue *>(Msym)) { 888 if (Res.Prevailing) { 889 if (Sym.isUndefined()) 890 continue; 891 Mod.Keep.push_back(GV); 892 // For symbols re-defined with linker -wrap and -defsym options, 893 // set the linkage to weak to inhibit IPO. The linkage will be 894 // restored by the linker. 895 if (Res.LinkerRedefined) 896 GV->setLinkage(GlobalValue::WeakAnyLinkage); 897 898 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 899 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 900 GV->setLinkage(GlobalValue::getWeakLinkage( 901 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 902 } else if (isa<GlobalObject>(GV) && 903 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 904 GV->hasAvailableExternallyLinkage()) && 905 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 906 // Any of the above three types of linkage indicates that the 907 // chosen prevailing symbol will have the same semantics as this copy of 908 // the symbol, so we may be able to link it with available_externally 909 // linkage. We will decide later whether to do that when we link this 910 // module (in linkRegularLTO), based on whether it is undefined. 911 Mod.Keep.push_back(GV); 912 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 913 if (GV->hasComdat()) 914 NonPrevailingComdats.insert(GV->getComdat()); 915 cast<GlobalObject>(GV)->setComdat(nullptr); 916 } 917 918 // Set the 'local' flag based on the linker resolution for this symbol. 919 if (Res.FinalDefinitionInLinkageUnit) { 920 GV->setDSOLocal(true); 921 if (GV->hasDLLImportStorageClass()) 922 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 923 DefaultStorageClass); 924 } 925 } else if (auto *AS = 926 dyn_cast_if_present<ModuleSymbolTable::AsmSymbol *>(Msym)) { 927 // Collect non-prevailing symbols. 928 if (!Res.Prevailing) 929 NonPrevailingAsmSymbols.insert(AS->first); 930 } else { 931 llvm_unreachable("unknown symbol type"); 932 } 933 934 // Common resolution: collect the maximum size/alignment over all commons. 935 // We also record if we see an instance of a common as prevailing, so that 936 // if none is prevailing we can ignore it later. 937 if (Sym.isCommon()) { 938 // FIXME: We should figure out what to do about commons defined by asm. 939 // For now they aren't reported correctly by ModuleSymbolTable. 940 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 941 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 942 if (uint32_t SymAlignValue = Sym.getCommonAlignment()) { 943 CommonRes.Alignment = 944 std::max(Align(SymAlignValue), CommonRes.Alignment); 945 } 946 CommonRes.Prevailing |= Res.Prevailing; 947 } 948 } 949 950 if (!M.getComdatSymbolTable().empty()) 951 for (GlobalValue &GV : M.global_values()) 952 handleNonPrevailingComdat(GV, NonPrevailingComdats); 953 954 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 955 // block. 956 if (!M.getModuleInlineAsm().empty()) { 957 std::string NewIA = ".lto_discard"; 958 if (!NonPrevailingAsmSymbols.empty()) { 959 // Don't dicard a symbol if there is a live .symver for it. 960 ModuleSymbolTable::CollectAsmSymvers( 961 M, [&](StringRef Name, StringRef Alias) { 962 if (!NonPrevailingAsmSymbols.count(Alias)) 963 NonPrevailingAsmSymbols.erase(Name); 964 }); 965 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 966 } 967 NewIA += "\n"; 968 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 969 } 970 971 assert(MsymI == MsymE); 972 return std::move(Mod); 973 } 974 975 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 976 bool LivenessFromIndex) { 977 std::vector<GlobalValue *> Keep; 978 for (GlobalValue *GV : Mod.Keep) { 979 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 980 if (Function *F = dyn_cast<Function>(GV)) { 981 if (DiagnosticOutputFile) { 982 if (Error Err = F->materialize()) 983 return Err; 984 OptimizationRemarkEmitter ORE(F, nullptr); 985 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 986 << ore::NV("Function", F) 987 << " not added to the combined module "); 988 } 989 } 990 continue; 991 } 992 993 if (!GV->hasAvailableExternallyLinkage()) { 994 Keep.push_back(GV); 995 continue; 996 } 997 998 // Only link available_externally definitions if we don't already have a 999 // definition. 1000 GlobalValue *CombinedGV = 1001 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 1002 if (CombinedGV && !CombinedGV->isDeclaration()) 1003 continue; 1004 1005 Keep.push_back(GV); 1006 } 1007 1008 return RegularLTO.Mover->move(std::move(Mod.M), Keep, nullptr, 1009 /* IsPerformingImport */ false); 1010 } 1011 1012 // Add a ThinLTO module to the link. 1013 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 1014 const SymbolResolution *&ResI, 1015 const SymbolResolution *ResE) { 1016 const SymbolResolution *ResITmp = ResI; 1017 for (const InputFile::Symbol &Sym : Syms) { 1018 assert(ResITmp != ResE); 1019 SymbolResolution Res = *ResITmp++; 1020 1021 if (!Sym.getIRName().empty()) { 1022 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 1023 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 1024 if (Res.Prevailing) 1025 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 1026 } 1027 } 1028 1029 uint64_t ModuleId = ThinLTO.ModuleMap.size(); 1030 if (Error Err = 1031 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 1032 ModuleId, [&](GlobalValue::GUID GUID) { 1033 return ThinLTO.PrevailingModuleForGUID[GUID] == 1034 BM.getModuleIdentifier(); 1035 })) 1036 return Err; 1037 LLVM_DEBUG(dbgs() << "Module " << ModuleId << ": " << BM.getModuleIdentifier() 1038 << "\n"); 1039 1040 for (const InputFile::Symbol &Sym : Syms) { 1041 assert(ResI != ResE); 1042 SymbolResolution Res = *ResI++; 1043 1044 if (!Sym.getIRName().empty()) { 1045 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 1046 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 1047 if (Res.Prevailing) { 1048 assert(ThinLTO.PrevailingModuleForGUID[GUID] == 1049 BM.getModuleIdentifier()); 1050 1051 // For linker redefined symbols (via --wrap or --defsym) we want to 1052 // switch the linkage to `weak` to prevent IPOs from happening. 1053 // Find the summary in the module for this very GV and record the new 1054 // linkage so that we can switch it when we import the GV. 1055 if (Res.LinkerRedefined) 1056 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 1057 GUID, BM.getModuleIdentifier())) 1058 S->setLinkage(GlobalValue::WeakAnyLinkage); 1059 } 1060 1061 // If the linker resolved the symbol to a local definition then mark it 1062 // as local in the summary for the module we are adding. 1063 if (Res.FinalDefinitionInLinkageUnit) { 1064 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 1065 GUID, BM.getModuleIdentifier())) { 1066 S->setDSOLocal(true); 1067 } 1068 } 1069 } 1070 } 1071 1072 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 1073 return make_error<StringError>( 1074 "Expected at most one ThinLTO module per bitcode file", 1075 inconvertibleErrorCode()); 1076 1077 if (!Conf.ThinLTOModulesToCompile.empty()) { 1078 if (!ThinLTO.ModulesToCompile) 1079 ThinLTO.ModulesToCompile = ModuleMapType(); 1080 // This is a fuzzy name matching where only modules with name containing the 1081 // specified switch values are going to be compiled. 1082 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 1083 if (BM.getModuleIdentifier().contains(Name)) { 1084 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 1085 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 1086 << " to compile\n"; 1087 } 1088 } 1089 } 1090 1091 return Error::success(); 1092 } 1093 1094 unsigned LTO::getMaxTasks() const { 1095 CalledGetMaxTasks = true; 1096 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 1097 : ThinLTO.ModuleMap.size(); 1098 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 1099 } 1100 1101 // If only some of the modules were split, we cannot correctly handle 1102 // code that contains type tests or type checked loads. 1103 Error LTO::checkPartiallySplit() { 1104 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 1105 return Error::success(); 1106 1107 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 1108 Intrinsic::getName(Intrinsic::type_test)); 1109 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 1110 Intrinsic::getName(Intrinsic::type_checked_load)); 1111 Function *TypeCheckedLoadRelativeFunc = 1112 RegularLTO.CombinedModule->getFunction( 1113 Intrinsic::getName(Intrinsic::type_checked_load_relative)); 1114 1115 // First check if there are type tests / type checked loads in the 1116 // merged regular LTO module IR. 1117 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 1118 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()) || 1119 (TypeCheckedLoadRelativeFunc && 1120 !TypeCheckedLoadRelativeFunc->use_empty())) 1121 return make_error<StringError>( 1122 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1123 inconvertibleErrorCode()); 1124 1125 // Otherwise check if there are any recorded in the combined summary from the 1126 // ThinLTO modules. 1127 for (auto &P : ThinLTO.CombinedIndex) { 1128 for (auto &S : P.second.SummaryList) { 1129 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1130 if (!FS) 1131 continue; 1132 if (!FS->type_test_assume_vcalls().empty() || 1133 !FS->type_checked_load_vcalls().empty() || 1134 !FS->type_test_assume_const_vcalls().empty() || 1135 !FS->type_checked_load_const_vcalls().empty() || 1136 !FS->type_tests().empty()) 1137 return make_error<StringError>( 1138 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1139 inconvertibleErrorCode()); 1140 } 1141 } 1142 return Error::success(); 1143 } 1144 1145 Error LTO::run(AddStreamFn AddStream, FileCache Cache) { 1146 // Compute "dead" symbols, we don't want to import/export these! 1147 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 1148 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 1149 for (auto &Res : GlobalResolutions) { 1150 // Normally resolution have IR name of symbol. We can do nothing here 1151 // otherwise. See comments in GlobalResolution struct for more details. 1152 if (Res.second.IRName.empty()) 1153 continue; 1154 1155 GlobalValue::GUID GUID = GlobalValue::getGUID( 1156 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1157 1158 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1159 GUIDPreservedSymbols.insert(GUID); 1160 1161 if (Res.second.ExportDynamic) 1162 DynamicExportSymbols.insert(GUID); 1163 1164 GUIDPrevailingResolutions[GUID] = 1165 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1166 } 1167 1168 auto isPrevailing = [&](GlobalValue::GUID G) { 1169 auto It = GUIDPrevailingResolutions.find(G); 1170 if (It == GUIDPrevailingResolutions.end()) 1171 return PrevailingType::Unknown; 1172 return It->second; 1173 }; 1174 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1175 isPrevailing, Conf.OptLevel > 0); 1176 1177 // Setup output file to emit statistics. 1178 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1179 if (!StatsFileOrErr) 1180 return StatsFileOrErr.takeError(); 1181 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1182 1183 // TODO: Ideally this would be controlled automatically by detecting that we 1184 // are linking with an allocator that supports these interfaces, rather than 1185 // an internal option (which would still be needed for tests, however). For 1186 // example, if the library exported a symbol like __malloc_hot_cold the linker 1187 // could recognize that and set a flag in the lto::Config. 1188 if (SupportsHotColdNew) 1189 ThinLTO.CombinedIndex.setWithSupportsHotColdNew(); 1190 1191 Error Result = runRegularLTO(AddStream); 1192 if (!Result) 1193 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1194 1195 if (StatsFile) 1196 PrintStatisticsJSON(StatsFile->os()); 1197 1198 return Result; 1199 } 1200 1201 void lto::updateMemProfAttributes(Module &Mod, 1202 const ModuleSummaryIndex &Index) { 1203 if (Index.withSupportsHotColdNew()) 1204 return; 1205 1206 // The profile matcher applies hotness attributes directly for allocations, 1207 // and those will cause us to generate calls to the hot/cold interfaces 1208 // unconditionally. If supports-hot-cold-new was not enabled in the LTO 1209 // link then assume we don't want these calls (e.g. not linking with 1210 // the appropriate library, or otherwise trying to disable this behavior). 1211 for (auto &F : Mod) { 1212 for (auto &BB : F) { 1213 for (auto &I : BB) { 1214 auto *CI = dyn_cast<CallBase>(&I); 1215 if (!CI) 1216 continue; 1217 if (CI->hasFnAttr("memprof")) 1218 CI->removeFnAttr("memprof"); 1219 // Strip off all memprof metadata as it is no longer needed. 1220 // Importantly, this avoids the addition of new memprof attributes 1221 // after inlining propagation. 1222 // TODO: If we support additional types of MemProf metadata beyond hot 1223 // and cold, we will need to update the metadata based on the allocator 1224 // APIs supported instead of completely stripping all. 1225 CI->setMetadata(LLVMContext::MD_memprof, nullptr); 1226 CI->setMetadata(LLVMContext::MD_callsite, nullptr); 1227 } 1228 } 1229 } 1230 } 1231 1232 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1233 // Setup optimization remarks. 1234 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1235 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1236 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1237 Conf.RemarksHotnessThreshold); 1238 LLVM_DEBUG(dbgs() << "Running regular LTO\n"); 1239 if (!DiagFileOrErr) 1240 return DiagFileOrErr.takeError(); 1241 DiagnosticOutputFile = std::move(*DiagFileOrErr); 1242 1243 // Finalize linking of regular LTO modules containing summaries now that 1244 // we have computed liveness information. 1245 for (auto &M : RegularLTO.ModsWithSummaries) 1246 if (Error Err = linkRegularLTO(std::move(M), 1247 /*LivenessFromIndex=*/true)) 1248 return Err; 1249 1250 // Ensure we don't have inconsistently split LTO units with type tests. 1251 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1252 // this path both cases but eventually this should be split into two and 1253 // do the ThinLTO checks in `runThinLTO`. 1254 if (Error Err = checkPartiallySplit()) 1255 return Err; 1256 1257 // Make sure commons have the right size/alignment: we kept the largest from 1258 // all the prevailing when adding the inputs, and we apply it here. 1259 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1260 for (auto &I : RegularLTO.Commons) { 1261 if (!I.second.Prevailing) 1262 // Don't do anything if no instance of this common was prevailing. 1263 continue; 1264 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1265 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1266 // Don't create a new global if the type is already correct, just make 1267 // sure the alignment is correct. 1268 OldGV->setAlignment(I.second.Alignment); 1269 continue; 1270 } 1271 ArrayType *Ty = 1272 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1273 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1274 GlobalValue::CommonLinkage, 1275 ConstantAggregateZero::get(Ty), ""); 1276 GV->setAlignment(I.second.Alignment); 1277 if (OldGV) { 1278 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 1279 GV->takeName(OldGV); 1280 OldGV->eraseFromParent(); 1281 } else { 1282 GV->setName(I.first); 1283 } 1284 } 1285 1286 updateMemProfAttributes(*RegularLTO.CombinedModule, ThinLTO.CombinedIndex); 1287 1288 // If allowed, upgrade public vcall visibility metadata to linkage unit 1289 // visibility before whole program devirtualization in the optimizer. 1290 updateVCallVisibilityInModule(*RegularLTO.CombinedModule, 1291 Conf.HasWholeProgramVisibility, 1292 DynamicExportSymbols); 1293 updatePublicTypeTestCalls(*RegularLTO.CombinedModule, 1294 Conf.HasWholeProgramVisibility); 1295 1296 if (Conf.PreOptModuleHook && 1297 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1298 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1299 1300 if (!Conf.CodeGenOnly) { 1301 for (const auto &R : GlobalResolutions) { 1302 GlobalValue *GV = 1303 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1304 if (!R.second.isPrevailingIRSymbol()) 1305 continue; 1306 if (R.second.Partition != 0 && 1307 R.second.Partition != GlobalResolution::External) 1308 continue; 1309 1310 // Ignore symbols defined in other partitions. 1311 // Also skip declarations, which are not allowed to have internal linkage. 1312 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1313 continue; 1314 1315 // Symbols that are marked DLLImport or DLLExport should not be 1316 // internalized, as they are either externally visible or referencing 1317 // external symbols. Symbols that have AvailableExternally or Appending 1318 // linkage might be used by future passes and should be kept as is. 1319 // These linkages are seen in Unified regular LTO, because the process 1320 // of creating split LTO units introduces symbols with that linkage into 1321 // one of the created modules. Normally, only the ThinLTO backend would 1322 // compile this module, but Unified Regular LTO processes both 1323 // modules created by the splitting process as regular LTO modules. 1324 if ((LTOMode == LTOKind::LTOK_UnifiedRegular) && 1325 ((GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) || 1326 GV->hasAvailableExternallyLinkage() || GV->hasAppendingLinkage())) 1327 continue; 1328 1329 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1330 : GlobalValue::UnnamedAddr::None); 1331 if (EnableLTOInternalization && R.second.Partition == 0) 1332 GV->setLinkage(GlobalValue::InternalLinkage); 1333 } 1334 1335 if (Conf.PostInternalizeModuleHook && 1336 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1337 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1338 } 1339 1340 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1341 if (Error Err = 1342 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1343 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1344 return Err; 1345 } 1346 1347 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1348 } 1349 1350 static const char *libcallRoutineNames[] = { 1351 #define HANDLE_LIBCALL(code, name) name, 1352 #include "llvm/IR/RuntimeLibcalls.def" 1353 #undef HANDLE_LIBCALL 1354 }; 1355 1356 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1357 return ArrayRef(libcallRoutineNames); 1358 } 1359 1360 /// This class defines the interface to the ThinLTO backend. 1361 class lto::ThinBackendProc { 1362 protected: 1363 const Config &Conf; 1364 ModuleSummaryIndex &CombinedIndex; 1365 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1366 lto::IndexWriteCallback OnWrite; 1367 bool ShouldEmitImportsFiles; 1368 1369 public: 1370 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1371 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1372 lto::IndexWriteCallback OnWrite, bool ShouldEmitImportsFiles) 1373 : Conf(Conf), CombinedIndex(CombinedIndex), 1374 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries), 1375 OnWrite(OnWrite), ShouldEmitImportsFiles(ShouldEmitImportsFiles) {} 1376 1377 virtual ~ThinBackendProc() = default; 1378 virtual Error start( 1379 unsigned Task, BitcodeModule BM, 1380 const FunctionImporter::ImportMapTy &ImportList, 1381 const FunctionImporter::ExportSetTy &ExportList, 1382 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1383 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1384 virtual Error wait() = 0; 1385 virtual unsigned getThreadCount() = 0; 1386 1387 // Write sharded indices and (optionally) imports to disk 1388 Error emitFiles(const FunctionImporter::ImportMapTy &ImportList, 1389 llvm::StringRef ModulePath, 1390 const std::string &NewModulePath) { 1391 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1392 std::error_code EC; 1393 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1394 ImportList, ModuleToSummariesForIndex); 1395 1396 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1397 sys::fs::OpenFlags::OF_None); 1398 if (EC) 1399 return errorCodeToError(EC); 1400 writeIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1401 1402 if (ShouldEmitImportsFiles) { 1403 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1404 ModuleToSummariesForIndex); 1405 if (EC) 1406 return errorCodeToError(EC); 1407 } 1408 return Error::success(); 1409 } 1410 }; 1411 1412 namespace { 1413 class InProcessThinBackend : public ThinBackendProc { 1414 ThreadPool BackendThreadPool; 1415 AddStreamFn AddStream; 1416 FileCache Cache; 1417 std::set<GlobalValue::GUID> CfiFunctionDefs; 1418 std::set<GlobalValue::GUID> CfiFunctionDecls; 1419 1420 std::optional<Error> Err; 1421 std::mutex ErrMu; 1422 1423 bool ShouldEmitIndexFiles; 1424 1425 public: 1426 InProcessThinBackend( 1427 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1428 ThreadPoolStrategy ThinLTOParallelism, 1429 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1430 AddStreamFn AddStream, FileCache Cache, lto::IndexWriteCallback OnWrite, 1431 bool ShouldEmitIndexFiles, bool ShouldEmitImportsFiles) 1432 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1433 OnWrite, ShouldEmitImportsFiles), 1434 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1435 Cache(std::move(Cache)), ShouldEmitIndexFiles(ShouldEmitIndexFiles) { 1436 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1437 CfiFunctionDefs.insert( 1438 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1439 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1440 CfiFunctionDecls.insert( 1441 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1442 } 1443 1444 Error runThinLTOBackendThread( 1445 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM, 1446 ModuleSummaryIndex &CombinedIndex, 1447 const FunctionImporter::ImportMapTy &ImportList, 1448 const FunctionImporter::ExportSetTy &ExportList, 1449 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1450 const GVSummaryMapTy &DefinedGlobals, 1451 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1452 auto RunThinBackend = [&](AddStreamFn AddStream) { 1453 LTOLLVMContext BackendContext(Conf); 1454 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1455 if (!MOrErr) 1456 return MOrErr.takeError(); 1457 1458 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1459 ImportList, DefinedGlobals, &ModuleMap); 1460 }; 1461 1462 auto ModuleID = BM.getModuleIdentifier(); 1463 1464 if (ShouldEmitIndexFiles) { 1465 if (auto E = emitFiles(ImportList, ModuleID, ModuleID.str())) 1466 return E; 1467 } 1468 1469 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1470 all_of(CombinedIndex.getModuleHash(ModuleID), 1471 [](uint32_t V) { return V == 0; })) 1472 // Cache disabled or no entry for this module in the combined index or 1473 // no module hash. 1474 return RunThinBackend(AddStream); 1475 1476 SmallString<40> Key; 1477 // The module may be cached, this helps handling it. 1478 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1479 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1480 CfiFunctionDecls); 1481 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID); 1482 if (Error Err = CacheAddStreamOrErr.takeError()) 1483 return Err; 1484 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr; 1485 if (CacheAddStream) 1486 return RunThinBackend(CacheAddStream); 1487 1488 return Error::success(); 1489 } 1490 1491 Error start( 1492 unsigned Task, BitcodeModule BM, 1493 const FunctionImporter::ImportMapTy &ImportList, 1494 const FunctionImporter::ExportSetTy &ExportList, 1495 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1496 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1497 StringRef ModulePath = BM.getModuleIdentifier(); 1498 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1499 const GVSummaryMapTy &DefinedGlobals = 1500 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1501 BackendThreadPool.async( 1502 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1503 const FunctionImporter::ImportMapTy &ImportList, 1504 const FunctionImporter::ExportSetTy &ExportList, 1505 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1506 &ResolvedODR, 1507 const GVSummaryMapTy &DefinedGlobals, 1508 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1509 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1510 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1511 "thin backend"); 1512 Error E = runThinLTOBackendThread( 1513 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1514 ResolvedODR, DefinedGlobals, ModuleMap); 1515 if (E) { 1516 std::unique_lock<std::mutex> L(ErrMu); 1517 if (Err) 1518 Err = joinErrors(std::move(*Err), std::move(E)); 1519 else 1520 Err = std::move(E); 1521 } 1522 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1523 timeTraceProfilerFinishThread(); 1524 }, 1525 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1526 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1527 1528 if (OnWrite) 1529 OnWrite(std::string(ModulePath)); 1530 return Error::success(); 1531 } 1532 1533 Error wait() override { 1534 BackendThreadPool.wait(); 1535 if (Err) 1536 return std::move(*Err); 1537 else 1538 return Error::success(); 1539 } 1540 1541 unsigned getThreadCount() override { 1542 return BackendThreadPool.getThreadCount(); 1543 } 1544 }; 1545 } // end anonymous namespace 1546 1547 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism, 1548 lto::IndexWriteCallback OnWrite, 1549 bool ShouldEmitIndexFiles, 1550 bool ShouldEmitImportsFiles) { 1551 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1552 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1553 AddStreamFn AddStream, FileCache Cache) { 1554 return std::make_unique<InProcessThinBackend>( 1555 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream, 1556 Cache, OnWrite, ShouldEmitIndexFiles, ShouldEmitImportsFiles); 1557 }; 1558 } 1559 1560 // Given the original \p Path to an output file, replace any path 1561 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1562 // resulting directory if it does not yet exist. 1563 std::string lto::getThinLTOOutputFile(StringRef Path, StringRef OldPrefix, 1564 StringRef NewPrefix) { 1565 if (OldPrefix.empty() && NewPrefix.empty()) 1566 return std::string(Path); 1567 SmallString<128> NewPath(Path); 1568 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1569 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1570 if (!ParentPath.empty()) { 1571 // Make sure the new directory exists, creating it if necessary. 1572 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1573 llvm::errs() << "warning: could not create directory '" << ParentPath 1574 << "': " << EC.message() << '\n'; 1575 } 1576 return std::string(NewPath.str()); 1577 } 1578 1579 namespace { 1580 class WriteIndexesThinBackend : public ThinBackendProc { 1581 std::string OldPrefix, NewPrefix, NativeObjectPrefix; 1582 raw_fd_ostream *LinkedObjectsFile; 1583 1584 public: 1585 WriteIndexesThinBackend( 1586 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1587 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1588 std::string OldPrefix, std::string NewPrefix, 1589 std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, 1590 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1591 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1592 OnWrite, ShouldEmitImportsFiles), 1593 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1594 NativeObjectPrefix(NativeObjectPrefix), 1595 LinkedObjectsFile(LinkedObjectsFile) {} 1596 1597 Error start( 1598 unsigned Task, BitcodeModule BM, 1599 const FunctionImporter::ImportMapTy &ImportList, 1600 const FunctionImporter::ExportSetTy &ExportList, 1601 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1602 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1603 StringRef ModulePath = BM.getModuleIdentifier(); 1604 std::string NewModulePath = 1605 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); 1606 1607 if (LinkedObjectsFile) { 1608 std::string ObjectPrefix = 1609 NativeObjectPrefix.empty() ? NewPrefix : NativeObjectPrefix; 1610 std::string LinkedObjectsFilePath = 1611 getThinLTOOutputFile(ModulePath, OldPrefix, ObjectPrefix); 1612 *LinkedObjectsFile << LinkedObjectsFilePath << '\n'; 1613 } 1614 1615 if (auto E = emitFiles(ImportList, ModulePath, NewModulePath)) 1616 return E; 1617 1618 if (OnWrite) 1619 OnWrite(std::string(ModulePath)); 1620 return Error::success(); 1621 } 1622 1623 Error wait() override { return Error::success(); } 1624 1625 // WriteIndexesThinBackend should always return 1 to prevent module 1626 // re-ordering and avoid non-determinism in the final link. 1627 unsigned getThreadCount() override { return 1; } 1628 }; 1629 } // end anonymous namespace 1630 1631 ThinBackend lto::createWriteIndexesThinBackend( 1632 std::string OldPrefix, std::string NewPrefix, 1633 std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, 1634 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1635 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1636 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1637 AddStreamFn AddStream, FileCache Cache) { 1638 return std::make_unique<WriteIndexesThinBackend>( 1639 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1640 NativeObjectPrefix, ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1641 }; 1642 } 1643 1644 Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache, 1645 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1646 LLVM_DEBUG(dbgs() << "Running ThinLTO\n"); 1647 ThinLTO.CombinedIndex.releaseTemporaryMemory(); 1648 timeTraceProfilerBegin("ThinLink", StringRef("")); 1649 auto TimeTraceScopeExit = llvm::make_scope_exit([]() { 1650 if (llvm::timeTraceProfilerEnabled()) 1651 llvm::timeTraceProfilerEnd(); 1652 }); 1653 if (ThinLTO.ModuleMap.empty()) 1654 return Error::success(); 1655 1656 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1657 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1658 return Error::success(); 1659 } 1660 1661 if (Conf.CombinedIndexHook && 1662 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1663 return Error::success(); 1664 1665 // Collect for each module the list of function it defines (GUID -> 1666 // Summary). 1667 StringMap<GVSummaryMapTy> 1668 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1669 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1670 ModuleToDefinedGVSummaries); 1671 // Create entries for any modules that didn't have any GV summaries 1672 // (either they didn't have any GVs to start with, or we suppressed 1673 // generation of the summaries because they e.g. had inline assembly 1674 // uses that couldn't be promoted/renamed on export). This is so 1675 // InProcessThinBackend::start can still launch a backend thread, which 1676 // is passed the map of summaries for the module, without any special 1677 // handling for this case. 1678 for (auto &Mod : ThinLTO.ModuleMap) 1679 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1680 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1681 1682 // Synthesize entry counts for functions in the CombinedIndex. 1683 computeSyntheticCounts(ThinLTO.CombinedIndex); 1684 1685 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1686 ThinLTO.ModuleMap.size()); 1687 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1688 ThinLTO.ModuleMap.size()); 1689 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1690 1691 if (DumpThinCGSCCs) 1692 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1693 1694 std::set<GlobalValue::GUID> ExportedGUIDs; 1695 1696 if (hasWholeProgramVisibility(Conf.HasWholeProgramVisibility)) 1697 ThinLTO.CombinedIndex.setWithWholeProgramVisibility(); 1698 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1699 // the summaries before whole program devirtualization below. 1700 updateVCallVisibilityInIndex(ThinLTO.CombinedIndex, 1701 Conf.HasWholeProgramVisibility, 1702 DynamicExportSymbols); 1703 1704 // Perform index-based WPD. This will return immediately if there are 1705 // no index entries in the typeIdMetadata map (e.g. if we are instead 1706 // performing IR-based WPD in hybrid regular/thin LTO mode). 1707 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1708 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1709 LocalWPDTargetsMap); 1710 1711 auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) { 1712 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1713 }; 1714 if (EnableMemProfContextDisambiguation) { 1715 MemProfContextDisambiguation ContextDisambiguation; 1716 ContextDisambiguation.run(ThinLTO.CombinedIndex, isPrevailing); 1717 } 1718 1719 if (Conf.OptLevel > 0) 1720 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1721 isPrevailing, ImportLists, ExportLists); 1722 1723 // Figure out which symbols need to be internalized. This also needs to happen 1724 // at -O0 because summary-based DCE is implemented using internalization, and 1725 // we must apply DCE consistently with the full LTO module in order to avoid 1726 // undefined references during the final link. 1727 for (auto &Res : GlobalResolutions) { 1728 // If the symbol does not have external references or it is not prevailing, 1729 // then not need to mark it as exported from a ThinLTO partition. 1730 if (Res.second.Partition != GlobalResolution::External || 1731 !Res.second.isPrevailingIRSymbol()) 1732 continue; 1733 auto GUID = GlobalValue::getGUID( 1734 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1735 // Mark exported unless index-based analysis determined it to be dead. 1736 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1737 ExportedGUIDs.insert(GUID); 1738 } 1739 1740 // Any functions referenced by the jump table in the regular LTO object must 1741 // be exported. 1742 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1743 ExportedGUIDs.insert( 1744 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1745 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) 1746 ExportedGUIDs.insert( 1747 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl))); 1748 1749 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1750 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1751 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1752 ExportedGUIDs.count(VI.getGUID()); 1753 }; 1754 1755 // Update local devirtualized targets that were exported by cross-module 1756 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1757 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1758 LocalWPDTargetsMap); 1759 1760 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1761 isPrevailing); 1762 1763 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1764 GlobalValue::GUID GUID, 1765 GlobalValue::LinkageTypes NewLinkage) { 1766 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1767 }; 1768 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1769 recordNewLinkage, GUIDPreservedSymbols); 1770 1771 thinLTOPropagateFunctionAttrs(ThinLTO.CombinedIndex, isPrevailing); 1772 1773 generateParamAccessSummary(ThinLTO.CombinedIndex); 1774 1775 if (llvm::timeTraceProfilerEnabled()) 1776 llvm::timeTraceProfilerEnd(); 1777 1778 TimeTraceScopeExit.release(); 1779 1780 std::unique_ptr<ThinBackendProc> BackendProc = 1781 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1782 AddStream, Cache); 1783 1784 auto &ModuleMap = 1785 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1786 1787 auto ProcessOneModule = [&](int I) -> Error { 1788 auto &Mod = *(ModuleMap.begin() + I); 1789 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1790 // combined module and parallel code generation partitions. 1791 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1792 Mod.second, ImportLists[Mod.first], 1793 ExportLists[Mod.first], ResolvedODR[Mod.first], 1794 ThinLTO.ModuleMap); 1795 }; 1796 1797 if (BackendProc->getThreadCount() == 1) { 1798 // Process the modules in the order they were provided on the command-line. 1799 // It is important for this codepath to be used for WriteIndexesThinBackend, 1800 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1801 // order as the inputs, which otherwise would affect the final link order. 1802 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1803 if (Error E = ProcessOneModule(I)) 1804 return E; 1805 } else { 1806 // When executing in parallel, process largest bitsize modules first to 1807 // improve parallelism, and avoid starving the thread pool near the end. 1808 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1809 // of 100 sec). 1810 std::vector<BitcodeModule *> ModulesVec; 1811 ModulesVec.reserve(ModuleMap.size()); 1812 for (auto &Mod : ModuleMap) 1813 ModulesVec.push_back(&Mod.second); 1814 for (int I : generateModulesOrdering(ModulesVec)) 1815 if (Error E = ProcessOneModule(I)) 1816 return E; 1817 } 1818 return BackendProc->wait(); 1819 } 1820 1821 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1822 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1823 StringRef RemarksFormat, bool RemarksWithHotness, 1824 std::optional<uint64_t> RemarksHotnessThreshold, int Count) { 1825 std::string Filename = std::string(RemarksFilename); 1826 // For ThinLTO, file.opt.<format> becomes 1827 // file.opt.<format>.thin.<num>.<format>. 1828 if (!Filename.empty() && Count != -1) 1829 Filename = 1830 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1831 .str(); 1832 1833 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1834 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1835 RemarksHotnessThreshold); 1836 if (Error E = ResultOrErr.takeError()) 1837 return std::move(E); 1838 1839 if (*ResultOrErr) 1840 (*ResultOrErr)->keep(); 1841 1842 return ResultOrErr; 1843 } 1844 1845 Expected<std::unique_ptr<ToolOutputFile>> 1846 lto::setupStatsFile(StringRef StatsFilename) { 1847 // Setup output file to emit statistics. 1848 if (StatsFilename.empty()) 1849 return nullptr; 1850 1851 llvm::EnableStatistics(false); 1852 std::error_code EC; 1853 auto StatsFile = 1854 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1855 if (EC) 1856 return errorCodeToError(EC); 1857 1858 StatsFile->keep(); 1859 return std::move(StatsFile); 1860 } 1861 1862 // Compute the ordering we will process the inputs: the rough heuristic here 1863 // is to sort them per size so that the largest module get schedule as soon as 1864 // possible. This is purely a compile-time optimization. 1865 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1866 auto Seq = llvm::seq<int>(0, R.size()); 1867 std::vector<int> ModulesOrdering(Seq.begin(), Seq.end()); 1868 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1869 auto LSize = R[LeftIndex]->getBuffer().size(); 1870 auto RSize = R[RightIndex]->getBuffer().size(); 1871 return LSize > RSize; 1872 }); 1873 return ModulesOrdering; 1874 } 1875