1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyNoAliasScopeDomination( 119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121 "scopes are not dominating")); 122 123 namespace llvm { 124 125 struct VerifierSupport { 126 raw_ostream *OS; 127 const Module &M; 128 ModuleSlotTracker MST; 129 Triple TT; 130 const DataLayout &DL; 131 LLVMContext &Context; 132 133 /// Track the brokenness of the module while recursively visiting. 134 bool Broken = false; 135 /// Broken debug info can be "recovered" from by stripping the debug info. 136 bool BrokenDebugInfo = false; 137 /// Whether to treat broken debug info as an error. 138 bool TreatBrokenDebugInfoAsError = true; 139 140 explicit VerifierSupport(raw_ostream *OS, const Module &M) 141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 142 Context(M.getContext()) {} 143 144 private: 145 void Write(const Module *M) { 146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 147 } 148 149 void Write(const Value *V) { 150 if (V) 151 Write(*V); 152 } 153 154 void Write(const Value &V) { 155 if (isa<Instruction>(V)) { 156 V.print(*OS, MST); 157 *OS << '\n'; 158 } else { 159 V.printAsOperand(*OS, true, MST); 160 *OS << '\n'; 161 } 162 } 163 164 void Write(const Metadata *MD) { 165 if (!MD) 166 return; 167 MD->print(*OS, MST, &M); 168 *OS << '\n'; 169 } 170 171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 172 Write(MD.get()); 173 } 174 175 void Write(const NamedMDNode *NMD) { 176 if (!NMD) 177 return; 178 NMD->print(*OS, MST); 179 *OS << '\n'; 180 } 181 182 void Write(Type *T) { 183 if (!T) 184 return; 185 *OS << ' ' << *T; 186 } 187 188 void Write(const Comdat *C) { 189 if (!C) 190 return; 191 *OS << *C; 192 } 193 194 void Write(const APInt *AI) { 195 if (!AI) 196 return; 197 *OS << *AI << '\n'; 198 } 199 200 void Write(const unsigned i) { *OS << i << '\n'; } 201 202 // NOLINTNEXTLINE(readability-identifier-naming) 203 void Write(const Attribute *A) { 204 if (!A) 205 return; 206 *OS << A->getAsString() << '\n'; 207 } 208 209 // NOLINTNEXTLINE(readability-identifier-naming) 210 void Write(const AttributeSet *AS) { 211 if (!AS) 212 return; 213 *OS << AS->getAsString() << '\n'; 214 } 215 216 // NOLINTNEXTLINE(readability-identifier-naming) 217 void Write(const AttributeList *AL) { 218 if (!AL) 219 return; 220 AL->print(*OS); 221 } 222 223 template <typename T> void Write(ArrayRef<T> Vs) { 224 for (const T &V : Vs) 225 Write(V); 226 } 227 228 template <typename T1, typename... Ts> 229 void WriteTs(const T1 &V1, const Ts &... Vs) { 230 Write(V1); 231 WriteTs(Vs...); 232 } 233 234 template <typename... Ts> void WriteTs() {} 235 236 public: 237 /// A check failed, so printout out the condition and the message. 238 /// 239 /// This provides a nice place to put a breakpoint if you want to see why 240 /// something is not correct. 241 void CheckFailed(const Twine &Message) { 242 if (OS) 243 *OS << Message << '\n'; 244 Broken = true; 245 } 246 247 /// A check failed (with values to print). 248 /// 249 /// This calls the Message-only version so that the above is easier to set a 250 /// breakpoint on. 251 template <typename T1, typename... Ts> 252 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 253 CheckFailed(Message); 254 if (OS) 255 WriteTs(V1, Vs...); 256 } 257 258 /// A debug info check failed. 259 void DebugInfoCheckFailed(const Twine &Message) { 260 if (OS) 261 *OS << Message << '\n'; 262 Broken |= TreatBrokenDebugInfoAsError; 263 BrokenDebugInfo = true; 264 } 265 266 /// A debug info check failed (with values to print). 267 template <typename T1, typename... Ts> 268 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 269 const Ts &... Vs) { 270 DebugInfoCheckFailed(Message); 271 if (OS) 272 WriteTs(V1, Vs...); 273 } 274 }; 275 276 } // namespace llvm 277 278 namespace { 279 280 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 281 friend class InstVisitor<Verifier>; 282 283 DominatorTree DT; 284 285 /// When verifying a basic block, keep track of all of the 286 /// instructions we have seen so far. 287 /// 288 /// This allows us to do efficient dominance checks for the case when an 289 /// instruction has an operand that is an instruction in the same block. 290 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 291 292 /// Keep track of the metadata nodes that have been checked already. 293 SmallPtrSet<const Metadata *, 32> MDNodes; 294 295 /// Keep track which DISubprogram is attached to which function. 296 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 297 298 /// Track all DICompileUnits visited. 299 SmallPtrSet<const Metadata *, 2> CUVisited; 300 301 /// The result type for a landingpad. 302 Type *LandingPadResultTy; 303 304 /// Whether we've seen a call to @llvm.localescape in this function 305 /// already. 306 bool SawFrameEscape; 307 308 /// Whether the current function has a DISubprogram attached to it. 309 bool HasDebugInfo = false; 310 311 /// The current source language. 312 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 313 314 /// Whether source was present on the first DIFile encountered in each CU. 315 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 316 317 /// Stores the count of how many objects were passed to llvm.localescape for a 318 /// given function and the largest index passed to llvm.localrecover. 319 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 320 321 // Maps catchswitches and cleanuppads that unwind to siblings to the 322 // terminators that indicate the unwind, used to detect cycles therein. 323 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 324 325 /// Cache of constants visited in search of ConstantExprs. 326 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 327 328 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 329 SmallVector<const Function *, 4> DeoptimizeDeclarations; 330 331 /// Cache of attribute lists verified. 332 SmallPtrSet<const void *, 32> AttributeListsVisited; 333 334 // Verify that this GlobalValue is only used in this module. 335 // This map is used to avoid visiting uses twice. We can arrive at a user 336 // twice, if they have multiple operands. In particular for very large 337 // constant expressions, we can arrive at a particular user many times. 338 SmallPtrSet<const Value *, 32> GlobalValueVisited; 339 340 // Keeps track of duplicate function argument debug info. 341 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 342 343 TBAAVerifier TBAAVerifyHelper; 344 345 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 346 347 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 348 349 public: 350 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 351 const Module &M) 352 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 353 SawFrameEscape(false), TBAAVerifyHelper(this) { 354 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 355 } 356 357 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 358 359 bool verify(const Function &F) { 360 assert(F.getParent() == &M && 361 "An instance of this class only works with a specific module!"); 362 363 // First ensure the function is well-enough formed to compute dominance 364 // information, and directly compute a dominance tree. We don't rely on the 365 // pass manager to provide this as it isolates us from a potentially 366 // out-of-date dominator tree and makes it significantly more complex to run 367 // this code outside of a pass manager. 368 // FIXME: It's really gross that we have to cast away constness here. 369 if (!F.empty()) 370 DT.recalculate(const_cast<Function &>(F)); 371 372 for (const BasicBlock &BB : F) { 373 if (!BB.empty() && BB.back().isTerminator()) 374 continue; 375 376 if (OS) { 377 *OS << "Basic Block in function '" << F.getName() 378 << "' does not have terminator!\n"; 379 BB.printAsOperand(*OS, true, MST); 380 *OS << "\n"; 381 } 382 return false; 383 } 384 385 Broken = false; 386 // FIXME: We strip const here because the inst visitor strips const. 387 visit(const_cast<Function &>(F)); 388 verifySiblingFuncletUnwinds(); 389 InstsInThisBlock.clear(); 390 DebugFnArgs.clear(); 391 LandingPadResultTy = nullptr; 392 SawFrameEscape = false; 393 SiblingFuncletInfo.clear(); 394 verifyNoAliasScopeDecl(); 395 NoAliasScopeDecls.clear(); 396 397 return !Broken; 398 } 399 400 /// Verify the module that this instance of \c Verifier was initialized with. 401 bool verify() { 402 Broken = false; 403 404 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 405 for (const Function &F : M) 406 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 407 DeoptimizeDeclarations.push_back(&F); 408 409 // Now that we've visited every function, verify that we never asked to 410 // recover a frame index that wasn't escaped. 411 verifyFrameRecoverIndices(); 412 for (const GlobalVariable &GV : M.globals()) 413 visitGlobalVariable(GV); 414 415 for (const GlobalAlias &GA : M.aliases()) 416 visitGlobalAlias(GA); 417 418 for (const NamedMDNode &NMD : M.named_metadata()) 419 visitNamedMDNode(NMD); 420 421 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 422 visitComdat(SMEC.getValue()); 423 424 visitModuleFlags(M); 425 visitModuleIdents(M); 426 visitModuleCommandLines(M); 427 428 verifyCompileUnits(); 429 430 verifyDeoptimizeCallingConvs(); 431 DISubprogramAttachments.clear(); 432 return !Broken; 433 } 434 435 private: 436 /// Whether a metadata node is allowed to be, or contain, a DILocation. 437 enum class AreDebugLocsAllowed { No, Yes }; 438 439 // Verification methods... 440 void visitGlobalValue(const GlobalValue &GV); 441 void visitGlobalVariable(const GlobalVariable &GV); 442 void visitGlobalAlias(const GlobalAlias &GA); 443 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 444 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 445 const GlobalAlias &A, const Constant &C); 446 void visitNamedMDNode(const NamedMDNode &NMD); 447 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 448 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 449 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 450 void visitComdat(const Comdat &C); 451 void visitModuleIdents(const Module &M); 452 void visitModuleCommandLines(const Module &M); 453 void visitModuleFlags(const Module &M); 454 void visitModuleFlag(const MDNode *Op, 455 DenseMap<const MDString *, const MDNode *> &SeenIDs, 456 SmallVectorImpl<const MDNode *> &Requirements); 457 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 458 void visitFunction(const Function &F); 459 void visitBasicBlock(BasicBlock &BB); 460 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 461 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 462 void visitProfMetadata(Instruction &I, MDNode *MD); 463 void visitAnnotationMetadata(MDNode *Annotation); 464 465 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 466 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 467 #include "llvm/IR/Metadata.def" 468 void visitDIScope(const DIScope &N); 469 void visitDIVariable(const DIVariable &N); 470 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 471 void visitDITemplateParameter(const DITemplateParameter &N); 472 473 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 474 475 // InstVisitor overrides... 476 using InstVisitor<Verifier>::visit; 477 void visit(Instruction &I); 478 479 void visitTruncInst(TruncInst &I); 480 void visitZExtInst(ZExtInst &I); 481 void visitSExtInst(SExtInst &I); 482 void visitFPTruncInst(FPTruncInst &I); 483 void visitFPExtInst(FPExtInst &I); 484 void visitFPToUIInst(FPToUIInst &I); 485 void visitFPToSIInst(FPToSIInst &I); 486 void visitUIToFPInst(UIToFPInst &I); 487 void visitSIToFPInst(SIToFPInst &I); 488 void visitIntToPtrInst(IntToPtrInst &I); 489 void visitPtrToIntInst(PtrToIntInst &I); 490 void visitBitCastInst(BitCastInst &I); 491 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 492 void visitPHINode(PHINode &PN); 493 void visitCallBase(CallBase &Call); 494 void visitUnaryOperator(UnaryOperator &U); 495 void visitBinaryOperator(BinaryOperator &B); 496 void visitICmpInst(ICmpInst &IC); 497 void visitFCmpInst(FCmpInst &FC); 498 void visitExtractElementInst(ExtractElementInst &EI); 499 void visitInsertElementInst(InsertElementInst &EI); 500 void visitShuffleVectorInst(ShuffleVectorInst &EI); 501 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 502 void visitCallInst(CallInst &CI); 503 void visitInvokeInst(InvokeInst &II); 504 void visitGetElementPtrInst(GetElementPtrInst &GEP); 505 void visitLoadInst(LoadInst &LI); 506 void visitStoreInst(StoreInst &SI); 507 void verifyDominatesUse(Instruction &I, unsigned i); 508 void visitInstruction(Instruction &I); 509 void visitTerminator(Instruction &I); 510 void visitBranchInst(BranchInst &BI); 511 void visitReturnInst(ReturnInst &RI); 512 void visitSwitchInst(SwitchInst &SI); 513 void visitIndirectBrInst(IndirectBrInst &BI); 514 void visitCallBrInst(CallBrInst &CBI); 515 void visitSelectInst(SelectInst &SI); 516 void visitUserOp1(Instruction &I); 517 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 518 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 519 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 520 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 521 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 522 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 523 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 524 void visitFenceInst(FenceInst &FI); 525 void visitAllocaInst(AllocaInst &AI); 526 void visitExtractValueInst(ExtractValueInst &EVI); 527 void visitInsertValueInst(InsertValueInst &IVI); 528 void visitEHPadPredecessors(Instruction &I); 529 void visitLandingPadInst(LandingPadInst &LPI); 530 void visitResumeInst(ResumeInst &RI); 531 void visitCatchPadInst(CatchPadInst &CPI); 532 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 533 void visitCleanupPadInst(CleanupPadInst &CPI); 534 void visitFuncletPadInst(FuncletPadInst &FPI); 535 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 536 void visitCleanupReturnInst(CleanupReturnInst &CRI); 537 538 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 539 void verifySwiftErrorValue(const Value *SwiftErrorVal); 540 void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context); 541 void verifyMustTailCall(CallInst &CI); 542 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 543 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 544 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 545 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 546 const Value *V); 547 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 548 const Value *V, bool IsIntrinsic); 549 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 550 551 void visitConstantExprsRecursively(const Constant *EntryC); 552 void visitConstantExpr(const ConstantExpr *CE); 553 void verifyStatepoint(const CallBase &Call); 554 void verifyFrameRecoverIndices(); 555 void verifySiblingFuncletUnwinds(); 556 557 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 558 template <typename ValueOrMetadata> 559 void verifyFragmentExpression(const DIVariable &V, 560 DIExpression::FragmentInfo Fragment, 561 ValueOrMetadata *Desc); 562 void verifyFnArgs(const DbgVariableIntrinsic &I); 563 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 564 565 /// Module-level debug info verification... 566 void verifyCompileUnits(); 567 568 /// Module-level verification that all @llvm.experimental.deoptimize 569 /// declarations share the same calling convention. 570 void verifyDeoptimizeCallingConvs(); 571 572 /// Verify all-or-nothing property of DIFile source attribute within a CU. 573 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 574 575 /// Verify the llvm.experimental.noalias.scope.decl declarations 576 void verifyNoAliasScopeDecl(); 577 }; 578 579 } // end anonymous namespace 580 581 /// We know that cond should be true, if not print an error message. 582 #define Assert(C, ...) \ 583 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 584 585 /// We know that a debug info condition should be true, if not print 586 /// an error message. 587 #define AssertDI(C, ...) \ 588 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 589 590 void Verifier::visit(Instruction &I) { 591 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 592 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 593 InstVisitor<Verifier>::visit(I); 594 } 595 596 // Helper to recursively iterate over indirect users. By 597 // returning false, the callback can ask to stop recursing 598 // further. 599 static void forEachUser(const Value *User, 600 SmallPtrSet<const Value *, 32> &Visited, 601 llvm::function_ref<bool(const Value *)> Callback) { 602 if (!Visited.insert(User).second) 603 return; 604 for (const Value *TheNextUser : User->materialized_users()) 605 if (Callback(TheNextUser)) 606 forEachUser(TheNextUser, Visited, Callback); 607 } 608 609 void Verifier::visitGlobalValue(const GlobalValue &GV) { 610 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 611 "Global is external, but doesn't have external or weak linkage!", &GV); 612 613 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 614 Assert(GO->getAlignment() <= Value::MaximumAlignment, 615 "huge alignment values are unsupported", GO); 616 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 617 "Only global variables can have appending linkage!", &GV); 618 619 if (GV.hasAppendingLinkage()) { 620 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 621 Assert(GVar && GVar->getValueType()->isArrayTy(), 622 "Only global arrays can have appending linkage!", GVar); 623 } 624 625 if (GV.isDeclarationForLinker()) 626 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 627 628 if (GV.hasDLLImportStorageClass()) { 629 Assert(!GV.isDSOLocal(), 630 "GlobalValue with DLLImport Storage is dso_local!", &GV); 631 632 Assert((GV.isDeclaration() && 633 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 634 GV.hasAvailableExternallyLinkage(), 635 "Global is marked as dllimport, but not external", &GV); 636 } 637 638 if (GV.isImplicitDSOLocal()) 639 Assert(GV.isDSOLocal(), 640 "GlobalValue with local linkage or non-default " 641 "visibility must be dso_local!", 642 &GV); 643 644 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 645 if (const Instruction *I = dyn_cast<Instruction>(V)) { 646 if (!I->getParent() || !I->getParent()->getParent()) 647 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 648 I); 649 else if (I->getParent()->getParent()->getParent() != &M) 650 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 651 I->getParent()->getParent(), 652 I->getParent()->getParent()->getParent()); 653 return false; 654 } else if (const Function *F = dyn_cast<Function>(V)) { 655 if (F->getParent() != &M) 656 CheckFailed("Global is used by function in a different module", &GV, &M, 657 F, F->getParent()); 658 return false; 659 } 660 return true; 661 }); 662 } 663 664 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 665 if (GV.hasInitializer()) { 666 Assert(GV.getInitializer()->getType() == GV.getValueType(), 667 "Global variable initializer type does not match global " 668 "variable type!", 669 &GV); 670 // If the global has common linkage, it must have a zero initializer and 671 // cannot be constant. 672 if (GV.hasCommonLinkage()) { 673 Assert(GV.getInitializer()->isNullValue(), 674 "'common' global must have a zero initializer!", &GV); 675 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 676 &GV); 677 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 678 } 679 } 680 681 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 682 GV.getName() == "llvm.global_dtors")) { 683 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 684 "invalid linkage for intrinsic global variable", &GV); 685 // Don't worry about emitting an error for it not being an array, 686 // visitGlobalValue will complain on appending non-array. 687 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 688 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 689 PointerType *FuncPtrTy = 690 FunctionType::get(Type::getVoidTy(Context), false)-> 691 getPointerTo(DL.getProgramAddressSpace()); 692 Assert(STy && 693 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 694 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 695 STy->getTypeAtIndex(1) == FuncPtrTy, 696 "wrong type for intrinsic global variable", &GV); 697 Assert(STy->getNumElements() == 3, 698 "the third field of the element type is mandatory, " 699 "specify i8* null to migrate from the obsoleted 2-field form"); 700 Type *ETy = STy->getTypeAtIndex(2); 701 Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); 702 Assert(ETy->isPointerTy() && 703 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), 704 "wrong type for intrinsic global variable", &GV); 705 } 706 } 707 708 if (GV.hasName() && (GV.getName() == "llvm.used" || 709 GV.getName() == "llvm.compiler.used")) { 710 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 711 "invalid linkage for intrinsic global variable", &GV); 712 Type *GVType = GV.getValueType(); 713 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 714 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 715 Assert(PTy, "wrong type for intrinsic global variable", &GV); 716 if (GV.hasInitializer()) { 717 const Constant *Init = GV.getInitializer(); 718 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 719 Assert(InitArray, "wrong initalizer for intrinsic global variable", 720 Init); 721 for (Value *Op : InitArray->operands()) { 722 Value *V = Op->stripPointerCasts(); 723 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 724 isa<GlobalAlias>(V), 725 "invalid llvm.used member", V); 726 Assert(V->hasName(), "members of llvm.used must be named", V); 727 } 728 } 729 } 730 } 731 732 // Visit any debug info attachments. 733 SmallVector<MDNode *, 1> MDs; 734 GV.getMetadata(LLVMContext::MD_dbg, MDs); 735 for (auto *MD : MDs) { 736 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 737 visitDIGlobalVariableExpression(*GVE); 738 else 739 AssertDI(false, "!dbg attachment of global variable must be a " 740 "DIGlobalVariableExpression"); 741 } 742 743 // Scalable vectors cannot be global variables, since we don't know 744 // the runtime size. If the global is an array containing scalable vectors, 745 // that will be caught by the isValidElementType methods in StructType or 746 // ArrayType instead. 747 Assert(!isa<ScalableVectorType>(GV.getValueType()), 748 "Globals cannot contain scalable vectors", &GV); 749 750 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 751 Assert(!STy->containsScalableVectorType(), 752 "Globals cannot contain scalable vectors", &GV); 753 754 if (!GV.hasInitializer()) { 755 visitGlobalValue(GV); 756 return; 757 } 758 759 // Walk any aggregate initializers looking for bitcasts between address spaces 760 visitConstantExprsRecursively(GV.getInitializer()); 761 762 visitGlobalValue(GV); 763 } 764 765 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 766 SmallPtrSet<const GlobalAlias*, 4> Visited; 767 Visited.insert(&GA); 768 visitAliaseeSubExpr(Visited, GA, C); 769 } 770 771 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 772 const GlobalAlias &GA, const Constant &C) { 773 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 774 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 775 &GA); 776 777 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 778 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 779 780 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 781 &GA); 782 } else { 783 // Only continue verifying subexpressions of GlobalAliases. 784 // Do not recurse into global initializers. 785 return; 786 } 787 } 788 789 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 790 visitConstantExprsRecursively(CE); 791 792 for (const Use &U : C.operands()) { 793 Value *V = &*U; 794 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 795 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 796 else if (const auto *C2 = dyn_cast<Constant>(V)) 797 visitAliaseeSubExpr(Visited, GA, *C2); 798 } 799 } 800 801 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 802 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 803 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 804 "weak_odr, or external linkage!", 805 &GA); 806 const Constant *Aliasee = GA.getAliasee(); 807 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 808 Assert(GA.getType() == Aliasee->getType(), 809 "Alias and aliasee types should match!", &GA); 810 811 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 812 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 813 814 visitAliaseeSubExpr(GA, *Aliasee); 815 816 visitGlobalValue(GA); 817 } 818 819 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 820 // There used to be various other llvm.dbg.* nodes, but we don't support 821 // upgrading them and we want to reserve the namespace for future uses. 822 if (NMD.getName().startswith("llvm.dbg.")) 823 AssertDI(NMD.getName() == "llvm.dbg.cu", 824 "unrecognized named metadata node in the llvm.dbg namespace", 825 &NMD); 826 for (const MDNode *MD : NMD.operands()) { 827 if (NMD.getName() == "llvm.dbg.cu") 828 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 829 830 if (!MD) 831 continue; 832 833 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 834 } 835 } 836 837 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 838 // Only visit each node once. Metadata can be mutually recursive, so this 839 // avoids infinite recursion here, as well as being an optimization. 840 if (!MDNodes.insert(&MD).second) 841 return; 842 843 Assert(&MD.getContext() == &Context, 844 "MDNode context does not match Module context!", &MD); 845 846 switch (MD.getMetadataID()) { 847 default: 848 llvm_unreachable("Invalid MDNode subclass"); 849 case Metadata::MDTupleKind: 850 break; 851 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 852 case Metadata::CLASS##Kind: \ 853 visit##CLASS(cast<CLASS>(MD)); \ 854 break; 855 #include "llvm/IR/Metadata.def" 856 } 857 858 for (const Metadata *Op : MD.operands()) { 859 if (!Op) 860 continue; 861 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 862 &MD, Op); 863 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 864 "DILocation not allowed within this metadata node", &MD, Op); 865 if (auto *N = dyn_cast<MDNode>(Op)) { 866 visitMDNode(*N, AllowLocs); 867 continue; 868 } 869 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 870 visitValueAsMetadata(*V, nullptr); 871 continue; 872 } 873 } 874 875 // Check these last, so we diagnose problems in operands first. 876 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 877 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 878 } 879 880 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 881 Assert(MD.getValue(), "Expected valid value", &MD); 882 Assert(!MD.getValue()->getType()->isMetadataTy(), 883 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 884 885 auto *L = dyn_cast<LocalAsMetadata>(&MD); 886 if (!L) 887 return; 888 889 Assert(F, "function-local metadata used outside a function", L); 890 891 // If this was an instruction, bb, or argument, verify that it is in the 892 // function that we expect. 893 Function *ActualF = nullptr; 894 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 895 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 896 ActualF = I->getParent()->getParent(); 897 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 898 ActualF = BB->getParent(); 899 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 900 ActualF = A->getParent(); 901 assert(ActualF && "Unimplemented function local metadata case!"); 902 903 Assert(ActualF == F, "function-local metadata used in wrong function", L); 904 } 905 906 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 907 Metadata *MD = MDV.getMetadata(); 908 if (auto *N = dyn_cast<MDNode>(MD)) { 909 visitMDNode(*N, AreDebugLocsAllowed::No); 910 return; 911 } 912 913 // Only visit each node once. Metadata can be mutually recursive, so this 914 // avoids infinite recursion here, as well as being an optimization. 915 if (!MDNodes.insert(MD).second) 916 return; 917 918 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 919 visitValueAsMetadata(*V, F); 920 } 921 922 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 923 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 924 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 925 926 void Verifier::visitDILocation(const DILocation &N) { 927 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 928 "location requires a valid scope", &N, N.getRawScope()); 929 if (auto *IA = N.getRawInlinedAt()) 930 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 931 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 932 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 933 } 934 935 void Verifier::visitGenericDINode(const GenericDINode &N) { 936 AssertDI(N.getTag(), "invalid tag", &N); 937 } 938 939 void Verifier::visitDIScope(const DIScope &N) { 940 if (auto *F = N.getRawFile()) 941 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 942 } 943 944 void Verifier::visitDISubrange(const DISubrange &N) { 945 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 946 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 947 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 948 N.getRawUpperBound(), 949 "Subrange must contain count or upperBound", &N); 950 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 951 "Subrange can have any one of count or upperBound", &N); 952 auto *CBound = N.getRawCountNode(); 953 AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) || 954 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 955 "Count must be signed constant or DIVariable or DIExpression", &N); 956 auto Count = N.getCount(); 957 AssertDI(!Count || !Count.is<ConstantInt *>() || 958 Count.get<ConstantInt *>()->getSExtValue() >= -1, 959 "invalid subrange count", &N); 960 auto *LBound = N.getRawLowerBound(); 961 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 962 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 963 "LowerBound must be signed constant or DIVariable or DIExpression", 964 &N); 965 auto *UBound = N.getRawUpperBound(); 966 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 967 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 968 "UpperBound must be signed constant or DIVariable or DIExpression", 969 &N); 970 auto *Stride = N.getRawStride(); 971 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 972 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 973 "Stride must be signed constant or DIVariable or DIExpression", &N); 974 } 975 976 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 977 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 978 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 979 "GenericSubrange must contain count or upperBound", &N); 980 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 981 "GenericSubrange can have any one of count or upperBound", &N); 982 auto *CBound = N.getRawCountNode(); 983 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 984 "Count must be signed constant or DIVariable or DIExpression", &N); 985 auto *LBound = N.getRawLowerBound(); 986 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 987 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 988 "LowerBound must be signed constant or DIVariable or DIExpression", 989 &N); 990 auto *UBound = N.getRawUpperBound(); 991 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 992 "UpperBound must be signed constant or DIVariable or DIExpression", 993 &N); 994 auto *Stride = N.getRawStride(); 995 AssertDI(Stride, "GenericSubrange must contain stride", &N); 996 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 997 "Stride must be signed constant or DIVariable or DIExpression", &N); 998 } 999 1000 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1001 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1002 } 1003 1004 void Verifier::visitDIBasicType(const DIBasicType &N) { 1005 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 1006 N.getTag() == dwarf::DW_TAG_unspecified_type || 1007 N.getTag() == dwarf::DW_TAG_string_type, 1008 "invalid tag", &N); 1009 } 1010 1011 void Verifier::visitDIStringType(const DIStringType &N) { 1012 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1013 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 1014 "has conflicting flags", &N); 1015 } 1016 1017 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1018 // Common scope checks. 1019 visitDIScope(N); 1020 1021 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 1022 N.getTag() == dwarf::DW_TAG_pointer_type || 1023 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1024 N.getTag() == dwarf::DW_TAG_reference_type || 1025 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1026 N.getTag() == dwarf::DW_TAG_const_type || 1027 N.getTag() == dwarf::DW_TAG_volatile_type || 1028 N.getTag() == dwarf::DW_TAG_restrict_type || 1029 N.getTag() == dwarf::DW_TAG_atomic_type || 1030 N.getTag() == dwarf::DW_TAG_member || 1031 N.getTag() == dwarf::DW_TAG_inheritance || 1032 N.getTag() == dwarf::DW_TAG_friend || 1033 N.getTag() == dwarf::DW_TAG_set_type, 1034 "invalid tag", &N); 1035 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1036 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1037 N.getRawExtraData()); 1038 } 1039 1040 if (N.getTag() == dwarf::DW_TAG_set_type) { 1041 if (auto *T = N.getRawBaseType()) { 1042 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1043 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1044 AssertDI( 1045 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1046 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1047 Basic->getEncoding() == dwarf::DW_ATE_signed || 1048 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1049 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1050 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1051 "invalid set base type", &N, T); 1052 } 1053 } 1054 1055 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1056 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1057 N.getRawBaseType()); 1058 1059 if (N.getDWARFAddressSpace()) { 1060 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1061 N.getTag() == dwarf::DW_TAG_reference_type || 1062 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1063 "DWARF address space only applies to pointer or reference types", 1064 &N); 1065 } 1066 } 1067 1068 /// Detect mutually exclusive flags. 1069 static bool hasConflictingReferenceFlags(unsigned Flags) { 1070 return ((Flags & DINode::FlagLValueReference) && 1071 (Flags & DINode::FlagRValueReference)) || 1072 ((Flags & DINode::FlagTypePassByValue) && 1073 (Flags & DINode::FlagTypePassByReference)); 1074 } 1075 1076 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1077 auto *Params = dyn_cast<MDTuple>(&RawParams); 1078 AssertDI(Params, "invalid template params", &N, &RawParams); 1079 for (Metadata *Op : Params->operands()) { 1080 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1081 &N, Params, Op); 1082 } 1083 } 1084 1085 void Verifier::visitDICompositeType(const DICompositeType &N) { 1086 // Common scope checks. 1087 visitDIScope(N); 1088 1089 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1090 N.getTag() == dwarf::DW_TAG_structure_type || 1091 N.getTag() == dwarf::DW_TAG_union_type || 1092 N.getTag() == dwarf::DW_TAG_enumeration_type || 1093 N.getTag() == dwarf::DW_TAG_class_type || 1094 N.getTag() == dwarf::DW_TAG_variant_part, 1095 "invalid tag", &N); 1096 1097 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1098 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1099 N.getRawBaseType()); 1100 1101 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1102 "invalid composite elements", &N, N.getRawElements()); 1103 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1104 N.getRawVTableHolder()); 1105 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1106 "invalid reference flags", &N); 1107 unsigned DIBlockByRefStruct = 1 << 4; 1108 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1109 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1110 1111 if (N.isVector()) { 1112 const DINodeArray Elements = N.getElements(); 1113 AssertDI(Elements.size() == 1 && 1114 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1115 "invalid vector, expected one element of type subrange", &N); 1116 } 1117 1118 if (auto *Params = N.getRawTemplateParams()) 1119 visitTemplateParams(N, *Params); 1120 1121 if (auto *D = N.getRawDiscriminator()) { 1122 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1123 "discriminator can only appear on variant part"); 1124 } 1125 1126 if (N.getRawDataLocation()) { 1127 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1128 "dataLocation can only appear in array type"); 1129 } 1130 1131 if (N.getRawAssociated()) { 1132 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1133 "associated can only appear in array type"); 1134 } 1135 1136 if (N.getRawAllocated()) { 1137 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1138 "allocated can only appear in array type"); 1139 } 1140 1141 if (N.getRawRank()) { 1142 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1143 "rank can only appear in array type"); 1144 } 1145 } 1146 1147 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1148 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1149 if (auto *Types = N.getRawTypeArray()) { 1150 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1151 for (Metadata *Ty : N.getTypeArray()->operands()) { 1152 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1153 } 1154 } 1155 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1156 "invalid reference flags", &N); 1157 } 1158 1159 void Verifier::visitDIFile(const DIFile &N) { 1160 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1161 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1162 if (Checksum) { 1163 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1164 "invalid checksum kind", &N); 1165 size_t Size; 1166 switch (Checksum->Kind) { 1167 case DIFile::CSK_MD5: 1168 Size = 32; 1169 break; 1170 case DIFile::CSK_SHA1: 1171 Size = 40; 1172 break; 1173 case DIFile::CSK_SHA256: 1174 Size = 64; 1175 break; 1176 } 1177 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1178 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1179 "invalid checksum", &N); 1180 } 1181 } 1182 1183 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1184 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1185 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1186 1187 // Don't bother verifying the compilation directory or producer string 1188 // as those could be empty. 1189 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1190 N.getRawFile()); 1191 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1192 N.getFile()); 1193 1194 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1195 1196 verifySourceDebugInfo(N, *N.getFile()); 1197 1198 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1199 "invalid emission kind", &N); 1200 1201 if (auto *Array = N.getRawEnumTypes()) { 1202 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1203 for (Metadata *Op : N.getEnumTypes()->operands()) { 1204 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1205 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1206 "invalid enum type", &N, N.getEnumTypes(), Op); 1207 } 1208 } 1209 if (auto *Array = N.getRawRetainedTypes()) { 1210 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1211 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1212 AssertDI(Op && (isa<DIType>(Op) || 1213 (isa<DISubprogram>(Op) && 1214 !cast<DISubprogram>(Op)->isDefinition())), 1215 "invalid retained type", &N, Op); 1216 } 1217 } 1218 if (auto *Array = N.getRawGlobalVariables()) { 1219 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1220 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1221 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1222 "invalid global variable ref", &N, Op); 1223 } 1224 } 1225 if (auto *Array = N.getRawImportedEntities()) { 1226 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1227 for (Metadata *Op : N.getImportedEntities()->operands()) { 1228 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1229 &N, Op); 1230 } 1231 } 1232 if (auto *Array = N.getRawMacros()) { 1233 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1234 for (Metadata *Op : N.getMacros()->operands()) { 1235 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1236 } 1237 } 1238 CUVisited.insert(&N); 1239 } 1240 1241 void Verifier::visitDISubprogram(const DISubprogram &N) { 1242 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1243 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1244 if (auto *F = N.getRawFile()) 1245 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1246 else 1247 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1248 if (auto *T = N.getRawType()) 1249 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1250 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1251 N.getRawContainingType()); 1252 if (auto *Params = N.getRawTemplateParams()) 1253 visitTemplateParams(N, *Params); 1254 if (auto *S = N.getRawDeclaration()) 1255 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1256 "invalid subprogram declaration", &N, S); 1257 if (auto *RawNode = N.getRawRetainedNodes()) { 1258 auto *Node = dyn_cast<MDTuple>(RawNode); 1259 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1260 for (Metadata *Op : Node->operands()) { 1261 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1262 "invalid retained nodes, expected DILocalVariable or DILabel", 1263 &N, Node, Op); 1264 } 1265 } 1266 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1267 "invalid reference flags", &N); 1268 1269 auto *Unit = N.getRawUnit(); 1270 if (N.isDefinition()) { 1271 // Subprogram definitions (not part of the type hierarchy). 1272 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1273 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1274 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1275 if (N.getFile()) 1276 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1277 } else { 1278 // Subprogram declarations (part of the type hierarchy). 1279 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1280 } 1281 1282 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1283 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1284 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1285 for (Metadata *Op : ThrownTypes->operands()) 1286 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1287 Op); 1288 } 1289 1290 if (N.areAllCallsDescribed()) 1291 AssertDI(N.isDefinition(), 1292 "DIFlagAllCallsDescribed must be attached to a definition"); 1293 } 1294 1295 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1296 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1297 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1298 "invalid local scope", &N, N.getRawScope()); 1299 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1300 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1301 } 1302 1303 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1304 visitDILexicalBlockBase(N); 1305 1306 AssertDI(N.getLine() || !N.getColumn(), 1307 "cannot have column info without line info", &N); 1308 } 1309 1310 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1311 visitDILexicalBlockBase(N); 1312 } 1313 1314 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1315 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1316 if (auto *S = N.getRawScope()) 1317 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1318 if (auto *S = N.getRawDecl()) 1319 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1320 } 1321 1322 void Verifier::visitDINamespace(const DINamespace &N) { 1323 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1324 if (auto *S = N.getRawScope()) 1325 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1326 } 1327 1328 void Verifier::visitDIMacro(const DIMacro &N) { 1329 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1330 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1331 "invalid macinfo type", &N); 1332 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1333 if (!N.getValue().empty()) { 1334 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1335 } 1336 } 1337 1338 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1339 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1340 "invalid macinfo type", &N); 1341 if (auto *F = N.getRawFile()) 1342 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1343 1344 if (auto *Array = N.getRawElements()) { 1345 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1346 for (Metadata *Op : N.getElements()->operands()) { 1347 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1348 } 1349 } 1350 } 1351 1352 void Verifier::visitDIArgList(const DIArgList &N) { 1353 AssertDI(!N.getNumOperands(), 1354 "DIArgList should have no operands other than a list of " 1355 "ValueAsMetadata", 1356 &N); 1357 } 1358 1359 void Verifier::visitDIModule(const DIModule &N) { 1360 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1361 AssertDI(!N.getName().empty(), "anonymous module", &N); 1362 } 1363 1364 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1365 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1366 } 1367 1368 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1369 visitDITemplateParameter(N); 1370 1371 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1372 &N); 1373 } 1374 1375 void Verifier::visitDITemplateValueParameter( 1376 const DITemplateValueParameter &N) { 1377 visitDITemplateParameter(N); 1378 1379 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1380 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1381 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1382 "invalid tag", &N); 1383 } 1384 1385 void Verifier::visitDIVariable(const DIVariable &N) { 1386 if (auto *S = N.getRawScope()) 1387 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1388 if (auto *F = N.getRawFile()) 1389 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1390 } 1391 1392 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1393 // Checks common to all variables. 1394 visitDIVariable(N); 1395 1396 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1397 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1398 // Assert only if the global variable is not an extern 1399 if (N.isDefinition()) 1400 AssertDI(N.getType(), "missing global variable type", &N); 1401 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1402 AssertDI(isa<DIDerivedType>(Member), 1403 "invalid static data member declaration", &N, Member); 1404 } 1405 } 1406 1407 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1408 // Checks common to all variables. 1409 visitDIVariable(N); 1410 1411 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1412 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1413 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1414 "local variable requires a valid scope", &N, N.getRawScope()); 1415 if (auto Ty = N.getType()) 1416 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1417 } 1418 1419 void Verifier::visitDILabel(const DILabel &N) { 1420 if (auto *S = N.getRawScope()) 1421 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1422 if (auto *F = N.getRawFile()) 1423 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1424 1425 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1426 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1427 "label requires a valid scope", &N, N.getRawScope()); 1428 } 1429 1430 void Verifier::visitDIExpression(const DIExpression &N) { 1431 AssertDI(N.isValid(), "invalid expression", &N); 1432 } 1433 1434 void Verifier::visitDIGlobalVariableExpression( 1435 const DIGlobalVariableExpression &GVE) { 1436 AssertDI(GVE.getVariable(), "missing variable"); 1437 if (auto *Var = GVE.getVariable()) 1438 visitDIGlobalVariable(*Var); 1439 if (auto *Expr = GVE.getExpression()) { 1440 visitDIExpression(*Expr); 1441 if (auto Fragment = Expr->getFragmentInfo()) 1442 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1443 } 1444 } 1445 1446 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1447 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1448 if (auto *T = N.getRawType()) 1449 AssertDI(isType(T), "invalid type ref", &N, T); 1450 if (auto *F = N.getRawFile()) 1451 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1452 } 1453 1454 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1455 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1456 N.getTag() == dwarf::DW_TAG_imported_declaration, 1457 "invalid tag", &N); 1458 if (auto *S = N.getRawScope()) 1459 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1460 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1461 N.getRawEntity()); 1462 } 1463 1464 void Verifier::visitComdat(const Comdat &C) { 1465 // In COFF the Module is invalid if the GlobalValue has private linkage. 1466 // Entities with private linkage don't have entries in the symbol table. 1467 if (TT.isOSBinFormatCOFF()) 1468 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1469 Assert(!GV->hasPrivateLinkage(), 1470 "comdat global value has private linkage", GV); 1471 } 1472 1473 void Verifier::visitModuleIdents(const Module &M) { 1474 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1475 if (!Idents) 1476 return; 1477 1478 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1479 // Scan each llvm.ident entry and make sure that this requirement is met. 1480 for (const MDNode *N : Idents->operands()) { 1481 Assert(N->getNumOperands() == 1, 1482 "incorrect number of operands in llvm.ident metadata", N); 1483 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1484 ("invalid value for llvm.ident metadata entry operand" 1485 "(the operand should be a string)"), 1486 N->getOperand(0)); 1487 } 1488 } 1489 1490 void Verifier::visitModuleCommandLines(const Module &M) { 1491 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1492 if (!CommandLines) 1493 return; 1494 1495 // llvm.commandline takes a list of metadata entry. Each entry has only one 1496 // string. Scan each llvm.commandline entry and make sure that this 1497 // requirement is met. 1498 for (const MDNode *N : CommandLines->operands()) { 1499 Assert(N->getNumOperands() == 1, 1500 "incorrect number of operands in llvm.commandline metadata", N); 1501 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1502 ("invalid value for llvm.commandline metadata entry operand" 1503 "(the operand should be a string)"), 1504 N->getOperand(0)); 1505 } 1506 } 1507 1508 void Verifier::visitModuleFlags(const Module &M) { 1509 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1510 if (!Flags) return; 1511 1512 // Scan each flag, and track the flags and requirements. 1513 DenseMap<const MDString*, const MDNode*> SeenIDs; 1514 SmallVector<const MDNode*, 16> Requirements; 1515 for (const MDNode *MDN : Flags->operands()) 1516 visitModuleFlag(MDN, SeenIDs, Requirements); 1517 1518 // Validate that the requirements in the module are valid. 1519 for (const MDNode *Requirement : Requirements) { 1520 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1521 const Metadata *ReqValue = Requirement->getOperand(1); 1522 1523 const MDNode *Op = SeenIDs.lookup(Flag); 1524 if (!Op) { 1525 CheckFailed("invalid requirement on flag, flag is not present in module", 1526 Flag); 1527 continue; 1528 } 1529 1530 if (Op->getOperand(2) != ReqValue) { 1531 CheckFailed(("invalid requirement on flag, " 1532 "flag does not have the required value"), 1533 Flag); 1534 continue; 1535 } 1536 } 1537 } 1538 1539 void 1540 Verifier::visitModuleFlag(const MDNode *Op, 1541 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1542 SmallVectorImpl<const MDNode *> &Requirements) { 1543 // Each module flag should have three arguments, the merge behavior (a 1544 // constant int), the flag ID (an MDString), and the value. 1545 Assert(Op->getNumOperands() == 3, 1546 "incorrect number of operands in module flag", Op); 1547 Module::ModFlagBehavior MFB; 1548 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1549 Assert( 1550 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1551 "invalid behavior operand in module flag (expected constant integer)", 1552 Op->getOperand(0)); 1553 Assert(false, 1554 "invalid behavior operand in module flag (unexpected constant)", 1555 Op->getOperand(0)); 1556 } 1557 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1558 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1559 Op->getOperand(1)); 1560 1561 // Sanity check the values for behaviors with additional requirements. 1562 switch (MFB) { 1563 case Module::Error: 1564 case Module::Warning: 1565 case Module::Override: 1566 // These behavior types accept any value. 1567 break; 1568 1569 case Module::Max: { 1570 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1571 "invalid value for 'max' module flag (expected constant integer)", 1572 Op->getOperand(2)); 1573 break; 1574 } 1575 1576 case Module::Require: { 1577 // The value should itself be an MDNode with two operands, a flag ID (an 1578 // MDString), and a value. 1579 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1580 Assert(Value && Value->getNumOperands() == 2, 1581 "invalid value for 'require' module flag (expected metadata pair)", 1582 Op->getOperand(2)); 1583 Assert(isa<MDString>(Value->getOperand(0)), 1584 ("invalid value for 'require' module flag " 1585 "(first value operand should be a string)"), 1586 Value->getOperand(0)); 1587 1588 // Append it to the list of requirements, to check once all module flags are 1589 // scanned. 1590 Requirements.push_back(Value); 1591 break; 1592 } 1593 1594 case Module::Append: 1595 case Module::AppendUnique: { 1596 // These behavior types require the operand be an MDNode. 1597 Assert(isa<MDNode>(Op->getOperand(2)), 1598 "invalid value for 'append'-type module flag " 1599 "(expected a metadata node)", 1600 Op->getOperand(2)); 1601 break; 1602 } 1603 } 1604 1605 // Unless this is a "requires" flag, check the ID is unique. 1606 if (MFB != Module::Require) { 1607 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1608 Assert(Inserted, 1609 "module flag identifiers must be unique (or of 'require' type)", ID); 1610 } 1611 1612 if (ID->getString() == "wchar_size") { 1613 ConstantInt *Value 1614 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1615 Assert(Value, "wchar_size metadata requires constant integer argument"); 1616 } 1617 1618 if (ID->getString() == "Linker Options") { 1619 // If the llvm.linker.options named metadata exists, we assume that the 1620 // bitcode reader has upgraded the module flag. Otherwise the flag might 1621 // have been created by a client directly. 1622 Assert(M.getNamedMetadata("llvm.linker.options"), 1623 "'Linker Options' named metadata no longer supported"); 1624 } 1625 1626 if (ID->getString() == "SemanticInterposition") { 1627 ConstantInt *Value = 1628 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1629 Assert(Value, 1630 "SemanticInterposition metadata requires constant integer argument"); 1631 } 1632 1633 if (ID->getString() == "CG Profile") { 1634 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1635 visitModuleFlagCGProfileEntry(MDO); 1636 } 1637 } 1638 1639 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1640 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1641 if (!FuncMDO) 1642 return; 1643 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1644 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1645 "expected a Function or null", FuncMDO); 1646 }; 1647 auto Node = dyn_cast_or_null<MDNode>(MDO); 1648 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1649 CheckFunction(Node->getOperand(0)); 1650 CheckFunction(Node->getOperand(1)); 1651 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1652 Assert(Count && Count->getType()->isIntegerTy(), 1653 "expected an integer constant", Node->getOperand(2)); 1654 } 1655 1656 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1657 for (Attribute A : Attrs) { 1658 1659 if (A.isStringAttribute()) { 1660 #define GET_ATTR_NAMES 1661 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1662 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1663 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1664 auto V = A.getValueAsString(); \ 1665 if (!(V.empty() || V == "true" || V == "false")) \ 1666 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1667 ""); \ 1668 } 1669 1670 #include "llvm/IR/Attributes.inc" 1671 continue; 1672 } 1673 1674 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1675 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1676 V); 1677 return; 1678 } 1679 } 1680 } 1681 1682 // VerifyParameterAttrs - Check the given attributes for an argument or return 1683 // value of the specified type. The value V is printed in error messages. 1684 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1685 const Value *V) { 1686 if (!Attrs.hasAttributes()) 1687 return; 1688 1689 verifyAttributeTypes(Attrs, V); 1690 1691 for (Attribute Attr : Attrs) 1692 Assert(Attr.isStringAttribute() || 1693 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1694 "Attribute '" + Attr.getAsString() + 1695 "' does not apply to parameters", 1696 V); 1697 1698 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1699 Assert(Attrs.getNumAttributes() == 1, 1700 "Attribute 'immarg' is incompatible with other attributes", V); 1701 } 1702 1703 // Check for mutually incompatible attributes. Only inreg is compatible with 1704 // sret. 1705 unsigned AttrCount = 0; 1706 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1707 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1708 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1709 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1710 Attrs.hasAttribute(Attribute::InReg); 1711 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1712 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1713 Assert(AttrCount <= 1, 1714 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1715 "'byref', and 'sret' are incompatible!", 1716 V); 1717 1718 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1719 Attrs.hasAttribute(Attribute::ReadOnly)), 1720 "Attributes " 1721 "'inalloca and readonly' are incompatible!", 1722 V); 1723 1724 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1725 Attrs.hasAttribute(Attribute::Returned)), 1726 "Attributes " 1727 "'sret and returned' are incompatible!", 1728 V); 1729 1730 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1731 Attrs.hasAttribute(Attribute::SExt)), 1732 "Attributes " 1733 "'zeroext and signext' are incompatible!", 1734 V); 1735 1736 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1737 Attrs.hasAttribute(Attribute::ReadOnly)), 1738 "Attributes " 1739 "'readnone and readonly' are incompatible!", 1740 V); 1741 1742 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1743 Attrs.hasAttribute(Attribute::WriteOnly)), 1744 "Attributes " 1745 "'readnone and writeonly' are incompatible!", 1746 V); 1747 1748 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1749 Attrs.hasAttribute(Attribute::WriteOnly)), 1750 "Attributes " 1751 "'readonly and writeonly' are incompatible!", 1752 V); 1753 1754 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1755 Attrs.hasAttribute(Attribute::AlwaysInline)), 1756 "Attributes " 1757 "'noinline and alwaysinline' are incompatible!", 1758 V); 1759 1760 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1761 for (Attribute Attr : Attrs) { 1762 if (!Attr.isStringAttribute() && 1763 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1764 CheckFailed("Attribute '" + Attr.getAsString() + 1765 "' applied to incompatible type!", V); 1766 return; 1767 } 1768 } 1769 1770 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1771 if (Attrs.hasAttribute(Attribute::ByVal)) { 1772 SmallPtrSet<Type *, 4> Visited; 1773 Assert(Attrs.getByValType()->isSized(&Visited), 1774 "Attribute 'byval' does not support unsized types!", V); 1775 } 1776 if (Attrs.hasAttribute(Attribute::ByRef)) { 1777 SmallPtrSet<Type *, 4> Visited; 1778 Assert(Attrs.getByRefType()->isSized(&Visited), 1779 "Attribute 'byref' does not support unsized types!", V); 1780 } 1781 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1782 SmallPtrSet<Type *, 4> Visited; 1783 Assert(Attrs.getInAllocaType()->isSized(&Visited), 1784 "Attribute 'inalloca' does not support unsized types!", V); 1785 } 1786 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1787 SmallPtrSet<Type *, 4> Visited; 1788 Assert(Attrs.getPreallocatedType()->isSized(&Visited), 1789 "Attribute 'preallocated' does not support unsized types!", V); 1790 } 1791 if (!PTy->isOpaque()) { 1792 if (!isa<PointerType>(PTy->getElementType())) 1793 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1794 "Attribute 'swifterror' only applies to parameters " 1795 "with pointer to pointer type!", 1796 V); 1797 if (Attrs.hasAttribute(Attribute::ByRef)) { 1798 Assert(Attrs.getByRefType() == PTy->getElementType(), 1799 "Attribute 'byref' type does not match parameter!", V); 1800 } 1801 1802 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1803 Assert(Attrs.getByValType() == PTy->getElementType(), 1804 "Attribute 'byval' type does not match parameter!", V); 1805 } 1806 1807 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1808 Assert(Attrs.getPreallocatedType() == PTy->getElementType(), 1809 "Attribute 'preallocated' type does not match parameter!", V); 1810 } 1811 1812 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1813 Assert(Attrs.getInAllocaType() == PTy->getElementType(), 1814 "Attribute 'inalloca' type does not match parameter!", V); 1815 } 1816 1817 if (Attrs.hasAttribute(Attribute::ElementType)) { 1818 Assert(Attrs.getElementType() == PTy->getElementType(), 1819 "Attribute 'elementtype' type does not match parameter!", V); 1820 } 1821 } 1822 } 1823 } 1824 1825 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1826 const Value *V) { 1827 if (Attrs.hasFnAttribute(Attr)) { 1828 StringRef S = Attrs.getAttribute(AttributeList::FunctionIndex, Attr) 1829 .getValueAsString(); 1830 unsigned N; 1831 if (S.getAsInteger(10, N)) 1832 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 1833 } 1834 } 1835 1836 // Check parameter attributes against a function type. 1837 // The value V is printed in error messages. 1838 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1839 const Value *V, bool IsIntrinsic) { 1840 if (Attrs.isEmpty()) 1841 return; 1842 1843 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1844 Assert(Attrs.hasParentContext(Context), 1845 "Attribute list does not match Module context!", &Attrs, V); 1846 for (const auto &AttrSet : Attrs) { 1847 Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1848 "Attribute set does not match Module context!", &AttrSet, V); 1849 for (const auto &A : AttrSet) { 1850 Assert(A.hasParentContext(Context), 1851 "Attribute does not match Module context!", &A, V); 1852 } 1853 } 1854 } 1855 1856 bool SawNest = false; 1857 bool SawReturned = false; 1858 bool SawSRet = false; 1859 bool SawSwiftSelf = false; 1860 bool SawSwiftAsync = false; 1861 bool SawSwiftError = false; 1862 1863 // Verify return value attributes. 1864 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1865 for (Attribute RetAttr : RetAttrs) 1866 Assert(RetAttr.isStringAttribute() || 1867 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 1868 "Attribute '" + RetAttr.getAsString() + 1869 "' does not apply to function return values", 1870 V); 1871 1872 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1873 1874 // Verify parameter attributes. 1875 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1876 Type *Ty = FT->getParamType(i); 1877 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1878 1879 if (!IsIntrinsic) { 1880 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1881 "immarg attribute only applies to intrinsics",V); 1882 Assert(!ArgAttrs.hasAttribute(Attribute::ElementType), 1883 "Attribute 'elementtype' can only be applied to intrinsics.", V); 1884 } 1885 1886 verifyParameterAttrs(ArgAttrs, Ty, V); 1887 1888 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1889 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1890 SawNest = true; 1891 } 1892 1893 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1894 Assert(!SawReturned, "More than one parameter has attribute returned!", 1895 V); 1896 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1897 "Incompatible argument and return types for 'returned' attribute", 1898 V); 1899 SawReturned = true; 1900 } 1901 1902 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1903 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1904 Assert(i == 0 || i == 1, 1905 "Attribute 'sret' is not on first or second parameter!", V); 1906 SawSRet = true; 1907 } 1908 1909 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1910 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1911 SawSwiftSelf = true; 1912 } 1913 1914 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 1915 Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 1916 SawSwiftAsync = true; 1917 } 1918 1919 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1920 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1921 V); 1922 SawSwiftError = true; 1923 } 1924 1925 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1926 Assert(i == FT->getNumParams() - 1, 1927 "inalloca isn't on the last parameter!", V); 1928 } 1929 } 1930 1931 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1932 return; 1933 1934 verifyAttributeTypes(Attrs.getFnAttributes(), V); 1935 for (Attribute FnAttr : Attrs.getFnAttributes()) 1936 Assert(FnAttr.isStringAttribute() || 1937 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 1938 "Attribute '" + FnAttr.getAsString() + 1939 "' does not apply to functions!", 1940 V); 1941 1942 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1943 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1944 "Attributes 'readnone and readonly' are incompatible!", V); 1945 1946 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1947 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1948 "Attributes 'readnone and writeonly' are incompatible!", V); 1949 1950 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1951 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1952 "Attributes 'readonly and writeonly' are incompatible!", V); 1953 1954 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1955 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1956 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1957 "incompatible!", 1958 V); 1959 1960 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1961 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1962 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1963 1964 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1965 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1966 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1967 1968 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1969 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1970 "Attribute 'optnone' requires 'noinline'!", V); 1971 1972 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1973 "Attributes 'optsize and optnone' are incompatible!", V); 1974 1975 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1976 "Attributes 'minsize and optnone' are incompatible!", V); 1977 } 1978 1979 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1980 const GlobalValue *GV = cast<GlobalValue>(V); 1981 Assert(GV->hasGlobalUnnamedAddr(), 1982 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1983 } 1984 1985 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1986 std::pair<unsigned, Optional<unsigned>> Args = 1987 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1988 1989 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1990 if (ParamNo >= FT->getNumParams()) { 1991 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1992 return false; 1993 } 1994 1995 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1996 CheckFailed("'allocsize' " + Name + 1997 " argument must refer to an integer parameter", 1998 V); 1999 return false; 2000 } 2001 2002 return true; 2003 }; 2004 2005 if (!CheckParam("element size", Args.first)) 2006 return; 2007 2008 if (Args.second && !CheckParam("number of elements", *Args.second)) 2009 return; 2010 } 2011 2012 if (Attrs.hasFnAttribute(Attribute::VScaleRange)) { 2013 std::pair<unsigned, unsigned> Args = 2014 Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex); 2015 2016 if (Args.first > Args.second && Args.second != 0) 2017 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2018 } 2019 2020 if (Attrs.hasFnAttribute("frame-pointer")) { 2021 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 2022 "frame-pointer").getValueAsString(); 2023 if (FP != "all" && FP != "non-leaf" && FP != "none") 2024 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2025 } 2026 2027 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2028 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2029 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2030 } 2031 2032 void Verifier::verifyFunctionMetadata( 2033 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2034 for (const auto &Pair : MDs) { 2035 if (Pair.first == LLVMContext::MD_prof) { 2036 MDNode *MD = Pair.second; 2037 Assert(MD->getNumOperands() >= 2, 2038 "!prof annotations should have no less than 2 operands", MD); 2039 2040 // Check first operand. 2041 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2042 MD); 2043 Assert(isa<MDString>(MD->getOperand(0)), 2044 "expected string with name of the !prof annotation", MD); 2045 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2046 StringRef ProfName = MDS->getString(); 2047 Assert(ProfName.equals("function_entry_count") || 2048 ProfName.equals("synthetic_function_entry_count"), 2049 "first operand should be 'function_entry_count'" 2050 " or 'synthetic_function_entry_count'", 2051 MD); 2052 2053 // Check second operand. 2054 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2055 MD); 2056 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2057 "expected integer argument to function_entry_count", MD); 2058 } 2059 } 2060 } 2061 2062 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2063 if (!ConstantExprVisited.insert(EntryC).second) 2064 return; 2065 2066 SmallVector<const Constant *, 16> Stack; 2067 Stack.push_back(EntryC); 2068 2069 while (!Stack.empty()) { 2070 const Constant *C = Stack.pop_back_val(); 2071 2072 // Check this constant expression. 2073 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2074 visitConstantExpr(CE); 2075 2076 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2077 // Global Values get visited separately, but we do need to make sure 2078 // that the global value is in the correct module 2079 Assert(GV->getParent() == &M, "Referencing global in another module!", 2080 EntryC, &M, GV, GV->getParent()); 2081 continue; 2082 } 2083 2084 // Visit all sub-expressions. 2085 for (const Use &U : C->operands()) { 2086 const auto *OpC = dyn_cast<Constant>(U); 2087 if (!OpC) 2088 continue; 2089 if (!ConstantExprVisited.insert(OpC).second) 2090 continue; 2091 Stack.push_back(OpC); 2092 } 2093 } 2094 } 2095 2096 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2097 if (CE->getOpcode() == Instruction::BitCast) 2098 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2099 CE->getType()), 2100 "Invalid bitcast", CE); 2101 } 2102 2103 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2104 // There shouldn't be more attribute sets than there are parameters plus the 2105 // function and return value. 2106 return Attrs.getNumAttrSets() <= Params + 2; 2107 } 2108 2109 /// Verify that statepoint intrinsic is well formed. 2110 void Verifier::verifyStatepoint(const CallBase &Call) { 2111 assert(Call.getCalledFunction() && 2112 Call.getCalledFunction()->getIntrinsicID() == 2113 Intrinsic::experimental_gc_statepoint); 2114 2115 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2116 !Call.onlyAccessesArgMemory(), 2117 "gc.statepoint must read and write all memory to preserve " 2118 "reordering restrictions required by safepoint semantics", 2119 Call); 2120 2121 const int64_t NumPatchBytes = 2122 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2123 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2124 Assert(NumPatchBytes >= 0, 2125 "gc.statepoint number of patchable bytes must be " 2126 "positive", 2127 Call); 2128 2129 const Value *Target = Call.getArgOperand(2); 2130 auto *PT = dyn_cast<PointerType>(Target->getType()); 2131 Assert(PT && PT->getElementType()->isFunctionTy(), 2132 "gc.statepoint callee must be of function pointer type", Call, Target); 2133 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2134 2135 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2136 Assert(NumCallArgs >= 0, 2137 "gc.statepoint number of arguments to underlying call " 2138 "must be positive", 2139 Call); 2140 const int NumParams = (int)TargetFuncType->getNumParams(); 2141 if (TargetFuncType->isVarArg()) { 2142 Assert(NumCallArgs >= NumParams, 2143 "gc.statepoint mismatch in number of vararg call args", Call); 2144 2145 // TODO: Remove this limitation 2146 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2147 "gc.statepoint doesn't support wrapping non-void " 2148 "vararg functions yet", 2149 Call); 2150 } else 2151 Assert(NumCallArgs == NumParams, 2152 "gc.statepoint mismatch in number of call args", Call); 2153 2154 const uint64_t Flags 2155 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2156 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2157 "unknown flag used in gc.statepoint flags argument", Call); 2158 2159 // Verify that the types of the call parameter arguments match 2160 // the type of the wrapped callee. 2161 AttributeList Attrs = Call.getAttributes(); 2162 for (int i = 0; i < NumParams; i++) { 2163 Type *ParamType = TargetFuncType->getParamType(i); 2164 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2165 Assert(ArgType == ParamType, 2166 "gc.statepoint call argument does not match wrapped " 2167 "function type", 2168 Call); 2169 2170 if (TargetFuncType->isVarArg()) { 2171 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2172 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2173 "Attribute 'sret' cannot be used for vararg call arguments!", 2174 Call); 2175 } 2176 } 2177 2178 const int EndCallArgsInx = 4 + NumCallArgs; 2179 2180 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2181 Assert(isa<ConstantInt>(NumTransitionArgsV), 2182 "gc.statepoint number of transition arguments " 2183 "must be constant integer", 2184 Call); 2185 const int NumTransitionArgs = 2186 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2187 Assert(NumTransitionArgs == 0, 2188 "gc.statepoint w/inline transition bundle is deprecated", Call); 2189 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2190 2191 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2192 Assert(isa<ConstantInt>(NumDeoptArgsV), 2193 "gc.statepoint number of deoptimization arguments " 2194 "must be constant integer", 2195 Call); 2196 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2197 Assert(NumDeoptArgs == 0, 2198 "gc.statepoint w/inline deopt operands is deprecated", Call); 2199 2200 const int ExpectedNumArgs = 7 + NumCallArgs; 2201 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2202 "gc.statepoint too many arguments", Call); 2203 2204 // Check that the only uses of this gc.statepoint are gc.result or 2205 // gc.relocate calls which are tied to this statepoint and thus part 2206 // of the same statepoint sequence 2207 for (const User *U : Call.users()) { 2208 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2209 Assert(UserCall, "illegal use of statepoint token", Call, U); 2210 if (!UserCall) 2211 continue; 2212 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2213 "gc.result or gc.relocate are the only value uses " 2214 "of a gc.statepoint", 2215 Call, U); 2216 if (isa<GCResultInst>(UserCall)) { 2217 Assert(UserCall->getArgOperand(0) == &Call, 2218 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2219 } else if (isa<GCRelocateInst>(Call)) { 2220 Assert(UserCall->getArgOperand(0) == &Call, 2221 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2222 } 2223 } 2224 2225 // Note: It is legal for a single derived pointer to be listed multiple 2226 // times. It's non-optimal, but it is legal. It can also happen after 2227 // insertion if we strip a bitcast away. 2228 // Note: It is really tempting to check that each base is relocated and 2229 // that a derived pointer is never reused as a base pointer. This turns 2230 // out to be problematic since optimizations run after safepoint insertion 2231 // can recognize equality properties that the insertion logic doesn't know 2232 // about. See example statepoint.ll in the verifier subdirectory 2233 } 2234 2235 void Verifier::verifyFrameRecoverIndices() { 2236 for (auto &Counts : FrameEscapeInfo) { 2237 Function *F = Counts.first; 2238 unsigned EscapedObjectCount = Counts.second.first; 2239 unsigned MaxRecoveredIndex = Counts.second.second; 2240 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2241 "all indices passed to llvm.localrecover must be less than the " 2242 "number of arguments passed to llvm.localescape in the parent " 2243 "function", 2244 F); 2245 } 2246 } 2247 2248 static Instruction *getSuccPad(Instruction *Terminator) { 2249 BasicBlock *UnwindDest; 2250 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2251 UnwindDest = II->getUnwindDest(); 2252 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2253 UnwindDest = CSI->getUnwindDest(); 2254 else 2255 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2256 return UnwindDest->getFirstNonPHI(); 2257 } 2258 2259 void Verifier::verifySiblingFuncletUnwinds() { 2260 SmallPtrSet<Instruction *, 8> Visited; 2261 SmallPtrSet<Instruction *, 8> Active; 2262 for (const auto &Pair : SiblingFuncletInfo) { 2263 Instruction *PredPad = Pair.first; 2264 if (Visited.count(PredPad)) 2265 continue; 2266 Active.insert(PredPad); 2267 Instruction *Terminator = Pair.second; 2268 do { 2269 Instruction *SuccPad = getSuccPad(Terminator); 2270 if (Active.count(SuccPad)) { 2271 // Found a cycle; report error 2272 Instruction *CyclePad = SuccPad; 2273 SmallVector<Instruction *, 8> CycleNodes; 2274 do { 2275 CycleNodes.push_back(CyclePad); 2276 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2277 if (CycleTerminator != CyclePad) 2278 CycleNodes.push_back(CycleTerminator); 2279 CyclePad = getSuccPad(CycleTerminator); 2280 } while (CyclePad != SuccPad); 2281 Assert(false, "EH pads can't handle each other's exceptions", 2282 ArrayRef<Instruction *>(CycleNodes)); 2283 } 2284 // Don't re-walk a node we've already checked 2285 if (!Visited.insert(SuccPad).second) 2286 break; 2287 // Walk to this successor if it has a map entry. 2288 PredPad = SuccPad; 2289 auto TermI = SiblingFuncletInfo.find(PredPad); 2290 if (TermI == SiblingFuncletInfo.end()) 2291 break; 2292 Terminator = TermI->second; 2293 Active.insert(PredPad); 2294 } while (true); 2295 // Each node only has one successor, so we've walked all the active 2296 // nodes' successors. 2297 Active.clear(); 2298 } 2299 } 2300 2301 // visitFunction - Verify that a function is ok. 2302 // 2303 void Verifier::visitFunction(const Function &F) { 2304 visitGlobalValue(F); 2305 2306 // Check function arguments. 2307 FunctionType *FT = F.getFunctionType(); 2308 unsigned NumArgs = F.arg_size(); 2309 2310 Assert(&Context == &F.getContext(), 2311 "Function context does not match Module context!", &F); 2312 2313 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2314 Assert(FT->getNumParams() == NumArgs, 2315 "# formal arguments must match # of arguments for function type!", &F, 2316 FT); 2317 Assert(F.getReturnType()->isFirstClassType() || 2318 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2319 "Functions cannot return aggregate values!", &F); 2320 2321 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2322 "Invalid struct return type!", &F); 2323 2324 AttributeList Attrs = F.getAttributes(); 2325 2326 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2327 "Attribute after last parameter!", &F); 2328 2329 bool IsIntrinsic = F.isIntrinsic(); 2330 2331 // Check function attributes. 2332 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic); 2333 2334 // On function declarations/definitions, we do not support the builtin 2335 // attribute. We do not check this in VerifyFunctionAttrs since that is 2336 // checking for Attributes that can/can not ever be on functions. 2337 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2338 "Attribute 'builtin' can only be applied to a callsite.", &F); 2339 2340 Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2341 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2342 2343 // Check that this function meets the restrictions on this calling convention. 2344 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2345 // restrictions can be lifted. 2346 switch (F.getCallingConv()) { 2347 default: 2348 case CallingConv::C: 2349 break; 2350 case CallingConv::X86_INTR: { 2351 Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal), 2352 "Calling convention parameter requires byval", &F); 2353 break; 2354 } 2355 case CallingConv::AMDGPU_KERNEL: 2356 case CallingConv::SPIR_KERNEL: 2357 Assert(F.getReturnType()->isVoidTy(), 2358 "Calling convention requires void return type", &F); 2359 LLVM_FALLTHROUGH; 2360 case CallingConv::AMDGPU_VS: 2361 case CallingConv::AMDGPU_HS: 2362 case CallingConv::AMDGPU_GS: 2363 case CallingConv::AMDGPU_PS: 2364 case CallingConv::AMDGPU_CS: 2365 Assert(!F.hasStructRetAttr(), 2366 "Calling convention does not allow sret", &F); 2367 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2368 const unsigned StackAS = DL.getAllocaAddrSpace(); 2369 unsigned i = 0; 2370 for (const Argument &Arg : F.args()) { 2371 Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal), 2372 "Calling convention disallows byval", &F); 2373 Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated), 2374 "Calling convention disallows preallocated", &F); 2375 Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca), 2376 "Calling convention disallows inalloca", &F); 2377 2378 if (Attrs.hasParamAttribute(i, Attribute::ByRef)) { 2379 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2380 // value here. 2381 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2382 "Calling convention disallows stack byref", &F); 2383 } 2384 2385 ++i; 2386 } 2387 } 2388 2389 LLVM_FALLTHROUGH; 2390 case CallingConv::Fast: 2391 case CallingConv::Cold: 2392 case CallingConv::Intel_OCL_BI: 2393 case CallingConv::PTX_Kernel: 2394 case CallingConv::PTX_Device: 2395 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2396 "perfect forwarding!", 2397 &F); 2398 break; 2399 } 2400 2401 // Check that the argument values match the function type for this function... 2402 unsigned i = 0; 2403 for (const Argument &Arg : F.args()) { 2404 Assert(Arg.getType() == FT->getParamType(i), 2405 "Argument value does not match function argument type!", &Arg, 2406 FT->getParamType(i)); 2407 Assert(Arg.getType()->isFirstClassType(), 2408 "Function arguments must have first-class types!", &Arg); 2409 if (!IsIntrinsic) { 2410 Assert(!Arg.getType()->isMetadataTy(), 2411 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2412 Assert(!Arg.getType()->isTokenTy(), 2413 "Function takes token but isn't an intrinsic", &Arg, &F); 2414 Assert(!Arg.getType()->isX86_AMXTy(), 2415 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2416 } 2417 2418 // Check that swifterror argument is only used by loads and stores. 2419 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2420 verifySwiftErrorValue(&Arg); 2421 } 2422 ++i; 2423 } 2424 2425 if (!IsIntrinsic) { 2426 Assert(!F.getReturnType()->isTokenTy(), 2427 "Function returns a token but isn't an intrinsic", &F); 2428 Assert(!F.getReturnType()->isX86_AMXTy(), 2429 "Function returns a x86_amx but isn't an intrinsic", &F); 2430 } 2431 2432 // Get the function metadata attachments. 2433 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2434 F.getAllMetadata(MDs); 2435 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2436 verifyFunctionMetadata(MDs); 2437 2438 // Check validity of the personality function 2439 if (F.hasPersonalityFn()) { 2440 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2441 if (Per) 2442 Assert(Per->getParent() == F.getParent(), 2443 "Referencing personality function in another module!", 2444 &F, F.getParent(), Per, Per->getParent()); 2445 } 2446 2447 if (F.isMaterializable()) { 2448 // Function has a body somewhere we can't see. 2449 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2450 MDs.empty() ? nullptr : MDs.front().second); 2451 } else if (F.isDeclaration()) { 2452 for (const auto &I : MDs) { 2453 // This is used for call site debug information. 2454 AssertDI(I.first != LLVMContext::MD_dbg || 2455 !cast<DISubprogram>(I.second)->isDistinct(), 2456 "function declaration may only have a unique !dbg attachment", 2457 &F); 2458 Assert(I.first != LLVMContext::MD_prof, 2459 "function declaration may not have a !prof attachment", &F); 2460 2461 // Verify the metadata itself. 2462 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2463 } 2464 Assert(!F.hasPersonalityFn(), 2465 "Function declaration shouldn't have a personality routine", &F); 2466 } else { 2467 // Verify that this function (which has a body) is not named "llvm.*". It 2468 // is not legal to define intrinsics. 2469 Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2470 2471 // Check the entry node 2472 const BasicBlock *Entry = &F.getEntryBlock(); 2473 Assert(pred_empty(Entry), 2474 "Entry block to function must not have predecessors!", Entry); 2475 2476 // The address of the entry block cannot be taken, unless it is dead. 2477 if (Entry->hasAddressTaken()) { 2478 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2479 "blockaddress may not be used with the entry block!", Entry); 2480 } 2481 2482 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2483 // Visit metadata attachments. 2484 for (const auto &I : MDs) { 2485 // Verify that the attachment is legal. 2486 auto AllowLocs = AreDebugLocsAllowed::No; 2487 switch (I.first) { 2488 default: 2489 break; 2490 case LLVMContext::MD_dbg: { 2491 ++NumDebugAttachments; 2492 AssertDI(NumDebugAttachments == 1, 2493 "function must have a single !dbg attachment", &F, I.second); 2494 AssertDI(isa<DISubprogram>(I.second), 2495 "function !dbg attachment must be a subprogram", &F, I.second); 2496 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2497 "function definition may only have a distinct !dbg attachment", 2498 &F); 2499 2500 auto *SP = cast<DISubprogram>(I.second); 2501 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2502 AssertDI(!AttachedTo || AttachedTo == &F, 2503 "DISubprogram attached to more than one function", SP, &F); 2504 AttachedTo = &F; 2505 AllowLocs = AreDebugLocsAllowed::Yes; 2506 break; 2507 } 2508 case LLVMContext::MD_prof: 2509 ++NumProfAttachments; 2510 Assert(NumProfAttachments == 1, 2511 "function must have a single !prof attachment", &F, I.second); 2512 break; 2513 } 2514 2515 // Verify the metadata itself. 2516 visitMDNode(*I.second, AllowLocs); 2517 } 2518 } 2519 2520 // If this function is actually an intrinsic, verify that it is only used in 2521 // direct call/invokes, never having its "address taken". 2522 // Only do this if the module is materialized, otherwise we don't have all the 2523 // uses. 2524 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2525 const User *U; 2526 if (F.hasAddressTaken(&U)) 2527 Assert(false, "Invalid user of intrinsic instruction!", U); 2528 } 2529 2530 // Check intrinsics' signatures. 2531 switch (F.getIntrinsicID()) { 2532 case Intrinsic::experimental_gc_get_pointer_base: { 2533 FunctionType *FT = F.getFunctionType(); 2534 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2535 Assert(isa<PointerType>(F.getReturnType()), 2536 "gc.get.pointer.base must return a pointer", F); 2537 Assert(FT->getParamType(0) == F.getReturnType(), 2538 "gc.get.pointer.base operand and result must be of the same type", 2539 F); 2540 break; 2541 } 2542 case Intrinsic::experimental_gc_get_pointer_offset: { 2543 FunctionType *FT = F.getFunctionType(); 2544 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2545 Assert(isa<PointerType>(FT->getParamType(0)), 2546 "gc.get.pointer.offset operand must be a pointer", F); 2547 Assert(F.getReturnType()->isIntegerTy(), 2548 "gc.get.pointer.offset must return integer", F); 2549 break; 2550 } 2551 } 2552 2553 auto *N = F.getSubprogram(); 2554 HasDebugInfo = (N != nullptr); 2555 if (!HasDebugInfo) 2556 return; 2557 2558 // Check that all !dbg attachments lead to back to N. 2559 // 2560 // FIXME: Check this incrementally while visiting !dbg attachments. 2561 // FIXME: Only check when N is the canonical subprogram for F. 2562 SmallPtrSet<const MDNode *, 32> Seen; 2563 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2564 // Be careful about using DILocation here since we might be dealing with 2565 // broken code (this is the Verifier after all). 2566 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2567 if (!DL) 2568 return; 2569 if (!Seen.insert(DL).second) 2570 return; 2571 2572 Metadata *Parent = DL->getRawScope(); 2573 AssertDI(Parent && isa<DILocalScope>(Parent), 2574 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2575 Parent); 2576 2577 DILocalScope *Scope = DL->getInlinedAtScope(); 2578 Assert(Scope, "Failed to find DILocalScope", DL); 2579 2580 if (!Seen.insert(Scope).second) 2581 return; 2582 2583 DISubprogram *SP = Scope->getSubprogram(); 2584 2585 // Scope and SP could be the same MDNode and we don't want to skip 2586 // validation in that case 2587 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2588 return; 2589 2590 AssertDI(SP->describes(&F), 2591 "!dbg attachment points at wrong subprogram for function", N, &F, 2592 &I, DL, Scope, SP); 2593 }; 2594 for (auto &BB : F) 2595 for (auto &I : BB) { 2596 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2597 // The llvm.loop annotations also contain two DILocations. 2598 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2599 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2600 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2601 if (BrokenDebugInfo) 2602 return; 2603 } 2604 } 2605 2606 // verifyBasicBlock - Verify that a basic block is well formed... 2607 // 2608 void Verifier::visitBasicBlock(BasicBlock &BB) { 2609 InstsInThisBlock.clear(); 2610 2611 // Ensure that basic blocks have terminators! 2612 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2613 2614 // Check constraints that this basic block imposes on all of the PHI nodes in 2615 // it. 2616 if (isa<PHINode>(BB.front())) { 2617 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2618 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2619 llvm::sort(Preds); 2620 for (const PHINode &PN : BB.phis()) { 2621 Assert(PN.getNumIncomingValues() == Preds.size(), 2622 "PHINode should have one entry for each predecessor of its " 2623 "parent basic block!", 2624 &PN); 2625 2626 // Get and sort all incoming values in the PHI node... 2627 Values.clear(); 2628 Values.reserve(PN.getNumIncomingValues()); 2629 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2630 Values.push_back( 2631 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2632 llvm::sort(Values); 2633 2634 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2635 // Check to make sure that if there is more than one entry for a 2636 // particular basic block in this PHI node, that the incoming values are 2637 // all identical. 2638 // 2639 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2640 Values[i].second == Values[i - 1].second, 2641 "PHI node has multiple entries for the same basic block with " 2642 "different incoming values!", 2643 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2644 2645 // Check to make sure that the predecessors and PHI node entries are 2646 // matched up. 2647 Assert(Values[i].first == Preds[i], 2648 "PHI node entries do not match predecessors!", &PN, 2649 Values[i].first, Preds[i]); 2650 } 2651 } 2652 } 2653 2654 // Check that all instructions have their parent pointers set up correctly. 2655 for (auto &I : BB) 2656 { 2657 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2658 } 2659 } 2660 2661 void Verifier::visitTerminator(Instruction &I) { 2662 // Ensure that terminators only exist at the end of the basic block. 2663 Assert(&I == I.getParent()->getTerminator(), 2664 "Terminator found in the middle of a basic block!", I.getParent()); 2665 visitInstruction(I); 2666 } 2667 2668 void Verifier::visitBranchInst(BranchInst &BI) { 2669 if (BI.isConditional()) { 2670 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2671 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2672 } 2673 visitTerminator(BI); 2674 } 2675 2676 void Verifier::visitReturnInst(ReturnInst &RI) { 2677 Function *F = RI.getParent()->getParent(); 2678 unsigned N = RI.getNumOperands(); 2679 if (F->getReturnType()->isVoidTy()) 2680 Assert(N == 0, 2681 "Found return instr that returns non-void in Function of void " 2682 "return type!", 2683 &RI, F->getReturnType()); 2684 else 2685 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2686 "Function return type does not match operand " 2687 "type of return inst!", 2688 &RI, F->getReturnType()); 2689 2690 // Check to make sure that the return value has necessary properties for 2691 // terminators... 2692 visitTerminator(RI); 2693 } 2694 2695 void Verifier::visitSwitchInst(SwitchInst &SI) { 2696 // Check to make sure that all of the constants in the switch instruction 2697 // have the same type as the switched-on value. 2698 Type *SwitchTy = SI.getCondition()->getType(); 2699 SmallPtrSet<ConstantInt*, 32> Constants; 2700 for (auto &Case : SI.cases()) { 2701 Assert(Case.getCaseValue()->getType() == SwitchTy, 2702 "Switch constants must all be same type as switch value!", &SI); 2703 Assert(Constants.insert(Case.getCaseValue()).second, 2704 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2705 } 2706 2707 visitTerminator(SI); 2708 } 2709 2710 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2711 Assert(BI.getAddress()->getType()->isPointerTy(), 2712 "Indirectbr operand must have pointer type!", &BI); 2713 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2714 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2715 "Indirectbr destinations must all have pointer type!", &BI); 2716 2717 visitTerminator(BI); 2718 } 2719 2720 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2721 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2722 &CBI); 2723 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2724 Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 2725 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2726 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2727 "Callbr successors must all have pointer type!", &CBI); 2728 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2729 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2730 "Using an unescaped label as a callbr argument!", &CBI); 2731 if (isa<BasicBlock>(CBI.getOperand(i))) 2732 for (unsigned j = i + 1; j != e; ++j) 2733 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2734 "Duplicate callbr destination!", &CBI); 2735 } 2736 { 2737 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2738 for (Value *V : CBI.args()) 2739 if (auto *BA = dyn_cast<BlockAddress>(V)) 2740 ArgBBs.insert(BA->getBasicBlock()); 2741 for (BasicBlock *BB : CBI.getIndirectDests()) 2742 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2743 } 2744 2745 visitTerminator(CBI); 2746 } 2747 2748 void Verifier::visitSelectInst(SelectInst &SI) { 2749 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2750 SI.getOperand(2)), 2751 "Invalid operands for select instruction!", &SI); 2752 2753 Assert(SI.getTrueValue()->getType() == SI.getType(), 2754 "Select values must have same type as select instruction!", &SI); 2755 visitInstruction(SI); 2756 } 2757 2758 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2759 /// a pass, if any exist, it's an error. 2760 /// 2761 void Verifier::visitUserOp1(Instruction &I) { 2762 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2763 } 2764 2765 void Verifier::visitTruncInst(TruncInst &I) { 2766 // Get the source and destination types 2767 Type *SrcTy = I.getOperand(0)->getType(); 2768 Type *DestTy = I.getType(); 2769 2770 // Get the size of the types in bits, we'll need this later 2771 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2772 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2773 2774 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2775 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2776 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2777 "trunc source and destination must both be a vector or neither", &I); 2778 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2779 2780 visitInstruction(I); 2781 } 2782 2783 void Verifier::visitZExtInst(ZExtInst &I) { 2784 // Get the source and destination types 2785 Type *SrcTy = I.getOperand(0)->getType(); 2786 Type *DestTy = I.getType(); 2787 2788 // Get the size of the types in bits, we'll need this later 2789 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2790 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2791 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2792 "zext source and destination must both be a vector or neither", &I); 2793 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2794 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2795 2796 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2797 2798 visitInstruction(I); 2799 } 2800 2801 void Verifier::visitSExtInst(SExtInst &I) { 2802 // Get the source and destination types 2803 Type *SrcTy = I.getOperand(0)->getType(); 2804 Type *DestTy = I.getType(); 2805 2806 // Get the size of the types in bits, we'll need this later 2807 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2808 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2809 2810 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2811 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2812 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2813 "sext source and destination must both be a vector or neither", &I); 2814 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2815 2816 visitInstruction(I); 2817 } 2818 2819 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2820 // Get the source and destination types 2821 Type *SrcTy = I.getOperand(0)->getType(); 2822 Type *DestTy = I.getType(); 2823 // Get the size of the types in bits, we'll need this later 2824 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2825 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2826 2827 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2828 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2829 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2830 "fptrunc source and destination must both be a vector or neither", &I); 2831 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2832 2833 visitInstruction(I); 2834 } 2835 2836 void Verifier::visitFPExtInst(FPExtInst &I) { 2837 // Get the source and destination types 2838 Type *SrcTy = I.getOperand(0)->getType(); 2839 Type *DestTy = I.getType(); 2840 2841 // Get the size of the types in bits, we'll need this later 2842 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2843 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2844 2845 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2846 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2847 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2848 "fpext source and destination must both be a vector or neither", &I); 2849 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2850 2851 visitInstruction(I); 2852 } 2853 2854 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2855 // Get the source and destination types 2856 Type *SrcTy = I.getOperand(0)->getType(); 2857 Type *DestTy = I.getType(); 2858 2859 bool SrcVec = SrcTy->isVectorTy(); 2860 bool DstVec = DestTy->isVectorTy(); 2861 2862 Assert(SrcVec == DstVec, 2863 "UIToFP source and dest must both be vector or scalar", &I); 2864 Assert(SrcTy->isIntOrIntVectorTy(), 2865 "UIToFP source must be integer or integer vector", &I); 2866 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2867 &I); 2868 2869 if (SrcVec && DstVec) 2870 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2871 cast<VectorType>(DestTy)->getElementCount(), 2872 "UIToFP source and dest vector length mismatch", &I); 2873 2874 visitInstruction(I); 2875 } 2876 2877 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2878 // Get the source and destination types 2879 Type *SrcTy = I.getOperand(0)->getType(); 2880 Type *DestTy = I.getType(); 2881 2882 bool SrcVec = SrcTy->isVectorTy(); 2883 bool DstVec = DestTy->isVectorTy(); 2884 2885 Assert(SrcVec == DstVec, 2886 "SIToFP source and dest must both be vector or scalar", &I); 2887 Assert(SrcTy->isIntOrIntVectorTy(), 2888 "SIToFP source must be integer or integer vector", &I); 2889 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2890 &I); 2891 2892 if (SrcVec && DstVec) 2893 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2894 cast<VectorType>(DestTy)->getElementCount(), 2895 "SIToFP source and dest vector length mismatch", &I); 2896 2897 visitInstruction(I); 2898 } 2899 2900 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2901 // Get the source and destination types 2902 Type *SrcTy = I.getOperand(0)->getType(); 2903 Type *DestTy = I.getType(); 2904 2905 bool SrcVec = SrcTy->isVectorTy(); 2906 bool DstVec = DestTy->isVectorTy(); 2907 2908 Assert(SrcVec == DstVec, 2909 "FPToUI source and dest must both be vector or scalar", &I); 2910 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2911 &I); 2912 Assert(DestTy->isIntOrIntVectorTy(), 2913 "FPToUI result must be integer or integer vector", &I); 2914 2915 if (SrcVec && DstVec) 2916 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2917 cast<VectorType>(DestTy)->getElementCount(), 2918 "FPToUI source and dest vector length mismatch", &I); 2919 2920 visitInstruction(I); 2921 } 2922 2923 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2924 // Get the source and destination types 2925 Type *SrcTy = I.getOperand(0)->getType(); 2926 Type *DestTy = I.getType(); 2927 2928 bool SrcVec = SrcTy->isVectorTy(); 2929 bool DstVec = DestTy->isVectorTy(); 2930 2931 Assert(SrcVec == DstVec, 2932 "FPToSI source and dest must both be vector or scalar", &I); 2933 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2934 &I); 2935 Assert(DestTy->isIntOrIntVectorTy(), 2936 "FPToSI result must be integer or integer vector", &I); 2937 2938 if (SrcVec && DstVec) 2939 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2940 cast<VectorType>(DestTy)->getElementCount(), 2941 "FPToSI source and dest vector length mismatch", &I); 2942 2943 visitInstruction(I); 2944 } 2945 2946 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2947 // Get the source and destination types 2948 Type *SrcTy = I.getOperand(0)->getType(); 2949 Type *DestTy = I.getType(); 2950 2951 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2952 2953 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2954 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2955 &I); 2956 2957 if (SrcTy->isVectorTy()) { 2958 auto *VSrc = cast<VectorType>(SrcTy); 2959 auto *VDest = cast<VectorType>(DestTy); 2960 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2961 "PtrToInt Vector width mismatch", &I); 2962 } 2963 2964 visitInstruction(I); 2965 } 2966 2967 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2968 // Get the source and destination types 2969 Type *SrcTy = I.getOperand(0)->getType(); 2970 Type *DestTy = I.getType(); 2971 2972 Assert(SrcTy->isIntOrIntVectorTy(), 2973 "IntToPtr source must be an integral", &I); 2974 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2975 2976 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2977 &I); 2978 if (SrcTy->isVectorTy()) { 2979 auto *VSrc = cast<VectorType>(SrcTy); 2980 auto *VDest = cast<VectorType>(DestTy); 2981 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2982 "IntToPtr Vector width mismatch", &I); 2983 } 2984 visitInstruction(I); 2985 } 2986 2987 void Verifier::visitBitCastInst(BitCastInst &I) { 2988 Assert( 2989 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2990 "Invalid bitcast", &I); 2991 visitInstruction(I); 2992 } 2993 2994 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2995 Type *SrcTy = I.getOperand(0)->getType(); 2996 Type *DestTy = I.getType(); 2997 2998 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2999 &I); 3000 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3001 &I); 3002 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3003 "AddrSpaceCast must be between different address spaces", &I); 3004 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3005 Assert(SrcVTy->getElementCount() == 3006 cast<VectorType>(DestTy)->getElementCount(), 3007 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3008 visitInstruction(I); 3009 } 3010 3011 /// visitPHINode - Ensure that a PHI node is well formed. 3012 /// 3013 void Verifier::visitPHINode(PHINode &PN) { 3014 // Ensure that the PHI nodes are all grouped together at the top of the block. 3015 // This can be tested by checking whether the instruction before this is 3016 // either nonexistent (because this is begin()) or is a PHI node. If not, 3017 // then there is some other instruction before a PHI. 3018 Assert(&PN == &PN.getParent()->front() || 3019 isa<PHINode>(--BasicBlock::iterator(&PN)), 3020 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3021 3022 // Check that a PHI doesn't yield a Token. 3023 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3024 3025 // Check that all of the values of the PHI node have the same type as the 3026 // result, and that the incoming blocks are really basic blocks. 3027 for (Value *IncValue : PN.incoming_values()) { 3028 Assert(PN.getType() == IncValue->getType(), 3029 "PHI node operands are not the same type as the result!", &PN); 3030 } 3031 3032 // All other PHI node constraints are checked in the visitBasicBlock method. 3033 3034 visitInstruction(PN); 3035 } 3036 3037 void Verifier::visitCallBase(CallBase &Call) { 3038 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 3039 "Called function must be a pointer!", Call); 3040 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3041 3042 Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), 3043 "Called function is not the same type as the call!", Call); 3044 3045 FunctionType *FTy = Call.getFunctionType(); 3046 3047 // Verify that the correct number of arguments are being passed 3048 if (FTy->isVarArg()) 3049 Assert(Call.arg_size() >= FTy->getNumParams(), 3050 "Called function requires more parameters than were provided!", 3051 Call); 3052 else 3053 Assert(Call.arg_size() == FTy->getNumParams(), 3054 "Incorrect number of arguments passed to called function!", Call); 3055 3056 // Verify that all arguments to the call match the function type. 3057 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3058 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3059 "Call parameter type does not match function signature!", 3060 Call.getArgOperand(i), FTy->getParamType(i), Call); 3061 3062 AttributeList Attrs = Call.getAttributes(); 3063 3064 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3065 "Attribute after last parameter!", Call); 3066 3067 Function *Callee = 3068 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3069 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3070 if (IsIntrinsic) 3071 Assert(Callee->getValueType() == FTy, 3072 "Intrinsic called with incompatible signature", Call); 3073 3074 if (Attrs.hasFnAttribute(Attribute::Speculatable)) { 3075 // Don't allow speculatable on call sites, unless the underlying function 3076 // declaration is also speculatable. 3077 Assert(Callee && Callee->isSpeculatable(), 3078 "speculatable attribute may not apply to call sites", Call); 3079 } 3080 3081 if (Attrs.hasFnAttribute(Attribute::Preallocated)) { 3082 Assert(Call.getCalledFunction()->getIntrinsicID() == 3083 Intrinsic::call_preallocated_arg, 3084 "preallocated as a call site attribute can only be on " 3085 "llvm.call.preallocated.arg"); 3086 } 3087 3088 // Verify call attributes. 3089 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3090 3091 // Conservatively check the inalloca argument. 3092 // We have a bug if we can find that there is an underlying alloca without 3093 // inalloca. 3094 if (Call.hasInAllocaArgument()) { 3095 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3096 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3097 Assert(AI->isUsedWithInAlloca(), 3098 "inalloca argument for call has mismatched alloca", AI, Call); 3099 } 3100 3101 // For each argument of the callsite, if it has the swifterror argument, 3102 // make sure the underlying alloca/parameter it comes from has a swifterror as 3103 // well. 3104 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3105 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3106 Value *SwiftErrorArg = Call.getArgOperand(i); 3107 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3108 Assert(AI->isSwiftError(), 3109 "swifterror argument for call has mismatched alloca", AI, Call); 3110 continue; 3111 } 3112 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3113 Assert(ArgI, 3114 "swifterror argument should come from an alloca or parameter", 3115 SwiftErrorArg, Call); 3116 Assert(ArgI->hasSwiftErrorAttr(), 3117 "swifterror argument for call has mismatched parameter", ArgI, 3118 Call); 3119 } 3120 3121 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 3122 // Don't allow immarg on call sites, unless the underlying declaration 3123 // also has the matching immarg. 3124 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3125 "immarg may not apply only to call sites", 3126 Call.getArgOperand(i), Call); 3127 } 3128 3129 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3130 Value *ArgVal = Call.getArgOperand(i); 3131 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3132 "immarg operand has non-immediate parameter", ArgVal, Call); 3133 } 3134 3135 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3136 Value *ArgVal = Call.getArgOperand(i); 3137 bool hasOB = 3138 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3139 bool isMustTail = Call.isMustTailCall(); 3140 Assert(hasOB != isMustTail, 3141 "preallocated operand either requires a preallocated bundle or " 3142 "the call to be musttail (but not both)", 3143 ArgVal, Call); 3144 } 3145 } 3146 3147 if (FTy->isVarArg()) { 3148 // FIXME? is 'nest' even legal here? 3149 bool SawNest = false; 3150 bool SawReturned = false; 3151 3152 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3153 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3154 SawNest = true; 3155 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3156 SawReturned = true; 3157 } 3158 3159 // Check attributes on the varargs part. 3160 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3161 Type *Ty = Call.getArgOperand(Idx)->getType(); 3162 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3163 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3164 3165 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3166 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3167 SawNest = true; 3168 } 3169 3170 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3171 Assert(!SawReturned, "More than one parameter has attribute returned!", 3172 Call); 3173 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3174 "Incompatible argument and return types for 'returned' " 3175 "attribute", 3176 Call); 3177 SawReturned = true; 3178 } 3179 3180 // Statepoint intrinsic is vararg but the wrapped function may be not. 3181 // Allow sret here and check the wrapped function in verifyStatepoint. 3182 if (!Call.getCalledFunction() || 3183 Call.getCalledFunction()->getIntrinsicID() != 3184 Intrinsic::experimental_gc_statepoint) 3185 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3186 "Attribute 'sret' cannot be used for vararg call arguments!", 3187 Call); 3188 3189 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3190 Assert(Idx == Call.arg_size() - 1, 3191 "inalloca isn't on the last argument!", Call); 3192 } 3193 } 3194 3195 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3196 if (!IsIntrinsic) { 3197 for (Type *ParamTy : FTy->params()) { 3198 Assert(!ParamTy->isMetadataTy(), 3199 "Function has metadata parameter but isn't an intrinsic", Call); 3200 Assert(!ParamTy->isTokenTy(), 3201 "Function has token parameter but isn't an intrinsic", Call); 3202 } 3203 } 3204 3205 // Verify that indirect calls don't return tokens. 3206 if (!Call.getCalledFunction()) { 3207 Assert(!FTy->getReturnType()->isTokenTy(), 3208 "Return type cannot be token for indirect call!"); 3209 Assert(!FTy->getReturnType()->isX86_AMXTy(), 3210 "Return type cannot be x86_amx for indirect call!"); 3211 } 3212 3213 if (Function *F = Call.getCalledFunction()) 3214 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3215 visitIntrinsicCall(ID, Call); 3216 3217 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3218 // most one "gc-transition", at most one "cfguardtarget", 3219 // and at most one "preallocated" operand bundle. 3220 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3221 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3222 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3223 FoundAttachedCallBundle = false; 3224 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3225 OperandBundleUse BU = Call.getOperandBundleAt(i); 3226 uint32_t Tag = BU.getTagID(); 3227 if (Tag == LLVMContext::OB_deopt) { 3228 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3229 FoundDeoptBundle = true; 3230 } else if (Tag == LLVMContext::OB_gc_transition) { 3231 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3232 Call); 3233 FoundGCTransitionBundle = true; 3234 } else if (Tag == LLVMContext::OB_funclet) { 3235 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3236 FoundFuncletBundle = true; 3237 Assert(BU.Inputs.size() == 1, 3238 "Expected exactly one funclet bundle operand", Call); 3239 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3240 "Funclet bundle operands should correspond to a FuncletPadInst", 3241 Call); 3242 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3243 Assert(!FoundCFGuardTargetBundle, 3244 "Multiple CFGuardTarget operand bundles", Call); 3245 FoundCFGuardTargetBundle = true; 3246 Assert(BU.Inputs.size() == 1, 3247 "Expected exactly one cfguardtarget bundle operand", Call); 3248 } else if (Tag == LLVMContext::OB_preallocated) { 3249 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3250 Call); 3251 FoundPreallocatedBundle = true; 3252 Assert(BU.Inputs.size() == 1, 3253 "Expected exactly one preallocated bundle operand", Call); 3254 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3255 Assert(Input && 3256 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3257 "\"preallocated\" argument must be a token from " 3258 "llvm.call.preallocated.setup", 3259 Call); 3260 } else if (Tag == LLVMContext::OB_gc_live) { 3261 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3262 Call); 3263 FoundGCLiveBundle = true; 3264 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3265 Assert(!FoundAttachedCallBundle, 3266 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3267 FoundAttachedCallBundle = true; 3268 } 3269 } 3270 3271 if (FoundAttachedCallBundle) 3272 Assert((FTy->getReturnType()->isPointerTy() || 3273 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 3274 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 3275 "function returning a pointer or a non-returning function that has " 3276 "a void return type", 3277 Call); 3278 3279 // Verify that each inlinable callsite of a debug-info-bearing function in a 3280 // debug-info-bearing function has a debug location attached to it. Failure to 3281 // do so causes assertion failures when the inliner sets up inline scope info. 3282 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3283 Call.getCalledFunction()->getSubprogram()) 3284 AssertDI(Call.getDebugLoc(), 3285 "inlinable function call in a function with " 3286 "debug info must have a !dbg location", 3287 Call); 3288 3289 visitInstruction(Call); 3290 } 3291 3292 void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs, 3293 StringRef Context) { 3294 Assert(!Attrs.contains(Attribute::InAlloca), 3295 Twine("inalloca attribute not allowed in ") + Context); 3296 Assert(!Attrs.contains(Attribute::InReg), 3297 Twine("inreg attribute not allowed in ") + Context); 3298 Assert(!Attrs.contains(Attribute::SwiftError), 3299 Twine("swifterror attribute not allowed in ") + Context); 3300 Assert(!Attrs.contains(Attribute::Preallocated), 3301 Twine("preallocated attribute not allowed in ") + Context); 3302 Assert(!Attrs.contains(Attribute::ByRef), 3303 Twine("byref attribute not allowed in ") + Context); 3304 } 3305 3306 /// Two types are "congruent" if they are identical, or if they are both pointer 3307 /// types with different pointee types and the same address space. 3308 static bool isTypeCongruent(Type *L, Type *R) { 3309 if (L == R) 3310 return true; 3311 PointerType *PL = dyn_cast<PointerType>(L); 3312 PointerType *PR = dyn_cast<PointerType>(R); 3313 if (!PL || !PR) 3314 return false; 3315 return PL->getAddressSpace() == PR->getAddressSpace(); 3316 } 3317 3318 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3319 static const Attribute::AttrKind ABIAttrs[] = { 3320 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3321 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3322 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3323 Attribute::ByRef}; 3324 AttrBuilder Copy; 3325 for (auto AK : ABIAttrs) { 3326 Attribute Attr = Attrs.getParamAttributes(I).getAttribute(AK); 3327 if (Attr.isValid()) 3328 Copy.addAttribute(Attr); 3329 } 3330 3331 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3332 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3333 (Attrs.hasParamAttribute(I, Attribute::ByVal) || 3334 Attrs.hasParamAttribute(I, Attribute::ByRef))) 3335 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3336 return Copy; 3337 } 3338 3339 void Verifier::verifyMustTailCall(CallInst &CI) { 3340 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3341 3342 Function *F = CI.getParent()->getParent(); 3343 FunctionType *CallerTy = F->getFunctionType(); 3344 FunctionType *CalleeTy = CI.getFunctionType(); 3345 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3346 "cannot guarantee tail call due to mismatched varargs", &CI); 3347 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3348 "cannot guarantee tail call due to mismatched return types", &CI); 3349 3350 // - The calling conventions of the caller and callee must match. 3351 Assert(F->getCallingConv() == CI.getCallingConv(), 3352 "cannot guarantee tail call due to mismatched calling conv", &CI); 3353 3354 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3355 // or a pointer bitcast followed by a ret instruction. 3356 // - The ret instruction must return the (possibly bitcasted) value 3357 // produced by the call or void. 3358 Value *RetVal = &CI; 3359 Instruction *Next = CI.getNextNode(); 3360 3361 // Handle the optional bitcast. 3362 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3363 Assert(BI->getOperand(0) == RetVal, 3364 "bitcast following musttail call must use the call", BI); 3365 RetVal = BI; 3366 Next = BI->getNextNode(); 3367 } 3368 3369 // Check the return. 3370 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3371 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3372 &CI); 3373 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3374 isa<UndefValue>(Ret->getReturnValue()), 3375 "musttail call result must be returned", Ret); 3376 3377 AttributeList CallerAttrs = F->getAttributes(); 3378 AttributeList CalleeAttrs = CI.getAttributes(); 3379 if (CI.getCallingConv() == CallingConv::SwiftTail || 3380 CI.getCallingConv() == CallingConv::Tail) { 3381 StringRef CCName = 3382 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3383 3384 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3385 // are allowed in swifttailcc call 3386 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3387 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3388 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3389 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3390 } 3391 for (int I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3392 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3393 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3394 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3395 } 3396 // - Varargs functions are not allowed 3397 Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3398 " tail call for varargs function"); 3399 return; 3400 } 3401 3402 // - The caller and callee prototypes must match. Pointer types of 3403 // parameters or return types may differ in pointee type, but not 3404 // address space. 3405 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3406 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3407 "cannot guarantee tail call due to mismatched parameter counts", 3408 &CI); 3409 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3410 Assert( 3411 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3412 "cannot guarantee tail call due to mismatched parameter types", &CI); 3413 } 3414 } 3415 3416 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3417 // returned, preallocated, and inalloca, must match. 3418 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3419 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3420 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3421 Assert(CallerABIAttrs == CalleeABIAttrs, 3422 "cannot guarantee tail call due to mismatched ABI impacting " 3423 "function attributes", 3424 &CI, CI.getOperand(I)); 3425 } 3426 } 3427 3428 void Verifier::visitCallInst(CallInst &CI) { 3429 visitCallBase(CI); 3430 3431 if (CI.isMustTailCall()) 3432 verifyMustTailCall(CI); 3433 } 3434 3435 void Verifier::visitInvokeInst(InvokeInst &II) { 3436 visitCallBase(II); 3437 3438 // Verify that the first non-PHI instruction of the unwind destination is an 3439 // exception handling instruction. 3440 Assert( 3441 II.getUnwindDest()->isEHPad(), 3442 "The unwind destination does not have an exception handling instruction!", 3443 &II); 3444 3445 visitTerminator(II); 3446 } 3447 3448 /// visitUnaryOperator - Check the argument to the unary operator. 3449 /// 3450 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3451 Assert(U.getType() == U.getOperand(0)->getType(), 3452 "Unary operators must have same type for" 3453 "operands and result!", 3454 &U); 3455 3456 switch (U.getOpcode()) { 3457 // Check that floating-point arithmetic operators are only used with 3458 // floating-point operands. 3459 case Instruction::FNeg: 3460 Assert(U.getType()->isFPOrFPVectorTy(), 3461 "FNeg operator only works with float types!", &U); 3462 break; 3463 default: 3464 llvm_unreachable("Unknown UnaryOperator opcode!"); 3465 } 3466 3467 visitInstruction(U); 3468 } 3469 3470 /// visitBinaryOperator - Check that both arguments to the binary operator are 3471 /// of the same type! 3472 /// 3473 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3474 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3475 "Both operands to a binary operator are not of the same type!", &B); 3476 3477 switch (B.getOpcode()) { 3478 // Check that integer arithmetic operators are only used with 3479 // integral operands. 3480 case Instruction::Add: 3481 case Instruction::Sub: 3482 case Instruction::Mul: 3483 case Instruction::SDiv: 3484 case Instruction::UDiv: 3485 case Instruction::SRem: 3486 case Instruction::URem: 3487 Assert(B.getType()->isIntOrIntVectorTy(), 3488 "Integer arithmetic operators only work with integral types!", &B); 3489 Assert(B.getType() == B.getOperand(0)->getType(), 3490 "Integer arithmetic operators must have same type " 3491 "for operands and result!", 3492 &B); 3493 break; 3494 // Check that floating-point arithmetic operators are only used with 3495 // floating-point operands. 3496 case Instruction::FAdd: 3497 case Instruction::FSub: 3498 case Instruction::FMul: 3499 case Instruction::FDiv: 3500 case Instruction::FRem: 3501 Assert(B.getType()->isFPOrFPVectorTy(), 3502 "Floating-point arithmetic operators only work with " 3503 "floating-point types!", 3504 &B); 3505 Assert(B.getType() == B.getOperand(0)->getType(), 3506 "Floating-point arithmetic operators must have same type " 3507 "for operands and result!", 3508 &B); 3509 break; 3510 // Check that logical operators are only used with integral operands. 3511 case Instruction::And: 3512 case Instruction::Or: 3513 case Instruction::Xor: 3514 Assert(B.getType()->isIntOrIntVectorTy(), 3515 "Logical operators only work with integral types!", &B); 3516 Assert(B.getType() == B.getOperand(0)->getType(), 3517 "Logical operators must have same type for operands and result!", 3518 &B); 3519 break; 3520 case Instruction::Shl: 3521 case Instruction::LShr: 3522 case Instruction::AShr: 3523 Assert(B.getType()->isIntOrIntVectorTy(), 3524 "Shifts only work with integral types!", &B); 3525 Assert(B.getType() == B.getOperand(0)->getType(), 3526 "Shift return type must be same as operands!", &B); 3527 break; 3528 default: 3529 llvm_unreachable("Unknown BinaryOperator opcode!"); 3530 } 3531 3532 visitInstruction(B); 3533 } 3534 3535 void Verifier::visitICmpInst(ICmpInst &IC) { 3536 // Check that the operands are the same type 3537 Type *Op0Ty = IC.getOperand(0)->getType(); 3538 Type *Op1Ty = IC.getOperand(1)->getType(); 3539 Assert(Op0Ty == Op1Ty, 3540 "Both operands to ICmp instruction are not of the same type!", &IC); 3541 // Check that the operands are the right type 3542 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3543 "Invalid operand types for ICmp instruction", &IC); 3544 // Check that the predicate is valid. 3545 Assert(IC.isIntPredicate(), 3546 "Invalid predicate in ICmp instruction!", &IC); 3547 3548 visitInstruction(IC); 3549 } 3550 3551 void Verifier::visitFCmpInst(FCmpInst &FC) { 3552 // Check that the operands are the same type 3553 Type *Op0Ty = FC.getOperand(0)->getType(); 3554 Type *Op1Ty = FC.getOperand(1)->getType(); 3555 Assert(Op0Ty == Op1Ty, 3556 "Both operands to FCmp instruction are not of the same type!", &FC); 3557 // Check that the operands are the right type 3558 Assert(Op0Ty->isFPOrFPVectorTy(), 3559 "Invalid operand types for FCmp instruction", &FC); 3560 // Check that the predicate is valid. 3561 Assert(FC.isFPPredicate(), 3562 "Invalid predicate in FCmp instruction!", &FC); 3563 3564 visitInstruction(FC); 3565 } 3566 3567 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3568 Assert( 3569 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3570 "Invalid extractelement operands!", &EI); 3571 visitInstruction(EI); 3572 } 3573 3574 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3575 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3576 IE.getOperand(2)), 3577 "Invalid insertelement operands!", &IE); 3578 visitInstruction(IE); 3579 } 3580 3581 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3582 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3583 SV.getShuffleMask()), 3584 "Invalid shufflevector operands!", &SV); 3585 visitInstruction(SV); 3586 } 3587 3588 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3589 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3590 3591 Assert(isa<PointerType>(TargetTy), 3592 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3593 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3594 3595 SmallVector<Value *, 16> Idxs(GEP.indices()); 3596 Assert(all_of( 3597 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3598 "GEP indexes must be integers", &GEP); 3599 Type *ElTy = 3600 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3601 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3602 3603 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3604 GEP.getResultElementType() == ElTy, 3605 "GEP is not of right type for indices!", &GEP, ElTy); 3606 3607 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3608 // Additional checks for vector GEPs. 3609 ElementCount GEPWidth = GEPVTy->getElementCount(); 3610 if (GEP.getPointerOperandType()->isVectorTy()) 3611 Assert( 3612 GEPWidth == 3613 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3614 "Vector GEP result width doesn't match operand's", &GEP); 3615 for (Value *Idx : Idxs) { 3616 Type *IndexTy = Idx->getType(); 3617 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3618 ElementCount IndexWidth = IndexVTy->getElementCount(); 3619 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3620 } 3621 Assert(IndexTy->isIntOrIntVectorTy(), 3622 "All GEP indices should be of integer type"); 3623 } 3624 } 3625 3626 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3627 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3628 "GEP address space doesn't match type", &GEP); 3629 } 3630 3631 visitInstruction(GEP); 3632 } 3633 3634 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3635 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3636 } 3637 3638 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3639 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3640 "precondition violation"); 3641 3642 unsigned NumOperands = Range->getNumOperands(); 3643 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3644 unsigned NumRanges = NumOperands / 2; 3645 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3646 3647 ConstantRange LastRange(1, true); // Dummy initial value 3648 for (unsigned i = 0; i < NumRanges; ++i) { 3649 ConstantInt *Low = 3650 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3651 Assert(Low, "The lower limit must be an integer!", Low); 3652 ConstantInt *High = 3653 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3654 Assert(High, "The upper limit must be an integer!", High); 3655 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3656 "Range types must match instruction type!", &I); 3657 3658 APInt HighV = High->getValue(); 3659 APInt LowV = Low->getValue(); 3660 ConstantRange CurRange(LowV, HighV); 3661 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3662 "Range must not be empty!", Range); 3663 if (i != 0) { 3664 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3665 "Intervals are overlapping", Range); 3666 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3667 Range); 3668 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3669 Range); 3670 } 3671 LastRange = ConstantRange(LowV, HighV); 3672 } 3673 if (NumRanges > 2) { 3674 APInt FirstLow = 3675 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3676 APInt FirstHigh = 3677 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3678 ConstantRange FirstRange(FirstLow, FirstHigh); 3679 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3680 "Intervals are overlapping", Range); 3681 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3682 Range); 3683 } 3684 } 3685 3686 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3687 unsigned Size = DL.getTypeSizeInBits(Ty); 3688 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3689 Assert(!(Size & (Size - 1)), 3690 "atomic memory access' operand must have a power-of-two size", Ty, I); 3691 } 3692 3693 void Verifier::visitLoadInst(LoadInst &LI) { 3694 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3695 Assert(PTy, "Load operand must be a pointer.", &LI); 3696 Type *ElTy = LI.getType(); 3697 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3698 "huge alignment values are unsupported", &LI); 3699 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3700 if (LI.isAtomic()) { 3701 Assert(LI.getOrdering() != AtomicOrdering::Release && 3702 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3703 "Load cannot have Release ordering", &LI); 3704 Assert(LI.getAlignment() != 0, 3705 "Atomic load must specify explicit alignment", &LI); 3706 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3707 "atomic load operand must have integer, pointer, or floating point " 3708 "type!", 3709 ElTy, &LI); 3710 checkAtomicMemAccessSize(ElTy, &LI); 3711 } else { 3712 Assert(LI.getSyncScopeID() == SyncScope::System, 3713 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3714 } 3715 3716 visitInstruction(LI); 3717 } 3718 3719 void Verifier::visitStoreInst(StoreInst &SI) { 3720 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3721 Assert(PTy, "Store operand must be a pointer.", &SI); 3722 Type *ElTy = SI.getOperand(0)->getType(); 3723 Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 3724 "Stored value type does not match pointer operand type!", &SI, ElTy); 3725 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3726 "huge alignment values are unsupported", &SI); 3727 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3728 if (SI.isAtomic()) { 3729 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3730 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3731 "Store cannot have Acquire ordering", &SI); 3732 Assert(SI.getAlignment() != 0, 3733 "Atomic store must specify explicit alignment", &SI); 3734 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3735 "atomic store operand must have integer, pointer, or floating point " 3736 "type!", 3737 ElTy, &SI); 3738 checkAtomicMemAccessSize(ElTy, &SI); 3739 } else { 3740 Assert(SI.getSyncScopeID() == SyncScope::System, 3741 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3742 } 3743 visitInstruction(SI); 3744 } 3745 3746 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3747 void Verifier::verifySwiftErrorCall(CallBase &Call, 3748 const Value *SwiftErrorVal) { 3749 for (const auto &I : llvm::enumerate(Call.args())) { 3750 if (I.value() == SwiftErrorVal) { 3751 Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3752 "swifterror value when used in a callsite should be marked " 3753 "with swifterror attribute", 3754 SwiftErrorVal, Call); 3755 } 3756 } 3757 } 3758 3759 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3760 // Check that swifterror value is only used by loads, stores, or as 3761 // a swifterror argument. 3762 for (const User *U : SwiftErrorVal->users()) { 3763 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3764 isa<InvokeInst>(U), 3765 "swifterror value can only be loaded and stored from, or " 3766 "as a swifterror argument!", 3767 SwiftErrorVal, U); 3768 // If it is used by a store, check it is the second operand. 3769 if (auto StoreI = dyn_cast<StoreInst>(U)) 3770 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3771 "swifterror value should be the second operand when used " 3772 "by stores", SwiftErrorVal, U); 3773 if (auto *Call = dyn_cast<CallBase>(U)) 3774 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3775 } 3776 } 3777 3778 void Verifier::visitAllocaInst(AllocaInst &AI) { 3779 SmallPtrSet<Type*, 4> Visited; 3780 Assert(AI.getAllocatedType()->isSized(&Visited), 3781 "Cannot allocate unsized type", &AI); 3782 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3783 "Alloca array size must have integer type", &AI); 3784 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3785 "huge alignment values are unsupported", &AI); 3786 3787 if (AI.isSwiftError()) { 3788 verifySwiftErrorValue(&AI); 3789 } 3790 3791 visitInstruction(AI); 3792 } 3793 3794 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3795 Type *ElTy = CXI.getOperand(1)->getType(); 3796 Assert(ElTy->isIntOrPtrTy(), 3797 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3798 checkAtomicMemAccessSize(ElTy, &CXI); 3799 visitInstruction(CXI); 3800 } 3801 3802 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3803 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3804 "atomicrmw instructions cannot be unordered.", &RMWI); 3805 auto Op = RMWI.getOperation(); 3806 Type *ElTy = RMWI.getOperand(1)->getType(); 3807 if (Op == AtomicRMWInst::Xchg) { 3808 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3809 AtomicRMWInst::getOperationName(Op) + 3810 " operand must have integer or floating point type!", 3811 &RMWI, ElTy); 3812 } else if (AtomicRMWInst::isFPOperation(Op)) { 3813 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3814 AtomicRMWInst::getOperationName(Op) + 3815 " operand must have floating point type!", 3816 &RMWI, ElTy); 3817 } else { 3818 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3819 AtomicRMWInst::getOperationName(Op) + 3820 " operand must have integer type!", 3821 &RMWI, ElTy); 3822 } 3823 checkAtomicMemAccessSize(ElTy, &RMWI); 3824 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3825 "Invalid binary operation!", &RMWI); 3826 visitInstruction(RMWI); 3827 } 3828 3829 void Verifier::visitFenceInst(FenceInst &FI) { 3830 const AtomicOrdering Ordering = FI.getOrdering(); 3831 Assert(Ordering == AtomicOrdering::Acquire || 3832 Ordering == AtomicOrdering::Release || 3833 Ordering == AtomicOrdering::AcquireRelease || 3834 Ordering == AtomicOrdering::SequentiallyConsistent, 3835 "fence instructions may only have acquire, release, acq_rel, or " 3836 "seq_cst ordering.", 3837 &FI); 3838 visitInstruction(FI); 3839 } 3840 3841 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3842 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3843 EVI.getIndices()) == EVI.getType(), 3844 "Invalid ExtractValueInst operands!", &EVI); 3845 3846 visitInstruction(EVI); 3847 } 3848 3849 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3850 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3851 IVI.getIndices()) == 3852 IVI.getOperand(1)->getType(), 3853 "Invalid InsertValueInst operands!", &IVI); 3854 3855 visitInstruction(IVI); 3856 } 3857 3858 static Value *getParentPad(Value *EHPad) { 3859 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3860 return FPI->getParentPad(); 3861 3862 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3863 } 3864 3865 void Verifier::visitEHPadPredecessors(Instruction &I) { 3866 assert(I.isEHPad()); 3867 3868 BasicBlock *BB = I.getParent(); 3869 Function *F = BB->getParent(); 3870 3871 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3872 3873 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3874 // The landingpad instruction defines its parent as a landing pad block. The 3875 // landing pad block may be branched to only by the unwind edge of an 3876 // invoke. 3877 for (BasicBlock *PredBB : predecessors(BB)) { 3878 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3879 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3880 "Block containing LandingPadInst must be jumped to " 3881 "only by the unwind edge of an invoke.", 3882 LPI); 3883 } 3884 return; 3885 } 3886 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3887 if (!pred_empty(BB)) 3888 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3889 "Block containg CatchPadInst must be jumped to " 3890 "only by its catchswitch.", 3891 CPI); 3892 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3893 "Catchswitch cannot unwind to one of its catchpads", 3894 CPI->getCatchSwitch(), CPI); 3895 return; 3896 } 3897 3898 // Verify that each pred has a legal terminator with a legal to/from EH 3899 // pad relationship. 3900 Instruction *ToPad = &I; 3901 Value *ToPadParent = getParentPad(ToPad); 3902 for (BasicBlock *PredBB : predecessors(BB)) { 3903 Instruction *TI = PredBB->getTerminator(); 3904 Value *FromPad; 3905 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3906 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3907 "EH pad must be jumped to via an unwind edge", ToPad, II); 3908 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3909 FromPad = Bundle->Inputs[0]; 3910 else 3911 FromPad = ConstantTokenNone::get(II->getContext()); 3912 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3913 FromPad = CRI->getOperand(0); 3914 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3915 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3916 FromPad = CSI; 3917 } else { 3918 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3919 } 3920 3921 // The edge may exit from zero or more nested pads. 3922 SmallSet<Value *, 8> Seen; 3923 for (;; FromPad = getParentPad(FromPad)) { 3924 Assert(FromPad != ToPad, 3925 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3926 if (FromPad == ToPadParent) { 3927 // This is a legal unwind edge. 3928 break; 3929 } 3930 Assert(!isa<ConstantTokenNone>(FromPad), 3931 "A single unwind edge may only enter one EH pad", TI); 3932 Assert(Seen.insert(FromPad).second, 3933 "EH pad jumps through a cycle of pads", FromPad); 3934 } 3935 } 3936 } 3937 3938 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3939 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3940 // isn't a cleanup. 3941 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3942 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3943 3944 visitEHPadPredecessors(LPI); 3945 3946 if (!LandingPadResultTy) 3947 LandingPadResultTy = LPI.getType(); 3948 else 3949 Assert(LandingPadResultTy == LPI.getType(), 3950 "The landingpad instruction should have a consistent result type " 3951 "inside a function.", 3952 &LPI); 3953 3954 Function *F = LPI.getParent()->getParent(); 3955 Assert(F->hasPersonalityFn(), 3956 "LandingPadInst needs to be in a function with a personality.", &LPI); 3957 3958 // The landingpad instruction must be the first non-PHI instruction in the 3959 // block. 3960 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3961 "LandingPadInst not the first non-PHI instruction in the block.", 3962 &LPI); 3963 3964 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3965 Constant *Clause = LPI.getClause(i); 3966 if (LPI.isCatch(i)) { 3967 Assert(isa<PointerType>(Clause->getType()), 3968 "Catch operand does not have pointer type!", &LPI); 3969 } else { 3970 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3971 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3972 "Filter operand is not an array of constants!", &LPI); 3973 } 3974 } 3975 3976 visitInstruction(LPI); 3977 } 3978 3979 void Verifier::visitResumeInst(ResumeInst &RI) { 3980 Assert(RI.getFunction()->hasPersonalityFn(), 3981 "ResumeInst needs to be in a function with a personality.", &RI); 3982 3983 if (!LandingPadResultTy) 3984 LandingPadResultTy = RI.getValue()->getType(); 3985 else 3986 Assert(LandingPadResultTy == RI.getValue()->getType(), 3987 "The resume instruction should have a consistent result type " 3988 "inside a function.", 3989 &RI); 3990 3991 visitTerminator(RI); 3992 } 3993 3994 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3995 BasicBlock *BB = CPI.getParent(); 3996 3997 Function *F = BB->getParent(); 3998 Assert(F->hasPersonalityFn(), 3999 "CatchPadInst needs to be in a function with a personality.", &CPI); 4000 4001 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 4002 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4003 CPI.getParentPad()); 4004 4005 // The catchpad instruction must be the first non-PHI instruction in the 4006 // block. 4007 Assert(BB->getFirstNonPHI() == &CPI, 4008 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4009 4010 visitEHPadPredecessors(CPI); 4011 visitFuncletPadInst(CPI); 4012 } 4013 4014 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4015 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4016 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4017 CatchReturn.getOperand(0)); 4018 4019 visitTerminator(CatchReturn); 4020 } 4021 4022 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4023 BasicBlock *BB = CPI.getParent(); 4024 4025 Function *F = BB->getParent(); 4026 Assert(F->hasPersonalityFn(), 4027 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4028 4029 // The cleanuppad instruction must be the first non-PHI instruction in the 4030 // block. 4031 Assert(BB->getFirstNonPHI() == &CPI, 4032 "CleanupPadInst not the first non-PHI instruction in the block.", 4033 &CPI); 4034 4035 auto *ParentPad = CPI.getParentPad(); 4036 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4037 "CleanupPadInst has an invalid parent.", &CPI); 4038 4039 visitEHPadPredecessors(CPI); 4040 visitFuncletPadInst(CPI); 4041 } 4042 4043 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4044 User *FirstUser = nullptr; 4045 Value *FirstUnwindPad = nullptr; 4046 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4047 SmallSet<FuncletPadInst *, 8> Seen; 4048 4049 while (!Worklist.empty()) { 4050 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4051 Assert(Seen.insert(CurrentPad).second, 4052 "FuncletPadInst must not be nested within itself", CurrentPad); 4053 Value *UnresolvedAncestorPad = nullptr; 4054 for (User *U : CurrentPad->users()) { 4055 BasicBlock *UnwindDest; 4056 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4057 UnwindDest = CRI->getUnwindDest(); 4058 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4059 // We allow catchswitch unwind to caller to nest 4060 // within an outer pad that unwinds somewhere else, 4061 // because catchswitch doesn't have a nounwind variant. 4062 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4063 if (CSI->unwindsToCaller()) 4064 continue; 4065 UnwindDest = CSI->getUnwindDest(); 4066 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4067 UnwindDest = II->getUnwindDest(); 4068 } else if (isa<CallInst>(U)) { 4069 // Calls which don't unwind may be found inside funclet 4070 // pads that unwind somewhere else. We don't *require* 4071 // such calls to be annotated nounwind. 4072 continue; 4073 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4074 // The unwind dest for a cleanup can only be found by 4075 // recursive search. Add it to the worklist, and we'll 4076 // search for its first use that determines where it unwinds. 4077 Worklist.push_back(CPI); 4078 continue; 4079 } else { 4080 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4081 continue; 4082 } 4083 4084 Value *UnwindPad; 4085 bool ExitsFPI; 4086 if (UnwindDest) { 4087 UnwindPad = UnwindDest->getFirstNonPHI(); 4088 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4089 continue; 4090 Value *UnwindParent = getParentPad(UnwindPad); 4091 // Ignore unwind edges that don't exit CurrentPad. 4092 if (UnwindParent == CurrentPad) 4093 continue; 4094 // Determine whether the original funclet pad is exited, 4095 // and if we are scanning nested pads determine how many 4096 // of them are exited so we can stop searching their 4097 // children. 4098 Value *ExitedPad = CurrentPad; 4099 ExitsFPI = false; 4100 do { 4101 if (ExitedPad == &FPI) { 4102 ExitsFPI = true; 4103 // Now we can resolve any ancestors of CurrentPad up to 4104 // FPI, but not including FPI since we need to make sure 4105 // to check all direct users of FPI for consistency. 4106 UnresolvedAncestorPad = &FPI; 4107 break; 4108 } 4109 Value *ExitedParent = getParentPad(ExitedPad); 4110 if (ExitedParent == UnwindParent) { 4111 // ExitedPad is the ancestor-most pad which this unwind 4112 // edge exits, so we can resolve up to it, meaning that 4113 // ExitedParent is the first ancestor still unresolved. 4114 UnresolvedAncestorPad = ExitedParent; 4115 break; 4116 } 4117 ExitedPad = ExitedParent; 4118 } while (!isa<ConstantTokenNone>(ExitedPad)); 4119 } else { 4120 // Unwinding to caller exits all pads. 4121 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4122 ExitsFPI = true; 4123 UnresolvedAncestorPad = &FPI; 4124 } 4125 4126 if (ExitsFPI) { 4127 // This unwind edge exits FPI. Make sure it agrees with other 4128 // such edges. 4129 if (FirstUser) { 4130 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4131 "pad must have the same unwind " 4132 "dest", 4133 &FPI, U, FirstUser); 4134 } else { 4135 FirstUser = U; 4136 FirstUnwindPad = UnwindPad; 4137 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4138 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4139 getParentPad(UnwindPad) == getParentPad(&FPI)) 4140 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4141 } 4142 } 4143 // Make sure we visit all uses of FPI, but for nested pads stop as 4144 // soon as we know where they unwind to. 4145 if (CurrentPad != &FPI) 4146 break; 4147 } 4148 if (UnresolvedAncestorPad) { 4149 if (CurrentPad == UnresolvedAncestorPad) { 4150 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4151 // we've found an unwind edge that exits it, because we need to verify 4152 // all direct uses of FPI. 4153 assert(CurrentPad == &FPI); 4154 continue; 4155 } 4156 // Pop off the worklist any nested pads that we've found an unwind 4157 // destination for. The pads on the worklist are the uncles, 4158 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4159 // for all ancestors of CurrentPad up to but not including 4160 // UnresolvedAncestorPad. 4161 Value *ResolvedPad = CurrentPad; 4162 while (!Worklist.empty()) { 4163 Value *UnclePad = Worklist.back(); 4164 Value *AncestorPad = getParentPad(UnclePad); 4165 // Walk ResolvedPad up the ancestor list until we either find the 4166 // uncle's parent or the last resolved ancestor. 4167 while (ResolvedPad != AncestorPad) { 4168 Value *ResolvedParent = getParentPad(ResolvedPad); 4169 if (ResolvedParent == UnresolvedAncestorPad) { 4170 break; 4171 } 4172 ResolvedPad = ResolvedParent; 4173 } 4174 // If the resolved ancestor search didn't find the uncle's parent, 4175 // then the uncle is not yet resolved. 4176 if (ResolvedPad != AncestorPad) 4177 break; 4178 // This uncle is resolved, so pop it from the worklist. 4179 Worklist.pop_back(); 4180 } 4181 } 4182 } 4183 4184 if (FirstUnwindPad) { 4185 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4186 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4187 Value *SwitchUnwindPad; 4188 if (SwitchUnwindDest) 4189 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4190 else 4191 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4192 Assert(SwitchUnwindPad == FirstUnwindPad, 4193 "Unwind edges out of a catch must have the same unwind dest as " 4194 "the parent catchswitch", 4195 &FPI, FirstUser, CatchSwitch); 4196 } 4197 } 4198 4199 visitInstruction(FPI); 4200 } 4201 4202 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4203 BasicBlock *BB = CatchSwitch.getParent(); 4204 4205 Function *F = BB->getParent(); 4206 Assert(F->hasPersonalityFn(), 4207 "CatchSwitchInst needs to be in a function with a personality.", 4208 &CatchSwitch); 4209 4210 // The catchswitch instruction must be the first non-PHI instruction in the 4211 // block. 4212 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4213 "CatchSwitchInst not the first non-PHI instruction in the block.", 4214 &CatchSwitch); 4215 4216 auto *ParentPad = CatchSwitch.getParentPad(); 4217 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4218 "CatchSwitchInst has an invalid parent.", ParentPad); 4219 4220 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4221 Instruction *I = UnwindDest->getFirstNonPHI(); 4222 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4223 "CatchSwitchInst must unwind to an EH block which is not a " 4224 "landingpad.", 4225 &CatchSwitch); 4226 4227 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4228 if (getParentPad(I) == ParentPad) 4229 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4230 } 4231 4232 Assert(CatchSwitch.getNumHandlers() != 0, 4233 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4234 4235 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4236 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4237 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4238 } 4239 4240 visitEHPadPredecessors(CatchSwitch); 4241 visitTerminator(CatchSwitch); 4242 } 4243 4244 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4245 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4246 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4247 CRI.getOperand(0)); 4248 4249 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4250 Instruction *I = UnwindDest->getFirstNonPHI(); 4251 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4252 "CleanupReturnInst must unwind to an EH block which is not a " 4253 "landingpad.", 4254 &CRI); 4255 } 4256 4257 visitTerminator(CRI); 4258 } 4259 4260 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4261 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4262 // If the we have an invalid invoke, don't try to compute the dominance. 4263 // We already reject it in the invoke specific checks and the dominance 4264 // computation doesn't handle multiple edges. 4265 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4266 if (II->getNormalDest() == II->getUnwindDest()) 4267 return; 4268 } 4269 4270 // Quick check whether the def has already been encountered in the same block. 4271 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4272 // uses are defined to happen on the incoming edge, not at the instruction. 4273 // 4274 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4275 // wrapping an SSA value, assert that we've already encountered it. See 4276 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4277 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4278 return; 4279 4280 const Use &U = I.getOperandUse(i); 4281 Assert(DT.dominates(Op, U), 4282 "Instruction does not dominate all uses!", Op, &I); 4283 } 4284 4285 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4286 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4287 "apply only to pointer types", &I); 4288 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4289 "dereferenceable, dereferenceable_or_null apply only to load" 4290 " and inttoptr instructions, use attributes for calls or invokes", &I); 4291 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4292 "take one operand!", &I); 4293 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4294 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4295 "dereferenceable_or_null metadata value must be an i64!", &I); 4296 } 4297 4298 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4299 Assert(MD->getNumOperands() >= 2, 4300 "!prof annotations should have no less than 2 operands", MD); 4301 4302 // Check first operand. 4303 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4304 Assert(isa<MDString>(MD->getOperand(0)), 4305 "expected string with name of the !prof annotation", MD); 4306 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4307 StringRef ProfName = MDS->getString(); 4308 4309 // Check consistency of !prof branch_weights metadata. 4310 if (ProfName.equals("branch_weights")) { 4311 if (isa<InvokeInst>(&I)) { 4312 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4313 "Wrong number of InvokeInst branch_weights operands", MD); 4314 } else { 4315 unsigned ExpectedNumOperands = 0; 4316 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4317 ExpectedNumOperands = BI->getNumSuccessors(); 4318 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4319 ExpectedNumOperands = SI->getNumSuccessors(); 4320 else if (isa<CallInst>(&I)) 4321 ExpectedNumOperands = 1; 4322 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4323 ExpectedNumOperands = IBI->getNumDestinations(); 4324 else if (isa<SelectInst>(&I)) 4325 ExpectedNumOperands = 2; 4326 else 4327 CheckFailed("!prof branch_weights are not allowed for this instruction", 4328 MD); 4329 4330 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4331 "Wrong number of operands", MD); 4332 } 4333 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4334 auto &MDO = MD->getOperand(i); 4335 Assert(MDO, "second operand should not be null", MD); 4336 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4337 "!prof brunch_weights operand is not a const int"); 4338 } 4339 } 4340 } 4341 4342 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4343 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4344 Assert(Annotation->getNumOperands() >= 1, 4345 "annotation must have at least one operand"); 4346 for (const MDOperand &Op : Annotation->operands()) 4347 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4348 } 4349 4350 /// verifyInstruction - Verify that an instruction is well formed. 4351 /// 4352 void Verifier::visitInstruction(Instruction &I) { 4353 BasicBlock *BB = I.getParent(); 4354 Assert(BB, "Instruction not embedded in basic block!", &I); 4355 4356 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4357 for (User *U : I.users()) { 4358 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4359 "Only PHI nodes may reference their own value!", &I); 4360 } 4361 } 4362 4363 // Check that void typed values don't have names 4364 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4365 "Instruction has a name, but provides a void value!", &I); 4366 4367 // Check that the return value of the instruction is either void or a legal 4368 // value type. 4369 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4370 "Instruction returns a non-scalar type!", &I); 4371 4372 // Check that the instruction doesn't produce metadata. Calls are already 4373 // checked against the callee type. 4374 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4375 "Invalid use of metadata!", &I); 4376 4377 // Check that all uses of the instruction, if they are instructions 4378 // themselves, actually have parent basic blocks. If the use is not an 4379 // instruction, it is an error! 4380 for (Use &U : I.uses()) { 4381 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4382 Assert(Used->getParent() != nullptr, 4383 "Instruction referencing" 4384 " instruction not embedded in a basic block!", 4385 &I, Used); 4386 else { 4387 CheckFailed("Use of instruction is not an instruction!", U); 4388 return; 4389 } 4390 } 4391 4392 // Get a pointer to the call base of the instruction if it is some form of 4393 // call. 4394 const CallBase *CBI = dyn_cast<CallBase>(&I); 4395 4396 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4397 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4398 4399 // Check to make sure that only first-class-values are operands to 4400 // instructions. 4401 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4402 Assert(false, "Instruction operands must be first-class values!", &I); 4403 } 4404 4405 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4406 // Check to make sure that the "address of" an intrinsic function is never 4407 // taken. 4408 Assert(!F->isIntrinsic() || 4409 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4410 "Cannot take the address of an intrinsic!", &I); 4411 Assert( 4412 !F->isIntrinsic() || isa<CallInst>(I) || 4413 F->getIntrinsicID() == Intrinsic::donothing || 4414 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4415 F->getIntrinsicID() == Intrinsic::seh_try_end || 4416 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4417 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4418 F->getIntrinsicID() == Intrinsic::coro_resume || 4419 F->getIntrinsicID() == Intrinsic::coro_destroy || 4420 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4421 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4422 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4423 F->getIntrinsicID() == Intrinsic::wasm_rethrow, 4424 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4425 "statepoint, coro_resume or coro_destroy", 4426 &I); 4427 Assert(F->getParent() == &M, "Referencing function in another module!", 4428 &I, &M, F, F->getParent()); 4429 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4430 Assert(OpBB->getParent() == BB->getParent(), 4431 "Referring to a basic block in another function!", &I); 4432 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4433 Assert(OpArg->getParent() == BB->getParent(), 4434 "Referring to an argument in another function!", &I); 4435 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4436 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4437 &M, GV, GV->getParent()); 4438 } else if (isa<Instruction>(I.getOperand(i))) { 4439 verifyDominatesUse(I, i); 4440 } else if (isa<InlineAsm>(I.getOperand(i))) { 4441 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4442 "Cannot take the address of an inline asm!", &I); 4443 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4444 if (CE->getType()->isPtrOrPtrVectorTy()) { 4445 // If we have a ConstantExpr pointer, we need to see if it came from an 4446 // illegal bitcast. 4447 visitConstantExprsRecursively(CE); 4448 } 4449 } 4450 } 4451 4452 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4453 Assert(I.getType()->isFPOrFPVectorTy(), 4454 "fpmath requires a floating point result!", &I); 4455 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4456 if (ConstantFP *CFP0 = 4457 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4458 const APFloat &Accuracy = CFP0->getValueAPF(); 4459 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4460 "fpmath accuracy must have float type", &I); 4461 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4462 "fpmath accuracy not a positive number!", &I); 4463 } else { 4464 Assert(false, "invalid fpmath accuracy!", &I); 4465 } 4466 } 4467 4468 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4469 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4470 "Ranges are only for loads, calls and invokes!", &I); 4471 visitRangeMetadata(I, Range, I.getType()); 4472 } 4473 4474 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4475 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4476 &I); 4477 Assert(isa<LoadInst>(I), 4478 "nonnull applies only to load instructions, use attributes" 4479 " for calls or invokes", 4480 &I); 4481 } 4482 4483 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4484 visitDereferenceableMetadata(I, MD); 4485 4486 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4487 visitDereferenceableMetadata(I, MD); 4488 4489 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4490 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4491 4492 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4493 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4494 &I); 4495 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4496 "use attributes for calls or invokes", &I); 4497 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4498 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4499 Assert(CI && CI->getType()->isIntegerTy(64), 4500 "align metadata value must be an i64!", &I); 4501 uint64_t Align = CI->getZExtValue(); 4502 Assert(isPowerOf2_64(Align), 4503 "align metadata value must be a power of 2!", &I); 4504 Assert(Align <= Value::MaximumAlignment, 4505 "alignment is larger that implementation defined limit", &I); 4506 } 4507 4508 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4509 visitProfMetadata(I, MD); 4510 4511 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4512 visitAnnotationMetadata(Annotation); 4513 4514 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4515 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4516 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4517 } 4518 4519 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4520 verifyFragmentExpression(*DII); 4521 verifyNotEntryValue(*DII); 4522 } 4523 4524 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4525 I.getAllMetadata(MDs); 4526 for (auto Attachment : MDs) { 4527 unsigned Kind = Attachment.first; 4528 auto AllowLocs = 4529 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4530 ? AreDebugLocsAllowed::Yes 4531 : AreDebugLocsAllowed::No; 4532 visitMDNode(*Attachment.second, AllowLocs); 4533 } 4534 4535 InstsInThisBlock.insert(&I); 4536 } 4537 4538 /// Allow intrinsics to be verified in different ways. 4539 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4540 Function *IF = Call.getCalledFunction(); 4541 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4542 IF); 4543 4544 // Verify that the intrinsic prototype lines up with what the .td files 4545 // describe. 4546 FunctionType *IFTy = IF->getFunctionType(); 4547 bool IsVarArg = IFTy->isVarArg(); 4548 4549 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4550 getIntrinsicInfoTableEntries(ID, Table); 4551 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4552 4553 // Walk the descriptors to extract overloaded types. 4554 SmallVector<Type *, 4> ArgTys; 4555 Intrinsic::MatchIntrinsicTypesResult Res = 4556 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4557 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4558 "Intrinsic has incorrect return type!", IF); 4559 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4560 "Intrinsic has incorrect argument type!", IF); 4561 4562 // Verify if the intrinsic call matches the vararg property. 4563 if (IsVarArg) 4564 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4565 "Intrinsic was not defined with variable arguments!", IF); 4566 else 4567 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4568 "Callsite was not defined with variable arguments!", IF); 4569 4570 // All descriptors should be absorbed by now. 4571 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4572 4573 // Now that we have the intrinsic ID and the actual argument types (and we 4574 // know they are legal for the intrinsic!) get the intrinsic name through the 4575 // usual means. This allows us to verify the mangling of argument types into 4576 // the name. 4577 const std::string ExpectedName = 4578 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4579 Assert(ExpectedName == IF->getName(), 4580 "Intrinsic name not mangled correctly for type arguments! " 4581 "Should be: " + 4582 ExpectedName, 4583 IF); 4584 4585 // If the intrinsic takes MDNode arguments, verify that they are either global 4586 // or are local to *this* function. 4587 for (Value *V : Call.args()) { 4588 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4589 visitMetadataAsValue(*MD, Call.getCaller()); 4590 if (auto *Const = dyn_cast<Constant>(V)) 4591 Assert(!Const->getType()->isX86_AMXTy(), 4592 "const x86_amx is not allowed in argument!"); 4593 } 4594 4595 switch (ID) { 4596 default: 4597 break; 4598 case Intrinsic::assume: { 4599 for (auto &Elem : Call.bundle_op_infos()) { 4600 Assert(Elem.Tag->getKey() == "ignore" || 4601 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4602 "tags must be valid attribute names"); 4603 Attribute::AttrKind Kind = 4604 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4605 unsigned ArgCount = Elem.End - Elem.Begin; 4606 if (Kind == Attribute::Alignment) { 4607 Assert(ArgCount <= 3 && ArgCount >= 2, 4608 "alignment assumptions should have 2 or 3 arguments"); 4609 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4610 "first argument should be a pointer"); 4611 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4612 "second argument should be an integer"); 4613 if (ArgCount == 3) 4614 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4615 "third argument should be an integer if present"); 4616 return; 4617 } 4618 Assert(ArgCount <= 2, "to many arguments"); 4619 if (Kind == Attribute::None) 4620 break; 4621 if (Attribute::isIntAttrKind(Kind)) { 4622 Assert(ArgCount == 2, "this attribute should have 2 arguments"); 4623 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4624 "the second argument should be a constant integral value"); 4625 } else if (Attribute::canUseAsParamAttr(Kind)) { 4626 Assert((ArgCount) == 1, "this attribute should have one argument"); 4627 } else if (Attribute::canUseAsFnAttr(Kind)) { 4628 Assert((ArgCount) == 0, "this attribute has no argument"); 4629 } 4630 } 4631 break; 4632 } 4633 case Intrinsic::coro_id: { 4634 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4635 if (isa<ConstantPointerNull>(InfoArg)) 4636 break; 4637 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4638 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4639 "info argument of llvm.coro.id must refer to an initialized " 4640 "constant"); 4641 Constant *Init = GV->getInitializer(); 4642 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4643 "info argument of llvm.coro.id must refer to either a struct or " 4644 "an array"); 4645 break; 4646 } 4647 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4648 case Intrinsic::INTRINSIC: 4649 #include "llvm/IR/ConstrainedOps.def" 4650 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4651 break; 4652 case Intrinsic::dbg_declare: // llvm.dbg.declare 4653 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4654 "invalid llvm.dbg.declare intrinsic call 1", Call); 4655 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4656 break; 4657 case Intrinsic::dbg_addr: // llvm.dbg.addr 4658 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4659 break; 4660 case Intrinsic::dbg_value: // llvm.dbg.value 4661 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4662 break; 4663 case Intrinsic::dbg_label: // llvm.dbg.label 4664 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4665 break; 4666 case Intrinsic::memcpy: 4667 case Intrinsic::memcpy_inline: 4668 case Intrinsic::memmove: 4669 case Intrinsic::memset: { 4670 const auto *MI = cast<MemIntrinsic>(&Call); 4671 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4672 return Alignment == 0 || isPowerOf2_32(Alignment); 4673 }; 4674 Assert(IsValidAlignment(MI->getDestAlignment()), 4675 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4676 Call); 4677 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4678 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4679 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4680 Call); 4681 } 4682 4683 break; 4684 } 4685 case Intrinsic::memcpy_element_unordered_atomic: 4686 case Intrinsic::memmove_element_unordered_atomic: 4687 case Intrinsic::memset_element_unordered_atomic: { 4688 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4689 4690 ConstantInt *ElementSizeCI = 4691 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4692 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4693 Assert(ElementSizeVal.isPowerOf2(), 4694 "element size of the element-wise atomic memory intrinsic " 4695 "must be a power of 2", 4696 Call); 4697 4698 auto IsValidAlignment = [&](uint64_t Alignment) { 4699 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4700 }; 4701 uint64_t DstAlignment = AMI->getDestAlignment(); 4702 Assert(IsValidAlignment(DstAlignment), 4703 "incorrect alignment of the destination argument", Call); 4704 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4705 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4706 Assert(IsValidAlignment(SrcAlignment), 4707 "incorrect alignment of the source argument", Call); 4708 } 4709 break; 4710 } 4711 case Intrinsic::call_preallocated_setup: { 4712 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4713 Assert(NumArgs != nullptr, 4714 "llvm.call.preallocated.setup argument must be a constant"); 4715 bool FoundCall = false; 4716 for (User *U : Call.users()) { 4717 auto *UseCall = dyn_cast<CallBase>(U); 4718 Assert(UseCall != nullptr, 4719 "Uses of llvm.call.preallocated.setup must be calls"); 4720 const Function *Fn = UseCall->getCalledFunction(); 4721 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4722 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4723 Assert(AllocArgIndex != nullptr, 4724 "llvm.call.preallocated.alloc arg index must be a constant"); 4725 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4726 Assert(AllocArgIndexInt.sge(0) && 4727 AllocArgIndexInt.slt(NumArgs->getValue()), 4728 "llvm.call.preallocated.alloc arg index must be between 0 and " 4729 "corresponding " 4730 "llvm.call.preallocated.setup's argument count"); 4731 } else if (Fn && Fn->getIntrinsicID() == 4732 Intrinsic::call_preallocated_teardown) { 4733 // nothing to do 4734 } else { 4735 Assert(!FoundCall, "Can have at most one call corresponding to a " 4736 "llvm.call.preallocated.setup"); 4737 FoundCall = true; 4738 size_t NumPreallocatedArgs = 0; 4739 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4740 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4741 ++NumPreallocatedArgs; 4742 } 4743 } 4744 Assert(NumPreallocatedArgs != 0, 4745 "cannot use preallocated intrinsics on a call without " 4746 "preallocated arguments"); 4747 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4748 "llvm.call.preallocated.setup arg size must be equal to number " 4749 "of preallocated arguments " 4750 "at call site", 4751 Call, *UseCall); 4752 // getOperandBundle() cannot be called if more than one of the operand 4753 // bundle exists. There is already a check elsewhere for this, so skip 4754 // here if we see more than one. 4755 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4756 1) { 4757 return; 4758 } 4759 auto PreallocatedBundle = 4760 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4761 Assert(PreallocatedBundle, 4762 "Use of llvm.call.preallocated.setup outside intrinsics " 4763 "must be in \"preallocated\" operand bundle"); 4764 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4765 "preallocated bundle must have token from corresponding " 4766 "llvm.call.preallocated.setup"); 4767 } 4768 } 4769 break; 4770 } 4771 case Intrinsic::call_preallocated_arg: { 4772 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4773 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4774 Intrinsic::call_preallocated_setup, 4775 "llvm.call.preallocated.arg token argument must be a " 4776 "llvm.call.preallocated.setup"); 4777 Assert(Call.hasFnAttr(Attribute::Preallocated), 4778 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4779 "call site attribute"); 4780 break; 4781 } 4782 case Intrinsic::call_preallocated_teardown: { 4783 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4784 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4785 Intrinsic::call_preallocated_setup, 4786 "llvm.call.preallocated.teardown token argument must be a " 4787 "llvm.call.preallocated.setup"); 4788 break; 4789 } 4790 case Intrinsic::gcroot: 4791 case Intrinsic::gcwrite: 4792 case Intrinsic::gcread: 4793 if (ID == Intrinsic::gcroot) { 4794 AllocaInst *AI = 4795 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4796 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4797 Assert(isa<Constant>(Call.getArgOperand(1)), 4798 "llvm.gcroot parameter #2 must be a constant.", Call); 4799 if (!AI->getAllocatedType()->isPointerTy()) { 4800 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4801 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4802 "or argument #2 must be a non-null constant.", 4803 Call); 4804 } 4805 } 4806 4807 Assert(Call.getParent()->getParent()->hasGC(), 4808 "Enclosing function does not use GC.", Call); 4809 break; 4810 case Intrinsic::init_trampoline: 4811 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4812 "llvm.init_trampoline parameter #2 must resolve to a function.", 4813 Call); 4814 break; 4815 case Intrinsic::prefetch: 4816 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4817 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4818 "invalid arguments to llvm.prefetch", Call); 4819 break; 4820 case Intrinsic::stackprotector: 4821 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4822 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4823 break; 4824 case Intrinsic::localescape: { 4825 BasicBlock *BB = Call.getParent(); 4826 Assert(BB == &BB->getParent()->front(), 4827 "llvm.localescape used outside of entry block", Call); 4828 Assert(!SawFrameEscape, 4829 "multiple calls to llvm.localescape in one function", Call); 4830 for (Value *Arg : Call.args()) { 4831 if (isa<ConstantPointerNull>(Arg)) 4832 continue; // Null values are allowed as placeholders. 4833 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4834 Assert(AI && AI->isStaticAlloca(), 4835 "llvm.localescape only accepts static allocas", Call); 4836 } 4837 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4838 SawFrameEscape = true; 4839 break; 4840 } 4841 case Intrinsic::localrecover: { 4842 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4843 Function *Fn = dyn_cast<Function>(FnArg); 4844 Assert(Fn && !Fn->isDeclaration(), 4845 "llvm.localrecover first " 4846 "argument must be function defined in this module", 4847 Call); 4848 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4849 auto &Entry = FrameEscapeInfo[Fn]; 4850 Entry.second = unsigned( 4851 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4852 break; 4853 } 4854 4855 case Intrinsic::experimental_gc_statepoint: 4856 if (auto *CI = dyn_cast<CallInst>(&Call)) 4857 Assert(!CI->isInlineAsm(), 4858 "gc.statepoint support for inline assembly unimplemented", CI); 4859 Assert(Call.getParent()->getParent()->hasGC(), 4860 "Enclosing function does not use GC.", Call); 4861 4862 verifyStatepoint(Call); 4863 break; 4864 case Intrinsic::experimental_gc_result: { 4865 Assert(Call.getParent()->getParent()->hasGC(), 4866 "Enclosing function does not use GC.", Call); 4867 // Are we tied to a statepoint properly? 4868 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4869 const Function *StatepointFn = 4870 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4871 Assert(StatepointFn && StatepointFn->isDeclaration() && 4872 StatepointFn->getIntrinsicID() == 4873 Intrinsic::experimental_gc_statepoint, 4874 "gc.result operand #1 must be from a statepoint", Call, 4875 Call.getArgOperand(0)); 4876 4877 // Assert that result type matches wrapped callee. 4878 const Value *Target = StatepointCall->getArgOperand(2); 4879 auto *PT = cast<PointerType>(Target->getType()); 4880 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4881 Assert(Call.getType() == TargetFuncType->getReturnType(), 4882 "gc.result result type does not match wrapped callee", Call); 4883 break; 4884 } 4885 case Intrinsic::experimental_gc_relocate: { 4886 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4887 4888 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4889 "gc.relocate must return a pointer or a vector of pointers", Call); 4890 4891 // Check that this relocate is correctly tied to the statepoint 4892 4893 // This is case for relocate on the unwinding path of an invoke statepoint 4894 if (LandingPadInst *LandingPad = 4895 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4896 4897 const BasicBlock *InvokeBB = 4898 LandingPad->getParent()->getUniquePredecessor(); 4899 4900 // Landingpad relocates should have only one predecessor with invoke 4901 // statepoint terminator 4902 Assert(InvokeBB, "safepoints should have unique landingpads", 4903 LandingPad->getParent()); 4904 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4905 InvokeBB); 4906 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4907 "gc relocate should be linked to a statepoint", InvokeBB); 4908 } else { 4909 // In all other cases relocate should be tied to the statepoint directly. 4910 // This covers relocates on a normal return path of invoke statepoint and 4911 // relocates of a call statepoint. 4912 auto Token = Call.getArgOperand(0); 4913 Assert(isa<GCStatepointInst>(Token), 4914 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4915 } 4916 4917 // Verify rest of the relocate arguments. 4918 const CallBase &StatepointCall = 4919 *cast<GCRelocateInst>(Call).getStatepoint(); 4920 4921 // Both the base and derived must be piped through the safepoint. 4922 Value *Base = Call.getArgOperand(1); 4923 Assert(isa<ConstantInt>(Base), 4924 "gc.relocate operand #2 must be integer offset", Call); 4925 4926 Value *Derived = Call.getArgOperand(2); 4927 Assert(isa<ConstantInt>(Derived), 4928 "gc.relocate operand #3 must be integer offset", Call); 4929 4930 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4931 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4932 4933 // Check the bounds 4934 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4935 Assert(BaseIndex < Opt->Inputs.size(), 4936 "gc.relocate: statepoint base index out of bounds", Call); 4937 Assert(DerivedIndex < Opt->Inputs.size(), 4938 "gc.relocate: statepoint derived index out of bounds", Call); 4939 } 4940 4941 // Relocated value must be either a pointer type or vector-of-pointer type, 4942 // but gc_relocate does not need to return the same pointer type as the 4943 // relocated pointer. It can be casted to the correct type later if it's 4944 // desired. However, they must have the same address space and 'vectorness' 4945 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4946 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4947 "gc.relocate: relocated value must be a gc pointer", Call); 4948 4949 auto ResultType = Call.getType(); 4950 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4951 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4952 "gc.relocate: vector relocates to vector and pointer to pointer", 4953 Call); 4954 Assert( 4955 ResultType->getPointerAddressSpace() == 4956 DerivedType->getPointerAddressSpace(), 4957 "gc.relocate: relocating a pointer shouldn't change its address space", 4958 Call); 4959 break; 4960 } 4961 case Intrinsic::eh_exceptioncode: 4962 case Intrinsic::eh_exceptionpointer: { 4963 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4964 "eh.exceptionpointer argument must be a catchpad", Call); 4965 break; 4966 } 4967 case Intrinsic::get_active_lane_mask: { 4968 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4969 "vector", Call); 4970 auto *ElemTy = Call.getType()->getScalarType(); 4971 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4972 "i1", Call); 4973 break; 4974 } 4975 case Intrinsic::masked_load: { 4976 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4977 Call); 4978 4979 Value *Ptr = Call.getArgOperand(0); 4980 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4981 Value *Mask = Call.getArgOperand(2); 4982 Value *PassThru = Call.getArgOperand(3); 4983 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4984 Call); 4985 Assert(Alignment->getValue().isPowerOf2(), 4986 "masked_load: alignment must be a power of 2", Call); 4987 4988 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 4989 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), 4990 "masked_load: return must match pointer type", Call); 4991 Assert(PassThru->getType() == Call.getType(), 4992 "masked_load: pass through and return type must match", Call); 4993 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4994 cast<VectorType>(Call.getType())->getElementCount(), 4995 "masked_load: vector mask must be same length as return", Call); 4996 break; 4997 } 4998 case Intrinsic::masked_store: { 4999 Value *Val = Call.getArgOperand(0); 5000 Value *Ptr = Call.getArgOperand(1); 5001 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5002 Value *Mask = Call.getArgOperand(3); 5003 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5004 Call); 5005 Assert(Alignment->getValue().isPowerOf2(), 5006 "masked_store: alignment must be a power of 2", Call); 5007 5008 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5009 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), 5010 "masked_store: storee must match pointer type", Call); 5011 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5012 cast<VectorType>(Val->getType())->getElementCount(), 5013 "masked_store: vector mask must be same length as value", Call); 5014 break; 5015 } 5016 5017 case Intrinsic::masked_gather: { 5018 const APInt &Alignment = 5019 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5020 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 5021 "masked_gather: alignment must be 0 or a power of 2", Call); 5022 break; 5023 } 5024 case Intrinsic::masked_scatter: { 5025 const APInt &Alignment = 5026 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5027 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 5028 "masked_scatter: alignment must be 0 or a power of 2", Call); 5029 break; 5030 } 5031 5032 case Intrinsic::experimental_guard: { 5033 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5034 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5035 "experimental_guard must have exactly one " 5036 "\"deopt\" operand bundle"); 5037 break; 5038 } 5039 5040 case Intrinsic::experimental_deoptimize: { 5041 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5042 Call); 5043 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5044 "experimental_deoptimize must have exactly one " 5045 "\"deopt\" operand bundle"); 5046 Assert(Call.getType() == Call.getFunction()->getReturnType(), 5047 "experimental_deoptimize return type must match caller return type"); 5048 5049 if (isa<CallInst>(Call)) { 5050 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5051 Assert(RI, 5052 "calls to experimental_deoptimize must be followed by a return"); 5053 5054 if (!Call.getType()->isVoidTy() && RI) 5055 Assert(RI->getReturnValue() == &Call, 5056 "calls to experimental_deoptimize must be followed by a return " 5057 "of the value computed by experimental_deoptimize"); 5058 } 5059 5060 break; 5061 } 5062 case Intrinsic::vector_reduce_and: 5063 case Intrinsic::vector_reduce_or: 5064 case Intrinsic::vector_reduce_xor: 5065 case Intrinsic::vector_reduce_add: 5066 case Intrinsic::vector_reduce_mul: 5067 case Intrinsic::vector_reduce_smax: 5068 case Intrinsic::vector_reduce_smin: 5069 case Intrinsic::vector_reduce_umax: 5070 case Intrinsic::vector_reduce_umin: { 5071 Type *ArgTy = Call.getArgOperand(0)->getType(); 5072 Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5073 "Intrinsic has incorrect argument type!"); 5074 break; 5075 } 5076 case Intrinsic::vector_reduce_fmax: 5077 case Intrinsic::vector_reduce_fmin: { 5078 Type *ArgTy = Call.getArgOperand(0)->getType(); 5079 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5080 "Intrinsic has incorrect argument type!"); 5081 break; 5082 } 5083 case Intrinsic::vector_reduce_fadd: 5084 case Intrinsic::vector_reduce_fmul: { 5085 // Unlike the other reductions, the first argument is a start value. The 5086 // second argument is the vector to be reduced. 5087 Type *ArgTy = Call.getArgOperand(1)->getType(); 5088 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5089 "Intrinsic has incorrect argument type!"); 5090 break; 5091 } 5092 case Intrinsic::smul_fix: 5093 case Intrinsic::smul_fix_sat: 5094 case Intrinsic::umul_fix: 5095 case Intrinsic::umul_fix_sat: 5096 case Intrinsic::sdiv_fix: 5097 case Intrinsic::sdiv_fix_sat: 5098 case Intrinsic::udiv_fix: 5099 case Intrinsic::udiv_fix_sat: { 5100 Value *Op1 = Call.getArgOperand(0); 5101 Value *Op2 = Call.getArgOperand(1); 5102 Assert(Op1->getType()->isIntOrIntVectorTy(), 5103 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5104 "vector of ints"); 5105 Assert(Op2->getType()->isIntOrIntVectorTy(), 5106 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5107 "vector of ints"); 5108 5109 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5110 Assert(Op3->getType()->getBitWidth() <= 32, 5111 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5112 5113 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5114 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5115 Assert( 5116 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5117 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5118 "the operands"); 5119 } else { 5120 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5121 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5122 "to the width of the operands"); 5123 } 5124 break; 5125 } 5126 case Intrinsic::lround: 5127 case Intrinsic::llround: 5128 case Intrinsic::lrint: 5129 case Intrinsic::llrint: { 5130 Type *ValTy = Call.getArgOperand(0)->getType(); 5131 Type *ResultTy = Call.getType(); 5132 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5133 "Intrinsic does not support vectors", &Call); 5134 break; 5135 } 5136 case Intrinsic::bswap: { 5137 Type *Ty = Call.getType(); 5138 unsigned Size = Ty->getScalarSizeInBits(); 5139 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5140 break; 5141 } 5142 case Intrinsic::invariant_start: { 5143 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5144 Assert(InvariantSize && 5145 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5146 "invariant_start parameter must be -1, 0 or a positive number", 5147 &Call); 5148 break; 5149 } 5150 case Intrinsic::matrix_multiply: 5151 case Intrinsic::matrix_transpose: 5152 case Intrinsic::matrix_column_major_load: 5153 case Intrinsic::matrix_column_major_store: { 5154 Function *IF = Call.getCalledFunction(); 5155 ConstantInt *Stride = nullptr; 5156 ConstantInt *NumRows; 5157 ConstantInt *NumColumns; 5158 VectorType *ResultTy; 5159 Type *Op0ElemTy = nullptr; 5160 Type *Op1ElemTy = nullptr; 5161 switch (ID) { 5162 case Intrinsic::matrix_multiply: 5163 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5164 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5165 ResultTy = cast<VectorType>(Call.getType()); 5166 Op0ElemTy = 5167 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5168 Op1ElemTy = 5169 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5170 break; 5171 case Intrinsic::matrix_transpose: 5172 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5173 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5174 ResultTy = cast<VectorType>(Call.getType()); 5175 Op0ElemTy = 5176 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5177 break; 5178 case Intrinsic::matrix_column_major_load: 5179 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5180 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5181 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5182 ResultTy = cast<VectorType>(Call.getType()); 5183 Op0ElemTy = 5184 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5185 break; 5186 case Intrinsic::matrix_column_major_store: 5187 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5188 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5189 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5190 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5191 Op0ElemTy = 5192 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5193 Op1ElemTy = 5194 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5195 break; 5196 default: 5197 llvm_unreachable("unexpected intrinsic"); 5198 } 5199 5200 Assert(ResultTy->getElementType()->isIntegerTy() || 5201 ResultTy->getElementType()->isFloatingPointTy(), 5202 "Result type must be an integer or floating-point type!", IF); 5203 5204 Assert(ResultTy->getElementType() == Op0ElemTy, 5205 "Vector element type mismatch of the result and first operand " 5206 "vector!", IF); 5207 5208 if (Op1ElemTy) 5209 Assert(ResultTy->getElementType() == Op1ElemTy, 5210 "Vector element type mismatch of the result and second operand " 5211 "vector!", IF); 5212 5213 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5214 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5215 "Result of a matrix operation does not fit in the returned vector!"); 5216 5217 if (Stride) 5218 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5219 "Stride must be greater or equal than the number of rows!", IF); 5220 5221 break; 5222 } 5223 case Intrinsic::experimental_stepvector: { 5224 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5225 Assert(VecTy && VecTy->getScalarType()->isIntegerTy() && 5226 VecTy->getScalarSizeInBits() >= 8, 5227 "experimental_stepvector only supported for vectors of integers " 5228 "with a bitwidth of at least 8.", 5229 &Call); 5230 break; 5231 } 5232 case Intrinsic::experimental_vector_insert: { 5233 Value *Vec = Call.getArgOperand(0); 5234 Value *SubVec = Call.getArgOperand(1); 5235 Value *Idx = Call.getArgOperand(2); 5236 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5237 5238 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5239 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5240 5241 ElementCount VecEC = VecTy->getElementCount(); 5242 ElementCount SubVecEC = SubVecTy->getElementCount(); 5243 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5244 "experimental_vector_insert parameters must have the same element " 5245 "type.", 5246 &Call); 5247 Assert(IdxN % SubVecEC.getKnownMinValue() == 0, 5248 "experimental_vector_insert index must be a constant multiple of " 5249 "the subvector's known minimum vector length."); 5250 5251 // If this insertion is not the 'mixed' case where a fixed vector is 5252 // inserted into a scalable vector, ensure that the insertion of the 5253 // subvector does not overrun the parent vector. 5254 if (VecEC.isScalable() == SubVecEC.isScalable()) { 5255 Assert( 5256 IdxN < VecEC.getKnownMinValue() && 5257 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5258 "subvector operand of experimental_vector_insert would overrun the " 5259 "vector being inserted into."); 5260 } 5261 break; 5262 } 5263 case Intrinsic::experimental_vector_extract: { 5264 Value *Vec = Call.getArgOperand(0); 5265 Value *Idx = Call.getArgOperand(1); 5266 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5267 5268 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5269 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5270 5271 ElementCount VecEC = VecTy->getElementCount(); 5272 ElementCount ResultEC = ResultTy->getElementCount(); 5273 5274 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5275 "experimental_vector_extract result must have the same element " 5276 "type as the input vector.", 5277 &Call); 5278 Assert(IdxN % ResultEC.getKnownMinValue() == 0, 5279 "experimental_vector_extract index must be a constant multiple of " 5280 "the result type's known minimum vector length."); 5281 5282 // If this extraction is not the 'mixed' case where a fixed vector is is 5283 // extracted from a scalable vector, ensure that the extraction does not 5284 // overrun the parent vector. 5285 if (VecEC.isScalable() == ResultEC.isScalable()) { 5286 Assert(IdxN < VecEC.getKnownMinValue() && 5287 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5288 "experimental_vector_extract would overrun."); 5289 } 5290 break; 5291 } 5292 case Intrinsic::experimental_noalias_scope_decl: { 5293 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5294 break; 5295 } 5296 case Intrinsic::preserve_array_access_index: 5297 case Intrinsic::preserve_struct_access_index: { 5298 Type *ElemTy = Call.getAttributes().getParamElementType(0); 5299 Assert(ElemTy, 5300 "Intrinsic requires elementtype attribute on first argument.", 5301 &Call); 5302 break; 5303 } 5304 }; 5305 } 5306 5307 /// Carefully grab the subprogram from a local scope. 5308 /// 5309 /// This carefully grabs the subprogram from a local scope, avoiding the 5310 /// built-in assertions that would typically fire. 5311 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5312 if (!LocalScope) 5313 return nullptr; 5314 5315 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5316 return SP; 5317 5318 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5319 return getSubprogram(LB->getRawScope()); 5320 5321 // Just return null; broken scope chains are checked elsewhere. 5322 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5323 return nullptr; 5324 } 5325 5326 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5327 unsigned NumOperands; 5328 bool HasRoundingMD; 5329 switch (FPI.getIntrinsicID()) { 5330 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5331 case Intrinsic::INTRINSIC: \ 5332 NumOperands = NARG; \ 5333 HasRoundingMD = ROUND_MODE; \ 5334 break; 5335 #include "llvm/IR/ConstrainedOps.def" 5336 default: 5337 llvm_unreachable("Invalid constrained FP intrinsic!"); 5338 } 5339 NumOperands += (1 + HasRoundingMD); 5340 // Compare intrinsics carry an extra predicate metadata operand. 5341 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5342 NumOperands += 1; 5343 Assert((FPI.getNumArgOperands() == NumOperands), 5344 "invalid arguments for constrained FP intrinsic", &FPI); 5345 5346 switch (FPI.getIntrinsicID()) { 5347 case Intrinsic::experimental_constrained_lrint: 5348 case Intrinsic::experimental_constrained_llrint: { 5349 Type *ValTy = FPI.getArgOperand(0)->getType(); 5350 Type *ResultTy = FPI.getType(); 5351 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5352 "Intrinsic does not support vectors", &FPI); 5353 } 5354 break; 5355 5356 case Intrinsic::experimental_constrained_lround: 5357 case Intrinsic::experimental_constrained_llround: { 5358 Type *ValTy = FPI.getArgOperand(0)->getType(); 5359 Type *ResultTy = FPI.getType(); 5360 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5361 "Intrinsic does not support vectors", &FPI); 5362 break; 5363 } 5364 5365 case Intrinsic::experimental_constrained_fcmp: 5366 case Intrinsic::experimental_constrained_fcmps: { 5367 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5368 Assert(CmpInst::isFPPredicate(Pred), 5369 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5370 break; 5371 } 5372 5373 case Intrinsic::experimental_constrained_fptosi: 5374 case Intrinsic::experimental_constrained_fptoui: { 5375 Value *Operand = FPI.getArgOperand(0); 5376 uint64_t NumSrcElem = 0; 5377 Assert(Operand->getType()->isFPOrFPVectorTy(), 5378 "Intrinsic first argument must be floating point", &FPI); 5379 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5380 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5381 } 5382 5383 Operand = &FPI; 5384 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5385 "Intrinsic first argument and result disagree on vector use", &FPI); 5386 Assert(Operand->getType()->isIntOrIntVectorTy(), 5387 "Intrinsic result must be an integer", &FPI); 5388 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5389 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5390 "Intrinsic first argument and result vector lengths must be equal", 5391 &FPI); 5392 } 5393 } 5394 break; 5395 5396 case Intrinsic::experimental_constrained_sitofp: 5397 case Intrinsic::experimental_constrained_uitofp: { 5398 Value *Operand = FPI.getArgOperand(0); 5399 uint64_t NumSrcElem = 0; 5400 Assert(Operand->getType()->isIntOrIntVectorTy(), 5401 "Intrinsic first argument must be integer", &FPI); 5402 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5403 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5404 } 5405 5406 Operand = &FPI; 5407 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5408 "Intrinsic first argument and result disagree on vector use", &FPI); 5409 Assert(Operand->getType()->isFPOrFPVectorTy(), 5410 "Intrinsic result must be a floating point", &FPI); 5411 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5412 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5413 "Intrinsic first argument and result vector lengths must be equal", 5414 &FPI); 5415 } 5416 } break; 5417 5418 case Intrinsic::experimental_constrained_fptrunc: 5419 case Intrinsic::experimental_constrained_fpext: { 5420 Value *Operand = FPI.getArgOperand(0); 5421 Type *OperandTy = Operand->getType(); 5422 Value *Result = &FPI; 5423 Type *ResultTy = Result->getType(); 5424 Assert(OperandTy->isFPOrFPVectorTy(), 5425 "Intrinsic first argument must be FP or FP vector", &FPI); 5426 Assert(ResultTy->isFPOrFPVectorTy(), 5427 "Intrinsic result must be FP or FP vector", &FPI); 5428 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5429 "Intrinsic first argument and result disagree on vector use", &FPI); 5430 if (OperandTy->isVectorTy()) { 5431 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5432 cast<FixedVectorType>(ResultTy)->getNumElements(), 5433 "Intrinsic first argument and result vector lengths must be equal", 5434 &FPI); 5435 } 5436 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5437 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5438 "Intrinsic first argument's type must be larger than result type", 5439 &FPI); 5440 } else { 5441 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5442 "Intrinsic first argument's type must be smaller than result type", 5443 &FPI); 5444 } 5445 } 5446 break; 5447 5448 default: 5449 break; 5450 } 5451 5452 // If a non-metadata argument is passed in a metadata slot then the 5453 // error will be caught earlier when the incorrect argument doesn't 5454 // match the specification in the intrinsic call table. Thus, no 5455 // argument type check is needed here. 5456 5457 Assert(FPI.getExceptionBehavior().hasValue(), 5458 "invalid exception behavior argument", &FPI); 5459 if (HasRoundingMD) { 5460 Assert(FPI.getRoundingMode().hasValue(), 5461 "invalid rounding mode argument", &FPI); 5462 } 5463 } 5464 5465 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5466 auto *MD = DII.getRawLocation(); 5467 AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 5468 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5469 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5470 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5471 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5472 DII.getRawVariable()); 5473 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5474 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5475 DII.getRawExpression()); 5476 5477 // Ignore broken !dbg attachments; they're checked elsewhere. 5478 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5479 if (!isa<DILocation>(N)) 5480 return; 5481 5482 BasicBlock *BB = DII.getParent(); 5483 Function *F = BB ? BB->getParent() : nullptr; 5484 5485 // The scopes for variables and !dbg attachments must agree. 5486 DILocalVariable *Var = DII.getVariable(); 5487 DILocation *Loc = DII.getDebugLoc(); 5488 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5489 &DII, BB, F); 5490 5491 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5492 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5493 if (!VarSP || !LocSP) 5494 return; // Broken scope chains are checked elsewhere. 5495 5496 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5497 " variable and !dbg attachment", 5498 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5499 Loc->getScope()->getSubprogram()); 5500 5501 // This check is redundant with one in visitLocalVariable(). 5502 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5503 Var->getRawType()); 5504 verifyFnArgs(DII); 5505 } 5506 5507 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5508 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5509 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5510 DLI.getRawLabel()); 5511 5512 // Ignore broken !dbg attachments; they're checked elsewhere. 5513 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5514 if (!isa<DILocation>(N)) 5515 return; 5516 5517 BasicBlock *BB = DLI.getParent(); 5518 Function *F = BB ? BB->getParent() : nullptr; 5519 5520 // The scopes for variables and !dbg attachments must agree. 5521 DILabel *Label = DLI.getLabel(); 5522 DILocation *Loc = DLI.getDebugLoc(); 5523 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5524 &DLI, BB, F); 5525 5526 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5527 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5528 if (!LabelSP || !LocSP) 5529 return; 5530 5531 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5532 " label and !dbg attachment", 5533 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5534 Loc->getScope()->getSubprogram()); 5535 } 5536 5537 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5538 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5539 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5540 5541 // We don't know whether this intrinsic verified correctly. 5542 if (!V || !E || !E->isValid()) 5543 return; 5544 5545 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5546 auto Fragment = E->getFragmentInfo(); 5547 if (!Fragment) 5548 return; 5549 5550 // The frontend helps out GDB by emitting the members of local anonymous 5551 // unions as artificial local variables with shared storage. When SROA splits 5552 // the storage for artificial local variables that are smaller than the entire 5553 // union, the overhang piece will be outside of the allotted space for the 5554 // variable and this check fails. 5555 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5556 if (V->isArtificial()) 5557 return; 5558 5559 verifyFragmentExpression(*V, *Fragment, &I); 5560 } 5561 5562 template <typename ValueOrMetadata> 5563 void Verifier::verifyFragmentExpression(const DIVariable &V, 5564 DIExpression::FragmentInfo Fragment, 5565 ValueOrMetadata *Desc) { 5566 // If there's no size, the type is broken, but that should be checked 5567 // elsewhere. 5568 auto VarSize = V.getSizeInBits(); 5569 if (!VarSize) 5570 return; 5571 5572 unsigned FragSize = Fragment.SizeInBits; 5573 unsigned FragOffset = Fragment.OffsetInBits; 5574 AssertDI(FragSize + FragOffset <= *VarSize, 5575 "fragment is larger than or outside of variable", Desc, &V); 5576 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5577 } 5578 5579 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5580 // This function does not take the scope of noninlined function arguments into 5581 // account. Don't run it if current function is nodebug, because it may 5582 // contain inlined debug intrinsics. 5583 if (!HasDebugInfo) 5584 return; 5585 5586 // For performance reasons only check non-inlined ones. 5587 if (I.getDebugLoc()->getInlinedAt()) 5588 return; 5589 5590 DILocalVariable *Var = I.getVariable(); 5591 AssertDI(Var, "dbg intrinsic without variable"); 5592 5593 unsigned ArgNo = Var->getArg(); 5594 if (!ArgNo) 5595 return; 5596 5597 // Verify there are no duplicate function argument debug info entries. 5598 // These will cause hard-to-debug assertions in the DWARF backend. 5599 if (DebugFnArgs.size() < ArgNo) 5600 DebugFnArgs.resize(ArgNo, nullptr); 5601 5602 auto *Prev = DebugFnArgs[ArgNo - 1]; 5603 DebugFnArgs[ArgNo - 1] = Var; 5604 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5605 Prev, Var); 5606 } 5607 5608 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5609 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5610 5611 // We don't know whether this intrinsic verified correctly. 5612 if (!E || !E->isValid()) 5613 return; 5614 5615 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5616 } 5617 5618 void Verifier::verifyCompileUnits() { 5619 // When more than one Module is imported into the same context, such as during 5620 // an LTO build before linking the modules, ODR type uniquing may cause types 5621 // to point to a different CU. This check does not make sense in this case. 5622 if (M.getContext().isODRUniquingDebugTypes()) 5623 return; 5624 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5625 SmallPtrSet<const Metadata *, 2> Listed; 5626 if (CUs) 5627 Listed.insert(CUs->op_begin(), CUs->op_end()); 5628 for (auto *CU : CUVisited) 5629 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5630 CUVisited.clear(); 5631 } 5632 5633 void Verifier::verifyDeoptimizeCallingConvs() { 5634 if (DeoptimizeDeclarations.empty()) 5635 return; 5636 5637 const Function *First = DeoptimizeDeclarations[0]; 5638 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5639 Assert(First->getCallingConv() == F->getCallingConv(), 5640 "All llvm.experimental.deoptimize declarations must have the same " 5641 "calling convention", 5642 First, F); 5643 } 5644 } 5645 5646 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5647 bool HasSource = F.getSource().hasValue(); 5648 if (!HasSourceDebugInfo.count(&U)) 5649 HasSourceDebugInfo[&U] = HasSource; 5650 AssertDI(HasSource == HasSourceDebugInfo[&U], 5651 "inconsistent use of embedded source"); 5652 } 5653 5654 void Verifier::verifyNoAliasScopeDecl() { 5655 if (NoAliasScopeDecls.empty()) 5656 return; 5657 5658 // only a single scope must be declared at a time. 5659 for (auto *II : NoAliasScopeDecls) { 5660 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5661 "Not a llvm.experimental.noalias.scope.decl ?"); 5662 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5663 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5664 Assert(ScopeListMV != nullptr, 5665 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5666 "argument", 5667 II); 5668 5669 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5670 Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5671 II); 5672 Assert(ScopeListMD->getNumOperands() == 1, 5673 "!id.scope.list must point to a list with a single scope", II); 5674 } 5675 5676 // Only check the domination rule when requested. Once all passes have been 5677 // adapted this option can go away. 5678 if (!VerifyNoAliasScopeDomination) 5679 return; 5680 5681 // Now sort the intrinsics based on the scope MDNode so that declarations of 5682 // the same scopes are next to each other. 5683 auto GetScope = [](IntrinsicInst *II) { 5684 const auto *ScopeListMV = cast<MetadataAsValue>( 5685 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5686 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5687 }; 5688 5689 // We are sorting on MDNode pointers here. For valid input IR this is ok. 5690 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5691 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5692 return GetScope(Lhs) < GetScope(Rhs); 5693 }; 5694 5695 llvm::sort(NoAliasScopeDecls, Compare); 5696 5697 // Go over the intrinsics and check that for the same scope, they are not 5698 // dominating each other. 5699 auto ItCurrent = NoAliasScopeDecls.begin(); 5700 while (ItCurrent != NoAliasScopeDecls.end()) { 5701 auto CurScope = GetScope(*ItCurrent); 5702 auto ItNext = ItCurrent; 5703 do { 5704 ++ItNext; 5705 } while (ItNext != NoAliasScopeDecls.end() && 5706 GetScope(*ItNext) == CurScope); 5707 5708 // [ItCurrent, ItNext) represents the declarations for the same scope. 5709 // Ensure they are not dominating each other.. but only if it is not too 5710 // expensive. 5711 if (ItNext - ItCurrent < 32) 5712 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5713 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5714 if (I != J) 5715 Assert(!DT.dominates(I, J), 5716 "llvm.experimental.noalias.scope.decl dominates another one " 5717 "with the same scope", 5718 I); 5719 ItCurrent = ItNext; 5720 } 5721 } 5722 5723 //===----------------------------------------------------------------------===// 5724 // Implement the public interfaces to this file... 5725 //===----------------------------------------------------------------------===// 5726 5727 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5728 Function &F = const_cast<Function &>(f); 5729 5730 // Don't use a raw_null_ostream. Printing IR is expensive. 5731 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5732 5733 // Note that this function's return value is inverted from what you would 5734 // expect of a function called "verify". 5735 return !V.verify(F); 5736 } 5737 5738 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5739 bool *BrokenDebugInfo) { 5740 // Don't use a raw_null_ostream. Printing IR is expensive. 5741 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5742 5743 bool Broken = false; 5744 for (const Function &F : M) 5745 Broken |= !V.verify(F); 5746 5747 Broken |= !V.verify(); 5748 if (BrokenDebugInfo) 5749 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5750 // Note that this function's return value is inverted from what you would 5751 // expect of a function called "verify". 5752 return Broken; 5753 } 5754 5755 namespace { 5756 5757 struct VerifierLegacyPass : public FunctionPass { 5758 static char ID; 5759 5760 std::unique_ptr<Verifier> V; 5761 bool FatalErrors = true; 5762 5763 VerifierLegacyPass() : FunctionPass(ID) { 5764 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5765 } 5766 explicit VerifierLegacyPass(bool FatalErrors) 5767 : FunctionPass(ID), 5768 FatalErrors(FatalErrors) { 5769 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5770 } 5771 5772 bool doInitialization(Module &M) override { 5773 V = std::make_unique<Verifier>( 5774 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5775 return false; 5776 } 5777 5778 bool runOnFunction(Function &F) override { 5779 if (!V->verify(F) && FatalErrors) { 5780 errs() << "in function " << F.getName() << '\n'; 5781 report_fatal_error("Broken function found, compilation aborted!"); 5782 } 5783 return false; 5784 } 5785 5786 bool doFinalization(Module &M) override { 5787 bool HasErrors = false; 5788 for (Function &F : M) 5789 if (F.isDeclaration()) 5790 HasErrors |= !V->verify(F); 5791 5792 HasErrors |= !V->verify(); 5793 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5794 report_fatal_error("Broken module found, compilation aborted!"); 5795 return false; 5796 } 5797 5798 void getAnalysisUsage(AnalysisUsage &AU) const override { 5799 AU.setPreservesAll(); 5800 } 5801 }; 5802 5803 } // end anonymous namespace 5804 5805 /// Helper to issue failure from the TBAA verification 5806 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5807 if (Diagnostic) 5808 return Diagnostic->CheckFailed(Args...); 5809 } 5810 5811 #define AssertTBAA(C, ...) \ 5812 do { \ 5813 if (!(C)) { \ 5814 CheckFailed(__VA_ARGS__); \ 5815 return false; \ 5816 } \ 5817 } while (false) 5818 5819 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5820 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5821 /// struct-type node describing an aggregate data structure (like a struct). 5822 TBAAVerifier::TBAABaseNodeSummary 5823 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5824 bool IsNewFormat) { 5825 if (BaseNode->getNumOperands() < 2) { 5826 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5827 return {true, ~0u}; 5828 } 5829 5830 auto Itr = TBAABaseNodes.find(BaseNode); 5831 if (Itr != TBAABaseNodes.end()) 5832 return Itr->second; 5833 5834 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5835 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5836 (void)InsertResult; 5837 assert(InsertResult.second && "We just checked!"); 5838 return Result; 5839 } 5840 5841 TBAAVerifier::TBAABaseNodeSummary 5842 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5843 bool IsNewFormat) { 5844 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5845 5846 if (BaseNode->getNumOperands() == 2) { 5847 // Scalar nodes can only be accessed at offset 0. 5848 return isValidScalarTBAANode(BaseNode) 5849 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5850 : InvalidNode; 5851 } 5852 5853 if (IsNewFormat) { 5854 if (BaseNode->getNumOperands() % 3 != 0) { 5855 CheckFailed("Access tag nodes must have the number of operands that is a " 5856 "multiple of 3!", BaseNode); 5857 return InvalidNode; 5858 } 5859 } else { 5860 if (BaseNode->getNumOperands() % 2 != 1) { 5861 CheckFailed("Struct tag nodes must have an odd number of operands!", 5862 BaseNode); 5863 return InvalidNode; 5864 } 5865 } 5866 5867 // Check the type size field. 5868 if (IsNewFormat) { 5869 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5870 BaseNode->getOperand(1)); 5871 if (!TypeSizeNode) { 5872 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5873 return InvalidNode; 5874 } 5875 } 5876 5877 // Check the type name field. In the new format it can be anything. 5878 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5879 CheckFailed("Struct tag nodes have a string as their first operand", 5880 BaseNode); 5881 return InvalidNode; 5882 } 5883 5884 bool Failed = false; 5885 5886 Optional<APInt> PrevOffset; 5887 unsigned BitWidth = ~0u; 5888 5889 // We've already checked that BaseNode is not a degenerate root node with one 5890 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5891 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5892 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5893 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5894 Idx += NumOpsPerField) { 5895 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5896 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5897 if (!isa<MDNode>(FieldTy)) { 5898 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5899 Failed = true; 5900 continue; 5901 } 5902 5903 auto *OffsetEntryCI = 5904 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5905 if (!OffsetEntryCI) { 5906 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5907 Failed = true; 5908 continue; 5909 } 5910 5911 if (BitWidth == ~0u) 5912 BitWidth = OffsetEntryCI->getBitWidth(); 5913 5914 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5915 CheckFailed( 5916 "Bitwidth between the offsets and struct type entries must match", &I, 5917 BaseNode); 5918 Failed = true; 5919 continue; 5920 } 5921 5922 // NB! As far as I can tell, we generate a non-strictly increasing offset 5923 // sequence only from structs that have zero size bit fields. When 5924 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5925 // pick the field lexically the latest in struct type metadata node. This 5926 // mirrors the actual behavior of the alias analysis implementation. 5927 bool IsAscending = 5928 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5929 5930 if (!IsAscending) { 5931 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5932 Failed = true; 5933 } 5934 5935 PrevOffset = OffsetEntryCI->getValue(); 5936 5937 if (IsNewFormat) { 5938 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5939 BaseNode->getOperand(Idx + 2)); 5940 if (!MemberSizeNode) { 5941 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5942 Failed = true; 5943 continue; 5944 } 5945 } 5946 } 5947 5948 return Failed ? InvalidNode 5949 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5950 } 5951 5952 static bool IsRootTBAANode(const MDNode *MD) { 5953 return MD->getNumOperands() < 2; 5954 } 5955 5956 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5957 SmallPtrSetImpl<const MDNode *> &Visited) { 5958 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5959 return false; 5960 5961 if (!isa<MDString>(MD->getOperand(0))) 5962 return false; 5963 5964 if (MD->getNumOperands() == 3) { 5965 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5966 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5967 return false; 5968 } 5969 5970 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5971 return Parent && Visited.insert(Parent).second && 5972 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5973 } 5974 5975 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5976 auto ResultIt = TBAAScalarNodes.find(MD); 5977 if (ResultIt != TBAAScalarNodes.end()) 5978 return ResultIt->second; 5979 5980 SmallPtrSet<const MDNode *, 4> Visited; 5981 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5982 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5983 (void)InsertResult; 5984 assert(InsertResult.second && "Just checked!"); 5985 5986 return Result; 5987 } 5988 5989 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5990 /// Offset in place to be the offset within the field node returned. 5991 /// 5992 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5993 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5994 const MDNode *BaseNode, 5995 APInt &Offset, 5996 bool IsNewFormat) { 5997 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5998 5999 // Scalar nodes have only one possible "field" -- their parent in the access 6000 // hierarchy. Offset must be zero at this point, but our caller is supposed 6001 // to Assert that. 6002 if (BaseNode->getNumOperands() == 2) 6003 return cast<MDNode>(BaseNode->getOperand(1)); 6004 6005 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6006 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6007 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6008 Idx += NumOpsPerField) { 6009 auto *OffsetEntryCI = 6010 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6011 if (OffsetEntryCI->getValue().ugt(Offset)) { 6012 if (Idx == FirstFieldOpNo) { 6013 CheckFailed("Could not find TBAA parent in struct type node", &I, 6014 BaseNode, &Offset); 6015 return nullptr; 6016 } 6017 6018 unsigned PrevIdx = Idx - NumOpsPerField; 6019 auto *PrevOffsetEntryCI = 6020 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 6021 Offset -= PrevOffsetEntryCI->getValue(); 6022 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 6023 } 6024 } 6025 6026 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 6027 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 6028 BaseNode->getOperand(LastIdx + 1)); 6029 Offset -= LastOffsetEntryCI->getValue(); 6030 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 6031 } 6032 6033 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 6034 if (!Type || Type->getNumOperands() < 3) 6035 return false; 6036 6037 // In the new format type nodes shall have a reference to the parent type as 6038 // its first operand. 6039 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 6040 if (!Parent) 6041 return false; 6042 6043 return true; 6044 } 6045 6046 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6047 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6048 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6049 isa<AtomicCmpXchgInst>(I), 6050 "This instruction shall not have a TBAA access tag!", &I); 6051 6052 bool IsStructPathTBAA = 6053 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6054 6055 AssertTBAA( 6056 IsStructPathTBAA, 6057 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 6058 6059 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6060 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6061 6062 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6063 6064 if (IsNewFormat) { 6065 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6066 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6067 } else { 6068 AssertTBAA(MD->getNumOperands() < 5, 6069 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6070 } 6071 6072 // Check the access size field. 6073 if (IsNewFormat) { 6074 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6075 MD->getOperand(3)); 6076 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6077 } 6078 6079 // Check the immutability flag. 6080 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6081 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6082 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6083 MD->getOperand(ImmutabilityFlagOpNo)); 6084 AssertTBAA(IsImmutableCI, 6085 "Immutability tag on struct tag metadata must be a constant", 6086 &I, MD); 6087 AssertTBAA( 6088 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6089 "Immutability part of the struct tag metadata must be either 0 or 1", 6090 &I, MD); 6091 } 6092 6093 AssertTBAA(BaseNode && AccessType, 6094 "Malformed struct tag metadata: base and access-type " 6095 "should be non-null and point to Metadata nodes", 6096 &I, MD, BaseNode, AccessType); 6097 6098 if (!IsNewFormat) { 6099 AssertTBAA(isValidScalarTBAANode(AccessType), 6100 "Access type node must be a valid scalar type", &I, MD, 6101 AccessType); 6102 } 6103 6104 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6105 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6106 6107 APInt Offset = OffsetCI->getValue(); 6108 bool SeenAccessTypeInPath = false; 6109 6110 SmallPtrSet<MDNode *, 4> StructPath; 6111 6112 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6113 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6114 IsNewFormat)) { 6115 if (!StructPath.insert(BaseNode).second) { 6116 CheckFailed("Cycle detected in struct path", &I, MD); 6117 return false; 6118 } 6119 6120 bool Invalid; 6121 unsigned BaseNodeBitWidth; 6122 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6123 IsNewFormat); 6124 6125 // If the base node is invalid in itself, then we've already printed all the 6126 // errors we wanted to print. 6127 if (Invalid) 6128 return false; 6129 6130 SeenAccessTypeInPath |= BaseNode == AccessType; 6131 6132 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6133 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6134 &I, MD, &Offset); 6135 6136 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6137 (BaseNodeBitWidth == 0 && Offset == 0) || 6138 (IsNewFormat && BaseNodeBitWidth == ~0u), 6139 "Access bit-width not the same as description bit-width", &I, MD, 6140 BaseNodeBitWidth, Offset.getBitWidth()); 6141 6142 if (IsNewFormat && SeenAccessTypeInPath) 6143 break; 6144 } 6145 6146 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 6147 &I, MD); 6148 return true; 6149 } 6150 6151 char VerifierLegacyPass::ID = 0; 6152 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6153 6154 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6155 return new VerifierLegacyPass(FatalErrors); 6156 } 6157 6158 AnalysisKey VerifierAnalysis::Key; 6159 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6160 ModuleAnalysisManager &) { 6161 Result Res; 6162 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6163 return Res; 6164 } 6165 6166 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6167 FunctionAnalysisManager &) { 6168 return { llvm::verifyFunction(F, &dbgs()), false }; 6169 } 6170 6171 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6172 auto Res = AM.getResult<VerifierAnalysis>(M); 6173 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6174 report_fatal_error("Broken module found, compilation aborted!"); 6175 6176 return PreservedAnalyses::all(); 6177 } 6178 6179 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6180 auto res = AM.getResult<VerifierAnalysis>(F); 6181 if (res.IRBroken && FatalErrors) 6182 report_fatal_error("Broken function found, compilation aborted!"); 6183 6184 return PreservedAnalyses::all(); 6185 } 6186