1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/StackSafetyAnalysis.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeReader.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/DiagnosticPrinter.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMRemarkStreamer.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/LTO/LTOBackend.h" 34 #include "llvm/LTO/SummaryBasedOptimizations.h" 35 #include "llvm/Linker/IRMover.h" 36 #include "llvm/MC/TargetRegistry.h" 37 #include "llvm/Object/IRObjectFile.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/FileSystem.h" 41 #include "llvm/Support/ManagedStatic.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/SHA1.h" 45 #include "llvm/Support/SourceMgr.h" 46 #include "llvm/Support/ThreadPool.h" 47 #include "llvm/Support/Threading.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/ToolOutputFile.h" 50 #include "llvm/Support/VCSRevision.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Transforms/IPO.h" 54 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h" 55 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 56 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 57 #include "llvm/Transforms/Utils/SplitModule.h" 58 59 #include <optional> 60 #include <set> 61 62 using namespace llvm; 63 using namespace lto; 64 using namespace object; 65 66 #define DEBUG_TYPE "lto" 67 68 static cl::opt<bool> 69 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 70 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 71 72 namespace llvm { 73 /// Enable global value internalization in LTO. 74 cl::opt<bool> EnableLTOInternalization( 75 "enable-lto-internalization", cl::init(true), cl::Hidden, 76 cl::desc("Enable global value internalization in LTO")); 77 } 78 79 /// Indicate we are linking with an allocator that supports hot/cold operator 80 /// new interfaces. 81 extern cl::opt<bool> SupportsHotColdNew; 82 83 /// Enable MemProf context disambiguation for thin link. 84 extern cl::opt<bool> EnableMemProfContextDisambiguation; 85 86 // Computes a unique hash for the Module considering the current list of 87 // export/import and other global analysis results. 88 // The hash is produced in \p Key. 89 void llvm::computeLTOCacheKey( 90 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 91 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 92 const FunctionImporter::ExportSetTy &ExportList, 93 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 94 const GVSummaryMapTy &DefinedGlobals, 95 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 96 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 97 // Compute the unique hash for this entry. 98 // This is based on the current compiler version, the module itself, the 99 // export list, the hash for every single module in the import list, the 100 // list of ResolvedODR for the module, and the list of preserved symbols. 101 SHA1 Hasher; 102 103 // Start with the compiler revision 104 Hasher.update(LLVM_VERSION_STRING); 105 #ifdef LLVM_REVISION 106 Hasher.update(LLVM_REVISION); 107 #endif 108 109 // Include the parts of the LTO configuration that affect code generation. 110 auto AddString = [&](StringRef Str) { 111 Hasher.update(Str); 112 Hasher.update(ArrayRef<uint8_t>{0}); 113 }; 114 auto AddUnsigned = [&](unsigned I) { 115 uint8_t Data[4]; 116 support::endian::write32le(Data, I); 117 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 118 }; 119 auto AddUint64 = [&](uint64_t I) { 120 uint8_t Data[8]; 121 support::endian::write64le(Data, I); 122 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 123 }; 124 AddString(Conf.CPU); 125 // FIXME: Hash more of Options. For now all clients initialize Options from 126 // command-line flags (which is unsupported in production), but may set 127 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 128 // DataSections and DebuggerTuning via command line flags. 129 AddUnsigned(Conf.Options.RelaxELFRelocations); 130 AddUnsigned(Conf.Options.FunctionSections); 131 AddUnsigned(Conf.Options.DataSections); 132 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 133 for (auto &A : Conf.MAttrs) 134 AddString(A); 135 if (Conf.RelocModel) 136 AddUnsigned(*Conf.RelocModel); 137 else 138 AddUnsigned(-1); 139 if (Conf.CodeModel) 140 AddUnsigned(*Conf.CodeModel); 141 else 142 AddUnsigned(-1); 143 for (const auto &S : Conf.MllvmArgs) 144 AddString(S); 145 AddUnsigned(Conf.CGOptLevel); 146 AddUnsigned(Conf.CGFileType); 147 AddUnsigned(Conf.OptLevel); 148 AddUnsigned(Conf.Freestanding); 149 AddString(Conf.OptPipeline); 150 AddString(Conf.AAPipeline); 151 AddString(Conf.OverrideTriple); 152 AddString(Conf.DefaultTriple); 153 AddString(Conf.DwoDir); 154 155 // Include the hash for the current module 156 auto ModHash = Index.getModuleHash(ModuleID); 157 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 158 159 std::vector<uint64_t> ExportsGUID; 160 ExportsGUID.reserve(ExportList.size()); 161 for (const auto &VI : ExportList) { 162 auto GUID = VI.getGUID(); 163 ExportsGUID.push_back(GUID); 164 } 165 166 // Sort the export list elements GUIDs. 167 llvm::sort(ExportsGUID); 168 for (uint64_t GUID : ExportsGUID) { 169 // The export list can impact the internalization, be conservative here 170 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 171 } 172 173 // Include the hash for every module we import functions from. The set of 174 // imported symbols for each module may affect code generation and is 175 // sensitive to link order, so include that as well. 176 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 177 struct ImportModule { 178 ImportMapIteratorTy ModIt; 179 const ModuleSummaryIndex::ModuleInfo *ModInfo; 180 181 StringRef getIdentifier() const { return ModIt->getKey(); } 182 const FunctionImporter::FunctionsToImportTy &getFunctions() const { 183 return ModIt->second; 184 } 185 186 const ModuleHash &getHash() const { return ModInfo->second.second; } 187 uint64_t getId() const { return ModInfo->second.first; } 188 }; 189 190 std::vector<ImportModule> ImportModulesVector; 191 ImportModulesVector.reserve(ImportList.size()); 192 193 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 194 ++It) { 195 ImportModulesVector.push_back({It, Index.getModule(It->getKey())}); 196 } 197 // Order using moduleId integer which is based on the order the module was 198 // added. 199 llvm::sort(ImportModulesVector, 200 [](const ImportModule &Lhs, const ImportModule &Rhs) -> bool { 201 return Lhs.getId() < Rhs.getId(); 202 }); 203 for (const ImportModule &Entry : ImportModulesVector) { 204 auto ModHash = Entry.getHash(); 205 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 206 207 AddUint64(Entry.getFunctions().size()); 208 for (auto &Fn : Entry.getFunctions()) 209 AddUint64(Fn); 210 } 211 212 // Include the hash for the resolved ODR. 213 for (auto &Entry : ResolvedODR) { 214 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 215 sizeof(GlobalValue::GUID))); 216 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 217 sizeof(GlobalValue::LinkageTypes))); 218 } 219 220 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 221 // defined in this module. 222 std::set<GlobalValue::GUID> UsedCfiDefs; 223 std::set<GlobalValue::GUID> UsedCfiDecls; 224 225 // Typeids used in this module. 226 std::set<GlobalValue::GUID> UsedTypeIds; 227 228 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 229 if (CfiFunctionDefs.count(ValueGUID)) 230 UsedCfiDefs.insert(ValueGUID); 231 if (CfiFunctionDecls.count(ValueGUID)) 232 UsedCfiDecls.insert(ValueGUID); 233 }; 234 235 auto AddUsedThings = [&](GlobalValueSummary *GS) { 236 if (!GS) return; 237 AddUnsigned(GS->getVisibility()); 238 AddUnsigned(GS->isLive()); 239 AddUnsigned(GS->canAutoHide()); 240 for (const ValueInfo &VI : GS->refs()) { 241 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 242 AddUsedCfiGlobal(VI.getGUID()); 243 } 244 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 245 AddUnsigned(GVS->maybeReadOnly()); 246 AddUnsigned(GVS->maybeWriteOnly()); 247 } 248 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 249 for (auto &TT : FS->type_tests()) 250 UsedTypeIds.insert(TT); 251 for (auto &TT : FS->type_test_assume_vcalls()) 252 UsedTypeIds.insert(TT.GUID); 253 for (auto &TT : FS->type_checked_load_vcalls()) 254 UsedTypeIds.insert(TT.GUID); 255 for (auto &TT : FS->type_test_assume_const_vcalls()) 256 UsedTypeIds.insert(TT.VFunc.GUID); 257 for (auto &TT : FS->type_checked_load_const_vcalls()) 258 UsedTypeIds.insert(TT.VFunc.GUID); 259 for (auto &ET : FS->calls()) { 260 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 261 AddUsedCfiGlobal(ET.first.getGUID()); 262 } 263 } 264 }; 265 266 // Include the hash for the linkage type to reflect internalization and weak 267 // resolution, and collect any used type identifier resolutions. 268 for (auto &GS : DefinedGlobals) { 269 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 270 Hasher.update( 271 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 272 AddUsedCfiGlobal(GS.first); 273 AddUsedThings(GS.second); 274 } 275 276 // Imported functions may introduce new uses of type identifier resolutions, 277 // so we need to collect their used resolutions as well. 278 for (const ImportModule &ImpM : ImportModulesVector) 279 for (auto &ImpF : ImpM.getFunctions()) { 280 GlobalValueSummary *S = 281 Index.findSummaryInModule(ImpF, ImpM.getIdentifier()); 282 AddUsedThings(S); 283 // If this is an alias, we also care about any types/etc. that the aliasee 284 // may reference. 285 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 286 AddUsedThings(AS->getBaseObject()); 287 } 288 289 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 290 AddString(TId); 291 292 AddUnsigned(S.TTRes.TheKind); 293 AddUnsigned(S.TTRes.SizeM1BitWidth); 294 295 AddUint64(S.TTRes.AlignLog2); 296 AddUint64(S.TTRes.SizeM1); 297 AddUint64(S.TTRes.BitMask); 298 AddUint64(S.TTRes.InlineBits); 299 300 AddUint64(S.WPDRes.size()); 301 for (auto &WPD : S.WPDRes) { 302 AddUnsigned(WPD.first); 303 AddUnsigned(WPD.second.TheKind); 304 AddString(WPD.second.SingleImplName); 305 306 AddUint64(WPD.second.ResByArg.size()); 307 for (auto &ByArg : WPD.second.ResByArg) { 308 AddUint64(ByArg.first.size()); 309 for (uint64_t Arg : ByArg.first) 310 AddUint64(Arg); 311 AddUnsigned(ByArg.second.TheKind); 312 AddUint64(ByArg.second.Info); 313 AddUnsigned(ByArg.second.Byte); 314 AddUnsigned(ByArg.second.Bit); 315 } 316 } 317 }; 318 319 // Include the hash for all type identifiers used by this module. 320 for (GlobalValue::GUID TId : UsedTypeIds) { 321 auto TidIter = Index.typeIds().equal_range(TId); 322 for (auto It = TidIter.first; It != TidIter.second; ++It) 323 AddTypeIdSummary(It->second.first, It->second.second); 324 } 325 326 AddUnsigned(UsedCfiDefs.size()); 327 for (auto &V : UsedCfiDefs) 328 AddUint64(V); 329 330 AddUnsigned(UsedCfiDecls.size()); 331 for (auto &V : UsedCfiDecls) 332 AddUint64(V); 333 334 if (!Conf.SampleProfile.empty()) { 335 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 336 if (FileOrErr) { 337 Hasher.update(FileOrErr.get()->getBuffer()); 338 339 if (!Conf.ProfileRemapping.empty()) { 340 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 341 if (FileOrErr) 342 Hasher.update(FileOrErr.get()->getBuffer()); 343 } 344 } 345 } 346 347 Key = toHex(Hasher.result()); 348 } 349 350 static void thinLTOResolvePrevailingGUID( 351 const Config &C, ValueInfo VI, 352 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 353 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 354 isPrevailing, 355 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 356 recordNewLinkage, 357 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 358 GlobalValue::VisibilityTypes Visibility = 359 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 360 : GlobalValue::DefaultVisibility; 361 for (auto &S : VI.getSummaryList()) { 362 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 363 // Ignore local and appending linkage values since the linker 364 // doesn't resolve them. 365 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 366 GlobalValue::isAppendingLinkage(S->linkage())) 367 continue; 368 // We need to emit only one of these. The prevailing module will keep it, 369 // but turned into a weak, while the others will drop it when possible. 370 // This is both a compile-time optimization and a correctness 371 // transformation. This is necessary for correctness when we have exported 372 // a reference - we need to convert the linkonce to weak to 373 // ensure a copy is kept to satisfy the exported reference. 374 // FIXME: We may want to split the compile time and correctness 375 // aspects into separate routines. 376 if (isPrevailing(VI.getGUID(), S.get())) { 377 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 378 S->setLinkage(GlobalValue::getWeakLinkage( 379 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 380 // The kept copy is eligible for auto-hiding (hidden visibility) if all 381 // copies were (i.e. they were all linkonce_odr global unnamed addr). 382 // If any copy is not (e.g. it was originally weak_odr), then the symbol 383 // must remain externally available (e.g. a weak_odr from an explicitly 384 // instantiated template). Additionally, if it is in the 385 // GUIDPreservedSymbols set, that means that it is visibile outside 386 // the summary (e.g. in a native object or a bitcode file without 387 // summary), and in that case we cannot hide it as it isn't possible to 388 // check all copies. 389 S->setCanAutoHide(VI.canAutoHide() && 390 !GUIDPreservedSymbols.count(VI.getGUID())); 391 } 392 if (C.VisibilityScheme == Config::FromPrevailing) 393 Visibility = S->getVisibility(); 394 } 395 // Alias and aliasee can't be turned into available_externally. 396 else if (!isa<AliasSummary>(S.get()) && 397 !GlobalInvolvedWithAlias.count(S.get())) 398 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 399 400 // For ELF, set visibility to the computed visibility from summaries. We 401 // don't track visibility from declarations so this may be more relaxed than 402 // the most constraining one. 403 if (C.VisibilityScheme == Config::ELF) 404 S->setVisibility(Visibility); 405 406 if (S->linkage() != OriginalLinkage) 407 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 408 } 409 410 if (C.VisibilityScheme == Config::FromPrevailing) { 411 for (auto &S : VI.getSummaryList()) { 412 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 413 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 414 GlobalValue::isAppendingLinkage(S->linkage())) 415 continue; 416 S->setVisibility(Visibility); 417 } 418 } 419 } 420 421 /// Resolve linkage for prevailing symbols in the \p Index. 422 // 423 // We'd like to drop these functions if they are no longer referenced in the 424 // current module. However there is a chance that another module is still 425 // referencing them because of the import. We make sure we always emit at least 426 // one copy. 427 void llvm::thinLTOResolvePrevailingInIndex( 428 const Config &C, ModuleSummaryIndex &Index, 429 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 430 isPrevailing, 431 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 432 recordNewLinkage, 433 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 434 // We won't optimize the globals that are referenced by an alias for now 435 // Ideally we should turn the alias into a global and duplicate the definition 436 // when needed. 437 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 438 for (auto &I : Index) 439 for (auto &S : I.second.SummaryList) 440 if (auto AS = dyn_cast<AliasSummary>(S.get())) 441 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 442 443 for (auto &I : Index) 444 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 445 GlobalInvolvedWithAlias, isPrevailing, 446 recordNewLinkage, GUIDPreservedSymbols); 447 } 448 449 static void thinLTOInternalizeAndPromoteGUID( 450 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 451 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 452 isPrevailing) { 453 auto ExternallyVisibleCopies = 454 llvm::count_if(VI.getSummaryList(), 455 [](const std::unique_ptr<GlobalValueSummary> &Summary) { 456 return !GlobalValue::isLocalLinkage(Summary->linkage()); 457 }); 458 459 for (auto &S : VI.getSummaryList()) { 460 // First see if we need to promote an internal value because it is not 461 // exported. 462 if (isExported(S->modulePath(), VI)) { 463 if (GlobalValue::isLocalLinkage(S->linkage())) 464 S->setLinkage(GlobalValue::ExternalLinkage); 465 continue; 466 } 467 468 // Otherwise, see if we can internalize. 469 if (!EnableLTOInternalization) 470 continue; 471 472 // Ignore local and appending linkage values since the linker 473 // doesn't resolve them (and there is no need to internalize if this is 474 // already internal). 475 if (GlobalValue::isLocalLinkage(S->linkage()) || 476 S->linkage() == GlobalValue::AppendingLinkage) 477 continue; 478 479 // We can't internalize available_externally globals because this 480 // can break function pointer equality. 481 if (S->linkage() == GlobalValue::AvailableExternallyLinkage) 482 continue; 483 484 bool IsPrevailing = isPrevailing(VI.getGUID(), S.get()); 485 486 if (GlobalValue::isInterposableLinkage(S->linkage()) && !IsPrevailing) 487 continue; 488 489 // Non-exported functions and variables with linkonce_odr or weak_odr 490 // linkage can be internalized in certain cases. The minimum legality 491 // requirements would be that they are not address taken to ensure that we 492 // don't break pointer equality checks, and that variables are either read- 493 // or write-only. For functions, this is the case if either all copies are 494 // [local_]unnamed_addr, or we can propagate reference edge attributes 495 // (which is how this is guaranteed for variables, when analyzing whether 496 // they are read or write-only). 497 // 498 // However, we only get to this code for weak/linkonce ODR values in one of 499 // two cases: 500 // 1) The prevailing copy is not in IR (it is in native code). 501 // 2) The prevailing copy in IR is not exported from its module. 502 // Additionally, at least for the new LTO API, case 2 will only happen if 503 // there is exactly one definition of the value (i.e. in exactly one 504 // module), as duplicate defs are result in the value being marked exported. 505 // Likely, users of the legacy LTO API are similar, however, currently there 506 // are llvm-lto based tests of the legacy LTO API that do not mark 507 // duplicate linkonce_odr copies as exported via the tool, so we need 508 // to handle that case below by checking the number of copies. 509 // 510 // Generally, we only want to internalize a linkonce/weak ODR value in case 511 // 2, because in case 1 we cannot see how the value is used to know if it 512 // is read or write-only. We also don't want to bloat the binary with 513 // multiple internalized copies of non-prevailing linkonce_odr functions. 514 // Note if we don't internalize, we will convert non-prevailing copies to 515 // available_externally anyway, so that we drop them after inlining. The 516 // only reason to internalize such a function is if we indeed have a single 517 // copy, because internalizing it won't increase binary size, and enables 518 // use of inliner heuristics that are more aggressive in the face of a 519 // single call to a static (local). For variables, internalizing a read or 520 // write only variable can enable more aggressive optimization. However, we 521 // already perform this elsewhere in the ThinLTO backend handling for 522 // read or write-only variables (processGlobalForThinLTO). 523 // 524 // Therefore, only internalize linkonce/weak ODR if there is a single copy, 525 // that is prevailing in this IR module. We can do so aggressively, without 526 // requiring the address to be insignificant, or that a variable be read or 527 // write-only. 528 if ((S->linkage() == GlobalValue::WeakODRLinkage || 529 S->linkage() == GlobalValue::LinkOnceODRLinkage) && 530 // We can have only one copy in ThinLTO that isn't prevailing, if the 531 // prevailing copy is in a native object. 532 (!IsPrevailing || ExternallyVisibleCopies > 1)) 533 continue; 534 535 S->setLinkage(GlobalValue::InternalLinkage); 536 } 537 } 538 539 // Update the linkages in the given \p Index to mark exported values 540 // as external and non-exported values as internal. 541 void llvm::thinLTOInternalizeAndPromoteInIndex( 542 ModuleSummaryIndex &Index, 543 function_ref<bool(StringRef, ValueInfo)> isExported, 544 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 545 isPrevailing) { 546 for (auto &I : Index) 547 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 548 isPrevailing); 549 } 550 551 // Requires a destructor for std::vector<InputModule>. 552 InputFile::~InputFile() = default; 553 554 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 555 std::unique_ptr<InputFile> File(new InputFile); 556 557 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 558 if (!FOrErr) 559 return FOrErr.takeError(); 560 561 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 562 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 563 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 564 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 565 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 566 567 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 568 size_t Begin = File->Symbols.size(); 569 for (const irsymtab::Reader::SymbolRef &Sym : 570 FOrErr->TheReader.module_symbols(I)) 571 // Skip symbols that are irrelevant to LTO. Note that this condition needs 572 // to match the one in Skip() in LTO::addRegularLTO(). 573 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 574 File->Symbols.push_back(Sym); 575 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 576 } 577 578 File->Mods = FOrErr->Mods; 579 File->Strtab = std::move(FOrErr->Strtab); 580 return std::move(File); 581 } 582 583 StringRef InputFile::getName() const { 584 return Mods[0].getModuleIdentifier(); 585 } 586 587 BitcodeModule &InputFile::getSingleBitcodeModule() { 588 assert(Mods.size() == 1 && "Expect only one bitcode module"); 589 return Mods[0]; 590 } 591 592 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 593 const Config &Conf) 594 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 595 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 596 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 597 598 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 599 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 600 if (!Backend) 601 this->Backend = 602 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 603 } 604 605 LTO::LTO(Config Conf, ThinBackend Backend, 606 unsigned ParallelCodeGenParallelismLevel, LTOKind LTOMode) 607 : Conf(std::move(Conf)), 608 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 609 ThinLTO(std::move(Backend)), LTOMode(LTOMode) {} 610 611 // Requires a destructor for MapVector<BitcodeModule>. 612 LTO::~LTO() = default; 613 614 // Add the symbols in the given module to the GlobalResolutions map, and resolve 615 // their partitions. 616 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 617 ArrayRef<SymbolResolution> Res, 618 unsigned Partition, bool InSummary) { 619 auto *ResI = Res.begin(); 620 auto *ResE = Res.end(); 621 (void)ResE; 622 const Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 623 for (const InputFile::Symbol &Sym : Syms) { 624 assert(ResI != ResE); 625 SymbolResolution Res = *ResI++; 626 627 StringRef Name = Sym.getName(); 628 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 629 // way they are handled by lld), otherwise we can end up with two 630 // global resolutions (one with and one for a copy of the symbol without). 631 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 632 Name = Name.substr(strlen("__imp_")); 633 auto &GlobalRes = GlobalResolutions[Name]; 634 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 635 if (Res.Prevailing) { 636 assert(!GlobalRes.Prevailing && 637 "Multiple prevailing defs are not allowed"); 638 GlobalRes.Prevailing = true; 639 GlobalRes.IRName = std::string(Sym.getIRName()); 640 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 641 // Sometimes it can be two copies of symbol in a module and prevailing 642 // symbol can have no IR name. That might happen if symbol is defined in 643 // module level inline asm block. In case we have multiple modules with 644 // the same symbol we want to use IR name of the prevailing symbol. 645 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 646 // we can later use it to check if there is any prevailing copy in IR. 647 GlobalRes.IRName = std::string(Sym.getIRName()); 648 } 649 650 // In rare occasion, the symbol used to initialize GlobalRes has a different 651 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a 652 // symbol is referenced through its mangled name, say @"\01_symbol" while 653 // the IRName is @symbol (the prefix underscore comes from MachO mangling). 654 // In that case, we have the same actual Symbol that can get two different 655 // GUID, leading to some invalid internalization. Workaround this by marking 656 // the GlobalRes external. 657 658 // FIXME: instead of this check, it would be desirable to compute GUIDs 659 // based on mangled name, but this requires an access to the Target Triple 660 // and would be relatively invasive on the codebase. 661 if (GlobalRes.IRName != Sym.getIRName()) { 662 GlobalRes.Partition = GlobalResolution::External; 663 GlobalRes.VisibleOutsideSummary = true; 664 } 665 666 // Set the partition to external if we know it is re-defined by the linker 667 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 668 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 669 // already recorded as being referenced from a different partition. 670 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 671 (GlobalRes.Partition != GlobalResolution::Unknown && 672 GlobalRes.Partition != Partition)) { 673 GlobalRes.Partition = GlobalResolution::External; 674 } else 675 // First recorded reference, save the current partition. 676 GlobalRes.Partition = Partition; 677 678 // Flag as visible outside of summary if visible from a regular object or 679 // from a module that does not have a summary. 680 GlobalRes.VisibleOutsideSummary |= 681 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 682 683 GlobalRes.ExportDynamic |= Res.ExportDynamic; 684 } 685 } 686 687 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 688 ArrayRef<SymbolResolution> Res) { 689 StringRef Path = Input->getName(); 690 OS << Path << '\n'; 691 auto ResI = Res.begin(); 692 for (const InputFile::Symbol &Sym : Input->symbols()) { 693 assert(ResI != Res.end()); 694 SymbolResolution Res = *ResI++; 695 696 OS << "-r=" << Path << ',' << Sym.getName() << ','; 697 if (Res.Prevailing) 698 OS << 'p'; 699 if (Res.FinalDefinitionInLinkageUnit) 700 OS << 'l'; 701 if (Res.VisibleToRegularObj) 702 OS << 'x'; 703 if (Res.LinkerRedefined) 704 OS << 'r'; 705 OS << '\n'; 706 } 707 OS.flush(); 708 assert(ResI == Res.end()); 709 } 710 711 Error LTO::add(std::unique_ptr<InputFile> Input, 712 ArrayRef<SymbolResolution> Res) { 713 assert(!CalledGetMaxTasks); 714 715 if (Conf.ResolutionFile) 716 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 717 718 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 719 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 720 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 721 Conf.VisibilityScheme = Config::ELF; 722 } 723 724 const SymbolResolution *ResI = Res.begin(); 725 for (unsigned I = 0; I != Input->Mods.size(); ++I) 726 if (Error Err = addModule(*Input, I, ResI, Res.end())) 727 return Err; 728 729 assert(ResI == Res.end()); 730 return Error::success(); 731 } 732 733 Error LTO::addModule(InputFile &Input, unsigned ModI, 734 const SymbolResolution *&ResI, 735 const SymbolResolution *ResE) { 736 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 737 if (!LTOInfo) 738 return LTOInfo.takeError(); 739 740 if (EnableSplitLTOUnit) { 741 // If only some modules were split, flag this in the index so that 742 // we can skip or error on optimizations that need consistently split 743 // modules (whole program devirt and lower type tests). 744 if (*EnableSplitLTOUnit != LTOInfo->EnableSplitLTOUnit) 745 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 746 } else 747 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 748 749 BitcodeModule BM = Input.Mods[ModI]; 750 751 if ((LTOMode == LTOK_UnifiedRegular || LTOMode == LTOK_UnifiedThin) && 752 !LTOInfo->UnifiedLTO) 753 return make_error<StringError>( 754 "unified LTO compilation must use " 755 "compatible bitcode modules (use -funified-lto)", 756 inconvertibleErrorCode()); 757 758 if (LTOInfo->UnifiedLTO && LTOMode == LTOK_Default) 759 LTOMode = LTOK_UnifiedThin; 760 761 bool IsThinLTO = LTOInfo->IsThinLTO && (LTOMode != LTOK_UnifiedRegular); 762 763 auto ModSyms = Input.module_symbols(ModI); 764 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 765 IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 766 LTOInfo->HasSummary); 767 768 if (IsThinLTO) 769 return addThinLTO(BM, ModSyms, ResI, ResE); 770 771 RegularLTO.EmptyCombinedModule = false; 772 Expected<RegularLTOState::AddedModule> ModOrErr = 773 addRegularLTO(BM, ModSyms, ResI, ResE); 774 if (!ModOrErr) 775 return ModOrErr.takeError(); 776 777 if (!LTOInfo->HasSummary) 778 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 779 780 // Regular LTO module summaries are added to a dummy module that represents 781 // the combined regular LTO module. 782 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 783 return Err; 784 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 785 return Error::success(); 786 } 787 788 // Checks whether the given global value is in a non-prevailing comdat 789 // (comdat containing values the linker indicated were not prevailing, 790 // which we then dropped to available_externally), and if so, removes 791 // it from the comdat. This is called for all global values to ensure the 792 // comdat is empty rather than leaving an incomplete comdat. It is needed for 793 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 794 // and thin LTO modules) compilation. Since the regular LTO module will be 795 // linked first in the final native link, we want to make sure the linker 796 // doesn't select any of these incomplete comdats that would be left 797 // in the regular LTO module without this cleanup. 798 static void 799 handleNonPrevailingComdat(GlobalValue &GV, 800 std::set<const Comdat *> &NonPrevailingComdats) { 801 Comdat *C = GV.getComdat(); 802 if (!C) 803 return; 804 805 if (!NonPrevailingComdats.count(C)) 806 return; 807 808 // Additionally need to drop all global values from the comdat to 809 // available_externally, to satisfy the COMDAT requirement that all members 810 // are discarded as a unit. The non-local linkage global values avoid 811 // duplicate definition linker errors. 812 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 813 814 if (auto GO = dyn_cast<GlobalObject>(&GV)) 815 GO->setComdat(nullptr); 816 } 817 818 // Add a regular LTO object to the link. 819 // The resulting module needs to be linked into the combined LTO module with 820 // linkRegularLTO. 821 Expected<LTO::RegularLTOState::AddedModule> 822 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 823 const SymbolResolution *&ResI, 824 const SymbolResolution *ResE) { 825 RegularLTOState::AddedModule Mod; 826 Expected<std::unique_ptr<Module>> MOrErr = 827 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 828 /*IsImporting*/ false); 829 if (!MOrErr) 830 return MOrErr.takeError(); 831 Module &M = **MOrErr; 832 Mod.M = std::move(*MOrErr); 833 834 if (Error Err = M.materializeMetadata()) 835 return std::move(Err); 836 837 // If cfi.functions is present and we are in regular LTO mode, LowerTypeTests 838 // will rename local functions in the merged module as "<function name>.1". 839 // This causes linking errors, since other parts of the module expect the 840 // original function name. 841 if (LTOMode == LTOK_UnifiedRegular) 842 if (NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions")) 843 M.eraseNamedMetadata(CfiFunctionsMD); 844 845 UpgradeDebugInfo(M); 846 847 ModuleSymbolTable SymTab; 848 SymTab.addModule(&M); 849 850 for (GlobalVariable &GV : M.globals()) 851 if (GV.hasAppendingLinkage()) 852 Mod.Keep.push_back(&GV); 853 854 DenseSet<GlobalObject *> AliasedGlobals; 855 for (auto &GA : M.aliases()) 856 if (GlobalObject *GO = GA.getAliaseeObject()) 857 AliasedGlobals.insert(GO); 858 859 // In this function we need IR GlobalValues matching the symbols in Syms 860 // (which is not backed by a module), so we need to enumerate them in the same 861 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 862 // matches the order of an irsymtab, but when we read the irsymtab in 863 // InputFile::create we omit some symbols that are irrelevant to LTO. The 864 // Skip() function skips the same symbols from the module as InputFile does 865 // from the symbol table. 866 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 867 auto Skip = [&]() { 868 while (MsymI != MsymE) { 869 auto Flags = SymTab.getSymbolFlags(*MsymI); 870 if ((Flags & object::BasicSymbolRef::SF_Global) && 871 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 872 return; 873 ++MsymI; 874 } 875 }; 876 Skip(); 877 878 std::set<const Comdat *> NonPrevailingComdats; 879 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 880 for (const InputFile::Symbol &Sym : Syms) { 881 assert(ResI != ResE); 882 SymbolResolution Res = *ResI++; 883 884 assert(MsymI != MsymE); 885 ModuleSymbolTable::Symbol Msym = *MsymI++; 886 Skip(); 887 888 if (GlobalValue *GV = dyn_cast_if_present<GlobalValue *>(Msym)) { 889 if (Res.Prevailing) { 890 if (Sym.isUndefined()) 891 continue; 892 Mod.Keep.push_back(GV); 893 // For symbols re-defined with linker -wrap and -defsym options, 894 // set the linkage to weak to inhibit IPO. The linkage will be 895 // restored by the linker. 896 if (Res.LinkerRedefined) 897 GV->setLinkage(GlobalValue::WeakAnyLinkage); 898 899 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 900 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 901 GV->setLinkage(GlobalValue::getWeakLinkage( 902 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 903 } else if (isa<GlobalObject>(GV) && 904 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 905 GV->hasAvailableExternallyLinkage()) && 906 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 907 // Any of the above three types of linkage indicates that the 908 // chosen prevailing symbol will have the same semantics as this copy of 909 // the symbol, so we may be able to link it with available_externally 910 // linkage. We will decide later whether to do that when we link this 911 // module (in linkRegularLTO), based on whether it is undefined. 912 Mod.Keep.push_back(GV); 913 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 914 if (GV->hasComdat()) 915 NonPrevailingComdats.insert(GV->getComdat()); 916 cast<GlobalObject>(GV)->setComdat(nullptr); 917 } 918 919 // Set the 'local' flag based on the linker resolution for this symbol. 920 if (Res.FinalDefinitionInLinkageUnit) { 921 GV->setDSOLocal(true); 922 if (GV->hasDLLImportStorageClass()) 923 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 924 DefaultStorageClass); 925 } 926 } else if (auto *AS = 927 dyn_cast_if_present<ModuleSymbolTable::AsmSymbol *>(Msym)) { 928 // Collect non-prevailing symbols. 929 if (!Res.Prevailing) 930 NonPrevailingAsmSymbols.insert(AS->first); 931 } else { 932 llvm_unreachable("unknown symbol type"); 933 } 934 935 // Common resolution: collect the maximum size/alignment over all commons. 936 // We also record if we see an instance of a common as prevailing, so that 937 // if none is prevailing we can ignore it later. 938 if (Sym.isCommon()) { 939 // FIXME: We should figure out what to do about commons defined by asm. 940 // For now they aren't reported correctly by ModuleSymbolTable. 941 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 942 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 943 if (uint32_t SymAlignValue = Sym.getCommonAlignment()) { 944 CommonRes.Alignment = 945 std::max(Align(SymAlignValue), CommonRes.Alignment); 946 } 947 CommonRes.Prevailing |= Res.Prevailing; 948 } 949 } 950 951 if (!M.getComdatSymbolTable().empty()) 952 for (GlobalValue &GV : M.global_values()) 953 handleNonPrevailingComdat(GV, NonPrevailingComdats); 954 955 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 956 // block. 957 if (!M.getModuleInlineAsm().empty()) { 958 std::string NewIA = ".lto_discard"; 959 if (!NonPrevailingAsmSymbols.empty()) { 960 // Don't dicard a symbol if there is a live .symver for it. 961 ModuleSymbolTable::CollectAsmSymvers( 962 M, [&](StringRef Name, StringRef Alias) { 963 if (!NonPrevailingAsmSymbols.count(Alias)) 964 NonPrevailingAsmSymbols.erase(Name); 965 }); 966 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 967 } 968 NewIA += "\n"; 969 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 970 } 971 972 assert(MsymI == MsymE); 973 return std::move(Mod); 974 } 975 976 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 977 bool LivenessFromIndex) { 978 std::vector<GlobalValue *> Keep; 979 for (GlobalValue *GV : Mod.Keep) { 980 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 981 if (Function *F = dyn_cast<Function>(GV)) { 982 if (DiagnosticOutputFile) { 983 if (Error Err = F->materialize()) 984 return Err; 985 OptimizationRemarkEmitter ORE(F, nullptr); 986 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 987 << ore::NV("Function", F) 988 << " not added to the combined module "); 989 } 990 } 991 continue; 992 } 993 994 if (!GV->hasAvailableExternallyLinkage()) { 995 Keep.push_back(GV); 996 continue; 997 } 998 999 // Only link available_externally definitions if we don't already have a 1000 // definition. 1001 GlobalValue *CombinedGV = 1002 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 1003 if (CombinedGV && !CombinedGV->isDeclaration()) 1004 continue; 1005 1006 Keep.push_back(GV); 1007 } 1008 1009 return RegularLTO.Mover->move(std::move(Mod.M), Keep, nullptr, 1010 /* IsPerformingImport */ false); 1011 } 1012 1013 // Add a ThinLTO module to the link. 1014 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 1015 const SymbolResolution *&ResI, 1016 const SymbolResolution *ResE) { 1017 const SymbolResolution *ResITmp = ResI; 1018 for (const InputFile::Symbol &Sym : Syms) { 1019 assert(ResITmp != ResE); 1020 SymbolResolution Res = *ResITmp++; 1021 1022 if (!Sym.getIRName().empty()) { 1023 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 1024 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 1025 if (Res.Prevailing) 1026 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 1027 } 1028 } 1029 1030 uint64_t ModuleId = ThinLTO.ModuleMap.size(); 1031 if (Error Err = 1032 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 1033 ModuleId, [&](GlobalValue::GUID GUID) { 1034 return ThinLTO.PrevailingModuleForGUID[GUID] == 1035 BM.getModuleIdentifier(); 1036 })) 1037 return Err; 1038 LLVM_DEBUG(dbgs() << "Module " << ModuleId << ": " << BM.getModuleIdentifier() 1039 << "\n"); 1040 1041 for (const InputFile::Symbol &Sym : Syms) { 1042 assert(ResI != ResE); 1043 SymbolResolution Res = *ResI++; 1044 1045 if (!Sym.getIRName().empty()) { 1046 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 1047 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 1048 if (Res.Prevailing) { 1049 assert(ThinLTO.PrevailingModuleForGUID[GUID] == 1050 BM.getModuleIdentifier()); 1051 1052 // For linker redefined symbols (via --wrap or --defsym) we want to 1053 // switch the linkage to `weak` to prevent IPOs from happening. 1054 // Find the summary in the module for this very GV and record the new 1055 // linkage so that we can switch it when we import the GV. 1056 if (Res.LinkerRedefined) 1057 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 1058 GUID, BM.getModuleIdentifier())) 1059 S->setLinkage(GlobalValue::WeakAnyLinkage); 1060 } 1061 1062 // If the linker resolved the symbol to a local definition then mark it 1063 // as local in the summary for the module we are adding. 1064 if (Res.FinalDefinitionInLinkageUnit) { 1065 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 1066 GUID, BM.getModuleIdentifier())) { 1067 S->setDSOLocal(true); 1068 } 1069 } 1070 } 1071 } 1072 1073 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 1074 return make_error<StringError>( 1075 "Expected at most one ThinLTO module per bitcode file", 1076 inconvertibleErrorCode()); 1077 1078 if (!Conf.ThinLTOModulesToCompile.empty()) { 1079 if (!ThinLTO.ModulesToCompile) 1080 ThinLTO.ModulesToCompile = ModuleMapType(); 1081 // This is a fuzzy name matching where only modules with name containing the 1082 // specified switch values are going to be compiled. 1083 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 1084 if (BM.getModuleIdentifier().contains(Name)) { 1085 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 1086 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 1087 << " to compile\n"; 1088 } 1089 } 1090 } 1091 1092 return Error::success(); 1093 } 1094 1095 unsigned LTO::getMaxTasks() const { 1096 CalledGetMaxTasks = true; 1097 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 1098 : ThinLTO.ModuleMap.size(); 1099 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 1100 } 1101 1102 // If only some of the modules were split, we cannot correctly handle 1103 // code that contains type tests or type checked loads. 1104 Error LTO::checkPartiallySplit() { 1105 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 1106 return Error::success(); 1107 1108 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 1109 Intrinsic::getName(Intrinsic::type_test)); 1110 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 1111 Intrinsic::getName(Intrinsic::type_checked_load)); 1112 Function *TypeCheckedLoadRelativeFunc = 1113 RegularLTO.CombinedModule->getFunction( 1114 Intrinsic::getName(Intrinsic::type_checked_load_relative)); 1115 1116 // First check if there are type tests / type checked loads in the 1117 // merged regular LTO module IR. 1118 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 1119 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()) || 1120 (TypeCheckedLoadRelativeFunc && 1121 !TypeCheckedLoadRelativeFunc->use_empty())) 1122 return make_error<StringError>( 1123 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1124 inconvertibleErrorCode()); 1125 1126 // Otherwise check if there are any recorded in the combined summary from the 1127 // ThinLTO modules. 1128 for (auto &P : ThinLTO.CombinedIndex) { 1129 for (auto &S : P.second.SummaryList) { 1130 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1131 if (!FS) 1132 continue; 1133 if (!FS->type_test_assume_vcalls().empty() || 1134 !FS->type_checked_load_vcalls().empty() || 1135 !FS->type_test_assume_const_vcalls().empty() || 1136 !FS->type_checked_load_const_vcalls().empty() || 1137 !FS->type_tests().empty()) 1138 return make_error<StringError>( 1139 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1140 inconvertibleErrorCode()); 1141 } 1142 } 1143 return Error::success(); 1144 } 1145 1146 Error LTO::run(AddStreamFn AddStream, FileCache Cache) { 1147 // Compute "dead" symbols, we don't want to import/export these! 1148 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 1149 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 1150 for (auto &Res : GlobalResolutions) { 1151 // Normally resolution have IR name of symbol. We can do nothing here 1152 // otherwise. See comments in GlobalResolution struct for more details. 1153 if (Res.second.IRName.empty()) 1154 continue; 1155 1156 GlobalValue::GUID GUID = GlobalValue::getGUID( 1157 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1158 1159 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1160 GUIDPreservedSymbols.insert(GUID); 1161 1162 if (Res.second.ExportDynamic) 1163 DynamicExportSymbols.insert(GUID); 1164 1165 GUIDPrevailingResolutions[GUID] = 1166 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1167 } 1168 1169 auto isPrevailing = [&](GlobalValue::GUID G) { 1170 auto It = GUIDPrevailingResolutions.find(G); 1171 if (It == GUIDPrevailingResolutions.end()) 1172 return PrevailingType::Unknown; 1173 return It->second; 1174 }; 1175 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1176 isPrevailing, Conf.OptLevel > 0); 1177 1178 // Setup output file to emit statistics. 1179 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1180 if (!StatsFileOrErr) 1181 return StatsFileOrErr.takeError(); 1182 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1183 1184 // TODO: Ideally this would be controlled automatically by detecting that we 1185 // are linking with an allocator that supports these interfaces, rather than 1186 // an internal option (which would still be needed for tests, however). For 1187 // example, if the library exported a symbol like __malloc_hot_cold the linker 1188 // could recognize that and set a flag in the lto::Config. 1189 if (SupportsHotColdNew) 1190 ThinLTO.CombinedIndex.setWithSupportsHotColdNew(); 1191 1192 Error Result = runRegularLTO(AddStream); 1193 if (!Result) 1194 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1195 1196 if (StatsFile) 1197 PrintStatisticsJSON(StatsFile->os()); 1198 1199 return Result; 1200 } 1201 1202 void lto::updateMemProfAttributes(Module &Mod, 1203 const ModuleSummaryIndex &Index) { 1204 if (Index.withSupportsHotColdNew()) 1205 return; 1206 1207 // The profile matcher applies hotness attributes directly for allocations, 1208 // and those will cause us to generate calls to the hot/cold interfaces 1209 // unconditionally. If supports-hot-cold-new was not enabled in the LTO 1210 // link then assume we don't want these calls (e.g. not linking with 1211 // the appropriate library, or otherwise trying to disable this behavior). 1212 for (auto &F : Mod) { 1213 for (auto &BB : F) { 1214 for (auto &I : BB) { 1215 auto *CI = dyn_cast<CallBase>(&I); 1216 if (!CI) 1217 continue; 1218 if (CI->hasFnAttr("memprof")) 1219 CI->removeFnAttr("memprof"); 1220 // Strip off all memprof metadata as it is no longer needed. 1221 // Importantly, this avoids the addition of new memprof attributes 1222 // after inlining propagation. 1223 // TODO: If we support additional types of MemProf metadata beyond hot 1224 // and cold, we will need to update the metadata based on the allocator 1225 // APIs supported instead of completely stripping all. 1226 CI->setMetadata(LLVMContext::MD_memprof, nullptr); 1227 CI->setMetadata(LLVMContext::MD_callsite, nullptr); 1228 } 1229 } 1230 } 1231 } 1232 1233 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1234 // Setup optimization remarks. 1235 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1236 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1237 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1238 Conf.RemarksHotnessThreshold); 1239 LLVM_DEBUG(dbgs() << "Running regular LTO\n"); 1240 if (!DiagFileOrErr) 1241 return DiagFileOrErr.takeError(); 1242 DiagnosticOutputFile = std::move(*DiagFileOrErr); 1243 1244 // Finalize linking of regular LTO modules containing summaries now that 1245 // we have computed liveness information. 1246 for (auto &M : RegularLTO.ModsWithSummaries) 1247 if (Error Err = linkRegularLTO(std::move(M), 1248 /*LivenessFromIndex=*/true)) 1249 return Err; 1250 1251 // Ensure we don't have inconsistently split LTO units with type tests. 1252 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1253 // this path both cases but eventually this should be split into two and 1254 // do the ThinLTO checks in `runThinLTO`. 1255 if (Error Err = checkPartiallySplit()) 1256 return Err; 1257 1258 // Make sure commons have the right size/alignment: we kept the largest from 1259 // all the prevailing when adding the inputs, and we apply it here. 1260 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1261 for (auto &I : RegularLTO.Commons) { 1262 if (!I.second.Prevailing) 1263 // Don't do anything if no instance of this common was prevailing. 1264 continue; 1265 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1266 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1267 // Don't create a new global if the type is already correct, just make 1268 // sure the alignment is correct. 1269 OldGV->setAlignment(I.second.Alignment); 1270 continue; 1271 } 1272 ArrayType *Ty = 1273 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1274 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1275 GlobalValue::CommonLinkage, 1276 ConstantAggregateZero::get(Ty), ""); 1277 GV->setAlignment(I.second.Alignment); 1278 if (OldGV) { 1279 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 1280 GV->takeName(OldGV); 1281 OldGV->eraseFromParent(); 1282 } else { 1283 GV->setName(I.first); 1284 } 1285 } 1286 1287 updateMemProfAttributes(*RegularLTO.CombinedModule, ThinLTO.CombinedIndex); 1288 1289 // If allowed, upgrade public vcall visibility metadata to linkage unit 1290 // visibility before whole program devirtualization in the optimizer. 1291 updateVCallVisibilityInModule(*RegularLTO.CombinedModule, 1292 Conf.HasWholeProgramVisibility, 1293 DynamicExportSymbols); 1294 updatePublicTypeTestCalls(*RegularLTO.CombinedModule, 1295 Conf.HasWholeProgramVisibility); 1296 1297 if (Conf.PreOptModuleHook && 1298 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1299 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1300 1301 if (!Conf.CodeGenOnly) { 1302 for (const auto &R : GlobalResolutions) { 1303 GlobalValue *GV = 1304 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1305 if (!R.second.isPrevailingIRSymbol()) 1306 continue; 1307 if (R.second.Partition != 0 && 1308 R.second.Partition != GlobalResolution::External) 1309 continue; 1310 1311 // Ignore symbols defined in other partitions. 1312 // Also skip declarations, which are not allowed to have internal linkage. 1313 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1314 continue; 1315 1316 // Symbols that are marked DLLImport or DLLExport should not be 1317 // internalized, as they are either externally visible or referencing 1318 // external symbols. Symbols that have AvailableExternally or Appending 1319 // linkage might be used by future passes and should be kept as is. 1320 // These linkages are seen in Unified regular LTO, because the process 1321 // of creating split LTO units introduces symbols with that linkage into 1322 // one of the created modules. Normally, only the ThinLTO backend would 1323 // compile this module, but Unified Regular LTO processes both 1324 // modules created by the splitting process as regular LTO modules. 1325 if ((LTOMode == LTOKind::LTOK_UnifiedRegular) && 1326 ((GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) || 1327 GV->hasAvailableExternallyLinkage() || GV->hasAppendingLinkage())) 1328 continue; 1329 1330 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1331 : GlobalValue::UnnamedAddr::None); 1332 if (EnableLTOInternalization && R.second.Partition == 0) 1333 GV->setLinkage(GlobalValue::InternalLinkage); 1334 } 1335 1336 if (Conf.PostInternalizeModuleHook && 1337 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1338 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1339 } 1340 1341 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1342 if (Error Err = 1343 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1344 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1345 return Err; 1346 } 1347 1348 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1349 } 1350 1351 static const char *libcallRoutineNames[] = { 1352 #define HANDLE_LIBCALL(code, name) name, 1353 #include "llvm/IR/RuntimeLibcalls.def" 1354 #undef HANDLE_LIBCALL 1355 }; 1356 1357 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1358 return ArrayRef(libcallRoutineNames); 1359 } 1360 1361 /// This class defines the interface to the ThinLTO backend. 1362 class lto::ThinBackendProc { 1363 protected: 1364 const Config &Conf; 1365 ModuleSummaryIndex &CombinedIndex; 1366 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1367 lto::IndexWriteCallback OnWrite; 1368 bool ShouldEmitImportsFiles; 1369 1370 public: 1371 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1372 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1373 lto::IndexWriteCallback OnWrite, bool ShouldEmitImportsFiles) 1374 : Conf(Conf), CombinedIndex(CombinedIndex), 1375 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries), 1376 OnWrite(OnWrite), ShouldEmitImportsFiles(ShouldEmitImportsFiles) {} 1377 1378 virtual ~ThinBackendProc() = default; 1379 virtual Error start( 1380 unsigned Task, BitcodeModule BM, 1381 const FunctionImporter::ImportMapTy &ImportList, 1382 const FunctionImporter::ExportSetTy &ExportList, 1383 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1384 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1385 virtual Error wait() = 0; 1386 virtual unsigned getThreadCount() = 0; 1387 1388 // Write sharded indices and (optionally) imports to disk 1389 Error emitFiles(const FunctionImporter::ImportMapTy &ImportList, 1390 llvm::StringRef ModulePath, 1391 const std::string &NewModulePath) { 1392 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1393 std::error_code EC; 1394 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1395 ImportList, ModuleToSummariesForIndex); 1396 1397 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1398 sys::fs::OpenFlags::OF_None); 1399 if (EC) 1400 return errorCodeToError(EC); 1401 writeIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1402 1403 if (ShouldEmitImportsFiles) { 1404 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1405 ModuleToSummariesForIndex); 1406 if (EC) 1407 return errorCodeToError(EC); 1408 } 1409 return Error::success(); 1410 } 1411 }; 1412 1413 namespace { 1414 class InProcessThinBackend : public ThinBackendProc { 1415 ThreadPool BackendThreadPool; 1416 AddStreamFn AddStream; 1417 FileCache Cache; 1418 std::set<GlobalValue::GUID> CfiFunctionDefs; 1419 std::set<GlobalValue::GUID> CfiFunctionDecls; 1420 1421 std::optional<Error> Err; 1422 std::mutex ErrMu; 1423 1424 bool ShouldEmitIndexFiles; 1425 1426 public: 1427 InProcessThinBackend( 1428 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1429 ThreadPoolStrategy ThinLTOParallelism, 1430 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1431 AddStreamFn AddStream, FileCache Cache, lto::IndexWriteCallback OnWrite, 1432 bool ShouldEmitIndexFiles, bool ShouldEmitImportsFiles) 1433 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1434 OnWrite, ShouldEmitImportsFiles), 1435 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1436 Cache(std::move(Cache)), ShouldEmitIndexFiles(ShouldEmitIndexFiles) { 1437 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1438 CfiFunctionDefs.insert( 1439 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1440 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1441 CfiFunctionDecls.insert( 1442 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1443 } 1444 1445 Error runThinLTOBackendThread( 1446 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM, 1447 ModuleSummaryIndex &CombinedIndex, 1448 const FunctionImporter::ImportMapTy &ImportList, 1449 const FunctionImporter::ExportSetTy &ExportList, 1450 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1451 const GVSummaryMapTy &DefinedGlobals, 1452 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1453 auto RunThinBackend = [&](AddStreamFn AddStream) { 1454 LTOLLVMContext BackendContext(Conf); 1455 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1456 if (!MOrErr) 1457 return MOrErr.takeError(); 1458 1459 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1460 ImportList, DefinedGlobals, &ModuleMap); 1461 }; 1462 1463 auto ModuleID = BM.getModuleIdentifier(); 1464 1465 if (ShouldEmitIndexFiles) { 1466 if (auto E = emitFiles(ImportList, ModuleID, ModuleID.str())) 1467 return E; 1468 } 1469 1470 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1471 all_of(CombinedIndex.getModuleHash(ModuleID), 1472 [](uint32_t V) { return V == 0; })) 1473 // Cache disabled or no entry for this module in the combined index or 1474 // no module hash. 1475 return RunThinBackend(AddStream); 1476 1477 SmallString<40> Key; 1478 // The module may be cached, this helps handling it. 1479 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1480 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1481 CfiFunctionDecls); 1482 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID); 1483 if (Error Err = CacheAddStreamOrErr.takeError()) 1484 return Err; 1485 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr; 1486 if (CacheAddStream) 1487 return RunThinBackend(CacheAddStream); 1488 1489 return Error::success(); 1490 } 1491 1492 Error start( 1493 unsigned Task, BitcodeModule BM, 1494 const FunctionImporter::ImportMapTy &ImportList, 1495 const FunctionImporter::ExportSetTy &ExportList, 1496 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1497 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1498 StringRef ModulePath = BM.getModuleIdentifier(); 1499 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1500 const GVSummaryMapTy &DefinedGlobals = 1501 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1502 BackendThreadPool.async( 1503 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1504 const FunctionImporter::ImportMapTy &ImportList, 1505 const FunctionImporter::ExportSetTy &ExportList, 1506 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1507 &ResolvedODR, 1508 const GVSummaryMapTy &DefinedGlobals, 1509 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1510 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1511 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1512 "thin backend"); 1513 Error E = runThinLTOBackendThread( 1514 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1515 ResolvedODR, DefinedGlobals, ModuleMap); 1516 if (E) { 1517 std::unique_lock<std::mutex> L(ErrMu); 1518 if (Err) 1519 Err = joinErrors(std::move(*Err), std::move(E)); 1520 else 1521 Err = std::move(E); 1522 } 1523 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1524 timeTraceProfilerFinishThread(); 1525 }, 1526 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1527 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1528 1529 if (OnWrite) 1530 OnWrite(std::string(ModulePath)); 1531 return Error::success(); 1532 } 1533 1534 Error wait() override { 1535 BackendThreadPool.wait(); 1536 if (Err) 1537 return std::move(*Err); 1538 else 1539 return Error::success(); 1540 } 1541 1542 unsigned getThreadCount() override { 1543 return BackendThreadPool.getThreadCount(); 1544 } 1545 }; 1546 } // end anonymous namespace 1547 1548 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism, 1549 lto::IndexWriteCallback OnWrite, 1550 bool ShouldEmitIndexFiles, 1551 bool ShouldEmitImportsFiles) { 1552 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1553 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1554 AddStreamFn AddStream, FileCache Cache) { 1555 return std::make_unique<InProcessThinBackend>( 1556 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream, 1557 Cache, OnWrite, ShouldEmitIndexFiles, ShouldEmitImportsFiles); 1558 }; 1559 } 1560 1561 // Given the original \p Path to an output file, replace any path 1562 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1563 // resulting directory if it does not yet exist. 1564 std::string lto::getThinLTOOutputFile(StringRef Path, StringRef OldPrefix, 1565 StringRef NewPrefix) { 1566 if (OldPrefix.empty() && NewPrefix.empty()) 1567 return std::string(Path); 1568 SmallString<128> NewPath(Path); 1569 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1570 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1571 if (!ParentPath.empty()) { 1572 // Make sure the new directory exists, creating it if necessary. 1573 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1574 llvm::errs() << "warning: could not create directory '" << ParentPath 1575 << "': " << EC.message() << '\n'; 1576 } 1577 return std::string(NewPath.str()); 1578 } 1579 1580 namespace { 1581 class WriteIndexesThinBackend : public ThinBackendProc { 1582 std::string OldPrefix, NewPrefix, NativeObjectPrefix; 1583 raw_fd_ostream *LinkedObjectsFile; 1584 1585 public: 1586 WriteIndexesThinBackend( 1587 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1588 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1589 std::string OldPrefix, std::string NewPrefix, 1590 std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, 1591 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1592 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1593 OnWrite, ShouldEmitImportsFiles), 1594 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1595 NativeObjectPrefix(NativeObjectPrefix), 1596 LinkedObjectsFile(LinkedObjectsFile) {} 1597 1598 Error start( 1599 unsigned Task, BitcodeModule BM, 1600 const FunctionImporter::ImportMapTy &ImportList, 1601 const FunctionImporter::ExportSetTy &ExportList, 1602 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1603 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1604 StringRef ModulePath = BM.getModuleIdentifier(); 1605 std::string NewModulePath = 1606 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); 1607 1608 if (LinkedObjectsFile) { 1609 std::string ObjectPrefix = 1610 NativeObjectPrefix.empty() ? NewPrefix : NativeObjectPrefix; 1611 std::string LinkedObjectsFilePath = 1612 getThinLTOOutputFile(ModulePath, OldPrefix, ObjectPrefix); 1613 *LinkedObjectsFile << LinkedObjectsFilePath << '\n'; 1614 } 1615 1616 if (auto E = emitFiles(ImportList, ModulePath, NewModulePath)) 1617 return E; 1618 1619 if (OnWrite) 1620 OnWrite(std::string(ModulePath)); 1621 return Error::success(); 1622 } 1623 1624 Error wait() override { return Error::success(); } 1625 1626 // WriteIndexesThinBackend should always return 1 to prevent module 1627 // re-ordering and avoid non-determinism in the final link. 1628 unsigned getThreadCount() override { return 1; } 1629 }; 1630 } // end anonymous namespace 1631 1632 ThinBackend lto::createWriteIndexesThinBackend( 1633 std::string OldPrefix, std::string NewPrefix, 1634 std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, 1635 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1636 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1637 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1638 AddStreamFn AddStream, FileCache Cache) { 1639 return std::make_unique<WriteIndexesThinBackend>( 1640 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1641 NativeObjectPrefix, ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1642 }; 1643 } 1644 1645 Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache, 1646 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1647 LLVM_DEBUG(dbgs() << "Running ThinLTO\n"); 1648 ThinLTO.CombinedIndex.releaseTemporaryMemory(); 1649 timeTraceProfilerBegin("ThinLink", StringRef("")); 1650 auto TimeTraceScopeExit = llvm::make_scope_exit([]() { 1651 if (llvm::timeTraceProfilerEnabled()) 1652 llvm::timeTraceProfilerEnd(); 1653 }); 1654 if (ThinLTO.ModuleMap.empty()) 1655 return Error::success(); 1656 1657 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1658 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1659 return Error::success(); 1660 } 1661 1662 if (Conf.CombinedIndexHook && 1663 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1664 return Error::success(); 1665 1666 // Collect for each module the list of function it defines (GUID -> 1667 // Summary). 1668 StringMap<GVSummaryMapTy> 1669 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1670 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1671 ModuleToDefinedGVSummaries); 1672 // Create entries for any modules that didn't have any GV summaries 1673 // (either they didn't have any GVs to start with, or we suppressed 1674 // generation of the summaries because they e.g. had inline assembly 1675 // uses that couldn't be promoted/renamed on export). This is so 1676 // InProcessThinBackend::start can still launch a backend thread, which 1677 // is passed the map of summaries for the module, without any special 1678 // handling for this case. 1679 for (auto &Mod : ThinLTO.ModuleMap) 1680 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1681 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1682 1683 // Synthesize entry counts for functions in the CombinedIndex. 1684 computeSyntheticCounts(ThinLTO.CombinedIndex); 1685 1686 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1687 ThinLTO.ModuleMap.size()); 1688 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1689 ThinLTO.ModuleMap.size()); 1690 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1691 1692 if (DumpThinCGSCCs) 1693 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1694 1695 std::set<GlobalValue::GUID> ExportedGUIDs; 1696 1697 if (hasWholeProgramVisibility(Conf.HasWholeProgramVisibility)) 1698 ThinLTO.CombinedIndex.setWithWholeProgramVisibility(); 1699 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1700 // the summaries before whole program devirtualization below. 1701 updateVCallVisibilityInIndex(ThinLTO.CombinedIndex, 1702 Conf.HasWholeProgramVisibility, 1703 DynamicExportSymbols); 1704 1705 // Perform index-based WPD. This will return immediately if there are 1706 // no index entries in the typeIdMetadata map (e.g. if we are instead 1707 // performing IR-based WPD in hybrid regular/thin LTO mode). 1708 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1709 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1710 LocalWPDTargetsMap); 1711 1712 auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) { 1713 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1714 }; 1715 if (EnableMemProfContextDisambiguation) { 1716 MemProfContextDisambiguation ContextDisambiguation; 1717 ContextDisambiguation.run(ThinLTO.CombinedIndex, isPrevailing); 1718 } 1719 1720 if (Conf.OptLevel > 0) 1721 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1722 isPrevailing, ImportLists, ExportLists); 1723 1724 // Figure out which symbols need to be internalized. This also needs to happen 1725 // at -O0 because summary-based DCE is implemented using internalization, and 1726 // we must apply DCE consistently with the full LTO module in order to avoid 1727 // undefined references during the final link. 1728 for (auto &Res : GlobalResolutions) { 1729 // If the symbol does not have external references or it is not prevailing, 1730 // then not need to mark it as exported from a ThinLTO partition. 1731 if (Res.second.Partition != GlobalResolution::External || 1732 !Res.second.isPrevailingIRSymbol()) 1733 continue; 1734 auto GUID = GlobalValue::getGUID( 1735 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1736 // Mark exported unless index-based analysis determined it to be dead. 1737 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1738 ExportedGUIDs.insert(GUID); 1739 } 1740 1741 // Any functions referenced by the jump table in the regular LTO object must 1742 // be exported. 1743 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1744 ExportedGUIDs.insert( 1745 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1746 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) 1747 ExportedGUIDs.insert( 1748 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl))); 1749 1750 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1751 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1752 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1753 ExportedGUIDs.count(VI.getGUID()); 1754 }; 1755 1756 // Update local devirtualized targets that were exported by cross-module 1757 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1758 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1759 LocalWPDTargetsMap); 1760 1761 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1762 isPrevailing); 1763 1764 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1765 GlobalValue::GUID GUID, 1766 GlobalValue::LinkageTypes NewLinkage) { 1767 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1768 }; 1769 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1770 recordNewLinkage, GUIDPreservedSymbols); 1771 1772 thinLTOPropagateFunctionAttrs(ThinLTO.CombinedIndex, isPrevailing); 1773 1774 generateParamAccessSummary(ThinLTO.CombinedIndex); 1775 1776 if (llvm::timeTraceProfilerEnabled()) 1777 llvm::timeTraceProfilerEnd(); 1778 1779 TimeTraceScopeExit.release(); 1780 1781 std::unique_ptr<ThinBackendProc> BackendProc = 1782 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1783 AddStream, Cache); 1784 1785 auto &ModuleMap = 1786 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1787 1788 auto ProcessOneModule = [&](int I) -> Error { 1789 auto &Mod = *(ModuleMap.begin() + I); 1790 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1791 // combined module and parallel code generation partitions. 1792 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1793 Mod.second, ImportLists[Mod.first], 1794 ExportLists[Mod.first], ResolvedODR[Mod.first], 1795 ThinLTO.ModuleMap); 1796 }; 1797 1798 if (BackendProc->getThreadCount() == 1) { 1799 // Process the modules in the order they were provided on the command-line. 1800 // It is important for this codepath to be used for WriteIndexesThinBackend, 1801 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1802 // order as the inputs, which otherwise would affect the final link order. 1803 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1804 if (Error E = ProcessOneModule(I)) 1805 return E; 1806 } else { 1807 // When executing in parallel, process largest bitsize modules first to 1808 // improve parallelism, and avoid starving the thread pool near the end. 1809 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1810 // of 100 sec). 1811 std::vector<BitcodeModule *> ModulesVec; 1812 ModulesVec.reserve(ModuleMap.size()); 1813 for (auto &Mod : ModuleMap) 1814 ModulesVec.push_back(&Mod.second); 1815 for (int I : generateModulesOrdering(ModulesVec)) 1816 if (Error E = ProcessOneModule(I)) 1817 return E; 1818 } 1819 return BackendProc->wait(); 1820 } 1821 1822 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1823 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1824 StringRef RemarksFormat, bool RemarksWithHotness, 1825 std::optional<uint64_t> RemarksHotnessThreshold, int Count) { 1826 std::string Filename = std::string(RemarksFilename); 1827 // For ThinLTO, file.opt.<format> becomes 1828 // file.opt.<format>.thin.<num>.<format>. 1829 if (!Filename.empty() && Count != -1) 1830 Filename = 1831 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1832 .str(); 1833 1834 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1835 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1836 RemarksHotnessThreshold); 1837 if (Error E = ResultOrErr.takeError()) 1838 return std::move(E); 1839 1840 if (*ResultOrErr) 1841 (*ResultOrErr)->keep(); 1842 1843 return ResultOrErr; 1844 } 1845 1846 Expected<std::unique_ptr<ToolOutputFile>> 1847 lto::setupStatsFile(StringRef StatsFilename) { 1848 // Setup output file to emit statistics. 1849 if (StatsFilename.empty()) 1850 return nullptr; 1851 1852 llvm::EnableStatistics(false); 1853 std::error_code EC; 1854 auto StatsFile = 1855 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1856 if (EC) 1857 return errorCodeToError(EC); 1858 1859 StatsFile->keep(); 1860 return std::move(StatsFile); 1861 } 1862 1863 // Compute the ordering we will process the inputs: the rough heuristic here 1864 // is to sort them per size so that the largest module get schedule as soon as 1865 // possible. This is purely a compile-time optimization. 1866 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1867 auto Seq = llvm::seq<int>(0, R.size()); 1868 std::vector<int> ModulesOrdering(Seq.begin(), Seq.end()); 1869 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1870 auto LSize = R[LeftIndex]->getBuffer().size(); 1871 auto RSize = R[RightIndex]->getBuffer().size(); 1872 return LSize > RSize; 1873 }); 1874 return ModulesOrdering; 1875 } 1876