1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/StackSafetyAnalysis.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeReader.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/DiagnosticPrinter.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMRemarkStreamer.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/LTO/LTOBackend.h" 34 #include "llvm/LTO/SummaryBasedOptimizations.h" 35 #include "llvm/Linker/IRMover.h" 36 #include "llvm/MC/TargetRegistry.h" 37 #include "llvm/Object/IRObjectFile.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/FileSystem.h" 41 #include "llvm/Support/ManagedStatic.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/SHA1.h" 45 #include "llvm/Support/SourceMgr.h" 46 #include "llvm/Support/ThreadPool.h" 47 #include "llvm/Support/Threading.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/ToolOutputFile.h" 50 #include "llvm/Support/VCSRevision.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Transforms/IPO.h" 54 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h" 55 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 56 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 57 #include "llvm/Transforms/Utils/SplitModule.h" 58 59 #include <optional> 60 #include <set> 61 62 using namespace llvm; 63 using namespace lto; 64 using namespace object; 65 66 #define DEBUG_TYPE "lto" 67 68 static cl::opt<bool> 69 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 70 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 71 72 namespace llvm { 73 /// Enable global value internalization in LTO. 74 cl::opt<bool> EnableLTOInternalization( 75 "enable-lto-internalization", cl::init(true), cl::Hidden, 76 cl::desc("Enable global value internalization in LTO")); 77 78 /// Indicate we are linking with an allocator that supports hot/cold operator 79 /// new interfaces. 80 extern cl::opt<bool> SupportsHotColdNew; 81 82 /// Enable MemProf context disambiguation for thin link. 83 extern cl::opt<bool> EnableMemProfContextDisambiguation; 84 } // namespace llvm 85 86 // Computes a unique hash for the Module considering the current list of 87 // export/import and other global analysis results. 88 // The hash is produced in \p Key. 89 void llvm::computeLTOCacheKey( 90 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 91 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 92 const FunctionImporter::ExportSetTy &ExportList, 93 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 94 const GVSummaryMapTy &DefinedGlobals, 95 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 96 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 97 // Compute the unique hash for this entry. 98 // This is based on the current compiler version, the module itself, the 99 // export list, the hash for every single module in the import list, the 100 // list of ResolvedODR for the module, and the list of preserved symbols. 101 SHA1 Hasher; 102 103 // Start with the compiler revision 104 Hasher.update(LLVM_VERSION_STRING); 105 #ifdef LLVM_REVISION 106 Hasher.update(LLVM_REVISION); 107 #endif 108 109 // Include the parts of the LTO configuration that affect code generation. 110 auto AddString = [&](StringRef Str) { 111 Hasher.update(Str); 112 Hasher.update(ArrayRef<uint8_t>{0}); 113 }; 114 auto AddUnsigned = [&](unsigned I) { 115 uint8_t Data[4]; 116 support::endian::write32le(Data, I); 117 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 118 }; 119 auto AddUint64 = [&](uint64_t I) { 120 uint8_t Data[8]; 121 support::endian::write64le(Data, I); 122 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 123 }; 124 AddString(Conf.CPU); 125 // FIXME: Hash more of Options. For now all clients initialize Options from 126 // command-line flags (which is unsupported in production), but may set 127 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 128 // DataSections and DebuggerTuning via command line flags. 129 AddUnsigned(Conf.Options.RelaxELFRelocations); 130 AddUnsigned(Conf.Options.FunctionSections); 131 AddUnsigned(Conf.Options.DataSections); 132 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 133 for (auto &A : Conf.MAttrs) 134 AddString(A); 135 if (Conf.RelocModel) 136 AddUnsigned(*Conf.RelocModel); 137 else 138 AddUnsigned(-1); 139 if (Conf.CodeModel) 140 AddUnsigned(*Conf.CodeModel); 141 else 142 AddUnsigned(-1); 143 for (const auto &S : Conf.MllvmArgs) 144 AddString(S); 145 AddUnsigned(static_cast<int>(Conf.CGOptLevel)); 146 AddUnsigned(static_cast<int>(Conf.CGFileType)); 147 AddUnsigned(Conf.OptLevel); 148 AddUnsigned(Conf.Freestanding); 149 AddString(Conf.OptPipeline); 150 AddString(Conf.AAPipeline); 151 AddString(Conf.OverrideTriple); 152 AddString(Conf.DefaultTriple); 153 AddString(Conf.DwoDir); 154 155 // Include the hash for the current module 156 auto ModHash = Index.getModuleHash(ModuleID); 157 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 158 159 std::vector<uint64_t> ExportsGUID; 160 ExportsGUID.reserve(ExportList.size()); 161 for (const auto &VI : ExportList) { 162 auto GUID = VI.getGUID(); 163 ExportsGUID.push_back(GUID); 164 } 165 166 // Sort the export list elements GUIDs. 167 llvm::sort(ExportsGUID); 168 for (uint64_t GUID : ExportsGUID) { 169 // The export list can impact the internalization, be conservative here 170 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 171 } 172 173 // Include the hash for every module we import functions from. The set of 174 // imported symbols for each module may affect code generation and is 175 // sensitive to link order, so include that as well. 176 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 177 struct ImportModule { 178 ImportMapIteratorTy ModIt; 179 const ModuleSummaryIndex::ModuleInfo *ModInfo; 180 181 StringRef getIdentifier() const { return ModIt->getFirst(); } 182 const FunctionImporter::FunctionsToImportTy &getFunctions() const { 183 return ModIt->second; 184 } 185 186 const ModuleHash &getHash() const { return ModInfo->second; } 187 }; 188 189 std::vector<ImportModule> ImportModulesVector; 190 ImportModulesVector.reserve(ImportList.size()); 191 192 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 193 ++It) { 194 ImportModulesVector.push_back({It, Index.getModule(It->getFirst())}); 195 } 196 // Order using module hash, to be both independent of module name and 197 // module order. 198 llvm::sort(ImportModulesVector, 199 [](const ImportModule &Lhs, const ImportModule &Rhs) -> bool { 200 return Lhs.getHash() < Rhs.getHash(); 201 }); 202 for (const ImportModule &Entry : ImportModulesVector) { 203 auto ModHash = Entry.getHash(); 204 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 205 206 AddUint64(Entry.getFunctions().size()); 207 for (auto &Fn : Entry.getFunctions()) 208 AddUint64(Fn); 209 } 210 211 // Include the hash for the resolved ODR. 212 for (auto &Entry : ResolvedODR) { 213 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 214 sizeof(GlobalValue::GUID))); 215 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 216 sizeof(GlobalValue::LinkageTypes))); 217 } 218 219 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 220 // defined in this module. 221 std::set<GlobalValue::GUID> UsedCfiDefs; 222 std::set<GlobalValue::GUID> UsedCfiDecls; 223 224 // Typeids used in this module. 225 std::set<GlobalValue::GUID> UsedTypeIds; 226 227 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 228 if (CfiFunctionDefs.count(ValueGUID)) 229 UsedCfiDefs.insert(ValueGUID); 230 if (CfiFunctionDecls.count(ValueGUID)) 231 UsedCfiDecls.insert(ValueGUID); 232 }; 233 234 auto AddUsedThings = [&](GlobalValueSummary *GS) { 235 if (!GS) return; 236 AddUnsigned(GS->getVisibility()); 237 AddUnsigned(GS->isLive()); 238 AddUnsigned(GS->canAutoHide()); 239 for (const ValueInfo &VI : GS->refs()) { 240 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 241 AddUsedCfiGlobal(VI.getGUID()); 242 } 243 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 244 AddUnsigned(GVS->maybeReadOnly()); 245 AddUnsigned(GVS->maybeWriteOnly()); 246 } 247 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 248 for (auto &TT : FS->type_tests()) 249 UsedTypeIds.insert(TT); 250 for (auto &TT : FS->type_test_assume_vcalls()) 251 UsedTypeIds.insert(TT.GUID); 252 for (auto &TT : FS->type_checked_load_vcalls()) 253 UsedTypeIds.insert(TT.GUID); 254 for (auto &TT : FS->type_test_assume_const_vcalls()) 255 UsedTypeIds.insert(TT.VFunc.GUID); 256 for (auto &TT : FS->type_checked_load_const_vcalls()) 257 UsedTypeIds.insert(TT.VFunc.GUID); 258 for (auto &ET : FS->calls()) { 259 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 260 AddUsedCfiGlobal(ET.first.getGUID()); 261 } 262 } 263 }; 264 265 // Include the hash for the linkage type to reflect internalization and weak 266 // resolution, and collect any used type identifier resolutions. 267 for (auto &GS : DefinedGlobals) { 268 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 269 Hasher.update( 270 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 271 AddUsedCfiGlobal(GS.first); 272 AddUsedThings(GS.second); 273 } 274 275 // Imported functions may introduce new uses of type identifier resolutions, 276 // so we need to collect their used resolutions as well. 277 for (const ImportModule &ImpM : ImportModulesVector) 278 for (auto &ImpF : ImpM.getFunctions()) { 279 GlobalValueSummary *S = 280 Index.findSummaryInModule(ImpF, ImpM.getIdentifier()); 281 AddUsedThings(S); 282 // If this is an alias, we also care about any types/etc. that the aliasee 283 // may reference. 284 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 285 AddUsedThings(AS->getBaseObject()); 286 } 287 288 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 289 AddString(TId); 290 291 AddUnsigned(S.TTRes.TheKind); 292 AddUnsigned(S.TTRes.SizeM1BitWidth); 293 294 AddUint64(S.TTRes.AlignLog2); 295 AddUint64(S.TTRes.SizeM1); 296 AddUint64(S.TTRes.BitMask); 297 AddUint64(S.TTRes.InlineBits); 298 299 AddUint64(S.WPDRes.size()); 300 for (auto &WPD : S.WPDRes) { 301 AddUnsigned(WPD.first); 302 AddUnsigned(WPD.second.TheKind); 303 AddString(WPD.second.SingleImplName); 304 305 AddUint64(WPD.second.ResByArg.size()); 306 for (auto &ByArg : WPD.second.ResByArg) { 307 AddUint64(ByArg.first.size()); 308 for (uint64_t Arg : ByArg.first) 309 AddUint64(Arg); 310 AddUnsigned(ByArg.second.TheKind); 311 AddUint64(ByArg.second.Info); 312 AddUnsigned(ByArg.second.Byte); 313 AddUnsigned(ByArg.second.Bit); 314 } 315 } 316 }; 317 318 // Include the hash for all type identifiers used by this module. 319 for (GlobalValue::GUID TId : UsedTypeIds) { 320 auto TidIter = Index.typeIds().equal_range(TId); 321 for (auto It = TidIter.first; It != TidIter.second; ++It) 322 AddTypeIdSummary(It->second.first, It->second.second); 323 } 324 325 AddUnsigned(UsedCfiDefs.size()); 326 for (auto &V : UsedCfiDefs) 327 AddUint64(V); 328 329 AddUnsigned(UsedCfiDecls.size()); 330 for (auto &V : UsedCfiDecls) 331 AddUint64(V); 332 333 if (!Conf.SampleProfile.empty()) { 334 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 335 if (FileOrErr) { 336 Hasher.update(FileOrErr.get()->getBuffer()); 337 338 if (!Conf.ProfileRemapping.empty()) { 339 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 340 if (FileOrErr) 341 Hasher.update(FileOrErr.get()->getBuffer()); 342 } 343 } 344 } 345 346 Key = toHex(Hasher.result()); 347 } 348 349 static void thinLTOResolvePrevailingGUID( 350 const Config &C, ValueInfo VI, 351 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 352 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 353 isPrevailing, 354 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 355 recordNewLinkage, 356 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 357 GlobalValue::VisibilityTypes Visibility = 358 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 359 : GlobalValue::DefaultVisibility; 360 for (auto &S : VI.getSummaryList()) { 361 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 362 // Ignore local and appending linkage values since the linker 363 // doesn't resolve them. 364 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 365 GlobalValue::isAppendingLinkage(S->linkage())) 366 continue; 367 // We need to emit only one of these. The prevailing module will keep it, 368 // but turned into a weak, while the others will drop it when possible. 369 // This is both a compile-time optimization and a correctness 370 // transformation. This is necessary for correctness when we have exported 371 // a reference - we need to convert the linkonce to weak to 372 // ensure a copy is kept to satisfy the exported reference. 373 // FIXME: We may want to split the compile time and correctness 374 // aspects into separate routines. 375 if (isPrevailing(VI.getGUID(), S.get())) { 376 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 377 S->setLinkage(GlobalValue::getWeakLinkage( 378 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 379 // The kept copy is eligible for auto-hiding (hidden visibility) if all 380 // copies were (i.e. they were all linkonce_odr global unnamed addr). 381 // If any copy is not (e.g. it was originally weak_odr), then the symbol 382 // must remain externally available (e.g. a weak_odr from an explicitly 383 // instantiated template). Additionally, if it is in the 384 // GUIDPreservedSymbols set, that means that it is visibile outside 385 // the summary (e.g. in a native object or a bitcode file without 386 // summary), and in that case we cannot hide it as it isn't possible to 387 // check all copies. 388 S->setCanAutoHide(VI.canAutoHide() && 389 !GUIDPreservedSymbols.count(VI.getGUID())); 390 } 391 if (C.VisibilityScheme == Config::FromPrevailing) 392 Visibility = S->getVisibility(); 393 } 394 // Alias and aliasee can't be turned into available_externally. 395 else if (!isa<AliasSummary>(S.get()) && 396 !GlobalInvolvedWithAlias.count(S.get())) 397 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 398 399 // For ELF, set visibility to the computed visibility from summaries. We 400 // don't track visibility from declarations so this may be more relaxed than 401 // the most constraining one. 402 if (C.VisibilityScheme == Config::ELF) 403 S->setVisibility(Visibility); 404 405 if (S->linkage() != OriginalLinkage) 406 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 407 } 408 409 if (C.VisibilityScheme == Config::FromPrevailing) { 410 for (auto &S : VI.getSummaryList()) { 411 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 412 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 413 GlobalValue::isAppendingLinkage(S->linkage())) 414 continue; 415 S->setVisibility(Visibility); 416 } 417 } 418 } 419 420 /// Resolve linkage for prevailing symbols in the \p Index. 421 // 422 // We'd like to drop these functions if they are no longer referenced in the 423 // current module. However there is a chance that another module is still 424 // referencing them because of the import. We make sure we always emit at least 425 // one copy. 426 void llvm::thinLTOResolvePrevailingInIndex( 427 const Config &C, ModuleSummaryIndex &Index, 428 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 429 isPrevailing, 430 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 431 recordNewLinkage, 432 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 433 // We won't optimize the globals that are referenced by an alias for now 434 // Ideally we should turn the alias into a global and duplicate the definition 435 // when needed. 436 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 437 for (auto &I : Index) 438 for (auto &S : I.second.SummaryList) 439 if (auto AS = dyn_cast<AliasSummary>(S.get())) 440 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 441 442 for (auto &I : Index) 443 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 444 GlobalInvolvedWithAlias, isPrevailing, 445 recordNewLinkage, GUIDPreservedSymbols); 446 } 447 448 static void thinLTOInternalizeAndPromoteGUID( 449 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 450 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 451 isPrevailing) { 452 auto ExternallyVisibleCopies = 453 llvm::count_if(VI.getSummaryList(), 454 [](const std::unique_ptr<GlobalValueSummary> &Summary) { 455 return !GlobalValue::isLocalLinkage(Summary->linkage()); 456 }); 457 458 for (auto &S : VI.getSummaryList()) { 459 // First see if we need to promote an internal value because it is not 460 // exported. 461 if (isExported(S->modulePath(), VI)) { 462 if (GlobalValue::isLocalLinkage(S->linkage())) 463 S->setLinkage(GlobalValue::ExternalLinkage); 464 continue; 465 } 466 467 // Otherwise, see if we can internalize. 468 if (!EnableLTOInternalization) 469 continue; 470 471 // Non-exported values with external linkage can be internalized. 472 if (GlobalValue::isExternalLinkage(S->linkage())) { 473 S->setLinkage(GlobalValue::InternalLinkage); 474 continue; 475 } 476 477 // Non-exported function and variable definitions with a weak-for-linker 478 // linkage can be internalized in certain cases. The minimum legality 479 // requirements would be that they are not address taken to ensure that we 480 // don't break pointer equality checks, and that variables are either read- 481 // or write-only. For functions, this is the case if either all copies are 482 // [local_]unnamed_addr, or we can propagate reference edge attributes 483 // (which is how this is guaranteed for variables, when analyzing whether 484 // they are read or write-only). 485 // 486 // However, we only get to this code for weak-for-linkage values in one of 487 // two cases: 488 // 1) The prevailing copy is not in IR (it is in native code). 489 // 2) The prevailing copy in IR is not exported from its module. 490 // Additionally, at least for the new LTO API, case 2 will only happen if 491 // there is exactly one definition of the value (i.e. in exactly one 492 // module), as duplicate defs are result in the value being marked exported. 493 // Likely, users of the legacy LTO API are similar, however, currently there 494 // are llvm-lto based tests of the legacy LTO API that do not mark 495 // duplicate linkonce_odr copies as exported via the tool, so we need 496 // to handle that case below by checking the number of copies. 497 // 498 // Generally, we only want to internalize a weak-for-linker value in case 499 // 2, because in case 1 we cannot see how the value is used to know if it 500 // is read or write-only. We also don't want to bloat the binary with 501 // multiple internalized copies of non-prevailing linkonce/weak functions. 502 // Note if we don't internalize, we will convert non-prevailing copies to 503 // available_externally anyway, so that we drop them after inlining. The 504 // only reason to internalize such a function is if we indeed have a single 505 // copy, because internalizing it won't increase binary size, and enables 506 // use of inliner heuristics that are more aggressive in the face of a 507 // single call to a static (local). For variables, internalizing a read or 508 // write only variable can enable more aggressive optimization. However, we 509 // already perform this elsewhere in the ThinLTO backend handling for 510 // read or write-only variables (processGlobalForThinLTO). 511 // 512 // Therefore, only internalize linkonce/weak if there is a single copy, that 513 // is prevailing in this IR module. We can do so aggressively, without 514 // requiring the address to be insignificant, or that a variable be read or 515 // write-only. 516 if (!GlobalValue::isWeakForLinker(S->linkage()) || 517 GlobalValue::isExternalWeakLinkage(S->linkage())) 518 continue; 519 520 if (isPrevailing(VI.getGUID(), S.get()) && ExternallyVisibleCopies == 1) 521 S->setLinkage(GlobalValue::InternalLinkage); 522 } 523 } 524 525 // Update the linkages in the given \p Index to mark exported values 526 // as external and non-exported values as internal. 527 void llvm::thinLTOInternalizeAndPromoteInIndex( 528 ModuleSummaryIndex &Index, 529 function_ref<bool(StringRef, ValueInfo)> isExported, 530 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 531 isPrevailing) { 532 for (auto &I : Index) 533 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 534 isPrevailing); 535 } 536 537 // Requires a destructor for std::vector<InputModule>. 538 InputFile::~InputFile() = default; 539 540 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 541 std::unique_ptr<InputFile> File(new InputFile); 542 543 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 544 if (!FOrErr) 545 return FOrErr.takeError(); 546 547 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 548 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 549 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 550 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 551 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 552 553 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 554 size_t Begin = File->Symbols.size(); 555 for (const irsymtab::Reader::SymbolRef &Sym : 556 FOrErr->TheReader.module_symbols(I)) 557 // Skip symbols that are irrelevant to LTO. Note that this condition needs 558 // to match the one in Skip() in LTO::addRegularLTO(). 559 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 560 File->Symbols.push_back(Sym); 561 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 562 } 563 564 File->Mods = FOrErr->Mods; 565 File->Strtab = std::move(FOrErr->Strtab); 566 return std::move(File); 567 } 568 569 StringRef InputFile::getName() const { 570 return Mods[0].getModuleIdentifier(); 571 } 572 573 BitcodeModule &InputFile::getSingleBitcodeModule() { 574 assert(Mods.size() == 1 && "Expect only one bitcode module"); 575 return Mods[0]; 576 } 577 578 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 579 const Config &Conf) 580 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 581 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 582 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 583 584 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 585 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 586 if (!Backend) 587 this->Backend = 588 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 589 } 590 591 LTO::LTO(Config Conf, ThinBackend Backend, 592 unsigned ParallelCodeGenParallelismLevel, LTOKind LTOMode) 593 : Conf(std::move(Conf)), 594 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 595 ThinLTO(std::move(Backend)), 596 GlobalResolutions(std::make_optional<StringMap<GlobalResolution>>()), 597 LTOMode(LTOMode) {} 598 599 // Requires a destructor for MapVector<BitcodeModule>. 600 LTO::~LTO() = default; 601 602 // Add the symbols in the given module to the GlobalResolutions map, and resolve 603 // their partitions. 604 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 605 ArrayRef<SymbolResolution> Res, 606 unsigned Partition, bool InSummary) { 607 auto *ResI = Res.begin(); 608 auto *ResE = Res.end(); 609 (void)ResE; 610 const Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 611 for (const InputFile::Symbol &Sym : Syms) { 612 assert(ResI != ResE); 613 SymbolResolution Res = *ResI++; 614 615 auto &GlobalRes = (*GlobalResolutions)[Sym.getName()]; 616 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 617 if (Res.Prevailing) { 618 assert(!GlobalRes.Prevailing && 619 "Multiple prevailing defs are not allowed"); 620 GlobalRes.Prevailing = true; 621 GlobalRes.IRName = std::string(Sym.getIRName()); 622 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 623 // Sometimes it can be two copies of symbol in a module and prevailing 624 // symbol can have no IR name. That might happen if symbol is defined in 625 // module level inline asm block. In case we have multiple modules with 626 // the same symbol we want to use IR name of the prevailing symbol. 627 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 628 // we can later use it to check if there is any prevailing copy in IR. 629 GlobalRes.IRName = std::string(Sym.getIRName()); 630 } 631 632 // In rare occasion, the symbol used to initialize GlobalRes has a different 633 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a 634 // symbol is referenced through its mangled name, say @"\01_symbol" while 635 // the IRName is @symbol (the prefix underscore comes from MachO mangling). 636 // In that case, we have the same actual Symbol that can get two different 637 // GUID, leading to some invalid internalization. Workaround this by marking 638 // the GlobalRes external. 639 640 // FIXME: instead of this check, it would be desirable to compute GUIDs 641 // based on mangled name, but this requires an access to the Target Triple 642 // and would be relatively invasive on the codebase. 643 if (GlobalRes.IRName != Sym.getIRName()) { 644 GlobalRes.Partition = GlobalResolution::External; 645 GlobalRes.VisibleOutsideSummary = true; 646 } 647 648 // Set the partition to external if we know it is re-defined by the linker 649 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 650 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 651 // already recorded as being referenced from a different partition. 652 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 653 (GlobalRes.Partition != GlobalResolution::Unknown && 654 GlobalRes.Partition != Partition)) { 655 GlobalRes.Partition = GlobalResolution::External; 656 } else 657 // First recorded reference, save the current partition. 658 GlobalRes.Partition = Partition; 659 660 // Flag as visible outside of summary if visible from a regular object or 661 // from a module that does not have a summary. 662 GlobalRes.VisibleOutsideSummary |= 663 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 664 665 GlobalRes.ExportDynamic |= Res.ExportDynamic; 666 } 667 } 668 669 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 670 ArrayRef<SymbolResolution> Res) { 671 StringRef Path = Input->getName(); 672 OS << Path << '\n'; 673 auto ResI = Res.begin(); 674 for (const InputFile::Symbol &Sym : Input->symbols()) { 675 assert(ResI != Res.end()); 676 SymbolResolution Res = *ResI++; 677 678 OS << "-r=" << Path << ',' << Sym.getName() << ','; 679 if (Res.Prevailing) 680 OS << 'p'; 681 if (Res.FinalDefinitionInLinkageUnit) 682 OS << 'l'; 683 if (Res.VisibleToRegularObj) 684 OS << 'x'; 685 if (Res.LinkerRedefined) 686 OS << 'r'; 687 OS << '\n'; 688 } 689 OS.flush(); 690 assert(ResI == Res.end()); 691 } 692 693 Error LTO::add(std::unique_ptr<InputFile> Input, 694 ArrayRef<SymbolResolution> Res) { 695 assert(!CalledGetMaxTasks); 696 697 if (Conf.ResolutionFile) 698 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 699 700 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 701 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 702 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 703 Conf.VisibilityScheme = Config::ELF; 704 } 705 706 const SymbolResolution *ResI = Res.begin(); 707 for (unsigned I = 0; I != Input->Mods.size(); ++I) 708 if (Error Err = addModule(*Input, I, ResI, Res.end())) 709 return Err; 710 711 assert(ResI == Res.end()); 712 return Error::success(); 713 } 714 715 Error LTO::addModule(InputFile &Input, unsigned ModI, 716 const SymbolResolution *&ResI, 717 const SymbolResolution *ResE) { 718 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 719 if (!LTOInfo) 720 return LTOInfo.takeError(); 721 722 if (EnableSplitLTOUnit) { 723 // If only some modules were split, flag this in the index so that 724 // we can skip or error on optimizations that need consistently split 725 // modules (whole program devirt and lower type tests). 726 if (*EnableSplitLTOUnit != LTOInfo->EnableSplitLTOUnit) 727 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 728 } else 729 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 730 731 BitcodeModule BM = Input.Mods[ModI]; 732 733 if ((LTOMode == LTOK_UnifiedRegular || LTOMode == LTOK_UnifiedThin) && 734 !LTOInfo->UnifiedLTO) 735 return make_error<StringError>( 736 "unified LTO compilation must use " 737 "compatible bitcode modules (use -funified-lto)", 738 inconvertibleErrorCode()); 739 740 if (LTOInfo->UnifiedLTO && LTOMode == LTOK_Default) 741 LTOMode = LTOK_UnifiedThin; 742 743 bool IsThinLTO = LTOInfo->IsThinLTO && (LTOMode != LTOK_UnifiedRegular); 744 745 auto ModSyms = Input.module_symbols(ModI); 746 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 747 IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 748 LTOInfo->HasSummary); 749 750 if (IsThinLTO) 751 return addThinLTO(BM, ModSyms, ResI, ResE); 752 753 RegularLTO.EmptyCombinedModule = false; 754 Expected<RegularLTOState::AddedModule> ModOrErr = 755 addRegularLTO(BM, ModSyms, ResI, ResE); 756 if (!ModOrErr) 757 return ModOrErr.takeError(); 758 759 if (!LTOInfo->HasSummary) 760 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 761 762 // Regular LTO module summaries are added to a dummy module that represents 763 // the combined regular LTO module. 764 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "")) 765 return Err; 766 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 767 return Error::success(); 768 } 769 770 // Checks whether the given global value is in a non-prevailing comdat 771 // (comdat containing values the linker indicated were not prevailing, 772 // which we then dropped to available_externally), and if so, removes 773 // it from the comdat. This is called for all global values to ensure the 774 // comdat is empty rather than leaving an incomplete comdat. It is needed for 775 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 776 // and thin LTO modules) compilation. Since the regular LTO module will be 777 // linked first in the final native link, we want to make sure the linker 778 // doesn't select any of these incomplete comdats that would be left 779 // in the regular LTO module without this cleanup. 780 static void 781 handleNonPrevailingComdat(GlobalValue &GV, 782 std::set<const Comdat *> &NonPrevailingComdats) { 783 Comdat *C = GV.getComdat(); 784 if (!C) 785 return; 786 787 if (!NonPrevailingComdats.count(C)) 788 return; 789 790 // Additionally need to drop all global values from the comdat to 791 // available_externally, to satisfy the COMDAT requirement that all members 792 // are discarded as a unit. The non-local linkage global values avoid 793 // duplicate definition linker errors. 794 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 795 796 if (auto GO = dyn_cast<GlobalObject>(&GV)) 797 GO->setComdat(nullptr); 798 } 799 800 // Add a regular LTO object to the link. 801 // The resulting module needs to be linked into the combined LTO module with 802 // linkRegularLTO. 803 Expected<LTO::RegularLTOState::AddedModule> 804 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 805 const SymbolResolution *&ResI, 806 const SymbolResolution *ResE) { 807 RegularLTOState::AddedModule Mod; 808 Expected<std::unique_ptr<Module>> MOrErr = 809 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 810 /*IsImporting*/ false); 811 if (!MOrErr) 812 return MOrErr.takeError(); 813 Module &M = **MOrErr; 814 Mod.M = std::move(*MOrErr); 815 816 if (Error Err = M.materializeMetadata()) 817 return std::move(Err); 818 819 // If cfi.functions is present and we are in regular LTO mode, LowerTypeTests 820 // will rename local functions in the merged module as "<function name>.1". 821 // This causes linking errors, since other parts of the module expect the 822 // original function name. 823 if (LTOMode == LTOK_UnifiedRegular) 824 if (NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions")) 825 M.eraseNamedMetadata(CfiFunctionsMD); 826 827 UpgradeDebugInfo(M); 828 829 ModuleSymbolTable SymTab; 830 SymTab.addModule(&M); 831 832 for (GlobalVariable &GV : M.globals()) 833 if (GV.hasAppendingLinkage()) 834 Mod.Keep.push_back(&GV); 835 836 DenseSet<GlobalObject *> AliasedGlobals; 837 for (auto &GA : M.aliases()) 838 if (GlobalObject *GO = GA.getAliaseeObject()) 839 AliasedGlobals.insert(GO); 840 841 // In this function we need IR GlobalValues matching the symbols in Syms 842 // (which is not backed by a module), so we need to enumerate them in the same 843 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 844 // matches the order of an irsymtab, but when we read the irsymtab in 845 // InputFile::create we omit some symbols that are irrelevant to LTO. The 846 // Skip() function skips the same symbols from the module as InputFile does 847 // from the symbol table. 848 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 849 auto Skip = [&]() { 850 while (MsymI != MsymE) { 851 auto Flags = SymTab.getSymbolFlags(*MsymI); 852 if ((Flags & object::BasicSymbolRef::SF_Global) && 853 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 854 return; 855 ++MsymI; 856 } 857 }; 858 Skip(); 859 860 std::set<const Comdat *> NonPrevailingComdats; 861 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 862 for (const InputFile::Symbol &Sym : Syms) { 863 assert(ResI != ResE); 864 SymbolResolution Res = *ResI++; 865 866 assert(MsymI != MsymE); 867 ModuleSymbolTable::Symbol Msym = *MsymI++; 868 Skip(); 869 870 if (GlobalValue *GV = dyn_cast_if_present<GlobalValue *>(Msym)) { 871 if (Res.Prevailing) { 872 if (Sym.isUndefined()) 873 continue; 874 Mod.Keep.push_back(GV); 875 // For symbols re-defined with linker -wrap and -defsym options, 876 // set the linkage to weak to inhibit IPO. The linkage will be 877 // restored by the linker. 878 if (Res.LinkerRedefined) 879 GV->setLinkage(GlobalValue::WeakAnyLinkage); 880 881 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 882 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 883 GV->setLinkage(GlobalValue::getWeakLinkage( 884 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 885 } else if (isa<GlobalObject>(GV) && 886 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 887 GV->hasAvailableExternallyLinkage()) && 888 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 889 // Any of the above three types of linkage indicates that the 890 // chosen prevailing symbol will have the same semantics as this copy of 891 // the symbol, so we may be able to link it with available_externally 892 // linkage. We will decide later whether to do that when we link this 893 // module (in linkRegularLTO), based on whether it is undefined. 894 Mod.Keep.push_back(GV); 895 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 896 if (GV->hasComdat()) 897 NonPrevailingComdats.insert(GV->getComdat()); 898 cast<GlobalObject>(GV)->setComdat(nullptr); 899 } 900 901 // Set the 'local' flag based on the linker resolution for this symbol. 902 if (Res.FinalDefinitionInLinkageUnit) { 903 GV->setDSOLocal(true); 904 if (GV->hasDLLImportStorageClass()) 905 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 906 DefaultStorageClass); 907 } 908 } else if (auto *AS = 909 dyn_cast_if_present<ModuleSymbolTable::AsmSymbol *>(Msym)) { 910 // Collect non-prevailing symbols. 911 if (!Res.Prevailing) 912 NonPrevailingAsmSymbols.insert(AS->first); 913 } else { 914 llvm_unreachable("unknown symbol type"); 915 } 916 917 // Common resolution: collect the maximum size/alignment over all commons. 918 // We also record if we see an instance of a common as prevailing, so that 919 // if none is prevailing we can ignore it later. 920 if (Sym.isCommon()) { 921 // FIXME: We should figure out what to do about commons defined by asm. 922 // For now they aren't reported correctly by ModuleSymbolTable. 923 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 924 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 925 if (uint32_t SymAlignValue = Sym.getCommonAlignment()) { 926 CommonRes.Alignment = 927 std::max(Align(SymAlignValue), CommonRes.Alignment); 928 } 929 CommonRes.Prevailing |= Res.Prevailing; 930 } 931 } 932 933 if (!M.getComdatSymbolTable().empty()) 934 for (GlobalValue &GV : M.global_values()) 935 handleNonPrevailingComdat(GV, NonPrevailingComdats); 936 937 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 938 // block. 939 if (!M.getModuleInlineAsm().empty()) { 940 std::string NewIA = ".lto_discard"; 941 if (!NonPrevailingAsmSymbols.empty()) { 942 // Don't dicard a symbol if there is a live .symver for it. 943 ModuleSymbolTable::CollectAsmSymvers( 944 M, [&](StringRef Name, StringRef Alias) { 945 if (!NonPrevailingAsmSymbols.count(Alias)) 946 NonPrevailingAsmSymbols.erase(Name); 947 }); 948 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 949 } 950 NewIA += "\n"; 951 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 952 } 953 954 assert(MsymI == MsymE); 955 return std::move(Mod); 956 } 957 958 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 959 bool LivenessFromIndex) { 960 std::vector<GlobalValue *> Keep; 961 for (GlobalValue *GV : Mod.Keep) { 962 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 963 if (Function *F = dyn_cast<Function>(GV)) { 964 if (DiagnosticOutputFile) { 965 if (Error Err = F->materialize()) 966 return Err; 967 OptimizationRemarkEmitter ORE(F, nullptr); 968 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 969 << ore::NV("Function", F) 970 << " not added to the combined module "); 971 } 972 } 973 continue; 974 } 975 976 if (!GV->hasAvailableExternallyLinkage()) { 977 Keep.push_back(GV); 978 continue; 979 } 980 981 // Only link available_externally definitions if we don't already have a 982 // definition. 983 GlobalValue *CombinedGV = 984 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 985 if (CombinedGV && !CombinedGV->isDeclaration()) 986 continue; 987 988 Keep.push_back(GV); 989 } 990 991 return RegularLTO.Mover->move(std::move(Mod.M), Keep, nullptr, 992 /* IsPerformingImport */ false); 993 } 994 995 // Add a ThinLTO module to the link. 996 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 997 const SymbolResolution *&ResI, 998 const SymbolResolution *ResE) { 999 const SymbolResolution *ResITmp = ResI; 1000 for (const InputFile::Symbol &Sym : Syms) { 1001 assert(ResITmp != ResE); 1002 SymbolResolution Res = *ResITmp++; 1003 1004 if (!Sym.getIRName().empty()) { 1005 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 1006 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 1007 if (Res.Prevailing) 1008 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 1009 } 1010 } 1011 1012 if (Error Err = 1013 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 1014 [&](GlobalValue::GUID GUID) { 1015 return ThinLTO.PrevailingModuleForGUID[GUID] == 1016 BM.getModuleIdentifier(); 1017 })) 1018 return Err; 1019 LLVM_DEBUG(dbgs() << "Module " << BM.getModuleIdentifier() << "\n"); 1020 1021 for (const InputFile::Symbol &Sym : Syms) { 1022 assert(ResI != ResE); 1023 SymbolResolution Res = *ResI++; 1024 1025 if (!Sym.getIRName().empty()) { 1026 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 1027 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 1028 if (Res.Prevailing) { 1029 assert(ThinLTO.PrevailingModuleForGUID[GUID] == 1030 BM.getModuleIdentifier()); 1031 1032 // For linker redefined symbols (via --wrap or --defsym) we want to 1033 // switch the linkage to `weak` to prevent IPOs from happening. 1034 // Find the summary in the module for this very GV and record the new 1035 // linkage so that we can switch it when we import the GV. 1036 if (Res.LinkerRedefined) 1037 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 1038 GUID, BM.getModuleIdentifier())) 1039 S->setLinkage(GlobalValue::WeakAnyLinkage); 1040 } 1041 1042 // If the linker resolved the symbol to a local definition then mark it 1043 // as local in the summary for the module we are adding. 1044 if (Res.FinalDefinitionInLinkageUnit) { 1045 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 1046 GUID, BM.getModuleIdentifier())) { 1047 S->setDSOLocal(true); 1048 } 1049 } 1050 } 1051 } 1052 1053 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 1054 return make_error<StringError>( 1055 "Expected at most one ThinLTO module per bitcode file", 1056 inconvertibleErrorCode()); 1057 1058 if (!Conf.ThinLTOModulesToCompile.empty()) { 1059 if (!ThinLTO.ModulesToCompile) 1060 ThinLTO.ModulesToCompile = ModuleMapType(); 1061 // This is a fuzzy name matching where only modules with name containing the 1062 // specified switch values are going to be compiled. 1063 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 1064 if (BM.getModuleIdentifier().contains(Name)) { 1065 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 1066 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 1067 << " to compile\n"; 1068 } 1069 } 1070 } 1071 1072 return Error::success(); 1073 } 1074 1075 unsigned LTO::getMaxTasks() const { 1076 CalledGetMaxTasks = true; 1077 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 1078 : ThinLTO.ModuleMap.size(); 1079 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 1080 } 1081 1082 // If only some of the modules were split, we cannot correctly handle 1083 // code that contains type tests or type checked loads. 1084 Error LTO::checkPartiallySplit() { 1085 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 1086 return Error::success(); 1087 1088 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 1089 Intrinsic::getName(Intrinsic::type_test)); 1090 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 1091 Intrinsic::getName(Intrinsic::type_checked_load)); 1092 Function *TypeCheckedLoadRelativeFunc = 1093 RegularLTO.CombinedModule->getFunction( 1094 Intrinsic::getName(Intrinsic::type_checked_load_relative)); 1095 1096 // First check if there are type tests / type checked loads in the 1097 // merged regular LTO module IR. 1098 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 1099 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()) || 1100 (TypeCheckedLoadRelativeFunc && 1101 !TypeCheckedLoadRelativeFunc->use_empty())) 1102 return make_error<StringError>( 1103 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1104 inconvertibleErrorCode()); 1105 1106 // Otherwise check if there are any recorded in the combined summary from the 1107 // ThinLTO modules. 1108 for (auto &P : ThinLTO.CombinedIndex) { 1109 for (auto &S : P.second.SummaryList) { 1110 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1111 if (!FS) 1112 continue; 1113 if (!FS->type_test_assume_vcalls().empty() || 1114 !FS->type_checked_load_vcalls().empty() || 1115 !FS->type_test_assume_const_vcalls().empty() || 1116 !FS->type_checked_load_const_vcalls().empty() || 1117 !FS->type_tests().empty()) 1118 return make_error<StringError>( 1119 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1120 inconvertibleErrorCode()); 1121 } 1122 } 1123 return Error::success(); 1124 } 1125 1126 Error LTO::run(AddStreamFn AddStream, FileCache Cache) { 1127 // Compute "dead" symbols, we don't want to import/export these! 1128 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 1129 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 1130 for (auto &Res : *GlobalResolutions) { 1131 // Normally resolution have IR name of symbol. We can do nothing here 1132 // otherwise. See comments in GlobalResolution struct for more details. 1133 if (Res.second.IRName.empty()) 1134 continue; 1135 1136 GlobalValue::GUID GUID = GlobalValue::getGUID( 1137 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1138 1139 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1140 GUIDPreservedSymbols.insert(GUID); 1141 1142 if (Res.second.ExportDynamic) 1143 DynamicExportSymbols.insert(GUID); 1144 1145 GUIDPrevailingResolutions[GUID] = 1146 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1147 } 1148 1149 auto isPrevailing = [&](GlobalValue::GUID G) { 1150 auto It = GUIDPrevailingResolutions.find(G); 1151 if (It == GUIDPrevailingResolutions.end()) 1152 return PrevailingType::Unknown; 1153 return It->second; 1154 }; 1155 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1156 isPrevailing, Conf.OptLevel > 0); 1157 1158 // Setup output file to emit statistics. 1159 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1160 if (!StatsFileOrErr) 1161 return StatsFileOrErr.takeError(); 1162 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1163 1164 // TODO: Ideally this would be controlled automatically by detecting that we 1165 // are linking with an allocator that supports these interfaces, rather than 1166 // an internal option (which would still be needed for tests, however). For 1167 // example, if the library exported a symbol like __malloc_hot_cold the linker 1168 // could recognize that and set a flag in the lto::Config. 1169 if (SupportsHotColdNew) 1170 ThinLTO.CombinedIndex.setWithSupportsHotColdNew(); 1171 1172 Error Result = runRegularLTO(AddStream); 1173 if (!Result) 1174 // This will reset the GlobalResolutions optional once done with it to 1175 // reduce peak memory before importing. 1176 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1177 1178 if (StatsFile) 1179 PrintStatisticsJSON(StatsFile->os()); 1180 1181 return Result; 1182 } 1183 1184 void lto::updateMemProfAttributes(Module &Mod, 1185 const ModuleSummaryIndex &Index) { 1186 if (Index.withSupportsHotColdNew()) 1187 return; 1188 1189 // The profile matcher applies hotness attributes directly for allocations, 1190 // and those will cause us to generate calls to the hot/cold interfaces 1191 // unconditionally. If supports-hot-cold-new was not enabled in the LTO 1192 // link then assume we don't want these calls (e.g. not linking with 1193 // the appropriate library, or otherwise trying to disable this behavior). 1194 for (auto &F : Mod) { 1195 for (auto &BB : F) { 1196 for (auto &I : BB) { 1197 auto *CI = dyn_cast<CallBase>(&I); 1198 if (!CI) 1199 continue; 1200 if (CI->hasFnAttr("memprof")) 1201 CI->removeFnAttr("memprof"); 1202 // Strip off all memprof metadata as it is no longer needed. 1203 // Importantly, this avoids the addition of new memprof attributes 1204 // after inlining propagation. 1205 // TODO: If we support additional types of MemProf metadata beyond hot 1206 // and cold, we will need to update the metadata based on the allocator 1207 // APIs supported instead of completely stripping all. 1208 CI->setMetadata(LLVMContext::MD_memprof, nullptr); 1209 CI->setMetadata(LLVMContext::MD_callsite, nullptr); 1210 } 1211 } 1212 } 1213 } 1214 1215 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1216 // Setup optimization remarks. 1217 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1218 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1219 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1220 Conf.RemarksHotnessThreshold); 1221 LLVM_DEBUG(dbgs() << "Running regular LTO\n"); 1222 if (!DiagFileOrErr) 1223 return DiagFileOrErr.takeError(); 1224 DiagnosticOutputFile = std::move(*DiagFileOrErr); 1225 1226 // Finalize linking of regular LTO modules containing summaries now that 1227 // we have computed liveness information. 1228 for (auto &M : RegularLTO.ModsWithSummaries) 1229 if (Error Err = linkRegularLTO(std::move(M), 1230 /*LivenessFromIndex=*/true)) 1231 return Err; 1232 1233 // Ensure we don't have inconsistently split LTO units with type tests. 1234 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1235 // this path both cases but eventually this should be split into two and 1236 // do the ThinLTO checks in `runThinLTO`. 1237 if (Error Err = checkPartiallySplit()) 1238 return Err; 1239 1240 // Make sure commons have the right size/alignment: we kept the largest from 1241 // all the prevailing when adding the inputs, and we apply it here. 1242 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1243 for (auto &I : RegularLTO.Commons) { 1244 if (!I.second.Prevailing) 1245 // Don't do anything if no instance of this common was prevailing. 1246 continue; 1247 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1248 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1249 // Don't create a new global if the type is already correct, just make 1250 // sure the alignment is correct. 1251 OldGV->setAlignment(I.second.Alignment); 1252 continue; 1253 } 1254 ArrayType *Ty = 1255 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1256 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1257 GlobalValue::CommonLinkage, 1258 ConstantAggregateZero::get(Ty), ""); 1259 GV->setAlignment(I.second.Alignment); 1260 if (OldGV) { 1261 OldGV->replaceAllUsesWith(GV); 1262 GV->takeName(OldGV); 1263 OldGV->eraseFromParent(); 1264 } else { 1265 GV->setName(I.first); 1266 } 1267 } 1268 1269 updateMemProfAttributes(*RegularLTO.CombinedModule, ThinLTO.CombinedIndex); 1270 1271 bool WholeProgramVisibilityEnabledInLTO = 1272 Conf.HasWholeProgramVisibility && 1273 // If validation is enabled, upgrade visibility only when all vtables 1274 // have typeinfos. 1275 (!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos); 1276 1277 // This returns true when the name is local or not defined. Locals are 1278 // expected to be handled separately. 1279 auto IsVisibleToRegularObj = [&](StringRef name) { 1280 auto It = GlobalResolutions->find(name); 1281 return (It == GlobalResolutions->end() || It->second.VisibleOutsideSummary); 1282 }; 1283 1284 // If allowed, upgrade public vcall visibility metadata to linkage unit 1285 // visibility before whole program devirtualization in the optimizer. 1286 updateVCallVisibilityInModule( 1287 *RegularLTO.CombinedModule, WholeProgramVisibilityEnabledInLTO, 1288 DynamicExportSymbols, Conf.ValidateAllVtablesHaveTypeInfos, 1289 IsVisibleToRegularObj); 1290 updatePublicTypeTestCalls(*RegularLTO.CombinedModule, 1291 WholeProgramVisibilityEnabledInLTO); 1292 1293 if (Conf.PreOptModuleHook && 1294 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1295 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1296 1297 if (!Conf.CodeGenOnly) { 1298 for (const auto &R : *GlobalResolutions) { 1299 GlobalValue *GV = 1300 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1301 if (!R.second.isPrevailingIRSymbol()) 1302 continue; 1303 if (R.second.Partition != 0 && 1304 R.second.Partition != GlobalResolution::External) 1305 continue; 1306 1307 // Ignore symbols defined in other partitions. 1308 // Also skip declarations, which are not allowed to have internal linkage. 1309 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1310 continue; 1311 1312 // Symbols that are marked DLLImport or DLLExport should not be 1313 // internalized, as they are either externally visible or referencing 1314 // external symbols. Symbols that have AvailableExternally or Appending 1315 // linkage might be used by future passes and should be kept as is. 1316 // These linkages are seen in Unified regular LTO, because the process 1317 // of creating split LTO units introduces symbols with that linkage into 1318 // one of the created modules. Normally, only the ThinLTO backend would 1319 // compile this module, but Unified Regular LTO processes both 1320 // modules created by the splitting process as regular LTO modules. 1321 if ((LTOMode == LTOKind::LTOK_UnifiedRegular) && 1322 ((GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) || 1323 GV->hasAvailableExternallyLinkage() || GV->hasAppendingLinkage())) 1324 continue; 1325 1326 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1327 : GlobalValue::UnnamedAddr::None); 1328 if (EnableLTOInternalization && R.second.Partition == 0) 1329 GV->setLinkage(GlobalValue::InternalLinkage); 1330 } 1331 1332 if (Conf.PostInternalizeModuleHook && 1333 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1334 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1335 } 1336 1337 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1338 if (Error Err = 1339 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1340 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1341 return Err; 1342 } 1343 1344 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1345 } 1346 1347 static const char *libcallRoutineNames[] = { 1348 #define HANDLE_LIBCALL(code, name) name, 1349 #include "llvm/IR/RuntimeLibcalls.def" 1350 #undef HANDLE_LIBCALL 1351 }; 1352 1353 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1354 return ArrayRef(libcallRoutineNames); 1355 } 1356 1357 /// This class defines the interface to the ThinLTO backend. 1358 class lto::ThinBackendProc { 1359 protected: 1360 const Config &Conf; 1361 ModuleSummaryIndex &CombinedIndex; 1362 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1363 lto::IndexWriteCallback OnWrite; 1364 bool ShouldEmitImportsFiles; 1365 1366 public: 1367 ThinBackendProc( 1368 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1369 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1370 lto::IndexWriteCallback OnWrite, bool ShouldEmitImportsFiles) 1371 : Conf(Conf), CombinedIndex(CombinedIndex), 1372 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries), 1373 OnWrite(OnWrite), ShouldEmitImportsFiles(ShouldEmitImportsFiles) {} 1374 1375 virtual ~ThinBackendProc() = default; 1376 virtual Error start( 1377 unsigned Task, BitcodeModule BM, 1378 const FunctionImporter::ImportMapTy &ImportList, 1379 const FunctionImporter::ExportSetTy &ExportList, 1380 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1381 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1382 virtual Error wait() = 0; 1383 virtual unsigned getThreadCount() = 0; 1384 1385 // Write sharded indices and (optionally) imports to disk 1386 Error emitFiles(const FunctionImporter::ImportMapTy &ImportList, 1387 llvm::StringRef ModulePath, 1388 const std::string &NewModulePath) { 1389 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1390 std::error_code EC; 1391 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1392 ImportList, ModuleToSummariesForIndex); 1393 1394 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1395 sys::fs::OpenFlags::OF_None); 1396 if (EC) 1397 return errorCodeToError(EC); 1398 writeIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1399 1400 if (ShouldEmitImportsFiles) { 1401 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1402 ModuleToSummariesForIndex); 1403 if (EC) 1404 return errorCodeToError(EC); 1405 } 1406 return Error::success(); 1407 } 1408 }; 1409 1410 namespace { 1411 class InProcessThinBackend : public ThinBackendProc { 1412 ThreadPool BackendThreadPool; 1413 AddStreamFn AddStream; 1414 FileCache Cache; 1415 std::set<GlobalValue::GUID> CfiFunctionDefs; 1416 std::set<GlobalValue::GUID> CfiFunctionDecls; 1417 1418 std::optional<Error> Err; 1419 std::mutex ErrMu; 1420 1421 bool ShouldEmitIndexFiles; 1422 1423 public: 1424 InProcessThinBackend( 1425 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1426 ThreadPoolStrategy ThinLTOParallelism, 1427 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1428 AddStreamFn AddStream, FileCache Cache, lto::IndexWriteCallback OnWrite, 1429 bool ShouldEmitIndexFiles, bool ShouldEmitImportsFiles) 1430 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1431 OnWrite, ShouldEmitImportsFiles), 1432 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1433 Cache(std::move(Cache)), ShouldEmitIndexFiles(ShouldEmitIndexFiles) { 1434 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1435 CfiFunctionDefs.insert( 1436 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1437 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1438 CfiFunctionDecls.insert( 1439 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1440 } 1441 1442 Error runThinLTOBackendThread( 1443 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM, 1444 ModuleSummaryIndex &CombinedIndex, 1445 const FunctionImporter::ImportMapTy &ImportList, 1446 const FunctionImporter::ExportSetTy &ExportList, 1447 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1448 const GVSummaryMapTy &DefinedGlobals, 1449 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1450 auto RunThinBackend = [&](AddStreamFn AddStream) { 1451 LTOLLVMContext BackendContext(Conf); 1452 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1453 if (!MOrErr) 1454 return MOrErr.takeError(); 1455 1456 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1457 ImportList, DefinedGlobals, &ModuleMap); 1458 }; 1459 1460 auto ModuleID = BM.getModuleIdentifier(); 1461 1462 if (ShouldEmitIndexFiles) { 1463 if (auto E = emitFiles(ImportList, ModuleID, ModuleID.str())) 1464 return E; 1465 } 1466 1467 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1468 all_of(CombinedIndex.getModuleHash(ModuleID), 1469 [](uint32_t V) { return V == 0; })) 1470 // Cache disabled or no entry for this module in the combined index or 1471 // no module hash. 1472 return RunThinBackend(AddStream); 1473 1474 SmallString<40> Key; 1475 // The module may be cached, this helps handling it. 1476 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1477 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1478 CfiFunctionDecls); 1479 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID); 1480 if (Error Err = CacheAddStreamOrErr.takeError()) 1481 return Err; 1482 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr; 1483 if (CacheAddStream) 1484 return RunThinBackend(CacheAddStream); 1485 1486 return Error::success(); 1487 } 1488 1489 Error start( 1490 unsigned Task, BitcodeModule BM, 1491 const FunctionImporter::ImportMapTy &ImportList, 1492 const FunctionImporter::ExportSetTy &ExportList, 1493 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1494 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1495 StringRef ModulePath = BM.getModuleIdentifier(); 1496 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1497 const GVSummaryMapTy &DefinedGlobals = 1498 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1499 BackendThreadPool.async( 1500 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1501 const FunctionImporter::ImportMapTy &ImportList, 1502 const FunctionImporter::ExportSetTy &ExportList, 1503 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1504 &ResolvedODR, 1505 const GVSummaryMapTy &DefinedGlobals, 1506 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1507 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1508 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1509 "thin backend"); 1510 Error E = runThinLTOBackendThread( 1511 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1512 ResolvedODR, DefinedGlobals, ModuleMap); 1513 if (E) { 1514 std::unique_lock<std::mutex> L(ErrMu); 1515 if (Err) 1516 Err = joinErrors(std::move(*Err), std::move(E)); 1517 else 1518 Err = std::move(E); 1519 } 1520 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1521 timeTraceProfilerFinishThread(); 1522 }, 1523 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1524 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1525 1526 if (OnWrite) 1527 OnWrite(std::string(ModulePath)); 1528 return Error::success(); 1529 } 1530 1531 Error wait() override { 1532 BackendThreadPool.wait(); 1533 if (Err) 1534 return std::move(*Err); 1535 else 1536 return Error::success(); 1537 } 1538 1539 unsigned getThreadCount() override { 1540 return BackendThreadPool.getThreadCount(); 1541 } 1542 }; 1543 } // end anonymous namespace 1544 1545 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism, 1546 lto::IndexWriteCallback OnWrite, 1547 bool ShouldEmitIndexFiles, 1548 bool ShouldEmitImportsFiles) { 1549 return 1550 [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1551 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1552 AddStreamFn AddStream, FileCache Cache) { 1553 return std::make_unique<InProcessThinBackend>( 1554 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, 1555 AddStream, Cache, OnWrite, ShouldEmitIndexFiles, 1556 ShouldEmitImportsFiles); 1557 }; 1558 } 1559 1560 // Given the original \p Path to an output file, replace any path 1561 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1562 // resulting directory if it does not yet exist. 1563 std::string lto::getThinLTOOutputFile(StringRef Path, StringRef OldPrefix, 1564 StringRef NewPrefix) { 1565 if (OldPrefix.empty() && NewPrefix.empty()) 1566 return std::string(Path); 1567 SmallString<128> NewPath(Path); 1568 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1569 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1570 if (!ParentPath.empty()) { 1571 // Make sure the new directory exists, creating it if necessary. 1572 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1573 llvm::errs() << "warning: could not create directory '" << ParentPath 1574 << "': " << EC.message() << '\n'; 1575 } 1576 return std::string(NewPath); 1577 } 1578 1579 namespace { 1580 class WriteIndexesThinBackend : public ThinBackendProc { 1581 std::string OldPrefix, NewPrefix, NativeObjectPrefix; 1582 raw_fd_ostream *LinkedObjectsFile; 1583 1584 public: 1585 WriteIndexesThinBackend( 1586 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1587 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1588 std::string OldPrefix, std::string NewPrefix, 1589 std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, 1590 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1591 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1592 OnWrite, ShouldEmitImportsFiles), 1593 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1594 NativeObjectPrefix(NativeObjectPrefix), 1595 LinkedObjectsFile(LinkedObjectsFile) {} 1596 1597 Error start( 1598 unsigned Task, BitcodeModule BM, 1599 const FunctionImporter::ImportMapTy &ImportList, 1600 const FunctionImporter::ExportSetTy &ExportList, 1601 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1602 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1603 StringRef ModulePath = BM.getModuleIdentifier(); 1604 std::string NewModulePath = 1605 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); 1606 1607 if (LinkedObjectsFile) { 1608 std::string ObjectPrefix = 1609 NativeObjectPrefix.empty() ? NewPrefix : NativeObjectPrefix; 1610 std::string LinkedObjectsFilePath = 1611 getThinLTOOutputFile(ModulePath, OldPrefix, ObjectPrefix); 1612 *LinkedObjectsFile << LinkedObjectsFilePath << '\n'; 1613 } 1614 1615 if (auto E = emitFiles(ImportList, ModulePath, NewModulePath)) 1616 return E; 1617 1618 if (OnWrite) 1619 OnWrite(std::string(ModulePath)); 1620 return Error::success(); 1621 } 1622 1623 Error wait() override { return Error::success(); } 1624 1625 // WriteIndexesThinBackend should always return 1 to prevent module 1626 // re-ordering and avoid non-determinism in the final link. 1627 unsigned getThreadCount() override { return 1; } 1628 }; 1629 } // end anonymous namespace 1630 1631 ThinBackend lto::createWriteIndexesThinBackend( 1632 std::string OldPrefix, std::string NewPrefix, 1633 std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, 1634 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1635 return 1636 [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1637 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1638 AddStreamFn AddStream, FileCache Cache) { 1639 return std::make_unique<WriteIndexesThinBackend>( 1640 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, 1641 NewPrefix, NativeObjectPrefix, ShouldEmitImportsFiles, 1642 LinkedObjectsFile, OnWrite); 1643 }; 1644 } 1645 1646 Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache, 1647 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1648 LLVM_DEBUG(dbgs() << "Running ThinLTO\n"); 1649 ThinLTO.CombinedIndex.releaseTemporaryMemory(); 1650 timeTraceProfilerBegin("ThinLink", StringRef("")); 1651 auto TimeTraceScopeExit = llvm::make_scope_exit([]() { 1652 if (llvm::timeTraceProfilerEnabled()) 1653 llvm::timeTraceProfilerEnd(); 1654 }); 1655 if (ThinLTO.ModuleMap.empty()) 1656 return Error::success(); 1657 1658 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1659 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1660 return Error::success(); 1661 } 1662 1663 if (Conf.CombinedIndexHook && 1664 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1665 return Error::success(); 1666 1667 // Collect for each module the list of function it defines (GUID -> 1668 // Summary). 1669 DenseMap<StringRef, GVSummaryMapTy> ModuleToDefinedGVSummaries( 1670 ThinLTO.ModuleMap.size()); 1671 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1672 ModuleToDefinedGVSummaries); 1673 // Create entries for any modules that didn't have any GV summaries 1674 // (either they didn't have any GVs to start with, or we suppressed 1675 // generation of the summaries because they e.g. had inline assembly 1676 // uses that couldn't be promoted/renamed on export). This is so 1677 // InProcessThinBackend::start can still launch a backend thread, which 1678 // is passed the map of summaries for the module, without any special 1679 // handling for this case. 1680 for (auto &Mod : ThinLTO.ModuleMap) 1681 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1682 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1683 1684 // Synthesize entry counts for functions in the CombinedIndex. 1685 computeSyntheticCounts(ThinLTO.CombinedIndex); 1686 1687 DenseMap<StringRef, FunctionImporter::ImportMapTy> ImportLists( 1688 ThinLTO.ModuleMap.size()); 1689 DenseMap<StringRef, FunctionImporter::ExportSetTy> ExportLists( 1690 ThinLTO.ModuleMap.size()); 1691 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1692 1693 if (DumpThinCGSCCs) 1694 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1695 1696 std::set<GlobalValue::GUID> ExportedGUIDs; 1697 1698 bool WholeProgramVisibilityEnabledInLTO = 1699 Conf.HasWholeProgramVisibility && 1700 // If validation is enabled, upgrade visibility only when all vtables 1701 // have typeinfos. 1702 (!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos); 1703 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 1704 ThinLTO.CombinedIndex.setWithWholeProgramVisibility(); 1705 1706 // If we're validating, get the vtable symbols that should not be 1707 // upgraded because they correspond to typeIDs outside of index-based 1708 // WPD info. 1709 DenseSet<GlobalValue::GUID> VisibleToRegularObjSymbols; 1710 if (WholeProgramVisibilityEnabledInLTO && 1711 Conf.ValidateAllVtablesHaveTypeInfos) { 1712 // This returns true when the name is local or not defined. Locals are 1713 // expected to be handled separately. 1714 auto IsVisibleToRegularObj = [&](StringRef name) { 1715 auto It = GlobalResolutions->find(name); 1716 return (It == GlobalResolutions->end() || 1717 It->second.VisibleOutsideSummary); 1718 }; 1719 1720 getVisibleToRegularObjVtableGUIDs(ThinLTO.CombinedIndex, 1721 VisibleToRegularObjSymbols, 1722 IsVisibleToRegularObj); 1723 } 1724 1725 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1726 // the summaries before whole program devirtualization below. 1727 updateVCallVisibilityInIndex( 1728 ThinLTO.CombinedIndex, WholeProgramVisibilityEnabledInLTO, 1729 DynamicExportSymbols, VisibleToRegularObjSymbols); 1730 1731 // Perform index-based WPD. This will return immediately if there are 1732 // no index entries in the typeIdMetadata map (e.g. if we are instead 1733 // performing IR-based WPD in hybrid regular/thin LTO mode). 1734 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1735 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1736 LocalWPDTargetsMap); 1737 1738 auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) { 1739 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1740 }; 1741 if (EnableMemProfContextDisambiguation) { 1742 MemProfContextDisambiguation ContextDisambiguation; 1743 ContextDisambiguation.run(ThinLTO.CombinedIndex, isPrevailing); 1744 } 1745 1746 // Figure out which symbols need to be internalized. This also needs to happen 1747 // at -O0 because summary-based DCE is implemented using internalization, and 1748 // we must apply DCE consistently with the full LTO module in order to avoid 1749 // undefined references during the final link. 1750 for (auto &Res : *GlobalResolutions) { 1751 // If the symbol does not have external references or it is not prevailing, 1752 // then not need to mark it as exported from a ThinLTO partition. 1753 if (Res.second.Partition != GlobalResolution::External || 1754 !Res.second.isPrevailingIRSymbol()) 1755 continue; 1756 auto GUID = GlobalValue::getGUID( 1757 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1758 // Mark exported unless index-based analysis determined it to be dead. 1759 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1760 ExportedGUIDs.insert(GUID); 1761 } 1762 1763 // Reset the GlobalResolutions to deallocate the associated memory, as there 1764 // are no further accesses. We specifically want to do this before computing 1765 // cross module importing, which adds to peak memory via the computed import 1766 // and export lists. 1767 GlobalResolutions.reset(); 1768 1769 if (Conf.OptLevel > 0) 1770 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1771 isPrevailing, ImportLists, ExportLists); 1772 1773 // Any functions referenced by the jump table in the regular LTO object must 1774 // be exported. 1775 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1776 ExportedGUIDs.insert( 1777 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1778 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) 1779 ExportedGUIDs.insert( 1780 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl))); 1781 1782 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1783 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1784 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1785 ExportedGUIDs.count(VI.getGUID()); 1786 }; 1787 1788 // Update local devirtualized targets that were exported by cross-module 1789 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1790 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1791 LocalWPDTargetsMap); 1792 1793 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1794 isPrevailing); 1795 1796 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1797 GlobalValue::GUID GUID, 1798 GlobalValue::LinkageTypes NewLinkage) { 1799 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1800 }; 1801 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1802 recordNewLinkage, GUIDPreservedSymbols); 1803 1804 thinLTOPropagateFunctionAttrs(ThinLTO.CombinedIndex, isPrevailing); 1805 1806 generateParamAccessSummary(ThinLTO.CombinedIndex); 1807 1808 if (llvm::timeTraceProfilerEnabled()) 1809 llvm::timeTraceProfilerEnd(); 1810 1811 TimeTraceScopeExit.release(); 1812 1813 std::unique_ptr<ThinBackendProc> BackendProc = 1814 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1815 AddStream, Cache); 1816 1817 auto &ModuleMap = 1818 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1819 1820 auto ProcessOneModule = [&](int I) -> Error { 1821 auto &Mod = *(ModuleMap.begin() + I); 1822 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1823 // combined module and parallel code generation partitions. 1824 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1825 Mod.second, ImportLists[Mod.first], 1826 ExportLists[Mod.first], ResolvedODR[Mod.first], 1827 ThinLTO.ModuleMap); 1828 }; 1829 1830 if (BackendProc->getThreadCount() == 1) { 1831 // Process the modules in the order they were provided on the command-line. 1832 // It is important for this codepath to be used for WriteIndexesThinBackend, 1833 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1834 // order as the inputs, which otherwise would affect the final link order. 1835 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1836 if (Error E = ProcessOneModule(I)) 1837 return E; 1838 } else { 1839 // When executing in parallel, process largest bitsize modules first to 1840 // improve parallelism, and avoid starving the thread pool near the end. 1841 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1842 // of 100 sec). 1843 std::vector<BitcodeModule *> ModulesVec; 1844 ModulesVec.reserve(ModuleMap.size()); 1845 for (auto &Mod : ModuleMap) 1846 ModulesVec.push_back(&Mod.second); 1847 for (int I : generateModulesOrdering(ModulesVec)) 1848 if (Error E = ProcessOneModule(I)) 1849 return E; 1850 } 1851 return BackendProc->wait(); 1852 } 1853 1854 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1855 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1856 StringRef RemarksFormat, bool RemarksWithHotness, 1857 std::optional<uint64_t> RemarksHotnessThreshold, int Count) { 1858 std::string Filename = std::string(RemarksFilename); 1859 // For ThinLTO, file.opt.<format> becomes 1860 // file.opt.<format>.thin.<num>.<format>. 1861 if (!Filename.empty() && Count != -1) 1862 Filename = 1863 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1864 .str(); 1865 1866 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1867 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1868 RemarksHotnessThreshold); 1869 if (Error E = ResultOrErr.takeError()) 1870 return std::move(E); 1871 1872 if (*ResultOrErr) 1873 (*ResultOrErr)->keep(); 1874 1875 return ResultOrErr; 1876 } 1877 1878 Expected<std::unique_ptr<ToolOutputFile>> 1879 lto::setupStatsFile(StringRef StatsFilename) { 1880 // Setup output file to emit statistics. 1881 if (StatsFilename.empty()) 1882 return nullptr; 1883 1884 llvm::EnableStatistics(false); 1885 std::error_code EC; 1886 auto StatsFile = 1887 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1888 if (EC) 1889 return errorCodeToError(EC); 1890 1891 StatsFile->keep(); 1892 return std::move(StatsFile); 1893 } 1894 1895 // Compute the ordering we will process the inputs: the rough heuristic here 1896 // is to sort them per size so that the largest module get schedule as soon as 1897 // possible. This is purely a compile-time optimization. 1898 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1899 auto Seq = llvm::seq<int>(0, R.size()); 1900 std::vector<int> ModulesOrdering(Seq.begin(), Seq.end()); 1901 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1902 auto LSize = R[LeftIndex]->getBuffer().size(); 1903 auto RSize = R[RightIndex]->getBuffer().size(); 1904 return LSize > RSize; 1905 }); 1906 return ModulesOrdering; 1907 } 1908