1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/TargetLibraryInfo.h" 16 #include "llvm/Analysis/TargetTransformInfo.h" 17 #include "llvm/Bitcode/BitcodeReader.h" 18 #include "llvm/Bitcode/BitcodeWriter.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/Config/llvm-config.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/LegacyPassManager.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Metadata.h" 27 #include "llvm/IR/RemarkStreamer.h" 28 #include "llvm/LTO/LTOBackend.h" 29 #include "llvm/LTO/SummaryBasedOptimizations.h" 30 #include "llvm/Linker/IRMover.h" 31 #include "llvm/Object/IRObjectFile.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/Path.h" 36 #include "llvm/Support/SHA1.h" 37 #include "llvm/Support/SourceMgr.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/ThreadPool.h" 40 #include "llvm/Support/Threading.h" 41 #include "llvm/Support/VCSRevision.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include "llvm/Transforms/IPO.h" 46 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 47 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 48 #include "llvm/Transforms/Utils/SplitModule.h" 49 50 #include <set> 51 52 using namespace llvm; 53 using namespace lto; 54 using namespace object; 55 56 #define DEBUG_TYPE "lto" 57 58 static cl::opt<bool> 59 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 60 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 61 62 /// Enable global value internalization in LTO. 63 cl::opt<bool> EnableLTOInternalization( 64 "enable-lto-internalization", cl::init(true), cl::Hidden, 65 cl::desc("Enable global value internalization in LTO")); 66 67 // Computes a unique hash for the Module considering the current list of 68 // export/import and other global analysis results. 69 // The hash is produced in \p Key. 70 void llvm::computeLTOCacheKey( 71 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 72 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 73 const FunctionImporter::ExportSetTy &ExportList, 74 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 75 const GVSummaryMapTy &DefinedGlobals, 76 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 77 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 78 // Compute the unique hash for this entry. 79 // This is based on the current compiler version, the module itself, the 80 // export list, the hash for every single module in the import list, the 81 // list of ResolvedODR for the module, and the list of preserved symbols. 82 SHA1 Hasher; 83 84 // Start with the compiler revision 85 Hasher.update(LLVM_VERSION_STRING); 86 #ifdef LLVM_REVISION 87 Hasher.update(LLVM_REVISION); 88 #endif 89 90 // Include the parts of the LTO configuration that affect code generation. 91 auto AddString = [&](StringRef Str) { 92 Hasher.update(Str); 93 Hasher.update(ArrayRef<uint8_t>{0}); 94 }; 95 auto AddUnsigned = [&](unsigned I) { 96 uint8_t Data[4]; 97 Data[0] = I; 98 Data[1] = I >> 8; 99 Data[2] = I >> 16; 100 Data[3] = I >> 24; 101 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 102 }; 103 auto AddUint64 = [&](uint64_t I) { 104 uint8_t Data[8]; 105 Data[0] = I; 106 Data[1] = I >> 8; 107 Data[2] = I >> 16; 108 Data[3] = I >> 24; 109 Data[4] = I >> 32; 110 Data[5] = I >> 40; 111 Data[6] = I >> 48; 112 Data[7] = I >> 56; 113 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 114 }; 115 AddString(Conf.CPU); 116 // FIXME: Hash more of Options. For now all clients initialize Options from 117 // command-line flags (which is unsupported in production), but may set 118 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 119 // DataSections and DebuggerTuning via command line flags. 120 AddUnsigned(Conf.Options.RelaxELFRelocations); 121 AddUnsigned(Conf.Options.FunctionSections); 122 AddUnsigned(Conf.Options.DataSections); 123 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 124 for (auto &A : Conf.MAttrs) 125 AddString(A); 126 if (Conf.RelocModel) 127 AddUnsigned(*Conf.RelocModel); 128 else 129 AddUnsigned(-1); 130 if (Conf.CodeModel) 131 AddUnsigned(*Conf.CodeModel); 132 else 133 AddUnsigned(-1); 134 AddUnsigned(Conf.CGOptLevel); 135 AddUnsigned(Conf.CGFileType); 136 AddUnsigned(Conf.OptLevel); 137 AddUnsigned(Conf.UseNewPM); 138 AddUnsigned(Conf.Freestanding); 139 AddString(Conf.OptPipeline); 140 AddString(Conf.AAPipeline); 141 AddString(Conf.OverrideTriple); 142 AddString(Conf.DefaultTriple); 143 AddString(Conf.DwoDir); 144 145 // Include the hash for the current module 146 auto ModHash = Index.getModuleHash(ModuleID); 147 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 148 for (auto F : ExportList) 149 // The export list can impact the internalization, be conservative here 150 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&F, sizeof(F))); 151 152 // Include the hash for every module we import functions from. The set of 153 // imported symbols for each module may affect code generation and is 154 // sensitive to link order, so include that as well. 155 for (auto &Entry : ImportList) { 156 auto ModHash = Index.getModuleHash(Entry.first()); 157 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 158 159 AddUint64(Entry.second.size()); 160 for (auto &Fn : Entry.second) 161 AddUint64(Fn); 162 } 163 164 // Include the hash for the resolved ODR. 165 for (auto &Entry : ResolvedODR) { 166 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 167 sizeof(GlobalValue::GUID))); 168 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 169 sizeof(GlobalValue::LinkageTypes))); 170 } 171 172 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 173 // defined in this module. 174 std::set<GlobalValue::GUID> UsedCfiDefs; 175 std::set<GlobalValue::GUID> UsedCfiDecls; 176 177 // Typeids used in this module. 178 std::set<GlobalValue::GUID> UsedTypeIds; 179 180 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 181 if (CfiFunctionDefs.count(ValueGUID)) 182 UsedCfiDefs.insert(ValueGUID); 183 if (CfiFunctionDecls.count(ValueGUID)) 184 UsedCfiDecls.insert(ValueGUID); 185 }; 186 187 auto AddUsedThings = [&](GlobalValueSummary *GS) { 188 if (!GS) return; 189 AddUnsigned(GS->isLive()); 190 AddUnsigned(GS->canAutoHide()); 191 for (const ValueInfo &VI : GS->refs()) { 192 AddUnsigned(VI.isDSOLocal()); 193 AddUsedCfiGlobal(VI.getGUID()); 194 } 195 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 196 AddUnsigned(GVS->maybeReadOnly()); 197 AddUnsigned(GVS->maybeWriteOnly()); 198 } 199 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 200 for (auto &TT : FS->type_tests()) 201 UsedTypeIds.insert(TT); 202 for (auto &TT : FS->type_test_assume_vcalls()) 203 UsedTypeIds.insert(TT.GUID); 204 for (auto &TT : FS->type_checked_load_vcalls()) 205 UsedTypeIds.insert(TT.GUID); 206 for (auto &TT : FS->type_test_assume_const_vcalls()) 207 UsedTypeIds.insert(TT.VFunc.GUID); 208 for (auto &TT : FS->type_checked_load_const_vcalls()) 209 UsedTypeIds.insert(TT.VFunc.GUID); 210 for (auto &ET : FS->calls()) { 211 AddUnsigned(ET.first.isDSOLocal()); 212 AddUsedCfiGlobal(ET.first.getGUID()); 213 } 214 } 215 }; 216 217 // Include the hash for the linkage type to reflect internalization and weak 218 // resolution, and collect any used type identifier resolutions. 219 for (auto &GS : DefinedGlobals) { 220 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 221 Hasher.update( 222 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 223 AddUsedCfiGlobal(GS.first); 224 AddUsedThings(GS.second); 225 } 226 227 // Imported functions may introduce new uses of type identifier resolutions, 228 // so we need to collect their used resolutions as well. 229 for (auto &ImpM : ImportList) 230 for (auto &ImpF : ImpM.second) { 231 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 232 AddUsedThings(S); 233 // If this is an alias, we also care about any types/etc. that the aliasee 234 // may reference. 235 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 236 AddUsedThings(AS->getBaseObject()); 237 } 238 239 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 240 AddString(TId); 241 242 AddUnsigned(S.TTRes.TheKind); 243 AddUnsigned(S.TTRes.SizeM1BitWidth); 244 245 AddUint64(S.TTRes.AlignLog2); 246 AddUint64(S.TTRes.SizeM1); 247 AddUint64(S.TTRes.BitMask); 248 AddUint64(S.TTRes.InlineBits); 249 250 AddUint64(S.WPDRes.size()); 251 for (auto &WPD : S.WPDRes) { 252 AddUnsigned(WPD.first); 253 AddUnsigned(WPD.second.TheKind); 254 AddString(WPD.second.SingleImplName); 255 256 AddUint64(WPD.second.ResByArg.size()); 257 for (auto &ByArg : WPD.second.ResByArg) { 258 AddUint64(ByArg.first.size()); 259 for (uint64_t Arg : ByArg.first) 260 AddUint64(Arg); 261 AddUnsigned(ByArg.second.TheKind); 262 AddUint64(ByArg.second.Info); 263 AddUnsigned(ByArg.second.Byte); 264 AddUnsigned(ByArg.second.Bit); 265 } 266 } 267 }; 268 269 // Include the hash for all type identifiers used by this module. 270 for (GlobalValue::GUID TId : UsedTypeIds) { 271 auto TidIter = Index.typeIds().equal_range(TId); 272 for (auto It = TidIter.first; It != TidIter.second; ++It) 273 AddTypeIdSummary(It->second.first, It->second.second); 274 } 275 276 AddUnsigned(UsedCfiDefs.size()); 277 for (auto &V : UsedCfiDefs) 278 AddUint64(V); 279 280 AddUnsigned(UsedCfiDecls.size()); 281 for (auto &V : UsedCfiDecls) 282 AddUint64(V); 283 284 if (!Conf.SampleProfile.empty()) { 285 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 286 if (FileOrErr) { 287 Hasher.update(FileOrErr.get()->getBuffer()); 288 289 if (!Conf.ProfileRemapping.empty()) { 290 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 291 if (FileOrErr) 292 Hasher.update(FileOrErr.get()->getBuffer()); 293 } 294 } 295 } 296 297 Key = toHex(Hasher.result()); 298 } 299 300 static void thinLTOResolvePrevailingGUID( 301 ValueInfo VI, DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 302 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 303 isPrevailing, 304 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 305 recordNewLinkage, 306 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 307 for (auto &S : VI.getSummaryList()) { 308 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 309 // Ignore local and appending linkage values since the linker 310 // doesn't resolve them. 311 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 312 GlobalValue::isAppendingLinkage(S->linkage())) 313 continue; 314 // We need to emit only one of these. The prevailing module will keep it, 315 // but turned into a weak, while the others will drop it when possible. 316 // This is both a compile-time optimization and a correctness 317 // transformation. This is necessary for correctness when we have exported 318 // a reference - we need to convert the linkonce to weak to 319 // ensure a copy is kept to satisfy the exported reference. 320 // FIXME: We may want to split the compile time and correctness 321 // aspects into separate routines. 322 if (isPrevailing(VI.getGUID(), S.get())) { 323 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 324 S->setLinkage(GlobalValue::getWeakLinkage( 325 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 326 // The kept copy is eligible for auto-hiding (hidden visibility) if all 327 // copies were (i.e. they were all linkonce_odr global unnamed addr). 328 // If any copy is not (e.g. it was originally weak_odr), then the symbol 329 // must remain externally available (e.g. a weak_odr from an explicitly 330 // instantiated template). Additionally, if it is in the 331 // GUIDPreservedSymbols set, that means that it is visibile outside 332 // the summary (e.g. in a native object or a bitcode file without 333 // summary), and in that case we cannot hide it as it isn't possible to 334 // check all copies. 335 S->setCanAutoHide(VI.canAutoHide() && 336 !GUIDPreservedSymbols.count(VI.getGUID())); 337 } 338 } 339 // Alias and aliasee can't be turned into available_externally. 340 else if (!isa<AliasSummary>(S.get()) && 341 !GlobalInvolvedWithAlias.count(S.get())) 342 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 343 if (S->linkage() != OriginalLinkage) 344 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 345 } 346 } 347 348 /// Resolve linkage for prevailing symbols in the \p Index. 349 // 350 // We'd like to drop these functions if they are no longer referenced in the 351 // current module. However there is a chance that another module is still 352 // referencing them because of the import. We make sure we always emit at least 353 // one copy. 354 void llvm::thinLTOResolvePrevailingInIndex( 355 ModuleSummaryIndex &Index, 356 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 357 isPrevailing, 358 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 359 recordNewLinkage, 360 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 361 // We won't optimize the globals that are referenced by an alias for now 362 // Ideally we should turn the alias into a global and duplicate the definition 363 // when needed. 364 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 365 for (auto &I : Index) 366 for (auto &S : I.second.SummaryList) 367 if (auto AS = dyn_cast<AliasSummary>(S.get())) 368 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 369 370 for (auto &I : Index) 371 thinLTOResolvePrevailingGUID(Index.getValueInfo(I), GlobalInvolvedWithAlias, 372 isPrevailing, recordNewLinkage, 373 GUIDPreservedSymbols); 374 } 375 376 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 377 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 378 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 379 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 380 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 381 return false; 382 } 383 384 static void thinLTOInternalizeAndPromoteGUID( 385 GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID, 386 function_ref<bool(StringRef, GlobalValue::GUID)> isExported) { 387 for (auto &S : GVSummaryList) { 388 if (isExported(S->modulePath(), GUID)) { 389 if (GlobalValue::isLocalLinkage(S->linkage())) 390 S->setLinkage(GlobalValue::ExternalLinkage); 391 } else if (EnableLTOInternalization && 392 // Ignore local and appending linkage values since the linker 393 // doesn't resolve them. 394 !GlobalValue::isLocalLinkage(S->linkage()) && 395 S->linkage() != GlobalValue::AppendingLinkage && 396 // We can't internalize available_externally globals because this 397 // can break function pointer equality. 398 S->linkage() != GlobalValue::AvailableExternallyLinkage && 399 // Functions and read-only variables with linkonce_odr and 400 // weak_odr linkage can be internalized. We can't internalize 401 // linkonce_odr and weak_odr variables which are both modified 402 // and read somewhere in the program because reads and writes 403 // will become inconsistent. 404 !isWeakObjectWithRWAccess(S.get())) 405 S->setLinkage(GlobalValue::InternalLinkage); 406 } 407 } 408 409 // Update the linkages in the given \p Index to mark exported values 410 // as external and non-exported values as internal. 411 void llvm::thinLTOInternalizeAndPromoteInIndex( 412 ModuleSummaryIndex &Index, 413 function_ref<bool(StringRef, GlobalValue::GUID)> isExported) { 414 for (auto &I : Index) 415 thinLTOInternalizeAndPromoteGUID(I.second.SummaryList, I.first, isExported); 416 } 417 418 // Requires a destructor for std::vector<InputModule>. 419 InputFile::~InputFile() = default; 420 421 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 422 std::unique_ptr<InputFile> File(new InputFile); 423 424 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 425 if (!FOrErr) 426 return FOrErr.takeError(); 427 428 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 429 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 430 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 431 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 432 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 433 434 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 435 size_t Begin = File->Symbols.size(); 436 for (const irsymtab::Reader::SymbolRef &Sym : 437 FOrErr->TheReader.module_symbols(I)) 438 // Skip symbols that are irrelevant to LTO. Note that this condition needs 439 // to match the one in Skip() in LTO::addRegularLTO(). 440 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 441 File->Symbols.push_back(Sym); 442 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 443 } 444 445 File->Mods = FOrErr->Mods; 446 File->Strtab = std::move(FOrErr->Strtab); 447 return std::move(File); 448 } 449 450 StringRef InputFile::getName() const { 451 return Mods[0].getModuleIdentifier(); 452 } 453 454 BitcodeModule &InputFile::getSingleBitcodeModule() { 455 assert(Mods.size() == 1 && "Expect only one bitcode module"); 456 return Mods[0]; 457 } 458 459 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 460 Config &Conf) 461 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 462 Ctx(Conf), CombinedModule(llvm::make_unique<Module>("ld-temp.o", Ctx)), 463 Mover(llvm::make_unique<IRMover>(*CombinedModule)) {} 464 465 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 466 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 467 if (!Backend) 468 this->Backend = 469 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 470 } 471 472 LTO::LTO(Config Conf, ThinBackend Backend, 473 unsigned ParallelCodeGenParallelismLevel) 474 : Conf(std::move(Conf)), 475 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 476 ThinLTO(std::move(Backend)) {} 477 478 // Requires a destructor for MapVector<BitcodeModule>. 479 LTO::~LTO() = default; 480 481 // Add the symbols in the given module to the GlobalResolutions map, and resolve 482 // their partitions. 483 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 484 ArrayRef<SymbolResolution> Res, 485 unsigned Partition, bool InSummary) { 486 auto *ResI = Res.begin(); 487 auto *ResE = Res.end(); 488 (void)ResE; 489 for (const InputFile::Symbol &Sym : Syms) { 490 assert(ResI != ResE); 491 SymbolResolution Res = *ResI++; 492 493 StringRef Name = Sym.getName(); 494 Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 495 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 496 // way they are handled by lld), otherwise we can end up with two 497 // global resolutions (one with and one for a copy of the symbol without). 498 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 499 Name = Name.substr(strlen("__imp_")); 500 auto &GlobalRes = GlobalResolutions[Name]; 501 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 502 if (Res.Prevailing) { 503 assert(!GlobalRes.Prevailing && 504 "Multiple prevailing defs are not allowed"); 505 GlobalRes.Prevailing = true; 506 GlobalRes.IRName = Sym.getIRName(); 507 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 508 // Sometimes it can be two copies of symbol in a module and prevailing 509 // symbol can have no IR name. That might happen if symbol is defined in 510 // module level inline asm block. In case we have multiple modules with 511 // the same symbol we want to use IR name of the prevailing symbol. 512 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 513 // we can later use it to check if there is any prevailing copy in IR. 514 GlobalRes.IRName = Sym.getIRName(); 515 } 516 517 // Set the partition to external if we know it is re-defined by the linker 518 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 519 // regular object, is referenced from llvm.compiler_used, or was already 520 // recorded as being referenced from a different partition. 521 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 522 (GlobalRes.Partition != GlobalResolution::Unknown && 523 GlobalRes.Partition != Partition)) { 524 GlobalRes.Partition = GlobalResolution::External; 525 } else 526 // First recorded reference, save the current partition. 527 GlobalRes.Partition = Partition; 528 529 // Flag as visible outside of summary if visible from a regular object or 530 // from a module that does not have a summary. 531 GlobalRes.VisibleOutsideSummary |= 532 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 533 } 534 } 535 536 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 537 ArrayRef<SymbolResolution> Res) { 538 StringRef Path = Input->getName(); 539 OS << Path << '\n'; 540 auto ResI = Res.begin(); 541 for (const InputFile::Symbol &Sym : Input->symbols()) { 542 assert(ResI != Res.end()); 543 SymbolResolution Res = *ResI++; 544 545 OS << "-r=" << Path << ',' << Sym.getName() << ','; 546 if (Res.Prevailing) 547 OS << 'p'; 548 if (Res.FinalDefinitionInLinkageUnit) 549 OS << 'l'; 550 if (Res.VisibleToRegularObj) 551 OS << 'x'; 552 if (Res.LinkerRedefined) 553 OS << 'r'; 554 OS << '\n'; 555 } 556 OS.flush(); 557 assert(ResI == Res.end()); 558 } 559 560 Error LTO::add(std::unique_ptr<InputFile> Input, 561 ArrayRef<SymbolResolution> Res) { 562 assert(!CalledGetMaxTasks); 563 564 if (Conf.ResolutionFile) 565 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 566 567 if (RegularLTO.CombinedModule->getTargetTriple().empty()) 568 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 569 570 const SymbolResolution *ResI = Res.begin(); 571 for (unsigned I = 0; I != Input->Mods.size(); ++I) 572 if (Error Err = addModule(*Input, I, ResI, Res.end())) 573 return Err; 574 575 assert(ResI == Res.end()); 576 return Error::success(); 577 } 578 579 Error LTO::addModule(InputFile &Input, unsigned ModI, 580 const SymbolResolution *&ResI, 581 const SymbolResolution *ResE) { 582 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 583 if (!LTOInfo) 584 return LTOInfo.takeError(); 585 586 if (EnableSplitLTOUnit.hasValue()) { 587 // If only some modules were split, flag this in the index so that 588 // we can skip or error on optimizations that need consistently split 589 // modules (whole program devirt and lower type tests). 590 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 591 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 592 } else 593 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 594 595 BitcodeModule BM = Input.Mods[ModI]; 596 auto ModSyms = Input.module_symbols(ModI); 597 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 598 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 599 LTOInfo->HasSummary); 600 601 if (LTOInfo->IsThinLTO) 602 return addThinLTO(BM, ModSyms, ResI, ResE); 603 604 Expected<RegularLTOState::AddedModule> ModOrErr = 605 addRegularLTO(BM, ModSyms, ResI, ResE); 606 if (!ModOrErr) 607 return ModOrErr.takeError(); 608 609 if (!LTOInfo->HasSummary) 610 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 611 612 // Regular LTO module summaries are added to a dummy module that represents 613 // the combined regular LTO module. 614 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 615 return Err; 616 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 617 return Error::success(); 618 } 619 620 // Checks whether the given global value is in a non-prevailing comdat 621 // (comdat containing values the linker indicated were not prevailing, 622 // which we then dropped to available_externally), and if so, removes 623 // it from the comdat. This is called for all global values to ensure the 624 // comdat is empty rather than leaving an incomplete comdat. It is needed for 625 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 626 // and thin LTO modules) compilation. Since the regular LTO module will be 627 // linked first in the final native link, we want to make sure the linker 628 // doesn't select any of these incomplete comdats that would be left 629 // in the regular LTO module without this cleanup. 630 static void 631 handleNonPrevailingComdat(GlobalValue &GV, 632 std::set<const Comdat *> &NonPrevailingComdats) { 633 Comdat *C = GV.getComdat(); 634 if (!C) 635 return; 636 637 if (!NonPrevailingComdats.count(C)) 638 return; 639 640 // Additionally need to drop externally visible global values from the comdat 641 // to available_externally, so that there aren't multiply defined linker 642 // errors. 643 if (!GV.hasLocalLinkage()) 644 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 645 646 if (auto GO = dyn_cast<GlobalObject>(&GV)) 647 GO->setComdat(nullptr); 648 } 649 650 // Add a regular LTO object to the link. 651 // The resulting module needs to be linked into the combined LTO module with 652 // linkRegularLTO. 653 Expected<LTO::RegularLTOState::AddedModule> 654 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 655 const SymbolResolution *&ResI, 656 const SymbolResolution *ResE) { 657 RegularLTOState::AddedModule Mod; 658 Expected<std::unique_ptr<Module>> MOrErr = 659 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 660 /*IsImporting*/ false); 661 if (!MOrErr) 662 return MOrErr.takeError(); 663 Module &M = **MOrErr; 664 Mod.M = std::move(*MOrErr); 665 666 if (Error Err = M.materializeMetadata()) 667 return std::move(Err); 668 UpgradeDebugInfo(M); 669 670 ModuleSymbolTable SymTab; 671 SymTab.addModule(&M); 672 673 for (GlobalVariable &GV : M.globals()) 674 if (GV.hasAppendingLinkage()) 675 Mod.Keep.push_back(&GV); 676 677 DenseSet<GlobalObject *> AliasedGlobals; 678 for (auto &GA : M.aliases()) 679 if (GlobalObject *GO = GA.getBaseObject()) 680 AliasedGlobals.insert(GO); 681 682 // In this function we need IR GlobalValues matching the symbols in Syms 683 // (which is not backed by a module), so we need to enumerate them in the same 684 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 685 // matches the order of an irsymtab, but when we read the irsymtab in 686 // InputFile::create we omit some symbols that are irrelevant to LTO. The 687 // Skip() function skips the same symbols from the module as InputFile does 688 // from the symbol table. 689 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 690 auto Skip = [&]() { 691 while (MsymI != MsymE) { 692 auto Flags = SymTab.getSymbolFlags(*MsymI); 693 if ((Flags & object::BasicSymbolRef::SF_Global) && 694 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 695 return; 696 ++MsymI; 697 } 698 }; 699 Skip(); 700 701 std::set<const Comdat *> NonPrevailingComdats; 702 for (const InputFile::Symbol &Sym : Syms) { 703 assert(ResI != ResE); 704 SymbolResolution Res = *ResI++; 705 706 assert(MsymI != MsymE); 707 ModuleSymbolTable::Symbol Msym = *MsymI++; 708 Skip(); 709 710 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 711 if (Res.Prevailing) { 712 if (Sym.isUndefined()) 713 continue; 714 Mod.Keep.push_back(GV); 715 // For symbols re-defined with linker -wrap and -defsym options, 716 // set the linkage to weak to inhibit IPO. The linkage will be 717 // restored by the linker. 718 if (Res.LinkerRedefined) 719 GV->setLinkage(GlobalValue::WeakAnyLinkage); 720 721 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 722 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 723 GV->setLinkage(GlobalValue::getWeakLinkage( 724 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 725 } else if (isa<GlobalObject>(GV) && 726 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 727 GV->hasAvailableExternallyLinkage()) && 728 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 729 // Any of the above three types of linkage indicates that the 730 // chosen prevailing symbol will have the same semantics as this copy of 731 // the symbol, so we may be able to link it with available_externally 732 // linkage. We will decide later whether to do that when we link this 733 // module (in linkRegularLTO), based on whether it is undefined. 734 Mod.Keep.push_back(GV); 735 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 736 if (GV->hasComdat()) 737 NonPrevailingComdats.insert(GV->getComdat()); 738 cast<GlobalObject>(GV)->setComdat(nullptr); 739 } 740 741 // Set the 'local' flag based on the linker resolution for this symbol. 742 if (Res.FinalDefinitionInLinkageUnit) { 743 GV->setDSOLocal(true); 744 if (GV->hasDLLImportStorageClass()) 745 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 746 DefaultStorageClass); 747 } 748 } 749 // Common resolution: collect the maximum size/alignment over all commons. 750 // We also record if we see an instance of a common as prevailing, so that 751 // if none is prevailing we can ignore it later. 752 if (Sym.isCommon()) { 753 // FIXME: We should figure out what to do about commons defined by asm. 754 // For now they aren't reported correctly by ModuleSymbolTable. 755 auto &CommonRes = RegularLTO.Commons[Sym.getIRName()]; 756 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 757 CommonRes.Align = std::max(CommonRes.Align, Sym.getCommonAlignment()); 758 CommonRes.Prevailing |= Res.Prevailing; 759 } 760 761 } 762 if (!M.getComdatSymbolTable().empty()) 763 for (GlobalValue &GV : M.global_values()) 764 handleNonPrevailingComdat(GV, NonPrevailingComdats); 765 assert(MsymI == MsymE); 766 return std::move(Mod); 767 } 768 769 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 770 bool LivenessFromIndex) { 771 std::vector<GlobalValue *> Keep; 772 for (GlobalValue *GV : Mod.Keep) { 773 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) 774 continue; 775 776 if (!GV->hasAvailableExternallyLinkage()) { 777 Keep.push_back(GV); 778 continue; 779 } 780 781 // Only link available_externally definitions if we don't already have a 782 // definition. 783 GlobalValue *CombinedGV = 784 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 785 if (CombinedGV && !CombinedGV->isDeclaration()) 786 continue; 787 788 Keep.push_back(GV); 789 } 790 791 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 792 [](GlobalValue &, IRMover::ValueAdder) {}, 793 /* IsPerformingImport */ false); 794 } 795 796 // Add a ThinLTO module to the link. 797 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 798 const SymbolResolution *&ResI, 799 const SymbolResolution *ResE) { 800 if (Error Err = 801 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 802 ThinLTO.ModuleMap.size())) 803 return Err; 804 805 for (const InputFile::Symbol &Sym : Syms) { 806 assert(ResI != ResE); 807 SymbolResolution Res = *ResI++; 808 809 if (!Sym.getIRName().empty()) { 810 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 811 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 812 if (Res.Prevailing) { 813 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 814 815 // For linker redefined symbols (via --wrap or --defsym) we want to 816 // switch the linkage to `weak` to prevent IPOs from happening. 817 // Find the summary in the module for this very GV and record the new 818 // linkage so that we can switch it when we import the GV. 819 if (Res.LinkerRedefined) 820 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 821 GUID, BM.getModuleIdentifier())) 822 S->setLinkage(GlobalValue::WeakAnyLinkage); 823 } 824 825 // If the linker resolved the symbol to a local definition then mark it 826 // as local in the summary for the module we are adding. 827 if (Res.FinalDefinitionInLinkageUnit) { 828 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 829 GUID, BM.getModuleIdentifier())) { 830 S->setDSOLocal(true); 831 } 832 } 833 } 834 } 835 836 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 837 return make_error<StringError>( 838 "Expected at most one ThinLTO module per bitcode file", 839 inconvertibleErrorCode()); 840 841 return Error::success(); 842 } 843 844 unsigned LTO::getMaxTasks() const { 845 CalledGetMaxTasks = true; 846 return RegularLTO.ParallelCodeGenParallelismLevel + ThinLTO.ModuleMap.size(); 847 } 848 849 // If only some of the modules were split, we cannot correctly handle 850 // code that contains type tests or type checked loads. 851 Error LTO::checkPartiallySplit() { 852 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 853 return Error::success(); 854 855 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 856 Intrinsic::getName(Intrinsic::type_test)); 857 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 858 Intrinsic::getName(Intrinsic::type_checked_load)); 859 860 // First check if there are type tests / type checked loads in the 861 // merged regular LTO module IR. 862 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 863 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 864 return make_error<StringError>( 865 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 866 inconvertibleErrorCode()); 867 868 // Otherwise check if there are any recorded in the combined summary from the 869 // ThinLTO modules. 870 for (auto &P : ThinLTO.CombinedIndex) { 871 for (auto &S : P.second.SummaryList) { 872 auto *FS = dyn_cast<FunctionSummary>(S.get()); 873 if (!FS) 874 continue; 875 if (!FS->type_test_assume_vcalls().empty() || 876 !FS->type_checked_load_vcalls().empty() || 877 !FS->type_test_assume_const_vcalls().empty() || 878 !FS->type_checked_load_const_vcalls().empty() || 879 !FS->type_tests().empty()) 880 return make_error<StringError>( 881 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 882 inconvertibleErrorCode()); 883 } 884 } 885 return Error::success(); 886 } 887 888 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { 889 // Compute "dead" symbols, we don't want to import/export these! 890 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 891 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 892 for (auto &Res : GlobalResolutions) { 893 // Normally resolution have IR name of symbol. We can do nothing here 894 // otherwise. See comments in GlobalResolution struct for more details. 895 if (Res.second.IRName.empty()) 896 continue; 897 898 GlobalValue::GUID GUID = GlobalValue::getGUID( 899 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 900 901 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 902 GUIDPreservedSymbols.insert(GlobalValue::getGUID( 903 GlobalValue::dropLLVMManglingEscape(Res.second.IRName))); 904 905 GUIDPrevailingResolutions[GUID] = 906 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 907 } 908 909 auto isPrevailing = [&](GlobalValue::GUID G) { 910 auto It = GUIDPrevailingResolutions.find(G); 911 if (It == GUIDPrevailingResolutions.end()) 912 return PrevailingType::Unknown; 913 return It->second; 914 }; 915 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 916 isPrevailing, Conf.OptLevel > 0); 917 918 // Setup output file to emit statistics. 919 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 920 if (!StatsFileOrErr) 921 return StatsFileOrErr.takeError(); 922 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 923 924 // Finalize linking of regular LTO modules containing summaries now that 925 // we have computed liveness information. 926 for (auto &M : RegularLTO.ModsWithSummaries) 927 if (Error Err = linkRegularLTO(std::move(M), 928 /*LivenessFromIndex=*/true)) 929 return Err; 930 931 // Ensure we don't have inconsistently split LTO units with type tests. 932 if (Error Err = checkPartiallySplit()) 933 return Err; 934 935 Error Result = runRegularLTO(AddStream); 936 if (!Result) 937 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 938 939 if (StatsFile) 940 PrintStatisticsJSON(StatsFile->os()); 941 942 return Result; 943 } 944 945 Error LTO::runRegularLTO(AddStreamFn AddStream) { 946 // Make sure commons have the right size/alignment: we kept the largest from 947 // all the prevailing when adding the inputs, and we apply it here. 948 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 949 for (auto &I : RegularLTO.Commons) { 950 if (!I.second.Prevailing) 951 // Don't do anything if no instance of this common was prevailing. 952 continue; 953 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 954 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 955 // Don't create a new global if the type is already correct, just make 956 // sure the alignment is correct. 957 OldGV->setAlignment(I.second.Align); 958 continue; 959 } 960 ArrayType *Ty = 961 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 962 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 963 GlobalValue::CommonLinkage, 964 ConstantAggregateZero::get(Ty), ""); 965 GV->setAlignment(I.second.Align); 966 if (OldGV) { 967 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 968 GV->takeName(OldGV); 969 OldGV->eraseFromParent(); 970 } else { 971 GV->setName(I.first); 972 } 973 } 974 975 if (Conf.PreOptModuleHook && 976 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 977 return Error::success(); 978 979 if (!Conf.CodeGenOnly) { 980 for (const auto &R : GlobalResolutions) { 981 if (!R.second.isPrevailingIRSymbol()) 982 continue; 983 if (R.second.Partition != 0 && 984 R.second.Partition != GlobalResolution::External) 985 continue; 986 987 GlobalValue *GV = 988 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 989 // Ignore symbols defined in other partitions. 990 // Also skip declarations, which are not allowed to have internal linkage. 991 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 992 continue; 993 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 994 : GlobalValue::UnnamedAddr::None); 995 if (EnableLTOInternalization && R.second.Partition == 0) 996 GV->setLinkage(GlobalValue::InternalLinkage); 997 } 998 999 if (Conf.PostInternalizeModuleHook && 1000 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1001 return Error::success(); 1002 } 1003 return backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1004 std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex); 1005 } 1006 1007 /// This class defines the interface to the ThinLTO backend. 1008 class lto::ThinBackendProc { 1009 protected: 1010 Config &Conf; 1011 ModuleSummaryIndex &CombinedIndex; 1012 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1013 1014 public: 1015 ThinBackendProc(Config &Conf, ModuleSummaryIndex &CombinedIndex, 1016 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1017 : Conf(Conf), CombinedIndex(CombinedIndex), 1018 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1019 1020 virtual ~ThinBackendProc() {} 1021 virtual Error start( 1022 unsigned Task, BitcodeModule BM, 1023 const FunctionImporter::ImportMapTy &ImportList, 1024 const FunctionImporter::ExportSetTy &ExportList, 1025 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1026 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1027 virtual Error wait() = 0; 1028 }; 1029 1030 namespace { 1031 class InProcessThinBackend : public ThinBackendProc { 1032 ThreadPool BackendThreadPool; 1033 AddStreamFn AddStream; 1034 NativeObjectCache Cache; 1035 std::set<GlobalValue::GUID> CfiFunctionDefs; 1036 std::set<GlobalValue::GUID> CfiFunctionDecls; 1037 1038 Optional<Error> Err; 1039 std::mutex ErrMu; 1040 1041 public: 1042 InProcessThinBackend( 1043 Config &Conf, ModuleSummaryIndex &CombinedIndex, 1044 unsigned ThinLTOParallelismLevel, 1045 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1046 AddStreamFn AddStream, NativeObjectCache Cache) 1047 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1048 BackendThreadPool(ThinLTOParallelismLevel), 1049 AddStream(std::move(AddStream)), Cache(std::move(Cache)) { 1050 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1051 CfiFunctionDefs.insert( 1052 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1053 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1054 CfiFunctionDecls.insert( 1055 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1056 } 1057 1058 Error runThinLTOBackendThread( 1059 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, 1060 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1061 const FunctionImporter::ImportMapTy &ImportList, 1062 const FunctionImporter::ExportSetTy &ExportList, 1063 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1064 const GVSummaryMapTy &DefinedGlobals, 1065 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1066 auto RunThinBackend = [&](AddStreamFn AddStream) { 1067 LTOLLVMContext BackendContext(Conf); 1068 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1069 if (!MOrErr) 1070 return MOrErr.takeError(); 1071 1072 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1073 ImportList, DefinedGlobals, ModuleMap); 1074 }; 1075 1076 auto ModuleID = BM.getModuleIdentifier(); 1077 1078 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1079 all_of(CombinedIndex.getModuleHash(ModuleID), 1080 [](uint32_t V) { return V == 0; })) 1081 // Cache disabled or no entry for this module in the combined index or 1082 // no module hash. 1083 return RunThinBackend(AddStream); 1084 1085 SmallString<40> Key; 1086 // The module may be cached, this helps handling it. 1087 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1088 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1089 CfiFunctionDecls); 1090 if (AddStreamFn CacheAddStream = Cache(Task, Key)) 1091 return RunThinBackend(CacheAddStream); 1092 1093 return Error::success(); 1094 } 1095 1096 Error start( 1097 unsigned Task, BitcodeModule BM, 1098 const FunctionImporter::ImportMapTy &ImportList, 1099 const FunctionImporter::ExportSetTy &ExportList, 1100 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1101 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1102 StringRef ModulePath = BM.getModuleIdentifier(); 1103 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1104 const GVSummaryMapTy &DefinedGlobals = 1105 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1106 BackendThreadPool.async( 1107 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1108 const FunctionImporter::ImportMapTy &ImportList, 1109 const FunctionImporter::ExportSetTy &ExportList, 1110 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1111 &ResolvedODR, 1112 const GVSummaryMapTy &DefinedGlobals, 1113 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1114 Error E = runThinLTOBackendThread( 1115 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1116 ResolvedODR, DefinedGlobals, ModuleMap); 1117 if (E) { 1118 std::unique_lock<std::mutex> L(ErrMu); 1119 if (Err) 1120 Err = joinErrors(std::move(*Err), std::move(E)); 1121 else 1122 Err = std::move(E); 1123 } 1124 }, 1125 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1126 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1127 return Error::success(); 1128 } 1129 1130 Error wait() override { 1131 BackendThreadPool.wait(); 1132 if (Err) 1133 return std::move(*Err); 1134 else 1135 return Error::success(); 1136 } 1137 }; 1138 } // end anonymous namespace 1139 1140 ThinBackend lto::createInProcessThinBackend(unsigned ParallelismLevel) { 1141 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex, 1142 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1143 AddStreamFn AddStream, NativeObjectCache Cache) { 1144 return llvm::make_unique<InProcessThinBackend>( 1145 Conf, CombinedIndex, ParallelismLevel, ModuleToDefinedGVSummaries, 1146 AddStream, Cache); 1147 }; 1148 } 1149 1150 // Given the original \p Path to an output file, replace any path 1151 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1152 // resulting directory if it does not yet exist. 1153 std::string lto::getThinLTOOutputFile(const std::string &Path, 1154 const std::string &OldPrefix, 1155 const std::string &NewPrefix) { 1156 if (OldPrefix.empty() && NewPrefix.empty()) 1157 return Path; 1158 SmallString<128> NewPath(Path); 1159 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1160 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1161 if (!ParentPath.empty()) { 1162 // Make sure the new directory exists, creating it if necessary. 1163 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1164 llvm::errs() << "warning: could not create directory '" << ParentPath 1165 << "': " << EC.message() << '\n'; 1166 } 1167 return NewPath.str(); 1168 } 1169 1170 namespace { 1171 class WriteIndexesThinBackend : public ThinBackendProc { 1172 std::string OldPrefix, NewPrefix; 1173 bool ShouldEmitImportsFiles; 1174 raw_fd_ostream *LinkedObjectsFile; 1175 lto::IndexWriteCallback OnWrite; 1176 1177 public: 1178 WriteIndexesThinBackend( 1179 Config &Conf, ModuleSummaryIndex &CombinedIndex, 1180 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1181 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1182 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1183 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1184 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1185 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1186 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1187 1188 Error start( 1189 unsigned Task, BitcodeModule BM, 1190 const FunctionImporter::ImportMapTy &ImportList, 1191 const FunctionImporter::ExportSetTy &ExportList, 1192 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1193 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1194 StringRef ModulePath = BM.getModuleIdentifier(); 1195 std::string NewModulePath = 1196 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); 1197 1198 if (LinkedObjectsFile) 1199 *LinkedObjectsFile << NewModulePath << '\n'; 1200 1201 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1202 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1203 ImportList, ModuleToSummariesForIndex); 1204 1205 std::error_code EC; 1206 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1207 sys::fs::OpenFlags::F_None); 1208 if (EC) 1209 return errorCodeToError(EC); 1210 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1211 1212 if (ShouldEmitImportsFiles) { 1213 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1214 ModuleToSummariesForIndex); 1215 if (EC) 1216 return errorCodeToError(EC); 1217 } 1218 1219 if (OnWrite) 1220 OnWrite(ModulePath); 1221 return Error::success(); 1222 } 1223 1224 Error wait() override { return Error::success(); } 1225 }; 1226 } // end anonymous namespace 1227 1228 ThinBackend lto::createWriteIndexesThinBackend( 1229 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1230 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1231 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex, 1232 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1233 AddStreamFn AddStream, NativeObjectCache Cache) { 1234 return llvm::make_unique<WriteIndexesThinBackend>( 1235 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1236 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1237 }; 1238 } 1239 1240 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 1241 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1242 if (ThinLTO.ModuleMap.empty()) 1243 return Error::success(); 1244 1245 if (Conf.CombinedIndexHook && !Conf.CombinedIndexHook(ThinLTO.CombinedIndex)) 1246 return Error::success(); 1247 1248 // Collect for each module the list of function it defines (GUID -> 1249 // Summary). 1250 StringMap<GVSummaryMapTy> 1251 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1252 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1253 ModuleToDefinedGVSummaries); 1254 // Create entries for any modules that didn't have any GV summaries 1255 // (either they didn't have any GVs to start with, or we suppressed 1256 // generation of the summaries because they e.g. had inline assembly 1257 // uses that couldn't be promoted/renamed on export). This is so 1258 // InProcessThinBackend::start can still launch a backend thread, which 1259 // is passed the map of summaries for the module, without any special 1260 // handling for this case. 1261 for (auto &Mod : ThinLTO.ModuleMap) 1262 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1263 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1264 1265 // Synthesize entry counts for functions in the CombinedIndex. 1266 computeSyntheticCounts(ThinLTO.CombinedIndex); 1267 1268 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1269 ThinLTO.ModuleMap.size()); 1270 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1271 ThinLTO.ModuleMap.size()); 1272 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1273 1274 if (DumpThinCGSCCs) 1275 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1276 1277 if (Conf.OptLevel > 0) 1278 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1279 ImportLists, ExportLists); 1280 1281 // Figure out which symbols need to be internalized. This also needs to happen 1282 // at -O0 because summary-based DCE is implemented using internalization, and 1283 // we must apply DCE consistently with the full LTO module in order to avoid 1284 // undefined references during the final link. 1285 std::set<GlobalValue::GUID> ExportedGUIDs; 1286 for (auto &Res : GlobalResolutions) { 1287 // If the symbol does not have external references or it is not prevailing, 1288 // then not need to mark it as exported from a ThinLTO partition. 1289 if (Res.second.Partition != GlobalResolution::External || 1290 !Res.second.isPrevailingIRSymbol()) 1291 continue; 1292 auto GUID = GlobalValue::getGUID( 1293 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1294 // Mark exported unless index-based analysis determined it to be dead. 1295 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1296 ExportedGUIDs.insert(GUID); 1297 } 1298 1299 // Any functions referenced by the jump table in the regular LTO object must 1300 // be exported. 1301 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1302 ExportedGUIDs.insert( 1303 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1304 1305 auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) { 1306 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1307 return (ExportList != ExportLists.end() && 1308 ExportList->second.count(GUID)) || 1309 ExportedGUIDs.count(GUID); 1310 }; 1311 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported); 1312 1313 auto isPrevailing = [&](GlobalValue::GUID GUID, 1314 const GlobalValueSummary *S) { 1315 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1316 }; 1317 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1318 GlobalValue::GUID GUID, 1319 GlobalValue::LinkageTypes NewLinkage) { 1320 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1321 }; 1322 thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing, 1323 recordNewLinkage, GUIDPreservedSymbols); 1324 1325 std::unique_ptr<ThinBackendProc> BackendProc = 1326 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1327 AddStream, Cache); 1328 1329 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for combined 1330 // module and parallel code generation partitions. 1331 unsigned Task = RegularLTO.ParallelCodeGenParallelismLevel; 1332 for (auto &Mod : ThinLTO.ModuleMap) { 1333 if (Error E = BackendProc->start(Task, Mod.second, ImportLists[Mod.first], 1334 ExportLists[Mod.first], 1335 ResolvedODR[Mod.first], ThinLTO.ModuleMap)) 1336 return E; 1337 ++Task; 1338 } 1339 1340 return BackendProc->wait(); 1341 } 1342 1343 Expected<std::unique_ptr<ToolOutputFile>> 1344 lto::setupOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename, 1345 StringRef RemarksPasses, StringRef RemarksFormat, 1346 bool RemarksWithHotness, int Count) { 1347 std::string Filename = RemarksFilename; 1348 if (!Filename.empty() && Count != -1) 1349 Filename += ".thin." + llvm::utostr(Count) + ".yaml"; 1350 1351 auto ResultOrErr = llvm::setupOptimizationRemarks( 1352 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness); 1353 if (Error E = ResultOrErr.takeError()) 1354 return std::move(E); 1355 1356 if (*ResultOrErr) 1357 (*ResultOrErr)->keep(); 1358 1359 return ResultOrErr; 1360 } 1361 1362 Expected<std::unique_ptr<ToolOutputFile>> 1363 lto::setupStatsFile(StringRef StatsFilename) { 1364 // Setup output file to emit statistics. 1365 if (StatsFilename.empty()) 1366 return nullptr; 1367 1368 llvm::EnableStatistics(false); 1369 std::error_code EC; 1370 auto StatsFile = 1371 llvm::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::F_None); 1372 if (EC) 1373 return errorCodeToError(EC); 1374 1375 StatsFile->keep(); 1376 return std::move(StatsFile); 1377 } 1378