xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Verifier.cpp (revision f7c32ed617858bcd22f8d1b03199099d50125721)
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 static cl::opt<bool> VerifyNoAliasScopeDomination(
119     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121              "scopes are not dominating"));
122 
123 namespace llvm {
124 
125 struct VerifierSupport {
126   raw_ostream *OS;
127   const Module &M;
128   ModuleSlotTracker MST;
129   Triple TT;
130   const DataLayout &DL;
131   LLVMContext &Context;
132 
133   /// Track the brokenness of the module while recursively visiting.
134   bool Broken = false;
135   /// Broken debug info can be "recovered" from by stripping the debug info.
136   bool BrokenDebugInfo = false;
137   /// Whether to treat broken debug info as an error.
138   bool TreatBrokenDebugInfoAsError = true;
139 
140   explicit VerifierSupport(raw_ostream *OS, const Module &M)
141       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142         Context(M.getContext()) {}
143 
144 private:
145   void Write(const Module *M) {
146     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147   }
148 
149   void Write(const Value *V) {
150     if (V)
151       Write(*V);
152   }
153 
154   void Write(const Value &V) {
155     if (isa<Instruction>(V)) {
156       V.print(*OS, MST);
157       *OS << '\n';
158     } else {
159       V.printAsOperand(*OS, true, MST);
160       *OS << '\n';
161     }
162   }
163 
164   void Write(const Metadata *MD) {
165     if (!MD)
166       return;
167     MD->print(*OS, MST, &M);
168     *OS << '\n';
169   }
170 
171   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172     Write(MD.get());
173   }
174 
175   void Write(const NamedMDNode *NMD) {
176     if (!NMD)
177       return;
178     NMD->print(*OS, MST);
179     *OS << '\n';
180   }
181 
182   void Write(Type *T) {
183     if (!T)
184       return;
185     *OS << ' ' << *T;
186   }
187 
188   void Write(const Comdat *C) {
189     if (!C)
190       return;
191     *OS << *C;
192   }
193 
194   void Write(const APInt *AI) {
195     if (!AI)
196       return;
197     *OS << *AI << '\n';
198   }
199 
200   void Write(const unsigned i) { *OS << i << '\n'; }
201 
202   // NOLINTNEXTLINE(readability-identifier-naming)
203   void Write(const Attribute *A) {
204     if (!A)
205       return;
206     *OS << A->getAsString() << '\n';
207   }
208 
209   // NOLINTNEXTLINE(readability-identifier-naming)
210   void Write(const AttributeSet *AS) {
211     if (!AS)
212       return;
213     *OS << AS->getAsString() << '\n';
214   }
215 
216   // NOLINTNEXTLINE(readability-identifier-naming)
217   void Write(const AttributeList *AL) {
218     if (!AL)
219       return;
220     AL->print(*OS);
221   }
222 
223   template <typename T> void Write(ArrayRef<T> Vs) {
224     for (const T &V : Vs)
225       Write(V);
226   }
227 
228   template <typename T1, typename... Ts>
229   void WriteTs(const T1 &V1, const Ts &... Vs) {
230     Write(V1);
231     WriteTs(Vs...);
232   }
233 
234   template <typename... Ts> void WriteTs() {}
235 
236 public:
237   /// A check failed, so printout out the condition and the message.
238   ///
239   /// This provides a nice place to put a breakpoint if you want to see why
240   /// something is not correct.
241   void CheckFailed(const Twine &Message) {
242     if (OS)
243       *OS << Message << '\n';
244     Broken = true;
245   }
246 
247   /// A check failed (with values to print).
248   ///
249   /// This calls the Message-only version so that the above is easier to set a
250   /// breakpoint on.
251   template <typename T1, typename... Ts>
252   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
253     CheckFailed(Message);
254     if (OS)
255       WriteTs(V1, Vs...);
256   }
257 
258   /// A debug info check failed.
259   void DebugInfoCheckFailed(const Twine &Message) {
260     if (OS)
261       *OS << Message << '\n';
262     Broken |= TreatBrokenDebugInfoAsError;
263     BrokenDebugInfo = true;
264   }
265 
266   /// A debug info check failed (with values to print).
267   template <typename T1, typename... Ts>
268   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
269                             const Ts &... Vs) {
270     DebugInfoCheckFailed(Message);
271     if (OS)
272       WriteTs(V1, Vs...);
273   }
274 };
275 
276 } // namespace llvm
277 
278 namespace {
279 
280 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
281   friend class InstVisitor<Verifier>;
282 
283   DominatorTree DT;
284 
285   /// When verifying a basic block, keep track of all of the
286   /// instructions we have seen so far.
287   ///
288   /// This allows us to do efficient dominance checks for the case when an
289   /// instruction has an operand that is an instruction in the same block.
290   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
291 
292   /// Keep track of the metadata nodes that have been checked already.
293   SmallPtrSet<const Metadata *, 32> MDNodes;
294 
295   /// Keep track which DISubprogram is attached to which function.
296   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
297 
298   /// Track all DICompileUnits visited.
299   SmallPtrSet<const Metadata *, 2> CUVisited;
300 
301   /// The result type for a landingpad.
302   Type *LandingPadResultTy;
303 
304   /// Whether we've seen a call to @llvm.localescape in this function
305   /// already.
306   bool SawFrameEscape;
307 
308   /// Whether the current function has a DISubprogram attached to it.
309   bool HasDebugInfo = false;
310 
311   /// The current source language.
312   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
313 
314   /// Whether source was present on the first DIFile encountered in each CU.
315   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
316 
317   /// Stores the count of how many objects were passed to llvm.localescape for a
318   /// given function and the largest index passed to llvm.localrecover.
319   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
320 
321   // Maps catchswitches and cleanuppads that unwind to siblings to the
322   // terminators that indicate the unwind, used to detect cycles therein.
323   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
324 
325   /// Cache of constants visited in search of ConstantExprs.
326   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
327 
328   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
329   SmallVector<const Function *, 4> DeoptimizeDeclarations;
330 
331   /// Cache of attribute lists verified.
332   SmallPtrSet<const void *, 32> AttributeListsVisited;
333 
334   // Verify that this GlobalValue is only used in this module.
335   // This map is used to avoid visiting uses twice. We can arrive at a user
336   // twice, if they have multiple operands. In particular for very large
337   // constant expressions, we can arrive at a particular user many times.
338   SmallPtrSet<const Value *, 32> GlobalValueVisited;
339 
340   // Keeps track of duplicate function argument debug info.
341   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
342 
343   TBAAVerifier TBAAVerifyHelper;
344 
345   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
346 
347   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
348 
349 public:
350   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
351                     const Module &M)
352       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
353         SawFrameEscape(false), TBAAVerifyHelper(this) {
354     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
355   }
356 
357   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
358 
359   bool verify(const Function &F) {
360     assert(F.getParent() == &M &&
361            "An instance of this class only works with a specific module!");
362 
363     // First ensure the function is well-enough formed to compute dominance
364     // information, and directly compute a dominance tree. We don't rely on the
365     // pass manager to provide this as it isolates us from a potentially
366     // out-of-date dominator tree and makes it significantly more complex to run
367     // this code outside of a pass manager.
368     // FIXME: It's really gross that we have to cast away constness here.
369     if (!F.empty())
370       DT.recalculate(const_cast<Function &>(F));
371 
372     for (const BasicBlock &BB : F) {
373       if (!BB.empty() && BB.back().isTerminator())
374         continue;
375 
376       if (OS) {
377         *OS << "Basic Block in function '" << F.getName()
378             << "' does not have terminator!\n";
379         BB.printAsOperand(*OS, true, MST);
380         *OS << "\n";
381       }
382       return false;
383     }
384 
385     Broken = false;
386     // FIXME: We strip const here because the inst visitor strips const.
387     visit(const_cast<Function &>(F));
388     verifySiblingFuncletUnwinds();
389     InstsInThisBlock.clear();
390     DebugFnArgs.clear();
391     LandingPadResultTy = nullptr;
392     SawFrameEscape = false;
393     SiblingFuncletInfo.clear();
394     verifyNoAliasScopeDecl();
395     NoAliasScopeDecls.clear();
396 
397     return !Broken;
398   }
399 
400   /// Verify the module that this instance of \c Verifier was initialized with.
401   bool verify() {
402     Broken = false;
403 
404     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
405     for (const Function &F : M)
406       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
407         DeoptimizeDeclarations.push_back(&F);
408 
409     // Now that we've visited every function, verify that we never asked to
410     // recover a frame index that wasn't escaped.
411     verifyFrameRecoverIndices();
412     for (const GlobalVariable &GV : M.globals())
413       visitGlobalVariable(GV);
414 
415     for (const GlobalAlias &GA : M.aliases())
416       visitGlobalAlias(GA);
417 
418     for (const NamedMDNode &NMD : M.named_metadata())
419       visitNamedMDNode(NMD);
420 
421     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
422       visitComdat(SMEC.getValue());
423 
424     visitModuleFlags(M);
425     visitModuleIdents(M);
426     visitModuleCommandLines(M);
427 
428     verifyCompileUnits();
429 
430     verifyDeoptimizeCallingConvs();
431     DISubprogramAttachments.clear();
432     return !Broken;
433   }
434 
435 private:
436   /// Whether a metadata node is allowed to be, or contain, a DILocation.
437   enum class AreDebugLocsAllowed { No, Yes };
438 
439   // Verification methods...
440   void visitGlobalValue(const GlobalValue &GV);
441   void visitGlobalVariable(const GlobalVariable &GV);
442   void visitGlobalAlias(const GlobalAlias &GA);
443   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
444   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
445                            const GlobalAlias &A, const Constant &C);
446   void visitNamedMDNode(const NamedMDNode &NMD);
447   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
448   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
449   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
450   void visitComdat(const Comdat &C);
451   void visitModuleIdents(const Module &M);
452   void visitModuleCommandLines(const Module &M);
453   void visitModuleFlags(const Module &M);
454   void visitModuleFlag(const MDNode *Op,
455                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
456                        SmallVectorImpl<const MDNode *> &Requirements);
457   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
458   void visitFunction(const Function &F);
459   void visitBasicBlock(BasicBlock &BB);
460   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
461   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
462   void visitProfMetadata(Instruction &I, MDNode *MD);
463   void visitAnnotationMetadata(MDNode *Annotation);
464 
465   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
466 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
467 #include "llvm/IR/Metadata.def"
468   void visitDIScope(const DIScope &N);
469   void visitDIVariable(const DIVariable &N);
470   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
471   void visitDITemplateParameter(const DITemplateParameter &N);
472 
473   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
474 
475   // InstVisitor overrides...
476   using InstVisitor<Verifier>::visit;
477   void visit(Instruction &I);
478 
479   void visitTruncInst(TruncInst &I);
480   void visitZExtInst(ZExtInst &I);
481   void visitSExtInst(SExtInst &I);
482   void visitFPTruncInst(FPTruncInst &I);
483   void visitFPExtInst(FPExtInst &I);
484   void visitFPToUIInst(FPToUIInst &I);
485   void visitFPToSIInst(FPToSIInst &I);
486   void visitUIToFPInst(UIToFPInst &I);
487   void visitSIToFPInst(SIToFPInst &I);
488   void visitIntToPtrInst(IntToPtrInst &I);
489   void visitPtrToIntInst(PtrToIntInst &I);
490   void visitBitCastInst(BitCastInst &I);
491   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
492   void visitPHINode(PHINode &PN);
493   void visitCallBase(CallBase &Call);
494   void visitUnaryOperator(UnaryOperator &U);
495   void visitBinaryOperator(BinaryOperator &B);
496   void visitICmpInst(ICmpInst &IC);
497   void visitFCmpInst(FCmpInst &FC);
498   void visitExtractElementInst(ExtractElementInst &EI);
499   void visitInsertElementInst(InsertElementInst &EI);
500   void visitShuffleVectorInst(ShuffleVectorInst &EI);
501   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
502   void visitCallInst(CallInst &CI);
503   void visitInvokeInst(InvokeInst &II);
504   void visitGetElementPtrInst(GetElementPtrInst &GEP);
505   void visitLoadInst(LoadInst &LI);
506   void visitStoreInst(StoreInst &SI);
507   void verifyDominatesUse(Instruction &I, unsigned i);
508   void visitInstruction(Instruction &I);
509   void visitTerminator(Instruction &I);
510   void visitBranchInst(BranchInst &BI);
511   void visitReturnInst(ReturnInst &RI);
512   void visitSwitchInst(SwitchInst &SI);
513   void visitIndirectBrInst(IndirectBrInst &BI);
514   void visitCallBrInst(CallBrInst &CBI);
515   void visitSelectInst(SelectInst &SI);
516   void visitUserOp1(Instruction &I);
517   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
518   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
519   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
520   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
521   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
522   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
523   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
524   void visitFenceInst(FenceInst &FI);
525   void visitAllocaInst(AllocaInst &AI);
526   void visitExtractValueInst(ExtractValueInst &EVI);
527   void visitInsertValueInst(InsertValueInst &IVI);
528   void visitEHPadPredecessors(Instruction &I);
529   void visitLandingPadInst(LandingPadInst &LPI);
530   void visitResumeInst(ResumeInst &RI);
531   void visitCatchPadInst(CatchPadInst &CPI);
532   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
533   void visitCleanupPadInst(CleanupPadInst &CPI);
534   void visitFuncletPadInst(FuncletPadInst &FPI);
535   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
536   void visitCleanupReturnInst(CleanupReturnInst &CRI);
537 
538   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
539   void verifySwiftErrorValue(const Value *SwiftErrorVal);
540   void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context);
541   void verifyMustTailCall(CallInst &CI);
542   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
543   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
544   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
545   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
546                                     const Value *V);
547   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
548                            const Value *V, bool IsIntrinsic);
549   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
550 
551   void visitConstantExprsRecursively(const Constant *EntryC);
552   void visitConstantExpr(const ConstantExpr *CE);
553   void verifyStatepoint(const CallBase &Call);
554   void verifyFrameRecoverIndices();
555   void verifySiblingFuncletUnwinds();
556 
557   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
558   template <typename ValueOrMetadata>
559   void verifyFragmentExpression(const DIVariable &V,
560                                 DIExpression::FragmentInfo Fragment,
561                                 ValueOrMetadata *Desc);
562   void verifyFnArgs(const DbgVariableIntrinsic &I);
563   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
564 
565   /// Module-level debug info verification...
566   void verifyCompileUnits();
567 
568   /// Module-level verification that all @llvm.experimental.deoptimize
569   /// declarations share the same calling convention.
570   void verifyDeoptimizeCallingConvs();
571 
572   /// Verify all-or-nothing property of DIFile source attribute within a CU.
573   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
574 
575   /// Verify the llvm.experimental.noalias.scope.decl declarations
576   void verifyNoAliasScopeDecl();
577 };
578 
579 } // end anonymous namespace
580 
581 /// We know that cond should be true, if not print an error message.
582 #define Assert(C, ...) \
583   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
584 
585 /// We know that a debug info condition should be true, if not print
586 /// an error message.
587 #define AssertDI(C, ...) \
588   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
589 
590 void Verifier::visit(Instruction &I) {
591   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
592     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
593   InstVisitor<Verifier>::visit(I);
594 }
595 
596 // Helper to recursively iterate over indirect users. By
597 // returning false, the callback can ask to stop recursing
598 // further.
599 static void forEachUser(const Value *User,
600                         SmallPtrSet<const Value *, 32> &Visited,
601                         llvm::function_ref<bool(const Value *)> Callback) {
602   if (!Visited.insert(User).second)
603     return;
604   for (const Value *TheNextUser : User->materialized_users())
605     if (Callback(TheNextUser))
606       forEachUser(TheNextUser, Visited, Callback);
607 }
608 
609 void Verifier::visitGlobalValue(const GlobalValue &GV) {
610   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
611          "Global is external, but doesn't have external or weak linkage!", &GV);
612 
613   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
614     Assert(GO->getAlignment() <= Value::MaximumAlignment,
615            "huge alignment values are unsupported", GO);
616   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
617          "Only global variables can have appending linkage!", &GV);
618 
619   if (GV.hasAppendingLinkage()) {
620     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
621     Assert(GVar && GVar->getValueType()->isArrayTy(),
622            "Only global arrays can have appending linkage!", GVar);
623   }
624 
625   if (GV.isDeclarationForLinker())
626     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
627 
628   if (GV.hasDLLImportStorageClass()) {
629     Assert(!GV.isDSOLocal(),
630            "GlobalValue with DLLImport Storage is dso_local!", &GV);
631 
632     Assert((GV.isDeclaration() &&
633             (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
634                GV.hasAvailableExternallyLinkage(),
635            "Global is marked as dllimport, but not external", &GV);
636   }
637 
638   if (GV.isImplicitDSOLocal())
639     Assert(GV.isDSOLocal(),
640            "GlobalValue with local linkage or non-default "
641            "visibility must be dso_local!",
642            &GV);
643 
644   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
645     if (const Instruction *I = dyn_cast<Instruction>(V)) {
646       if (!I->getParent() || !I->getParent()->getParent())
647         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
648                     I);
649       else if (I->getParent()->getParent()->getParent() != &M)
650         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
651                     I->getParent()->getParent(),
652                     I->getParent()->getParent()->getParent());
653       return false;
654     } else if (const Function *F = dyn_cast<Function>(V)) {
655       if (F->getParent() != &M)
656         CheckFailed("Global is used by function in a different module", &GV, &M,
657                     F, F->getParent());
658       return false;
659     }
660     return true;
661   });
662 }
663 
664 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
665   if (GV.hasInitializer()) {
666     Assert(GV.getInitializer()->getType() == GV.getValueType(),
667            "Global variable initializer type does not match global "
668            "variable type!",
669            &GV);
670     // If the global has common linkage, it must have a zero initializer and
671     // cannot be constant.
672     if (GV.hasCommonLinkage()) {
673       Assert(GV.getInitializer()->isNullValue(),
674              "'common' global must have a zero initializer!", &GV);
675       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
676              &GV);
677       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
678     }
679   }
680 
681   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
682                        GV.getName() == "llvm.global_dtors")) {
683     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
684            "invalid linkage for intrinsic global variable", &GV);
685     // Don't worry about emitting an error for it not being an array,
686     // visitGlobalValue will complain on appending non-array.
687     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
688       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
689       PointerType *FuncPtrTy =
690           FunctionType::get(Type::getVoidTy(Context), false)->
691           getPointerTo(DL.getProgramAddressSpace());
692       Assert(STy &&
693                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
694                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
695                  STy->getTypeAtIndex(1) == FuncPtrTy,
696              "wrong type for intrinsic global variable", &GV);
697       Assert(STy->getNumElements() == 3,
698              "the third field of the element type is mandatory, "
699              "specify i8* null to migrate from the obsoleted 2-field form");
700       Type *ETy = STy->getTypeAtIndex(2);
701       Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
702       Assert(ETy->isPointerTy() &&
703                  cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
704              "wrong type for intrinsic global variable", &GV);
705     }
706   }
707 
708   if (GV.hasName() && (GV.getName() == "llvm.used" ||
709                        GV.getName() == "llvm.compiler.used")) {
710     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
711            "invalid linkage for intrinsic global variable", &GV);
712     Type *GVType = GV.getValueType();
713     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
714       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
715       Assert(PTy, "wrong type for intrinsic global variable", &GV);
716       if (GV.hasInitializer()) {
717         const Constant *Init = GV.getInitializer();
718         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
719         Assert(InitArray, "wrong initalizer for intrinsic global variable",
720                Init);
721         for (Value *Op : InitArray->operands()) {
722           Value *V = Op->stripPointerCasts();
723           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
724                      isa<GlobalAlias>(V),
725                  "invalid llvm.used member", V);
726           Assert(V->hasName(), "members of llvm.used must be named", V);
727         }
728       }
729     }
730   }
731 
732   // Visit any debug info attachments.
733   SmallVector<MDNode *, 1> MDs;
734   GV.getMetadata(LLVMContext::MD_dbg, MDs);
735   for (auto *MD : MDs) {
736     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
737       visitDIGlobalVariableExpression(*GVE);
738     else
739       AssertDI(false, "!dbg attachment of global variable must be a "
740                       "DIGlobalVariableExpression");
741   }
742 
743   // Scalable vectors cannot be global variables, since we don't know
744   // the runtime size. If the global is an array containing scalable vectors,
745   // that will be caught by the isValidElementType methods in StructType or
746   // ArrayType instead.
747   Assert(!isa<ScalableVectorType>(GV.getValueType()),
748          "Globals cannot contain scalable vectors", &GV);
749 
750   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
751     Assert(!STy->containsScalableVectorType(),
752            "Globals cannot contain scalable vectors", &GV);
753 
754   if (!GV.hasInitializer()) {
755     visitGlobalValue(GV);
756     return;
757   }
758 
759   // Walk any aggregate initializers looking for bitcasts between address spaces
760   visitConstantExprsRecursively(GV.getInitializer());
761 
762   visitGlobalValue(GV);
763 }
764 
765 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
766   SmallPtrSet<const GlobalAlias*, 4> Visited;
767   Visited.insert(&GA);
768   visitAliaseeSubExpr(Visited, GA, C);
769 }
770 
771 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
772                                    const GlobalAlias &GA, const Constant &C) {
773   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
774     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
775            &GA);
776 
777     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
778       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
779 
780       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
781              &GA);
782     } else {
783       // Only continue verifying subexpressions of GlobalAliases.
784       // Do not recurse into global initializers.
785       return;
786     }
787   }
788 
789   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
790     visitConstantExprsRecursively(CE);
791 
792   for (const Use &U : C.operands()) {
793     Value *V = &*U;
794     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
795       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
796     else if (const auto *C2 = dyn_cast<Constant>(V))
797       visitAliaseeSubExpr(Visited, GA, *C2);
798   }
799 }
800 
801 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
802   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
803          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
804          "weak_odr, or external linkage!",
805          &GA);
806   const Constant *Aliasee = GA.getAliasee();
807   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
808   Assert(GA.getType() == Aliasee->getType(),
809          "Alias and aliasee types should match!", &GA);
810 
811   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
812          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
813 
814   visitAliaseeSubExpr(GA, *Aliasee);
815 
816   visitGlobalValue(GA);
817 }
818 
819 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
820   // There used to be various other llvm.dbg.* nodes, but we don't support
821   // upgrading them and we want to reserve the namespace for future uses.
822   if (NMD.getName().startswith("llvm.dbg."))
823     AssertDI(NMD.getName() == "llvm.dbg.cu",
824              "unrecognized named metadata node in the llvm.dbg namespace",
825              &NMD);
826   for (const MDNode *MD : NMD.operands()) {
827     if (NMD.getName() == "llvm.dbg.cu")
828       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
829 
830     if (!MD)
831       continue;
832 
833     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
834   }
835 }
836 
837 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
838   // Only visit each node once.  Metadata can be mutually recursive, so this
839   // avoids infinite recursion here, as well as being an optimization.
840   if (!MDNodes.insert(&MD).second)
841     return;
842 
843   Assert(&MD.getContext() == &Context,
844          "MDNode context does not match Module context!", &MD);
845 
846   switch (MD.getMetadataID()) {
847   default:
848     llvm_unreachable("Invalid MDNode subclass");
849   case Metadata::MDTupleKind:
850     break;
851 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
852   case Metadata::CLASS##Kind:                                                  \
853     visit##CLASS(cast<CLASS>(MD));                                             \
854     break;
855 #include "llvm/IR/Metadata.def"
856   }
857 
858   for (const Metadata *Op : MD.operands()) {
859     if (!Op)
860       continue;
861     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
862            &MD, Op);
863     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
864              "DILocation not allowed within this metadata node", &MD, Op);
865     if (auto *N = dyn_cast<MDNode>(Op)) {
866       visitMDNode(*N, AllowLocs);
867       continue;
868     }
869     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
870       visitValueAsMetadata(*V, nullptr);
871       continue;
872     }
873   }
874 
875   // Check these last, so we diagnose problems in operands first.
876   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
877   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
878 }
879 
880 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
881   Assert(MD.getValue(), "Expected valid value", &MD);
882   Assert(!MD.getValue()->getType()->isMetadataTy(),
883          "Unexpected metadata round-trip through values", &MD, MD.getValue());
884 
885   auto *L = dyn_cast<LocalAsMetadata>(&MD);
886   if (!L)
887     return;
888 
889   Assert(F, "function-local metadata used outside a function", L);
890 
891   // If this was an instruction, bb, or argument, verify that it is in the
892   // function that we expect.
893   Function *ActualF = nullptr;
894   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
895     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
896     ActualF = I->getParent()->getParent();
897   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
898     ActualF = BB->getParent();
899   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
900     ActualF = A->getParent();
901   assert(ActualF && "Unimplemented function local metadata case!");
902 
903   Assert(ActualF == F, "function-local metadata used in wrong function", L);
904 }
905 
906 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
907   Metadata *MD = MDV.getMetadata();
908   if (auto *N = dyn_cast<MDNode>(MD)) {
909     visitMDNode(*N, AreDebugLocsAllowed::No);
910     return;
911   }
912 
913   // Only visit each node once.  Metadata can be mutually recursive, so this
914   // avoids infinite recursion here, as well as being an optimization.
915   if (!MDNodes.insert(MD).second)
916     return;
917 
918   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
919     visitValueAsMetadata(*V, F);
920 }
921 
922 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
923 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
924 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
925 
926 void Verifier::visitDILocation(const DILocation &N) {
927   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
928            "location requires a valid scope", &N, N.getRawScope());
929   if (auto *IA = N.getRawInlinedAt())
930     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
931   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
932     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
933 }
934 
935 void Verifier::visitGenericDINode(const GenericDINode &N) {
936   AssertDI(N.getTag(), "invalid tag", &N);
937 }
938 
939 void Verifier::visitDIScope(const DIScope &N) {
940   if (auto *F = N.getRawFile())
941     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
942 }
943 
944 void Verifier::visitDISubrange(const DISubrange &N) {
945   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
946   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
947   AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
948                N.getRawUpperBound(),
949            "Subrange must contain count or upperBound", &N);
950   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
951            "Subrange can have any one of count or upperBound", &N);
952   auto *CBound = N.getRawCountNode();
953   AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
954                isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
955            "Count must be signed constant or DIVariable or DIExpression", &N);
956   auto Count = N.getCount();
957   AssertDI(!Count || !Count.is<ConstantInt *>() ||
958                Count.get<ConstantInt *>()->getSExtValue() >= -1,
959            "invalid subrange count", &N);
960   auto *LBound = N.getRawLowerBound();
961   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
962                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
963            "LowerBound must be signed constant or DIVariable or DIExpression",
964            &N);
965   auto *UBound = N.getRawUpperBound();
966   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
967                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
968            "UpperBound must be signed constant or DIVariable or DIExpression",
969            &N);
970   auto *Stride = N.getRawStride();
971   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
972                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
973            "Stride must be signed constant or DIVariable or DIExpression", &N);
974 }
975 
976 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
977   AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
978   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
979            "GenericSubrange must contain count or upperBound", &N);
980   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
981            "GenericSubrange can have any one of count or upperBound", &N);
982   auto *CBound = N.getRawCountNode();
983   AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
984            "Count must be signed constant or DIVariable or DIExpression", &N);
985   auto *LBound = N.getRawLowerBound();
986   AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
987   AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
988            "LowerBound must be signed constant or DIVariable or DIExpression",
989            &N);
990   auto *UBound = N.getRawUpperBound();
991   AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
992            "UpperBound must be signed constant or DIVariable or DIExpression",
993            &N);
994   auto *Stride = N.getRawStride();
995   AssertDI(Stride, "GenericSubrange must contain stride", &N);
996   AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
997            "Stride must be signed constant or DIVariable or DIExpression", &N);
998 }
999 
1000 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1001   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1002 }
1003 
1004 void Verifier::visitDIBasicType(const DIBasicType &N) {
1005   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
1006                N.getTag() == dwarf::DW_TAG_unspecified_type ||
1007                N.getTag() == dwarf::DW_TAG_string_type,
1008            "invalid tag", &N);
1009 }
1010 
1011 void Verifier::visitDIStringType(const DIStringType &N) {
1012   AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1013   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
1014             "has conflicting flags", &N);
1015 }
1016 
1017 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1018   // Common scope checks.
1019   visitDIScope(N);
1020 
1021   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
1022                N.getTag() == dwarf::DW_TAG_pointer_type ||
1023                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1024                N.getTag() == dwarf::DW_TAG_reference_type ||
1025                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1026                N.getTag() == dwarf::DW_TAG_const_type ||
1027                N.getTag() == dwarf::DW_TAG_volatile_type ||
1028                N.getTag() == dwarf::DW_TAG_restrict_type ||
1029                N.getTag() == dwarf::DW_TAG_atomic_type ||
1030                N.getTag() == dwarf::DW_TAG_member ||
1031                N.getTag() == dwarf::DW_TAG_inheritance ||
1032                N.getTag() == dwarf::DW_TAG_friend ||
1033                N.getTag() == dwarf::DW_TAG_set_type,
1034            "invalid tag", &N);
1035   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1036     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1037              N.getRawExtraData());
1038   }
1039 
1040   if (N.getTag() == dwarf::DW_TAG_set_type) {
1041     if (auto *T = N.getRawBaseType()) {
1042       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1043       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1044       AssertDI(
1045           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1046               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1047                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1048                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1049                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1050                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1051           "invalid set base type", &N, T);
1052     }
1053   }
1054 
1055   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1056   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1057            N.getRawBaseType());
1058 
1059   if (N.getDWARFAddressSpace()) {
1060     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1061                  N.getTag() == dwarf::DW_TAG_reference_type ||
1062                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1063              "DWARF address space only applies to pointer or reference types",
1064              &N);
1065   }
1066 }
1067 
1068 /// Detect mutually exclusive flags.
1069 static bool hasConflictingReferenceFlags(unsigned Flags) {
1070   return ((Flags & DINode::FlagLValueReference) &&
1071           (Flags & DINode::FlagRValueReference)) ||
1072          ((Flags & DINode::FlagTypePassByValue) &&
1073           (Flags & DINode::FlagTypePassByReference));
1074 }
1075 
1076 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1077   auto *Params = dyn_cast<MDTuple>(&RawParams);
1078   AssertDI(Params, "invalid template params", &N, &RawParams);
1079   for (Metadata *Op : Params->operands()) {
1080     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1081              &N, Params, Op);
1082   }
1083 }
1084 
1085 void Verifier::visitDICompositeType(const DICompositeType &N) {
1086   // Common scope checks.
1087   visitDIScope(N);
1088 
1089   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
1090                N.getTag() == dwarf::DW_TAG_structure_type ||
1091                N.getTag() == dwarf::DW_TAG_union_type ||
1092                N.getTag() == dwarf::DW_TAG_enumeration_type ||
1093                N.getTag() == dwarf::DW_TAG_class_type ||
1094                N.getTag() == dwarf::DW_TAG_variant_part,
1095            "invalid tag", &N);
1096 
1097   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1098   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1099            N.getRawBaseType());
1100 
1101   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1102            "invalid composite elements", &N, N.getRawElements());
1103   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1104            N.getRawVTableHolder());
1105   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1106            "invalid reference flags", &N);
1107   unsigned DIBlockByRefStruct = 1 << 4;
1108   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1109            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1110 
1111   if (N.isVector()) {
1112     const DINodeArray Elements = N.getElements();
1113     AssertDI(Elements.size() == 1 &&
1114              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1115              "invalid vector, expected one element of type subrange", &N);
1116   }
1117 
1118   if (auto *Params = N.getRawTemplateParams())
1119     visitTemplateParams(N, *Params);
1120 
1121   if (auto *D = N.getRawDiscriminator()) {
1122     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1123              "discriminator can only appear on variant part");
1124   }
1125 
1126   if (N.getRawDataLocation()) {
1127     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1128              "dataLocation can only appear in array type");
1129   }
1130 
1131   if (N.getRawAssociated()) {
1132     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1133              "associated can only appear in array type");
1134   }
1135 
1136   if (N.getRawAllocated()) {
1137     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1138              "allocated can only appear in array type");
1139   }
1140 
1141   if (N.getRawRank()) {
1142     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1143              "rank can only appear in array type");
1144   }
1145 }
1146 
1147 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1148   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1149   if (auto *Types = N.getRawTypeArray()) {
1150     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1151     for (Metadata *Ty : N.getTypeArray()->operands()) {
1152       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1153     }
1154   }
1155   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1156            "invalid reference flags", &N);
1157 }
1158 
1159 void Verifier::visitDIFile(const DIFile &N) {
1160   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1161   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1162   if (Checksum) {
1163     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1164              "invalid checksum kind", &N);
1165     size_t Size;
1166     switch (Checksum->Kind) {
1167     case DIFile::CSK_MD5:
1168       Size = 32;
1169       break;
1170     case DIFile::CSK_SHA1:
1171       Size = 40;
1172       break;
1173     case DIFile::CSK_SHA256:
1174       Size = 64;
1175       break;
1176     }
1177     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1178     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1179              "invalid checksum", &N);
1180   }
1181 }
1182 
1183 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1184   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1185   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1186 
1187   // Don't bother verifying the compilation directory or producer string
1188   // as those could be empty.
1189   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1190            N.getRawFile());
1191   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1192            N.getFile());
1193 
1194   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1195 
1196   verifySourceDebugInfo(N, *N.getFile());
1197 
1198   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1199            "invalid emission kind", &N);
1200 
1201   if (auto *Array = N.getRawEnumTypes()) {
1202     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1203     for (Metadata *Op : N.getEnumTypes()->operands()) {
1204       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1205       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1206                "invalid enum type", &N, N.getEnumTypes(), Op);
1207     }
1208   }
1209   if (auto *Array = N.getRawRetainedTypes()) {
1210     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1211     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1212       AssertDI(Op && (isa<DIType>(Op) ||
1213                       (isa<DISubprogram>(Op) &&
1214                        !cast<DISubprogram>(Op)->isDefinition())),
1215                "invalid retained type", &N, Op);
1216     }
1217   }
1218   if (auto *Array = N.getRawGlobalVariables()) {
1219     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1220     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1221       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1222                "invalid global variable ref", &N, Op);
1223     }
1224   }
1225   if (auto *Array = N.getRawImportedEntities()) {
1226     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1227     for (Metadata *Op : N.getImportedEntities()->operands()) {
1228       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1229                &N, Op);
1230     }
1231   }
1232   if (auto *Array = N.getRawMacros()) {
1233     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1234     for (Metadata *Op : N.getMacros()->operands()) {
1235       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1236     }
1237   }
1238   CUVisited.insert(&N);
1239 }
1240 
1241 void Verifier::visitDISubprogram(const DISubprogram &N) {
1242   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1243   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1244   if (auto *F = N.getRawFile())
1245     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1246   else
1247     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1248   if (auto *T = N.getRawType())
1249     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1250   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1251            N.getRawContainingType());
1252   if (auto *Params = N.getRawTemplateParams())
1253     visitTemplateParams(N, *Params);
1254   if (auto *S = N.getRawDeclaration())
1255     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1256              "invalid subprogram declaration", &N, S);
1257   if (auto *RawNode = N.getRawRetainedNodes()) {
1258     auto *Node = dyn_cast<MDTuple>(RawNode);
1259     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1260     for (Metadata *Op : Node->operands()) {
1261       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1262                "invalid retained nodes, expected DILocalVariable or DILabel",
1263                &N, Node, Op);
1264     }
1265   }
1266   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1267            "invalid reference flags", &N);
1268 
1269   auto *Unit = N.getRawUnit();
1270   if (N.isDefinition()) {
1271     // Subprogram definitions (not part of the type hierarchy).
1272     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1273     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1274     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1275     if (N.getFile())
1276       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1277   } else {
1278     // Subprogram declarations (part of the type hierarchy).
1279     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1280   }
1281 
1282   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1283     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1284     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1285     for (Metadata *Op : ThrownTypes->operands())
1286       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1287                Op);
1288   }
1289 
1290   if (N.areAllCallsDescribed())
1291     AssertDI(N.isDefinition(),
1292              "DIFlagAllCallsDescribed must be attached to a definition");
1293 }
1294 
1295 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1296   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1297   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1298            "invalid local scope", &N, N.getRawScope());
1299   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1300     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1301 }
1302 
1303 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1304   visitDILexicalBlockBase(N);
1305 
1306   AssertDI(N.getLine() || !N.getColumn(),
1307            "cannot have column info without line info", &N);
1308 }
1309 
1310 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1311   visitDILexicalBlockBase(N);
1312 }
1313 
1314 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1315   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1316   if (auto *S = N.getRawScope())
1317     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1318   if (auto *S = N.getRawDecl())
1319     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1320 }
1321 
1322 void Verifier::visitDINamespace(const DINamespace &N) {
1323   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1324   if (auto *S = N.getRawScope())
1325     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1326 }
1327 
1328 void Verifier::visitDIMacro(const DIMacro &N) {
1329   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1330                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1331            "invalid macinfo type", &N);
1332   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1333   if (!N.getValue().empty()) {
1334     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1335   }
1336 }
1337 
1338 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1339   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1340            "invalid macinfo type", &N);
1341   if (auto *F = N.getRawFile())
1342     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1343 
1344   if (auto *Array = N.getRawElements()) {
1345     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1346     for (Metadata *Op : N.getElements()->operands()) {
1347       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1348     }
1349   }
1350 }
1351 
1352 void Verifier::visitDIArgList(const DIArgList &N) {
1353   AssertDI(!N.getNumOperands(),
1354            "DIArgList should have no operands other than a list of "
1355            "ValueAsMetadata",
1356            &N);
1357 }
1358 
1359 void Verifier::visitDIModule(const DIModule &N) {
1360   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1361   AssertDI(!N.getName().empty(), "anonymous module", &N);
1362 }
1363 
1364 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1365   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1366 }
1367 
1368 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1369   visitDITemplateParameter(N);
1370 
1371   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1372            &N);
1373 }
1374 
1375 void Verifier::visitDITemplateValueParameter(
1376     const DITemplateValueParameter &N) {
1377   visitDITemplateParameter(N);
1378 
1379   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1380                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1381                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1382            "invalid tag", &N);
1383 }
1384 
1385 void Verifier::visitDIVariable(const DIVariable &N) {
1386   if (auto *S = N.getRawScope())
1387     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1388   if (auto *F = N.getRawFile())
1389     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1390 }
1391 
1392 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1393   // Checks common to all variables.
1394   visitDIVariable(N);
1395 
1396   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1397   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1398   // Assert only if the global variable is not an extern
1399   if (N.isDefinition())
1400     AssertDI(N.getType(), "missing global variable type", &N);
1401   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1402     AssertDI(isa<DIDerivedType>(Member),
1403              "invalid static data member declaration", &N, Member);
1404   }
1405 }
1406 
1407 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1408   // Checks common to all variables.
1409   visitDIVariable(N);
1410 
1411   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1412   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1413   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1414            "local variable requires a valid scope", &N, N.getRawScope());
1415   if (auto Ty = N.getType())
1416     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1417 }
1418 
1419 void Verifier::visitDILabel(const DILabel &N) {
1420   if (auto *S = N.getRawScope())
1421     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1422   if (auto *F = N.getRawFile())
1423     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1424 
1425   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1426   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1427            "label requires a valid scope", &N, N.getRawScope());
1428 }
1429 
1430 void Verifier::visitDIExpression(const DIExpression &N) {
1431   AssertDI(N.isValid(), "invalid expression", &N);
1432 }
1433 
1434 void Verifier::visitDIGlobalVariableExpression(
1435     const DIGlobalVariableExpression &GVE) {
1436   AssertDI(GVE.getVariable(), "missing variable");
1437   if (auto *Var = GVE.getVariable())
1438     visitDIGlobalVariable(*Var);
1439   if (auto *Expr = GVE.getExpression()) {
1440     visitDIExpression(*Expr);
1441     if (auto Fragment = Expr->getFragmentInfo())
1442       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1443   }
1444 }
1445 
1446 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1447   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1448   if (auto *T = N.getRawType())
1449     AssertDI(isType(T), "invalid type ref", &N, T);
1450   if (auto *F = N.getRawFile())
1451     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1452 }
1453 
1454 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1455   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1456                N.getTag() == dwarf::DW_TAG_imported_declaration,
1457            "invalid tag", &N);
1458   if (auto *S = N.getRawScope())
1459     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1460   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1461            N.getRawEntity());
1462 }
1463 
1464 void Verifier::visitComdat(const Comdat &C) {
1465   // In COFF the Module is invalid if the GlobalValue has private linkage.
1466   // Entities with private linkage don't have entries in the symbol table.
1467   if (TT.isOSBinFormatCOFF())
1468     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1469       Assert(!GV->hasPrivateLinkage(),
1470              "comdat global value has private linkage", GV);
1471 }
1472 
1473 void Verifier::visitModuleIdents(const Module &M) {
1474   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1475   if (!Idents)
1476     return;
1477 
1478   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1479   // Scan each llvm.ident entry and make sure that this requirement is met.
1480   for (const MDNode *N : Idents->operands()) {
1481     Assert(N->getNumOperands() == 1,
1482            "incorrect number of operands in llvm.ident metadata", N);
1483     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1484            ("invalid value for llvm.ident metadata entry operand"
1485             "(the operand should be a string)"),
1486            N->getOperand(0));
1487   }
1488 }
1489 
1490 void Verifier::visitModuleCommandLines(const Module &M) {
1491   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1492   if (!CommandLines)
1493     return;
1494 
1495   // llvm.commandline takes a list of metadata entry. Each entry has only one
1496   // string. Scan each llvm.commandline entry and make sure that this
1497   // requirement is met.
1498   for (const MDNode *N : CommandLines->operands()) {
1499     Assert(N->getNumOperands() == 1,
1500            "incorrect number of operands in llvm.commandline metadata", N);
1501     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1502            ("invalid value for llvm.commandline metadata entry operand"
1503             "(the operand should be a string)"),
1504            N->getOperand(0));
1505   }
1506 }
1507 
1508 void Verifier::visitModuleFlags(const Module &M) {
1509   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1510   if (!Flags) return;
1511 
1512   // Scan each flag, and track the flags and requirements.
1513   DenseMap<const MDString*, const MDNode*> SeenIDs;
1514   SmallVector<const MDNode*, 16> Requirements;
1515   for (const MDNode *MDN : Flags->operands())
1516     visitModuleFlag(MDN, SeenIDs, Requirements);
1517 
1518   // Validate that the requirements in the module are valid.
1519   for (const MDNode *Requirement : Requirements) {
1520     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1521     const Metadata *ReqValue = Requirement->getOperand(1);
1522 
1523     const MDNode *Op = SeenIDs.lookup(Flag);
1524     if (!Op) {
1525       CheckFailed("invalid requirement on flag, flag is not present in module",
1526                   Flag);
1527       continue;
1528     }
1529 
1530     if (Op->getOperand(2) != ReqValue) {
1531       CheckFailed(("invalid requirement on flag, "
1532                    "flag does not have the required value"),
1533                   Flag);
1534       continue;
1535     }
1536   }
1537 }
1538 
1539 void
1540 Verifier::visitModuleFlag(const MDNode *Op,
1541                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1542                           SmallVectorImpl<const MDNode *> &Requirements) {
1543   // Each module flag should have three arguments, the merge behavior (a
1544   // constant int), the flag ID (an MDString), and the value.
1545   Assert(Op->getNumOperands() == 3,
1546          "incorrect number of operands in module flag", Op);
1547   Module::ModFlagBehavior MFB;
1548   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1549     Assert(
1550         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1551         "invalid behavior operand in module flag (expected constant integer)",
1552         Op->getOperand(0));
1553     Assert(false,
1554            "invalid behavior operand in module flag (unexpected constant)",
1555            Op->getOperand(0));
1556   }
1557   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1558   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1559          Op->getOperand(1));
1560 
1561   // Sanity check the values for behaviors with additional requirements.
1562   switch (MFB) {
1563   case Module::Error:
1564   case Module::Warning:
1565   case Module::Override:
1566     // These behavior types accept any value.
1567     break;
1568 
1569   case Module::Max: {
1570     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1571            "invalid value for 'max' module flag (expected constant integer)",
1572            Op->getOperand(2));
1573     break;
1574   }
1575 
1576   case Module::Require: {
1577     // The value should itself be an MDNode with two operands, a flag ID (an
1578     // MDString), and a value.
1579     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1580     Assert(Value && Value->getNumOperands() == 2,
1581            "invalid value for 'require' module flag (expected metadata pair)",
1582            Op->getOperand(2));
1583     Assert(isa<MDString>(Value->getOperand(0)),
1584            ("invalid value for 'require' module flag "
1585             "(first value operand should be a string)"),
1586            Value->getOperand(0));
1587 
1588     // Append it to the list of requirements, to check once all module flags are
1589     // scanned.
1590     Requirements.push_back(Value);
1591     break;
1592   }
1593 
1594   case Module::Append:
1595   case Module::AppendUnique: {
1596     // These behavior types require the operand be an MDNode.
1597     Assert(isa<MDNode>(Op->getOperand(2)),
1598            "invalid value for 'append'-type module flag "
1599            "(expected a metadata node)",
1600            Op->getOperand(2));
1601     break;
1602   }
1603   }
1604 
1605   // Unless this is a "requires" flag, check the ID is unique.
1606   if (MFB != Module::Require) {
1607     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1608     Assert(Inserted,
1609            "module flag identifiers must be unique (or of 'require' type)", ID);
1610   }
1611 
1612   if (ID->getString() == "wchar_size") {
1613     ConstantInt *Value
1614       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1615     Assert(Value, "wchar_size metadata requires constant integer argument");
1616   }
1617 
1618   if (ID->getString() == "Linker Options") {
1619     // If the llvm.linker.options named metadata exists, we assume that the
1620     // bitcode reader has upgraded the module flag. Otherwise the flag might
1621     // have been created by a client directly.
1622     Assert(M.getNamedMetadata("llvm.linker.options"),
1623            "'Linker Options' named metadata no longer supported");
1624   }
1625 
1626   if (ID->getString() == "SemanticInterposition") {
1627     ConstantInt *Value =
1628         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1629     Assert(Value,
1630            "SemanticInterposition metadata requires constant integer argument");
1631   }
1632 
1633   if (ID->getString() == "CG Profile") {
1634     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1635       visitModuleFlagCGProfileEntry(MDO);
1636   }
1637 }
1638 
1639 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1640   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1641     if (!FuncMDO)
1642       return;
1643     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1644     Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
1645            "expected a Function or null", FuncMDO);
1646   };
1647   auto Node = dyn_cast_or_null<MDNode>(MDO);
1648   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1649   CheckFunction(Node->getOperand(0));
1650   CheckFunction(Node->getOperand(1));
1651   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1652   Assert(Count && Count->getType()->isIntegerTy(),
1653          "expected an integer constant", Node->getOperand(2));
1654 }
1655 
1656 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1657   for (Attribute A : Attrs) {
1658 
1659     if (A.isStringAttribute()) {
1660 #define GET_ATTR_NAMES
1661 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1662 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1663   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1664     auto V = A.getValueAsString();                                             \
1665     if (!(V.empty() || V == "true" || V == "false"))                           \
1666       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1667                   "");                                                         \
1668   }
1669 
1670 #include "llvm/IR/Attributes.inc"
1671       continue;
1672     }
1673 
1674     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1675       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1676                   V);
1677       return;
1678     }
1679   }
1680 }
1681 
1682 // VerifyParameterAttrs - Check the given attributes for an argument or return
1683 // value of the specified type.  The value V is printed in error messages.
1684 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1685                                     const Value *V) {
1686   if (!Attrs.hasAttributes())
1687     return;
1688 
1689   verifyAttributeTypes(Attrs, V);
1690 
1691   for (Attribute Attr : Attrs)
1692     Assert(Attr.isStringAttribute() ||
1693            Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1694            "Attribute '" + Attr.getAsString() +
1695                "' does not apply to parameters",
1696            V);
1697 
1698   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1699     Assert(Attrs.getNumAttributes() == 1,
1700            "Attribute 'immarg' is incompatible with other attributes", V);
1701   }
1702 
1703   // Check for mutually incompatible attributes.  Only inreg is compatible with
1704   // sret.
1705   unsigned AttrCount = 0;
1706   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1707   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1708   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1709   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1710                Attrs.hasAttribute(Attribute::InReg);
1711   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1712   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1713   Assert(AttrCount <= 1,
1714          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1715          "'byref', and 'sret' are incompatible!",
1716          V);
1717 
1718   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1719            Attrs.hasAttribute(Attribute::ReadOnly)),
1720          "Attributes "
1721          "'inalloca and readonly' are incompatible!",
1722          V);
1723 
1724   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1725            Attrs.hasAttribute(Attribute::Returned)),
1726          "Attributes "
1727          "'sret and returned' are incompatible!",
1728          V);
1729 
1730   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1731            Attrs.hasAttribute(Attribute::SExt)),
1732          "Attributes "
1733          "'zeroext and signext' are incompatible!",
1734          V);
1735 
1736   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1737            Attrs.hasAttribute(Attribute::ReadOnly)),
1738          "Attributes "
1739          "'readnone and readonly' are incompatible!",
1740          V);
1741 
1742   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1743            Attrs.hasAttribute(Attribute::WriteOnly)),
1744          "Attributes "
1745          "'readnone and writeonly' are incompatible!",
1746          V);
1747 
1748   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1749            Attrs.hasAttribute(Attribute::WriteOnly)),
1750          "Attributes "
1751          "'readonly and writeonly' are incompatible!",
1752          V);
1753 
1754   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1755            Attrs.hasAttribute(Attribute::AlwaysInline)),
1756          "Attributes "
1757          "'noinline and alwaysinline' are incompatible!",
1758          V);
1759 
1760   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1761   for (Attribute Attr : Attrs) {
1762     if (!Attr.isStringAttribute() &&
1763         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1764       CheckFailed("Attribute '" + Attr.getAsString() +
1765                   "' applied to incompatible type!", V);
1766       return;
1767     }
1768   }
1769 
1770   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1771     if (Attrs.hasAttribute(Attribute::ByVal)) {
1772       SmallPtrSet<Type *, 4> Visited;
1773       Assert(Attrs.getByValType()->isSized(&Visited),
1774              "Attribute 'byval' does not support unsized types!", V);
1775     }
1776     if (Attrs.hasAttribute(Attribute::ByRef)) {
1777       SmallPtrSet<Type *, 4> Visited;
1778       Assert(Attrs.getByRefType()->isSized(&Visited),
1779              "Attribute 'byref' does not support unsized types!", V);
1780     }
1781     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1782       SmallPtrSet<Type *, 4> Visited;
1783       Assert(Attrs.getInAllocaType()->isSized(&Visited),
1784              "Attribute 'inalloca' does not support unsized types!", V);
1785     }
1786     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1787       SmallPtrSet<Type *, 4> Visited;
1788       Assert(Attrs.getPreallocatedType()->isSized(&Visited),
1789              "Attribute 'preallocated' does not support unsized types!", V);
1790     }
1791     if (!PTy->isOpaque()) {
1792       if (!isa<PointerType>(PTy->getElementType()))
1793         Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1794                "Attribute 'swifterror' only applies to parameters "
1795                "with pointer to pointer type!",
1796                V);
1797       if (Attrs.hasAttribute(Attribute::ByRef)) {
1798         Assert(Attrs.getByRefType() == PTy->getElementType(),
1799                "Attribute 'byref' type does not match parameter!", V);
1800       }
1801 
1802       if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1803         Assert(Attrs.getByValType() == PTy->getElementType(),
1804                "Attribute 'byval' type does not match parameter!", V);
1805       }
1806 
1807       if (Attrs.hasAttribute(Attribute::Preallocated)) {
1808         Assert(Attrs.getPreallocatedType() == PTy->getElementType(),
1809                "Attribute 'preallocated' type does not match parameter!", V);
1810       }
1811 
1812       if (Attrs.hasAttribute(Attribute::InAlloca)) {
1813         Assert(Attrs.getInAllocaType() == PTy->getElementType(),
1814                "Attribute 'inalloca' type does not match parameter!", V);
1815       }
1816 
1817       if (Attrs.hasAttribute(Attribute::ElementType)) {
1818         Assert(Attrs.getElementType() == PTy->getElementType(),
1819                "Attribute 'elementtype' type does not match parameter!", V);
1820       }
1821     }
1822   }
1823 }
1824 
1825 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1826                                             const Value *V) {
1827   if (Attrs.hasFnAttribute(Attr)) {
1828     StringRef S = Attrs.getAttribute(AttributeList::FunctionIndex, Attr)
1829                       .getValueAsString();
1830     unsigned N;
1831     if (S.getAsInteger(10, N))
1832       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1833   }
1834 }
1835 
1836 // Check parameter attributes against a function type.
1837 // The value V is printed in error messages.
1838 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1839                                    const Value *V, bool IsIntrinsic) {
1840   if (Attrs.isEmpty())
1841     return;
1842 
1843   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1844     Assert(Attrs.hasParentContext(Context),
1845            "Attribute list does not match Module context!", &Attrs, V);
1846     for (const auto &AttrSet : Attrs) {
1847       Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1848              "Attribute set does not match Module context!", &AttrSet, V);
1849       for (const auto &A : AttrSet) {
1850         Assert(A.hasParentContext(Context),
1851                "Attribute does not match Module context!", &A, V);
1852       }
1853     }
1854   }
1855 
1856   bool SawNest = false;
1857   bool SawReturned = false;
1858   bool SawSRet = false;
1859   bool SawSwiftSelf = false;
1860   bool SawSwiftAsync = false;
1861   bool SawSwiftError = false;
1862 
1863   // Verify return value attributes.
1864   AttributeSet RetAttrs = Attrs.getRetAttributes();
1865   for (Attribute RetAttr : RetAttrs)
1866     Assert(RetAttr.isStringAttribute() ||
1867            Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1868            "Attribute '" + RetAttr.getAsString() +
1869                "' does not apply to function return values",
1870            V);
1871 
1872   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1873 
1874   // Verify parameter attributes.
1875   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1876     Type *Ty = FT->getParamType(i);
1877     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1878 
1879     if (!IsIntrinsic) {
1880       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1881              "immarg attribute only applies to intrinsics",V);
1882       Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),
1883              "Attribute 'elementtype' can only be applied to intrinsics.", V);
1884     }
1885 
1886     verifyParameterAttrs(ArgAttrs, Ty, V);
1887 
1888     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1889       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1890       SawNest = true;
1891     }
1892 
1893     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1894       Assert(!SawReturned, "More than one parameter has attribute returned!",
1895              V);
1896       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1897              "Incompatible argument and return types for 'returned' attribute",
1898              V);
1899       SawReturned = true;
1900     }
1901 
1902     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1903       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1904       Assert(i == 0 || i == 1,
1905              "Attribute 'sret' is not on first or second parameter!", V);
1906       SawSRet = true;
1907     }
1908 
1909     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1910       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1911       SawSwiftSelf = true;
1912     }
1913 
1914     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1915       Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1916       SawSwiftAsync = true;
1917     }
1918 
1919     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1920       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1921              V);
1922       SawSwiftError = true;
1923     }
1924 
1925     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1926       Assert(i == FT->getNumParams() - 1,
1927              "inalloca isn't on the last parameter!", V);
1928     }
1929   }
1930 
1931   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1932     return;
1933 
1934   verifyAttributeTypes(Attrs.getFnAttributes(), V);
1935   for (Attribute FnAttr : Attrs.getFnAttributes())
1936     Assert(FnAttr.isStringAttribute() ||
1937            Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
1938            "Attribute '" + FnAttr.getAsString() +
1939                "' does not apply to functions!",
1940            V);
1941 
1942   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1943            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1944          "Attributes 'readnone and readonly' are incompatible!", V);
1945 
1946   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1947            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1948          "Attributes 'readnone and writeonly' are incompatible!", V);
1949 
1950   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1951            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1952          "Attributes 'readonly and writeonly' are incompatible!", V);
1953 
1954   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1955            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1956          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1957          "incompatible!",
1958          V);
1959 
1960   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1961            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1962          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1963 
1964   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1965            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1966          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1967 
1968   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1969     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1970            "Attribute 'optnone' requires 'noinline'!", V);
1971 
1972     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1973            "Attributes 'optsize and optnone' are incompatible!", V);
1974 
1975     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1976            "Attributes 'minsize and optnone' are incompatible!", V);
1977   }
1978 
1979   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1980     const GlobalValue *GV = cast<GlobalValue>(V);
1981     Assert(GV->hasGlobalUnnamedAddr(),
1982            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1983   }
1984 
1985   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1986     std::pair<unsigned, Optional<unsigned>> Args =
1987         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1988 
1989     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1990       if (ParamNo >= FT->getNumParams()) {
1991         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1992         return false;
1993       }
1994 
1995       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1996         CheckFailed("'allocsize' " + Name +
1997                         " argument must refer to an integer parameter",
1998                     V);
1999         return false;
2000       }
2001 
2002       return true;
2003     };
2004 
2005     if (!CheckParam("element size", Args.first))
2006       return;
2007 
2008     if (Args.second && !CheckParam("number of elements", *Args.second))
2009       return;
2010   }
2011 
2012   if (Attrs.hasFnAttribute(Attribute::VScaleRange)) {
2013     std::pair<unsigned, unsigned> Args =
2014         Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex);
2015 
2016     if (Args.first > Args.second && Args.second != 0)
2017       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2018   }
2019 
2020   if (Attrs.hasFnAttribute("frame-pointer")) {
2021     StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
2022                                       "frame-pointer").getValueAsString();
2023     if (FP != "all" && FP != "non-leaf" && FP != "none")
2024       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2025   }
2026 
2027   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2028   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2029   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2030 }
2031 
2032 void Verifier::verifyFunctionMetadata(
2033     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2034   for (const auto &Pair : MDs) {
2035     if (Pair.first == LLVMContext::MD_prof) {
2036       MDNode *MD = Pair.second;
2037       Assert(MD->getNumOperands() >= 2,
2038              "!prof annotations should have no less than 2 operands", MD);
2039 
2040       // Check first operand.
2041       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
2042              MD);
2043       Assert(isa<MDString>(MD->getOperand(0)),
2044              "expected string with name of the !prof annotation", MD);
2045       MDString *MDS = cast<MDString>(MD->getOperand(0));
2046       StringRef ProfName = MDS->getString();
2047       Assert(ProfName.equals("function_entry_count") ||
2048                  ProfName.equals("synthetic_function_entry_count"),
2049              "first operand should be 'function_entry_count'"
2050              " or 'synthetic_function_entry_count'",
2051              MD);
2052 
2053       // Check second operand.
2054       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
2055              MD);
2056       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
2057              "expected integer argument to function_entry_count", MD);
2058     }
2059   }
2060 }
2061 
2062 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2063   if (!ConstantExprVisited.insert(EntryC).second)
2064     return;
2065 
2066   SmallVector<const Constant *, 16> Stack;
2067   Stack.push_back(EntryC);
2068 
2069   while (!Stack.empty()) {
2070     const Constant *C = Stack.pop_back_val();
2071 
2072     // Check this constant expression.
2073     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2074       visitConstantExpr(CE);
2075 
2076     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2077       // Global Values get visited separately, but we do need to make sure
2078       // that the global value is in the correct module
2079       Assert(GV->getParent() == &M, "Referencing global in another module!",
2080              EntryC, &M, GV, GV->getParent());
2081       continue;
2082     }
2083 
2084     // Visit all sub-expressions.
2085     for (const Use &U : C->operands()) {
2086       const auto *OpC = dyn_cast<Constant>(U);
2087       if (!OpC)
2088         continue;
2089       if (!ConstantExprVisited.insert(OpC).second)
2090         continue;
2091       Stack.push_back(OpC);
2092     }
2093   }
2094 }
2095 
2096 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2097   if (CE->getOpcode() == Instruction::BitCast)
2098     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2099                                  CE->getType()),
2100            "Invalid bitcast", CE);
2101 }
2102 
2103 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2104   // There shouldn't be more attribute sets than there are parameters plus the
2105   // function and return value.
2106   return Attrs.getNumAttrSets() <= Params + 2;
2107 }
2108 
2109 /// Verify that statepoint intrinsic is well formed.
2110 void Verifier::verifyStatepoint(const CallBase &Call) {
2111   assert(Call.getCalledFunction() &&
2112          Call.getCalledFunction()->getIntrinsicID() ==
2113              Intrinsic::experimental_gc_statepoint);
2114 
2115   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2116              !Call.onlyAccessesArgMemory(),
2117          "gc.statepoint must read and write all memory to preserve "
2118          "reordering restrictions required by safepoint semantics",
2119          Call);
2120 
2121   const int64_t NumPatchBytes =
2122       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2123   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2124   Assert(NumPatchBytes >= 0,
2125          "gc.statepoint number of patchable bytes must be "
2126          "positive",
2127          Call);
2128 
2129   const Value *Target = Call.getArgOperand(2);
2130   auto *PT = dyn_cast<PointerType>(Target->getType());
2131   Assert(PT && PT->getElementType()->isFunctionTy(),
2132          "gc.statepoint callee must be of function pointer type", Call, Target);
2133   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2134 
2135   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2136   Assert(NumCallArgs >= 0,
2137          "gc.statepoint number of arguments to underlying call "
2138          "must be positive",
2139          Call);
2140   const int NumParams = (int)TargetFuncType->getNumParams();
2141   if (TargetFuncType->isVarArg()) {
2142     Assert(NumCallArgs >= NumParams,
2143            "gc.statepoint mismatch in number of vararg call args", Call);
2144 
2145     // TODO: Remove this limitation
2146     Assert(TargetFuncType->getReturnType()->isVoidTy(),
2147            "gc.statepoint doesn't support wrapping non-void "
2148            "vararg functions yet",
2149            Call);
2150   } else
2151     Assert(NumCallArgs == NumParams,
2152            "gc.statepoint mismatch in number of call args", Call);
2153 
2154   const uint64_t Flags
2155     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2156   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2157          "unknown flag used in gc.statepoint flags argument", Call);
2158 
2159   // Verify that the types of the call parameter arguments match
2160   // the type of the wrapped callee.
2161   AttributeList Attrs = Call.getAttributes();
2162   for (int i = 0; i < NumParams; i++) {
2163     Type *ParamType = TargetFuncType->getParamType(i);
2164     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2165     Assert(ArgType == ParamType,
2166            "gc.statepoint call argument does not match wrapped "
2167            "function type",
2168            Call);
2169 
2170     if (TargetFuncType->isVarArg()) {
2171       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2172       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2173              "Attribute 'sret' cannot be used for vararg call arguments!",
2174              Call);
2175     }
2176   }
2177 
2178   const int EndCallArgsInx = 4 + NumCallArgs;
2179 
2180   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2181   Assert(isa<ConstantInt>(NumTransitionArgsV),
2182          "gc.statepoint number of transition arguments "
2183          "must be constant integer",
2184          Call);
2185   const int NumTransitionArgs =
2186       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2187   Assert(NumTransitionArgs == 0,
2188          "gc.statepoint w/inline transition bundle is deprecated", Call);
2189   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2190 
2191   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2192   Assert(isa<ConstantInt>(NumDeoptArgsV),
2193          "gc.statepoint number of deoptimization arguments "
2194          "must be constant integer",
2195          Call);
2196   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2197   Assert(NumDeoptArgs == 0,
2198          "gc.statepoint w/inline deopt operands is deprecated", Call);
2199 
2200   const int ExpectedNumArgs = 7 + NumCallArgs;
2201   Assert(ExpectedNumArgs == (int)Call.arg_size(),
2202          "gc.statepoint too many arguments", Call);
2203 
2204   // Check that the only uses of this gc.statepoint are gc.result or
2205   // gc.relocate calls which are tied to this statepoint and thus part
2206   // of the same statepoint sequence
2207   for (const User *U : Call.users()) {
2208     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2209     Assert(UserCall, "illegal use of statepoint token", Call, U);
2210     if (!UserCall)
2211       continue;
2212     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2213            "gc.result or gc.relocate are the only value uses "
2214            "of a gc.statepoint",
2215            Call, U);
2216     if (isa<GCResultInst>(UserCall)) {
2217       Assert(UserCall->getArgOperand(0) == &Call,
2218              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2219     } else if (isa<GCRelocateInst>(Call)) {
2220       Assert(UserCall->getArgOperand(0) == &Call,
2221              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2222     }
2223   }
2224 
2225   // Note: It is legal for a single derived pointer to be listed multiple
2226   // times.  It's non-optimal, but it is legal.  It can also happen after
2227   // insertion if we strip a bitcast away.
2228   // Note: It is really tempting to check that each base is relocated and
2229   // that a derived pointer is never reused as a base pointer.  This turns
2230   // out to be problematic since optimizations run after safepoint insertion
2231   // can recognize equality properties that the insertion logic doesn't know
2232   // about.  See example statepoint.ll in the verifier subdirectory
2233 }
2234 
2235 void Verifier::verifyFrameRecoverIndices() {
2236   for (auto &Counts : FrameEscapeInfo) {
2237     Function *F = Counts.first;
2238     unsigned EscapedObjectCount = Counts.second.first;
2239     unsigned MaxRecoveredIndex = Counts.second.second;
2240     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2241            "all indices passed to llvm.localrecover must be less than the "
2242            "number of arguments passed to llvm.localescape in the parent "
2243            "function",
2244            F);
2245   }
2246 }
2247 
2248 static Instruction *getSuccPad(Instruction *Terminator) {
2249   BasicBlock *UnwindDest;
2250   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2251     UnwindDest = II->getUnwindDest();
2252   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2253     UnwindDest = CSI->getUnwindDest();
2254   else
2255     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2256   return UnwindDest->getFirstNonPHI();
2257 }
2258 
2259 void Verifier::verifySiblingFuncletUnwinds() {
2260   SmallPtrSet<Instruction *, 8> Visited;
2261   SmallPtrSet<Instruction *, 8> Active;
2262   for (const auto &Pair : SiblingFuncletInfo) {
2263     Instruction *PredPad = Pair.first;
2264     if (Visited.count(PredPad))
2265       continue;
2266     Active.insert(PredPad);
2267     Instruction *Terminator = Pair.second;
2268     do {
2269       Instruction *SuccPad = getSuccPad(Terminator);
2270       if (Active.count(SuccPad)) {
2271         // Found a cycle; report error
2272         Instruction *CyclePad = SuccPad;
2273         SmallVector<Instruction *, 8> CycleNodes;
2274         do {
2275           CycleNodes.push_back(CyclePad);
2276           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2277           if (CycleTerminator != CyclePad)
2278             CycleNodes.push_back(CycleTerminator);
2279           CyclePad = getSuccPad(CycleTerminator);
2280         } while (CyclePad != SuccPad);
2281         Assert(false, "EH pads can't handle each other's exceptions",
2282                ArrayRef<Instruction *>(CycleNodes));
2283       }
2284       // Don't re-walk a node we've already checked
2285       if (!Visited.insert(SuccPad).second)
2286         break;
2287       // Walk to this successor if it has a map entry.
2288       PredPad = SuccPad;
2289       auto TermI = SiblingFuncletInfo.find(PredPad);
2290       if (TermI == SiblingFuncletInfo.end())
2291         break;
2292       Terminator = TermI->second;
2293       Active.insert(PredPad);
2294     } while (true);
2295     // Each node only has one successor, so we've walked all the active
2296     // nodes' successors.
2297     Active.clear();
2298   }
2299 }
2300 
2301 // visitFunction - Verify that a function is ok.
2302 //
2303 void Verifier::visitFunction(const Function &F) {
2304   visitGlobalValue(F);
2305 
2306   // Check function arguments.
2307   FunctionType *FT = F.getFunctionType();
2308   unsigned NumArgs = F.arg_size();
2309 
2310   Assert(&Context == &F.getContext(),
2311          "Function context does not match Module context!", &F);
2312 
2313   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2314   Assert(FT->getNumParams() == NumArgs,
2315          "# formal arguments must match # of arguments for function type!", &F,
2316          FT);
2317   Assert(F.getReturnType()->isFirstClassType() ||
2318              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2319          "Functions cannot return aggregate values!", &F);
2320 
2321   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2322          "Invalid struct return type!", &F);
2323 
2324   AttributeList Attrs = F.getAttributes();
2325 
2326   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2327          "Attribute after last parameter!", &F);
2328 
2329   bool IsIntrinsic = F.isIntrinsic();
2330 
2331   // Check function attributes.
2332   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic);
2333 
2334   // On function declarations/definitions, we do not support the builtin
2335   // attribute. We do not check this in VerifyFunctionAttrs since that is
2336   // checking for Attributes that can/can not ever be on functions.
2337   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2338          "Attribute 'builtin' can only be applied to a callsite.", &F);
2339 
2340   Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2341          "Attribute 'elementtype' can only be applied to a callsite.", &F);
2342 
2343   // Check that this function meets the restrictions on this calling convention.
2344   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2345   // restrictions can be lifted.
2346   switch (F.getCallingConv()) {
2347   default:
2348   case CallingConv::C:
2349     break;
2350   case CallingConv::X86_INTR: {
2351     Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal),
2352            "Calling convention parameter requires byval", &F);
2353     break;
2354   }
2355   case CallingConv::AMDGPU_KERNEL:
2356   case CallingConv::SPIR_KERNEL:
2357     Assert(F.getReturnType()->isVoidTy(),
2358            "Calling convention requires void return type", &F);
2359     LLVM_FALLTHROUGH;
2360   case CallingConv::AMDGPU_VS:
2361   case CallingConv::AMDGPU_HS:
2362   case CallingConv::AMDGPU_GS:
2363   case CallingConv::AMDGPU_PS:
2364   case CallingConv::AMDGPU_CS:
2365     Assert(!F.hasStructRetAttr(),
2366            "Calling convention does not allow sret", &F);
2367     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2368       const unsigned StackAS = DL.getAllocaAddrSpace();
2369       unsigned i = 0;
2370       for (const Argument &Arg : F.args()) {
2371         Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal),
2372                "Calling convention disallows byval", &F);
2373         Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated),
2374                "Calling convention disallows preallocated", &F);
2375         Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca),
2376                "Calling convention disallows inalloca", &F);
2377 
2378         if (Attrs.hasParamAttribute(i, Attribute::ByRef)) {
2379           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2380           // value here.
2381           Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2382                  "Calling convention disallows stack byref", &F);
2383         }
2384 
2385         ++i;
2386       }
2387     }
2388 
2389     LLVM_FALLTHROUGH;
2390   case CallingConv::Fast:
2391   case CallingConv::Cold:
2392   case CallingConv::Intel_OCL_BI:
2393   case CallingConv::PTX_Kernel:
2394   case CallingConv::PTX_Device:
2395     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2396                           "perfect forwarding!",
2397            &F);
2398     break;
2399   }
2400 
2401   // Check that the argument values match the function type for this function...
2402   unsigned i = 0;
2403   for (const Argument &Arg : F.args()) {
2404     Assert(Arg.getType() == FT->getParamType(i),
2405            "Argument value does not match function argument type!", &Arg,
2406            FT->getParamType(i));
2407     Assert(Arg.getType()->isFirstClassType(),
2408            "Function arguments must have first-class types!", &Arg);
2409     if (!IsIntrinsic) {
2410       Assert(!Arg.getType()->isMetadataTy(),
2411              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2412       Assert(!Arg.getType()->isTokenTy(),
2413              "Function takes token but isn't an intrinsic", &Arg, &F);
2414       Assert(!Arg.getType()->isX86_AMXTy(),
2415              "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2416     }
2417 
2418     // Check that swifterror argument is only used by loads and stores.
2419     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2420       verifySwiftErrorValue(&Arg);
2421     }
2422     ++i;
2423   }
2424 
2425   if (!IsIntrinsic) {
2426     Assert(!F.getReturnType()->isTokenTy(),
2427            "Function returns a token but isn't an intrinsic", &F);
2428     Assert(!F.getReturnType()->isX86_AMXTy(),
2429            "Function returns a x86_amx but isn't an intrinsic", &F);
2430   }
2431 
2432   // Get the function metadata attachments.
2433   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2434   F.getAllMetadata(MDs);
2435   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2436   verifyFunctionMetadata(MDs);
2437 
2438   // Check validity of the personality function
2439   if (F.hasPersonalityFn()) {
2440     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2441     if (Per)
2442       Assert(Per->getParent() == F.getParent(),
2443              "Referencing personality function in another module!",
2444              &F, F.getParent(), Per, Per->getParent());
2445   }
2446 
2447   if (F.isMaterializable()) {
2448     // Function has a body somewhere we can't see.
2449     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2450            MDs.empty() ? nullptr : MDs.front().second);
2451   } else if (F.isDeclaration()) {
2452     for (const auto &I : MDs) {
2453       // This is used for call site debug information.
2454       AssertDI(I.first != LLVMContext::MD_dbg ||
2455                    !cast<DISubprogram>(I.second)->isDistinct(),
2456                "function declaration may only have a unique !dbg attachment",
2457                &F);
2458       Assert(I.first != LLVMContext::MD_prof,
2459              "function declaration may not have a !prof attachment", &F);
2460 
2461       // Verify the metadata itself.
2462       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2463     }
2464     Assert(!F.hasPersonalityFn(),
2465            "Function declaration shouldn't have a personality routine", &F);
2466   } else {
2467     // Verify that this function (which has a body) is not named "llvm.*".  It
2468     // is not legal to define intrinsics.
2469     Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2470 
2471     // Check the entry node
2472     const BasicBlock *Entry = &F.getEntryBlock();
2473     Assert(pred_empty(Entry),
2474            "Entry block to function must not have predecessors!", Entry);
2475 
2476     // The address of the entry block cannot be taken, unless it is dead.
2477     if (Entry->hasAddressTaken()) {
2478       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2479              "blockaddress may not be used with the entry block!", Entry);
2480     }
2481 
2482     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2483     // Visit metadata attachments.
2484     for (const auto &I : MDs) {
2485       // Verify that the attachment is legal.
2486       auto AllowLocs = AreDebugLocsAllowed::No;
2487       switch (I.first) {
2488       default:
2489         break;
2490       case LLVMContext::MD_dbg: {
2491         ++NumDebugAttachments;
2492         AssertDI(NumDebugAttachments == 1,
2493                  "function must have a single !dbg attachment", &F, I.second);
2494         AssertDI(isa<DISubprogram>(I.second),
2495                  "function !dbg attachment must be a subprogram", &F, I.second);
2496         AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
2497                  "function definition may only have a distinct !dbg attachment",
2498                  &F);
2499 
2500         auto *SP = cast<DISubprogram>(I.second);
2501         const Function *&AttachedTo = DISubprogramAttachments[SP];
2502         AssertDI(!AttachedTo || AttachedTo == &F,
2503                  "DISubprogram attached to more than one function", SP, &F);
2504         AttachedTo = &F;
2505         AllowLocs = AreDebugLocsAllowed::Yes;
2506         break;
2507       }
2508       case LLVMContext::MD_prof:
2509         ++NumProfAttachments;
2510         Assert(NumProfAttachments == 1,
2511                "function must have a single !prof attachment", &F, I.second);
2512         break;
2513       }
2514 
2515       // Verify the metadata itself.
2516       visitMDNode(*I.second, AllowLocs);
2517     }
2518   }
2519 
2520   // If this function is actually an intrinsic, verify that it is only used in
2521   // direct call/invokes, never having its "address taken".
2522   // Only do this if the module is materialized, otherwise we don't have all the
2523   // uses.
2524   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2525     const User *U;
2526     if (F.hasAddressTaken(&U))
2527       Assert(false, "Invalid user of intrinsic instruction!", U);
2528   }
2529 
2530   // Check intrinsics' signatures.
2531   switch (F.getIntrinsicID()) {
2532   case Intrinsic::experimental_gc_get_pointer_base: {
2533     FunctionType *FT = F.getFunctionType();
2534     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2535     Assert(isa<PointerType>(F.getReturnType()),
2536            "gc.get.pointer.base must return a pointer", F);
2537     Assert(FT->getParamType(0) == F.getReturnType(),
2538            "gc.get.pointer.base operand and result must be of the same type",
2539            F);
2540     break;
2541   }
2542   case Intrinsic::experimental_gc_get_pointer_offset: {
2543     FunctionType *FT = F.getFunctionType();
2544     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2545     Assert(isa<PointerType>(FT->getParamType(0)),
2546            "gc.get.pointer.offset operand must be a pointer", F);
2547     Assert(F.getReturnType()->isIntegerTy(),
2548            "gc.get.pointer.offset must return integer", F);
2549     break;
2550   }
2551   }
2552 
2553   auto *N = F.getSubprogram();
2554   HasDebugInfo = (N != nullptr);
2555   if (!HasDebugInfo)
2556     return;
2557 
2558   // Check that all !dbg attachments lead to back to N.
2559   //
2560   // FIXME: Check this incrementally while visiting !dbg attachments.
2561   // FIXME: Only check when N is the canonical subprogram for F.
2562   SmallPtrSet<const MDNode *, 32> Seen;
2563   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2564     // Be careful about using DILocation here since we might be dealing with
2565     // broken code (this is the Verifier after all).
2566     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2567     if (!DL)
2568       return;
2569     if (!Seen.insert(DL).second)
2570       return;
2571 
2572     Metadata *Parent = DL->getRawScope();
2573     AssertDI(Parent && isa<DILocalScope>(Parent),
2574              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2575              Parent);
2576 
2577     DILocalScope *Scope = DL->getInlinedAtScope();
2578     Assert(Scope, "Failed to find DILocalScope", DL);
2579 
2580     if (!Seen.insert(Scope).second)
2581       return;
2582 
2583     DISubprogram *SP = Scope->getSubprogram();
2584 
2585     // Scope and SP could be the same MDNode and we don't want to skip
2586     // validation in that case
2587     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2588       return;
2589 
2590     AssertDI(SP->describes(&F),
2591              "!dbg attachment points at wrong subprogram for function", N, &F,
2592              &I, DL, Scope, SP);
2593   };
2594   for (auto &BB : F)
2595     for (auto &I : BB) {
2596       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2597       // The llvm.loop annotations also contain two DILocations.
2598       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2599         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2600           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2601       if (BrokenDebugInfo)
2602         return;
2603     }
2604 }
2605 
2606 // verifyBasicBlock - Verify that a basic block is well formed...
2607 //
2608 void Verifier::visitBasicBlock(BasicBlock &BB) {
2609   InstsInThisBlock.clear();
2610 
2611   // Ensure that basic blocks have terminators!
2612   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2613 
2614   // Check constraints that this basic block imposes on all of the PHI nodes in
2615   // it.
2616   if (isa<PHINode>(BB.front())) {
2617     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2618     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2619     llvm::sort(Preds);
2620     for (const PHINode &PN : BB.phis()) {
2621       Assert(PN.getNumIncomingValues() == Preds.size(),
2622              "PHINode should have one entry for each predecessor of its "
2623              "parent basic block!",
2624              &PN);
2625 
2626       // Get and sort all incoming values in the PHI node...
2627       Values.clear();
2628       Values.reserve(PN.getNumIncomingValues());
2629       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2630         Values.push_back(
2631             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2632       llvm::sort(Values);
2633 
2634       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2635         // Check to make sure that if there is more than one entry for a
2636         // particular basic block in this PHI node, that the incoming values are
2637         // all identical.
2638         //
2639         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2640                    Values[i].second == Values[i - 1].second,
2641                "PHI node has multiple entries for the same basic block with "
2642                "different incoming values!",
2643                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2644 
2645         // Check to make sure that the predecessors and PHI node entries are
2646         // matched up.
2647         Assert(Values[i].first == Preds[i],
2648                "PHI node entries do not match predecessors!", &PN,
2649                Values[i].first, Preds[i]);
2650       }
2651     }
2652   }
2653 
2654   // Check that all instructions have their parent pointers set up correctly.
2655   for (auto &I : BB)
2656   {
2657     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2658   }
2659 }
2660 
2661 void Verifier::visitTerminator(Instruction &I) {
2662   // Ensure that terminators only exist at the end of the basic block.
2663   Assert(&I == I.getParent()->getTerminator(),
2664          "Terminator found in the middle of a basic block!", I.getParent());
2665   visitInstruction(I);
2666 }
2667 
2668 void Verifier::visitBranchInst(BranchInst &BI) {
2669   if (BI.isConditional()) {
2670     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2671            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2672   }
2673   visitTerminator(BI);
2674 }
2675 
2676 void Verifier::visitReturnInst(ReturnInst &RI) {
2677   Function *F = RI.getParent()->getParent();
2678   unsigned N = RI.getNumOperands();
2679   if (F->getReturnType()->isVoidTy())
2680     Assert(N == 0,
2681            "Found return instr that returns non-void in Function of void "
2682            "return type!",
2683            &RI, F->getReturnType());
2684   else
2685     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2686            "Function return type does not match operand "
2687            "type of return inst!",
2688            &RI, F->getReturnType());
2689 
2690   // Check to make sure that the return value has necessary properties for
2691   // terminators...
2692   visitTerminator(RI);
2693 }
2694 
2695 void Verifier::visitSwitchInst(SwitchInst &SI) {
2696   // Check to make sure that all of the constants in the switch instruction
2697   // have the same type as the switched-on value.
2698   Type *SwitchTy = SI.getCondition()->getType();
2699   SmallPtrSet<ConstantInt*, 32> Constants;
2700   for (auto &Case : SI.cases()) {
2701     Assert(Case.getCaseValue()->getType() == SwitchTy,
2702            "Switch constants must all be same type as switch value!", &SI);
2703     Assert(Constants.insert(Case.getCaseValue()).second,
2704            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2705   }
2706 
2707   visitTerminator(SI);
2708 }
2709 
2710 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2711   Assert(BI.getAddress()->getType()->isPointerTy(),
2712          "Indirectbr operand must have pointer type!", &BI);
2713   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2714     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2715            "Indirectbr destinations must all have pointer type!", &BI);
2716 
2717   visitTerminator(BI);
2718 }
2719 
2720 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2721   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2722          &CBI);
2723   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2724   Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2725   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2726     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2727            "Callbr successors must all have pointer type!", &CBI);
2728   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2729     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2730            "Using an unescaped label as a callbr argument!", &CBI);
2731     if (isa<BasicBlock>(CBI.getOperand(i)))
2732       for (unsigned j = i + 1; j != e; ++j)
2733         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2734                "Duplicate callbr destination!", &CBI);
2735   }
2736   {
2737     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2738     for (Value *V : CBI.args())
2739       if (auto *BA = dyn_cast<BlockAddress>(V))
2740         ArgBBs.insert(BA->getBasicBlock());
2741     for (BasicBlock *BB : CBI.getIndirectDests())
2742       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2743   }
2744 
2745   visitTerminator(CBI);
2746 }
2747 
2748 void Verifier::visitSelectInst(SelectInst &SI) {
2749   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2750                                          SI.getOperand(2)),
2751          "Invalid operands for select instruction!", &SI);
2752 
2753   Assert(SI.getTrueValue()->getType() == SI.getType(),
2754          "Select values must have same type as select instruction!", &SI);
2755   visitInstruction(SI);
2756 }
2757 
2758 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2759 /// a pass, if any exist, it's an error.
2760 ///
2761 void Verifier::visitUserOp1(Instruction &I) {
2762   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2763 }
2764 
2765 void Verifier::visitTruncInst(TruncInst &I) {
2766   // Get the source and destination types
2767   Type *SrcTy = I.getOperand(0)->getType();
2768   Type *DestTy = I.getType();
2769 
2770   // Get the size of the types in bits, we'll need this later
2771   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2772   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2773 
2774   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2775   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2776   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2777          "trunc source and destination must both be a vector or neither", &I);
2778   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2779 
2780   visitInstruction(I);
2781 }
2782 
2783 void Verifier::visitZExtInst(ZExtInst &I) {
2784   // Get the source and destination types
2785   Type *SrcTy = I.getOperand(0)->getType();
2786   Type *DestTy = I.getType();
2787 
2788   // Get the size of the types in bits, we'll need this later
2789   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2790   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2791   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2792          "zext source and destination must both be a vector or neither", &I);
2793   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2794   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2795 
2796   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2797 
2798   visitInstruction(I);
2799 }
2800 
2801 void Verifier::visitSExtInst(SExtInst &I) {
2802   // Get the source and destination types
2803   Type *SrcTy = I.getOperand(0)->getType();
2804   Type *DestTy = I.getType();
2805 
2806   // Get the size of the types in bits, we'll need this later
2807   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2808   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2809 
2810   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2811   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2812   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2813          "sext source and destination must both be a vector or neither", &I);
2814   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2815 
2816   visitInstruction(I);
2817 }
2818 
2819 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2820   // Get the source and destination types
2821   Type *SrcTy = I.getOperand(0)->getType();
2822   Type *DestTy = I.getType();
2823   // Get the size of the types in bits, we'll need this later
2824   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2825   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2826 
2827   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2828   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2829   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2830          "fptrunc source and destination must both be a vector or neither", &I);
2831   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2832 
2833   visitInstruction(I);
2834 }
2835 
2836 void Verifier::visitFPExtInst(FPExtInst &I) {
2837   // Get the source and destination types
2838   Type *SrcTy = I.getOperand(0)->getType();
2839   Type *DestTy = I.getType();
2840 
2841   // Get the size of the types in bits, we'll need this later
2842   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2843   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2844 
2845   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2846   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2847   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2848          "fpext source and destination must both be a vector or neither", &I);
2849   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2850 
2851   visitInstruction(I);
2852 }
2853 
2854 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2855   // Get the source and destination types
2856   Type *SrcTy = I.getOperand(0)->getType();
2857   Type *DestTy = I.getType();
2858 
2859   bool SrcVec = SrcTy->isVectorTy();
2860   bool DstVec = DestTy->isVectorTy();
2861 
2862   Assert(SrcVec == DstVec,
2863          "UIToFP source and dest must both be vector or scalar", &I);
2864   Assert(SrcTy->isIntOrIntVectorTy(),
2865          "UIToFP source must be integer or integer vector", &I);
2866   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2867          &I);
2868 
2869   if (SrcVec && DstVec)
2870     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2871                cast<VectorType>(DestTy)->getElementCount(),
2872            "UIToFP source and dest vector length mismatch", &I);
2873 
2874   visitInstruction(I);
2875 }
2876 
2877 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2878   // Get the source and destination types
2879   Type *SrcTy = I.getOperand(0)->getType();
2880   Type *DestTy = I.getType();
2881 
2882   bool SrcVec = SrcTy->isVectorTy();
2883   bool DstVec = DestTy->isVectorTy();
2884 
2885   Assert(SrcVec == DstVec,
2886          "SIToFP source and dest must both be vector or scalar", &I);
2887   Assert(SrcTy->isIntOrIntVectorTy(),
2888          "SIToFP source must be integer or integer vector", &I);
2889   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2890          &I);
2891 
2892   if (SrcVec && DstVec)
2893     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2894                cast<VectorType>(DestTy)->getElementCount(),
2895            "SIToFP source and dest vector length mismatch", &I);
2896 
2897   visitInstruction(I);
2898 }
2899 
2900 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2901   // Get the source and destination types
2902   Type *SrcTy = I.getOperand(0)->getType();
2903   Type *DestTy = I.getType();
2904 
2905   bool SrcVec = SrcTy->isVectorTy();
2906   bool DstVec = DestTy->isVectorTy();
2907 
2908   Assert(SrcVec == DstVec,
2909          "FPToUI source and dest must both be vector or scalar", &I);
2910   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2911          &I);
2912   Assert(DestTy->isIntOrIntVectorTy(),
2913          "FPToUI result must be integer or integer vector", &I);
2914 
2915   if (SrcVec && DstVec)
2916     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2917                cast<VectorType>(DestTy)->getElementCount(),
2918            "FPToUI source and dest vector length mismatch", &I);
2919 
2920   visitInstruction(I);
2921 }
2922 
2923 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2924   // Get the source and destination types
2925   Type *SrcTy = I.getOperand(0)->getType();
2926   Type *DestTy = I.getType();
2927 
2928   bool SrcVec = SrcTy->isVectorTy();
2929   bool DstVec = DestTy->isVectorTy();
2930 
2931   Assert(SrcVec == DstVec,
2932          "FPToSI source and dest must both be vector or scalar", &I);
2933   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2934          &I);
2935   Assert(DestTy->isIntOrIntVectorTy(),
2936          "FPToSI result must be integer or integer vector", &I);
2937 
2938   if (SrcVec && DstVec)
2939     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2940                cast<VectorType>(DestTy)->getElementCount(),
2941            "FPToSI source and dest vector length mismatch", &I);
2942 
2943   visitInstruction(I);
2944 }
2945 
2946 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2947   // Get the source and destination types
2948   Type *SrcTy = I.getOperand(0)->getType();
2949   Type *DestTy = I.getType();
2950 
2951   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2952 
2953   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2954   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2955          &I);
2956 
2957   if (SrcTy->isVectorTy()) {
2958     auto *VSrc = cast<VectorType>(SrcTy);
2959     auto *VDest = cast<VectorType>(DestTy);
2960     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2961            "PtrToInt Vector width mismatch", &I);
2962   }
2963 
2964   visitInstruction(I);
2965 }
2966 
2967 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2968   // Get the source and destination types
2969   Type *SrcTy = I.getOperand(0)->getType();
2970   Type *DestTy = I.getType();
2971 
2972   Assert(SrcTy->isIntOrIntVectorTy(),
2973          "IntToPtr source must be an integral", &I);
2974   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2975 
2976   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2977          &I);
2978   if (SrcTy->isVectorTy()) {
2979     auto *VSrc = cast<VectorType>(SrcTy);
2980     auto *VDest = cast<VectorType>(DestTy);
2981     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2982            "IntToPtr Vector width mismatch", &I);
2983   }
2984   visitInstruction(I);
2985 }
2986 
2987 void Verifier::visitBitCastInst(BitCastInst &I) {
2988   Assert(
2989       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2990       "Invalid bitcast", &I);
2991   visitInstruction(I);
2992 }
2993 
2994 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2995   Type *SrcTy = I.getOperand(0)->getType();
2996   Type *DestTy = I.getType();
2997 
2998   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2999          &I);
3000   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3001          &I);
3002   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3003          "AddrSpaceCast must be between different address spaces", &I);
3004   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3005     Assert(SrcVTy->getElementCount() ==
3006                cast<VectorType>(DestTy)->getElementCount(),
3007            "AddrSpaceCast vector pointer number of elements mismatch", &I);
3008   visitInstruction(I);
3009 }
3010 
3011 /// visitPHINode - Ensure that a PHI node is well formed.
3012 ///
3013 void Verifier::visitPHINode(PHINode &PN) {
3014   // Ensure that the PHI nodes are all grouped together at the top of the block.
3015   // This can be tested by checking whether the instruction before this is
3016   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3017   // then there is some other instruction before a PHI.
3018   Assert(&PN == &PN.getParent()->front() ||
3019              isa<PHINode>(--BasicBlock::iterator(&PN)),
3020          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3021 
3022   // Check that a PHI doesn't yield a Token.
3023   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3024 
3025   // Check that all of the values of the PHI node have the same type as the
3026   // result, and that the incoming blocks are really basic blocks.
3027   for (Value *IncValue : PN.incoming_values()) {
3028     Assert(PN.getType() == IncValue->getType(),
3029            "PHI node operands are not the same type as the result!", &PN);
3030   }
3031 
3032   // All other PHI node constraints are checked in the visitBasicBlock method.
3033 
3034   visitInstruction(PN);
3035 }
3036 
3037 void Verifier::visitCallBase(CallBase &Call) {
3038   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
3039          "Called function must be a pointer!", Call);
3040   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3041 
3042   Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
3043          "Called function is not the same type as the call!", Call);
3044 
3045   FunctionType *FTy = Call.getFunctionType();
3046 
3047   // Verify that the correct number of arguments are being passed
3048   if (FTy->isVarArg())
3049     Assert(Call.arg_size() >= FTy->getNumParams(),
3050            "Called function requires more parameters than were provided!",
3051            Call);
3052   else
3053     Assert(Call.arg_size() == FTy->getNumParams(),
3054            "Incorrect number of arguments passed to called function!", Call);
3055 
3056   // Verify that all arguments to the call match the function type.
3057   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3058     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3059            "Call parameter type does not match function signature!",
3060            Call.getArgOperand(i), FTy->getParamType(i), Call);
3061 
3062   AttributeList Attrs = Call.getAttributes();
3063 
3064   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
3065          "Attribute after last parameter!", Call);
3066 
3067   Function *Callee =
3068       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3069   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3070   if (IsIntrinsic)
3071     Assert(Callee->getValueType() == FTy,
3072            "Intrinsic called with incompatible signature", Call);
3073 
3074   if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
3075     // Don't allow speculatable on call sites, unless the underlying function
3076     // declaration is also speculatable.
3077     Assert(Callee && Callee->isSpeculatable(),
3078            "speculatable attribute may not apply to call sites", Call);
3079   }
3080 
3081   if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
3082     Assert(Call.getCalledFunction()->getIntrinsicID() ==
3083                Intrinsic::call_preallocated_arg,
3084            "preallocated as a call site attribute can only be on "
3085            "llvm.call.preallocated.arg");
3086   }
3087 
3088   // Verify call attributes.
3089   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
3090 
3091   // Conservatively check the inalloca argument.
3092   // We have a bug if we can find that there is an underlying alloca without
3093   // inalloca.
3094   if (Call.hasInAllocaArgument()) {
3095     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3096     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3097       Assert(AI->isUsedWithInAlloca(),
3098              "inalloca argument for call has mismatched alloca", AI, Call);
3099   }
3100 
3101   // For each argument of the callsite, if it has the swifterror argument,
3102   // make sure the underlying alloca/parameter it comes from has a swifterror as
3103   // well.
3104   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3105     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3106       Value *SwiftErrorArg = Call.getArgOperand(i);
3107       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3108         Assert(AI->isSwiftError(),
3109                "swifterror argument for call has mismatched alloca", AI, Call);
3110         continue;
3111       }
3112       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3113       Assert(ArgI,
3114              "swifterror argument should come from an alloca or parameter",
3115              SwiftErrorArg, Call);
3116       Assert(ArgI->hasSwiftErrorAttr(),
3117              "swifterror argument for call has mismatched parameter", ArgI,
3118              Call);
3119     }
3120 
3121     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
3122       // Don't allow immarg on call sites, unless the underlying declaration
3123       // also has the matching immarg.
3124       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3125              "immarg may not apply only to call sites",
3126              Call.getArgOperand(i), Call);
3127     }
3128 
3129     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3130       Value *ArgVal = Call.getArgOperand(i);
3131       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3132              "immarg operand has non-immediate parameter", ArgVal, Call);
3133     }
3134 
3135     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3136       Value *ArgVal = Call.getArgOperand(i);
3137       bool hasOB =
3138           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3139       bool isMustTail = Call.isMustTailCall();
3140       Assert(hasOB != isMustTail,
3141              "preallocated operand either requires a preallocated bundle or "
3142              "the call to be musttail (but not both)",
3143              ArgVal, Call);
3144     }
3145   }
3146 
3147   if (FTy->isVarArg()) {
3148     // FIXME? is 'nest' even legal here?
3149     bool SawNest = false;
3150     bool SawReturned = false;
3151 
3152     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3153       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
3154         SawNest = true;
3155       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
3156         SawReturned = true;
3157     }
3158 
3159     // Check attributes on the varargs part.
3160     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3161       Type *Ty = Call.getArgOperand(Idx)->getType();
3162       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
3163       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3164 
3165       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3166         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3167         SawNest = true;
3168       }
3169 
3170       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3171         Assert(!SawReturned, "More than one parameter has attribute returned!",
3172                Call);
3173         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3174                "Incompatible argument and return types for 'returned' "
3175                "attribute",
3176                Call);
3177         SawReturned = true;
3178       }
3179 
3180       // Statepoint intrinsic is vararg but the wrapped function may be not.
3181       // Allow sret here and check the wrapped function in verifyStatepoint.
3182       if (!Call.getCalledFunction() ||
3183           Call.getCalledFunction()->getIntrinsicID() !=
3184               Intrinsic::experimental_gc_statepoint)
3185         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3186                "Attribute 'sret' cannot be used for vararg call arguments!",
3187                Call);
3188 
3189       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3190         Assert(Idx == Call.arg_size() - 1,
3191                "inalloca isn't on the last argument!", Call);
3192     }
3193   }
3194 
3195   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3196   if (!IsIntrinsic) {
3197     for (Type *ParamTy : FTy->params()) {
3198       Assert(!ParamTy->isMetadataTy(),
3199              "Function has metadata parameter but isn't an intrinsic", Call);
3200       Assert(!ParamTy->isTokenTy(),
3201              "Function has token parameter but isn't an intrinsic", Call);
3202     }
3203   }
3204 
3205   // Verify that indirect calls don't return tokens.
3206   if (!Call.getCalledFunction()) {
3207     Assert(!FTy->getReturnType()->isTokenTy(),
3208            "Return type cannot be token for indirect call!");
3209     Assert(!FTy->getReturnType()->isX86_AMXTy(),
3210            "Return type cannot be x86_amx for indirect call!");
3211   }
3212 
3213   if (Function *F = Call.getCalledFunction())
3214     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3215       visitIntrinsicCall(ID, Call);
3216 
3217   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3218   // most one "gc-transition", at most one "cfguardtarget",
3219   // and at most one "preallocated" operand bundle.
3220   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3221        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3222        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3223        FoundAttachedCallBundle = false;
3224   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3225     OperandBundleUse BU = Call.getOperandBundleAt(i);
3226     uint32_t Tag = BU.getTagID();
3227     if (Tag == LLVMContext::OB_deopt) {
3228       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3229       FoundDeoptBundle = true;
3230     } else if (Tag == LLVMContext::OB_gc_transition) {
3231       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3232              Call);
3233       FoundGCTransitionBundle = true;
3234     } else if (Tag == LLVMContext::OB_funclet) {
3235       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3236       FoundFuncletBundle = true;
3237       Assert(BU.Inputs.size() == 1,
3238              "Expected exactly one funclet bundle operand", Call);
3239       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3240              "Funclet bundle operands should correspond to a FuncletPadInst",
3241              Call);
3242     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3243       Assert(!FoundCFGuardTargetBundle,
3244              "Multiple CFGuardTarget operand bundles", Call);
3245       FoundCFGuardTargetBundle = true;
3246       Assert(BU.Inputs.size() == 1,
3247              "Expected exactly one cfguardtarget bundle operand", Call);
3248     } else if (Tag == LLVMContext::OB_preallocated) {
3249       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3250              Call);
3251       FoundPreallocatedBundle = true;
3252       Assert(BU.Inputs.size() == 1,
3253              "Expected exactly one preallocated bundle operand", Call);
3254       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3255       Assert(Input &&
3256                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3257              "\"preallocated\" argument must be a token from "
3258              "llvm.call.preallocated.setup",
3259              Call);
3260     } else if (Tag == LLVMContext::OB_gc_live) {
3261       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
3262              Call);
3263       FoundGCLiveBundle = true;
3264     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3265       Assert(!FoundAttachedCallBundle,
3266              "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3267       FoundAttachedCallBundle = true;
3268     }
3269   }
3270 
3271   if (FoundAttachedCallBundle)
3272     Assert((FTy->getReturnType()->isPointerTy() ||
3273             (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
3274            "a call with operand bundle \"clang.arc.attachedcall\" must call a "
3275            "function returning a pointer or a non-returning function that has "
3276            "a void return type",
3277            Call);
3278 
3279   // Verify that each inlinable callsite of a debug-info-bearing function in a
3280   // debug-info-bearing function has a debug location attached to it. Failure to
3281   // do so causes assertion failures when the inliner sets up inline scope info.
3282   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3283       Call.getCalledFunction()->getSubprogram())
3284     AssertDI(Call.getDebugLoc(),
3285              "inlinable function call in a function with "
3286              "debug info must have a !dbg location",
3287              Call);
3288 
3289   visitInstruction(Call);
3290 }
3291 
3292 void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs,
3293                                          StringRef Context) {
3294   Assert(!Attrs.contains(Attribute::InAlloca),
3295          Twine("inalloca attribute not allowed in ") + Context);
3296   Assert(!Attrs.contains(Attribute::InReg),
3297          Twine("inreg attribute not allowed in ") + Context);
3298   Assert(!Attrs.contains(Attribute::SwiftError),
3299          Twine("swifterror attribute not allowed in ") + Context);
3300   Assert(!Attrs.contains(Attribute::Preallocated),
3301          Twine("preallocated attribute not allowed in ") + Context);
3302   Assert(!Attrs.contains(Attribute::ByRef),
3303          Twine("byref attribute not allowed in ") + Context);
3304 }
3305 
3306 /// Two types are "congruent" if they are identical, or if they are both pointer
3307 /// types with different pointee types and the same address space.
3308 static bool isTypeCongruent(Type *L, Type *R) {
3309   if (L == R)
3310     return true;
3311   PointerType *PL = dyn_cast<PointerType>(L);
3312   PointerType *PR = dyn_cast<PointerType>(R);
3313   if (!PL || !PR)
3314     return false;
3315   return PL->getAddressSpace() == PR->getAddressSpace();
3316 }
3317 
3318 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3319   static const Attribute::AttrKind ABIAttrs[] = {
3320       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3321       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3322       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3323       Attribute::ByRef};
3324   AttrBuilder Copy;
3325   for (auto AK : ABIAttrs) {
3326     Attribute Attr = Attrs.getParamAttributes(I).getAttribute(AK);
3327     if (Attr.isValid())
3328       Copy.addAttribute(Attr);
3329   }
3330 
3331   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3332   if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
3333       (Attrs.hasParamAttribute(I, Attribute::ByVal) ||
3334        Attrs.hasParamAttribute(I, Attribute::ByRef)))
3335     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3336   return Copy;
3337 }
3338 
3339 void Verifier::verifyMustTailCall(CallInst &CI) {
3340   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3341 
3342   Function *F = CI.getParent()->getParent();
3343   FunctionType *CallerTy = F->getFunctionType();
3344   FunctionType *CalleeTy = CI.getFunctionType();
3345   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3346          "cannot guarantee tail call due to mismatched varargs", &CI);
3347   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3348          "cannot guarantee tail call due to mismatched return types", &CI);
3349 
3350   // - The calling conventions of the caller and callee must match.
3351   Assert(F->getCallingConv() == CI.getCallingConv(),
3352          "cannot guarantee tail call due to mismatched calling conv", &CI);
3353 
3354   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3355   //   or a pointer bitcast followed by a ret instruction.
3356   // - The ret instruction must return the (possibly bitcasted) value
3357   //   produced by the call or void.
3358   Value *RetVal = &CI;
3359   Instruction *Next = CI.getNextNode();
3360 
3361   // Handle the optional bitcast.
3362   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3363     Assert(BI->getOperand(0) == RetVal,
3364            "bitcast following musttail call must use the call", BI);
3365     RetVal = BI;
3366     Next = BI->getNextNode();
3367   }
3368 
3369   // Check the return.
3370   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3371   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3372          &CI);
3373   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3374              isa<UndefValue>(Ret->getReturnValue()),
3375          "musttail call result must be returned", Ret);
3376 
3377   AttributeList CallerAttrs = F->getAttributes();
3378   AttributeList CalleeAttrs = CI.getAttributes();
3379   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3380       CI.getCallingConv() == CallingConv::Tail) {
3381     StringRef CCName =
3382         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3383 
3384     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3385     //   are allowed in swifttailcc call
3386     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3387       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3388       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3389       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3390     }
3391     for (int I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3392       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3393       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3394       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3395     }
3396     // - Varargs functions are not allowed
3397     Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3398                                       " tail call for varargs function");
3399     return;
3400   }
3401 
3402   // - The caller and callee prototypes must match.  Pointer types of
3403   //   parameters or return types may differ in pointee type, but not
3404   //   address space.
3405   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3406     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3407            "cannot guarantee tail call due to mismatched parameter counts",
3408            &CI);
3409     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3410       Assert(
3411           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3412           "cannot guarantee tail call due to mismatched parameter types", &CI);
3413     }
3414   }
3415 
3416   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3417   //   returned, preallocated, and inalloca, must match.
3418   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3419     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3420     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3421     Assert(CallerABIAttrs == CalleeABIAttrs,
3422            "cannot guarantee tail call due to mismatched ABI impacting "
3423            "function attributes",
3424            &CI, CI.getOperand(I));
3425   }
3426 }
3427 
3428 void Verifier::visitCallInst(CallInst &CI) {
3429   visitCallBase(CI);
3430 
3431   if (CI.isMustTailCall())
3432     verifyMustTailCall(CI);
3433 }
3434 
3435 void Verifier::visitInvokeInst(InvokeInst &II) {
3436   visitCallBase(II);
3437 
3438   // Verify that the first non-PHI instruction of the unwind destination is an
3439   // exception handling instruction.
3440   Assert(
3441       II.getUnwindDest()->isEHPad(),
3442       "The unwind destination does not have an exception handling instruction!",
3443       &II);
3444 
3445   visitTerminator(II);
3446 }
3447 
3448 /// visitUnaryOperator - Check the argument to the unary operator.
3449 ///
3450 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3451   Assert(U.getType() == U.getOperand(0)->getType(),
3452          "Unary operators must have same type for"
3453          "operands and result!",
3454          &U);
3455 
3456   switch (U.getOpcode()) {
3457   // Check that floating-point arithmetic operators are only used with
3458   // floating-point operands.
3459   case Instruction::FNeg:
3460     Assert(U.getType()->isFPOrFPVectorTy(),
3461            "FNeg operator only works with float types!", &U);
3462     break;
3463   default:
3464     llvm_unreachable("Unknown UnaryOperator opcode!");
3465   }
3466 
3467   visitInstruction(U);
3468 }
3469 
3470 /// visitBinaryOperator - Check that both arguments to the binary operator are
3471 /// of the same type!
3472 ///
3473 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3474   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3475          "Both operands to a binary operator are not of the same type!", &B);
3476 
3477   switch (B.getOpcode()) {
3478   // Check that integer arithmetic operators are only used with
3479   // integral operands.
3480   case Instruction::Add:
3481   case Instruction::Sub:
3482   case Instruction::Mul:
3483   case Instruction::SDiv:
3484   case Instruction::UDiv:
3485   case Instruction::SRem:
3486   case Instruction::URem:
3487     Assert(B.getType()->isIntOrIntVectorTy(),
3488            "Integer arithmetic operators only work with integral types!", &B);
3489     Assert(B.getType() == B.getOperand(0)->getType(),
3490            "Integer arithmetic operators must have same type "
3491            "for operands and result!",
3492            &B);
3493     break;
3494   // Check that floating-point arithmetic operators are only used with
3495   // floating-point operands.
3496   case Instruction::FAdd:
3497   case Instruction::FSub:
3498   case Instruction::FMul:
3499   case Instruction::FDiv:
3500   case Instruction::FRem:
3501     Assert(B.getType()->isFPOrFPVectorTy(),
3502            "Floating-point arithmetic operators only work with "
3503            "floating-point types!",
3504            &B);
3505     Assert(B.getType() == B.getOperand(0)->getType(),
3506            "Floating-point arithmetic operators must have same type "
3507            "for operands and result!",
3508            &B);
3509     break;
3510   // Check that logical operators are only used with integral operands.
3511   case Instruction::And:
3512   case Instruction::Or:
3513   case Instruction::Xor:
3514     Assert(B.getType()->isIntOrIntVectorTy(),
3515            "Logical operators only work with integral types!", &B);
3516     Assert(B.getType() == B.getOperand(0)->getType(),
3517            "Logical operators must have same type for operands and result!",
3518            &B);
3519     break;
3520   case Instruction::Shl:
3521   case Instruction::LShr:
3522   case Instruction::AShr:
3523     Assert(B.getType()->isIntOrIntVectorTy(),
3524            "Shifts only work with integral types!", &B);
3525     Assert(B.getType() == B.getOperand(0)->getType(),
3526            "Shift return type must be same as operands!", &B);
3527     break;
3528   default:
3529     llvm_unreachable("Unknown BinaryOperator opcode!");
3530   }
3531 
3532   visitInstruction(B);
3533 }
3534 
3535 void Verifier::visitICmpInst(ICmpInst &IC) {
3536   // Check that the operands are the same type
3537   Type *Op0Ty = IC.getOperand(0)->getType();
3538   Type *Op1Ty = IC.getOperand(1)->getType();
3539   Assert(Op0Ty == Op1Ty,
3540          "Both operands to ICmp instruction are not of the same type!", &IC);
3541   // Check that the operands are the right type
3542   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3543          "Invalid operand types for ICmp instruction", &IC);
3544   // Check that the predicate is valid.
3545   Assert(IC.isIntPredicate(),
3546          "Invalid predicate in ICmp instruction!", &IC);
3547 
3548   visitInstruction(IC);
3549 }
3550 
3551 void Verifier::visitFCmpInst(FCmpInst &FC) {
3552   // Check that the operands are the same type
3553   Type *Op0Ty = FC.getOperand(0)->getType();
3554   Type *Op1Ty = FC.getOperand(1)->getType();
3555   Assert(Op0Ty == Op1Ty,
3556          "Both operands to FCmp instruction are not of the same type!", &FC);
3557   // Check that the operands are the right type
3558   Assert(Op0Ty->isFPOrFPVectorTy(),
3559          "Invalid operand types for FCmp instruction", &FC);
3560   // Check that the predicate is valid.
3561   Assert(FC.isFPPredicate(),
3562          "Invalid predicate in FCmp instruction!", &FC);
3563 
3564   visitInstruction(FC);
3565 }
3566 
3567 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3568   Assert(
3569       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3570       "Invalid extractelement operands!", &EI);
3571   visitInstruction(EI);
3572 }
3573 
3574 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3575   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3576                                             IE.getOperand(2)),
3577          "Invalid insertelement operands!", &IE);
3578   visitInstruction(IE);
3579 }
3580 
3581 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3582   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3583                                             SV.getShuffleMask()),
3584          "Invalid shufflevector operands!", &SV);
3585   visitInstruction(SV);
3586 }
3587 
3588 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3589   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3590 
3591   Assert(isa<PointerType>(TargetTy),
3592          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3593   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3594 
3595   SmallVector<Value *, 16> Idxs(GEP.indices());
3596   Assert(all_of(
3597       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3598       "GEP indexes must be integers", &GEP);
3599   Type *ElTy =
3600       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3601   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3602 
3603   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3604              GEP.getResultElementType() == ElTy,
3605          "GEP is not of right type for indices!", &GEP, ElTy);
3606 
3607   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3608     // Additional checks for vector GEPs.
3609     ElementCount GEPWidth = GEPVTy->getElementCount();
3610     if (GEP.getPointerOperandType()->isVectorTy())
3611       Assert(
3612           GEPWidth ==
3613               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3614           "Vector GEP result width doesn't match operand's", &GEP);
3615     for (Value *Idx : Idxs) {
3616       Type *IndexTy = Idx->getType();
3617       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3618         ElementCount IndexWidth = IndexVTy->getElementCount();
3619         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3620       }
3621       Assert(IndexTy->isIntOrIntVectorTy(),
3622              "All GEP indices should be of integer type");
3623     }
3624   }
3625 
3626   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3627     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3628            "GEP address space doesn't match type", &GEP);
3629   }
3630 
3631   visitInstruction(GEP);
3632 }
3633 
3634 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3635   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3636 }
3637 
3638 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3639   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3640          "precondition violation");
3641 
3642   unsigned NumOperands = Range->getNumOperands();
3643   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3644   unsigned NumRanges = NumOperands / 2;
3645   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3646 
3647   ConstantRange LastRange(1, true); // Dummy initial value
3648   for (unsigned i = 0; i < NumRanges; ++i) {
3649     ConstantInt *Low =
3650         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3651     Assert(Low, "The lower limit must be an integer!", Low);
3652     ConstantInt *High =
3653         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3654     Assert(High, "The upper limit must be an integer!", High);
3655     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3656            "Range types must match instruction type!", &I);
3657 
3658     APInt HighV = High->getValue();
3659     APInt LowV = Low->getValue();
3660     ConstantRange CurRange(LowV, HighV);
3661     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3662            "Range must not be empty!", Range);
3663     if (i != 0) {
3664       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3665              "Intervals are overlapping", Range);
3666       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3667              Range);
3668       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3669              Range);
3670     }
3671     LastRange = ConstantRange(LowV, HighV);
3672   }
3673   if (NumRanges > 2) {
3674     APInt FirstLow =
3675         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3676     APInt FirstHigh =
3677         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3678     ConstantRange FirstRange(FirstLow, FirstHigh);
3679     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3680            "Intervals are overlapping", Range);
3681     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3682            Range);
3683   }
3684 }
3685 
3686 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3687   unsigned Size = DL.getTypeSizeInBits(Ty);
3688   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3689   Assert(!(Size & (Size - 1)),
3690          "atomic memory access' operand must have a power-of-two size", Ty, I);
3691 }
3692 
3693 void Verifier::visitLoadInst(LoadInst &LI) {
3694   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3695   Assert(PTy, "Load operand must be a pointer.", &LI);
3696   Type *ElTy = LI.getType();
3697   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3698          "huge alignment values are unsupported", &LI);
3699   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3700   if (LI.isAtomic()) {
3701     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3702                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3703            "Load cannot have Release ordering", &LI);
3704     Assert(LI.getAlignment() != 0,
3705            "Atomic load must specify explicit alignment", &LI);
3706     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3707            "atomic load operand must have integer, pointer, or floating point "
3708            "type!",
3709            ElTy, &LI);
3710     checkAtomicMemAccessSize(ElTy, &LI);
3711   } else {
3712     Assert(LI.getSyncScopeID() == SyncScope::System,
3713            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3714   }
3715 
3716   visitInstruction(LI);
3717 }
3718 
3719 void Verifier::visitStoreInst(StoreInst &SI) {
3720   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3721   Assert(PTy, "Store operand must be a pointer.", &SI);
3722   Type *ElTy = SI.getOperand(0)->getType();
3723   Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3724          "Stored value type does not match pointer operand type!", &SI, ElTy);
3725   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3726          "huge alignment values are unsupported", &SI);
3727   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3728   if (SI.isAtomic()) {
3729     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3730                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3731            "Store cannot have Acquire ordering", &SI);
3732     Assert(SI.getAlignment() != 0,
3733            "Atomic store must specify explicit alignment", &SI);
3734     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3735            "atomic store operand must have integer, pointer, or floating point "
3736            "type!",
3737            ElTy, &SI);
3738     checkAtomicMemAccessSize(ElTy, &SI);
3739   } else {
3740     Assert(SI.getSyncScopeID() == SyncScope::System,
3741            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3742   }
3743   visitInstruction(SI);
3744 }
3745 
3746 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3747 void Verifier::verifySwiftErrorCall(CallBase &Call,
3748                                     const Value *SwiftErrorVal) {
3749   for (const auto &I : llvm::enumerate(Call.args())) {
3750     if (I.value() == SwiftErrorVal) {
3751       Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3752              "swifterror value when used in a callsite should be marked "
3753              "with swifterror attribute",
3754              SwiftErrorVal, Call);
3755     }
3756   }
3757 }
3758 
3759 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3760   // Check that swifterror value is only used by loads, stores, or as
3761   // a swifterror argument.
3762   for (const User *U : SwiftErrorVal->users()) {
3763     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3764            isa<InvokeInst>(U),
3765            "swifterror value can only be loaded and stored from, or "
3766            "as a swifterror argument!",
3767            SwiftErrorVal, U);
3768     // If it is used by a store, check it is the second operand.
3769     if (auto StoreI = dyn_cast<StoreInst>(U))
3770       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3771              "swifterror value should be the second operand when used "
3772              "by stores", SwiftErrorVal, U);
3773     if (auto *Call = dyn_cast<CallBase>(U))
3774       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3775   }
3776 }
3777 
3778 void Verifier::visitAllocaInst(AllocaInst &AI) {
3779   SmallPtrSet<Type*, 4> Visited;
3780   Assert(AI.getAllocatedType()->isSized(&Visited),
3781          "Cannot allocate unsized type", &AI);
3782   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3783          "Alloca array size must have integer type", &AI);
3784   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3785          "huge alignment values are unsupported", &AI);
3786 
3787   if (AI.isSwiftError()) {
3788     verifySwiftErrorValue(&AI);
3789   }
3790 
3791   visitInstruction(AI);
3792 }
3793 
3794 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3795   Type *ElTy = CXI.getOperand(1)->getType();
3796   Assert(ElTy->isIntOrPtrTy(),
3797          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3798   checkAtomicMemAccessSize(ElTy, &CXI);
3799   visitInstruction(CXI);
3800 }
3801 
3802 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3803   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3804          "atomicrmw instructions cannot be unordered.", &RMWI);
3805   auto Op = RMWI.getOperation();
3806   Type *ElTy = RMWI.getOperand(1)->getType();
3807   if (Op == AtomicRMWInst::Xchg) {
3808     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3809            AtomicRMWInst::getOperationName(Op) +
3810            " operand must have integer or floating point type!",
3811            &RMWI, ElTy);
3812   } else if (AtomicRMWInst::isFPOperation(Op)) {
3813     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3814            AtomicRMWInst::getOperationName(Op) +
3815            " operand must have floating point type!",
3816            &RMWI, ElTy);
3817   } else {
3818     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3819            AtomicRMWInst::getOperationName(Op) +
3820            " operand must have integer type!",
3821            &RMWI, ElTy);
3822   }
3823   checkAtomicMemAccessSize(ElTy, &RMWI);
3824   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3825          "Invalid binary operation!", &RMWI);
3826   visitInstruction(RMWI);
3827 }
3828 
3829 void Verifier::visitFenceInst(FenceInst &FI) {
3830   const AtomicOrdering Ordering = FI.getOrdering();
3831   Assert(Ordering == AtomicOrdering::Acquire ||
3832              Ordering == AtomicOrdering::Release ||
3833              Ordering == AtomicOrdering::AcquireRelease ||
3834              Ordering == AtomicOrdering::SequentiallyConsistent,
3835          "fence instructions may only have acquire, release, acq_rel, or "
3836          "seq_cst ordering.",
3837          &FI);
3838   visitInstruction(FI);
3839 }
3840 
3841 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3842   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3843                                           EVI.getIndices()) == EVI.getType(),
3844          "Invalid ExtractValueInst operands!", &EVI);
3845 
3846   visitInstruction(EVI);
3847 }
3848 
3849 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3850   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3851                                           IVI.getIndices()) ==
3852              IVI.getOperand(1)->getType(),
3853          "Invalid InsertValueInst operands!", &IVI);
3854 
3855   visitInstruction(IVI);
3856 }
3857 
3858 static Value *getParentPad(Value *EHPad) {
3859   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3860     return FPI->getParentPad();
3861 
3862   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3863 }
3864 
3865 void Verifier::visitEHPadPredecessors(Instruction &I) {
3866   assert(I.isEHPad());
3867 
3868   BasicBlock *BB = I.getParent();
3869   Function *F = BB->getParent();
3870 
3871   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3872 
3873   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3874     // The landingpad instruction defines its parent as a landing pad block. The
3875     // landing pad block may be branched to only by the unwind edge of an
3876     // invoke.
3877     for (BasicBlock *PredBB : predecessors(BB)) {
3878       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3879       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3880              "Block containing LandingPadInst must be jumped to "
3881              "only by the unwind edge of an invoke.",
3882              LPI);
3883     }
3884     return;
3885   }
3886   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3887     if (!pred_empty(BB))
3888       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3889              "Block containg CatchPadInst must be jumped to "
3890              "only by its catchswitch.",
3891              CPI);
3892     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3893            "Catchswitch cannot unwind to one of its catchpads",
3894            CPI->getCatchSwitch(), CPI);
3895     return;
3896   }
3897 
3898   // Verify that each pred has a legal terminator with a legal to/from EH
3899   // pad relationship.
3900   Instruction *ToPad = &I;
3901   Value *ToPadParent = getParentPad(ToPad);
3902   for (BasicBlock *PredBB : predecessors(BB)) {
3903     Instruction *TI = PredBB->getTerminator();
3904     Value *FromPad;
3905     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3906       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3907              "EH pad must be jumped to via an unwind edge", ToPad, II);
3908       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3909         FromPad = Bundle->Inputs[0];
3910       else
3911         FromPad = ConstantTokenNone::get(II->getContext());
3912     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3913       FromPad = CRI->getOperand(0);
3914       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3915     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3916       FromPad = CSI;
3917     } else {
3918       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3919     }
3920 
3921     // The edge may exit from zero or more nested pads.
3922     SmallSet<Value *, 8> Seen;
3923     for (;; FromPad = getParentPad(FromPad)) {
3924       Assert(FromPad != ToPad,
3925              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3926       if (FromPad == ToPadParent) {
3927         // This is a legal unwind edge.
3928         break;
3929       }
3930       Assert(!isa<ConstantTokenNone>(FromPad),
3931              "A single unwind edge may only enter one EH pad", TI);
3932       Assert(Seen.insert(FromPad).second,
3933              "EH pad jumps through a cycle of pads", FromPad);
3934     }
3935   }
3936 }
3937 
3938 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3939   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3940   // isn't a cleanup.
3941   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3942          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3943 
3944   visitEHPadPredecessors(LPI);
3945 
3946   if (!LandingPadResultTy)
3947     LandingPadResultTy = LPI.getType();
3948   else
3949     Assert(LandingPadResultTy == LPI.getType(),
3950            "The landingpad instruction should have a consistent result type "
3951            "inside a function.",
3952            &LPI);
3953 
3954   Function *F = LPI.getParent()->getParent();
3955   Assert(F->hasPersonalityFn(),
3956          "LandingPadInst needs to be in a function with a personality.", &LPI);
3957 
3958   // The landingpad instruction must be the first non-PHI instruction in the
3959   // block.
3960   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3961          "LandingPadInst not the first non-PHI instruction in the block.",
3962          &LPI);
3963 
3964   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3965     Constant *Clause = LPI.getClause(i);
3966     if (LPI.isCatch(i)) {
3967       Assert(isa<PointerType>(Clause->getType()),
3968              "Catch operand does not have pointer type!", &LPI);
3969     } else {
3970       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3971       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3972              "Filter operand is not an array of constants!", &LPI);
3973     }
3974   }
3975 
3976   visitInstruction(LPI);
3977 }
3978 
3979 void Verifier::visitResumeInst(ResumeInst &RI) {
3980   Assert(RI.getFunction()->hasPersonalityFn(),
3981          "ResumeInst needs to be in a function with a personality.", &RI);
3982 
3983   if (!LandingPadResultTy)
3984     LandingPadResultTy = RI.getValue()->getType();
3985   else
3986     Assert(LandingPadResultTy == RI.getValue()->getType(),
3987            "The resume instruction should have a consistent result type "
3988            "inside a function.",
3989            &RI);
3990 
3991   visitTerminator(RI);
3992 }
3993 
3994 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3995   BasicBlock *BB = CPI.getParent();
3996 
3997   Function *F = BB->getParent();
3998   Assert(F->hasPersonalityFn(),
3999          "CatchPadInst needs to be in a function with a personality.", &CPI);
4000 
4001   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
4002          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4003          CPI.getParentPad());
4004 
4005   // The catchpad instruction must be the first non-PHI instruction in the
4006   // block.
4007   Assert(BB->getFirstNonPHI() == &CPI,
4008          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4009 
4010   visitEHPadPredecessors(CPI);
4011   visitFuncletPadInst(CPI);
4012 }
4013 
4014 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4015   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4016          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4017          CatchReturn.getOperand(0));
4018 
4019   visitTerminator(CatchReturn);
4020 }
4021 
4022 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4023   BasicBlock *BB = CPI.getParent();
4024 
4025   Function *F = BB->getParent();
4026   Assert(F->hasPersonalityFn(),
4027          "CleanupPadInst needs to be in a function with a personality.", &CPI);
4028 
4029   // The cleanuppad instruction must be the first non-PHI instruction in the
4030   // block.
4031   Assert(BB->getFirstNonPHI() == &CPI,
4032          "CleanupPadInst not the first non-PHI instruction in the block.",
4033          &CPI);
4034 
4035   auto *ParentPad = CPI.getParentPad();
4036   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4037          "CleanupPadInst has an invalid parent.", &CPI);
4038 
4039   visitEHPadPredecessors(CPI);
4040   visitFuncletPadInst(CPI);
4041 }
4042 
4043 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4044   User *FirstUser = nullptr;
4045   Value *FirstUnwindPad = nullptr;
4046   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4047   SmallSet<FuncletPadInst *, 8> Seen;
4048 
4049   while (!Worklist.empty()) {
4050     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4051     Assert(Seen.insert(CurrentPad).second,
4052            "FuncletPadInst must not be nested within itself", CurrentPad);
4053     Value *UnresolvedAncestorPad = nullptr;
4054     for (User *U : CurrentPad->users()) {
4055       BasicBlock *UnwindDest;
4056       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4057         UnwindDest = CRI->getUnwindDest();
4058       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4059         // We allow catchswitch unwind to caller to nest
4060         // within an outer pad that unwinds somewhere else,
4061         // because catchswitch doesn't have a nounwind variant.
4062         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4063         if (CSI->unwindsToCaller())
4064           continue;
4065         UnwindDest = CSI->getUnwindDest();
4066       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4067         UnwindDest = II->getUnwindDest();
4068       } else if (isa<CallInst>(U)) {
4069         // Calls which don't unwind may be found inside funclet
4070         // pads that unwind somewhere else.  We don't *require*
4071         // such calls to be annotated nounwind.
4072         continue;
4073       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4074         // The unwind dest for a cleanup can only be found by
4075         // recursive search.  Add it to the worklist, and we'll
4076         // search for its first use that determines where it unwinds.
4077         Worklist.push_back(CPI);
4078         continue;
4079       } else {
4080         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4081         continue;
4082       }
4083 
4084       Value *UnwindPad;
4085       bool ExitsFPI;
4086       if (UnwindDest) {
4087         UnwindPad = UnwindDest->getFirstNonPHI();
4088         if (!cast<Instruction>(UnwindPad)->isEHPad())
4089           continue;
4090         Value *UnwindParent = getParentPad(UnwindPad);
4091         // Ignore unwind edges that don't exit CurrentPad.
4092         if (UnwindParent == CurrentPad)
4093           continue;
4094         // Determine whether the original funclet pad is exited,
4095         // and if we are scanning nested pads determine how many
4096         // of them are exited so we can stop searching their
4097         // children.
4098         Value *ExitedPad = CurrentPad;
4099         ExitsFPI = false;
4100         do {
4101           if (ExitedPad == &FPI) {
4102             ExitsFPI = true;
4103             // Now we can resolve any ancestors of CurrentPad up to
4104             // FPI, but not including FPI since we need to make sure
4105             // to check all direct users of FPI for consistency.
4106             UnresolvedAncestorPad = &FPI;
4107             break;
4108           }
4109           Value *ExitedParent = getParentPad(ExitedPad);
4110           if (ExitedParent == UnwindParent) {
4111             // ExitedPad is the ancestor-most pad which this unwind
4112             // edge exits, so we can resolve up to it, meaning that
4113             // ExitedParent is the first ancestor still unresolved.
4114             UnresolvedAncestorPad = ExitedParent;
4115             break;
4116           }
4117           ExitedPad = ExitedParent;
4118         } while (!isa<ConstantTokenNone>(ExitedPad));
4119       } else {
4120         // Unwinding to caller exits all pads.
4121         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4122         ExitsFPI = true;
4123         UnresolvedAncestorPad = &FPI;
4124       }
4125 
4126       if (ExitsFPI) {
4127         // This unwind edge exits FPI.  Make sure it agrees with other
4128         // such edges.
4129         if (FirstUser) {
4130           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
4131                                               "pad must have the same unwind "
4132                                               "dest",
4133                  &FPI, U, FirstUser);
4134         } else {
4135           FirstUser = U;
4136           FirstUnwindPad = UnwindPad;
4137           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4138           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4139               getParentPad(UnwindPad) == getParentPad(&FPI))
4140             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4141         }
4142       }
4143       // Make sure we visit all uses of FPI, but for nested pads stop as
4144       // soon as we know where they unwind to.
4145       if (CurrentPad != &FPI)
4146         break;
4147     }
4148     if (UnresolvedAncestorPad) {
4149       if (CurrentPad == UnresolvedAncestorPad) {
4150         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4151         // we've found an unwind edge that exits it, because we need to verify
4152         // all direct uses of FPI.
4153         assert(CurrentPad == &FPI);
4154         continue;
4155       }
4156       // Pop off the worklist any nested pads that we've found an unwind
4157       // destination for.  The pads on the worklist are the uncles,
4158       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4159       // for all ancestors of CurrentPad up to but not including
4160       // UnresolvedAncestorPad.
4161       Value *ResolvedPad = CurrentPad;
4162       while (!Worklist.empty()) {
4163         Value *UnclePad = Worklist.back();
4164         Value *AncestorPad = getParentPad(UnclePad);
4165         // Walk ResolvedPad up the ancestor list until we either find the
4166         // uncle's parent or the last resolved ancestor.
4167         while (ResolvedPad != AncestorPad) {
4168           Value *ResolvedParent = getParentPad(ResolvedPad);
4169           if (ResolvedParent == UnresolvedAncestorPad) {
4170             break;
4171           }
4172           ResolvedPad = ResolvedParent;
4173         }
4174         // If the resolved ancestor search didn't find the uncle's parent,
4175         // then the uncle is not yet resolved.
4176         if (ResolvedPad != AncestorPad)
4177           break;
4178         // This uncle is resolved, so pop it from the worklist.
4179         Worklist.pop_back();
4180       }
4181     }
4182   }
4183 
4184   if (FirstUnwindPad) {
4185     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4186       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4187       Value *SwitchUnwindPad;
4188       if (SwitchUnwindDest)
4189         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4190       else
4191         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4192       Assert(SwitchUnwindPad == FirstUnwindPad,
4193              "Unwind edges out of a catch must have the same unwind dest as "
4194              "the parent catchswitch",
4195              &FPI, FirstUser, CatchSwitch);
4196     }
4197   }
4198 
4199   visitInstruction(FPI);
4200 }
4201 
4202 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4203   BasicBlock *BB = CatchSwitch.getParent();
4204 
4205   Function *F = BB->getParent();
4206   Assert(F->hasPersonalityFn(),
4207          "CatchSwitchInst needs to be in a function with a personality.",
4208          &CatchSwitch);
4209 
4210   // The catchswitch instruction must be the first non-PHI instruction in the
4211   // block.
4212   Assert(BB->getFirstNonPHI() == &CatchSwitch,
4213          "CatchSwitchInst not the first non-PHI instruction in the block.",
4214          &CatchSwitch);
4215 
4216   auto *ParentPad = CatchSwitch.getParentPad();
4217   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4218          "CatchSwitchInst has an invalid parent.", ParentPad);
4219 
4220   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4221     Instruction *I = UnwindDest->getFirstNonPHI();
4222     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4223            "CatchSwitchInst must unwind to an EH block which is not a "
4224            "landingpad.",
4225            &CatchSwitch);
4226 
4227     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4228     if (getParentPad(I) == ParentPad)
4229       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4230   }
4231 
4232   Assert(CatchSwitch.getNumHandlers() != 0,
4233          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4234 
4235   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4236     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4237            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4238   }
4239 
4240   visitEHPadPredecessors(CatchSwitch);
4241   visitTerminator(CatchSwitch);
4242 }
4243 
4244 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4245   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4246          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4247          CRI.getOperand(0));
4248 
4249   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4250     Instruction *I = UnwindDest->getFirstNonPHI();
4251     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4252            "CleanupReturnInst must unwind to an EH block which is not a "
4253            "landingpad.",
4254            &CRI);
4255   }
4256 
4257   visitTerminator(CRI);
4258 }
4259 
4260 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4261   Instruction *Op = cast<Instruction>(I.getOperand(i));
4262   // If the we have an invalid invoke, don't try to compute the dominance.
4263   // We already reject it in the invoke specific checks and the dominance
4264   // computation doesn't handle multiple edges.
4265   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4266     if (II->getNormalDest() == II->getUnwindDest())
4267       return;
4268   }
4269 
4270   // Quick check whether the def has already been encountered in the same block.
4271   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4272   // uses are defined to happen on the incoming edge, not at the instruction.
4273   //
4274   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4275   // wrapping an SSA value, assert that we've already encountered it.  See
4276   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4277   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4278     return;
4279 
4280   const Use &U = I.getOperandUse(i);
4281   Assert(DT.dominates(Op, U),
4282          "Instruction does not dominate all uses!", Op, &I);
4283 }
4284 
4285 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4286   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4287          "apply only to pointer types", &I);
4288   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4289          "dereferenceable, dereferenceable_or_null apply only to load"
4290          " and inttoptr instructions, use attributes for calls or invokes", &I);
4291   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4292          "take one operand!", &I);
4293   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4294   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4295          "dereferenceable_or_null metadata value must be an i64!", &I);
4296 }
4297 
4298 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4299   Assert(MD->getNumOperands() >= 2,
4300          "!prof annotations should have no less than 2 operands", MD);
4301 
4302   // Check first operand.
4303   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4304   Assert(isa<MDString>(MD->getOperand(0)),
4305          "expected string with name of the !prof annotation", MD);
4306   MDString *MDS = cast<MDString>(MD->getOperand(0));
4307   StringRef ProfName = MDS->getString();
4308 
4309   // Check consistency of !prof branch_weights metadata.
4310   if (ProfName.equals("branch_weights")) {
4311     if (isa<InvokeInst>(&I)) {
4312       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4313              "Wrong number of InvokeInst branch_weights operands", MD);
4314     } else {
4315       unsigned ExpectedNumOperands = 0;
4316       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4317         ExpectedNumOperands = BI->getNumSuccessors();
4318       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4319         ExpectedNumOperands = SI->getNumSuccessors();
4320       else if (isa<CallInst>(&I))
4321         ExpectedNumOperands = 1;
4322       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4323         ExpectedNumOperands = IBI->getNumDestinations();
4324       else if (isa<SelectInst>(&I))
4325         ExpectedNumOperands = 2;
4326       else
4327         CheckFailed("!prof branch_weights are not allowed for this instruction",
4328                     MD);
4329 
4330       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4331              "Wrong number of operands", MD);
4332     }
4333     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4334       auto &MDO = MD->getOperand(i);
4335       Assert(MDO, "second operand should not be null", MD);
4336       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4337              "!prof brunch_weights operand is not a const int");
4338     }
4339   }
4340 }
4341 
4342 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4343   Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
4344   Assert(Annotation->getNumOperands() >= 1,
4345          "annotation must have at least one operand");
4346   for (const MDOperand &Op : Annotation->operands())
4347     Assert(isa<MDString>(Op.get()), "operands must be strings");
4348 }
4349 
4350 /// verifyInstruction - Verify that an instruction is well formed.
4351 ///
4352 void Verifier::visitInstruction(Instruction &I) {
4353   BasicBlock *BB = I.getParent();
4354   Assert(BB, "Instruction not embedded in basic block!", &I);
4355 
4356   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4357     for (User *U : I.users()) {
4358       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4359              "Only PHI nodes may reference their own value!", &I);
4360     }
4361   }
4362 
4363   // Check that void typed values don't have names
4364   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4365          "Instruction has a name, but provides a void value!", &I);
4366 
4367   // Check that the return value of the instruction is either void or a legal
4368   // value type.
4369   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4370          "Instruction returns a non-scalar type!", &I);
4371 
4372   // Check that the instruction doesn't produce metadata. Calls are already
4373   // checked against the callee type.
4374   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4375          "Invalid use of metadata!", &I);
4376 
4377   // Check that all uses of the instruction, if they are instructions
4378   // themselves, actually have parent basic blocks.  If the use is not an
4379   // instruction, it is an error!
4380   for (Use &U : I.uses()) {
4381     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4382       Assert(Used->getParent() != nullptr,
4383              "Instruction referencing"
4384              " instruction not embedded in a basic block!",
4385              &I, Used);
4386     else {
4387       CheckFailed("Use of instruction is not an instruction!", U);
4388       return;
4389     }
4390   }
4391 
4392   // Get a pointer to the call base of the instruction if it is some form of
4393   // call.
4394   const CallBase *CBI = dyn_cast<CallBase>(&I);
4395 
4396   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4397     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4398 
4399     // Check to make sure that only first-class-values are operands to
4400     // instructions.
4401     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4402       Assert(false, "Instruction operands must be first-class values!", &I);
4403     }
4404 
4405     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4406       // Check to make sure that the "address of" an intrinsic function is never
4407       // taken.
4408       Assert(!F->isIntrinsic() ||
4409                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4410              "Cannot take the address of an intrinsic!", &I);
4411       Assert(
4412           !F->isIntrinsic() || isa<CallInst>(I) ||
4413               F->getIntrinsicID() == Intrinsic::donothing ||
4414               F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4415               F->getIntrinsicID() == Intrinsic::seh_try_end ||
4416               F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4417               F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4418               F->getIntrinsicID() == Intrinsic::coro_resume ||
4419               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4420               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4421               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4422               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4423               F->getIntrinsicID() == Intrinsic::wasm_rethrow,
4424           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4425           "statepoint, coro_resume or coro_destroy",
4426           &I);
4427       Assert(F->getParent() == &M, "Referencing function in another module!",
4428              &I, &M, F, F->getParent());
4429     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4430       Assert(OpBB->getParent() == BB->getParent(),
4431              "Referring to a basic block in another function!", &I);
4432     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4433       Assert(OpArg->getParent() == BB->getParent(),
4434              "Referring to an argument in another function!", &I);
4435     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4436       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4437              &M, GV, GV->getParent());
4438     } else if (isa<Instruction>(I.getOperand(i))) {
4439       verifyDominatesUse(I, i);
4440     } else if (isa<InlineAsm>(I.getOperand(i))) {
4441       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4442              "Cannot take the address of an inline asm!", &I);
4443     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4444       if (CE->getType()->isPtrOrPtrVectorTy()) {
4445         // If we have a ConstantExpr pointer, we need to see if it came from an
4446         // illegal bitcast.
4447         visitConstantExprsRecursively(CE);
4448       }
4449     }
4450   }
4451 
4452   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4453     Assert(I.getType()->isFPOrFPVectorTy(),
4454            "fpmath requires a floating point result!", &I);
4455     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4456     if (ConstantFP *CFP0 =
4457             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4458       const APFloat &Accuracy = CFP0->getValueAPF();
4459       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4460              "fpmath accuracy must have float type", &I);
4461       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4462              "fpmath accuracy not a positive number!", &I);
4463     } else {
4464       Assert(false, "invalid fpmath accuracy!", &I);
4465     }
4466   }
4467 
4468   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4469     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4470            "Ranges are only for loads, calls and invokes!", &I);
4471     visitRangeMetadata(I, Range, I.getType());
4472   }
4473 
4474   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4475     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4476            &I);
4477     Assert(isa<LoadInst>(I),
4478            "nonnull applies only to load instructions, use attributes"
4479            " for calls or invokes",
4480            &I);
4481   }
4482 
4483   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4484     visitDereferenceableMetadata(I, MD);
4485 
4486   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4487     visitDereferenceableMetadata(I, MD);
4488 
4489   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4490     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4491 
4492   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4493     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4494            &I);
4495     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4496            "use attributes for calls or invokes", &I);
4497     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4498     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4499     Assert(CI && CI->getType()->isIntegerTy(64),
4500            "align metadata value must be an i64!", &I);
4501     uint64_t Align = CI->getZExtValue();
4502     Assert(isPowerOf2_64(Align),
4503            "align metadata value must be a power of 2!", &I);
4504     Assert(Align <= Value::MaximumAlignment,
4505            "alignment is larger that implementation defined limit", &I);
4506   }
4507 
4508   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4509     visitProfMetadata(I, MD);
4510 
4511   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4512     visitAnnotationMetadata(Annotation);
4513 
4514   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4515     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4516     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4517   }
4518 
4519   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4520     verifyFragmentExpression(*DII);
4521     verifyNotEntryValue(*DII);
4522   }
4523 
4524   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4525   I.getAllMetadata(MDs);
4526   for (auto Attachment : MDs) {
4527     unsigned Kind = Attachment.first;
4528     auto AllowLocs =
4529         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4530             ? AreDebugLocsAllowed::Yes
4531             : AreDebugLocsAllowed::No;
4532     visitMDNode(*Attachment.second, AllowLocs);
4533   }
4534 
4535   InstsInThisBlock.insert(&I);
4536 }
4537 
4538 /// Allow intrinsics to be verified in different ways.
4539 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4540   Function *IF = Call.getCalledFunction();
4541   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4542          IF);
4543 
4544   // Verify that the intrinsic prototype lines up with what the .td files
4545   // describe.
4546   FunctionType *IFTy = IF->getFunctionType();
4547   bool IsVarArg = IFTy->isVarArg();
4548 
4549   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4550   getIntrinsicInfoTableEntries(ID, Table);
4551   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4552 
4553   // Walk the descriptors to extract overloaded types.
4554   SmallVector<Type *, 4> ArgTys;
4555   Intrinsic::MatchIntrinsicTypesResult Res =
4556       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4557   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4558          "Intrinsic has incorrect return type!", IF);
4559   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4560          "Intrinsic has incorrect argument type!", IF);
4561 
4562   // Verify if the intrinsic call matches the vararg property.
4563   if (IsVarArg)
4564     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4565            "Intrinsic was not defined with variable arguments!", IF);
4566   else
4567     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4568            "Callsite was not defined with variable arguments!", IF);
4569 
4570   // All descriptors should be absorbed by now.
4571   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4572 
4573   // Now that we have the intrinsic ID and the actual argument types (and we
4574   // know they are legal for the intrinsic!) get the intrinsic name through the
4575   // usual means.  This allows us to verify the mangling of argument types into
4576   // the name.
4577   const std::string ExpectedName =
4578       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4579   Assert(ExpectedName == IF->getName(),
4580          "Intrinsic name not mangled correctly for type arguments! "
4581          "Should be: " +
4582              ExpectedName,
4583          IF);
4584 
4585   // If the intrinsic takes MDNode arguments, verify that they are either global
4586   // or are local to *this* function.
4587   for (Value *V : Call.args()) {
4588     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4589       visitMetadataAsValue(*MD, Call.getCaller());
4590     if (auto *Const = dyn_cast<Constant>(V))
4591       Assert(!Const->getType()->isX86_AMXTy(),
4592              "const x86_amx is not allowed in argument!");
4593   }
4594 
4595   switch (ID) {
4596   default:
4597     break;
4598   case Intrinsic::assume: {
4599     for (auto &Elem : Call.bundle_op_infos()) {
4600       Assert(Elem.Tag->getKey() == "ignore" ||
4601                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4602              "tags must be valid attribute names");
4603       Attribute::AttrKind Kind =
4604           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4605       unsigned ArgCount = Elem.End - Elem.Begin;
4606       if (Kind == Attribute::Alignment) {
4607         Assert(ArgCount <= 3 && ArgCount >= 2,
4608                "alignment assumptions should have 2 or 3 arguments");
4609         Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4610                "first argument should be a pointer");
4611         Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4612                "second argument should be an integer");
4613         if (ArgCount == 3)
4614           Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4615                  "third argument should be an integer if present");
4616         return;
4617       }
4618       Assert(ArgCount <= 2, "to many arguments");
4619       if (Kind == Attribute::None)
4620         break;
4621       if (Attribute::isIntAttrKind(Kind)) {
4622         Assert(ArgCount == 2, "this attribute should have 2 arguments");
4623         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4624                "the second argument should be a constant integral value");
4625       } else if (Attribute::canUseAsParamAttr(Kind)) {
4626         Assert((ArgCount) == 1, "this attribute should have one argument");
4627       } else if (Attribute::canUseAsFnAttr(Kind)) {
4628         Assert((ArgCount) == 0, "this attribute has no argument");
4629       }
4630     }
4631     break;
4632   }
4633   case Intrinsic::coro_id: {
4634     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4635     if (isa<ConstantPointerNull>(InfoArg))
4636       break;
4637     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4638     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4639            "info argument of llvm.coro.id must refer to an initialized "
4640            "constant");
4641     Constant *Init = GV->getInitializer();
4642     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4643            "info argument of llvm.coro.id must refer to either a struct or "
4644            "an array");
4645     break;
4646   }
4647 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4648   case Intrinsic::INTRINSIC:
4649 #include "llvm/IR/ConstrainedOps.def"
4650     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4651     break;
4652   case Intrinsic::dbg_declare: // llvm.dbg.declare
4653     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4654            "invalid llvm.dbg.declare intrinsic call 1", Call);
4655     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4656     break;
4657   case Intrinsic::dbg_addr: // llvm.dbg.addr
4658     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4659     break;
4660   case Intrinsic::dbg_value: // llvm.dbg.value
4661     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4662     break;
4663   case Intrinsic::dbg_label: // llvm.dbg.label
4664     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4665     break;
4666   case Intrinsic::memcpy:
4667   case Intrinsic::memcpy_inline:
4668   case Intrinsic::memmove:
4669   case Intrinsic::memset: {
4670     const auto *MI = cast<MemIntrinsic>(&Call);
4671     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4672       return Alignment == 0 || isPowerOf2_32(Alignment);
4673     };
4674     Assert(IsValidAlignment(MI->getDestAlignment()),
4675            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4676            Call);
4677     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4678       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4679              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4680              Call);
4681     }
4682 
4683     break;
4684   }
4685   case Intrinsic::memcpy_element_unordered_atomic:
4686   case Intrinsic::memmove_element_unordered_atomic:
4687   case Intrinsic::memset_element_unordered_atomic: {
4688     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4689 
4690     ConstantInt *ElementSizeCI =
4691         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4692     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4693     Assert(ElementSizeVal.isPowerOf2(),
4694            "element size of the element-wise atomic memory intrinsic "
4695            "must be a power of 2",
4696            Call);
4697 
4698     auto IsValidAlignment = [&](uint64_t Alignment) {
4699       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4700     };
4701     uint64_t DstAlignment = AMI->getDestAlignment();
4702     Assert(IsValidAlignment(DstAlignment),
4703            "incorrect alignment of the destination argument", Call);
4704     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4705       uint64_t SrcAlignment = AMT->getSourceAlignment();
4706       Assert(IsValidAlignment(SrcAlignment),
4707              "incorrect alignment of the source argument", Call);
4708     }
4709     break;
4710   }
4711   case Intrinsic::call_preallocated_setup: {
4712     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4713     Assert(NumArgs != nullptr,
4714            "llvm.call.preallocated.setup argument must be a constant");
4715     bool FoundCall = false;
4716     for (User *U : Call.users()) {
4717       auto *UseCall = dyn_cast<CallBase>(U);
4718       Assert(UseCall != nullptr,
4719              "Uses of llvm.call.preallocated.setup must be calls");
4720       const Function *Fn = UseCall->getCalledFunction();
4721       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4722         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4723         Assert(AllocArgIndex != nullptr,
4724                "llvm.call.preallocated.alloc arg index must be a constant");
4725         auto AllocArgIndexInt = AllocArgIndex->getValue();
4726         Assert(AllocArgIndexInt.sge(0) &&
4727                    AllocArgIndexInt.slt(NumArgs->getValue()),
4728                "llvm.call.preallocated.alloc arg index must be between 0 and "
4729                "corresponding "
4730                "llvm.call.preallocated.setup's argument count");
4731       } else if (Fn && Fn->getIntrinsicID() ==
4732                            Intrinsic::call_preallocated_teardown) {
4733         // nothing to do
4734       } else {
4735         Assert(!FoundCall, "Can have at most one call corresponding to a "
4736                            "llvm.call.preallocated.setup");
4737         FoundCall = true;
4738         size_t NumPreallocatedArgs = 0;
4739         for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) {
4740           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4741             ++NumPreallocatedArgs;
4742           }
4743         }
4744         Assert(NumPreallocatedArgs != 0,
4745                "cannot use preallocated intrinsics on a call without "
4746                "preallocated arguments");
4747         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4748                "llvm.call.preallocated.setup arg size must be equal to number "
4749                "of preallocated arguments "
4750                "at call site",
4751                Call, *UseCall);
4752         // getOperandBundle() cannot be called if more than one of the operand
4753         // bundle exists. There is already a check elsewhere for this, so skip
4754         // here if we see more than one.
4755         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4756             1) {
4757           return;
4758         }
4759         auto PreallocatedBundle =
4760             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4761         Assert(PreallocatedBundle,
4762                "Use of llvm.call.preallocated.setup outside intrinsics "
4763                "must be in \"preallocated\" operand bundle");
4764         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4765                "preallocated bundle must have token from corresponding "
4766                "llvm.call.preallocated.setup");
4767       }
4768     }
4769     break;
4770   }
4771   case Intrinsic::call_preallocated_arg: {
4772     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4773     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4774                         Intrinsic::call_preallocated_setup,
4775            "llvm.call.preallocated.arg token argument must be a "
4776            "llvm.call.preallocated.setup");
4777     Assert(Call.hasFnAttr(Attribute::Preallocated),
4778            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4779            "call site attribute");
4780     break;
4781   }
4782   case Intrinsic::call_preallocated_teardown: {
4783     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4784     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4785                         Intrinsic::call_preallocated_setup,
4786            "llvm.call.preallocated.teardown token argument must be a "
4787            "llvm.call.preallocated.setup");
4788     break;
4789   }
4790   case Intrinsic::gcroot:
4791   case Intrinsic::gcwrite:
4792   case Intrinsic::gcread:
4793     if (ID == Intrinsic::gcroot) {
4794       AllocaInst *AI =
4795           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4796       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4797       Assert(isa<Constant>(Call.getArgOperand(1)),
4798              "llvm.gcroot parameter #2 must be a constant.", Call);
4799       if (!AI->getAllocatedType()->isPointerTy()) {
4800         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4801                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4802                "or argument #2 must be a non-null constant.",
4803                Call);
4804       }
4805     }
4806 
4807     Assert(Call.getParent()->getParent()->hasGC(),
4808            "Enclosing function does not use GC.", Call);
4809     break;
4810   case Intrinsic::init_trampoline:
4811     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4812            "llvm.init_trampoline parameter #2 must resolve to a function.",
4813            Call);
4814     break;
4815   case Intrinsic::prefetch:
4816     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4817            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4818            "invalid arguments to llvm.prefetch", Call);
4819     break;
4820   case Intrinsic::stackprotector:
4821     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4822            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4823     break;
4824   case Intrinsic::localescape: {
4825     BasicBlock *BB = Call.getParent();
4826     Assert(BB == &BB->getParent()->front(),
4827            "llvm.localescape used outside of entry block", Call);
4828     Assert(!SawFrameEscape,
4829            "multiple calls to llvm.localescape in one function", Call);
4830     for (Value *Arg : Call.args()) {
4831       if (isa<ConstantPointerNull>(Arg))
4832         continue; // Null values are allowed as placeholders.
4833       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4834       Assert(AI && AI->isStaticAlloca(),
4835              "llvm.localescape only accepts static allocas", Call);
4836     }
4837     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4838     SawFrameEscape = true;
4839     break;
4840   }
4841   case Intrinsic::localrecover: {
4842     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4843     Function *Fn = dyn_cast<Function>(FnArg);
4844     Assert(Fn && !Fn->isDeclaration(),
4845            "llvm.localrecover first "
4846            "argument must be function defined in this module",
4847            Call);
4848     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4849     auto &Entry = FrameEscapeInfo[Fn];
4850     Entry.second = unsigned(
4851         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4852     break;
4853   }
4854 
4855   case Intrinsic::experimental_gc_statepoint:
4856     if (auto *CI = dyn_cast<CallInst>(&Call))
4857       Assert(!CI->isInlineAsm(),
4858              "gc.statepoint support for inline assembly unimplemented", CI);
4859     Assert(Call.getParent()->getParent()->hasGC(),
4860            "Enclosing function does not use GC.", Call);
4861 
4862     verifyStatepoint(Call);
4863     break;
4864   case Intrinsic::experimental_gc_result: {
4865     Assert(Call.getParent()->getParent()->hasGC(),
4866            "Enclosing function does not use GC.", Call);
4867     // Are we tied to a statepoint properly?
4868     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4869     const Function *StatepointFn =
4870         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4871     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4872                StatepointFn->getIntrinsicID() ==
4873                    Intrinsic::experimental_gc_statepoint,
4874            "gc.result operand #1 must be from a statepoint", Call,
4875            Call.getArgOperand(0));
4876 
4877     // Assert that result type matches wrapped callee.
4878     const Value *Target = StatepointCall->getArgOperand(2);
4879     auto *PT = cast<PointerType>(Target->getType());
4880     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4881     Assert(Call.getType() == TargetFuncType->getReturnType(),
4882            "gc.result result type does not match wrapped callee", Call);
4883     break;
4884   }
4885   case Intrinsic::experimental_gc_relocate: {
4886     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4887 
4888     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4889            "gc.relocate must return a pointer or a vector of pointers", Call);
4890 
4891     // Check that this relocate is correctly tied to the statepoint
4892 
4893     // This is case for relocate on the unwinding path of an invoke statepoint
4894     if (LandingPadInst *LandingPad =
4895             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4896 
4897       const BasicBlock *InvokeBB =
4898           LandingPad->getParent()->getUniquePredecessor();
4899 
4900       // Landingpad relocates should have only one predecessor with invoke
4901       // statepoint terminator
4902       Assert(InvokeBB, "safepoints should have unique landingpads",
4903              LandingPad->getParent());
4904       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4905              InvokeBB);
4906       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
4907              "gc relocate should be linked to a statepoint", InvokeBB);
4908     } else {
4909       // In all other cases relocate should be tied to the statepoint directly.
4910       // This covers relocates on a normal return path of invoke statepoint and
4911       // relocates of a call statepoint.
4912       auto Token = Call.getArgOperand(0);
4913       Assert(isa<GCStatepointInst>(Token),
4914              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4915     }
4916 
4917     // Verify rest of the relocate arguments.
4918     const CallBase &StatepointCall =
4919       *cast<GCRelocateInst>(Call).getStatepoint();
4920 
4921     // Both the base and derived must be piped through the safepoint.
4922     Value *Base = Call.getArgOperand(1);
4923     Assert(isa<ConstantInt>(Base),
4924            "gc.relocate operand #2 must be integer offset", Call);
4925 
4926     Value *Derived = Call.getArgOperand(2);
4927     Assert(isa<ConstantInt>(Derived),
4928            "gc.relocate operand #3 must be integer offset", Call);
4929 
4930     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4931     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4932 
4933     // Check the bounds
4934     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
4935       Assert(BaseIndex < Opt->Inputs.size(),
4936              "gc.relocate: statepoint base index out of bounds", Call);
4937       Assert(DerivedIndex < Opt->Inputs.size(),
4938              "gc.relocate: statepoint derived index out of bounds", Call);
4939     }
4940 
4941     // Relocated value must be either a pointer type or vector-of-pointer type,
4942     // but gc_relocate does not need to return the same pointer type as the
4943     // relocated pointer. It can be casted to the correct type later if it's
4944     // desired. However, they must have the same address space and 'vectorness'
4945     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4946     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4947            "gc.relocate: relocated value must be a gc pointer", Call);
4948 
4949     auto ResultType = Call.getType();
4950     auto DerivedType = Relocate.getDerivedPtr()->getType();
4951     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4952            "gc.relocate: vector relocates to vector and pointer to pointer",
4953            Call);
4954     Assert(
4955         ResultType->getPointerAddressSpace() ==
4956             DerivedType->getPointerAddressSpace(),
4957         "gc.relocate: relocating a pointer shouldn't change its address space",
4958         Call);
4959     break;
4960   }
4961   case Intrinsic::eh_exceptioncode:
4962   case Intrinsic::eh_exceptionpointer: {
4963     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4964            "eh.exceptionpointer argument must be a catchpad", Call);
4965     break;
4966   }
4967   case Intrinsic::get_active_lane_mask: {
4968     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
4969            "vector", Call);
4970     auto *ElemTy = Call.getType()->getScalarType();
4971     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
4972            "i1", Call);
4973     break;
4974   }
4975   case Intrinsic::masked_load: {
4976     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4977            Call);
4978 
4979     Value *Ptr = Call.getArgOperand(0);
4980     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4981     Value *Mask = Call.getArgOperand(2);
4982     Value *PassThru = Call.getArgOperand(3);
4983     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4984            Call);
4985     Assert(Alignment->getValue().isPowerOf2(),
4986            "masked_load: alignment must be a power of 2", Call);
4987 
4988     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
4989     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
4990            "masked_load: return must match pointer type", Call);
4991     Assert(PassThru->getType() == Call.getType(),
4992            "masked_load: pass through and return type must match", Call);
4993     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
4994                cast<VectorType>(Call.getType())->getElementCount(),
4995            "masked_load: vector mask must be same length as return", Call);
4996     break;
4997   }
4998   case Intrinsic::masked_store: {
4999     Value *Val = Call.getArgOperand(0);
5000     Value *Ptr = Call.getArgOperand(1);
5001     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5002     Value *Mask = Call.getArgOperand(3);
5003     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5004            Call);
5005     Assert(Alignment->getValue().isPowerOf2(),
5006            "masked_store: alignment must be a power of 2", Call);
5007 
5008     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5009     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
5010            "masked_store: storee must match pointer type", Call);
5011     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5012                cast<VectorType>(Val->getType())->getElementCount(),
5013            "masked_store: vector mask must be same length as value", Call);
5014     break;
5015   }
5016 
5017   case Intrinsic::masked_gather: {
5018     const APInt &Alignment =
5019         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5020     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
5021            "masked_gather: alignment must be 0 or a power of 2", Call);
5022     break;
5023   }
5024   case Intrinsic::masked_scatter: {
5025     const APInt &Alignment =
5026         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5027     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
5028            "masked_scatter: alignment must be 0 or a power of 2", Call);
5029     break;
5030   }
5031 
5032   case Intrinsic::experimental_guard: {
5033     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5034     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5035            "experimental_guard must have exactly one "
5036            "\"deopt\" operand bundle");
5037     break;
5038   }
5039 
5040   case Intrinsic::experimental_deoptimize: {
5041     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5042            Call);
5043     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5044            "experimental_deoptimize must have exactly one "
5045            "\"deopt\" operand bundle");
5046     Assert(Call.getType() == Call.getFunction()->getReturnType(),
5047            "experimental_deoptimize return type must match caller return type");
5048 
5049     if (isa<CallInst>(Call)) {
5050       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5051       Assert(RI,
5052              "calls to experimental_deoptimize must be followed by a return");
5053 
5054       if (!Call.getType()->isVoidTy() && RI)
5055         Assert(RI->getReturnValue() == &Call,
5056                "calls to experimental_deoptimize must be followed by a return "
5057                "of the value computed by experimental_deoptimize");
5058     }
5059 
5060     break;
5061   }
5062   case Intrinsic::vector_reduce_and:
5063   case Intrinsic::vector_reduce_or:
5064   case Intrinsic::vector_reduce_xor:
5065   case Intrinsic::vector_reduce_add:
5066   case Intrinsic::vector_reduce_mul:
5067   case Intrinsic::vector_reduce_smax:
5068   case Intrinsic::vector_reduce_smin:
5069   case Intrinsic::vector_reduce_umax:
5070   case Intrinsic::vector_reduce_umin: {
5071     Type *ArgTy = Call.getArgOperand(0)->getType();
5072     Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5073            "Intrinsic has incorrect argument type!");
5074     break;
5075   }
5076   case Intrinsic::vector_reduce_fmax:
5077   case Intrinsic::vector_reduce_fmin: {
5078     Type *ArgTy = Call.getArgOperand(0)->getType();
5079     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5080            "Intrinsic has incorrect argument type!");
5081     break;
5082   }
5083   case Intrinsic::vector_reduce_fadd:
5084   case Intrinsic::vector_reduce_fmul: {
5085     // Unlike the other reductions, the first argument is a start value. The
5086     // second argument is the vector to be reduced.
5087     Type *ArgTy = Call.getArgOperand(1)->getType();
5088     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5089            "Intrinsic has incorrect argument type!");
5090     break;
5091   }
5092   case Intrinsic::smul_fix:
5093   case Intrinsic::smul_fix_sat:
5094   case Intrinsic::umul_fix:
5095   case Intrinsic::umul_fix_sat:
5096   case Intrinsic::sdiv_fix:
5097   case Intrinsic::sdiv_fix_sat:
5098   case Intrinsic::udiv_fix:
5099   case Intrinsic::udiv_fix_sat: {
5100     Value *Op1 = Call.getArgOperand(0);
5101     Value *Op2 = Call.getArgOperand(1);
5102     Assert(Op1->getType()->isIntOrIntVectorTy(),
5103            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5104            "vector of ints");
5105     Assert(Op2->getType()->isIntOrIntVectorTy(),
5106            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5107            "vector of ints");
5108 
5109     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5110     Assert(Op3->getType()->getBitWidth() <= 32,
5111            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5112 
5113     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5114         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5115       Assert(
5116           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5117           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5118           "the operands");
5119     } else {
5120       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5121              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5122              "to the width of the operands");
5123     }
5124     break;
5125   }
5126   case Intrinsic::lround:
5127   case Intrinsic::llround:
5128   case Intrinsic::lrint:
5129   case Intrinsic::llrint: {
5130     Type *ValTy = Call.getArgOperand(0)->getType();
5131     Type *ResultTy = Call.getType();
5132     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5133            "Intrinsic does not support vectors", &Call);
5134     break;
5135   }
5136   case Intrinsic::bswap: {
5137     Type *Ty = Call.getType();
5138     unsigned Size = Ty->getScalarSizeInBits();
5139     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5140     break;
5141   }
5142   case Intrinsic::invariant_start: {
5143     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5144     Assert(InvariantSize &&
5145                (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5146            "invariant_start parameter must be -1, 0 or a positive number",
5147            &Call);
5148     break;
5149   }
5150   case Intrinsic::matrix_multiply:
5151   case Intrinsic::matrix_transpose:
5152   case Intrinsic::matrix_column_major_load:
5153   case Intrinsic::matrix_column_major_store: {
5154     Function *IF = Call.getCalledFunction();
5155     ConstantInt *Stride = nullptr;
5156     ConstantInt *NumRows;
5157     ConstantInt *NumColumns;
5158     VectorType *ResultTy;
5159     Type *Op0ElemTy = nullptr;
5160     Type *Op1ElemTy = nullptr;
5161     switch (ID) {
5162     case Intrinsic::matrix_multiply:
5163       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5164       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5165       ResultTy = cast<VectorType>(Call.getType());
5166       Op0ElemTy =
5167           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5168       Op1ElemTy =
5169           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5170       break;
5171     case Intrinsic::matrix_transpose:
5172       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5173       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5174       ResultTy = cast<VectorType>(Call.getType());
5175       Op0ElemTy =
5176           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5177       break;
5178     case Intrinsic::matrix_column_major_load:
5179       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5180       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5181       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5182       ResultTy = cast<VectorType>(Call.getType());
5183       Op0ElemTy =
5184           cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType();
5185       break;
5186     case Intrinsic::matrix_column_major_store:
5187       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5188       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5189       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5190       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5191       Op0ElemTy =
5192           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5193       Op1ElemTy =
5194           cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType();
5195       break;
5196     default:
5197       llvm_unreachable("unexpected intrinsic");
5198     }
5199 
5200     Assert(ResultTy->getElementType()->isIntegerTy() ||
5201            ResultTy->getElementType()->isFloatingPointTy(),
5202            "Result type must be an integer or floating-point type!", IF);
5203 
5204     Assert(ResultTy->getElementType() == Op0ElemTy,
5205            "Vector element type mismatch of the result and first operand "
5206            "vector!", IF);
5207 
5208     if (Op1ElemTy)
5209       Assert(ResultTy->getElementType() == Op1ElemTy,
5210              "Vector element type mismatch of the result and second operand "
5211              "vector!", IF);
5212 
5213     Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5214                NumRows->getZExtValue() * NumColumns->getZExtValue(),
5215            "Result of a matrix operation does not fit in the returned vector!");
5216 
5217     if (Stride)
5218       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
5219              "Stride must be greater or equal than the number of rows!", IF);
5220 
5221     break;
5222   }
5223   case Intrinsic::experimental_stepvector: {
5224     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5225     Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5226                VecTy->getScalarSizeInBits() >= 8,
5227            "experimental_stepvector only supported for vectors of integers "
5228            "with a bitwidth of at least 8.",
5229            &Call);
5230     break;
5231   }
5232   case Intrinsic::experimental_vector_insert: {
5233     Value *Vec = Call.getArgOperand(0);
5234     Value *SubVec = Call.getArgOperand(1);
5235     Value *Idx = Call.getArgOperand(2);
5236     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5237 
5238     VectorType *VecTy = cast<VectorType>(Vec->getType());
5239     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5240 
5241     ElementCount VecEC = VecTy->getElementCount();
5242     ElementCount SubVecEC = SubVecTy->getElementCount();
5243     Assert(VecTy->getElementType() == SubVecTy->getElementType(),
5244            "experimental_vector_insert parameters must have the same element "
5245            "type.",
5246            &Call);
5247     Assert(IdxN % SubVecEC.getKnownMinValue() == 0,
5248            "experimental_vector_insert index must be a constant multiple of "
5249            "the subvector's known minimum vector length.");
5250 
5251     // If this insertion is not the 'mixed' case where a fixed vector is
5252     // inserted into a scalable vector, ensure that the insertion of the
5253     // subvector does not overrun the parent vector.
5254     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5255       Assert(
5256           IdxN < VecEC.getKnownMinValue() &&
5257               IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5258           "subvector operand of experimental_vector_insert would overrun the "
5259           "vector being inserted into.");
5260     }
5261     break;
5262   }
5263   case Intrinsic::experimental_vector_extract: {
5264     Value *Vec = Call.getArgOperand(0);
5265     Value *Idx = Call.getArgOperand(1);
5266     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5267 
5268     VectorType *ResultTy = cast<VectorType>(Call.getType());
5269     VectorType *VecTy = cast<VectorType>(Vec->getType());
5270 
5271     ElementCount VecEC = VecTy->getElementCount();
5272     ElementCount ResultEC = ResultTy->getElementCount();
5273 
5274     Assert(ResultTy->getElementType() == VecTy->getElementType(),
5275            "experimental_vector_extract result must have the same element "
5276            "type as the input vector.",
5277            &Call);
5278     Assert(IdxN % ResultEC.getKnownMinValue() == 0,
5279            "experimental_vector_extract index must be a constant multiple of "
5280            "the result type's known minimum vector length.");
5281 
5282     // If this extraction is not the 'mixed' case where a fixed vector is is
5283     // extracted from a scalable vector, ensure that the extraction does not
5284     // overrun the parent vector.
5285     if (VecEC.isScalable() == ResultEC.isScalable()) {
5286       Assert(IdxN < VecEC.getKnownMinValue() &&
5287                  IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5288              "experimental_vector_extract would overrun.");
5289     }
5290     break;
5291   }
5292   case Intrinsic::experimental_noalias_scope_decl: {
5293     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5294     break;
5295   }
5296   case Intrinsic::preserve_array_access_index:
5297   case Intrinsic::preserve_struct_access_index: {
5298     Type *ElemTy = Call.getAttributes().getParamElementType(0);
5299     Assert(ElemTy,
5300            "Intrinsic requires elementtype attribute on first argument.",
5301            &Call);
5302     break;
5303   }
5304   };
5305 }
5306 
5307 /// Carefully grab the subprogram from a local scope.
5308 ///
5309 /// This carefully grabs the subprogram from a local scope, avoiding the
5310 /// built-in assertions that would typically fire.
5311 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5312   if (!LocalScope)
5313     return nullptr;
5314 
5315   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5316     return SP;
5317 
5318   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5319     return getSubprogram(LB->getRawScope());
5320 
5321   // Just return null; broken scope chains are checked elsewhere.
5322   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5323   return nullptr;
5324 }
5325 
5326 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5327   unsigned NumOperands;
5328   bool HasRoundingMD;
5329   switch (FPI.getIntrinsicID()) {
5330 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5331   case Intrinsic::INTRINSIC:                                                   \
5332     NumOperands = NARG;                                                        \
5333     HasRoundingMD = ROUND_MODE;                                                \
5334     break;
5335 #include "llvm/IR/ConstrainedOps.def"
5336   default:
5337     llvm_unreachable("Invalid constrained FP intrinsic!");
5338   }
5339   NumOperands += (1 + HasRoundingMD);
5340   // Compare intrinsics carry an extra predicate metadata operand.
5341   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5342     NumOperands += 1;
5343   Assert((FPI.getNumArgOperands() == NumOperands),
5344          "invalid arguments for constrained FP intrinsic", &FPI);
5345 
5346   switch (FPI.getIntrinsicID()) {
5347   case Intrinsic::experimental_constrained_lrint:
5348   case Intrinsic::experimental_constrained_llrint: {
5349     Type *ValTy = FPI.getArgOperand(0)->getType();
5350     Type *ResultTy = FPI.getType();
5351     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5352            "Intrinsic does not support vectors", &FPI);
5353   }
5354     break;
5355 
5356   case Intrinsic::experimental_constrained_lround:
5357   case Intrinsic::experimental_constrained_llround: {
5358     Type *ValTy = FPI.getArgOperand(0)->getType();
5359     Type *ResultTy = FPI.getType();
5360     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5361            "Intrinsic does not support vectors", &FPI);
5362     break;
5363   }
5364 
5365   case Intrinsic::experimental_constrained_fcmp:
5366   case Intrinsic::experimental_constrained_fcmps: {
5367     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5368     Assert(CmpInst::isFPPredicate(Pred),
5369            "invalid predicate for constrained FP comparison intrinsic", &FPI);
5370     break;
5371   }
5372 
5373   case Intrinsic::experimental_constrained_fptosi:
5374   case Intrinsic::experimental_constrained_fptoui: {
5375     Value *Operand = FPI.getArgOperand(0);
5376     uint64_t NumSrcElem = 0;
5377     Assert(Operand->getType()->isFPOrFPVectorTy(),
5378            "Intrinsic first argument must be floating point", &FPI);
5379     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5380       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5381     }
5382 
5383     Operand = &FPI;
5384     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5385            "Intrinsic first argument and result disagree on vector use", &FPI);
5386     Assert(Operand->getType()->isIntOrIntVectorTy(),
5387            "Intrinsic result must be an integer", &FPI);
5388     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5389       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5390              "Intrinsic first argument and result vector lengths must be equal",
5391              &FPI);
5392     }
5393   }
5394     break;
5395 
5396   case Intrinsic::experimental_constrained_sitofp:
5397   case Intrinsic::experimental_constrained_uitofp: {
5398     Value *Operand = FPI.getArgOperand(0);
5399     uint64_t NumSrcElem = 0;
5400     Assert(Operand->getType()->isIntOrIntVectorTy(),
5401            "Intrinsic first argument must be integer", &FPI);
5402     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5403       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5404     }
5405 
5406     Operand = &FPI;
5407     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5408            "Intrinsic first argument and result disagree on vector use", &FPI);
5409     Assert(Operand->getType()->isFPOrFPVectorTy(),
5410            "Intrinsic result must be a floating point", &FPI);
5411     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5412       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5413              "Intrinsic first argument and result vector lengths must be equal",
5414              &FPI);
5415     }
5416   } break;
5417 
5418   case Intrinsic::experimental_constrained_fptrunc:
5419   case Intrinsic::experimental_constrained_fpext: {
5420     Value *Operand = FPI.getArgOperand(0);
5421     Type *OperandTy = Operand->getType();
5422     Value *Result = &FPI;
5423     Type *ResultTy = Result->getType();
5424     Assert(OperandTy->isFPOrFPVectorTy(),
5425            "Intrinsic first argument must be FP or FP vector", &FPI);
5426     Assert(ResultTy->isFPOrFPVectorTy(),
5427            "Intrinsic result must be FP or FP vector", &FPI);
5428     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5429            "Intrinsic first argument and result disagree on vector use", &FPI);
5430     if (OperandTy->isVectorTy()) {
5431       Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5432                  cast<FixedVectorType>(ResultTy)->getNumElements(),
5433              "Intrinsic first argument and result vector lengths must be equal",
5434              &FPI);
5435     }
5436     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5437       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5438              "Intrinsic first argument's type must be larger than result type",
5439              &FPI);
5440     } else {
5441       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5442              "Intrinsic first argument's type must be smaller than result type",
5443              &FPI);
5444     }
5445   }
5446     break;
5447 
5448   default:
5449     break;
5450   }
5451 
5452   // If a non-metadata argument is passed in a metadata slot then the
5453   // error will be caught earlier when the incorrect argument doesn't
5454   // match the specification in the intrinsic call table. Thus, no
5455   // argument type check is needed here.
5456 
5457   Assert(FPI.getExceptionBehavior().hasValue(),
5458          "invalid exception behavior argument", &FPI);
5459   if (HasRoundingMD) {
5460     Assert(FPI.getRoundingMode().hasValue(),
5461            "invalid rounding mode argument", &FPI);
5462   }
5463 }
5464 
5465 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5466   auto *MD = DII.getRawLocation();
5467   AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
5468                (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5469            "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5470   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
5471          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5472          DII.getRawVariable());
5473   AssertDI(isa<DIExpression>(DII.getRawExpression()),
5474          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5475          DII.getRawExpression());
5476 
5477   // Ignore broken !dbg attachments; they're checked elsewhere.
5478   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5479     if (!isa<DILocation>(N))
5480       return;
5481 
5482   BasicBlock *BB = DII.getParent();
5483   Function *F = BB ? BB->getParent() : nullptr;
5484 
5485   // The scopes for variables and !dbg attachments must agree.
5486   DILocalVariable *Var = DII.getVariable();
5487   DILocation *Loc = DII.getDebugLoc();
5488   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5489            &DII, BB, F);
5490 
5491   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5492   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5493   if (!VarSP || !LocSP)
5494     return; // Broken scope chains are checked elsewhere.
5495 
5496   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5497                                " variable and !dbg attachment",
5498            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5499            Loc->getScope()->getSubprogram());
5500 
5501   // This check is redundant with one in visitLocalVariable().
5502   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
5503            Var->getRawType());
5504   verifyFnArgs(DII);
5505 }
5506 
5507 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5508   AssertDI(isa<DILabel>(DLI.getRawLabel()),
5509          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5510          DLI.getRawLabel());
5511 
5512   // Ignore broken !dbg attachments; they're checked elsewhere.
5513   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5514     if (!isa<DILocation>(N))
5515       return;
5516 
5517   BasicBlock *BB = DLI.getParent();
5518   Function *F = BB ? BB->getParent() : nullptr;
5519 
5520   // The scopes for variables and !dbg attachments must agree.
5521   DILabel *Label = DLI.getLabel();
5522   DILocation *Loc = DLI.getDebugLoc();
5523   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5524          &DLI, BB, F);
5525 
5526   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5527   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5528   if (!LabelSP || !LocSP)
5529     return;
5530 
5531   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5532                              " label and !dbg attachment",
5533            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5534            Loc->getScope()->getSubprogram());
5535 }
5536 
5537 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5538   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5539   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5540 
5541   // We don't know whether this intrinsic verified correctly.
5542   if (!V || !E || !E->isValid())
5543     return;
5544 
5545   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5546   auto Fragment = E->getFragmentInfo();
5547   if (!Fragment)
5548     return;
5549 
5550   // The frontend helps out GDB by emitting the members of local anonymous
5551   // unions as artificial local variables with shared storage. When SROA splits
5552   // the storage for artificial local variables that are smaller than the entire
5553   // union, the overhang piece will be outside of the allotted space for the
5554   // variable and this check fails.
5555   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5556   if (V->isArtificial())
5557     return;
5558 
5559   verifyFragmentExpression(*V, *Fragment, &I);
5560 }
5561 
5562 template <typename ValueOrMetadata>
5563 void Verifier::verifyFragmentExpression(const DIVariable &V,
5564                                         DIExpression::FragmentInfo Fragment,
5565                                         ValueOrMetadata *Desc) {
5566   // If there's no size, the type is broken, but that should be checked
5567   // elsewhere.
5568   auto VarSize = V.getSizeInBits();
5569   if (!VarSize)
5570     return;
5571 
5572   unsigned FragSize = Fragment.SizeInBits;
5573   unsigned FragOffset = Fragment.OffsetInBits;
5574   AssertDI(FragSize + FragOffset <= *VarSize,
5575          "fragment is larger than or outside of variable", Desc, &V);
5576   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5577 }
5578 
5579 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5580   // This function does not take the scope of noninlined function arguments into
5581   // account. Don't run it if current function is nodebug, because it may
5582   // contain inlined debug intrinsics.
5583   if (!HasDebugInfo)
5584     return;
5585 
5586   // For performance reasons only check non-inlined ones.
5587   if (I.getDebugLoc()->getInlinedAt())
5588     return;
5589 
5590   DILocalVariable *Var = I.getVariable();
5591   AssertDI(Var, "dbg intrinsic without variable");
5592 
5593   unsigned ArgNo = Var->getArg();
5594   if (!ArgNo)
5595     return;
5596 
5597   // Verify there are no duplicate function argument debug info entries.
5598   // These will cause hard-to-debug assertions in the DWARF backend.
5599   if (DebugFnArgs.size() < ArgNo)
5600     DebugFnArgs.resize(ArgNo, nullptr);
5601 
5602   auto *Prev = DebugFnArgs[ArgNo - 1];
5603   DebugFnArgs[ArgNo - 1] = Var;
5604   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5605            Prev, Var);
5606 }
5607 
5608 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5609   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5610 
5611   // We don't know whether this intrinsic verified correctly.
5612   if (!E || !E->isValid())
5613     return;
5614 
5615   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5616 }
5617 
5618 void Verifier::verifyCompileUnits() {
5619   // When more than one Module is imported into the same context, such as during
5620   // an LTO build before linking the modules, ODR type uniquing may cause types
5621   // to point to a different CU. This check does not make sense in this case.
5622   if (M.getContext().isODRUniquingDebugTypes())
5623     return;
5624   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5625   SmallPtrSet<const Metadata *, 2> Listed;
5626   if (CUs)
5627     Listed.insert(CUs->op_begin(), CUs->op_end());
5628   for (auto *CU : CUVisited)
5629     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5630   CUVisited.clear();
5631 }
5632 
5633 void Verifier::verifyDeoptimizeCallingConvs() {
5634   if (DeoptimizeDeclarations.empty())
5635     return;
5636 
5637   const Function *First = DeoptimizeDeclarations[0];
5638   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5639     Assert(First->getCallingConv() == F->getCallingConv(),
5640            "All llvm.experimental.deoptimize declarations must have the same "
5641            "calling convention",
5642            First, F);
5643   }
5644 }
5645 
5646 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5647   bool HasSource = F.getSource().hasValue();
5648   if (!HasSourceDebugInfo.count(&U))
5649     HasSourceDebugInfo[&U] = HasSource;
5650   AssertDI(HasSource == HasSourceDebugInfo[&U],
5651            "inconsistent use of embedded source");
5652 }
5653 
5654 void Verifier::verifyNoAliasScopeDecl() {
5655   if (NoAliasScopeDecls.empty())
5656     return;
5657 
5658   // only a single scope must be declared at a time.
5659   for (auto *II : NoAliasScopeDecls) {
5660     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
5661            "Not a llvm.experimental.noalias.scope.decl ?");
5662     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
5663         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5664     Assert(ScopeListMV != nullptr,
5665            "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
5666            "argument",
5667            II);
5668 
5669     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
5670     Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",
5671            II);
5672     Assert(ScopeListMD->getNumOperands() == 1,
5673            "!id.scope.list must point to a list with a single scope", II);
5674   }
5675 
5676   // Only check the domination rule when requested. Once all passes have been
5677   // adapted this option can go away.
5678   if (!VerifyNoAliasScopeDomination)
5679     return;
5680 
5681   // Now sort the intrinsics based on the scope MDNode so that declarations of
5682   // the same scopes are next to each other.
5683   auto GetScope = [](IntrinsicInst *II) {
5684     const auto *ScopeListMV = cast<MetadataAsValue>(
5685         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5686     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
5687   };
5688 
5689   // We are sorting on MDNode pointers here. For valid input IR this is ok.
5690   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
5691   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
5692     return GetScope(Lhs) < GetScope(Rhs);
5693   };
5694 
5695   llvm::sort(NoAliasScopeDecls, Compare);
5696 
5697   // Go over the intrinsics and check that for the same scope, they are not
5698   // dominating each other.
5699   auto ItCurrent = NoAliasScopeDecls.begin();
5700   while (ItCurrent != NoAliasScopeDecls.end()) {
5701     auto CurScope = GetScope(*ItCurrent);
5702     auto ItNext = ItCurrent;
5703     do {
5704       ++ItNext;
5705     } while (ItNext != NoAliasScopeDecls.end() &&
5706              GetScope(*ItNext) == CurScope);
5707 
5708     // [ItCurrent, ItNext) represents the declarations for the same scope.
5709     // Ensure they are not dominating each other.. but only if it is not too
5710     // expensive.
5711     if (ItNext - ItCurrent < 32)
5712       for (auto *I : llvm::make_range(ItCurrent, ItNext))
5713         for (auto *J : llvm::make_range(ItCurrent, ItNext))
5714           if (I != J)
5715             Assert(!DT.dominates(I, J),
5716                    "llvm.experimental.noalias.scope.decl dominates another one "
5717                    "with the same scope",
5718                    I);
5719     ItCurrent = ItNext;
5720   }
5721 }
5722 
5723 //===----------------------------------------------------------------------===//
5724 //  Implement the public interfaces to this file...
5725 //===----------------------------------------------------------------------===//
5726 
5727 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5728   Function &F = const_cast<Function &>(f);
5729 
5730   // Don't use a raw_null_ostream.  Printing IR is expensive.
5731   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5732 
5733   // Note that this function's return value is inverted from what you would
5734   // expect of a function called "verify".
5735   return !V.verify(F);
5736 }
5737 
5738 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5739                         bool *BrokenDebugInfo) {
5740   // Don't use a raw_null_ostream.  Printing IR is expensive.
5741   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5742 
5743   bool Broken = false;
5744   for (const Function &F : M)
5745     Broken |= !V.verify(F);
5746 
5747   Broken |= !V.verify();
5748   if (BrokenDebugInfo)
5749     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5750   // Note that this function's return value is inverted from what you would
5751   // expect of a function called "verify".
5752   return Broken;
5753 }
5754 
5755 namespace {
5756 
5757 struct VerifierLegacyPass : public FunctionPass {
5758   static char ID;
5759 
5760   std::unique_ptr<Verifier> V;
5761   bool FatalErrors = true;
5762 
5763   VerifierLegacyPass() : FunctionPass(ID) {
5764     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5765   }
5766   explicit VerifierLegacyPass(bool FatalErrors)
5767       : FunctionPass(ID),
5768         FatalErrors(FatalErrors) {
5769     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5770   }
5771 
5772   bool doInitialization(Module &M) override {
5773     V = std::make_unique<Verifier>(
5774         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5775     return false;
5776   }
5777 
5778   bool runOnFunction(Function &F) override {
5779     if (!V->verify(F) && FatalErrors) {
5780       errs() << "in function " << F.getName() << '\n';
5781       report_fatal_error("Broken function found, compilation aborted!");
5782     }
5783     return false;
5784   }
5785 
5786   bool doFinalization(Module &M) override {
5787     bool HasErrors = false;
5788     for (Function &F : M)
5789       if (F.isDeclaration())
5790         HasErrors |= !V->verify(F);
5791 
5792     HasErrors |= !V->verify();
5793     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5794       report_fatal_error("Broken module found, compilation aborted!");
5795     return false;
5796   }
5797 
5798   void getAnalysisUsage(AnalysisUsage &AU) const override {
5799     AU.setPreservesAll();
5800   }
5801 };
5802 
5803 } // end anonymous namespace
5804 
5805 /// Helper to issue failure from the TBAA verification
5806 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5807   if (Diagnostic)
5808     return Diagnostic->CheckFailed(Args...);
5809 }
5810 
5811 #define AssertTBAA(C, ...)                                                     \
5812   do {                                                                         \
5813     if (!(C)) {                                                                \
5814       CheckFailed(__VA_ARGS__);                                                \
5815       return false;                                                            \
5816     }                                                                          \
5817   } while (false)
5818 
5819 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5820 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5821 /// struct-type node describing an aggregate data structure (like a struct).
5822 TBAAVerifier::TBAABaseNodeSummary
5823 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5824                                  bool IsNewFormat) {
5825   if (BaseNode->getNumOperands() < 2) {
5826     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5827     return {true, ~0u};
5828   }
5829 
5830   auto Itr = TBAABaseNodes.find(BaseNode);
5831   if (Itr != TBAABaseNodes.end())
5832     return Itr->second;
5833 
5834   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5835   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5836   (void)InsertResult;
5837   assert(InsertResult.second && "We just checked!");
5838   return Result;
5839 }
5840 
5841 TBAAVerifier::TBAABaseNodeSummary
5842 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5843                                      bool IsNewFormat) {
5844   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5845 
5846   if (BaseNode->getNumOperands() == 2) {
5847     // Scalar nodes can only be accessed at offset 0.
5848     return isValidScalarTBAANode(BaseNode)
5849                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5850                : InvalidNode;
5851   }
5852 
5853   if (IsNewFormat) {
5854     if (BaseNode->getNumOperands() % 3 != 0) {
5855       CheckFailed("Access tag nodes must have the number of operands that is a "
5856                   "multiple of 3!", BaseNode);
5857       return InvalidNode;
5858     }
5859   } else {
5860     if (BaseNode->getNumOperands() % 2 != 1) {
5861       CheckFailed("Struct tag nodes must have an odd number of operands!",
5862                   BaseNode);
5863       return InvalidNode;
5864     }
5865   }
5866 
5867   // Check the type size field.
5868   if (IsNewFormat) {
5869     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5870         BaseNode->getOperand(1));
5871     if (!TypeSizeNode) {
5872       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5873       return InvalidNode;
5874     }
5875   }
5876 
5877   // Check the type name field. In the new format it can be anything.
5878   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5879     CheckFailed("Struct tag nodes have a string as their first operand",
5880                 BaseNode);
5881     return InvalidNode;
5882   }
5883 
5884   bool Failed = false;
5885 
5886   Optional<APInt> PrevOffset;
5887   unsigned BitWidth = ~0u;
5888 
5889   // We've already checked that BaseNode is not a degenerate root node with one
5890   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5891   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5892   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5893   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5894            Idx += NumOpsPerField) {
5895     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5896     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5897     if (!isa<MDNode>(FieldTy)) {
5898       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5899       Failed = true;
5900       continue;
5901     }
5902 
5903     auto *OffsetEntryCI =
5904         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5905     if (!OffsetEntryCI) {
5906       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5907       Failed = true;
5908       continue;
5909     }
5910 
5911     if (BitWidth == ~0u)
5912       BitWidth = OffsetEntryCI->getBitWidth();
5913 
5914     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5915       CheckFailed(
5916           "Bitwidth between the offsets and struct type entries must match", &I,
5917           BaseNode);
5918       Failed = true;
5919       continue;
5920     }
5921 
5922     // NB! As far as I can tell, we generate a non-strictly increasing offset
5923     // sequence only from structs that have zero size bit fields.  When
5924     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5925     // pick the field lexically the latest in struct type metadata node.  This
5926     // mirrors the actual behavior of the alias analysis implementation.
5927     bool IsAscending =
5928         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5929 
5930     if (!IsAscending) {
5931       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5932       Failed = true;
5933     }
5934 
5935     PrevOffset = OffsetEntryCI->getValue();
5936 
5937     if (IsNewFormat) {
5938       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5939           BaseNode->getOperand(Idx + 2));
5940       if (!MemberSizeNode) {
5941         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5942         Failed = true;
5943         continue;
5944       }
5945     }
5946   }
5947 
5948   return Failed ? InvalidNode
5949                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5950 }
5951 
5952 static bool IsRootTBAANode(const MDNode *MD) {
5953   return MD->getNumOperands() < 2;
5954 }
5955 
5956 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5957                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5958   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5959     return false;
5960 
5961   if (!isa<MDString>(MD->getOperand(0)))
5962     return false;
5963 
5964   if (MD->getNumOperands() == 3) {
5965     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5966     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5967       return false;
5968   }
5969 
5970   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5971   return Parent && Visited.insert(Parent).second &&
5972          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5973 }
5974 
5975 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5976   auto ResultIt = TBAAScalarNodes.find(MD);
5977   if (ResultIt != TBAAScalarNodes.end())
5978     return ResultIt->second;
5979 
5980   SmallPtrSet<const MDNode *, 4> Visited;
5981   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5982   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5983   (void)InsertResult;
5984   assert(InsertResult.second && "Just checked!");
5985 
5986   return Result;
5987 }
5988 
5989 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5990 /// Offset in place to be the offset within the field node returned.
5991 ///
5992 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5993 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5994                                                    const MDNode *BaseNode,
5995                                                    APInt &Offset,
5996                                                    bool IsNewFormat) {
5997   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5998 
5999   // Scalar nodes have only one possible "field" -- their parent in the access
6000   // hierarchy.  Offset must be zero at this point, but our caller is supposed
6001   // to Assert that.
6002   if (BaseNode->getNumOperands() == 2)
6003     return cast<MDNode>(BaseNode->getOperand(1));
6004 
6005   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6006   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6007   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6008            Idx += NumOpsPerField) {
6009     auto *OffsetEntryCI =
6010         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6011     if (OffsetEntryCI->getValue().ugt(Offset)) {
6012       if (Idx == FirstFieldOpNo) {
6013         CheckFailed("Could not find TBAA parent in struct type node", &I,
6014                     BaseNode, &Offset);
6015         return nullptr;
6016       }
6017 
6018       unsigned PrevIdx = Idx - NumOpsPerField;
6019       auto *PrevOffsetEntryCI =
6020           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6021       Offset -= PrevOffsetEntryCI->getValue();
6022       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6023     }
6024   }
6025 
6026   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6027   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6028       BaseNode->getOperand(LastIdx + 1));
6029   Offset -= LastOffsetEntryCI->getValue();
6030   return cast<MDNode>(BaseNode->getOperand(LastIdx));
6031 }
6032 
6033 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6034   if (!Type || Type->getNumOperands() < 3)
6035     return false;
6036 
6037   // In the new format type nodes shall have a reference to the parent type as
6038   // its first operand.
6039   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
6040   if (!Parent)
6041     return false;
6042 
6043   return true;
6044 }
6045 
6046 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6047   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6048                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6049                  isa<AtomicCmpXchgInst>(I),
6050              "This instruction shall not have a TBAA access tag!", &I);
6051 
6052   bool IsStructPathTBAA =
6053       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6054 
6055   AssertTBAA(
6056       IsStructPathTBAA,
6057       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
6058 
6059   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6060   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6061 
6062   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6063 
6064   if (IsNewFormat) {
6065     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6066                "Access tag metadata must have either 4 or 5 operands", &I, MD);
6067   } else {
6068     AssertTBAA(MD->getNumOperands() < 5,
6069                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6070   }
6071 
6072   // Check the access size field.
6073   if (IsNewFormat) {
6074     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6075         MD->getOperand(3));
6076     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6077   }
6078 
6079   // Check the immutability flag.
6080   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6081   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6082     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6083         MD->getOperand(ImmutabilityFlagOpNo));
6084     AssertTBAA(IsImmutableCI,
6085                "Immutability tag on struct tag metadata must be a constant",
6086                &I, MD);
6087     AssertTBAA(
6088         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6089         "Immutability part of the struct tag metadata must be either 0 or 1",
6090         &I, MD);
6091   }
6092 
6093   AssertTBAA(BaseNode && AccessType,
6094              "Malformed struct tag metadata: base and access-type "
6095              "should be non-null and point to Metadata nodes",
6096              &I, MD, BaseNode, AccessType);
6097 
6098   if (!IsNewFormat) {
6099     AssertTBAA(isValidScalarTBAANode(AccessType),
6100                "Access type node must be a valid scalar type", &I, MD,
6101                AccessType);
6102   }
6103 
6104   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6105   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6106 
6107   APInt Offset = OffsetCI->getValue();
6108   bool SeenAccessTypeInPath = false;
6109 
6110   SmallPtrSet<MDNode *, 4> StructPath;
6111 
6112   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6113        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6114                                                IsNewFormat)) {
6115     if (!StructPath.insert(BaseNode).second) {
6116       CheckFailed("Cycle detected in struct path", &I, MD);
6117       return false;
6118     }
6119 
6120     bool Invalid;
6121     unsigned BaseNodeBitWidth;
6122     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6123                                                              IsNewFormat);
6124 
6125     // If the base node is invalid in itself, then we've already printed all the
6126     // errors we wanted to print.
6127     if (Invalid)
6128       return false;
6129 
6130     SeenAccessTypeInPath |= BaseNode == AccessType;
6131 
6132     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6133       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6134                  &I, MD, &Offset);
6135 
6136     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6137                    (BaseNodeBitWidth == 0 && Offset == 0) ||
6138                    (IsNewFormat && BaseNodeBitWidth == ~0u),
6139                "Access bit-width not the same as description bit-width", &I, MD,
6140                BaseNodeBitWidth, Offset.getBitWidth());
6141 
6142     if (IsNewFormat && SeenAccessTypeInPath)
6143       break;
6144   }
6145 
6146   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
6147              &I, MD);
6148   return true;
6149 }
6150 
6151 char VerifierLegacyPass::ID = 0;
6152 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6153 
6154 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6155   return new VerifierLegacyPass(FatalErrors);
6156 }
6157 
6158 AnalysisKey VerifierAnalysis::Key;
6159 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6160                                                ModuleAnalysisManager &) {
6161   Result Res;
6162   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6163   return Res;
6164 }
6165 
6166 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6167                                                FunctionAnalysisManager &) {
6168   return { llvm::verifyFunction(F, &dbgs()), false };
6169 }
6170 
6171 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6172   auto Res = AM.getResult<VerifierAnalysis>(M);
6173   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6174     report_fatal_error("Broken module found, compilation aborted!");
6175 
6176   return PreservedAnalyses::all();
6177 }
6178 
6179 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6180   auto res = AM.getResult<VerifierAnalysis>(F);
6181   if (res.IRBroken && FatalErrors)
6182     report_fatal_error("Broken function found, compilation aborted!");
6183 
6184   return PreservedAnalyses::all();
6185 }
6186