1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/TargetLibraryInfo.h" 16 #include "llvm/Analysis/TargetTransformInfo.h" 17 #include "llvm/Bitcode/BitcodeReader.h" 18 #include "llvm/Bitcode/BitcodeWriter.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/Config/llvm-config.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/LegacyPassManager.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Metadata.h" 27 #include "llvm/IR/RemarkStreamer.h" 28 #include "llvm/LTO/LTOBackend.h" 29 #include "llvm/LTO/SummaryBasedOptimizations.h" 30 #include "llvm/Linker/IRMover.h" 31 #include "llvm/Object/IRObjectFile.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Error.h" 34 #include "llvm/Support/ManagedStatic.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Support/SHA1.h" 38 #include "llvm/Support/SourceMgr.h" 39 #include "llvm/Support/TargetRegistry.h" 40 #include "llvm/Support/ThreadPool.h" 41 #include "llvm/Support/Threading.h" 42 #include "llvm/Support/VCSRevision.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 48 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 49 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 50 #include "llvm/Transforms/Utils/SplitModule.h" 51 52 #include <set> 53 54 using namespace llvm; 55 using namespace lto; 56 using namespace object; 57 58 #define DEBUG_TYPE "lto" 59 60 static cl::opt<bool> 61 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 62 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 63 64 /// Enable global value internalization in LTO. 65 cl::opt<bool> EnableLTOInternalization( 66 "enable-lto-internalization", cl::init(true), cl::Hidden, 67 cl::desc("Enable global value internalization in LTO")); 68 69 // Computes a unique hash for the Module considering the current list of 70 // export/import and other global analysis results. 71 // The hash is produced in \p Key. 72 void llvm::computeLTOCacheKey( 73 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 74 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 75 const FunctionImporter::ExportSetTy &ExportList, 76 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 77 const GVSummaryMapTy &DefinedGlobals, 78 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 79 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 80 // Compute the unique hash for this entry. 81 // This is based on the current compiler version, the module itself, the 82 // export list, the hash for every single module in the import list, the 83 // list of ResolvedODR for the module, and the list of preserved symbols. 84 SHA1 Hasher; 85 86 // Start with the compiler revision 87 Hasher.update(LLVM_VERSION_STRING); 88 #ifdef LLVM_REVISION 89 Hasher.update(LLVM_REVISION); 90 #endif 91 92 // Include the parts of the LTO configuration that affect code generation. 93 auto AddString = [&](StringRef Str) { 94 Hasher.update(Str); 95 Hasher.update(ArrayRef<uint8_t>{0}); 96 }; 97 auto AddUnsigned = [&](unsigned I) { 98 uint8_t Data[4]; 99 Data[0] = I; 100 Data[1] = I >> 8; 101 Data[2] = I >> 16; 102 Data[3] = I >> 24; 103 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 104 }; 105 auto AddUint64 = [&](uint64_t I) { 106 uint8_t Data[8]; 107 Data[0] = I; 108 Data[1] = I >> 8; 109 Data[2] = I >> 16; 110 Data[3] = I >> 24; 111 Data[4] = I >> 32; 112 Data[5] = I >> 40; 113 Data[6] = I >> 48; 114 Data[7] = I >> 56; 115 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 116 }; 117 AddString(Conf.CPU); 118 // FIXME: Hash more of Options. For now all clients initialize Options from 119 // command-line flags (which is unsupported in production), but may set 120 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 121 // DataSections and DebuggerTuning via command line flags. 122 AddUnsigned(Conf.Options.RelaxELFRelocations); 123 AddUnsigned(Conf.Options.FunctionSections); 124 AddUnsigned(Conf.Options.DataSections); 125 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 126 for (auto &A : Conf.MAttrs) 127 AddString(A); 128 if (Conf.RelocModel) 129 AddUnsigned(*Conf.RelocModel); 130 else 131 AddUnsigned(-1); 132 if (Conf.CodeModel) 133 AddUnsigned(*Conf.CodeModel); 134 else 135 AddUnsigned(-1); 136 AddUnsigned(Conf.CGOptLevel); 137 AddUnsigned(Conf.CGFileType); 138 AddUnsigned(Conf.OptLevel); 139 AddUnsigned(Conf.UseNewPM); 140 AddUnsigned(Conf.Freestanding); 141 AddString(Conf.OptPipeline); 142 AddString(Conf.AAPipeline); 143 AddString(Conf.OverrideTriple); 144 AddString(Conf.DefaultTriple); 145 AddString(Conf.DwoDir); 146 147 // Include the hash for the current module 148 auto ModHash = Index.getModuleHash(ModuleID); 149 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 150 for (const auto &VI : ExportList) { 151 auto GUID = VI.getGUID(); 152 // The export list can impact the internalization, be conservative here 153 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 154 } 155 156 // Include the hash for every module we import functions from. The set of 157 // imported symbols for each module may affect code generation and is 158 // sensitive to link order, so include that as well. 159 for (auto &Entry : ImportList) { 160 auto ModHash = Index.getModuleHash(Entry.first()); 161 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 162 163 AddUint64(Entry.second.size()); 164 for (auto &Fn : Entry.second) 165 AddUint64(Fn); 166 } 167 168 // Include the hash for the resolved ODR. 169 for (auto &Entry : ResolvedODR) { 170 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 171 sizeof(GlobalValue::GUID))); 172 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 173 sizeof(GlobalValue::LinkageTypes))); 174 } 175 176 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 177 // defined in this module. 178 std::set<GlobalValue::GUID> UsedCfiDefs; 179 std::set<GlobalValue::GUID> UsedCfiDecls; 180 181 // Typeids used in this module. 182 std::set<GlobalValue::GUID> UsedTypeIds; 183 184 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 185 if (CfiFunctionDefs.count(ValueGUID)) 186 UsedCfiDefs.insert(ValueGUID); 187 if (CfiFunctionDecls.count(ValueGUID)) 188 UsedCfiDecls.insert(ValueGUID); 189 }; 190 191 auto AddUsedThings = [&](GlobalValueSummary *GS) { 192 if (!GS) return; 193 AddUnsigned(GS->isLive()); 194 AddUnsigned(GS->canAutoHide()); 195 for (const ValueInfo &VI : GS->refs()) { 196 AddUnsigned(VI.isDSOLocal()); 197 AddUsedCfiGlobal(VI.getGUID()); 198 } 199 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 200 AddUnsigned(GVS->maybeReadOnly()); 201 AddUnsigned(GVS->maybeWriteOnly()); 202 } 203 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 204 for (auto &TT : FS->type_tests()) 205 UsedTypeIds.insert(TT); 206 for (auto &TT : FS->type_test_assume_vcalls()) 207 UsedTypeIds.insert(TT.GUID); 208 for (auto &TT : FS->type_checked_load_vcalls()) 209 UsedTypeIds.insert(TT.GUID); 210 for (auto &TT : FS->type_test_assume_const_vcalls()) 211 UsedTypeIds.insert(TT.VFunc.GUID); 212 for (auto &TT : FS->type_checked_load_const_vcalls()) 213 UsedTypeIds.insert(TT.VFunc.GUID); 214 for (auto &ET : FS->calls()) { 215 AddUnsigned(ET.first.isDSOLocal()); 216 AddUsedCfiGlobal(ET.first.getGUID()); 217 } 218 } 219 }; 220 221 // Include the hash for the linkage type to reflect internalization and weak 222 // resolution, and collect any used type identifier resolutions. 223 for (auto &GS : DefinedGlobals) { 224 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 225 Hasher.update( 226 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 227 AddUsedCfiGlobal(GS.first); 228 AddUsedThings(GS.second); 229 } 230 231 // Imported functions may introduce new uses of type identifier resolutions, 232 // so we need to collect their used resolutions as well. 233 for (auto &ImpM : ImportList) 234 for (auto &ImpF : ImpM.second) { 235 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 236 AddUsedThings(S); 237 // If this is an alias, we also care about any types/etc. that the aliasee 238 // may reference. 239 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 240 AddUsedThings(AS->getBaseObject()); 241 } 242 243 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 244 AddString(TId); 245 246 AddUnsigned(S.TTRes.TheKind); 247 AddUnsigned(S.TTRes.SizeM1BitWidth); 248 249 AddUint64(S.TTRes.AlignLog2); 250 AddUint64(S.TTRes.SizeM1); 251 AddUint64(S.TTRes.BitMask); 252 AddUint64(S.TTRes.InlineBits); 253 254 AddUint64(S.WPDRes.size()); 255 for (auto &WPD : S.WPDRes) { 256 AddUnsigned(WPD.first); 257 AddUnsigned(WPD.second.TheKind); 258 AddString(WPD.second.SingleImplName); 259 260 AddUint64(WPD.second.ResByArg.size()); 261 for (auto &ByArg : WPD.second.ResByArg) { 262 AddUint64(ByArg.first.size()); 263 for (uint64_t Arg : ByArg.first) 264 AddUint64(Arg); 265 AddUnsigned(ByArg.second.TheKind); 266 AddUint64(ByArg.second.Info); 267 AddUnsigned(ByArg.second.Byte); 268 AddUnsigned(ByArg.second.Bit); 269 } 270 } 271 }; 272 273 // Include the hash for all type identifiers used by this module. 274 for (GlobalValue::GUID TId : UsedTypeIds) { 275 auto TidIter = Index.typeIds().equal_range(TId); 276 for (auto It = TidIter.first; It != TidIter.second; ++It) 277 AddTypeIdSummary(It->second.first, It->second.second); 278 } 279 280 AddUnsigned(UsedCfiDefs.size()); 281 for (auto &V : UsedCfiDefs) 282 AddUint64(V); 283 284 AddUnsigned(UsedCfiDecls.size()); 285 for (auto &V : UsedCfiDecls) 286 AddUint64(V); 287 288 if (!Conf.SampleProfile.empty()) { 289 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 290 if (FileOrErr) { 291 Hasher.update(FileOrErr.get()->getBuffer()); 292 293 if (!Conf.ProfileRemapping.empty()) { 294 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 295 if (FileOrErr) 296 Hasher.update(FileOrErr.get()->getBuffer()); 297 } 298 } 299 } 300 301 Key = toHex(Hasher.result()); 302 } 303 304 static void thinLTOResolvePrevailingGUID( 305 ValueInfo VI, DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 306 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 307 isPrevailing, 308 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 309 recordNewLinkage, 310 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 311 for (auto &S : VI.getSummaryList()) { 312 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 313 // Ignore local and appending linkage values since the linker 314 // doesn't resolve them. 315 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 316 GlobalValue::isAppendingLinkage(S->linkage())) 317 continue; 318 // We need to emit only one of these. The prevailing module will keep it, 319 // but turned into a weak, while the others will drop it when possible. 320 // This is both a compile-time optimization and a correctness 321 // transformation. This is necessary for correctness when we have exported 322 // a reference - we need to convert the linkonce to weak to 323 // ensure a copy is kept to satisfy the exported reference. 324 // FIXME: We may want to split the compile time and correctness 325 // aspects into separate routines. 326 if (isPrevailing(VI.getGUID(), S.get())) { 327 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 328 S->setLinkage(GlobalValue::getWeakLinkage( 329 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 330 // The kept copy is eligible for auto-hiding (hidden visibility) if all 331 // copies were (i.e. they were all linkonce_odr global unnamed addr). 332 // If any copy is not (e.g. it was originally weak_odr), then the symbol 333 // must remain externally available (e.g. a weak_odr from an explicitly 334 // instantiated template). Additionally, if it is in the 335 // GUIDPreservedSymbols set, that means that it is visibile outside 336 // the summary (e.g. in a native object or a bitcode file without 337 // summary), and in that case we cannot hide it as it isn't possible to 338 // check all copies. 339 S->setCanAutoHide(VI.canAutoHide() && 340 !GUIDPreservedSymbols.count(VI.getGUID())); 341 } 342 } 343 // Alias and aliasee can't be turned into available_externally. 344 else if (!isa<AliasSummary>(S.get()) && 345 !GlobalInvolvedWithAlias.count(S.get())) 346 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 347 if (S->linkage() != OriginalLinkage) 348 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 349 } 350 } 351 352 /// Resolve linkage for prevailing symbols in the \p Index. 353 // 354 // We'd like to drop these functions if they are no longer referenced in the 355 // current module. However there is a chance that another module is still 356 // referencing them because of the import. We make sure we always emit at least 357 // one copy. 358 void llvm::thinLTOResolvePrevailingInIndex( 359 ModuleSummaryIndex &Index, 360 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 361 isPrevailing, 362 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 363 recordNewLinkage, 364 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 365 // We won't optimize the globals that are referenced by an alias for now 366 // Ideally we should turn the alias into a global and duplicate the definition 367 // when needed. 368 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 369 for (auto &I : Index) 370 for (auto &S : I.second.SummaryList) 371 if (auto AS = dyn_cast<AliasSummary>(S.get())) 372 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 373 374 for (auto &I : Index) 375 thinLTOResolvePrevailingGUID(Index.getValueInfo(I), GlobalInvolvedWithAlias, 376 isPrevailing, recordNewLinkage, 377 GUIDPreservedSymbols); 378 } 379 380 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 381 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 382 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 383 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 384 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 385 return false; 386 } 387 388 static void thinLTOInternalizeAndPromoteGUID( 389 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 390 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 391 isPrevailing) { 392 for (auto &S : VI.getSummaryList()) { 393 if (isExported(S->modulePath(), VI)) { 394 if (GlobalValue::isLocalLinkage(S->linkage())) 395 S->setLinkage(GlobalValue::ExternalLinkage); 396 } else if (EnableLTOInternalization && 397 // Ignore local and appending linkage values since the linker 398 // doesn't resolve them. 399 !GlobalValue::isLocalLinkage(S->linkage()) && 400 (!GlobalValue::isInterposableLinkage(S->linkage()) || 401 isPrevailing(VI.getGUID(), S.get())) && 402 S->linkage() != GlobalValue::AppendingLinkage && 403 // We can't internalize available_externally globals because this 404 // can break function pointer equality. 405 S->linkage() != GlobalValue::AvailableExternallyLinkage && 406 // Functions and read-only variables with linkonce_odr and 407 // weak_odr linkage can be internalized. We can't internalize 408 // linkonce_odr and weak_odr variables which are both modified 409 // and read somewhere in the program because reads and writes 410 // will become inconsistent. 411 !isWeakObjectWithRWAccess(S.get())) 412 S->setLinkage(GlobalValue::InternalLinkage); 413 } 414 } 415 416 // Update the linkages in the given \p Index to mark exported values 417 // as external and non-exported values as internal. 418 void llvm::thinLTOInternalizeAndPromoteInIndex( 419 ModuleSummaryIndex &Index, 420 function_ref<bool(StringRef, ValueInfo)> isExported, 421 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 422 isPrevailing) { 423 for (auto &I : Index) 424 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 425 isPrevailing); 426 } 427 428 // Requires a destructor for std::vector<InputModule>. 429 InputFile::~InputFile() = default; 430 431 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 432 std::unique_ptr<InputFile> File(new InputFile); 433 434 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 435 if (!FOrErr) 436 return FOrErr.takeError(); 437 438 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 439 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 440 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 441 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 442 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 443 444 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 445 size_t Begin = File->Symbols.size(); 446 for (const irsymtab::Reader::SymbolRef &Sym : 447 FOrErr->TheReader.module_symbols(I)) 448 // Skip symbols that are irrelevant to LTO. Note that this condition needs 449 // to match the one in Skip() in LTO::addRegularLTO(). 450 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 451 File->Symbols.push_back(Sym); 452 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 453 } 454 455 File->Mods = FOrErr->Mods; 456 File->Strtab = std::move(FOrErr->Strtab); 457 return std::move(File); 458 } 459 460 StringRef InputFile::getName() const { 461 return Mods[0].getModuleIdentifier(); 462 } 463 464 BitcodeModule &InputFile::getSingleBitcodeModule() { 465 assert(Mods.size() == 1 && "Expect only one bitcode module"); 466 return Mods[0]; 467 } 468 469 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 470 const Config &Conf) 471 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 472 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 473 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 474 475 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 476 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 477 if (!Backend) 478 this->Backend = 479 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 480 } 481 482 LTO::LTO(Config Conf, ThinBackend Backend, 483 unsigned ParallelCodeGenParallelismLevel) 484 : Conf(std::move(Conf)), 485 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 486 ThinLTO(std::move(Backend)) {} 487 488 // Requires a destructor for MapVector<BitcodeModule>. 489 LTO::~LTO() = default; 490 491 // Add the symbols in the given module to the GlobalResolutions map, and resolve 492 // their partitions. 493 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 494 ArrayRef<SymbolResolution> Res, 495 unsigned Partition, bool InSummary) { 496 auto *ResI = Res.begin(); 497 auto *ResE = Res.end(); 498 (void)ResE; 499 for (const InputFile::Symbol &Sym : Syms) { 500 assert(ResI != ResE); 501 SymbolResolution Res = *ResI++; 502 503 StringRef Name = Sym.getName(); 504 Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 505 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 506 // way they are handled by lld), otherwise we can end up with two 507 // global resolutions (one with and one for a copy of the symbol without). 508 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 509 Name = Name.substr(strlen("__imp_")); 510 auto &GlobalRes = GlobalResolutions[Name]; 511 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 512 if (Res.Prevailing) { 513 assert(!GlobalRes.Prevailing && 514 "Multiple prevailing defs are not allowed"); 515 GlobalRes.Prevailing = true; 516 GlobalRes.IRName = Sym.getIRName(); 517 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 518 // Sometimes it can be two copies of symbol in a module and prevailing 519 // symbol can have no IR name. That might happen if symbol is defined in 520 // module level inline asm block. In case we have multiple modules with 521 // the same symbol we want to use IR name of the prevailing symbol. 522 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 523 // we can later use it to check if there is any prevailing copy in IR. 524 GlobalRes.IRName = Sym.getIRName(); 525 } 526 527 // Set the partition to external if we know it is re-defined by the linker 528 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 529 // regular object, is referenced from llvm.compiler_used, or was already 530 // recorded as being referenced from a different partition. 531 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 532 (GlobalRes.Partition != GlobalResolution::Unknown && 533 GlobalRes.Partition != Partition)) { 534 GlobalRes.Partition = GlobalResolution::External; 535 } else 536 // First recorded reference, save the current partition. 537 GlobalRes.Partition = Partition; 538 539 // Flag as visible outside of summary if visible from a regular object or 540 // from a module that does not have a summary. 541 GlobalRes.VisibleOutsideSummary |= 542 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 543 } 544 } 545 546 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 547 ArrayRef<SymbolResolution> Res) { 548 StringRef Path = Input->getName(); 549 OS << Path << '\n'; 550 auto ResI = Res.begin(); 551 for (const InputFile::Symbol &Sym : Input->symbols()) { 552 assert(ResI != Res.end()); 553 SymbolResolution Res = *ResI++; 554 555 OS << "-r=" << Path << ',' << Sym.getName() << ','; 556 if (Res.Prevailing) 557 OS << 'p'; 558 if (Res.FinalDefinitionInLinkageUnit) 559 OS << 'l'; 560 if (Res.VisibleToRegularObj) 561 OS << 'x'; 562 if (Res.LinkerRedefined) 563 OS << 'r'; 564 OS << '\n'; 565 } 566 OS.flush(); 567 assert(ResI == Res.end()); 568 } 569 570 Error LTO::add(std::unique_ptr<InputFile> Input, 571 ArrayRef<SymbolResolution> Res) { 572 assert(!CalledGetMaxTasks); 573 574 if (Conf.ResolutionFile) 575 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 576 577 if (RegularLTO.CombinedModule->getTargetTriple().empty()) 578 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 579 580 const SymbolResolution *ResI = Res.begin(); 581 for (unsigned I = 0; I != Input->Mods.size(); ++I) 582 if (Error Err = addModule(*Input, I, ResI, Res.end())) 583 return Err; 584 585 assert(ResI == Res.end()); 586 return Error::success(); 587 } 588 589 Error LTO::addModule(InputFile &Input, unsigned ModI, 590 const SymbolResolution *&ResI, 591 const SymbolResolution *ResE) { 592 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 593 if (!LTOInfo) 594 return LTOInfo.takeError(); 595 596 if (EnableSplitLTOUnit.hasValue()) { 597 // If only some modules were split, flag this in the index so that 598 // we can skip or error on optimizations that need consistently split 599 // modules (whole program devirt and lower type tests). 600 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 601 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 602 } else 603 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 604 605 BitcodeModule BM = Input.Mods[ModI]; 606 auto ModSyms = Input.module_symbols(ModI); 607 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 608 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 609 LTOInfo->HasSummary); 610 611 if (LTOInfo->IsThinLTO) 612 return addThinLTO(BM, ModSyms, ResI, ResE); 613 614 Expected<RegularLTOState::AddedModule> ModOrErr = 615 addRegularLTO(BM, ModSyms, ResI, ResE); 616 if (!ModOrErr) 617 return ModOrErr.takeError(); 618 619 if (!LTOInfo->HasSummary) 620 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 621 622 // Regular LTO module summaries are added to a dummy module that represents 623 // the combined regular LTO module. 624 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 625 return Err; 626 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 627 return Error::success(); 628 } 629 630 // Checks whether the given global value is in a non-prevailing comdat 631 // (comdat containing values the linker indicated were not prevailing, 632 // which we then dropped to available_externally), and if so, removes 633 // it from the comdat. This is called for all global values to ensure the 634 // comdat is empty rather than leaving an incomplete comdat. It is needed for 635 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 636 // and thin LTO modules) compilation. Since the regular LTO module will be 637 // linked first in the final native link, we want to make sure the linker 638 // doesn't select any of these incomplete comdats that would be left 639 // in the regular LTO module without this cleanup. 640 static void 641 handleNonPrevailingComdat(GlobalValue &GV, 642 std::set<const Comdat *> &NonPrevailingComdats) { 643 Comdat *C = GV.getComdat(); 644 if (!C) 645 return; 646 647 if (!NonPrevailingComdats.count(C)) 648 return; 649 650 // Additionally need to drop externally visible global values from the comdat 651 // to available_externally, so that there aren't multiply defined linker 652 // errors. 653 if (!GV.hasLocalLinkage()) 654 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 655 656 if (auto GO = dyn_cast<GlobalObject>(&GV)) 657 GO->setComdat(nullptr); 658 } 659 660 // Add a regular LTO object to the link. 661 // The resulting module needs to be linked into the combined LTO module with 662 // linkRegularLTO. 663 Expected<LTO::RegularLTOState::AddedModule> 664 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 665 const SymbolResolution *&ResI, 666 const SymbolResolution *ResE) { 667 RegularLTOState::AddedModule Mod; 668 Expected<std::unique_ptr<Module>> MOrErr = 669 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 670 /*IsImporting*/ false); 671 if (!MOrErr) 672 return MOrErr.takeError(); 673 Module &M = **MOrErr; 674 Mod.M = std::move(*MOrErr); 675 676 if (Error Err = M.materializeMetadata()) 677 return std::move(Err); 678 UpgradeDebugInfo(M); 679 680 ModuleSymbolTable SymTab; 681 SymTab.addModule(&M); 682 683 for (GlobalVariable &GV : M.globals()) 684 if (GV.hasAppendingLinkage()) 685 Mod.Keep.push_back(&GV); 686 687 DenseSet<GlobalObject *> AliasedGlobals; 688 for (auto &GA : M.aliases()) 689 if (GlobalObject *GO = GA.getBaseObject()) 690 AliasedGlobals.insert(GO); 691 692 // In this function we need IR GlobalValues matching the symbols in Syms 693 // (which is not backed by a module), so we need to enumerate them in the same 694 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 695 // matches the order of an irsymtab, but when we read the irsymtab in 696 // InputFile::create we omit some symbols that are irrelevant to LTO. The 697 // Skip() function skips the same symbols from the module as InputFile does 698 // from the symbol table. 699 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 700 auto Skip = [&]() { 701 while (MsymI != MsymE) { 702 auto Flags = SymTab.getSymbolFlags(*MsymI); 703 if ((Flags & object::BasicSymbolRef::SF_Global) && 704 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 705 return; 706 ++MsymI; 707 } 708 }; 709 Skip(); 710 711 std::set<const Comdat *> NonPrevailingComdats; 712 for (const InputFile::Symbol &Sym : Syms) { 713 assert(ResI != ResE); 714 SymbolResolution Res = *ResI++; 715 716 assert(MsymI != MsymE); 717 ModuleSymbolTable::Symbol Msym = *MsymI++; 718 Skip(); 719 720 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 721 if (Res.Prevailing) { 722 if (Sym.isUndefined()) 723 continue; 724 Mod.Keep.push_back(GV); 725 // For symbols re-defined with linker -wrap and -defsym options, 726 // set the linkage to weak to inhibit IPO. The linkage will be 727 // restored by the linker. 728 if (Res.LinkerRedefined) 729 GV->setLinkage(GlobalValue::WeakAnyLinkage); 730 731 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 732 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 733 GV->setLinkage(GlobalValue::getWeakLinkage( 734 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 735 } else if (isa<GlobalObject>(GV) && 736 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 737 GV->hasAvailableExternallyLinkage()) && 738 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 739 // Any of the above three types of linkage indicates that the 740 // chosen prevailing symbol will have the same semantics as this copy of 741 // the symbol, so we may be able to link it with available_externally 742 // linkage. We will decide later whether to do that when we link this 743 // module (in linkRegularLTO), based on whether it is undefined. 744 Mod.Keep.push_back(GV); 745 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 746 if (GV->hasComdat()) 747 NonPrevailingComdats.insert(GV->getComdat()); 748 cast<GlobalObject>(GV)->setComdat(nullptr); 749 } 750 751 // Set the 'local' flag based on the linker resolution for this symbol. 752 if (Res.FinalDefinitionInLinkageUnit) { 753 GV->setDSOLocal(true); 754 if (GV->hasDLLImportStorageClass()) 755 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 756 DefaultStorageClass); 757 } 758 } 759 // Common resolution: collect the maximum size/alignment over all commons. 760 // We also record if we see an instance of a common as prevailing, so that 761 // if none is prevailing we can ignore it later. 762 if (Sym.isCommon()) { 763 // FIXME: We should figure out what to do about commons defined by asm. 764 // For now they aren't reported correctly by ModuleSymbolTable. 765 auto &CommonRes = RegularLTO.Commons[Sym.getIRName()]; 766 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 767 CommonRes.Align = 768 std::max(CommonRes.Align, MaybeAlign(Sym.getCommonAlignment())); 769 CommonRes.Prevailing |= Res.Prevailing; 770 } 771 772 } 773 if (!M.getComdatSymbolTable().empty()) 774 for (GlobalValue &GV : M.global_values()) 775 handleNonPrevailingComdat(GV, NonPrevailingComdats); 776 assert(MsymI == MsymE); 777 return std::move(Mod); 778 } 779 780 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 781 bool LivenessFromIndex) { 782 std::vector<GlobalValue *> Keep; 783 for (GlobalValue *GV : Mod.Keep) { 784 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) 785 continue; 786 787 if (!GV->hasAvailableExternallyLinkage()) { 788 Keep.push_back(GV); 789 continue; 790 } 791 792 // Only link available_externally definitions if we don't already have a 793 // definition. 794 GlobalValue *CombinedGV = 795 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 796 if (CombinedGV && !CombinedGV->isDeclaration()) 797 continue; 798 799 Keep.push_back(GV); 800 } 801 802 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 803 [](GlobalValue &, IRMover::ValueAdder) {}, 804 /* IsPerformingImport */ false); 805 } 806 807 // Add a ThinLTO module to the link. 808 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 809 const SymbolResolution *&ResI, 810 const SymbolResolution *ResE) { 811 if (Error Err = 812 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 813 ThinLTO.ModuleMap.size())) 814 return Err; 815 816 for (const InputFile::Symbol &Sym : Syms) { 817 assert(ResI != ResE); 818 SymbolResolution Res = *ResI++; 819 820 if (!Sym.getIRName().empty()) { 821 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 822 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 823 if (Res.Prevailing) { 824 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 825 826 // For linker redefined symbols (via --wrap or --defsym) we want to 827 // switch the linkage to `weak` to prevent IPOs from happening. 828 // Find the summary in the module for this very GV and record the new 829 // linkage so that we can switch it when we import the GV. 830 if (Res.LinkerRedefined) 831 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 832 GUID, BM.getModuleIdentifier())) 833 S->setLinkage(GlobalValue::WeakAnyLinkage); 834 } 835 836 // If the linker resolved the symbol to a local definition then mark it 837 // as local in the summary for the module we are adding. 838 if (Res.FinalDefinitionInLinkageUnit) { 839 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 840 GUID, BM.getModuleIdentifier())) { 841 S->setDSOLocal(true); 842 } 843 } 844 } 845 } 846 847 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 848 return make_error<StringError>( 849 "Expected at most one ThinLTO module per bitcode file", 850 inconvertibleErrorCode()); 851 852 return Error::success(); 853 } 854 855 unsigned LTO::getMaxTasks() const { 856 CalledGetMaxTasks = true; 857 return RegularLTO.ParallelCodeGenParallelismLevel + ThinLTO.ModuleMap.size(); 858 } 859 860 // If only some of the modules were split, we cannot correctly handle 861 // code that contains type tests or type checked loads. 862 Error LTO::checkPartiallySplit() { 863 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 864 return Error::success(); 865 866 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 867 Intrinsic::getName(Intrinsic::type_test)); 868 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 869 Intrinsic::getName(Intrinsic::type_checked_load)); 870 871 // First check if there are type tests / type checked loads in the 872 // merged regular LTO module IR. 873 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 874 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 875 return make_error<StringError>( 876 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 877 inconvertibleErrorCode()); 878 879 // Otherwise check if there are any recorded in the combined summary from the 880 // ThinLTO modules. 881 for (auto &P : ThinLTO.CombinedIndex) { 882 for (auto &S : P.second.SummaryList) { 883 auto *FS = dyn_cast<FunctionSummary>(S.get()); 884 if (!FS) 885 continue; 886 if (!FS->type_test_assume_vcalls().empty() || 887 !FS->type_checked_load_vcalls().empty() || 888 !FS->type_test_assume_const_vcalls().empty() || 889 !FS->type_checked_load_const_vcalls().empty() || 890 !FS->type_tests().empty()) 891 return make_error<StringError>( 892 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 893 inconvertibleErrorCode()); 894 } 895 } 896 return Error::success(); 897 } 898 899 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { 900 // Compute "dead" symbols, we don't want to import/export these! 901 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 902 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 903 for (auto &Res : GlobalResolutions) { 904 // Normally resolution have IR name of symbol. We can do nothing here 905 // otherwise. See comments in GlobalResolution struct for more details. 906 if (Res.second.IRName.empty()) 907 continue; 908 909 GlobalValue::GUID GUID = GlobalValue::getGUID( 910 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 911 912 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 913 GUIDPreservedSymbols.insert(GUID); 914 915 GUIDPrevailingResolutions[GUID] = 916 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 917 } 918 919 auto isPrevailing = [&](GlobalValue::GUID G) { 920 auto It = GUIDPrevailingResolutions.find(G); 921 if (It == GUIDPrevailingResolutions.end()) 922 return PrevailingType::Unknown; 923 return It->second; 924 }; 925 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 926 isPrevailing, Conf.OptLevel > 0); 927 928 // Setup output file to emit statistics. 929 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 930 if (!StatsFileOrErr) 931 return StatsFileOrErr.takeError(); 932 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 933 934 // Finalize linking of regular LTO modules containing summaries now that 935 // we have computed liveness information. 936 for (auto &M : RegularLTO.ModsWithSummaries) 937 if (Error Err = linkRegularLTO(std::move(M), 938 /*LivenessFromIndex=*/true)) 939 return Err; 940 941 // Ensure we don't have inconsistently split LTO units with type tests. 942 if (Error Err = checkPartiallySplit()) 943 return Err; 944 945 Error Result = runRegularLTO(AddStream); 946 if (!Result) 947 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 948 949 if (StatsFile) 950 PrintStatisticsJSON(StatsFile->os()); 951 952 return Result; 953 } 954 955 Error LTO::runRegularLTO(AddStreamFn AddStream) { 956 // Make sure commons have the right size/alignment: we kept the largest from 957 // all the prevailing when adding the inputs, and we apply it here. 958 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 959 for (auto &I : RegularLTO.Commons) { 960 if (!I.second.Prevailing) 961 // Don't do anything if no instance of this common was prevailing. 962 continue; 963 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 964 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 965 // Don't create a new global if the type is already correct, just make 966 // sure the alignment is correct. 967 OldGV->setAlignment(I.second.Align); 968 continue; 969 } 970 ArrayType *Ty = 971 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 972 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 973 GlobalValue::CommonLinkage, 974 ConstantAggregateZero::get(Ty), ""); 975 GV->setAlignment(I.second.Align); 976 if (OldGV) { 977 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 978 GV->takeName(OldGV); 979 OldGV->eraseFromParent(); 980 } else { 981 GV->setName(I.first); 982 } 983 } 984 985 if (Conf.PreOptModuleHook && 986 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 987 return Error::success(); 988 989 if (!Conf.CodeGenOnly) { 990 for (const auto &R : GlobalResolutions) { 991 if (!R.second.isPrevailingIRSymbol()) 992 continue; 993 if (R.second.Partition != 0 && 994 R.second.Partition != GlobalResolution::External) 995 continue; 996 997 GlobalValue *GV = 998 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 999 // Ignore symbols defined in other partitions. 1000 // Also skip declarations, which are not allowed to have internal linkage. 1001 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1002 continue; 1003 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1004 : GlobalValue::UnnamedAddr::None); 1005 if (EnableLTOInternalization && R.second.Partition == 0) 1006 GV->setLinkage(GlobalValue::InternalLinkage); 1007 } 1008 1009 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); 1010 1011 if (Conf.PostInternalizeModuleHook && 1012 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1013 return Error::success(); 1014 } 1015 return backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1016 std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex); 1017 } 1018 1019 static const char *libcallRoutineNames[] = { 1020 #define HANDLE_LIBCALL(code, name) name, 1021 #include "llvm/IR/RuntimeLibcalls.def" 1022 #undef HANDLE_LIBCALL 1023 }; 1024 1025 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1026 return makeArrayRef(libcallRoutineNames); 1027 } 1028 1029 /// This class defines the interface to the ThinLTO backend. 1030 class lto::ThinBackendProc { 1031 protected: 1032 const Config &Conf; 1033 ModuleSummaryIndex &CombinedIndex; 1034 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1035 1036 public: 1037 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1038 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1039 : Conf(Conf), CombinedIndex(CombinedIndex), 1040 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1041 1042 virtual ~ThinBackendProc() {} 1043 virtual Error start( 1044 unsigned Task, BitcodeModule BM, 1045 const FunctionImporter::ImportMapTy &ImportList, 1046 const FunctionImporter::ExportSetTy &ExportList, 1047 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1048 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1049 virtual Error wait() = 0; 1050 }; 1051 1052 namespace { 1053 class InProcessThinBackend : public ThinBackendProc { 1054 ThreadPool BackendThreadPool; 1055 AddStreamFn AddStream; 1056 NativeObjectCache Cache; 1057 std::set<GlobalValue::GUID> CfiFunctionDefs; 1058 std::set<GlobalValue::GUID> CfiFunctionDecls; 1059 1060 Optional<Error> Err; 1061 std::mutex ErrMu; 1062 1063 public: 1064 InProcessThinBackend( 1065 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1066 unsigned ThinLTOParallelismLevel, 1067 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1068 AddStreamFn AddStream, NativeObjectCache Cache) 1069 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1070 BackendThreadPool(ThinLTOParallelismLevel), 1071 AddStream(std::move(AddStream)), Cache(std::move(Cache)) { 1072 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1073 CfiFunctionDefs.insert( 1074 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1075 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1076 CfiFunctionDecls.insert( 1077 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1078 } 1079 1080 Error runThinLTOBackendThread( 1081 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, 1082 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1083 const FunctionImporter::ImportMapTy &ImportList, 1084 const FunctionImporter::ExportSetTy &ExportList, 1085 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1086 const GVSummaryMapTy &DefinedGlobals, 1087 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1088 auto RunThinBackend = [&](AddStreamFn AddStream) { 1089 LTOLLVMContext BackendContext(Conf); 1090 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1091 if (!MOrErr) 1092 return MOrErr.takeError(); 1093 1094 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1095 ImportList, DefinedGlobals, ModuleMap); 1096 }; 1097 1098 auto ModuleID = BM.getModuleIdentifier(); 1099 1100 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1101 all_of(CombinedIndex.getModuleHash(ModuleID), 1102 [](uint32_t V) { return V == 0; })) 1103 // Cache disabled or no entry for this module in the combined index or 1104 // no module hash. 1105 return RunThinBackend(AddStream); 1106 1107 SmallString<40> Key; 1108 // The module may be cached, this helps handling it. 1109 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1110 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1111 CfiFunctionDecls); 1112 if (AddStreamFn CacheAddStream = Cache(Task, Key)) 1113 return RunThinBackend(CacheAddStream); 1114 1115 return Error::success(); 1116 } 1117 1118 Error start( 1119 unsigned Task, BitcodeModule BM, 1120 const FunctionImporter::ImportMapTy &ImportList, 1121 const FunctionImporter::ExportSetTy &ExportList, 1122 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1123 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1124 StringRef ModulePath = BM.getModuleIdentifier(); 1125 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1126 const GVSummaryMapTy &DefinedGlobals = 1127 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1128 BackendThreadPool.async( 1129 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1130 const FunctionImporter::ImportMapTy &ImportList, 1131 const FunctionImporter::ExportSetTy &ExportList, 1132 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1133 &ResolvedODR, 1134 const GVSummaryMapTy &DefinedGlobals, 1135 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1136 Error E = runThinLTOBackendThread( 1137 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1138 ResolvedODR, DefinedGlobals, ModuleMap); 1139 if (E) { 1140 std::unique_lock<std::mutex> L(ErrMu); 1141 if (Err) 1142 Err = joinErrors(std::move(*Err), std::move(E)); 1143 else 1144 Err = std::move(E); 1145 } 1146 }, 1147 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1148 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1149 return Error::success(); 1150 } 1151 1152 Error wait() override { 1153 BackendThreadPool.wait(); 1154 if (Err) 1155 return std::move(*Err); 1156 else 1157 return Error::success(); 1158 } 1159 }; 1160 } // end anonymous namespace 1161 1162 ThinBackend lto::createInProcessThinBackend(unsigned ParallelismLevel) { 1163 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1164 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1165 AddStreamFn AddStream, NativeObjectCache Cache) { 1166 return std::make_unique<InProcessThinBackend>( 1167 Conf, CombinedIndex, ParallelismLevel, ModuleToDefinedGVSummaries, 1168 AddStream, Cache); 1169 }; 1170 } 1171 1172 // Given the original \p Path to an output file, replace any path 1173 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1174 // resulting directory if it does not yet exist. 1175 std::string lto::getThinLTOOutputFile(const std::string &Path, 1176 const std::string &OldPrefix, 1177 const std::string &NewPrefix) { 1178 if (OldPrefix.empty() && NewPrefix.empty()) 1179 return Path; 1180 SmallString<128> NewPath(Path); 1181 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1182 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1183 if (!ParentPath.empty()) { 1184 // Make sure the new directory exists, creating it if necessary. 1185 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1186 llvm::errs() << "warning: could not create directory '" << ParentPath 1187 << "': " << EC.message() << '\n'; 1188 } 1189 return NewPath.str(); 1190 } 1191 1192 namespace { 1193 class WriteIndexesThinBackend : public ThinBackendProc { 1194 std::string OldPrefix, NewPrefix; 1195 bool ShouldEmitImportsFiles; 1196 raw_fd_ostream *LinkedObjectsFile; 1197 lto::IndexWriteCallback OnWrite; 1198 1199 public: 1200 WriteIndexesThinBackend( 1201 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1202 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1203 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1204 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1205 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1206 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1207 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1208 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1209 1210 Error start( 1211 unsigned Task, BitcodeModule BM, 1212 const FunctionImporter::ImportMapTy &ImportList, 1213 const FunctionImporter::ExportSetTy &ExportList, 1214 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1215 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1216 StringRef ModulePath = BM.getModuleIdentifier(); 1217 std::string NewModulePath = 1218 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); 1219 1220 if (LinkedObjectsFile) 1221 *LinkedObjectsFile << NewModulePath << '\n'; 1222 1223 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1224 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1225 ImportList, ModuleToSummariesForIndex); 1226 1227 std::error_code EC; 1228 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1229 sys::fs::OpenFlags::OF_None); 1230 if (EC) 1231 return errorCodeToError(EC); 1232 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1233 1234 if (ShouldEmitImportsFiles) { 1235 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1236 ModuleToSummariesForIndex); 1237 if (EC) 1238 return errorCodeToError(EC); 1239 } 1240 1241 if (OnWrite) 1242 OnWrite(ModulePath); 1243 return Error::success(); 1244 } 1245 1246 Error wait() override { return Error::success(); } 1247 }; 1248 } // end anonymous namespace 1249 1250 ThinBackend lto::createWriteIndexesThinBackend( 1251 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1252 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1253 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1254 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1255 AddStreamFn AddStream, NativeObjectCache Cache) { 1256 return std::make_unique<WriteIndexesThinBackend>( 1257 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1258 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1259 }; 1260 } 1261 1262 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 1263 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1264 if (ThinLTO.ModuleMap.empty()) 1265 return Error::success(); 1266 1267 if (Conf.CombinedIndexHook && 1268 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1269 return Error::success(); 1270 1271 // Collect for each module the list of function it defines (GUID -> 1272 // Summary). 1273 StringMap<GVSummaryMapTy> 1274 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1275 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1276 ModuleToDefinedGVSummaries); 1277 // Create entries for any modules that didn't have any GV summaries 1278 // (either they didn't have any GVs to start with, or we suppressed 1279 // generation of the summaries because they e.g. had inline assembly 1280 // uses that couldn't be promoted/renamed on export). This is so 1281 // InProcessThinBackend::start can still launch a backend thread, which 1282 // is passed the map of summaries for the module, without any special 1283 // handling for this case. 1284 for (auto &Mod : ThinLTO.ModuleMap) 1285 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1286 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1287 1288 // Synthesize entry counts for functions in the CombinedIndex. 1289 computeSyntheticCounts(ThinLTO.CombinedIndex); 1290 1291 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1292 ThinLTO.ModuleMap.size()); 1293 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1294 ThinLTO.ModuleMap.size()); 1295 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1296 1297 if (DumpThinCGSCCs) 1298 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1299 1300 std::set<GlobalValue::GUID> ExportedGUIDs; 1301 1302 // Perform index-based WPD. This will return immediately if there are 1303 // no index entries in the typeIdMetadata map (e.g. if we are instead 1304 // performing IR-based WPD in hybrid regular/thin LTO mode). 1305 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1306 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1307 LocalWPDTargetsMap); 1308 1309 if (Conf.OptLevel > 0) 1310 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1311 ImportLists, ExportLists); 1312 1313 // Figure out which symbols need to be internalized. This also needs to happen 1314 // at -O0 because summary-based DCE is implemented using internalization, and 1315 // we must apply DCE consistently with the full LTO module in order to avoid 1316 // undefined references during the final link. 1317 for (auto &Res : GlobalResolutions) { 1318 // If the symbol does not have external references or it is not prevailing, 1319 // then not need to mark it as exported from a ThinLTO partition. 1320 if (Res.second.Partition != GlobalResolution::External || 1321 !Res.second.isPrevailingIRSymbol()) 1322 continue; 1323 auto GUID = GlobalValue::getGUID( 1324 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1325 // Mark exported unless index-based analysis determined it to be dead. 1326 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1327 ExportedGUIDs.insert(GUID); 1328 } 1329 1330 // Any functions referenced by the jump table in the regular LTO object must 1331 // be exported. 1332 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1333 ExportedGUIDs.insert( 1334 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1335 1336 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1337 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1338 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1339 ExportedGUIDs.count(VI.getGUID()); 1340 }; 1341 1342 // Update local devirtualized targets that were exported by cross-module 1343 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1344 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1345 LocalWPDTargetsMap); 1346 1347 auto isPrevailing = [&](GlobalValue::GUID GUID, 1348 const GlobalValueSummary *S) { 1349 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1350 }; 1351 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1352 isPrevailing); 1353 1354 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1355 GlobalValue::GUID GUID, 1356 GlobalValue::LinkageTypes NewLinkage) { 1357 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1358 }; 1359 thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing, 1360 recordNewLinkage, GUIDPreservedSymbols); 1361 1362 std::unique_ptr<ThinBackendProc> BackendProc = 1363 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1364 AddStream, Cache); 1365 1366 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for combined 1367 // module and parallel code generation partitions. 1368 unsigned Task = RegularLTO.ParallelCodeGenParallelismLevel; 1369 for (auto &Mod : ThinLTO.ModuleMap) { 1370 if (Error E = BackendProc->start(Task, Mod.second, ImportLists[Mod.first], 1371 ExportLists[Mod.first], 1372 ResolvedODR[Mod.first], ThinLTO.ModuleMap)) 1373 return E; 1374 ++Task; 1375 } 1376 1377 return BackendProc->wait(); 1378 } 1379 1380 Expected<std::unique_ptr<ToolOutputFile>> 1381 lto::setupOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename, 1382 StringRef RemarksPasses, StringRef RemarksFormat, 1383 bool RemarksWithHotness, int Count) { 1384 std::string Filename = RemarksFilename; 1385 // For ThinLTO, file.opt.<format> becomes 1386 // file.opt.<format>.thin.<num>.<format>. 1387 if (!Filename.empty() && Count != -1) 1388 Filename = 1389 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1390 .str(); 1391 1392 auto ResultOrErr = llvm::setupOptimizationRemarks( 1393 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness); 1394 if (Error E = ResultOrErr.takeError()) 1395 return std::move(E); 1396 1397 if (*ResultOrErr) 1398 (*ResultOrErr)->keep(); 1399 1400 return ResultOrErr; 1401 } 1402 1403 Expected<std::unique_ptr<ToolOutputFile>> 1404 lto::setupStatsFile(StringRef StatsFilename) { 1405 // Setup output file to emit statistics. 1406 if (StatsFilename.empty()) 1407 return nullptr; 1408 1409 llvm::EnableStatistics(false); 1410 std::error_code EC; 1411 auto StatsFile = 1412 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1413 if (EC) 1414 return errorCodeToError(EC); 1415 1416 StatsFile->keep(); 1417 return std::move(StatsFile); 1418 } 1419