1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/TargetLibraryInfo.h" 16 #include "llvm/Analysis/TargetTransformInfo.h" 17 #include "llvm/Bitcode/BitcodeReader.h" 18 #include "llvm/Bitcode/BitcodeWriter.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/Config/llvm-config.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/LegacyPassManager.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Metadata.h" 27 #include "llvm/IR/RemarkStreamer.h" 28 #include "llvm/LTO/LTOBackend.h" 29 #include "llvm/LTO/SummaryBasedOptimizations.h" 30 #include "llvm/Linker/IRMover.h" 31 #include "llvm/Object/IRObjectFile.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Error.h" 34 #include "llvm/Support/ManagedStatic.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Support/SHA1.h" 38 #include "llvm/Support/SourceMgr.h" 39 #include "llvm/Support/TargetRegistry.h" 40 #include "llvm/Support/ThreadPool.h" 41 #include "llvm/Support/Threading.h" 42 #include "llvm/Support/VCSRevision.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 48 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 49 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 50 #include "llvm/Transforms/Utils/SplitModule.h" 51 52 #include <set> 53 54 using namespace llvm; 55 using namespace lto; 56 using namespace object; 57 58 #define DEBUG_TYPE "lto" 59 60 static cl::opt<bool> 61 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 62 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 63 64 /// Enable global value internalization in LTO. 65 cl::opt<bool> EnableLTOInternalization( 66 "enable-lto-internalization", cl::init(true), cl::Hidden, 67 cl::desc("Enable global value internalization in LTO")); 68 69 // Computes a unique hash for the Module considering the current list of 70 // export/import and other global analysis results. 71 // The hash is produced in \p Key. 72 void llvm::computeLTOCacheKey( 73 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 74 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 75 const FunctionImporter::ExportSetTy &ExportList, 76 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 77 const GVSummaryMapTy &DefinedGlobals, 78 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 79 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 80 // Compute the unique hash for this entry. 81 // This is based on the current compiler version, the module itself, the 82 // export list, the hash for every single module in the import list, the 83 // list of ResolvedODR for the module, and the list of preserved symbols. 84 SHA1 Hasher; 85 86 // Start with the compiler revision 87 Hasher.update(LLVM_VERSION_STRING); 88 #ifdef LLVM_REVISION 89 Hasher.update(LLVM_REVISION); 90 #endif 91 92 // Include the parts of the LTO configuration that affect code generation. 93 auto AddString = [&](StringRef Str) { 94 Hasher.update(Str); 95 Hasher.update(ArrayRef<uint8_t>{0}); 96 }; 97 auto AddUnsigned = [&](unsigned I) { 98 uint8_t Data[4]; 99 Data[0] = I; 100 Data[1] = I >> 8; 101 Data[2] = I >> 16; 102 Data[3] = I >> 24; 103 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 104 }; 105 auto AddUint64 = [&](uint64_t I) { 106 uint8_t Data[8]; 107 Data[0] = I; 108 Data[1] = I >> 8; 109 Data[2] = I >> 16; 110 Data[3] = I >> 24; 111 Data[4] = I >> 32; 112 Data[5] = I >> 40; 113 Data[6] = I >> 48; 114 Data[7] = I >> 56; 115 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 116 }; 117 AddString(Conf.CPU); 118 // FIXME: Hash more of Options. For now all clients initialize Options from 119 // command-line flags (which is unsupported in production), but may set 120 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 121 // DataSections and DebuggerTuning via command line flags. 122 AddUnsigned(Conf.Options.RelaxELFRelocations); 123 AddUnsigned(Conf.Options.FunctionSections); 124 AddUnsigned(Conf.Options.DataSections); 125 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 126 for (auto &A : Conf.MAttrs) 127 AddString(A); 128 if (Conf.RelocModel) 129 AddUnsigned(*Conf.RelocModel); 130 else 131 AddUnsigned(-1); 132 if (Conf.CodeModel) 133 AddUnsigned(*Conf.CodeModel); 134 else 135 AddUnsigned(-1); 136 AddUnsigned(Conf.CGOptLevel); 137 AddUnsigned(Conf.CGFileType); 138 AddUnsigned(Conf.OptLevel); 139 AddUnsigned(Conf.UseNewPM); 140 AddUnsigned(Conf.Freestanding); 141 AddString(Conf.OptPipeline); 142 AddString(Conf.AAPipeline); 143 AddString(Conf.OverrideTriple); 144 AddString(Conf.DefaultTriple); 145 AddString(Conf.DwoDir); 146 147 // Include the hash for the current module 148 auto ModHash = Index.getModuleHash(ModuleID); 149 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 150 151 std::vector<uint64_t> ExportsGUID; 152 ExportsGUID.reserve(ExportList.size()); 153 for (const auto &VI : ExportList) { 154 auto GUID = VI.getGUID(); 155 ExportsGUID.push_back(GUID); 156 } 157 158 // Sort the export list elements GUIDs. 159 llvm::sort(ExportsGUID); 160 for (uint64_t GUID : ExportsGUID) { 161 // The export list can impact the internalization, be conservative here 162 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 163 } 164 165 // Include the hash for every module we import functions from. The set of 166 // imported symbols for each module may affect code generation and is 167 // sensitive to link order, so include that as well. 168 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 169 std::vector<ImportMapIteratorTy> ImportModulesVector; 170 ImportModulesVector.reserve(ImportList.size()); 171 172 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 173 ++It) { 174 ImportModulesVector.push_back(It); 175 } 176 llvm::sort(ImportModulesVector, 177 [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs) 178 -> bool { return Lhs->getKey() < Rhs->getKey(); }); 179 for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) { 180 auto ModHash = Index.getModuleHash(EntryIt->first()); 181 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 182 183 AddUint64(EntryIt->second.size()); 184 for (auto &Fn : EntryIt->second) 185 AddUint64(Fn); 186 } 187 188 // Include the hash for the resolved ODR. 189 for (auto &Entry : ResolvedODR) { 190 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 191 sizeof(GlobalValue::GUID))); 192 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 193 sizeof(GlobalValue::LinkageTypes))); 194 } 195 196 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 197 // defined in this module. 198 std::set<GlobalValue::GUID> UsedCfiDefs; 199 std::set<GlobalValue::GUID> UsedCfiDecls; 200 201 // Typeids used in this module. 202 std::set<GlobalValue::GUID> UsedTypeIds; 203 204 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 205 if (CfiFunctionDefs.count(ValueGUID)) 206 UsedCfiDefs.insert(ValueGUID); 207 if (CfiFunctionDecls.count(ValueGUID)) 208 UsedCfiDecls.insert(ValueGUID); 209 }; 210 211 auto AddUsedThings = [&](GlobalValueSummary *GS) { 212 if (!GS) return; 213 AddUnsigned(GS->isLive()); 214 AddUnsigned(GS->canAutoHide()); 215 for (const ValueInfo &VI : GS->refs()) { 216 AddUnsigned(VI.isDSOLocal()); 217 AddUsedCfiGlobal(VI.getGUID()); 218 } 219 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 220 AddUnsigned(GVS->maybeReadOnly()); 221 AddUnsigned(GVS->maybeWriteOnly()); 222 } 223 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 224 for (auto &TT : FS->type_tests()) 225 UsedTypeIds.insert(TT); 226 for (auto &TT : FS->type_test_assume_vcalls()) 227 UsedTypeIds.insert(TT.GUID); 228 for (auto &TT : FS->type_checked_load_vcalls()) 229 UsedTypeIds.insert(TT.GUID); 230 for (auto &TT : FS->type_test_assume_const_vcalls()) 231 UsedTypeIds.insert(TT.VFunc.GUID); 232 for (auto &TT : FS->type_checked_load_const_vcalls()) 233 UsedTypeIds.insert(TT.VFunc.GUID); 234 for (auto &ET : FS->calls()) { 235 AddUnsigned(ET.first.isDSOLocal()); 236 AddUsedCfiGlobal(ET.first.getGUID()); 237 } 238 } 239 }; 240 241 // Include the hash for the linkage type to reflect internalization and weak 242 // resolution, and collect any used type identifier resolutions. 243 for (auto &GS : DefinedGlobals) { 244 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 245 Hasher.update( 246 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 247 AddUsedCfiGlobal(GS.first); 248 AddUsedThings(GS.second); 249 } 250 251 // Imported functions may introduce new uses of type identifier resolutions, 252 // so we need to collect their used resolutions as well. 253 for (auto &ImpM : ImportList) 254 for (auto &ImpF : ImpM.second) { 255 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 256 AddUsedThings(S); 257 // If this is an alias, we also care about any types/etc. that the aliasee 258 // may reference. 259 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 260 AddUsedThings(AS->getBaseObject()); 261 } 262 263 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 264 AddString(TId); 265 266 AddUnsigned(S.TTRes.TheKind); 267 AddUnsigned(S.TTRes.SizeM1BitWidth); 268 269 AddUint64(S.TTRes.AlignLog2); 270 AddUint64(S.TTRes.SizeM1); 271 AddUint64(S.TTRes.BitMask); 272 AddUint64(S.TTRes.InlineBits); 273 274 AddUint64(S.WPDRes.size()); 275 for (auto &WPD : S.WPDRes) { 276 AddUnsigned(WPD.first); 277 AddUnsigned(WPD.second.TheKind); 278 AddString(WPD.second.SingleImplName); 279 280 AddUint64(WPD.second.ResByArg.size()); 281 for (auto &ByArg : WPD.second.ResByArg) { 282 AddUint64(ByArg.first.size()); 283 for (uint64_t Arg : ByArg.first) 284 AddUint64(Arg); 285 AddUnsigned(ByArg.second.TheKind); 286 AddUint64(ByArg.second.Info); 287 AddUnsigned(ByArg.second.Byte); 288 AddUnsigned(ByArg.second.Bit); 289 } 290 } 291 }; 292 293 // Include the hash for all type identifiers used by this module. 294 for (GlobalValue::GUID TId : UsedTypeIds) { 295 auto TidIter = Index.typeIds().equal_range(TId); 296 for (auto It = TidIter.first; It != TidIter.second; ++It) 297 AddTypeIdSummary(It->second.first, It->second.second); 298 } 299 300 AddUnsigned(UsedCfiDefs.size()); 301 for (auto &V : UsedCfiDefs) 302 AddUint64(V); 303 304 AddUnsigned(UsedCfiDecls.size()); 305 for (auto &V : UsedCfiDecls) 306 AddUint64(V); 307 308 if (!Conf.SampleProfile.empty()) { 309 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 310 if (FileOrErr) { 311 Hasher.update(FileOrErr.get()->getBuffer()); 312 313 if (!Conf.ProfileRemapping.empty()) { 314 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 315 if (FileOrErr) 316 Hasher.update(FileOrErr.get()->getBuffer()); 317 } 318 } 319 } 320 321 Key = toHex(Hasher.result()); 322 } 323 324 static void thinLTOResolvePrevailingGUID( 325 ValueInfo VI, DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 326 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 327 isPrevailing, 328 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 329 recordNewLinkage, 330 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 331 for (auto &S : VI.getSummaryList()) { 332 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 333 // Ignore local and appending linkage values since the linker 334 // doesn't resolve them. 335 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 336 GlobalValue::isAppendingLinkage(S->linkage())) 337 continue; 338 // We need to emit only one of these. The prevailing module will keep it, 339 // but turned into a weak, while the others will drop it when possible. 340 // This is both a compile-time optimization and a correctness 341 // transformation. This is necessary for correctness when we have exported 342 // a reference - we need to convert the linkonce to weak to 343 // ensure a copy is kept to satisfy the exported reference. 344 // FIXME: We may want to split the compile time and correctness 345 // aspects into separate routines. 346 if (isPrevailing(VI.getGUID(), S.get())) { 347 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 348 S->setLinkage(GlobalValue::getWeakLinkage( 349 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 350 // The kept copy is eligible for auto-hiding (hidden visibility) if all 351 // copies were (i.e. they were all linkonce_odr global unnamed addr). 352 // If any copy is not (e.g. it was originally weak_odr), then the symbol 353 // must remain externally available (e.g. a weak_odr from an explicitly 354 // instantiated template). Additionally, if it is in the 355 // GUIDPreservedSymbols set, that means that it is visibile outside 356 // the summary (e.g. in a native object or a bitcode file without 357 // summary), and in that case we cannot hide it as it isn't possible to 358 // check all copies. 359 S->setCanAutoHide(VI.canAutoHide() && 360 !GUIDPreservedSymbols.count(VI.getGUID())); 361 } 362 } 363 // Alias and aliasee can't be turned into available_externally. 364 else if (!isa<AliasSummary>(S.get()) && 365 !GlobalInvolvedWithAlias.count(S.get())) 366 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 367 if (S->linkage() != OriginalLinkage) 368 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 369 } 370 } 371 372 /// Resolve linkage for prevailing symbols in the \p Index. 373 // 374 // We'd like to drop these functions if they are no longer referenced in the 375 // current module. However there is a chance that another module is still 376 // referencing them because of the import. We make sure we always emit at least 377 // one copy. 378 void llvm::thinLTOResolvePrevailingInIndex( 379 ModuleSummaryIndex &Index, 380 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 381 isPrevailing, 382 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 383 recordNewLinkage, 384 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 385 // We won't optimize the globals that are referenced by an alias for now 386 // Ideally we should turn the alias into a global and duplicate the definition 387 // when needed. 388 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 389 for (auto &I : Index) 390 for (auto &S : I.second.SummaryList) 391 if (auto AS = dyn_cast<AliasSummary>(S.get())) 392 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 393 394 for (auto &I : Index) 395 thinLTOResolvePrevailingGUID(Index.getValueInfo(I), GlobalInvolvedWithAlias, 396 isPrevailing, recordNewLinkage, 397 GUIDPreservedSymbols); 398 } 399 400 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 401 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 402 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 403 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 404 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 405 return false; 406 } 407 408 static void thinLTOInternalizeAndPromoteGUID( 409 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 410 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 411 isPrevailing) { 412 for (auto &S : VI.getSummaryList()) { 413 if (isExported(S->modulePath(), VI)) { 414 if (GlobalValue::isLocalLinkage(S->linkage())) 415 S->setLinkage(GlobalValue::ExternalLinkage); 416 } else if (EnableLTOInternalization && 417 // Ignore local and appending linkage values since the linker 418 // doesn't resolve them. 419 !GlobalValue::isLocalLinkage(S->linkage()) && 420 (!GlobalValue::isInterposableLinkage(S->linkage()) || 421 isPrevailing(VI.getGUID(), S.get())) && 422 S->linkage() != GlobalValue::AppendingLinkage && 423 // We can't internalize available_externally globals because this 424 // can break function pointer equality. 425 S->linkage() != GlobalValue::AvailableExternallyLinkage && 426 // Functions and read-only variables with linkonce_odr and 427 // weak_odr linkage can be internalized. We can't internalize 428 // linkonce_odr and weak_odr variables which are both modified 429 // and read somewhere in the program because reads and writes 430 // will become inconsistent. 431 !isWeakObjectWithRWAccess(S.get())) 432 S->setLinkage(GlobalValue::InternalLinkage); 433 } 434 } 435 436 // Update the linkages in the given \p Index to mark exported values 437 // as external and non-exported values as internal. 438 void llvm::thinLTOInternalizeAndPromoteInIndex( 439 ModuleSummaryIndex &Index, 440 function_ref<bool(StringRef, ValueInfo)> isExported, 441 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 442 isPrevailing) { 443 for (auto &I : Index) 444 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 445 isPrevailing); 446 } 447 448 // Requires a destructor for std::vector<InputModule>. 449 InputFile::~InputFile() = default; 450 451 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 452 std::unique_ptr<InputFile> File(new InputFile); 453 454 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 455 if (!FOrErr) 456 return FOrErr.takeError(); 457 458 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 459 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 460 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 461 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 462 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 463 464 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 465 size_t Begin = File->Symbols.size(); 466 for (const irsymtab::Reader::SymbolRef &Sym : 467 FOrErr->TheReader.module_symbols(I)) 468 // Skip symbols that are irrelevant to LTO. Note that this condition needs 469 // to match the one in Skip() in LTO::addRegularLTO(). 470 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 471 File->Symbols.push_back(Sym); 472 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 473 } 474 475 File->Mods = FOrErr->Mods; 476 File->Strtab = std::move(FOrErr->Strtab); 477 return std::move(File); 478 } 479 480 StringRef InputFile::getName() const { 481 return Mods[0].getModuleIdentifier(); 482 } 483 484 BitcodeModule &InputFile::getSingleBitcodeModule() { 485 assert(Mods.size() == 1 && "Expect only one bitcode module"); 486 return Mods[0]; 487 } 488 489 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 490 const Config &Conf) 491 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 492 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 493 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 494 495 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 496 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 497 if (!Backend) 498 this->Backend = 499 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 500 } 501 502 LTO::LTO(Config Conf, ThinBackend Backend, 503 unsigned ParallelCodeGenParallelismLevel) 504 : Conf(std::move(Conf)), 505 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 506 ThinLTO(std::move(Backend)) {} 507 508 // Requires a destructor for MapVector<BitcodeModule>. 509 LTO::~LTO() = default; 510 511 // Add the symbols in the given module to the GlobalResolutions map, and resolve 512 // their partitions. 513 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 514 ArrayRef<SymbolResolution> Res, 515 unsigned Partition, bool InSummary) { 516 auto *ResI = Res.begin(); 517 auto *ResE = Res.end(); 518 (void)ResE; 519 for (const InputFile::Symbol &Sym : Syms) { 520 assert(ResI != ResE); 521 SymbolResolution Res = *ResI++; 522 523 StringRef Name = Sym.getName(); 524 Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 525 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 526 // way they are handled by lld), otherwise we can end up with two 527 // global resolutions (one with and one for a copy of the symbol without). 528 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 529 Name = Name.substr(strlen("__imp_")); 530 auto &GlobalRes = GlobalResolutions[Name]; 531 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 532 if (Res.Prevailing) { 533 assert(!GlobalRes.Prevailing && 534 "Multiple prevailing defs are not allowed"); 535 GlobalRes.Prevailing = true; 536 GlobalRes.IRName = Sym.getIRName(); 537 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 538 // Sometimes it can be two copies of symbol in a module and prevailing 539 // symbol can have no IR name. That might happen if symbol is defined in 540 // module level inline asm block. In case we have multiple modules with 541 // the same symbol we want to use IR name of the prevailing symbol. 542 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 543 // we can later use it to check if there is any prevailing copy in IR. 544 GlobalRes.IRName = Sym.getIRName(); 545 } 546 547 // Set the partition to external if we know it is re-defined by the linker 548 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 549 // regular object, is referenced from llvm.compiler_used, or was already 550 // recorded as being referenced from a different partition. 551 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 552 (GlobalRes.Partition != GlobalResolution::Unknown && 553 GlobalRes.Partition != Partition)) { 554 GlobalRes.Partition = GlobalResolution::External; 555 } else 556 // First recorded reference, save the current partition. 557 GlobalRes.Partition = Partition; 558 559 // Flag as visible outside of summary if visible from a regular object or 560 // from a module that does not have a summary. 561 GlobalRes.VisibleOutsideSummary |= 562 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 563 } 564 } 565 566 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 567 ArrayRef<SymbolResolution> Res) { 568 StringRef Path = Input->getName(); 569 OS << Path << '\n'; 570 auto ResI = Res.begin(); 571 for (const InputFile::Symbol &Sym : Input->symbols()) { 572 assert(ResI != Res.end()); 573 SymbolResolution Res = *ResI++; 574 575 OS << "-r=" << Path << ',' << Sym.getName() << ','; 576 if (Res.Prevailing) 577 OS << 'p'; 578 if (Res.FinalDefinitionInLinkageUnit) 579 OS << 'l'; 580 if (Res.VisibleToRegularObj) 581 OS << 'x'; 582 if (Res.LinkerRedefined) 583 OS << 'r'; 584 OS << '\n'; 585 } 586 OS.flush(); 587 assert(ResI == Res.end()); 588 } 589 590 Error LTO::add(std::unique_ptr<InputFile> Input, 591 ArrayRef<SymbolResolution> Res) { 592 assert(!CalledGetMaxTasks); 593 594 if (Conf.ResolutionFile) 595 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 596 597 if (RegularLTO.CombinedModule->getTargetTriple().empty()) 598 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 599 600 const SymbolResolution *ResI = Res.begin(); 601 for (unsigned I = 0; I != Input->Mods.size(); ++I) 602 if (Error Err = addModule(*Input, I, ResI, Res.end())) 603 return Err; 604 605 assert(ResI == Res.end()); 606 return Error::success(); 607 } 608 609 Error LTO::addModule(InputFile &Input, unsigned ModI, 610 const SymbolResolution *&ResI, 611 const SymbolResolution *ResE) { 612 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 613 if (!LTOInfo) 614 return LTOInfo.takeError(); 615 616 if (EnableSplitLTOUnit.hasValue()) { 617 // If only some modules were split, flag this in the index so that 618 // we can skip or error on optimizations that need consistently split 619 // modules (whole program devirt and lower type tests). 620 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 621 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 622 } else 623 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 624 625 BitcodeModule BM = Input.Mods[ModI]; 626 auto ModSyms = Input.module_symbols(ModI); 627 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 628 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 629 LTOInfo->HasSummary); 630 631 if (LTOInfo->IsThinLTO) 632 return addThinLTO(BM, ModSyms, ResI, ResE); 633 634 Expected<RegularLTOState::AddedModule> ModOrErr = 635 addRegularLTO(BM, ModSyms, ResI, ResE); 636 if (!ModOrErr) 637 return ModOrErr.takeError(); 638 639 if (!LTOInfo->HasSummary) 640 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 641 642 // Regular LTO module summaries are added to a dummy module that represents 643 // the combined regular LTO module. 644 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 645 return Err; 646 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 647 return Error::success(); 648 } 649 650 // Checks whether the given global value is in a non-prevailing comdat 651 // (comdat containing values the linker indicated were not prevailing, 652 // which we then dropped to available_externally), and if so, removes 653 // it from the comdat. This is called for all global values to ensure the 654 // comdat is empty rather than leaving an incomplete comdat. It is needed for 655 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 656 // and thin LTO modules) compilation. Since the regular LTO module will be 657 // linked first in the final native link, we want to make sure the linker 658 // doesn't select any of these incomplete comdats that would be left 659 // in the regular LTO module without this cleanup. 660 static void 661 handleNonPrevailingComdat(GlobalValue &GV, 662 std::set<const Comdat *> &NonPrevailingComdats) { 663 Comdat *C = GV.getComdat(); 664 if (!C) 665 return; 666 667 if (!NonPrevailingComdats.count(C)) 668 return; 669 670 // Additionally need to drop externally visible global values from the comdat 671 // to available_externally, so that there aren't multiply defined linker 672 // errors. 673 if (!GV.hasLocalLinkage()) 674 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 675 676 if (auto GO = dyn_cast<GlobalObject>(&GV)) 677 GO->setComdat(nullptr); 678 } 679 680 // Add a regular LTO object to the link. 681 // The resulting module needs to be linked into the combined LTO module with 682 // linkRegularLTO. 683 Expected<LTO::RegularLTOState::AddedModule> 684 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 685 const SymbolResolution *&ResI, 686 const SymbolResolution *ResE) { 687 RegularLTOState::AddedModule Mod; 688 Expected<std::unique_ptr<Module>> MOrErr = 689 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 690 /*IsImporting*/ false); 691 if (!MOrErr) 692 return MOrErr.takeError(); 693 Module &M = **MOrErr; 694 Mod.M = std::move(*MOrErr); 695 696 if (Error Err = M.materializeMetadata()) 697 return std::move(Err); 698 UpgradeDebugInfo(M); 699 700 ModuleSymbolTable SymTab; 701 SymTab.addModule(&M); 702 703 for (GlobalVariable &GV : M.globals()) 704 if (GV.hasAppendingLinkage()) 705 Mod.Keep.push_back(&GV); 706 707 DenseSet<GlobalObject *> AliasedGlobals; 708 for (auto &GA : M.aliases()) 709 if (GlobalObject *GO = GA.getBaseObject()) 710 AliasedGlobals.insert(GO); 711 712 // In this function we need IR GlobalValues matching the symbols in Syms 713 // (which is not backed by a module), so we need to enumerate them in the same 714 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 715 // matches the order of an irsymtab, but when we read the irsymtab in 716 // InputFile::create we omit some symbols that are irrelevant to LTO. The 717 // Skip() function skips the same symbols from the module as InputFile does 718 // from the symbol table. 719 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 720 auto Skip = [&]() { 721 while (MsymI != MsymE) { 722 auto Flags = SymTab.getSymbolFlags(*MsymI); 723 if ((Flags & object::BasicSymbolRef::SF_Global) && 724 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 725 return; 726 ++MsymI; 727 } 728 }; 729 Skip(); 730 731 std::set<const Comdat *> NonPrevailingComdats; 732 for (const InputFile::Symbol &Sym : Syms) { 733 assert(ResI != ResE); 734 SymbolResolution Res = *ResI++; 735 736 assert(MsymI != MsymE); 737 ModuleSymbolTable::Symbol Msym = *MsymI++; 738 Skip(); 739 740 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 741 if (Res.Prevailing) { 742 if (Sym.isUndefined()) 743 continue; 744 Mod.Keep.push_back(GV); 745 // For symbols re-defined with linker -wrap and -defsym options, 746 // set the linkage to weak to inhibit IPO. The linkage will be 747 // restored by the linker. 748 if (Res.LinkerRedefined) 749 GV->setLinkage(GlobalValue::WeakAnyLinkage); 750 751 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 752 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 753 GV->setLinkage(GlobalValue::getWeakLinkage( 754 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 755 } else if (isa<GlobalObject>(GV) && 756 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 757 GV->hasAvailableExternallyLinkage()) && 758 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 759 // Any of the above three types of linkage indicates that the 760 // chosen prevailing symbol will have the same semantics as this copy of 761 // the symbol, so we may be able to link it with available_externally 762 // linkage. We will decide later whether to do that when we link this 763 // module (in linkRegularLTO), based on whether it is undefined. 764 Mod.Keep.push_back(GV); 765 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 766 if (GV->hasComdat()) 767 NonPrevailingComdats.insert(GV->getComdat()); 768 cast<GlobalObject>(GV)->setComdat(nullptr); 769 } 770 771 // Set the 'local' flag based on the linker resolution for this symbol. 772 if (Res.FinalDefinitionInLinkageUnit) { 773 GV->setDSOLocal(true); 774 if (GV->hasDLLImportStorageClass()) 775 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 776 DefaultStorageClass); 777 } 778 } 779 // Common resolution: collect the maximum size/alignment over all commons. 780 // We also record if we see an instance of a common as prevailing, so that 781 // if none is prevailing we can ignore it later. 782 if (Sym.isCommon()) { 783 // FIXME: We should figure out what to do about commons defined by asm. 784 // For now they aren't reported correctly by ModuleSymbolTable. 785 auto &CommonRes = RegularLTO.Commons[Sym.getIRName()]; 786 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 787 CommonRes.Align = 788 std::max(CommonRes.Align, MaybeAlign(Sym.getCommonAlignment())); 789 CommonRes.Prevailing |= Res.Prevailing; 790 } 791 792 } 793 if (!M.getComdatSymbolTable().empty()) 794 for (GlobalValue &GV : M.global_values()) 795 handleNonPrevailingComdat(GV, NonPrevailingComdats); 796 assert(MsymI == MsymE); 797 return std::move(Mod); 798 } 799 800 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 801 bool LivenessFromIndex) { 802 std::vector<GlobalValue *> Keep; 803 for (GlobalValue *GV : Mod.Keep) { 804 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) 805 continue; 806 807 if (!GV->hasAvailableExternallyLinkage()) { 808 Keep.push_back(GV); 809 continue; 810 } 811 812 // Only link available_externally definitions if we don't already have a 813 // definition. 814 GlobalValue *CombinedGV = 815 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 816 if (CombinedGV && !CombinedGV->isDeclaration()) 817 continue; 818 819 Keep.push_back(GV); 820 } 821 822 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 823 [](GlobalValue &, IRMover::ValueAdder) {}, 824 /* IsPerformingImport */ false); 825 } 826 827 // Add a ThinLTO module to the link. 828 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 829 const SymbolResolution *&ResI, 830 const SymbolResolution *ResE) { 831 if (Error Err = 832 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 833 ThinLTO.ModuleMap.size())) 834 return Err; 835 836 for (const InputFile::Symbol &Sym : Syms) { 837 assert(ResI != ResE); 838 SymbolResolution Res = *ResI++; 839 840 if (!Sym.getIRName().empty()) { 841 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 842 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 843 if (Res.Prevailing) { 844 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 845 846 // For linker redefined symbols (via --wrap or --defsym) we want to 847 // switch the linkage to `weak` to prevent IPOs from happening. 848 // Find the summary in the module for this very GV and record the new 849 // linkage so that we can switch it when we import the GV. 850 if (Res.LinkerRedefined) 851 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 852 GUID, BM.getModuleIdentifier())) 853 S->setLinkage(GlobalValue::WeakAnyLinkage); 854 } 855 856 // If the linker resolved the symbol to a local definition then mark it 857 // as local in the summary for the module we are adding. 858 if (Res.FinalDefinitionInLinkageUnit) { 859 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 860 GUID, BM.getModuleIdentifier())) { 861 S->setDSOLocal(true); 862 } 863 } 864 } 865 } 866 867 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 868 return make_error<StringError>( 869 "Expected at most one ThinLTO module per bitcode file", 870 inconvertibleErrorCode()); 871 872 return Error::success(); 873 } 874 875 unsigned LTO::getMaxTasks() const { 876 CalledGetMaxTasks = true; 877 return RegularLTO.ParallelCodeGenParallelismLevel + ThinLTO.ModuleMap.size(); 878 } 879 880 // If only some of the modules were split, we cannot correctly handle 881 // code that contains type tests or type checked loads. 882 Error LTO::checkPartiallySplit() { 883 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 884 return Error::success(); 885 886 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 887 Intrinsic::getName(Intrinsic::type_test)); 888 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 889 Intrinsic::getName(Intrinsic::type_checked_load)); 890 891 // First check if there are type tests / type checked loads in the 892 // merged regular LTO module IR. 893 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 894 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 895 return make_error<StringError>( 896 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 897 inconvertibleErrorCode()); 898 899 // Otherwise check if there are any recorded in the combined summary from the 900 // ThinLTO modules. 901 for (auto &P : ThinLTO.CombinedIndex) { 902 for (auto &S : P.second.SummaryList) { 903 auto *FS = dyn_cast<FunctionSummary>(S.get()); 904 if (!FS) 905 continue; 906 if (!FS->type_test_assume_vcalls().empty() || 907 !FS->type_checked_load_vcalls().empty() || 908 !FS->type_test_assume_const_vcalls().empty() || 909 !FS->type_checked_load_const_vcalls().empty() || 910 !FS->type_tests().empty()) 911 return make_error<StringError>( 912 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 913 inconvertibleErrorCode()); 914 } 915 } 916 return Error::success(); 917 } 918 919 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { 920 // Compute "dead" symbols, we don't want to import/export these! 921 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 922 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 923 for (auto &Res : GlobalResolutions) { 924 // Normally resolution have IR name of symbol. We can do nothing here 925 // otherwise. See comments in GlobalResolution struct for more details. 926 if (Res.second.IRName.empty()) 927 continue; 928 929 GlobalValue::GUID GUID = GlobalValue::getGUID( 930 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 931 932 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 933 GUIDPreservedSymbols.insert(GUID); 934 935 GUIDPrevailingResolutions[GUID] = 936 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 937 } 938 939 auto isPrevailing = [&](GlobalValue::GUID G) { 940 auto It = GUIDPrevailingResolutions.find(G); 941 if (It == GUIDPrevailingResolutions.end()) 942 return PrevailingType::Unknown; 943 return It->second; 944 }; 945 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 946 isPrevailing, Conf.OptLevel > 0); 947 948 // Setup output file to emit statistics. 949 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 950 if (!StatsFileOrErr) 951 return StatsFileOrErr.takeError(); 952 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 953 954 // Finalize linking of regular LTO modules containing summaries now that 955 // we have computed liveness information. 956 for (auto &M : RegularLTO.ModsWithSummaries) 957 if (Error Err = linkRegularLTO(std::move(M), 958 /*LivenessFromIndex=*/true)) 959 return Err; 960 961 // Ensure we don't have inconsistently split LTO units with type tests. 962 if (Error Err = checkPartiallySplit()) 963 return Err; 964 965 Error Result = runRegularLTO(AddStream); 966 if (!Result) 967 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 968 969 if (StatsFile) 970 PrintStatisticsJSON(StatsFile->os()); 971 972 return Result; 973 } 974 975 Error LTO::runRegularLTO(AddStreamFn AddStream) { 976 // Make sure commons have the right size/alignment: we kept the largest from 977 // all the prevailing when adding the inputs, and we apply it here. 978 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 979 for (auto &I : RegularLTO.Commons) { 980 if (!I.second.Prevailing) 981 // Don't do anything if no instance of this common was prevailing. 982 continue; 983 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 984 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 985 // Don't create a new global if the type is already correct, just make 986 // sure the alignment is correct. 987 OldGV->setAlignment(I.second.Align); 988 continue; 989 } 990 ArrayType *Ty = 991 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 992 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 993 GlobalValue::CommonLinkage, 994 ConstantAggregateZero::get(Ty), ""); 995 GV->setAlignment(I.second.Align); 996 if (OldGV) { 997 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 998 GV->takeName(OldGV); 999 OldGV->eraseFromParent(); 1000 } else { 1001 GV->setName(I.first); 1002 } 1003 } 1004 1005 if (Conf.PreOptModuleHook && 1006 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1007 return Error::success(); 1008 1009 if (!Conf.CodeGenOnly) { 1010 for (const auto &R : GlobalResolutions) { 1011 if (!R.second.isPrevailingIRSymbol()) 1012 continue; 1013 if (R.second.Partition != 0 && 1014 R.second.Partition != GlobalResolution::External) 1015 continue; 1016 1017 GlobalValue *GV = 1018 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1019 // Ignore symbols defined in other partitions. 1020 // Also skip declarations, which are not allowed to have internal linkage. 1021 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1022 continue; 1023 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1024 : GlobalValue::UnnamedAddr::None); 1025 if (EnableLTOInternalization && R.second.Partition == 0) 1026 GV->setLinkage(GlobalValue::InternalLinkage); 1027 } 1028 1029 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); 1030 1031 if (Conf.PostInternalizeModuleHook && 1032 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1033 return Error::success(); 1034 } 1035 return backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1036 std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex); 1037 } 1038 1039 static const char *libcallRoutineNames[] = { 1040 #define HANDLE_LIBCALL(code, name) name, 1041 #include "llvm/IR/RuntimeLibcalls.def" 1042 #undef HANDLE_LIBCALL 1043 }; 1044 1045 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1046 return makeArrayRef(libcallRoutineNames); 1047 } 1048 1049 /// This class defines the interface to the ThinLTO backend. 1050 class lto::ThinBackendProc { 1051 protected: 1052 const Config &Conf; 1053 ModuleSummaryIndex &CombinedIndex; 1054 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1055 1056 public: 1057 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1058 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1059 : Conf(Conf), CombinedIndex(CombinedIndex), 1060 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1061 1062 virtual ~ThinBackendProc() {} 1063 virtual Error start( 1064 unsigned Task, BitcodeModule BM, 1065 const FunctionImporter::ImportMapTy &ImportList, 1066 const FunctionImporter::ExportSetTy &ExportList, 1067 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1068 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1069 virtual Error wait() = 0; 1070 }; 1071 1072 namespace { 1073 class InProcessThinBackend : public ThinBackendProc { 1074 ThreadPool BackendThreadPool; 1075 AddStreamFn AddStream; 1076 NativeObjectCache Cache; 1077 std::set<GlobalValue::GUID> CfiFunctionDefs; 1078 std::set<GlobalValue::GUID> CfiFunctionDecls; 1079 1080 Optional<Error> Err; 1081 std::mutex ErrMu; 1082 1083 public: 1084 InProcessThinBackend( 1085 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1086 unsigned ThinLTOParallelismLevel, 1087 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1088 AddStreamFn AddStream, NativeObjectCache Cache) 1089 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1090 BackendThreadPool(ThinLTOParallelismLevel), 1091 AddStream(std::move(AddStream)), Cache(std::move(Cache)) { 1092 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1093 CfiFunctionDefs.insert( 1094 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1095 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1096 CfiFunctionDecls.insert( 1097 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1098 } 1099 1100 Error runThinLTOBackendThread( 1101 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, 1102 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1103 const FunctionImporter::ImportMapTy &ImportList, 1104 const FunctionImporter::ExportSetTy &ExportList, 1105 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1106 const GVSummaryMapTy &DefinedGlobals, 1107 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1108 auto RunThinBackend = [&](AddStreamFn AddStream) { 1109 LTOLLVMContext BackendContext(Conf); 1110 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1111 if (!MOrErr) 1112 return MOrErr.takeError(); 1113 1114 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1115 ImportList, DefinedGlobals, ModuleMap); 1116 }; 1117 1118 auto ModuleID = BM.getModuleIdentifier(); 1119 1120 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1121 all_of(CombinedIndex.getModuleHash(ModuleID), 1122 [](uint32_t V) { return V == 0; })) 1123 // Cache disabled or no entry for this module in the combined index or 1124 // no module hash. 1125 return RunThinBackend(AddStream); 1126 1127 SmallString<40> Key; 1128 // The module may be cached, this helps handling it. 1129 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1130 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1131 CfiFunctionDecls); 1132 if (AddStreamFn CacheAddStream = Cache(Task, Key)) 1133 return RunThinBackend(CacheAddStream); 1134 1135 return Error::success(); 1136 } 1137 1138 Error start( 1139 unsigned Task, BitcodeModule BM, 1140 const FunctionImporter::ImportMapTy &ImportList, 1141 const FunctionImporter::ExportSetTy &ExportList, 1142 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1143 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1144 StringRef ModulePath = BM.getModuleIdentifier(); 1145 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1146 const GVSummaryMapTy &DefinedGlobals = 1147 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1148 BackendThreadPool.async( 1149 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1150 const FunctionImporter::ImportMapTy &ImportList, 1151 const FunctionImporter::ExportSetTy &ExportList, 1152 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1153 &ResolvedODR, 1154 const GVSummaryMapTy &DefinedGlobals, 1155 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1156 Error E = runThinLTOBackendThread( 1157 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1158 ResolvedODR, DefinedGlobals, ModuleMap); 1159 if (E) { 1160 std::unique_lock<std::mutex> L(ErrMu); 1161 if (Err) 1162 Err = joinErrors(std::move(*Err), std::move(E)); 1163 else 1164 Err = std::move(E); 1165 } 1166 }, 1167 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1168 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1169 return Error::success(); 1170 } 1171 1172 Error wait() override { 1173 BackendThreadPool.wait(); 1174 if (Err) 1175 return std::move(*Err); 1176 else 1177 return Error::success(); 1178 } 1179 }; 1180 } // end anonymous namespace 1181 1182 ThinBackend lto::createInProcessThinBackend(unsigned ParallelismLevel) { 1183 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1184 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1185 AddStreamFn AddStream, NativeObjectCache Cache) { 1186 return std::make_unique<InProcessThinBackend>( 1187 Conf, CombinedIndex, ParallelismLevel, ModuleToDefinedGVSummaries, 1188 AddStream, Cache); 1189 }; 1190 } 1191 1192 // Given the original \p Path to an output file, replace any path 1193 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1194 // resulting directory if it does not yet exist. 1195 std::string lto::getThinLTOOutputFile(const std::string &Path, 1196 const std::string &OldPrefix, 1197 const std::string &NewPrefix) { 1198 if (OldPrefix.empty() && NewPrefix.empty()) 1199 return Path; 1200 SmallString<128> NewPath(Path); 1201 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1202 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1203 if (!ParentPath.empty()) { 1204 // Make sure the new directory exists, creating it if necessary. 1205 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1206 llvm::errs() << "warning: could not create directory '" << ParentPath 1207 << "': " << EC.message() << '\n'; 1208 } 1209 return NewPath.str(); 1210 } 1211 1212 namespace { 1213 class WriteIndexesThinBackend : public ThinBackendProc { 1214 std::string OldPrefix, NewPrefix; 1215 bool ShouldEmitImportsFiles; 1216 raw_fd_ostream *LinkedObjectsFile; 1217 lto::IndexWriteCallback OnWrite; 1218 1219 public: 1220 WriteIndexesThinBackend( 1221 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1222 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1223 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1224 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1225 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1226 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1227 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1228 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1229 1230 Error start( 1231 unsigned Task, BitcodeModule BM, 1232 const FunctionImporter::ImportMapTy &ImportList, 1233 const FunctionImporter::ExportSetTy &ExportList, 1234 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1235 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1236 StringRef ModulePath = BM.getModuleIdentifier(); 1237 std::string NewModulePath = 1238 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); 1239 1240 if (LinkedObjectsFile) 1241 *LinkedObjectsFile << NewModulePath << '\n'; 1242 1243 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1244 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1245 ImportList, ModuleToSummariesForIndex); 1246 1247 std::error_code EC; 1248 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1249 sys::fs::OpenFlags::OF_None); 1250 if (EC) 1251 return errorCodeToError(EC); 1252 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1253 1254 if (ShouldEmitImportsFiles) { 1255 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1256 ModuleToSummariesForIndex); 1257 if (EC) 1258 return errorCodeToError(EC); 1259 } 1260 1261 if (OnWrite) 1262 OnWrite(ModulePath); 1263 return Error::success(); 1264 } 1265 1266 Error wait() override { return Error::success(); } 1267 }; 1268 } // end anonymous namespace 1269 1270 ThinBackend lto::createWriteIndexesThinBackend( 1271 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1272 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1273 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1274 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1275 AddStreamFn AddStream, NativeObjectCache Cache) { 1276 return std::make_unique<WriteIndexesThinBackend>( 1277 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1278 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1279 }; 1280 } 1281 1282 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 1283 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1284 if (ThinLTO.ModuleMap.empty()) 1285 return Error::success(); 1286 1287 if (Conf.CombinedIndexHook && 1288 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1289 return Error::success(); 1290 1291 // Collect for each module the list of function it defines (GUID -> 1292 // Summary). 1293 StringMap<GVSummaryMapTy> 1294 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1295 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1296 ModuleToDefinedGVSummaries); 1297 // Create entries for any modules that didn't have any GV summaries 1298 // (either they didn't have any GVs to start with, or we suppressed 1299 // generation of the summaries because they e.g. had inline assembly 1300 // uses that couldn't be promoted/renamed on export). This is so 1301 // InProcessThinBackend::start can still launch a backend thread, which 1302 // is passed the map of summaries for the module, without any special 1303 // handling for this case. 1304 for (auto &Mod : ThinLTO.ModuleMap) 1305 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1306 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1307 1308 // Synthesize entry counts for functions in the CombinedIndex. 1309 computeSyntheticCounts(ThinLTO.CombinedIndex); 1310 1311 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1312 ThinLTO.ModuleMap.size()); 1313 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1314 ThinLTO.ModuleMap.size()); 1315 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1316 1317 if (DumpThinCGSCCs) 1318 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1319 1320 std::set<GlobalValue::GUID> ExportedGUIDs; 1321 1322 // Perform index-based WPD. This will return immediately if there are 1323 // no index entries in the typeIdMetadata map (e.g. if we are instead 1324 // performing IR-based WPD in hybrid regular/thin LTO mode). 1325 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1326 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1327 LocalWPDTargetsMap); 1328 1329 if (Conf.OptLevel > 0) 1330 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1331 ImportLists, ExportLists); 1332 1333 // Figure out which symbols need to be internalized. This also needs to happen 1334 // at -O0 because summary-based DCE is implemented using internalization, and 1335 // we must apply DCE consistently with the full LTO module in order to avoid 1336 // undefined references during the final link. 1337 for (auto &Res : GlobalResolutions) { 1338 // If the symbol does not have external references or it is not prevailing, 1339 // then not need to mark it as exported from a ThinLTO partition. 1340 if (Res.second.Partition != GlobalResolution::External || 1341 !Res.second.isPrevailingIRSymbol()) 1342 continue; 1343 auto GUID = GlobalValue::getGUID( 1344 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1345 // Mark exported unless index-based analysis determined it to be dead. 1346 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1347 ExportedGUIDs.insert(GUID); 1348 } 1349 1350 // Any functions referenced by the jump table in the regular LTO object must 1351 // be exported. 1352 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1353 ExportedGUIDs.insert( 1354 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1355 1356 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1357 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1358 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1359 ExportedGUIDs.count(VI.getGUID()); 1360 }; 1361 1362 // Update local devirtualized targets that were exported by cross-module 1363 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1364 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1365 LocalWPDTargetsMap); 1366 1367 auto isPrevailing = [&](GlobalValue::GUID GUID, 1368 const GlobalValueSummary *S) { 1369 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1370 }; 1371 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1372 isPrevailing); 1373 1374 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1375 GlobalValue::GUID GUID, 1376 GlobalValue::LinkageTypes NewLinkage) { 1377 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1378 }; 1379 thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing, 1380 recordNewLinkage, GUIDPreservedSymbols); 1381 1382 std::unique_ptr<ThinBackendProc> BackendProc = 1383 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1384 AddStream, Cache); 1385 1386 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for combined 1387 // module and parallel code generation partitions. 1388 unsigned Task = RegularLTO.ParallelCodeGenParallelismLevel; 1389 for (auto &Mod : ThinLTO.ModuleMap) { 1390 if (Error E = BackendProc->start(Task, Mod.second, ImportLists[Mod.first], 1391 ExportLists[Mod.first], 1392 ResolvedODR[Mod.first], ThinLTO.ModuleMap)) 1393 return E; 1394 ++Task; 1395 } 1396 1397 return BackendProc->wait(); 1398 } 1399 1400 Expected<std::unique_ptr<ToolOutputFile>> 1401 lto::setupOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename, 1402 StringRef RemarksPasses, StringRef RemarksFormat, 1403 bool RemarksWithHotness, int Count) { 1404 std::string Filename = RemarksFilename; 1405 // For ThinLTO, file.opt.<format> becomes 1406 // file.opt.<format>.thin.<num>.<format>. 1407 if (!Filename.empty() && Count != -1) 1408 Filename = 1409 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1410 .str(); 1411 1412 auto ResultOrErr = llvm::setupOptimizationRemarks( 1413 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness); 1414 if (Error E = ResultOrErr.takeError()) 1415 return std::move(E); 1416 1417 if (*ResultOrErr) 1418 (*ResultOrErr)->keep(); 1419 1420 return ResultOrErr; 1421 } 1422 1423 Expected<std::unique_ptr<ToolOutputFile>> 1424 lto::setupStatsFile(StringRef StatsFilename) { 1425 // Setup output file to emit statistics. 1426 if (StatsFilename.empty()) 1427 return nullptr; 1428 1429 llvm::EnableStatistics(false); 1430 std::error_code EC; 1431 auto StatsFile = 1432 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1433 if (EC) 1434 return errorCodeToError(EC); 1435 1436 StatsFile->keep(); 1437 return std::move(StatsFile); 1438 } 1439