xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Verifier.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/ModuleSlotTracker.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/AtomicOrdering.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <memory>
111 #include <string>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 namespace llvm {
117 
118 struct VerifierSupport {
119   raw_ostream *OS;
120   const Module &M;
121   ModuleSlotTracker MST;
122   const DataLayout &DL;
123   LLVMContext &Context;
124 
125   /// Track the brokenness of the module while recursively visiting.
126   bool Broken = false;
127   /// Broken debug info can be "recovered" from by stripping the debug info.
128   bool BrokenDebugInfo = false;
129   /// Whether to treat broken debug info as an error.
130   bool TreatBrokenDebugInfoAsError = true;
131 
132   explicit VerifierSupport(raw_ostream *OS, const Module &M)
133       : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
134 
135 private:
136   void Write(const Module *M) {
137     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
138   }
139 
140   void Write(const Value *V) {
141     if (V)
142       Write(*V);
143   }
144 
145   void Write(const Value &V) {
146     if (isa<Instruction>(V)) {
147       V.print(*OS, MST);
148       *OS << '\n';
149     } else {
150       V.printAsOperand(*OS, true, MST);
151       *OS << '\n';
152     }
153   }
154 
155   void Write(const Metadata *MD) {
156     if (!MD)
157       return;
158     MD->print(*OS, MST, &M);
159     *OS << '\n';
160   }
161 
162   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
163     Write(MD.get());
164   }
165 
166   void Write(const NamedMDNode *NMD) {
167     if (!NMD)
168       return;
169     NMD->print(*OS, MST);
170     *OS << '\n';
171   }
172 
173   void Write(Type *T) {
174     if (!T)
175       return;
176     *OS << ' ' << *T;
177   }
178 
179   void Write(const Comdat *C) {
180     if (!C)
181       return;
182     *OS << *C;
183   }
184 
185   void Write(const APInt *AI) {
186     if (!AI)
187       return;
188     *OS << *AI << '\n';
189   }
190 
191   void Write(const unsigned i) { *OS << i << '\n'; }
192 
193   template <typename T> void Write(ArrayRef<T> Vs) {
194     for (const T &V : Vs)
195       Write(V);
196   }
197 
198   template <typename T1, typename... Ts>
199   void WriteTs(const T1 &V1, const Ts &... Vs) {
200     Write(V1);
201     WriteTs(Vs...);
202   }
203 
204   template <typename... Ts> void WriteTs() {}
205 
206 public:
207   /// A check failed, so printout out the condition and the message.
208   ///
209   /// This provides a nice place to put a breakpoint if you want to see why
210   /// something is not correct.
211   void CheckFailed(const Twine &Message) {
212     if (OS)
213       *OS << Message << '\n';
214     Broken = true;
215   }
216 
217   /// A check failed (with values to print).
218   ///
219   /// This calls the Message-only version so that the above is easier to set a
220   /// breakpoint on.
221   template <typename T1, typename... Ts>
222   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
223     CheckFailed(Message);
224     if (OS)
225       WriteTs(V1, Vs...);
226   }
227 
228   /// A debug info check failed.
229   void DebugInfoCheckFailed(const Twine &Message) {
230     if (OS)
231       *OS << Message << '\n';
232     Broken |= TreatBrokenDebugInfoAsError;
233     BrokenDebugInfo = true;
234   }
235 
236   /// A debug info check failed (with values to print).
237   template <typename T1, typename... Ts>
238   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
239                             const Ts &... Vs) {
240     DebugInfoCheckFailed(Message);
241     if (OS)
242       WriteTs(V1, Vs...);
243   }
244 };
245 
246 } // namespace llvm
247 
248 namespace {
249 
250 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
251   friend class InstVisitor<Verifier>;
252 
253   DominatorTree DT;
254 
255   /// When verifying a basic block, keep track of all of the
256   /// instructions we have seen so far.
257   ///
258   /// This allows us to do efficient dominance checks for the case when an
259   /// instruction has an operand that is an instruction in the same block.
260   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
261 
262   /// Keep track of the metadata nodes that have been checked already.
263   SmallPtrSet<const Metadata *, 32> MDNodes;
264 
265   /// Keep track which DISubprogram is attached to which function.
266   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
267 
268   /// Track all DICompileUnits visited.
269   SmallPtrSet<const Metadata *, 2> CUVisited;
270 
271   /// The result type for a landingpad.
272   Type *LandingPadResultTy;
273 
274   /// Whether we've seen a call to @llvm.localescape in this function
275   /// already.
276   bool SawFrameEscape;
277 
278   /// Whether the current function has a DISubprogram attached to it.
279   bool HasDebugInfo = false;
280 
281   /// Whether source was present on the first DIFile encountered in each CU.
282   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
283 
284   /// Stores the count of how many objects were passed to llvm.localescape for a
285   /// given function and the largest index passed to llvm.localrecover.
286   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
287 
288   // Maps catchswitches and cleanuppads that unwind to siblings to the
289   // terminators that indicate the unwind, used to detect cycles therein.
290   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
291 
292   /// Cache of constants visited in search of ConstantExprs.
293   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296   SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298   // Verify that this GlobalValue is only used in this module.
299   // This map is used to avoid visiting uses twice. We can arrive at a user
300   // twice, if they have multiple operands. In particular for very large
301   // constant expressions, we can arrive at a particular user many times.
302   SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304   // Keeps track of duplicate function argument debug info.
305   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
306 
307   TBAAVerifier TBAAVerifyHelper;
308 
309   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
312   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313                     const Module &M)
314       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315         SawFrameEscape(false), TBAAVerifyHelper(this) {
316     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317   }
318 
319   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
321   bool verify(const Function &F) {
322     assert(F.getParent() == &M &&
323            "An instance of this class only works with a specific module!");
324 
325     // First ensure the function is well-enough formed to compute dominance
326     // information, and directly compute a dominance tree. We don't rely on the
327     // pass manager to provide this as it isolates us from a potentially
328     // out-of-date dominator tree and makes it significantly more complex to run
329     // this code outside of a pass manager.
330     // FIXME: It's really gross that we have to cast away constness here.
331     if (!F.empty())
332       DT.recalculate(const_cast<Function &>(F));
333 
334     for (const BasicBlock &BB : F) {
335       if (!BB.empty() && BB.back().isTerminator())
336         continue;
337 
338       if (OS) {
339         *OS << "Basic Block in function '" << F.getName()
340             << "' does not have terminator!\n";
341         BB.printAsOperand(*OS, true, MST);
342         *OS << "\n";
343       }
344       return false;
345     }
346 
347     Broken = false;
348     // FIXME: We strip const here because the inst visitor strips const.
349     visit(const_cast<Function &>(F));
350     verifySiblingFuncletUnwinds();
351     InstsInThisBlock.clear();
352     DebugFnArgs.clear();
353     LandingPadResultTy = nullptr;
354     SawFrameEscape = false;
355     SiblingFuncletInfo.clear();
356 
357     return !Broken;
358   }
359 
360   /// Verify the module that this instance of \c Verifier was initialized with.
361   bool verify() {
362     Broken = false;
363 
364     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365     for (const Function &F : M)
366       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367         DeoptimizeDeclarations.push_back(&F);
368 
369     // Now that we've visited every function, verify that we never asked to
370     // recover a frame index that wasn't escaped.
371     verifyFrameRecoverIndices();
372     for (const GlobalVariable &GV : M.globals())
373       visitGlobalVariable(GV);
374 
375     for (const GlobalAlias &GA : M.aliases())
376       visitGlobalAlias(GA);
377 
378     for (const NamedMDNode &NMD : M.named_metadata())
379       visitNamedMDNode(NMD);
380 
381     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382       visitComdat(SMEC.getValue());
383 
384     visitModuleFlags(M);
385     visitModuleIdents(M);
386     visitModuleCommandLines(M);
387 
388     verifyCompileUnits();
389 
390     verifyDeoptimizeCallingConvs();
391     DISubprogramAttachments.clear();
392     return !Broken;
393   }
394 
395 private:
396   // Verification methods...
397   void visitGlobalValue(const GlobalValue &GV);
398   void visitGlobalVariable(const GlobalVariable &GV);
399   void visitGlobalAlias(const GlobalAlias &GA);
400   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
401   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
402                            const GlobalAlias &A, const Constant &C);
403   void visitNamedMDNode(const NamedMDNode &NMD);
404   void visitMDNode(const MDNode &MD);
405   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
406   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
407   void visitComdat(const Comdat &C);
408   void visitModuleIdents(const Module &M);
409   void visitModuleCommandLines(const Module &M);
410   void visitModuleFlags(const Module &M);
411   void visitModuleFlag(const MDNode *Op,
412                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
413                        SmallVectorImpl<const MDNode *> &Requirements);
414   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
415   void visitFunction(const Function &F);
416   void visitBasicBlock(BasicBlock &BB);
417   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
418   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
419 
420   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
422 #include "llvm/IR/Metadata.def"
423   void visitDIScope(const DIScope &N);
424   void visitDIVariable(const DIVariable &N);
425   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
426   void visitDITemplateParameter(const DITemplateParameter &N);
427 
428   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
429 
430   // InstVisitor overrides...
431   using InstVisitor<Verifier>::visit;
432   void visit(Instruction &I);
433 
434   void visitTruncInst(TruncInst &I);
435   void visitZExtInst(ZExtInst &I);
436   void visitSExtInst(SExtInst &I);
437   void visitFPTruncInst(FPTruncInst &I);
438   void visitFPExtInst(FPExtInst &I);
439   void visitFPToUIInst(FPToUIInst &I);
440   void visitFPToSIInst(FPToSIInst &I);
441   void visitUIToFPInst(UIToFPInst &I);
442   void visitSIToFPInst(SIToFPInst &I);
443   void visitIntToPtrInst(IntToPtrInst &I);
444   void visitPtrToIntInst(PtrToIntInst &I);
445   void visitBitCastInst(BitCastInst &I);
446   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
447   void visitPHINode(PHINode &PN);
448   void visitCallBase(CallBase &Call);
449   void visitUnaryOperator(UnaryOperator &U);
450   void visitBinaryOperator(BinaryOperator &B);
451   void visitICmpInst(ICmpInst &IC);
452   void visitFCmpInst(FCmpInst &FC);
453   void visitExtractElementInst(ExtractElementInst &EI);
454   void visitInsertElementInst(InsertElementInst &EI);
455   void visitShuffleVectorInst(ShuffleVectorInst &EI);
456   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
457   void visitCallInst(CallInst &CI);
458   void visitInvokeInst(InvokeInst &II);
459   void visitGetElementPtrInst(GetElementPtrInst &GEP);
460   void visitLoadInst(LoadInst &LI);
461   void visitStoreInst(StoreInst &SI);
462   void verifyDominatesUse(Instruction &I, unsigned i);
463   void visitInstruction(Instruction &I);
464   void visitTerminator(Instruction &I);
465   void visitBranchInst(BranchInst &BI);
466   void visitReturnInst(ReturnInst &RI);
467   void visitSwitchInst(SwitchInst &SI);
468   void visitIndirectBrInst(IndirectBrInst &BI);
469   void visitCallBrInst(CallBrInst &CBI);
470   void visitSelectInst(SelectInst &SI);
471   void visitUserOp1(Instruction &I);
472   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
473   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
474   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
475   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
476   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
477   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
478   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
479   void visitFenceInst(FenceInst &FI);
480   void visitAllocaInst(AllocaInst &AI);
481   void visitExtractValueInst(ExtractValueInst &EVI);
482   void visitInsertValueInst(InsertValueInst &IVI);
483   void visitEHPadPredecessors(Instruction &I);
484   void visitLandingPadInst(LandingPadInst &LPI);
485   void visitResumeInst(ResumeInst &RI);
486   void visitCatchPadInst(CatchPadInst &CPI);
487   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
488   void visitCleanupPadInst(CleanupPadInst &CPI);
489   void visitFuncletPadInst(FuncletPadInst &FPI);
490   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
491   void visitCleanupReturnInst(CleanupReturnInst &CRI);
492 
493   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
494   void verifySwiftErrorValue(const Value *SwiftErrorVal);
495   void verifyMustTailCall(CallInst &CI);
496   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
497                         unsigned ArgNo, std::string &Suffix);
498   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
499   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
500                             const Value *V);
501   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
502   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
503                            const Value *V, bool IsIntrinsic);
504   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
505 
506   void visitConstantExprsRecursively(const Constant *EntryC);
507   void visitConstantExpr(const ConstantExpr *CE);
508   void verifyStatepoint(const CallBase &Call);
509   void verifyFrameRecoverIndices();
510   void verifySiblingFuncletUnwinds();
511 
512   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
513   template <typename ValueOrMetadata>
514   void verifyFragmentExpression(const DIVariable &V,
515                                 DIExpression::FragmentInfo Fragment,
516                                 ValueOrMetadata *Desc);
517   void verifyFnArgs(const DbgVariableIntrinsic &I);
518 
519   /// Module-level debug info verification...
520   void verifyCompileUnits();
521 
522   /// Module-level verification that all @llvm.experimental.deoptimize
523   /// declarations share the same calling convention.
524   void verifyDeoptimizeCallingConvs();
525 
526   /// Verify all-or-nothing property of DIFile source attribute within a CU.
527   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
528 };
529 
530 } // end anonymous namespace
531 
532 /// We know that cond should be true, if not print an error message.
533 #define Assert(C, ...) \
534   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
535 
536 /// We know that a debug info condition should be true, if not print
537 /// an error message.
538 #define AssertDI(C, ...) \
539   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
540 
541 void Verifier::visit(Instruction &I) {
542   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
543     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
544   InstVisitor<Verifier>::visit(I);
545 }
546 
547 // Helper to recursively iterate over indirect users. By
548 // returning false, the callback can ask to stop recursing
549 // further.
550 static void forEachUser(const Value *User,
551                         SmallPtrSet<const Value *, 32> &Visited,
552                         llvm::function_ref<bool(const Value *)> Callback) {
553   if (!Visited.insert(User).second)
554     return;
555   for (const Value *TheNextUser : User->materialized_users())
556     if (Callback(TheNextUser))
557       forEachUser(TheNextUser, Visited, Callback);
558 }
559 
560 void Verifier::visitGlobalValue(const GlobalValue &GV) {
561   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
562          "Global is external, but doesn't have external or weak linkage!", &GV);
563 
564   Assert(GV.getAlignment() <= Value::MaximumAlignment,
565          "huge alignment values are unsupported", &GV);
566   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
567          "Only global variables can have appending linkage!", &GV);
568 
569   if (GV.hasAppendingLinkage()) {
570     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
571     Assert(GVar && GVar->getValueType()->isArrayTy(),
572            "Only global arrays can have appending linkage!", GVar);
573   }
574 
575   if (GV.isDeclarationForLinker())
576     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
577 
578   if (GV.hasDLLImportStorageClass()) {
579     Assert(!GV.isDSOLocal(),
580            "GlobalValue with DLLImport Storage is dso_local!", &GV);
581 
582     Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
583                GV.hasAvailableExternallyLinkage(),
584            "Global is marked as dllimport, but not external", &GV);
585   }
586 
587   if (GV.hasLocalLinkage())
588     Assert(GV.isDSOLocal(),
589            "GlobalValue with private or internal linkage must be dso_local!",
590            &GV);
591 
592   if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
593     Assert(GV.isDSOLocal(),
594            "GlobalValue with non default visibility must be dso_local!", &GV);
595 
596   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
597     if (const Instruction *I = dyn_cast<Instruction>(V)) {
598       if (!I->getParent() || !I->getParent()->getParent())
599         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
600                     I);
601       else if (I->getParent()->getParent()->getParent() != &M)
602         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
603                     I->getParent()->getParent(),
604                     I->getParent()->getParent()->getParent());
605       return false;
606     } else if (const Function *F = dyn_cast<Function>(V)) {
607       if (F->getParent() != &M)
608         CheckFailed("Global is used by function in a different module", &GV, &M,
609                     F, F->getParent());
610       return false;
611     }
612     return true;
613   });
614 }
615 
616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
617   if (GV.hasInitializer()) {
618     Assert(GV.getInitializer()->getType() == GV.getValueType(),
619            "Global variable initializer type does not match global "
620            "variable type!",
621            &GV);
622     // If the global has common linkage, it must have a zero initializer and
623     // cannot be constant.
624     if (GV.hasCommonLinkage()) {
625       Assert(GV.getInitializer()->isNullValue(),
626              "'common' global must have a zero initializer!", &GV);
627       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
628              &GV);
629       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
630     }
631   }
632 
633   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
634                        GV.getName() == "llvm.global_dtors")) {
635     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
636            "invalid linkage for intrinsic global variable", &GV);
637     // Don't worry about emitting an error for it not being an array,
638     // visitGlobalValue will complain on appending non-array.
639     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
640       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
641       PointerType *FuncPtrTy =
642           FunctionType::get(Type::getVoidTy(Context), false)->
643           getPointerTo(DL.getProgramAddressSpace());
644       Assert(STy &&
645                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
646                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
647                  STy->getTypeAtIndex(1) == FuncPtrTy,
648              "wrong type for intrinsic global variable", &GV);
649       Assert(STy->getNumElements() == 3,
650              "the third field of the element type is mandatory, "
651              "specify i8* null to migrate from the obsoleted 2-field form");
652       Type *ETy = STy->getTypeAtIndex(2);
653       Assert(ETy->isPointerTy() &&
654                  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
655              "wrong type for intrinsic global variable", &GV);
656     }
657   }
658 
659   if (GV.hasName() && (GV.getName() == "llvm.used" ||
660                        GV.getName() == "llvm.compiler.used")) {
661     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
662            "invalid linkage for intrinsic global variable", &GV);
663     Type *GVType = GV.getValueType();
664     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
665       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
666       Assert(PTy, "wrong type for intrinsic global variable", &GV);
667       if (GV.hasInitializer()) {
668         const Constant *Init = GV.getInitializer();
669         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
670         Assert(InitArray, "wrong initalizer for intrinsic global variable",
671                Init);
672         for (Value *Op : InitArray->operands()) {
673           Value *V = Op->stripPointerCastsNoFollowAliases();
674           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
675                      isa<GlobalAlias>(V),
676                  "invalid llvm.used member", V);
677           Assert(V->hasName(), "members of llvm.used must be named", V);
678         }
679       }
680     }
681   }
682 
683   // Visit any debug info attachments.
684   SmallVector<MDNode *, 1> MDs;
685   GV.getMetadata(LLVMContext::MD_dbg, MDs);
686   for (auto *MD : MDs) {
687     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
688       visitDIGlobalVariableExpression(*GVE);
689     else
690       AssertDI(false, "!dbg attachment of global variable must be a "
691                       "DIGlobalVariableExpression");
692   }
693 
694   // Scalable vectors cannot be global variables, since we don't know
695   // the runtime size. If the global is a struct or an array containing
696   // scalable vectors, that will be caught by the isValidElementType methods
697   // in StructType or ArrayType instead.
698   if (auto *VTy = dyn_cast<VectorType>(GV.getValueType()))
699     Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV);
700 
701   if (!GV.hasInitializer()) {
702     visitGlobalValue(GV);
703     return;
704   }
705 
706   // Walk any aggregate initializers looking for bitcasts between address spaces
707   visitConstantExprsRecursively(GV.getInitializer());
708 
709   visitGlobalValue(GV);
710 }
711 
712 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
713   SmallPtrSet<const GlobalAlias*, 4> Visited;
714   Visited.insert(&GA);
715   visitAliaseeSubExpr(Visited, GA, C);
716 }
717 
718 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
719                                    const GlobalAlias &GA, const Constant &C) {
720   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
721     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
722            &GA);
723 
724     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
725       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
726 
727       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
728              &GA);
729     } else {
730       // Only continue verifying subexpressions of GlobalAliases.
731       // Do not recurse into global initializers.
732       return;
733     }
734   }
735 
736   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
737     visitConstantExprsRecursively(CE);
738 
739   for (const Use &U : C.operands()) {
740     Value *V = &*U;
741     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
742       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
743     else if (const auto *C2 = dyn_cast<Constant>(V))
744       visitAliaseeSubExpr(Visited, GA, *C2);
745   }
746 }
747 
748 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
749   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
750          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
751          "weak_odr, or external linkage!",
752          &GA);
753   const Constant *Aliasee = GA.getAliasee();
754   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
755   Assert(GA.getType() == Aliasee->getType(),
756          "Alias and aliasee types should match!", &GA);
757 
758   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
759          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
760 
761   visitAliaseeSubExpr(GA, *Aliasee);
762 
763   visitGlobalValue(GA);
764 }
765 
766 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
767   // There used to be various other llvm.dbg.* nodes, but we don't support
768   // upgrading them and we want to reserve the namespace for future uses.
769   if (NMD.getName().startswith("llvm.dbg."))
770     AssertDI(NMD.getName() == "llvm.dbg.cu",
771              "unrecognized named metadata node in the llvm.dbg namespace",
772              &NMD);
773   for (const MDNode *MD : NMD.operands()) {
774     if (NMD.getName() == "llvm.dbg.cu")
775       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
776 
777     if (!MD)
778       continue;
779 
780     visitMDNode(*MD);
781   }
782 }
783 
784 void Verifier::visitMDNode(const MDNode &MD) {
785   // Only visit each node once.  Metadata can be mutually recursive, so this
786   // avoids infinite recursion here, as well as being an optimization.
787   if (!MDNodes.insert(&MD).second)
788     return;
789 
790   switch (MD.getMetadataID()) {
791   default:
792     llvm_unreachable("Invalid MDNode subclass");
793   case Metadata::MDTupleKind:
794     break;
795 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
796   case Metadata::CLASS##Kind:                                                  \
797     visit##CLASS(cast<CLASS>(MD));                                             \
798     break;
799 #include "llvm/IR/Metadata.def"
800   }
801 
802   for (const Metadata *Op : MD.operands()) {
803     if (!Op)
804       continue;
805     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
806            &MD, Op);
807     if (auto *N = dyn_cast<MDNode>(Op)) {
808       visitMDNode(*N);
809       continue;
810     }
811     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
812       visitValueAsMetadata(*V, nullptr);
813       continue;
814     }
815   }
816 
817   // Check these last, so we diagnose problems in operands first.
818   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
819   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
820 }
821 
822 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
823   Assert(MD.getValue(), "Expected valid value", &MD);
824   Assert(!MD.getValue()->getType()->isMetadataTy(),
825          "Unexpected metadata round-trip through values", &MD, MD.getValue());
826 
827   auto *L = dyn_cast<LocalAsMetadata>(&MD);
828   if (!L)
829     return;
830 
831   Assert(F, "function-local metadata used outside a function", L);
832 
833   // If this was an instruction, bb, or argument, verify that it is in the
834   // function that we expect.
835   Function *ActualF = nullptr;
836   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
837     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
838     ActualF = I->getParent()->getParent();
839   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
840     ActualF = BB->getParent();
841   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
842     ActualF = A->getParent();
843   assert(ActualF && "Unimplemented function local metadata case!");
844 
845   Assert(ActualF == F, "function-local metadata used in wrong function", L);
846 }
847 
848 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
849   Metadata *MD = MDV.getMetadata();
850   if (auto *N = dyn_cast<MDNode>(MD)) {
851     visitMDNode(*N);
852     return;
853   }
854 
855   // Only visit each node once.  Metadata can be mutually recursive, so this
856   // avoids infinite recursion here, as well as being an optimization.
857   if (!MDNodes.insert(MD).second)
858     return;
859 
860   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
861     visitValueAsMetadata(*V, F);
862 }
863 
864 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
865 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
866 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
867 
868 void Verifier::visitDILocation(const DILocation &N) {
869   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
870            "location requires a valid scope", &N, N.getRawScope());
871   if (auto *IA = N.getRawInlinedAt())
872     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
873   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
874     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
875 }
876 
877 void Verifier::visitGenericDINode(const GenericDINode &N) {
878   AssertDI(N.getTag(), "invalid tag", &N);
879 }
880 
881 void Verifier::visitDIScope(const DIScope &N) {
882   if (auto *F = N.getRawFile())
883     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
884 }
885 
886 void Verifier::visitDISubrange(const DISubrange &N) {
887   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
888   auto Count = N.getCount();
889   AssertDI(Count, "Count must either be a signed constant or a DIVariable",
890            &N);
891   AssertDI(!Count.is<ConstantInt*>() ||
892                Count.get<ConstantInt*>()->getSExtValue() >= -1,
893            "invalid subrange count", &N);
894 }
895 
896 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
897   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
898 }
899 
900 void Verifier::visitDIBasicType(const DIBasicType &N) {
901   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
902                N.getTag() == dwarf::DW_TAG_unspecified_type,
903            "invalid tag", &N);
904   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
905             "has conflicting flags", &N);
906 }
907 
908 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
909   // Common scope checks.
910   visitDIScope(N);
911 
912   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
913                N.getTag() == dwarf::DW_TAG_pointer_type ||
914                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
915                N.getTag() == dwarf::DW_TAG_reference_type ||
916                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
917                N.getTag() == dwarf::DW_TAG_const_type ||
918                N.getTag() == dwarf::DW_TAG_volatile_type ||
919                N.getTag() == dwarf::DW_TAG_restrict_type ||
920                N.getTag() == dwarf::DW_TAG_atomic_type ||
921                N.getTag() == dwarf::DW_TAG_member ||
922                N.getTag() == dwarf::DW_TAG_inheritance ||
923                N.getTag() == dwarf::DW_TAG_friend,
924            "invalid tag", &N);
925   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
926     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
927              N.getRawExtraData());
928   }
929 
930   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
931   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
932            N.getRawBaseType());
933 
934   if (N.getDWARFAddressSpace()) {
935     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
936                  N.getTag() == dwarf::DW_TAG_reference_type ||
937                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
938              "DWARF address space only applies to pointer or reference types",
939              &N);
940   }
941 }
942 
943 /// Detect mutually exclusive flags.
944 static bool hasConflictingReferenceFlags(unsigned Flags) {
945   return ((Flags & DINode::FlagLValueReference) &&
946           (Flags & DINode::FlagRValueReference)) ||
947          ((Flags & DINode::FlagTypePassByValue) &&
948           (Flags & DINode::FlagTypePassByReference));
949 }
950 
951 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
952   auto *Params = dyn_cast<MDTuple>(&RawParams);
953   AssertDI(Params, "invalid template params", &N, &RawParams);
954   for (Metadata *Op : Params->operands()) {
955     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
956              &N, Params, Op);
957   }
958 }
959 
960 void Verifier::visitDICompositeType(const DICompositeType &N) {
961   // Common scope checks.
962   visitDIScope(N);
963 
964   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
965                N.getTag() == dwarf::DW_TAG_structure_type ||
966                N.getTag() == dwarf::DW_TAG_union_type ||
967                N.getTag() == dwarf::DW_TAG_enumeration_type ||
968                N.getTag() == dwarf::DW_TAG_class_type ||
969                N.getTag() == dwarf::DW_TAG_variant_part,
970            "invalid tag", &N);
971 
972   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
973   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
974            N.getRawBaseType());
975 
976   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
977            "invalid composite elements", &N, N.getRawElements());
978   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
979            N.getRawVTableHolder());
980   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
981            "invalid reference flags", &N);
982 
983   if (N.isVector()) {
984     const DINodeArray Elements = N.getElements();
985     AssertDI(Elements.size() == 1 &&
986              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
987              "invalid vector, expected one element of type subrange", &N);
988   }
989 
990   if (auto *Params = N.getRawTemplateParams())
991     visitTemplateParams(N, *Params);
992 
993   if (N.getTag() == dwarf::DW_TAG_class_type ||
994       N.getTag() == dwarf::DW_TAG_union_type) {
995     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
996              "class/union requires a filename", &N, N.getFile());
997   }
998 
999   if (auto *D = N.getRawDiscriminator()) {
1000     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1001              "discriminator can only appear on variant part");
1002   }
1003 }
1004 
1005 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1006   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1007   if (auto *Types = N.getRawTypeArray()) {
1008     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1009     for (Metadata *Ty : N.getTypeArray()->operands()) {
1010       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1011     }
1012   }
1013   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1014            "invalid reference flags", &N);
1015 }
1016 
1017 void Verifier::visitDIFile(const DIFile &N) {
1018   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1019   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1020   if (Checksum) {
1021     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1022              "invalid checksum kind", &N);
1023     size_t Size;
1024     switch (Checksum->Kind) {
1025     case DIFile::CSK_MD5:
1026       Size = 32;
1027       break;
1028     case DIFile::CSK_SHA1:
1029       Size = 40;
1030       break;
1031     }
1032     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1033     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1034              "invalid checksum", &N);
1035   }
1036 }
1037 
1038 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1039   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1040   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1041 
1042   // Don't bother verifying the compilation directory or producer string
1043   // as those could be empty.
1044   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1045            N.getRawFile());
1046   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1047            N.getFile());
1048 
1049   verifySourceDebugInfo(N, *N.getFile());
1050 
1051   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1052            "invalid emission kind", &N);
1053 
1054   if (auto *Array = N.getRawEnumTypes()) {
1055     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1056     for (Metadata *Op : N.getEnumTypes()->operands()) {
1057       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1058       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1059                "invalid enum type", &N, N.getEnumTypes(), Op);
1060     }
1061   }
1062   if (auto *Array = N.getRawRetainedTypes()) {
1063     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1064     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1065       AssertDI(Op && (isa<DIType>(Op) ||
1066                       (isa<DISubprogram>(Op) &&
1067                        !cast<DISubprogram>(Op)->isDefinition())),
1068                "invalid retained type", &N, Op);
1069     }
1070   }
1071   if (auto *Array = N.getRawGlobalVariables()) {
1072     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1073     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1074       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1075                "invalid global variable ref", &N, Op);
1076     }
1077   }
1078   if (auto *Array = N.getRawImportedEntities()) {
1079     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1080     for (Metadata *Op : N.getImportedEntities()->operands()) {
1081       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1082                &N, Op);
1083     }
1084   }
1085   if (auto *Array = N.getRawMacros()) {
1086     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1087     for (Metadata *Op : N.getMacros()->operands()) {
1088       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1089     }
1090   }
1091   CUVisited.insert(&N);
1092 }
1093 
1094 void Verifier::visitDISubprogram(const DISubprogram &N) {
1095   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1096   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1097   if (auto *F = N.getRawFile())
1098     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1099   else
1100     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1101   if (auto *T = N.getRawType())
1102     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1103   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1104            N.getRawContainingType());
1105   if (auto *Params = N.getRawTemplateParams())
1106     visitTemplateParams(N, *Params);
1107   if (auto *S = N.getRawDeclaration())
1108     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1109              "invalid subprogram declaration", &N, S);
1110   if (auto *RawNode = N.getRawRetainedNodes()) {
1111     auto *Node = dyn_cast<MDTuple>(RawNode);
1112     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1113     for (Metadata *Op : Node->operands()) {
1114       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1115                "invalid retained nodes, expected DILocalVariable or DILabel",
1116                &N, Node, Op);
1117     }
1118   }
1119   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1120            "invalid reference flags", &N);
1121 
1122   auto *Unit = N.getRawUnit();
1123   if (N.isDefinition()) {
1124     // Subprogram definitions (not part of the type hierarchy).
1125     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1126     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1127     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1128     if (N.getFile())
1129       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1130   } else {
1131     // Subprogram declarations (part of the type hierarchy).
1132     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1133   }
1134 
1135   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1136     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1137     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1138     for (Metadata *Op : ThrownTypes->operands())
1139       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1140                Op);
1141   }
1142 
1143   if (N.areAllCallsDescribed())
1144     AssertDI(N.isDefinition(),
1145              "DIFlagAllCallsDescribed must be attached to a definition");
1146 }
1147 
1148 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1149   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1150   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1151            "invalid local scope", &N, N.getRawScope());
1152   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1153     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1154 }
1155 
1156 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1157   visitDILexicalBlockBase(N);
1158 
1159   AssertDI(N.getLine() || !N.getColumn(),
1160            "cannot have column info without line info", &N);
1161 }
1162 
1163 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1164   visitDILexicalBlockBase(N);
1165 }
1166 
1167 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1168   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1169   if (auto *S = N.getRawScope())
1170     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1171   if (auto *S = N.getRawDecl())
1172     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1173 }
1174 
1175 void Verifier::visitDINamespace(const DINamespace &N) {
1176   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1177   if (auto *S = N.getRawScope())
1178     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1179 }
1180 
1181 void Verifier::visitDIMacro(const DIMacro &N) {
1182   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1183                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1184            "invalid macinfo type", &N);
1185   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1186   if (!N.getValue().empty()) {
1187     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1188   }
1189 }
1190 
1191 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1192   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1193            "invalid macinfo type", &N);
1194   if (auto *F = N.getRawFile())
1195     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1196 
1197   if (auto *Array = N.getRawElements()) {
1198     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1199     for (Metadata *Op : N.getElements()->operands()) {
1200       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1201     }
1202   }
1203 }
1204 
1205 void Verifier::visitDIModule(const DIModule &N) {
1206   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1207   AssertDI(!N.getName().empty(), "anonymous module", &N);
1208 }
1209 
1210 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1211   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1212 }
1213 
1214 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1215   visitDITemplateParameter(N);
1216 
1217   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1218            &N);
1219 }
1220 
1221 void Verifier::visitDITemplateValueParameter(
1222     const DITemplateValueParameter &N) {
1223   visitDITemplateParameter(N);
1224 
1225   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1226                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1227                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1228            "invalid tag", &N);
1229 }
1230 
1231 void Verifier::visitDIVariable(const DIVariable &N) {
1232   if (auto *S = N.getRawScope())
1233     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1234   if (auto *F = N.getRawFile())
1235     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1236 }
1237 
1238 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1239   // Checks common to all variables.
1240   visitDIVariable(N);
1241 
1242   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1243   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1244   AssertDI(N.getType(), "missing global variable type", &N);
1245   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1246     AssertDI(isa<DIDerivedType>(Member),
1247              "invalid static data member declaration", &N, Member);
1248   }
1249 }
1250 
1251 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1252   // Checks common to all variables.
1253   visitDIVariable(N);
1254 
1255   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1256   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1257   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1258            "local variable requires a valid scope", &N, N.getRawScope());
1259   if (auto Ty = N.getType())
1260     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1261 }
1262 
1263 void Verifier::visitDILabel(const DILabel &N) {
1264   if (auto *S = N.getRawScope())
1265     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1266   if (auto *F = N.getRawFile())
1267     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1268 
1269   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1270   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1271            "label requires a valid scope", &N, N.getRawScope());
1272 }
1273 
1274 void Verifier::visitDIExpression(const DIExpression &N) {
1275   AssertDI(N.isValid(), "invalid expression", &N);
1276 }
1277 
1278 void Verifier::visitDIGlobalVariableExpression(
1279     const DIGlobalVariableExpression &GVE) {
1280   AssertDI(GVE.getVariable(), "missing variable");
1281   if (auto *Var = GVE.getVariable())
1282     visitDIGlobalVariable(*Var);
1283   if (auto *Expr = GVE.getExpression()) {
1284     visitDIExpression(*Expr);
1285     if (auto Fragment = Expr->getFragmentInfo())
1286       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1287   }
1288 }
1289 
1290 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1291   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1292   if (auto *T = N.getRawType())
1293     AssertDI(isType(T), "invalid type ref", &N, T);
1294   if (auto *F = N.getRawFile())
1295     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1296 }
1297 
1298 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1299   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1300                N.getTag() == dwarf::DW_TAG_imported_declaration,
1301            "invalid tag", &N);
1302   if (auto *S = N.getRawScope())
1303     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1304   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1305            N.getRawEntity());
1306 }
1307 
1308 void Verifier::visitComdat(const Comdat &C) {
1309   // The Module is invalid if the GlobalValue has private linkage.  Entities
1310   // with private linkage don't have entries in the symbol table.
1311   if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1312     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1313            GV);
1314 }
1315 
1316 void Verifier::visitModuleIdents(const Module &M) {
1317   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1318   if (!Idents)
1319     return;
1320 
1321   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1322   // Scan each llvm.ident entry and make sure that this requirement is met.
1323   for (const MDNode *N : Idents->operands()) {
1324     Assert(N->getNumOperands() == 1,
1325            "incorrect number of operands in llvm.ident metadata", N);
1326     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1327            ("invalid value for llvm.ident metadata entry operand"
1328             "(the operand should be a string)"),
1329            N->getOperand(0));
1330   }
1331 }
1332 
1333 void Verifier::visitModuleCommandLines(const Module &M) {
1334   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1335   if (!CommandLines)
1336     return;
1337 
1338   // llvm.commandline takes a list of metadata entry. Each entry has only one
1339   // string. Scan each llvm.commandline entry and make sure that this
1340   // requirement is met.
1341   for (const MDNode *N : CommandLines->operands()) {
1342     Assert(N->getNumOperands() == 1,
1343            "incorrect number of operands in llvm.commandline metadata", N);
1344     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1345            ("invalid value for llvm.commandline metadata entry operand"
1346             "(the operand should be a string)"),
1347            N->getOperand(0));
1348   }
1349 }
1350 
1351 void Verifier::visitModuleFlags(const Module &M) {
1352   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1353   if (!Flags) return;
1354 
1355   // Scan each flag, and track the flags and requirements.
1356   DenseMap<const MDString*, const MDNode*> SeenIDs;
1357   SmallVector<const MDNode*, 16> Requirements;
1358   for (const MDNode *MDN : Flags->operands())
1359     visitModuleFlag(MDN, SeenIDs, Requirements);
1360 
1361   // Validate that the requirements in the module are valid.
1362   for (const MDNode *Requirement : Requirements) {
1363     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1364     const Metadata *ReqValue = Requirement->getOperand(1);
1365 
1366     const MDNode *Op = SeenIDs.lookup(Flag);
1367     if (!Op) {
1368       CheckFailed("invalid requirement on flag, flag is not present in module",
1369                   Flag);
1370       continue;
1371     }
1372 
1373     if (Op->getOperand(2) != ReqValue) {
1374       CheckFailed(("invalid requirement on flag, "
1375                    "flag does not have the required value"),
1376                   Flag);
1377       continue;
1378     }
1379   }
1380 }
1381 
1382 void
1383 Verifier::visitModuleFlag(const MDNode *Op,
1384                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1385                           SmallVectorImpl<const MDNode *> &Requirements) {
1386   // Each module flag should have three arguments, the merge behavior (a
1387   // constant int), the flag ID (an MDString), and the value.
1388   Assert(Op->getNumOperands() == 3,
1389          "incorrect number of operands in module flag", Op);
1390   Module::ModFlagBehavior MFB;
1391   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1392     Assert(
1393         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1394         "invalid behavior operand in module flag (expected constant integer)",
1395         Op->getOperand(0));
1396     Assert(false,
1397            "invalid behavior operand in module flag (unexpected constant)",
1398            Op->getOperand(0));
1399   }
1400   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1401   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1402          Op->getOperand(1));
1403 
1404   // Sanity check the values for behaviors with additional requirements.
1405   switch (MFB) {
1406   case Module::Error:
1407   case Module::Warning:
1408   case Module::Override:
1409     // These behavior types accept any value.
1410     break;
1411 
1412   case Module::Max: {
1413     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1414            "invalid value for 'max' module flag (expected constant integer)",
1415            Op->getOperand(2));
1416     break;
1417   }
1418 
1419   case Module::Require: {
1420     // The value should itself be an MDNode with two operands, a flag ID (an
1421     // MDString), and a value.
1422     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1423     Assert(Value && Value->getNumOperands() == 2,
1424            "invalid value for 'require' module flag (expected metadata pair)",
1425            Op->getOperand(2));
1426     Assert(isa<MDString>(Value->getOperand(0)),
1427            ("invalid value for 'require' module flag "
1428             "(first value operand should be a string)"),
1429            Value->getOperand(0));
1430 
1431     // Append it to the list of requirements, to check once all module flags are
1432     // scanned.
1433     Requirements.push_back(Value);
1434     break;
1435   }
1436 
1437   case Module::Append:
1438   case Module::AppendUnique: {
1439     // These behavior types require the operand be an MDNode.
1440     Assert(isa<MDNode>(Op->getOperand(2)),
1441            "invalid value for 'append'-type module flag "
1442            "(expected a metadata node)",
1443            Op->getOperand(2));
1444     break;
1445   }
1446   }
1447 
1448   // Unless this is a "requires" flag, check the ID is unique.
1449   if (MFB != Module::Require) {
1450     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1451     Assert(Inserted,
1452            "module flag identifiers must be unique (or of 'require' type)", ID);
1453   }
1454 
1455   if (ID->getString() == "wchar_size") {
1456     ConstantInt *Value
1457       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1458     Assert(Value, "wchar_size metadata requires constant integer argument");
1459   }
1460 
1461   if (ID->getString() == "Linker Options") {
1462     // If the llvm.linker.options named metadata exists, we assume that the
1463     // bitcode reader has upgraded the module flag. Otherwise the flag might
1464     // have been created by a client directly.
1465     Assert(M.getNamedMetadata("llvm.linker.options"),
1466            "'Linker Options' named metadata no longer supported");
1467   }
1468 
1469   if (ID->getString() == "CG Profile") {
1470     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1471       visitModuleFlagCGProfileEntry(MDO);
1472   }
1473 }
1474 
1475 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1476   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1477     if (!FuncMDO)
1478       return;
1479     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1480     Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1481            FuncMDO);
1482   };
1483   auto Node = dyn_cast_or_null<MDNode>(MDO);
1484   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1485   CheckFunction(Node->getOperand(0));
1486   CheckFunction(Node->getOperand(1));
1487   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1488   Assert(Count && Count->getType()->isIntegerTy(),
1489          "expected an integer constant", Node->getOperand(2));
1490 }
1491 
1492 /// Return true if this attribute kind only applies to functions.
1493 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1494   switch (Kind) {
1495   case Attribute::NoReturn:
1496   case Attribute::NoSync:
1497   case Attribute::WillReturn:
1498   case Attribute::NoCfCheck:
1499   case Attribute::NoUnwind:
1500   case Attribute::NoInline:
1501   case Attribute::NoFree:
1502   case Attribute::AlwaysInline:
1503   case Attribute::OptimizeForSize:
1504   case Attribute::StackProtect:
1505   case Attribute::StackProtectReq:
1506   case Attribute::StackProtectStrong:
1507   case Attribute::SafeStack:
1508   case Attribute::ShadowCallStack:
1509   case Attribute::NoRedZone:
1510   case Attribute::NoImplicitFloat:
1511   case Attribute::Naked:
1512   case Attribute::InlineHint:
1513   case Attribute::StackAlignment:
1514   case Attribute::UWTable:
1515   case Attribute::NonLazyBind:
1516   case Attribute::ReturnsTwice:
1517   case Attribute::SanitizeAddress:
1518   case Attribute::SanitizeHWAddress:
1519   case Attribute::SanitizeMemTag:
1520   case Attribute::SanitizeThread:
1521   case Attribute::SanitizeMemory:
1522   case Attribute::MinSize:
1523   case Attribute::NoDuplicate:
1524   case Attribute::Builtin:
1525   case Attribute::NoBuiltin:
1526   case Attribute::Cold:
1527   case Attribute::OptForFuzzing:
1528   case Attribute::OptimizeNone:
1529   case Attribute::JumpTable:
1530   case Attribute::Convergent:
1531   case Attribute::ArgMemOnly:
1532   case Attribute::NoRecurse:
1533   case Attribute::InaccessibleMemOnly:
1534   case Attribute::InaccessibleMemOrArgMemOnly:
1535   case Attribute::AllocSize:
1536   case Attribute::SpeculativeLoadHardening:
1537   case Attribute::Speculatable:
1538   case Attribute::StrictFP:
1539     return true;
1540   default:
1541     break;
1542   }
1543   return false;
1544 }
1545 
1546 /// Return true if this is a function attribute that can also appear on
1547 /// arguments.
1548 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1549   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1550          Kind == Attribute::ReadNone;
1551 }
1552 
1553 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1554                                     const Value *V) {
1555   for (Attribute A : Attrs) {
1556     if (A.isStringAttribute())
1557       continue;
1558 
1559     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1560       if (!IsFunction) {
1561         CheckFailed("Attribute '" + A.getAsString() +
1562                         "' only applies to functions!",
1563                     V);
1564         return;
1565       }
1566     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1567       CheckFailed("Attribute '" + A.getAsString() +
1568                       "' does not apply to functions!",
1569                   V);
1570       return;
1571     }
1572   }
1573 }
1574 
1575 // VerifyParameterAttrs - Check the given attributes for an argument or return
1576 // value of the specified type.  The value V is printed in error messages.
1577 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1578                                     const Value *V) {
1579   if (!Attrs.hasAttributes())
1580     return;
1581 
1582   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1583 
1584   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1585     Assert(Attrs.getNumAttributes() == 1,
1586            "Attribute 'immarg' is incompatible with other attributes", V);
1587   }
1588 
1589   // Check for mutually incompatible attributes.  Only inreg is compatible with
1590   // sret.
1591   unsigned AttrCount = 0;
1592   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1593   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1594   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1595                Attrs.hasAttribute(Attribute::InReg);
1596   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1597   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1598                          "and 'sret' are incompatible!",
1599          V);
1600 
1601   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1602            Attrs.hasAttribute(Attribute::ReadOnly)),
1603          "Attributes "
1604          "'inalloca and readonly' are incompatible!",
1605          V);
1606 
1607   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1608            Attrs.hasAttribute(Attribute::Returned)),
1609          "Attributes "
1610          "'sret and returned' are incompatible!",
1611          V);
1612 
1613   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1614            Attrs.hasAttribute(Attribute::SExt)),
1615          "Attributes "
1616          "'zeroext and signext' are incompatible!",
1617          V);
1618 
1619   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1620            Attrs.hasAttribute(Attribute::ReadOnly)),
1621          "Attributes "
1622          "'readnone and readonly' are incompatible!",
1623          V);
1624 
1625   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1626            Attrs.hasAttribute(Attribute::WriteOnly)),
1627          "Attributes "
1628          "'readnone and writeonly' are incompatible!",
1629          V);
1630 
1631   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1632            Attrs.hasAttribute(Attribute::WriteOnly)),
1633          "Attributes "
1634          "'readonly and writeonly' are incompatible!",
1635          V);
1636 
1637   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1638            Attrs.hasAttribute(Attribute::AlwaysInline)),
1639          "Attributes "
1640          "'noinline and alwaysinline' are incompatible!",
1641          V);
1642 
1643   if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1644     Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1645            "Attribute 'byval' type does not match parameter!", V);
1646   }
1647 
1648   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1649   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1650          "Wrong types for attribute: " +
1651              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1652          V);
1653 
1654   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1655     SmallPtrSet<Type*, 4> Visited;
1656     if (!PTy->getElementType()->isSized(&Visited)) {
1657       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1658                  !Attrs.hasAttribute(Attribute::InAlloca),
1659              "Attributes 'byval' and 'inalloca' do not support unsized types!",
1660              V);
1661     }
1662     if (!isa<PointerType>(PTy->getElementType()))
1663       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1664              "Attribute 'swifterror' only applies to parameters "
1665              "with pointer to pointer type!",
1666              V);
1667   } else {
1668     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1669            "Attribute 'byval' only applies to parameters with pointer type!",
1670            V);
1671     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1672            "Attribute 'swifterror' only applies to parameters "
1673            "with pointer type!",
1674            V);
1675   }
1676 }
1677 
1678 // Check parameter attributes against a function type.
1679 // The value V is printed in error messages.
1680 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1681                                    const Value *V, bool IsIntrinsic) {
1682   if (Attrs.isEmpty())
1683     return;
1684 
1685   bool SawNest = false;
1686   bool SawReturned = false;
1687   bool SawSRet = false;
1688   bool SawSwiftSelf = false;
1689   bool SawSwiftError = false;
1690 
1691   // Verify return value attributes.
1692   AttributeSet RetAttrs = Attrs.getRetAttributes();
1693   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1694           !RetAttrs.hasAttribute(Attribute::Nest) &&
1695           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1696           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1697           !RetAttrs.hasAttribute(Attribute::Returned) &&
1698           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1699           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1700           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1701          "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1702          "'returned', 'swiftself', and 'swifterror' do not apply to return "
1703          "values!",
1704          V);
1705   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1706           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1707           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1708          "Attribute '" + RetAttrs.getAsString() +
1709              "' does not apply to function returns",
1710          V);
1711   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1712 
1713   // Verify parameter attributes.
1714   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1715     Type *Ty = FT->getParamType(i);
1716     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1717 
1718     if (!IsIntrinsic) {
1719       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1720              "immarg attribute only applies to intrinsics",V);
1721     }
1722 
1723     verifyParameterAttrs(ArgAttrs, Ty, V);
1724 
1725     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1726       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1727       SawNest = true;
1728     }
1729 
1730     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1731       Assert(!SawReturned, "More than one parameter has attribute returned!",
1732              V);
1733       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1734              "Incompatible argument and return types for 'returned' attribute",
1735              V);
1736       SawReturned = true;
1737     }
1738 
1739     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1740       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1741       Assert(i == 0 || i == 1,
1742              "Attribute 'sret' is not on first or second parameter!", V);
1743       SawSRet = true;
1744     }
1745 
1746     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1747       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1748       SawSwiftSelf = true;
1749     }
1750 
1751     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1752       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1753              V);
1754       SawSwiftError = true;
1755     }
1756 
1757     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1758       Assert(i == FT->getNumParams() - 1,
1759              "inalloca isn't on the last parameter!", V);
1760     }
1761   }
1762 
1763   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1764     return;
1765 
1766   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1767 
1768   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1769            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1770          "Attributes 'readnone and readonly' are incompatible!", V);
1771 
1772   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1773            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1774          "Attributes 'readnone and writeonly' are incompatible!", V);
1775 
1776   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1777            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1778          "Attributes 'readonly and writeonly' are incompatible!", V);
1779 
1780   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1781            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1782          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1783          "incompatible!",
1784          V);
1785 
1786   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1787            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1788          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1789 
1790   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1791            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1792          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1793 
1794   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1795     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1796            "Attribute 'optnone' requires 'noinline'!", V);
1797 
1798     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1799            "Attributes 'optsize and optnone' are incompatible!", V);
1800 
1801     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1802            "Attributes 'minsize and optnone' are incompatible!", V);
1803   }
1804 
1805   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1806     const GlobalValue *GV = cast<GlobalValue>(V);
1807     Assert(GV->hasGlobalUnnamedAddr(),
1808            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1809   }
1810 
1811   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1812     std::pair<unsigned, Optional<unsigned>> Args =
1813         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1814 
1815     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1816       if (ParamNo >= FT->getNumParams()) {
1817         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1818         return false;
1819       }
1820 
1821       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1822         CheckFailed("'allocsize' " + Name +
1823                         " argument must refer to an integer parameter",
1824                     V);
1825         return false;
1826       }
1827 
1828       return true;
1829     };
1830 
1831     if (!CheckParam("element size", Args.first))
1832       return;
1833 
1834     if (Args.second && !CheckParam("number of elements", *Args.second))
1835       return;
1836   }
1837 }
1838 
1839 void Verifier::verifyFunctionMetadata(
1840     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1841   for (const auto &Pair : MDs) {
1842     if (Pair.first == LLVMContext::MD_prof) {
1843       MDNode *MD = Pair.second;
1844       Assert(MD->getNumOperands() >= 2,
1845              "!prof annotations should have no less than 2 operands", MD);
1846 
1847       // Check first operand.
1848       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1849              MD);
1850       Assert(isa<MDString>(MD->getOperand(0)),
1851              "expected string with name of the !prof annotation", MD);
1852       MDString *MDS = cast<MDString>(MD->getOperand(0));
1853       StringRef ProfName = MDS->getString();
1854       Assert(ProfName.equals("function_entry_count") ||
1855                  ProfName.equals("synthetic_function_entry_count"),
1856              "first operand should be 'function_entry_count'"
1857              " or 'synthetic_function_entry_count'",
1858              MD);
1859 
1860       // Check second operand.
1861       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1862              MD);
1863       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1864              "expected integer argument to function_entry_count", MD);
1865     }
1866   }
1867 }
1868 
1869 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1870   if (!ConstantExprVisited.insert(EntryC).second)
1871     return;
1872 
1873   SmallVector<const Constant *, 16> Stack;
1874   Stack.push_back(EntryC);
1875 
1876   while (!Stack.empty()) {
1877     const Constant *C = Stack.pop_back_val();
1878 
1879     // Check this constant expression.
1880     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1881       visitConstantExpr(CE);
1882 
1883     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1884       // Global Values get visited separately, but we do need to make sure
1885       // that the global value is in the correct module
1886       Assert(GV->getParent() == &M, "Referencing global in another module!",
1887              EntryC, &M, GV, GV->getParent());
1888       continue;
1889     }
1890 
1891     // Visit all sub-expressions.
1892     for (const Use &U : C->operands()) {
1893       const auto *OpC = dyn_cast<Constant>(U);
1894       if (!OpC)
1895         continue;
1896       if (!ConstantExprVisited.insert(OpC).second)
1897         continue;
1898       Stack.push_back(OpC);
1899     }
1900   }
1901 }
1902 
1903 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1904   if (CE->getOpcode() == Instruction::BitCast)
1905     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1906                                  CE->getType()),
1907            "Invalid bitcast", CE);
1908 
1909   if (CE->getOpcode() == Instruction::IntToPtr ||
1910       CE->getOpcode() == Instruction::PtrToInt) {
1911     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1912                       ? CE->getType()
1913                       : CE->getOperand(0)->getType();
1914     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1915                         ? "inttoptr not supported for non-integral pointers"
1916                         : "ptrtoint not supported for non-integral pointers";
1917     Assert(
1918         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1919         Msg);
1920   }
1921 }
1922 
1923 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1924   // There shouldn't be more attribute sets than there are parameters plus the
1925   // function and return value.
1926   return Attrs.getNumAttrSets() <= Params + 2;
1927 }
1928 
1929 /// Verify that statepoint intrinsic is well formed.
1930 void Verifier::verifyStatepoint(const CallBase &Call) {
1931   assert(Call.getCalledFunction() &&
1932          Call.getCalledFunction()->getIntrinsicID() ==
1933              Intrinsic::experimental_gc_statepoint);
1934 
1935   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1936              !Call.onlyAccessesArgMemory(),
1937          "gc.statepoint must read and write all memory to preserve "
1938          "reordering restrictions required by safepoint semantics",
1939          Call);
1940 
1941   const int64_t NumPatchBytes =
1942       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1943   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1944   Assert(NumPatchBytes >= 0,
1945          "gc.statepoint number of patchable bytes must be "
1946          "positive",
1947          Call);
1948 
1949   const Value *Target = Call.getArgOperand(2);
1950   auto *PT = dyn_cast<PointerType>(Target->getType());
1951   Assert(PT && PT->getElementType()->isFunctionTy(),
1952          "gc.statepoint callee must be of function pointer type", Call, Target);
1953   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1954 
1955   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1956   Assert(NumCallArgs >= 0,
1957          "gc.statepoint number of arguments to underlying call "
1958          "must be positive",
1959          Call);
1960   const int NumParams = (int)TargetFuncType->getNumParams();
1961   if (TargetFuncType->isVarArg()) {
1962     Assert(NumCallArgs >= NumParams,
1963            "gc.statepoint mismatch in number of vararg call args", Call);
1964 
1965     // TODO: Remove this limitation
1966     Assert(TargetFuncType->getReturnType()->isVoidTy(),
1967            "gc.statepoint doesn't support wrapping non-void "
1968            "vararg functions yet",
1969            Call);
1970   } else
1971     Assert(NumCallArgs == NumParams,
1972            "gc.statepoint mismatch in number of call args", Call);
1973 
1974   const uint64_t Flags
1975     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1976   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1977          "unknown flag used in gc.statepoint flags argument", Call);
1978 
1979   // Verify that the types of the call parameter arguments match
1980   // the type of the wrapped callee.
1981   AttributeList Attrs = Call.getAttributes();
1982   for (int i = 0; i < NumParams; i++) {
1983     Type *ParamType = TargetFuncType->getParamType(i);
1984     Type *ArgType = Call.getArgOperand(5 + i)->getType();
1985     Assert(ArgType == ParamType,
1986            "gc.statepoint call argument does not match wrapped "
1987            "function type",
1988            Call);
1989 
1990     if (TargetFuncType->isVarArg()) {
1991       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
1992       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
1993              "Attribute 'sret' cannot be used for vararg call arguments!",
1994              Call);
1995     }
1996   }
1997 
1998   const int EndCallArgsInx = 4 + NumCallArgs;
1999 
2000   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2001   Assert(isa<ConstantInt>(NumTransitionArgsV),
2002          "gc.statepoint number of transition arguments "
2003          "must be constant integer",
2004          Call);
2005   const int NumTransitionArgs =
2006       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2007   Assert(NumTransitionArgs >= 0,
2008          "gc.statepoint number of transition arguments must be positive", Call);
2009   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2010 
2011   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2012   Assert(isa<ConstantInt>(NumDeoptArgsV),
2013          "gc.statepoint number of deoptimization arguments "
2014          "must be constant integer",
2015          Call);
2016   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2017   Assert(NumDeoptArgs >= 0,
2018          "gc.statepoint number of deoptimization arguments "
2019          "must be positive",
2020          Call);
2021 
2022   const int ExpectedNumArgs =
2023       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2024   Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2025          "gc.statepoint too few arguments according to length fields", Call);
2026 
2027   // Check that the only uses of this gc.statepoint are gc.result or
2028   // gc.relocate calls which are tied to this statepoint and thus part
2029   // of the same statepoint sequence
2030   for (const User *U : Call.users()) {
2031     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2032     Assert(UserCall, "illegal use of statepoint token", Call, U);
2033     if (!UserCall)
2034       continue;
2035     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2036            "gc.result or gc.relocate are the only value uses "
2037            "of a gc.statepoint",
2038            Call, U);
2039     if (isa<GCResultInst>(UserCall)) {
2040       Assert(UserCall->getArgOperand(0) == &Call,
2041              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2042     } else if (isa<GCRelocateInst>(Call)) {
2043       Assert(UserCall->getArgOperand(0) == &Call,
2044              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2045     }
2046   }
2047 
2048   // Note: It is legal for a single derived pointer to be listed multiple
2049   // times.  It's non-optimal, but it is legal.  It can also happen after
2050   // insertion if we strip a bitcast away.
2051   // Note: It is really tempting to check that each base is relocated and
2052   // that a derived pointer is never reused as a base pointer.  This turns
2053   // out to be problematic since optimizations run after safepoint insertion
2054   // can recognize equality properties that the insertion logic doesn't know
2055   // about.  See example statepoint.ll in the verifier subdirectory
2056 }
2057 
2058 void Verifier::verifyFrameRecoverIndices() {
2059   for (auto &Counts : FrameEscapeInfo) {
2060     Function *F = Counts.first;
2061     unsigned EscapedObjectCount = Counts.second.first;
2062     unsigned MaxRecoveredIndex = Counts.second.second;
2063     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2064            "all indices passed to llvm.localrecover must be less than the "
2065            "number of arguments passed to llvm.localescape in the parent "
2066            "function",
2067            F);
2068   }
2069 }
2070 
2071 static Instruction *getSuccPad(Instruction *Terminator) {
2072   BasicBlock *UnwindDest;
2073   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2074     UnwindDest = II->getUnwindDest();
2075   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2076     UnwindDest = CSI->getUnwindDest();
2077   else
2078     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2079   return UnwindDest->getFirstNonPHI();
2080 }
2081 
2082 void Verifier::verifySiblingFuncletUnwinds() {
2083   SmallPtrSet<Instruction *, 8> Visited;
2084   SmallPtrSet<Instruction *, 8> Active;
2085   for (const auto &Pair : SiblingFuncletInfo) {
2086     Instruction *PredPad = Pair.first;
2087     if (Visited.count(PredPad))
2088       continue;
2089     Active.insert(PredPad);
2090     Instruction *Terminator = Pair.second;
2091     do {
2092       Instruction *SuccPad = getSuccPad(Terminator);
2093       if (Active.count(SuccPad)) {
2094         // Found a cycle; report error
2095         Instruction *CyclePad = SuccPad;
2096         SmallVector<Instruction *, 8> CycleNodes;
2097         do {
2098           CycleNodes.push_back(CyclePad);
2099           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2100           if (CycleTerminator != CyclePad)
2101             CycleNodes.push_back(CycleTerminator);
2102           CyclePad = getSuccPad(CycleTerminator);
2103         } while (CyclePad != SuccPad);
2104         Assert(false, "EH pads can't handle each other's exceptions",
2105                ArrayRef<Instruction *>(CycleNodes));
2106       }
2107       // Don't re-walk a node we've already checked
2108       if (!Visited.insert(SuccPad).second)
2109         break;
2110       // Walk to this successor if it has a map entry.
2111       PredPad = SuccPad;
2112       auto TermI = SiblingFuncletInfo.find(PredPad);
2113       if (TermI == SiblingFuncletInfo.end())
2114         break;
2115       Terminator = TermI->second;
2116       Active.insert(PredPad);
2117     } while (true);
2118     // Each node only has one successor, so we've walked all the active
2119     // nodes' successors.
2120     Active.clear();
2121   }
2122 }
2123 
2124 // visitFunction - Verify that a function is ok.
2125 //
2126 void Verifier::visitFunction(const Function &F) {
2127   visitGlobalValue(F);
2128 
2129   // Check function arguments.
2130   FunctionType *FT = F.getFunctionType();
2131   unsigned NumArgs = F.arg_size();
2132 
2133   Assert(&Context == &F.getContext(),
2134          "Function context does not match Module context!", &F);
2135 
2136   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2137   Assert(FT->getNumParams() == NumArgs,
2138          "# formal arguments must match # of arguments for function type!", &F,
2139          FT);
2140   Assert(F.getReturnType()->isFirstClassType() ||
2141              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2142          "Functions cannot return aggregate values!", &F);
2143 
2144   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2145          "Invalid struct return type!", &F);
2146 
2147   AttributeList Attrs = F.getAttributes();
2148 
2149   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2150          "Attribute after last parameter!", &F);
2151 
2152   bool isLLVMdotName = F.getName().size() >= 5 &&
2153                        F.getName().substr(0, 5) == "llvm.";
2154 
2155   // Check function attributes.
2156   verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2157 
2158   // On function declarations/definitions, we do not support the builtin
2159   // attribute. We do not check this in VerifyFunctionAttrs since that is
2160   // checking for Attributes that can/can not ever be on functions.
2161   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2162          "Attribute 'builtin' can only be applied to a callsite.", &F);
2163 
2164   // Check that this function meets the restrictions on this calling convention.
2165   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2166   // restrictions can be lifted.
2167   switch (F.getCallingConv()) {
2168   default:
2169   case CallingConv::C:
2170     break;
2171   case CallingConv::AMDGPU_KERNEL:
2172   case CallingConv::SPIR_KERNEL:
2173     Assert(F.getReturnType()->isVoidTy(),
2174            "Calling convention requires void return type", &F);
2175     LLVM_FALLTHROUGH;
2176   case CallingConv::AMDGPU_VS:
2177   case CallingConv::AMDGPU_HS:
2178   case CallingConv::AMDGPU_GS:
2179   case CallingConv::AMDGPU_PS:
2180   case CallingConv::AMDGPU_CS:
2181     Assert(!F.hasStructRetAttr(),
2182            "Calling convention does not allow sret", &F);
2183     LLVM_FALLTHROUGH;
2184   case CallingConv::Fast:
2185   case CallingConv::Cold:
2186   case CallingConv::Intel_OCL_BI:
2187   case CallingConv::PTX_Kernel:
2188   case CallingConv::PTX_Device:
2189     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2190                           "perfect forwarding!",
2191            &F);
2192     break;
2193   }
2194 
2195   // Check that the argument values match the function type for this function...
2196   unsigned i = 0;
2197   for (const Argument &Arg : F.args()) {
2198     Assert(Arg.getType() == FT->getParamType(i),
2199            "Argument value does not match function argument type!", &Arg,
2200            FT->getParamType(i));
2201     Assert(Arg.getType()->isFirstClassType(),
2202            "Function arguments must have first-class types!", &Arg);
2203     if (!isLLVMdotName) {
2204       Assert(!Arg.getType()->isMetadataTy(),
2205              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2206       Assert(!Arg.getType()->isTokenTy(),
2207              "Function takes token but isn't an intrinsic", &Arg, &F);
2208     }
2209 
2210     // Check that swifterror argument is only used by loads and stores.
2211     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2212       verifySwiftErrorValue(&Arg);
2213     }
2214     ++i;
2215   }
2216 
2217   if (!isLLVMdotName)
2218     Assert(!F.getReturnType()->isTokenTy(),
2219            "Functions returns a token but isn't an intrinsic", &F);
2220 
2221   // Get the function metadata attachments.
2222   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2223   F.getAllMetadata(MDs);
2224   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2225   verifyFunctionMetadata(MDs);
2226 
2227   // Check validity of the personality function
2228   if (F.hasPersonalityFn()) {
2229     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2230     if (Per)
2231       Assert(Per->getParent() == F.getParent(),
2232              "Referencing personality function in another module!",
2233              &F, F.getParent(), Per, Per->getParent());
2234   }
2235 
2236   if (F.isMaterializable()) {
2237     // Function has a body somewhere we can't see.
2238     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2239            MDs.empty() ? nullptr : MDs.front().second);
2240   } else if (F.isDeclaration()) {
2241     for (const auto &I : MDs) {
2242       // This is used for call site debug information.
2243       AssertDI(I.first != LLVMContext::MD_dbg ||
2244                    !cast<DISubprogram>(I.second)->isDistinct(),
2245                "function declaration may only have a unique !dbg attachment",
2246                &F);
2247       Assert(I.first != LLVMContext::MD_prof,
2248              "function declaration may not have a !prof attachment", &F);
2249 
2250       // Verify the metadata itself.
2251       visitMDNode(*I.second);
2252     }
2253     Assert(!F.hasPersonalityFn(),
2254            "Function declaration shouldn't have a personality routine", &F);
2255   } else {
2256     // Verify that this function (which has a body) is not named "llvm.*".  It
2257     // is not legal to define intrinsics.
2258     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2259 
2260     // Check the entry node
2261     const BasicBlock *Entry = &F.getEntryBlock();
2262     Assert(pred_empty(Entry),
2263            "Entry block to function must not have predecessors!", Entry);
2264 
2265     // The address of the entry block cannot be taken, unless it is dead.
2266     if (Entry->hasAddressTaken()) {
2267       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2268              "blockaddress may not be used with the entry block!", Entry);
2269     }
2270 
2271     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2272     // Visit metadata attachments.
2273     for (const auto &I : MDs) {
2274       // Verify that the attachment is legal.
2275       switch (I.first) {
2276       default:
2277         break;
2278       case LLVMContext::MD_dbg: {
2279         ++NumDebugAttachments;
2280         AssertDI(NumDebugAttachments == 1,
2281                  "function must have a single !dbg attachment", &F, I.second);
2282         AssertDI(isa<DISubprogram>(I.second),
2283                  "function !dbg attachment must be a subprogram", &F, I.second);
2284         auto *SP = cast<DISubprogram>(I.second);
2285         const Function *&AttachedTo = DISubprogramAttachments[SP];
2286         AssertDI(!AttachedTo || AttachedTo == &F,
2287                  "DISubprogram attached to more than one function", SP, &F);
2288         AttachedTo = &F;
2289         break;
2290       }
2291       case LLVMContext::MD_prof:
2292         ++NumProfAttachments;
2293         Assert(NumProfAttachments == 1,
2294                "function must have a single !prof attachment", &F, I.second);
2295         break;
2296       }
2297 
2298       // Verify the metadata itself.
2299       visitMDNode(*I.second);
2300     }
2301   }
2302 
2303   // If this function is actually an intrinsic, verify that it is only used in
2304   // direct call/invokes, never having its "address taken".
2305   // Only do this if the module is materialized, otherwise we don't have all the
2306   // uses.
2307   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2308     const User *U;
2309     if (F.hasAddressTaken(&U))
2310       Assert(false, "Invalid user of intrinsic instruction!", U);
2311   }
2312 
2313   auto *N = F.getSubprogram();
2314   HasDebugInfo = (N != nullptr);
2315   if (!HasDebugInfo)
2316     return;
2317 
2318   // Check that all !dbg attachments lead to back to N (or, at least, another
2319   // subprogram that describes the same function).
2320   //
2321   // FIXME: Check this incrementally while visiting !dbg attachments.
2322   // FIXME: Only check when N is the canonical subprogram for F.
2323   SmallPtrSet<const MDNode *, 32> Seen;
2324   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2325     // Be careful about using DILocation here since we might be dealing with
2326     // broken code (this is the Verifier after all).
2327     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2328     if (!DL)
2329       return;
2330     if (!Seen.insert(DL).second)
2331       return;
2332 
2333     Metadata *Parent = DL->getRawScope();
2334     AssertDI(Parent && isa<DILocalScope>(Parent),
2335              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2336              Parent);
2337     DILocalScope *Scope = DL->getInlinedAtScope();
2338     if (Scope && !Seen.insert(Scope).second)
2339       return;
2340 
2341     DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2342 
2343     // Scope and SP could be the same MDNode and we don't want to skip
2344     // validation in that case
2345     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2346       return;
2347 
2348     // FIXME: Once N is canonical, check "SP == &N".
2349     AssertDI(SP->describes(&F),
2350              "!dbg attachment points at wrong subprogram for function", N, &F,
2351              &I, DL, Scope, SP);
2352   };
2353   for (auto &BB : F)
2354     for (auto &I : BB) {
2355       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2356       // The llvm.loop annotations also contain two DILocations.
2357       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2358         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2359           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2360       if (BrokenDebugInfo)
2361         return;
2362     }
2363 }
2364 
2365 // verifyBasicBlock - Verify that a basic block is well formed...
2366 //
2367 void Verifier::visitBasicBlock(BasicBlock &BB) {
2368   InstsInThisBlock.clear();
2369 
2370   // Ensure that basic blocks have terminators!
2371   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2372 
2373   // Check constraints that this basic block imposes on all of the PHI nodes in
2374   // it.
2375   if (isa<PHINode>(BB.front())) {
2376     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2377     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2378     llvm::sort(Preds);
2379     for (const PHINode &PN : BB.phis()) {
2380       // Ensure that PHI nodes have at least one entry!
2381       Assert(PN.getNumIncomingValues() != 0,
2382              "PHI nodes must have at least one entry.  If the block is dead, "
2383              "the PHI should be removed!",
2384              &PN);
2385       Assert(PN.getNumIncomingValues() == Preds.size(),
2386              "PHINode should have one entry for each predecessor of its "
2387              "parent basic block!",
2388              &PN);
2389 
2390       // Get and sort all incoming values in the PHI node...
2391       Values.clear();
2392       Values.reserve(PN.getNumIncomingValues());
2393       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2394         Values.push_back(
2395             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2396       llvm::sort(Values);
2397 
2398       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2399         // Check to make sure that if there is more than one entry for a
2400         // particular basic block in this PHI node, that the incoming values are
2401         // all identical.
2402         //
2403         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2404                    Values[i].second == Values[i - 1].second,
2405                "PHI node has multiple entries for the same basic block with "
2406                "different incoming values!",
2407                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2408 
2409         // Check to make sure that the predecessors and PHI node entries are
2410         // matched up.
2411         Assert(Values[i].first == Preds[i],
2412                "PHI node entries do not match predecessors!", &PN,
2413                Values[i].first, Preds[i]);
2414       }
2415     }
2416   }
2417 
2418   // Check that all instructions have their parent pointers set up correctly.
2419   for (auto &I : BB)
2420   {
2421     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2422   }
2423 }
2424 
2425 void Verifier::visitTerminator(Instruction &I) {
2426   // Ensure that terminators only exist at the end of the basic block.
2427   Assert(&I == I.getParent()->getTerminator(),
2428          "Terminator found in the middle of a basic block!", I.getParent());
2429   visitInstruction(I);
2430 }
2431 
2432 void Verifier::visitBranchInst(BranchInst &BI) {
2433   if (BI.isConditional()) {
2434     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2435            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2436   }
2437   visitTerminator(BI);
2438 }
2439 
2440 void Verifier::visitReturnInst(ReturnInst &RI) {
2441   Function *F = RI.getParent()->getParent();
2442   unsigned N = RI.getNumOperands();
2443   if (F->getReturnType()->isVoidTy())
2444     Assert(N == 0,
2445            "Found return instr that returns non-void in Function of void "
2446            "return type!",
2447            &RI, F->getReturnType());
2448   else
2449     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2450            "Function return type does not match operand "
2451            "type of return inst!",
2452            &RI, F->getReturnType());
2453 
2454   // Check to make sure that the return value has necessary properties for
2455   // terminators...
2456   visitTerminator(RI);
2457 }
2458 
2459 void Verifier::visitSwitchInst(SwitchInst &SI) {
2460   // Check to make sure that all of the constants in the switch instruction
2461   // have the same type as the switched-on value.
2462   Type *SwitchTy = SI.getCondition()->getType();
2463   SmallPtrSet<ConstantInt*, 32> Constants;
2464   for (auto &Case : SI.cases()) {
2465     Assert(Case.getCaseValue()->getType() == SwitchTy,
2466            "Switch constants must all be same type as switch value!", &SI);
2467     Assert(Constants.insert(Case.getCaseValue()).second,
2468            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2469   }
2470 
2471   visitTerminator(SI);
2472 }
2473 
2474 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2475   Assert(BI.getAddress()->getType()->isPointerTy(),
2476          "Indirectbr operand must have pointer type!", &BI);
2477   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2478     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2479            "Indirectbr destinations must all have pointer type!", &BI);
2480 
2481   visitTerminator(BI);
2482 }
2483 
2484 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2485   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2486          &CBI);
2487   Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2488          &CBI);
2489   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2490     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2491            "Callbr successors must all have pointer type!", &CBI);
2492   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2493     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2494            "Using an unescaped label as a callbr argument!", &CBI);
2495     if (isa<BasicBlock>(CBI.getOperand(i)))
2496       for (unsigned j = i + 1; j != e; ++j)
2497         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2498                "Duplicate callbr destination!", &CBI);
2499   }
2500 
2501   visitTerminator(CBI);
2502 }
2503 
2504 void Verifier::visitSelectInst(SelectInst &SI) {
2505   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2506                                          SI.getOperand(2)),
2507          "Invalid operands for select instruction!", &SI);
2508 
2509   Assert(SI.getTrueValue()->getType() == SI.getType(),
2510          "Select values must have same type as select instruction!", &SI);
2511   visitInstruction(SI);
2512 }
2513 
2514 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2515 /// a pass, if any exist, it's an error.
2516 ///
2517 void Verifier::visitUserOp1(Instruction &I) {
2518   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2519 }
2520 
2521 void Verifier::visitTruncInst(TruncInst &I) {
2522   // Get the source and destination types
2523   Type *SrcTy = I.getOperand(0)->getType();
2524   Type *DestTy = I.getType();
2525 
2526   // Get the size of the types in bits, we'll need this later
2527   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2528   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2529 
2530   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2531   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2532   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2533          "trunc source and destination must both be a vector or neither", &I);
2534   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2535 
2536   visitInstruction(I);
2537 }
2538 
2539 void Verifier::visitZExtInst(ZExtInst &I) {
2540   // Get the source and destination types
2541   Type *SrcTy = I.getOperand(0)->getType();
2542   Type *DestTy = I.getType();
2543 
2544   // Get the size of the types in bits, we'll need this later
2545   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2546   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2547   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2548          "zext source and destination must both be a vector or neither", &I);
2549   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2550   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2551 
2552   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2553 
2554   visitInstruction(I);
2555 }
2556 
2557 void Verifier::visitSExtInst(SExtInst &I) {
2558   // Get the source and destination types
2559   Type *SrcTy = I.getOperand(0)->getType();
2560   Type *DestTy = I.getType();
2561 
2562   // Get the size of the types in bits, we'll need this later
2563   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2564   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2565 
2566   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2567   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2568   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2569          "sext source and destination must both be a vector or neither", &I);
2570   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2571 
2572   visitInstruction(I);
2573 }
2574 
2575 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2576   // Get the source and destination types
2577   Type *SrcTy = I.getOperand(0)->getType();
2578   Type *DestTy = I.getType();
2579   // Get the size of the types in bits, we'll need this later
2580   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2581   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2582 
2583   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2584   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2585   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2586          "fptrunc source and destination must both be a vector or neither", &I);
2587   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2588 
2589   visitInstruction(I);
2590 }
2591 
2592 void Verifier::visitFPExtInst(FPExtInst &I) {
2593   // Get the source and destination types
2594   Type *SrcTy = I.getOperand(0)->getType();
2595   Type *DestTy = I.getType();
2596 
2597   // Get the size of the types in bits, we'll need this later
2598   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2599   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2600 
2601   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2602   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2603   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2604          "fpext source and destination must both be a vector or neither", &I);
2605   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2606 
2607   visitInstruction(I);
2608 }
2609 
2610 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2611   // Get the source and destination types
2612   Type *SrcTy = I.getOperand(0)->getType();
2613   Type *DestTy = I.getType();
2614 
2615   bool SrcVec = SrcTy->isVectorTy();
2616   bool DstVec = DestTy->isVectorTy();
2617 
2618   Assert(SrcVec == DstVec,
2619          "UIToFP source and dest must both be vector or scalar", &I);
2620   Assert(SrcTy->isIntOrIntVectorTy(),
2621          "UIToFP source must be integer or integer vector", &I);
2622   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2623          &I);
2624 
2625   if (SrcVec && DstVec)
2626     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2627                cast<VectorType>(DestTy)->getNumElements(),
2628            "UIToFP source and dest vector length mismatch", &I);
2629 
2630   visitInstruction(I);
2631 }
2632 
2633 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2634   // Get the source and destination types
2635   Type *SrcTy = I.getOperand(0)->getType();
2636   Type *DestTy = I.getType();
2637 
2638   bool SrcVec = SrcTy->isVectorTy();
2639   bool DstVec = DestTy->isVectorTy();
2640 
2641   Assert(SrcVec == DstVec,
2642          "SIToFP source and dest must both be vector or scalar", &I);
2643   Assert(SrcTy->isIntOrIntVectorTy(),
2644          "SIToFP source must be integer or integer vector", &I);
2645   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2646          &I);
2647 
2648   if (SrcVec && DstVec)
2649     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2650                cast<VectorType>(DestTy)->getNumElements(),
2651            "SIToFP source and dest vector length mismatch", &I);
2652 
2653   visitInstruction(I);
2654 }
2655 
2656 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2657   // Get the source and destination types
2658   Type *SrcTy = I.getOperand(0)->getType();
2659   Type *DestTy = I.getType();
2660 
2661   bool SrcVec = SrcTy->isVectorTy();
2662   bool DstVec = DestTy->isVectorTy();
2663 
2664   Assert(SrcVec == DstVec,
2665          "FPToUI source and dest must both be vector or scalar", &I);
2666   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2667          &I);
2668   Assert(DestTy->isIntOrIntVectorTy(),
2669          "FPToUI result must be integer or integer vector", &I);
2670 
2671   if (SrcVec && DstVec)
2672     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2673                cast<VectorType>(DestTy)->getNumElements(),
2674            "FPToUI source and dest vector length mismatch", &I);
2675 
2676   visitInstruction(I);
2677 }
2678 
2679 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2680   // Get the source and destination types
2681   Type *SrcTy = I.getOperand(0)->getType();
2682   Type *DestTy = I.getType();
2683 
2684   bool SrcVec = SrcTy->isVectorTy();
2685   bool DstVec = DestTy->isVectorTy();
2686 
2687   Assert(SrcVec == DstVec,
2688          "FPToSI source and dest must both be vector or scalar", &I);
2689   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2690          &I);
2691   Assert(DestTy->isIntOrIntVectorTy(),
2692          "FPToSI result must be integer or integer vector", &I);
2693 
2694   if (SrcVec && DstVec)
2695     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2696                cast<VectorType>(DestTy)->getNumElements(),
2697            "FPToSI source and dest vector length mismatch", &I);
2698 
2699   visitInstruction(I);
2700 }
2701 
2702 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2703   // Get the source and destination types
2704   Type *SrcTy = I.getOperand(0)->getType();
2705   Type *DestTy = I.getType();
2706 
2707   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2708 
2709   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2710     Assert(!DL.isNonIntegralPointerType(PTy),
2711            "ptrtoint not supported for non-integral pointers");
2712 
2713   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2714   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2715          &I);
2716 
2717   if (SrcTy->isVectorTy()) {
2718     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2719     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2720     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2721            "PtrToInt Vector width mismatch", &I);
2722   }
2723 
2724   visitInstruction(I);
2725 }
2726 
2727 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2728   // Get the source and destination types
2729   Type *SrcTy = I.getOperand(0)->getType();
2730   Type *DestTy = I.getType();
2731 
2732   Assert(SrcTy->isIntOrIntVectorTy(),
2733          "IntToPtr source must be an integral", &I);
2734   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2735 
2736   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2737     Assert(!DL.isNonIntegralPointerType(PTy),
2738            "inttoptr not supported for non-integral pointers");
2739 
2740   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2741          &I);
2742   if (SrcTy->isVectorTy()) {
2743     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2744     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2745     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2746            "IntToPtr Vector width mismatch", &I);
2747   }
2748   visitInstruction(I);
2749 }
2750 
2751 void Verifier::visitBitCastInst(BitCastInst &I) {
2752   Assert(
2753       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2754       "Invalid bitcast", &I);
2755   visitInstruction(I);
2756 }
2757 
2758 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2759   Type *SrcTy = I.getOperand(0)->getType();
2760   Type *DestTy = I.getType();
2761 
2762   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2763          &I);
2764   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2765          &I);
2766   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2767          "AddrSpaceCast must be between different address spaces", &I);
2768   if (SrcTy->isVectorTy())
2769     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2770            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2771   visitInstruction(I);
2772 }
2773 
2774 /// visitPHINode - Ensure that a PHI node is well formed.
2775 ///
2776 void Verifier::visitPHINode(PHINode &PN) {
2777   // Ensure that the PHI nodes are all grouped together at the top of the block.
2778   // This can be tested by checking whether the instruction before this is
2779   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2780   // then there is some other instruction before a PHI.
2781   Assert(&PN == &PN.getParent()->front() ||
2782              isa<PHINode>(--BasicBlock::iterator(&PN)),
2783          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2784 
2785   // Check that a PHI doesn't yield a Token.
2786   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2787 
2788   // Check that all of the values of the PHI node have the same type as the
2789   // result, and that the incoming blocks are really basic blocks.
2790   for (Value *IncValue : PN.incoming_values()) {
2791     Assert(PN.getType() == IncValue->getType(),
2792            "PHI node operands are not the same type as the result!", &PN);
2793   }
2794 
2795   // All other PHI node constraints are checked in the visitBasicBlock method.
2796 
2797   visitInstruction(PN);
2798 }
2799 
2800 void Verifier::visitCallBase(CallBase &Call) {
2801   Assert(Call.getCalledValue()->getType()->isPointerTy(),
2802          "Called function must be a pointer!", Call);
2803   PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2804 
2805   Assert(FPTy->getElementType()->isFunctionTy(),
2806          "Called function is not pointer to function type!", Call);
2807 
2808   Assert(FPTy->getElementType() == Call.getFunctionType(),
2809          "Called function is not the same type as the call!", Call);
2810 
2811   FunctionType *FTy = Call.getFunctionType();
2812 
2813   // Verify that the correct number of arguments are being passed
2814   if (FTy->isVarArg())
2815     Assert(Call.arg_size() >= FTy->getNumParams(),
2816            "Called function requires more parameters than were provided!",
2817            Call);
2818   else
2819     Assert(Call.arg_size() == FTy->getNumParams(),
2820            "Incorrect number of arguments passed to called function!", Call);
2821 
2822   // Verify that all arguments to the call match the function type.
2823   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2824     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2825            "Call parameter type does not match function signature!",
2826            Call.getArgOperand(i), FTy->getParamType(i), Call);
2827 
2828   AttributeList Attrs = Call.getAttributes();
2829 
2830   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2831          "Attribute after last parameter!", Call);
2832 
2833   bool IsIntrinsic = Call.getCalledFunction() &&
2834                      Call.getCalledFunction()->getName().startswith("llvm.");
2835 
2836   Function *Callee
2837     = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2838 
2839   if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2840     // Don't allow speculatable on call sites, unless the underlying function
2841     // declaration is also speculatable.
2842     Assert(Callee && Callee->isSpeculatable(),
2843            "speculatable attribute may not apply to call sites", Call);
2844   }
2845 
2846   // Verify call attributes.
2847   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2848 
2849   // Conservatively check the inalloca argument.
2850   // We have a bug if we can find that there is an underlying alloca without
2851   // inalloca.
2852   if (Call.hasInAllocaArgument()) {
2853     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2854     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2855       Assert(AI->isUsedWithInAlloca(),
2856              "inalloca argument for call has mismatched alloca", AI, Call);
2857   }
2858 
2859   // For each argument of the callsite, if it has the swifterror argument,
2860   // make sure the underlying alloca/parameter it comes from has a swifterror as
2861   // well.
2862   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2863     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2864       Value *SwiftErrorArg = Call.getArgOperand(i);
2865       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2866         Assert(AI->isSwiftError(),
2867                "swifterror argument for call has mismatched alloca", AI, Call);
2868         continue;
2869       }
2870       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2871       Assert(ArgI,
2872              "swifterror argument should come from an alloca or parameter",
2873              SwiftErrorArg, Call);
2874       Assert(ArgI->hasSwiftErrorAttr(),
2875              "swifterror argument for call has mismatched parameter", ArgI,
2876              Call);
2877     }
2878 
2879     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2880       // Don't allow immarg on call sites, unless the underlying declaration
2881       // also has the matching immarg.
2882       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2883              "immarg may not apply only to call sites",
2884              Call.getArgOperand(i), Call);
2885     }
2886 
2887     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2888       Value *ArgVal = Call.getArgOperand(i);
2889       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2890              "immarg operand has non-immediate parameter", ArgVal, Call);
2891     }
2892   }
2893 
2894   if (FTy->isVarArg()) {
2895     // FIXME? is 'nest' even legal here?
2896     bool SawNest = false;
2897     bool SawReturned = false;
2898 
2899     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2900       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2901         SawNest = true;
2902       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2903         SawReturned = true;
2904     }
2905 
2906     // Check attributes on the varargs part.
2907     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2908       Type *Ty = Call.getArgOperand(Idx)->getType();
2909       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2910       verifyParameterAttrs(ArgAttrs, Ty, &Call);
2911 
2912       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2913         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2914         SawNest = true;
2915       }
2916 
2917       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2918         Assert(!SawReturned, "More than one parameter has attribute returned!",
2919                Call);
2920         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2921                "Incompatible argument and return types for 'returned' "
2922                "attribute",
2923                Call);
2924         SawReturned = true;
2925       }
2926 
2927       // Statepoint intrinsic is vararg but the wrapped function may be not.
2928       // Allow sret here and check the wrapped function in verifyStatepoint.
2929       if (!Call.getCalledFunction() ||
2930           Call.getCalledFunction()->getIntrinsicID() !=
2931               Intrinsic::experimental_gc_statepoint)
2932         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2933                "Attribute 'sret' cannot be used for vararg call arguments!",
2934                Call);
2935 
2936       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2937         Assert(Idx == Call.arg_size() - 1,
2938                "inalloca isn't on the last argument!", Call);
2939     }
2940   }
2941 
2942   // Verify that there's no metadata unless it's a direct call to an intrinsic.
2943   if (!IsIntrinsic) {
2944     for (Type *ParamTy : FTy->params()) {
2945       Assert(!ParamTy->isMetadataTy(),
2946              "Function has metadata parameter but isn't an intrinsic", Call);
2947       Assert(!ParamTy->isTokenTy(),
2948              "Function has token parameter but isn't an intrinsic", Call);
2949     }
2950   }
2951 
2952   // Verify that indirect calls don't return tokens.
2953   if (!Call.getCalledFunction())
2954     Assert(!FTy->getReturnType()->isTokenTy(),
2955            "Return type cannot be token for indirect call!");
2956 
2957   if (Function *F = Call.getCalledFunction())
2958     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2959       visitIntrinsicCall(ID, Call);
2960 
2961   // Verify that a callsite has at most one "deopt", at most one "funclet" and
2962   // at most one "gc-transition" operand bundle.
2963   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2964        FoundGCTransitionBundle = false;
2965   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2966     OperandBundleUse BU = Call.getOperandBundleAt(i);
2967     uint32_t Tag = BU.getTagID();
2968     if (Tag == LLVMContext::OB_deopt) {
2969       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
2970       FoundDeoptBundle = true;
2971     } else if (Tag == LLVMContext::OB_gc_transition) {
2972       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2973              Call);
2974       FoundGCTransitionBundle = true;
2975     } else if (Tag == LLVMContext::OB_funclet) {
2976       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
2977       FoundFuncletBundle = true;
2978       Assert(BU.Inputs.size() == 1,
2979              "Expected exactly one funclet bundle operand", Call);
2980       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2981              "Funclet bundle operands should correspond to a FuncletPadInst",
2982              Call);
2983     }
2984   }
2985 
2986   // Verify that each inlinable callsite of a debug-info-bearing function in a
2987   // debug-info-bearing function has a debug location attached to it. Failure to
2988   // do so causes assertion failures when the inliner sets up inline scope info.
2989   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
2990       Call.getCalledFunction()->getSubprogram())
2991     AssertDI(Call.getDebugLoc(),
2992              "inlinable function call in a function with "
2993              "debug info must have a !dbg location",
2994              Call);
2995 
2996   visitInstruction(Call);
2997 }
2998 
2999 /// Two types are "congruent" if they are identical, or if they are both pointer
3000 /// types with different pointee types and the same address space.
3001 static bool isTypeCongruent(Type *L, Type *R) {
3002   if (L == R)
3003     return true;
3004   PointerType *PL = dyn_cast<PointerType>(L);
3005   PointerType *PR = dyn_cast<PointerType>(R);
3006   if (!PL || !PR)
3007     return false;
3008   return PL->getAddressSpace() == PR->getAddressSpace();
3009 }
3010 
3011 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3012   static const Attribute::AttrKind ABIAttrs[] = {
3013       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3014       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
3015       Attribute::SwiftError};
3016   AttrBuilder Copy;
3017   for (auto AK : ABIAttrs) {
3018     if (Attrs.hasParamAttribute(I, AK))
3019       Copy.addAttribute(AK);
3020   }
3021   if (Attrs.hasParamAttribute(I, Attribute::Alignment))
3022     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3023   return Copy;
3024 }
3025 
3026 void Verifier::verifyMustTailCall(CallInst &CI) {
3027   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3028 
3029   // - The caller and callee prototypes must match.  Pointer types of
3030   //   parameters or return types may differ in pointee type, but not
3031   //   address space.
3032   Function *F = CI.getParent()->getParent();
3033   FunctionType *CallerTy = F->getFunctionType();
3034   FunctionType *CalleeTy = CI.getFunctionType();
3035   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3036     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3037            "cannot guarantee tail call due to mismatched parameter counts",
3038            &CI);
3039     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3040       Assert(
3041           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3042           "cannot guarantee tail call due to mismatched parameter types", &CI);
3043     }
3044   }
3045   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3046          "cannot guarantee tail call due to mismatched varargs", &CI);
3047   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3048          "cannot guarantee tail call due to mismatched return types", &CI);
3049 
3050   // - The calling conventions of the caller and callee must match.
3051   Assert(F->getCallingConv() == CI.getCallingConv(),
3052          "cannot guarantee tail call due to mismatched calling conv", &CI);
3053 
3054   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3055   //   returned, and inalloca, must match.
3056   AttributeList CallerAttrs = F->getAttributes();
3057   AttributeList CalleeAttrs = CI.getAttributes();
3058   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3059     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3060     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3061     Assert(CallerABIAttrs == CalleeABIAttrs,
3062            "cannot guarantee tail call due to mismatched ABI impacting "
3063            "function attributes",
3064            &CI, CI.getOperand(I));
3065   }
3066 
3067   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3068   //   or a pointer bitcast followed by a ret instruction.
3069   // - The ret instruction must return the (possibly bitcasted) value
3070   //   produced by the call or void.
3071   Value *RetVal = &CI;
3072   Instruction *Next = CI.getNextNode();
3073 
3074   // Handle the optional bitcast.
3075   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3076     Assert(BI->getOperand(0) == RetVal,
3077            "bitcast following musttail call must use the call", BI);
3078     RetVal = BI;
3079     Next = BI->getNextNode();
3080   }
3081 
3082   // Check the return.
3083   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3084   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3085          &CI);
3086   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3087          "musttail call result must be returned", Ret);
3088 }
3089 
3090 void Verifier::visitCallInst(CallInst &CI) {
3091   visitCallBase(CI);
3092 
3093   if (CI.isMustTailCall())
3094     verifyMustTailCall(CI);
3095 }
3096 
3097 void Verifier::visitInvokeInst(InvokeInst &II) {
3098   visitCallBase(II);
3099 
3100   // Verify that the first non-PHI instruction of the unwind destination is an
3101   // exception handling instruction.
3102   Assert(
3103       II.getUnwindDest()->isEHPad(),
3104       "The unwind destination does not have an exception handling instruction!",
3105       &II);
3106 
3107   visitTerminator(II);
3108 }
3109 
3110 /// visitUnaryOperator - Check the argument to the unary operator.
3111 ///
3112 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3113   Assert(U.getType() == U.getOperand(0)->getType(),
3114          "Unary operators must have same type for"
3115          "operands and result!",
3116          &U);
3117 
3118   switch (U.getOpcode()) {
3119   // Check that floating-point arithmetic operators are only used with
3120   // floating-point operands.
3121   case Instruction::FNeg:
3122     Assert(U.getType()->isFPOrFPVectorTy(),
3123            "FNeg operator only works with float types!", &U);
3124     break;
3125   default:
3126     llvm_unreachable("Unknown UnaryOperator opcode!");
3127   }
3128 
3129   visitInstruction(U);
3130 }
3131 
3132 /// visitBinaryOperator - Check that both arguments to the binary operator are
3133 /// of the same type!
3134 ///
3135 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3136   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3137          "Both operands to a binary operator are not of the same type!", &B);
3138 
3139   switch (B.getOpcode()) {
3140   // Check that integer arithmetic operators are only used with
3141   // integral operands.
3142   case Instruction::Add:
3143   case Instruction::Sub:
3144   case Instruction::Mul:
3145   case Instruction::SDiv:
3146   case Instruction::UDiv:
3147   case Instruction::SRem:
3148   case Instruction::URem:
3149     Assert(B.getType()->isIntOrIntVectorTy(),
3150            "Integer arithmetic operators only work with integral types!", &B);
3151     Assert(B.getType() == B.getOperand(0)->getType(),
3152            "Integer arithmetic operators must have same type "
3153            "for operands and result!",
3154            &B);
3155     break;
3156   // Check that floating-point arithmetic operators are only used with
3157   // floating-point operands.
3158   case Instruction::FAdd:
3159   case Instruction::FSub:
3160   case Instruction::FMul:
3161   case Instruction::FDiv:
3162   case Instruction::FRem:
3163     Assert(B.getType()->isFPOrFPVectorTy(),
3164            "Floating-point arithmetic operators only work with "
3165            "floating-point types!",
3166            &B);
3167     Assert(B.getType() == B.getOperand(0)->getType(),
3168            "Floating-point arithmetic operators must have same type "
3169            "for operands and result!",
3170            &B);
3171     break;
3172   // Check that logical operators are only used with integral operands.
3173   case Instruction::And:
3174   case Instruction::Or:
3175   case Instruction::Xor:
3176     Assert(B.getType()->isIntOrIntVectorTy(),
3177            "Logical operators only work with integral types!", &B);
3178     Assert(B.getType() == B.getOperand(0)->getType(),
3179            "Logical operators must have same type for operands and result!",
3180            &B);
3181     break;
3182   case Instruction::Shl:
3183   case Instruction::LShr:
3184   case Instruction::AShr:
3185     Assert(B.getType()->isIntOrIntVectorTy(),
3186            "Shifts only work with integral types!", &B);
3187     Assert(B.getType() == B.getOperand(0)->getType(),
3188            "Shift return type must be same as operands!", &B);
3189     break;
3190   default:
3191     llvm_unreachable("Unknown BinaryOperator opcode!");
3192   }
3193 
3194   visitInstruction(B);
3195 }
3196 
3197 void Verifier::visitICmpInst(ICmpInst &IC) {
3198   // Check that the operands are the same type
3199   Type *Op0Ty = IC.getOperand(0)->getType();
3200   Type *Op1Ty = IC.getOperand(1)->getType();
3201   Assert(Op0Ty == Op1Ty,
3202          "Both operands to ICmp instruction are not of the same type!", &IC);
3203   // Check that the operands are the right type
3204   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3205          "Invalid operand types for ICmp instruction", &IC);
3206   // Check that the predicate is valid.
3207   Assert(IC.isIntPredicate(),
3208          "Invalid predicate in ICmp instruction!", &IC);
3209 
3210   visitInstruction(IC);
3211 }
3212 
3213 void Verifier::visitFCmpInst(FCmpInst &FC) {
3214   // Check that the operands are the same type
3215   Type *Op0Ty = FC.getOperand(0)->getType();
3216   Type *Op1Ty = FC.getOperand(1)->getType();
3217   Assert(Op0Ty == Op1Ty,
3218          "Both operands to FCmp instruction are not of the same type!", &FC);
3219   // Check that the operands are the right type
3220   Assert(Op0Ty->isFPOrFPVectorTy(),
3221          "Invalid operand types for FCmp instruction", &FC);
3222   // Check that the predicate is valid.
3223   Assert(FC.isFPPredicate(),
3224          "Invalid predicate in FCmp instruction!", &FC);
3225 
3226   visitInstruction(FC);
3227 }
3228 
3229 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3230   Assert(
3231       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3232       "Invalid extractelement operands!", &EI);
3233   visitInstruction(EI);
3234 }
3235 
3236 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3237   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3238                                             IE.getOperand(2)),
3239          "Invalid insertelement operands!", &IE);
3240   visitInstruction(IE);
3241 }
3242 
3243 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3244   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3245                                             SV.getOperand(2)),
3246          "Invalid shufflevector operands!", &SV);
3247   visitInstruction(SV);
3248 }
3249 
3250 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3251   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3252 
3253   Assert(isa<PointerType>(TargetTy),
3254          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3255   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3256 
3257   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3258   Assert(all_of(
3259       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3260       "GEP indexes must be integers", &GEP);
3261   Type *ElTy =
3262       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3263   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3264 
3265   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3266              GEP.getResultElementType() == ElTy,
3267          "GEP is not of right type for indices!", &GEP, ElTy);
3268 
3269   if (GEP.getType()->isVectorTy()) {
3270     // Additional checks for vector GEPs.
3271     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3272     if (GEP.getPointerOperandType()->isVectorTy())
3273       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3274              "Vector GEP result width doesn't match operand's", &GEP);
3275     for (Value *Idx : Idxs) {
3276       Type *IndexTy = Idx->getType();
3277       if (IndexTy->isVectorTy()) {
3278         unsigned IndexWidth = IndexTy->getVectorNumElements();
3279         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3280       }
3281       Assert(IndexTy->isIntOrIntVectorTy(),
3282              "All GEP indices should be of integer type");
3283     }
3284   }
3285 
3286   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3287     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3288            "GEP address space doesn't match type", &GEP);
3289   }
3290 
3291   visitInstruction(GEP);
3292 }
3293 
3294 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3295   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3296 }
3297 
3298 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3299   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3300          "precondition violation");
3301 
3302   unsigned NumOperands = Range->getNumOperands();
3303   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3304   unsigned NumRanges = NumOperands / 2;
3305   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3306 
3307   ConstantRange LastRange(1, true); // Dummy initial value
3308   for (unsigned i = 0; i < NumRanges; ++i) {
3309     ConstantInt *Low =
3310         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3311     Assert(Low, "The lower limit must be an integer!", Low);
3312     ConstantInt *High =
3313         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3314     Assert(High, "The upper limit must be an integer!", High);
3315     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3316            "Range types must match instruction type!", &I);
3317 
3318     APInt HighV = High->getValue();
3319     APInt LowV = Low->getValue();
3320     ConstantRange CurRange(LowV, HighV);
3321     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3322            "Range must not be empty!", Range);
3323     if (i != 0) {
3324       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3325              "Intervals are overlapping", Range);
3326       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3327              Range);
3328       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3329              Range);
3330     }
3331     LastRange = ConstantRange(LowV, HighV);
3332   }
3333   if (NumRanges > 2) {
3334     APInt FirstLow =
3335         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3336     APInt FirstHigh =
3337         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3338     ConstantRange FirstRange(FirstLow, FirstHigh);
3339     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3340            "Intervals are overlapping", Range);
3341     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3342            Range);
3343   }
3344 }
3345 
3346 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3347   unsigned Size = DL.getTypeSizeInBits(Ty);
3348   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3349   Assert(!(Size & (Size - 1)),
3350          "atomic memory access' operand must have a power-of-two size", Ty, I);
3351 }
3352 
3353 void Verifier::visitLoadInst(LoadInst &LI) {
3354   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3355   Assert(PTy, "Load operand must be a pointer.", &LI);
3356   Type *ElTy = LI.getType();
3357   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3358          "huge alignment values are unsupported", &LI);
3359   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3360   if (LI.isAtomic()) {
3361     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3362                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3363            "Load cannot have Release ordering", &LI);
3364     Assert(LI.getAlignment() != 0,
3365            "Atomic load must specify explicit alignment", &LI);
3366     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3367            "atomic load operand must have integer, pointer, or floating point "
3368            "type!",
3369            ElTy, &LI);
3370     checkAtomicMemAccessSize(ElTy, &LI);
3371   } else {
3372     Assert(LI.getSyncScopeID() == SyncScope::System,
3373            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3374   }
3375 
3376   visitInstruction(LI);
3377 }
3378 
3379 void Verifier::visitStoreInst(StoreInst &SI) {
3380   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3381   Assert(PTy, "Store operand must be a pointer.", &SI);
3382   Type *ElTy = PTy->getElementType();
3383   Assert(ElTy == SI.getOperand(0)->getType(),
3384          "Stored value type does not match pointer operand type!", &SI, ElTy);
3385   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3386          "huge alignment values are unsupported", &SI);
3387   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3388   if (SI.isAtomic()) {
3389     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3390                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3391            "Store cannot have Acquire ordering", &SI);
3392     Assert(SI.getAlignment() != 0,
3393            "Atomic store must specify explicit alignment", &SI);
3394     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3395            "atomic store operand must have integer, pointer, or floating point "
3396            "type!",
3397            ElTy, &SI);
3398     checkAtomicMemAccessSize(ElTy, &SI);
3399   } else {
3400     Assert(SI.getSyncScopeID() == SyncScope::System,
3401            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3402   }
3403   visitInstruction(SI);
3404 }
3405 
3406 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3407 void Verifier::verifySwiftErrorCall(CallBase &Call,
3408                                     const Value *SwiftErrorVal) {
3409   unsigned Idx = 0;
3410   for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3411     if (*I == SwiftErrorVal) {
3412       Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3413              "swifterror value when used in a callsite should be marked "
3414              "with swifterror attribute",
3415              SwiftErrorVal, Call);
3416     }
3417   }
3418 }
3419 
3420 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3421   // Check that swifterror value is only used by loads, stores, or as
3422   // a swifterror argument.
3423   for (const User *U : SwiftErrorVal->users()) {
3424     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3425            isa<InvokeInst>(U),
3426            "swifterror value can only be loaded and stored from, or "
3427            "as a swifterror argument!",
3428            SwiftErrorVal, U);
3429     // If it is used by a store, check it is the second operand.
3430     if (auto StoreI = dyn_cast<StoreInst>(U))
3431       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3432              "swifterror value should be the second operand when used "
3433              "by stores", SwiftErrorVal, U);
3434     if (auto *Call = dyn_cast<CallBase>(U))
3435       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3436   }
3437 }
3438 
3439 void Verifier::visitAllocaInst(AllocaInst &AI) {
3440   SmallPtrSet<Type*, 4> Visited;
3441   PointerType *PTy = AI.getType();
3442   // TODO: Relax this restriction?
3443   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3444          "Allocation instruction pointer not in the stack address space!",
3445          &AI);
3446   Assert(AI.getAllocatedType()->isSized(&Visited),
3447          "Cannot allocate unsized type", &AI);
3448   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3449          "Alloca array size must have integer type", &AI);
3450   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3451          "huge alignment values are unsupported", &AI);
3452 
3453   if (AI.isSwiftError()) {
3454     verifySwiftErrorValue(&AI);
3455   }
3456 
3457   visitInstruction(AI);
3458 }
3459 
3460 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3461 
3462   // FIXME: more conditions???
3463   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3464          "cmpxchg instructions must be atomic.", &CXI);
3465   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3466          "cmpxchg instructions must be atomic.", &CXI);
3467   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3468          "cmpxchg instructions cannot be unordered.", &CXI);
3469   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3470          "cmpxchg instructions cannot be unordered.", &CXI);
3471   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3472          "cmpxchg instructions failure argument shall be no stronger than the "
3473          "success argument",
3474          &CXI);
3475   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3476              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3477          "cmpxchg failure ordering cannot include release semantics", &CXI);
3478 
3479   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3480   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3481   Type *ElTy = PTy->getElementType();
3482   Assert(ElTy->isIntOrPtrTy(),
3483          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3484   checkAtomicMemAccessSize(ElTy, &CXI);
3485   Assert(ElTy == CXI.getOperand(1)->getType(),
3486          "Expected value type does not match pointer operand type!", &CXI,
3487          ElTy);
3488   Assert(ElTy == CXI.getOperand(2)->getType(),
3489          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3490   visitInstruction(CXI);
3491 }
3492 
3493 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3494   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3495          "atomicrmw instructions must be atomic.", &RMWI);
3496   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3497          "atomicrmw instructions cannot be unordered.", &RMWI);
3498   auto Op = RMWI.getOperation();
3499   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3500   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3501   Type *ElTy = PTy->getElementType();
3502   if (Op == AtomicRMWInst::Xchg) {
3503     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3504            AtomicRMWInst::getOperationName(Op) +
3505            " operand must have integer or floating point type!",
3506            &RMWI, ElTy);
3507   } else if (AtomicRMWInst::isFPOperation(Op)) {
3508     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3509            AtomicRMWInst::getOperationName(Op) +
3510            " operand must have floating point type!",
3511            &RMWI, ElTy);
3512   } else {
3513     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3514            AtomicRMWInst::getOperationName(Op) +
3515            " operand must have integer type!",
3516            &RMWI, ElTy);
3517   }
3518   checkAtomicMemAccessSize(ElTy, &RMWI);
3519   Assert(ElTy == RMWI.getOperand(1)->getType(),
3520          "Argument value type does not match pointer operand type!", &RMWI,
3521          ElTy);
3522   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3523          "Invalid binary operation!", &RMWI);
3524   visitInstruction(RMWI);
3525 }
3526 
3527 void Verifier::visitFenceInst(FenceInst &FI) {
3528   const AtomicOrdering Ordering = FI.getOrdering();
3529   Assert(Ordering == AtomicOrdering::Acquire ||
3530              Ordering == AtomicOrdering::Release ||
3531              Ordering == AtomicOrdering::AcquireRelease ||
3532              Ordering == AtomicOrdering::SequentiallyConsistent,
3533          "fence instructions may only have acquire, release, acq_rel, or "
3534          "seq_cst ordering.",
3535          &FI);
3536   visitInstruction(FI);
3537 }
3538 
3539 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3540   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3541                                           EVI.getIndices()) == EVI.getType(),
3542          "Invalid ExtractValueInst operands!", &EVI);
3543 
3544   visitInstruction(EVI);
3545 }
3546 
3547 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3548   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3549                                           IVI.getIndices()) ==
3550              IVI.getOperand(1)->getType(),
3551          "Invalid InsertValueInst operands!", &IVI);
3552 
3553   visitInstruction(IVI);
3554 }
3555 
3556 static Value *getParentPad(Value *EHPad) {
3557   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3558     return FPI->getParentPad();
3559 
3560   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3561 }
3562 
3563 void Verifier::visitEHPadPredecessors(Instruction &I) {
3564   assert(I.isEHPad());
3565 
3566   BasicBlock *BB = I.getParent();
3567   Function *F = BB->getParent();
3568 
3569   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3570 
3571   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3572     // The landingpad instruction defines its parent as a landing pad block. The
3573     // landing pad block may be branched to only by the unwind edge of an
3574     // invoke.
3575     for (BasicBlock *PredBB : predecessors(BB)) {
3576       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3577       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3578              "Block containing LandingPadInst must be jumped to "
3579              "only by the unwind edge of an invoke.",
3580              LPI);
3581     }
3582     return;
3583   }
3584   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3585     if (!pred_empty(BB))
3586       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3587              "Block containg CatchPadInst must be jumped to "
3588              "only by its catchswitch.",
3589              CPI);
3590     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3591            "Catchswitch cannot unwind to one of its catchpads",
3592            CPI->getCatchSwitch(), CPI);
3593     return;
3594   }
3595 
3596   // Verify that each pred has a legal terminator with a legal to/from EH
3597   // pad relationship.
3598   Instruction *ToPad = &I;
3599   Value *ToPadParent = getParentPad(ToPad);
3600   for (BasicBlock *PredBB : predecessors(BB)) {
3601     Instruction *TI = PredBB->getTerminator();
3602     Value *FromPad;
3603     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3604       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3605              "EH pad must be jumped to via an unwind edge", ToPad, II);
3606       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3607         FromPad = Bundle->Inputs[0];
3608       else
3609         FromPad = ConstantTokenNone::get(II->getContext());
3610     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3611       FromPad = CRI->getOperand(0);
3612       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3613     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3614       FromPad = CSI;
3615     } else {
3616       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3617     }
3618 
3619     // The edge may exit from zero or more nested pads.
3620     SmallSet<Value *, 8> Seen;
3621     for (;; FromPad = getParentPad(FromPad)) {
3622       Assert(FromPad != ToPad,
3623              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3624       if (FromPad == ToPadParent) {
3625         // This is a legal unwind edge.
3626         break;
3627       }
3628       Assert(!isa<ConstantTokenNone>(FromPad),
3629              "A single unwind edge may only enter one EH pad", TI);
3630       Assert(Seen.insert(FromPad).second,
3631              "EH pad jumps through a cycle of pads", FromPad);
3632     }
3633   }
3634 }
3635 
3636 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3637   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3638   // isn't a cleanup.
3639   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3640          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3641 
3642   visitEHPadPredecessors(LPI);
3643 
3644   if (!LandingPadResultTy)
3645     LandingPadResultTy = LPI.getType();
3646   else
3647     Assert(LandingPadResultTy == LPI.getType(),
3648            "The landingpad instruction should have a consistent result type "
3649            "inside a function.",
3650            &LPI);
3651 
3652   Function *F = LPI.getParent()->getParent();
3653   Assert(F->hasPersonalityFn(),
3654          "LandingPadInst needs to be in a function with a personality.", &LPI);
3655 
3656   // The landingpad instruction must be the first non-PHI instruction in the
3657   // block.
3658   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3659          "LandingPadInst not the first non-PHI instruction in the block.",
3660          &LPI);
3661 
3662   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3663     Constant *Clause = LPI.getClause(i);
3664     if (LPI.isCatch(i)) {
3665       Assert(isa<PointerType>(Clause->getType()),
3666              "Catch operand does not have pointer type!", &LPI);
3667     } else {
3668       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3669       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3670              "Filter operand is not an array of constants!", &LPI);
3671     }
3672   }
3673 
3674   visitInstruction(LPI);
3675 }
3676 
3677 void Verifier::visitResumeInst(ResumeInst &RI) {
3678   Assert(RI.getFunction()->hasPersonalityFn(),
3679          "ResumeInst needs to be in a function with a personality.", &RI);
3680 
3681   if (!LandingPadResultTy)
3682     LandingPadResultTy = RI.getValue()->getType();
3683   else
3684     Assert(LandingPadResultTy == RI.getValue()->getType(),
3685            "The resume instruction should have a consistent result type "
3686            "inside a function.",
3687            &RI);
3688 
3689   visitTerminator(RI);
3690 }
3691 
3692 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3693   BasicBlock *BB = CPI.getParent();
3694 
3695   Function *F = BB->getParent();
3696   Assert(F->hasPersonalityFn(),
3697          "CatchPadInst needs to be in a function with a personality.", &CPI);
3698 
3699   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3700          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3701          CPI.getParentPad());
3702 
3703   // The catchpad instruction must be the first non-PHI instruction in the
3704   // block.
3705   Assert(BB->getFirstNonPHI() == &CPI,
3706          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3707 
3708   visitEHPadPredecessors(CPI);
3709   visitFuncletPadInst(CPI);
3710 }
3711 
3712 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3713   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3714          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3715          CatchReturn.getOperand(0));
3716 
3717   visitTerminator(CatchReturn);
3718 }
3719 
3720 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3721   BasicBlock *BB = CPI.getParent();
3722 
3723   Function *F = BB->getParent();
3724   Assert(F->hasPersonalityFn(),
3725          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3726 
3727   // The cleanuppad instruction must be the first non-PHI instruction in the
3728   // block.
3729   Assert(BB->getFirstNonPHI() == &CPI,
3730          "CleanupPadInst not the first non-PHI instruction in the block.",
3731          &CPI);
3732 
3733   auto *ParentPad = CPI.getParentPad();
3734   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3735          "CleanupPadInst has an invalid parent.", &CPI);
3736 
3737   visitEHPadPredecessors(CPI);
3738   visitFuncletPadInst(CPI);
3739 }
3740 
3741 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3742   User *FirstUser = nullptr;
3743   Value *FirstUnwindPad = nullptr;
3744   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3745   SmallSet<FuncletPadInst *, 8> Seen;
3746 
3747   while (!Worklist.empty()) {
3748     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3749     Assert(Seen.insert(CurrentPad).second,
3750            "FuncletPadInst must not be nested within itself", CurrentPad);
3751     Value *UnresolvedAncestorPad = nullptr;
3752     for (User *U : CurrentPad->users()) {
3753       BasicBlock *UnwindDest;
3754       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3755         UnwindDest = CRI->getUnwindDest();
3756       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3757         // We allow catchswitch unwind to caller to nest
3758         // within an outer pad that unwinds somewhere else,
3759         // because catchswitch doesn't have a nounwind variant.
3760         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3761         if (CSI->unwindsToCaller())
3762           continue;
3763         UnwindDest = CSI->getUnwindDest();
3764       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3765         UnwindDest = II->getUnwindDest();
3766       } else if (isa<CallInst>(U)) {
3767         // Calls which don't unwind may be found inside funclet
3768         // pads that unwind somewhere else.  We don't *require*
3769         // such calls to be annotated nounwind.
3770         continue;
3771       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3772         // The unwind dest for a cleanup can only be found by
3773         // recursive search.  Add it to the worklist, and we'll
3774         // search for its first use that determines where it unwinds.
3775         Worklist.push_back(CPI);
3776         continue;
3777       } else {
3778         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3779         continue;
3780       }
3781 
3782       Value *UnwindPad;
3783       bool ExitsFPI;
3784       if (UnwindDest) {
3785         UnwindPad = UnwindDest->getFirstNonPHI();
3786         if (!cast<Instruction>(UnwindPad)->isEHPad())
3787           continue;
3788         Value *UnwindParent = getParentPad(UnwindPad);
3789         // Ignore unwind edges that don't exit CurrentPad.
3790         if (UnwindParent == CurrentPad)
3791           continue;
3792         // Determine whether the original funclet pad is exited,
3793         // and if we are scanning nested pads determine how many
3794         // of them are exited so we can stop searching their
3795         // children.
3796         Value *ExitedPad = CurrentPad;
3797         ExitsFPI = false;
3798         do {
3799           if (ExitedPad == &FPI) {
3800             ExitsFPI = true;
3801             // Now we can resolve any ancestors of CurrentPad up to
3802             // FPI, but not including FPI since we need to make sure
3803             // to check all direct users of FPI for consistency.
3804             UnresolvedAncestorPad = &FPI;
3805             break;
3806           }
3807           Value *ExitedParent = getParentPad(ExitedPad);
3808           if (ExitedParent == UnwindParent) {
3809             // ExitedPad is the ancestor-most pad which this unwind
3810             // edge exits, so we can resolve up to it, meaning that
3811             // ExitedParent is the first ancestor still unresolved.
3812             UnresolvedAncestorPad = ExitedParent;
3813             break;
3814           }
3815           ExitedPad = ExitedParent;
3816         } while (!isa<ConstantTokenNone>(ExitedPad));
3817       } else {
3818         // Unwinding to caller exits all pads.
3819         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3820         ExitsFPI = true;
3821         UnresolvedAncestorPad = &FPI;
3822       }
3823 
3824       if (ExitsFPI) {
3825         // This unwind edge exits FPI.  Make sure it agrees with other
3826         // such edges.
3827         if (FirstUser) {
3828           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3829                                               "pad must have the same unwind "
3830                                               "dest",
3831                  &FPI, U, FirstUser);
3832         } else {
3833           FirstUser = U;
3834           FirstUnwindPad = UnwindPad;
3835           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3836           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3837               getParentPad(UnwindPad) == getParentPad(&FPI))
3838             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3839         }
3840       }
3841       // Make sure we visit all uses of FPI, but for nested pads stop as
3842       // soon as we know where they unwind to.
3843       if (CurrentPad != &FPI)
3844         break;
3845     }
3846     if (UnresolvedAncestorPad) {
3847       if (CurrentPad == UnresolvedAncestorPad) {
3848         // When CurrentPad is FPI itself, we don't mark it as resolved even if
3849         // we've found an unwind edge that exits it, because we need to verify
3850         // all direct uses of FPI.
3851         assert(CurrentPad == &FPI);
3852         continue;
3853       }
3854       // Pop off the worklist any nested pads that we've found an unwind
3855       // destination for.  The pads on the worklist are the uncles,
3856       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3857       // for all ancestors of CurrentPad up to but not including
3858       // UnresolvedAncestorPad.
3859       Value *ResolvedPad = CurrentPad;
3860       while (!Worklist.empty()) {
3861         Value *UnclePad = Worklist.back();
3862         Value *AncestorPad = getParentPad(UnclePad);
3863         // Walk ResolvedPad up the ancestor list until we either find the
3864         // uncle's parent or the last resolved ancestor.
3865         while (ResolvedPad != AncestorPad) {
3866           Value *ResolvedParent = getParentPad(ResolvedPad);
3867           if (ResolvedParent == UnresolvedAncestorPad) {
3868             break;
3869           }
3870           ResolvedPad = ResolvedParent;
3871         }
3872         // If the resolved ancestor search didn't find the uncle's parent,
3873         // then the uncle is not yet resolved.
3874         if (ResolvedPad != AncestorPad)
3875           break;
3876         // This uncle is resolved, so pop it from the worklist.
3877         Worklist.pop_back();
3878       }
3879     }
3880   }
3881 
3882   if (FirstUnwindPad) {
3883     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3884       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3885       Value *SwitchUnwindPad;
3886       if (SwitchUnwindDest)
3887         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3888       else
3889         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3890       Assert(SwitchUnwindPad == FirstUnwindPad,
3891              "Unwind edges out of a catch must have the same unwind dest as "
3892              "the parent catchswitch",
3893              &FPI, FirstUser, CatchSwitch);
3894     }
3895   }
3896 
3897   visitInstruction(FPI);
3898 }
3899 
3900 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3901   BasicBlock *BB = CatchSwitch.getParent();
3902 
3903   Function *F = BB->getParent();
3904   Assert(F->hasPersonalityFn(),
3905          "CatchSwitchInst needs to be in a function with a personality.",
3906          &CatchSwitch);
3907 
3908   // The catchswitch instruction must be the first non-PHI instruction in the
3909   // block.
3910   Assert(BB->getFirstNonPHI() == &CatchSwitch,
3911          "CatchSwitchInst not the first non-PHI instruction in the block.",
3912          &CatchSwitch);
3913 
3914   auto *ParentPad = CatchSwitch.getParentPad();
3915   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3916          "CatchSwitchInst has an invalid parent.", ParentPad);
3917 
3918   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3919     Instruction *I = UnwindDest->getFirstNonPHI();
3920     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3921            "CatchSwitchInst must unwind to an EH block which is not a "
3922            "landingpad.",
3923            &CatchSwitch);
3924 
3925     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3926     if (getParentPad(I) == ParentPad)
3927       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3928   }
3929 
3930   Assert(CatchSwitch.getNumHandlers() != 0,
3931          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3932 
3933   for (BasicBlock *Handler : CatchSwitch.handlers()) {
3934     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3935            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3936   }
3937 
3938   visitEHPadPredecessors(CatchSwitch);
3939   visitTerminator(CatchSwitch);
3940 }
3941 
3942 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3943   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3944          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3945          CRI.getOperand(0));
3946 
3947   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3948     Instruction *I = UnwindDest->getFirstNonPHI();
3949     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3950            "CleanupReturnInst must unwind to an EH block which is not a "
3951            "landingpad.",
3952            &CRI);
3953   }
3954 
3955   visitTerminator(CRI);
3956 }
3957 
3958 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3959   Instruction *Op = cast<Instruction>(I.getOperand(i));
3960   // If the we have an invalid invoke, don't try to compute the dominance.
3961   // We already reject it in the invoke specific checks and the dominance
3962   // computation doesn't handle multiple edges.
3963   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3964     if (II->getNormalDest() == II->getUnwindDest())
3965       return;
3966   }
3967 
3968   // Quick check whether the def has already been encountered in the same block.
3969   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3970   // uses are defined to happen on the incoming edge, not at the instruction.
3971   //
3972   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3973   // wrapping an SSA value, assert that we've already encountered it.  See
3974   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3975   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3976     return;
3977 
3978   const Use &U = I.getOperandUse(i);
3979   Assert(DT.dominates(Op, U),
3980          "Instruction does not dominate all uses!", Op, &I);
3981 }
3982 
3983 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3984   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3985          "apply only to pointer types", &I);
3986   Assert(isa<LoadInst>(I),
3987          "dereferenceable, dereferenceable_or_null apply only to load"
3988          " instructions, use attributes for calls or invokes", &I);
3989   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3990          "take one operand!", &I);
3991   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3992   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3993          "dereferenceable_or_null metadata value must be an i64!", &I);
3994 }
3995 
3996 /// verifyInstruction - Verify that an instruction is well formed.
3997 ///
3998 void Verifier::visitInstruction(Instruction &I) {
3999   BasicBlock *BB = I.getParent();
4000   Assert(BB, "Instruction not embedded in basic block!", &I);
4001 
4002   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4003     for (User *U : I.users()) {
4004       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4005              "Only PHI nodes may reference their own value!", &I);
4006     }
4007   }
4008 
4009   // Check that void typed values don't have names
4010   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4011          "Instruction has a name, but provides a void value!", &I);
4012 
4013   // Check that the return value of the instruction is either void or a legal
4014   // value type.
4015   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4016          "Instruction returns a non-scalar type!", &I);
4017 
4018   // Check that the instruction doesn't produce metadata. Calls are already
4019   // checked against the callee type.
4020   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4021          "Invalid use of metadata!", &I);
4022 
4023   // Check that all uses of the instruction, if they are instructions
4024   // themselves, actually have parent basic blocks.  If the use is not an
4025   // instruction, it is an error!
4026   for (Use &U : I.uses()) {
4027     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4028       Assert(Used->getParent() != nullptr,
4029              "Instruction referencing"
4030              " instruction not embedded in a basic block!",
4031              &I, Used);
4032     else {
4033       CheckFailed("Use of instruction is not an instruction!", U);
4034       return;
4035     }
4036   }
4037 
4038   // Get a pointer to the call base of the instruction if it is some form of
4039   // call.
4040   const CallBase *CBI = dyn_cast<CallBase>(&I);
4041 
4042   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4043     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4044 
4045     // Check to make sure that only first-class-values are operands to
4046     // instructions.
4047     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4048       Assert(false, "Instruction operands must be first-class values!", &I);
4049     }
4050 
4051     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4052       // Check to make sure that the "address of" an intrinsic function is never
4053       // taken.
4054       Assert(!F->isIntrinsic() ||
4055                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4056              "Cannot take the address of an intrinsic!", &I);
4057       Assert(
4058           !F->isIntrinsic() || isa<CallInst>(I) ||
4059               F->getIntrinsicID() == Intrinsic::donothing ||
4060               F->getIntrinsicID() == Intrinsic::coro_resume ||
4061               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4062               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4063               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4064               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4065               F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4066           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4067           "statepoint, coro_resume or coro_destroy",
4068           &I);
4069       Assert(F->getParent() == &M, "Referencing function in another module!",
4070              &I, &M, F, F->getParent());
4071     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4072       Assert(OpBB->getParent() == BB->getParent(),
4073              "Referring to a basic block in another function!", &I);
4074     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4075       Assert(OpArg->getParent() == BB->getParent(),
4076              "Referring to an argument in another function!", &I);
4077     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4078       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4079              &M, GV, GV->getParent());
4080     } else if (isa<Instruction>(I.getOperand(i))) {
4081       verifyDominatesUse(I, i);
4082     } else if (isa<InlineAsm>(I.getOperand(i))) {
4083       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4084              "Cannot take the address of an inline asm!", &I);
4085     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4086       if (CE->getType()->isPtrOrPtrVectorTy() ||
4087           !DL.getNonIntegralAddressSpaces().empty()) {
4088         // If we have a ConstantExpr pointer, we need to see if it came from an
4089         // illegal bitcast.  If the datalayout string specifies non-integral
4090         // address spaces then we also need to check for illegal ptrtoint and
4091         // inttoptr expressions.
4092         visitConstantExprsRecursively(CE);
4093       }
4094     }
4095   }
4096 
4097   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4098     Assert(I.getType()->isFPOrFPVectorTy(),
4099            "fpmath requires a floating point result!", &I);
4100     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4101     if (ConstantFP *CFP0 =
4102             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4103       const APFloat &Accuracy = CFP0->getValueAPF();
4104       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4105              "fpmath accuracy must have float type", &I);
4106       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4107              "fpmath accuracy not a positive number!", &I);
4108     } else {
4109       Assert(false, "invalid fpmath accuracy!", &I);
4110     }
4111   }
4112 
4113   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4114     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4115            "Ranges are only for loads, calls and invokes!", &I);
4116     visitRangeMetadata(I, Range, I.getType());
4117   }
4118 
4119   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4120     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4121            &I);
4122     Assert(isa<LoadInst>(I),
4123            "nonnull applies only to load instructions, use attributes"
4124            " for calls or invokes",
4125            &I);
4126   }
4127 
4128   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4129     visitDereferenceableMetadata(I, MD);
4130 
4131   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4132     visitDereferenceableMetadata(I, MD);
4133 
4134   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4135     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4136 
4137   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4138     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4139            &I);
4140     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4141            "use attributes for calls or invokes", &I);
4142     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4143     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4144     Assert(CI && CI->getType()->isIntegerTy(64),
4145            "align metadata value must be an i64!", &I);
4146     uint64_t Align = CI->getZExtValue();
4147     Assert(isPowerOf2_64(Align),
4148            "align metadata value must be a power of 2!", &I);
4149     Assert(Align <= Value::MaximumAlignment,
4150            "alignment is larger that implementation defined limit", &I);
4151   }
4152 
4153   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4154     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4155     visitMDNode(*N);
4156   }
4157 
4158   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
4159     verifyFragmentExpression(*DII);
4160 
4161   InstsInThisBlock.insert(&I);
4162 }
4163 
4164 /// Allow intrinsics to be verified in different ways.
4165 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4166   Function *IF = Call.getCalledFunction();
4167   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4168          IF);
4169 
4170   // Verify that the intrinsic prototype lines up with what the .td files
4171   // describe.
4172   FunctionType *IFTy = IF->getFunctionType();
4173   bool IsVarArg = IFTy->isVarArg();
4174 
4175   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4176   getIntrinsicInfoTableEntries(ID, Table);
4177   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4178 
4179   // Walk the descriptors to extract overloaded types.
4180   SmallVector<Type *, 4> ArgTys;
4181   Intrinsic::MatchIntrinsicTypesResult Res =
4182       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4183   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4184          "Intrinsic has incorrect return type!", IF);
4185   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4186          "Intrinsic has incorrect argument type!", IF);
4187 
4188   // Verify if the intrinsic call matches the vararg property.
4189   if (IsVarArg)
4190     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4191            "Intrinsic was not defined with variable arguments!", IF);
4192   else
4193     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4194            "Callsite was not defined with variable arguments!", IF);
4195 
4196   // All descriptors should be absorbed by now.
4197   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4198 
4199   // Now that we have the intrinsic ID and the actual argument types (and we
4200   // know they are legal for the intrinsic!) get the intrinsic name through the
4201   // usual means.  This allows us to verify the mangling of argument types into
4202   // the name.
4203   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4204   Assert(ExpectedName == IF->getName(),
4205          "Intrinsic name not mangled correctly for type arguments! "
4206          "Should be: " +
4207              ExpectedName,
4208          IF);
4209 
4210   // If the intrinsic takes MDNode arguments, verify that they are either global
4211   // or are local to *this* function.
4212   for (Value *V : Call.args())
4213     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4214       visitMetadataAsValue(*MD, Call.getCaller());
4215 
4216   switch (ID) {
4217   default:
4218     break;
4219   case Intrinsic::coro_id: {
4220     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4221     if (isa<ConstantPointerNull>(InfoArg))
4222       break;
4223     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4224     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4225       "info argument of llvm.coro.begin must refer to an initialized "
4226       "constant");
4227     Constant *Init = GV->getInitializer();
4228     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4229       "info argument of llvm.coro.begin must refer to either a struct or "
4230       "an array");
4231     break;
4232   }
4233   case Intrinsic::experimental_constrained_fadd:
4234   case Intrinsic::experimental_constrained_fsub:
4235   case Intrinsic::experimental_constrained_fmul:
4236   case Intrinsic::experimental_constrained_fdiv:
4237   case Intrinsic::experimental_constrained_frem:
4238   case Intrinsic::experimental_constrained_fma:
4239   case Intrinsic::experimental_constrained_fptrunc:
4240   case Intrinsic::experimental_constrained_fpext:
4241   case Intrinsic::experimental_constrained_sqrt:
4242   case Intrinsic::experimental_constrained_pow:
4243   case Intrinsic::experimental_constrained_powi:
4244   case Intrinsic::experimental_constrained_sin:
4245   case Intrinsic::experimental_constrained_cos:
4246   case Intrinsic::experimental_constrained_exp:
4247   case Intrinsic::experimental_constrained_exp2:
4248   case Intrinsic::experimental_constrained_log:
4249   case Intrinsic::experimental_constrained_log10:
4250   case Intrinsic::experimental_constrained_log2:
4251   case Intrinsic::experimental_constrained_rint:
4252   case Intrinsic::experimental_constrained_nearbyint:
4253   case Intrinsic::experimental_constrained_maxnum:
4254   case Intrinsic::experimental_constrained_minnum:
4255   case Intrinsic::experimental_constrained_ceil:
4256   case Intrinsic::experimental_constrained_floor:
4257   case Intrinsic::experimental_constrained_round:
4258   case Intrinsic::experimental_constrained_trunc:
4259     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4260     break;
4261   case Intrinsic::dbg_declare: // llvm.dbg.declare
4262     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4263            "invalid llvm.dbg.declare intrinsic call 1", Call);
4264     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4265     break;
4266   case Intrinsic::dbg_addr: // llvm.dbg.addr
4267     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4268     break;
4269   case Intrinsic::dbg_value: // llvm.dbg.value
4270     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4271     break;
4272   case Intrinsic::dbg_label: // llvm.dbg.label
4273     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4274     break;
4275   case Intrinsic::memcpy:
4276   case Intrinsic::memmove:
4277   case Intrinsic::memset: {
4278     const auto *MI = cast<MemIntrinsic>(&Call);
4279     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4280       return Alignment == 0 || isPowerOf2_32(Alignment);
4281     };
4282     Assert(IsValidAlignment(MI->getDestAlignment()),
4283            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4284            Call);
4285     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4286       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4287              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4288              Call);
4289     }
4290 
4291     break;
4292   }
4293   case Intrinsic::memcpy_element_unordered_atomic:
4294   case Intrinsic::memmove_element_unordered_atomic:
4295   case Intrinsic::memset_element_unordered_atomic: {
4296     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4297 
4298     ConstantInt *ElementSizeCI =
4299         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4300     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4301     Assert(ElementSizeVal.isPowerOf2(),
4302            "element size of the element-wise atomic memory intrinsic "
4303            "must be a power of 2",
4304            Call);
4305 
4306     if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4307       uint64_t Length = LengthCI->getZExtValue();
4308       uint64_t ElementSize = AMI->getElementSizeInBytes();
4309       Assert((Length % ElementSize) == 0,
4310              "constant length must be a multiple of the element size in the "
4311              "element-wise atomic memory intrinsic",
4312              Call);
4313     }
4314 
4315     auto IsValidAlignment = [&](uint64_t Alignment) {
4316       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4317     };
4318     uint64_t DstAlignment = AMI->getDestAlignment();
4319     Assert(IsValidAlignment(DstAlignment),
4320            "incorrect alignment of the destination argument", Call);
4321     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4322       uint64_t SrcAlignment = AMT->getSourceAlignment();
4323       Assert(IsValidAlignment(SrcAlignment),
4324              "incorrect alignment of the source argument", Call);
4325     }
4326     break;
4327   }
4328   case Intrinsic::gcroot:
4329   case Intrinsic::gcwrite:
4330   case Intrinsic::gcread:
4331     if (ID == Intrinsic::gcroot) {
4332       AllocaInst *AI =
4333           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4334       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4335       Assert(isa<Constant>(Call.getArgOperand(1)),
4336              "llvm.gcroot parameter #2 must be a constant.", Call);
4337       if (!AI->getAllocatedType()->isPointerTy()) {
4338         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4339                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4340                "or argument #2 must be a non-null constant.",
4341                Call);
4342       }
4343     }
4344 
4345     Assert(Call.getParent()->getParent()->hasGC(),
4346            "Enclosing function does not use GC.", Call);
4347     break;
4348   case Intrinsic::init_trampoline:
4349     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4350            "llvm.init_trampoline parameter #2 must resolve to a function.",
4351            Call);
4352     break;
4353   case Intrinsic::prefetch:
4354     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4355            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4356            "invalid arguments to llvm.prefetch", Call);
4357     break;
4358   case Intrinsic::stackprotector:
4359     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4360            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4361     break;
4362   case Intrinsic::localescape: {
4363     BasicBlock *BB = Call.getParent();
4364     Assert(BB == &BB->getParent()->front(),
4365            "llvm.localescape used outside of entry block", Call);
4366     Assert(!SawFrameEscape,
4367            "multiple calls to llvm.localescape in one function", Call);
4368     for (Value *Arg : Call.args()) {
4369       if (isa<ConstantPointerNull>(Arg))
4370         continue; // Null values are allowed as placeholders.
4371       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4372       Assert(AI && AI->isStaticAlloca(),
4373              "llvm.localescape only accepts static allocas", Call);
4374     }
4375     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4376     SawFrameEscape = true;
4377     break;
4378   }
4379   case Intrinsic::localrecover: {
4380     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4381     Function *Fn = dyn_cast<Function>(FnArg);
4382     Assert(Fn && !Fn->isDeclaration(),
4383            "llvm.localrecover first "
4384            "argument must be function defined in this module",
4385            Call);
4386     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4387     auto &Entry = FrameEscapeInfo[Fn];
4388     Entry.second = unsigned(
4389         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4390     break;
4391   }
4392 
4393   case Intrinsic::experimental_gc_statepoint:
4394     if (auto *CI = dyn_cast<CallInst>(&Call))
4395       Assert(!CI->isInlineAsm(),
4396              "gc.statepoint support for inline assembly unimplemented", CI);
4397     Assert(Call.getParent()->getParent()->hasGC(),
4398            "Enclosing function does not use GC.", Call);
4399 
4400     verifyStatepoint(Call);
4401     break;
4402   case Intrinsic::experimental_gc_result: {
4403     Assert(Call.getParent()->getParent()->hasGC(),
4404            "Enclosing function does not use GC.", Call);
4405     // Are we tied to a statepoint properly?
4406     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4407     const Function *StatepointFn =
4408         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4409     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4410                StatepointFn->getIntrinsicID() ==
4411                    Intrinsic::experimental_gc_statepoint,
4412            "gc.result operand #1 must be from a statepoint", Call,
4413            Call.getArgOperand(0));
4414 
4415     // Assert that result type matches wrapped callee.
4416     const Value *Target = StatepointCall->getArgOperand(2);
4417     auto *PT = cast<PointerType>(Target->getType());
4418     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4419     Assert(Call.getType() == TargetFuncType->getReturnType(),
4420            "gc.result result type does not match wrapped callee", Call);
4421     break;
4422   }
4423   case Intrinsic::experimental_gc_relocate: {
4424     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4425 
4426     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4427            "gc.relocate must return a pointer or a vector of pointers", Call);
4428 
4429     // Check that this relocate is correctly tied to the statepoint
4430 
4431     // This is case for relocate on the unwinding path of an invoke statepoint
4432     if (LandingPadInst *LandingPad =
4433             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4434 
4435       const BasicBlock *InvokeBB =
4436           LandingPad->getParent()->getUniquePredecessor();
4437 
4438       // Landingpad relocates should have only one predecessor with invoke
4439       // statepoint terminator
4440       Assert(InvokeBB, "safepoints should have unique landingpads",
4441              LandingPad->getParent());
4442       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4443              InvokeBB);
4444       Assert(isStatepoint(InvokeBB->getTerminator()),
4445              "gc relocate should be linked to a statepoint", InvokeBB);
4446     } else {
4447       // In all other cases relocate should be tied to the statepoint directly.
4448       // This covers relocates on a normal return path of invoke statepoint and
4449       // relocates of a call statepoint.
4450       auto Token = Call.getArgOperand(0);
4451       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4452              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4453     }
4454 
4455     // Verify rest of the relocate arguments.
4456     const CallBase &StatepointCall =
4457         *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4458 
4459     // Both the base and derived must be piped through the safepoint.
4460     Value *Base = Call.getArgOperand(1);
4461     Assert(isa<ConstantInt>(Base),
4462            "gc.relocate operand #2 must be integer offset", Call);
4463 
4464     Value *Derived = Call.getArgOperand(2);
4465     Assert(isa<ConstantInt>(Derived),
4466            "gc.relocate operand #3 must be integer offset", Call);
4467 
4468     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4469     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4470     // Check the bounds
4471     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4472            "gc.relocate: statepoint base index out of bounds", Call);
4473     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4474            "gc.relocate: statepoint derived index out of bounds", Call);
4475 
4476     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4477     // section of the statepoint's argument.
4478     Assert(StatepointCall.arg_size() > 0,
4479            "gc.statepoint: insufficient arguments");
4480     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4481            "gc.statement: number of call arguments must be constant integer");
4482     const unsigned NumCallArgs =
4483         cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4484     Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4485            "gc.statepoint: mismatch in number of call arguments");
4486     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4487            "gc.statepoint: number of transition arguments must be "
4488            "a constant integer");
4489     const int NumTransitionArgs =
4490         cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4491             ->getZExtValue();
4492     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4493     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4494            "gc.statepoint: number of deoptimization arguments must be "
4495            "a constant integer");
4496     const int NumDeoptArgs =
4497         cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4498             ->getZExtValue();
4499     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4500     const int GCParamArgsEnd = StatepointCall.arg_size();
4501     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4502            "gc.relocate: statepoint base index doesn't fall within the "
4503            "'gc parameters' section of the statepoint call",
4504            Call);
4505     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4506            "gc.relocate: statepoint derived index doesn't fall within the "
4507            "'gc parameters' section of the statepoint call",
4508            Call);
4509 
4510     // Relocated value must be either a pointer type or vector-of-pointer type,
4511     // but gc_relocate does not need to return the same pointer type as the
4512     // relocated pointer. It can be casted to the correct type later if it's
4513     // desired. However, they must have the same address space and 'vectorness'
4514     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4515     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4516            "gc.relocate: relocated value must be a gc pointer", Call);
4517 
4518     auto ResultType = Call.getType();
4519     auto DerivedType = Relocate.getDerivedPtr()->getType();
4520     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4521            "gc.relocate: vector relocates to vector and pointer to pointer",
4522            Call);
4523     Assert(
4524         ResultType->getPointerAddressSpace() ==
4525             DerivedType->getPointerAddressSpace(),
4526         "gc.relocate: relocating a pointer shouldn't change its address space",
4527         Call);
4528     break;
4529   }
4530   case Intrinsic::eh_exceptioncode:
4531   case Intrinsic::eh_exceptionpointer: {
4532     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4533            "eh.exceptionpointer argument must be a catchpad", Call);
4534     break;
4535   }
4536   case Intrinsic::masked_load: {
4537     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4538            Call);
4539 
4540     Value *Ptr = Call.getArgOperand(0);
4541     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4542     Value *Mask = Call.getArgOperand(2);
4543     Value *PassThru = Call.getArgOperand(3);
4544     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4545            Call);
4546     Assert(Alignment->getValue().isPowerOf2(),
4547            "masked_load: alignment must be a power of 2", Call);
4548 
4549     // DataTy is the overloaded type
4550     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4551     Assert(DataTy == Call.getType(),
4552            "masked_load: return must match pointer type", Call);
4553     Assert(PassThru->getType() == DataTy,
4554            "masked_load: pass through and data type must match", Call);
4555     Assert(Mask->getType()->getVectorNumElements() ==
4556                DataTy->getVectorNumElements(),
4557            "masked_load: vector mask must be same length as data", Call);
4558     break;
4559   }
4560   case Intrinsic::masked_store: {
4561     Value *Val = Call.getArgOperand(0);
4562     Value *Ptr = Call.getArgOperand(1);
4563     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4564     Value *Mask = Call.getArgOperand(3);
4565     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4566            Call);
4567     Assert(Alignment->getValue().isPowerOf2(),
4568            "masked_store: alignment must be a power of 2", Call);
4569 
4570     // DataTy is the overloaded type
4571     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4572     Assert(DataTy == Val->getType(),
4573            "masked_store: storee must match pointer type", Call);
4574     Assert(Mask->getType()->getVectorNumElements() ==
4575                DataTy->getVectorNumElements(),
4576            "masked_store: vector mask must be same length as data", Call);
4577     break;
4578   }
4579 
4580   case Intrinsic::experimental_guard: {
4581     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4582     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4583            "experimental_guard must have exactly one "
4584            "\"deopt\" operand bundle");
4585     break;
4586   }
4587 
4588   case Intrinsic::experimental_deoptimize: {
4589     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4590            Call);
4591     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4592            "experimental_deoptimize must have exactly one "
4593            "\"deopt\" operand bundle");
4594     Assert(Call.getType() == Call.getFunction()->getReturnType(),
4595            "experimental_deoptimize return type must match caller return type");
4596 
4597     if (isa<CallInst>(Call)) {
4598       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4599       Assert(RI,
4600              "calls to experimental_deoptimize must be followed by a return");
4601 
4602       if (!Call.getType()->isVoidTy() && RI)
4603         Assert(RI->getReturnValue() == &Call,
4604                "calls to experimental_deoptimize must be followed by a return "
4605                "of the value computed by experimental_deoptimize");
4606     }
4607 
4608     break;
4609   }
4610   case Intrinsic::sadd_sat:
4611   case Intrinsic::uadd_sat:
4612   case Intrinsic::ssub_sat:
4613   case Intrinsic::usub_sat: {
4614     Value *Op1 = Call.getArgOperand(0);
4615     Value *Op2 = Call.getArgOperand(1);
4616     Assert(Op1->getType()->isIntOrIntVectorTy(),
4617            "first operand of [us][add|sub]_sat must be an int type or vector "
4618            "of ints");
4619     Assert(Op2->getType()->isIntOrIntVectorTy(),
4620            "second operand of [us][add|sub]_sat must be an int type or vector "
4621            "of ints");
4622     break;
4623   }
4624   case Intrinsic::smul_fix:
4625   case Intrinsic::smul_fix_sat:
4626   case Intrinsic::umul_fix: {
4627     Value *Op1 = Call.getArgOperand(0);
4628     Value *Op2 = Call.getArgOperand(1);
4629     Assert(Op1->getType()->isIntOrIntVectorTy(),
4630            "first operand of [us]mul_fix[_sat] must be an int type or vector "
4631            "of ints");
4632     Assert(Op2->getType()->isIntOrIntVectorTy(),
4633            "second operand of [us]mul_fix_[sat] must be an int type or vector "
4634            "of ints");
4635 
4636     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4637     Assert(Op3->getType()->getBitWidth() <= 32,
4638            "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4639 
4640     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) {
4641       Assert(
4642           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4643           "the scale of smul_fix[_sat] must be less than the width of the operands");
4644     } else {
4645       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4646              "the scale of umul_fix[_sat] must be less than or equal to the width of "
4647              "the operands");
4648     }
4649     break;
4650   }
4651   case Intrinsic::lround:
4652   case Intrinsic::llround:
4653   case Intrinsic::lrint:
4654   case Intrinsic::llrint: {
4655     Type *ValTy = Call.getArgOperand(0)->getType();
4656     Type *ResultTy = Call.getType();
4657     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4658            "Intrinsic does not support vectors", &Call);
4659     break;
4660   }
4661   };
4662 }
4663 
4664 /// Carefully grab the subprogram from a local scope.
4665 ///
4666 /// This carefully grabs the subprogram from a local scope, avoiding the
4667 /// built-in assertions that would typically fire.
4668 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4669   if (!LocalScope)
4670     return nullptr;
4671 
4672   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4673     return SP;
4674 
4675   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4676     return getSubprogram(LB->getRawScope());
4677 
4678   // Just return null; broken scope chains are checked elsewhere.
4679   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4680   return nullptr;
4681 }
4682 
4683 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4684   unsigned NumOperands = FPI.getNumArgOperands();
4685   bool HasExceptionMD = false;
4686   bool HasRoundingMD = false;
4687   switch (FPI.getIntrinsicID()) {
4688   case Intrinsic::experimental_constrained_sqrt:
4689   case Intrinsic::experimental_constrained_sin:
4690   case Intrinsic::experimental_constrained_cos:
4691   case Intrinsic::experimental_constrained_exp:
4692   case Intrinsic::experimental_constrained_exp2:
4693   case Intrinsic::experimental_constrained_log:
4694   case Intrinsic::experimental_constrained_log10:
4695   case Intrinsic::experimental_constrained_log2:
4696   case Intrinsic::experimental_constrained_rint:
4697   case Intrinsic::experimental_constrained_nearbyint:
4698   case Intrinsic::experimental_constrained_ceil:
4699   case Intrinsic::experimental_constrained_floor:
4700   case Intrinsic::experimental_constrained_round:
4701   case Intrinsic::experimental_constrained_trunc:
4702     Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4703            &FPI);
4704     HasExceptionMD = true;
4705     HasRoundingMD = true;
4706     break;
4707 
4708   case Intrinsic::experimental_constrained_fma:
4709     Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
4710            &FPI);
4711     HasExceptionMD = true;
4712     HasRoundingMD = true;
4713     break;
4714 
4715   case Intrinsic::experimental_constrained_fadd:
4716   case Intrinsic::experimental_constrained_fsub:
4717   case Intrinsic::experimental_constrained_fmul:
4718   case Intrinsic::experimental_constrained_fdiv:
4719   case Intrinsic::experimental_constrained_frem:
4720   case Intrinsic::experimental_constrained_pow:
4721   case Intrinsic::experimental_constrained_powi:
4722   case Intrinsic::experimental_constrained_maxnum:
4723   case Intrinsic::experimental_constrained_minnum:
4724     Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
4725            &FPI);
4726     HasExceptionMD = true;
4727     HasRoundingMD = true;
4728     break;
4729 
4730   case Intrinsic::experimental_constrained_fptrunc:
4731   case Intrinsic::experimental_constrained_fpext: {
4732     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4733       Assert((NumOperands == 3),
4734              "invalid arguments for constrained FP intrinsic", &FPI);
4735       HasRoundingMD = true;
4736     } else {
4737       Assert((NumOperands == 2),
4738              "invalid arguments for constrained FP intrinsic", &FPI);
4739     }
4740     HasExceptionMD = true;
4741 
4742     Value *Operand = FPI.getArgOperand(0);
4743     Type *OperandTy = Operand->getType();
4744     Value *Result = &FPI;
4745     Type *ResultTy = Result->getType();
4746     Assert(OperandTy->isFPOrFPVectorTy(),
4747            "Intrinsic first argument must be FP or FP vector", &FPI);
4748     Assert(ResultTy->isFPOrFPVectorTy(),
4749            "Intrinsic result must be FP or FP vector", &FPI);
4750     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4751            "Intrinsic first argument and result disagree on vector use", &FPI);
4752     if (OperandTy->isVectorTy()) {
4753       auto *OperandVecTy = cast<VectorType>(OperandTy);
4754       auto *ResultVecTy = cast<VectorType>(ResultTy);
4755       Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4756              "Intrinsic first argument and result vector lengths must be equal",
4757              &FPI);
4758     }
4759     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4760       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4761              "Intrinsic first argument's type must be larger than result type",
4762              &FPI);
4763     } else {
4764       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4765              "Intrinsic first argument's type must be smaller than result type",
4766              &FPI);
4767     }
4768   }
4769     break;
4770 
4771   default:
4772     llvm_unreachable("Invalid constrained FP intrinsic!");
4773   }
4774 
4775   // If a non-metadata argument is passed in a metadata slot then the
4776   // error will be caught earlier when the incorrect argument doesn't
4777   // match the specification in the intrinsic call table. Thus, no
4778   // argument type check is needed here.
4779 
4780   if (HasExceptionMD) {
4781     Assert(FPI.getExceptionBehavior().hasValue(),
4782            "invalid exception behavior argument", &FPI);
4783   }
4784   if (HasRoundingMD) {
4785     Assert(FPI.getRoundingMode().hasValue(),
4786            "invalid rounding mode argument", &FPI);
4787   }
4788 }
4789 
4790 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4791   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4792   AssertDI(isa<ValueAsMetadata>(MD) ||
4793              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4794          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4795   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4796          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4797          DII.getRawVariable());
4798   AssertDI(isa<DIExpression>(DII.getRawExpression()),
4799          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4800          DII.getRawExpression());
4801 
4802   // Ignore broken !dbg attachments; they're checked elsewhere.
4803   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4804     if (!isa<DILocation>(N))
4805       return;
4806 
4807   BasicBlock *BB = DII.getParent();
4808   Function *F = BB ? BB->getParent() : nullptr;
4809 
4810   // The scopes for variables and !dbg attachments must agree.
4811   DILocalVariable *Var = DII.getVariable();
4812   DILocation *Loc = DII.getDebugLoc();
4813   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4814            &DII, BB, F);
4815 
4816   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4817   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4818   if (!VarSP || !LocSP)
4819     return; // Broken scope chains are checked elsewhere.
4820 
4821   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4822                                " variable and !dbg attachment",
4823            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4824            Loc->getScope()->getSubprogram());
4825 
4826   // This check is redundant with one in visitLocalVariable().
4827   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4828            Var->getRawType());
4829   if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType()))
4830     if (Type->isBlockByrefStruct())
4831       AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(),
4832                "BlockByRef variable without complex expression", Var, &DII);
4833 
4834   verifyFnArgs(DII);
4835 }
4836 
4837 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4838   AssertDI(isa<DILabel>(DLI.getRawLabel()),
4839          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4840          DLI.getRawLabel());
4841 
4842   // Ignore broken !dbg attachments; they're checked elsewhere.
4843   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4844     if (!isa<DILocation>(N))
4845       return;
4846 
4847   BasicBlock *BB = DLI.getParent();
4848   Function *F = BB ? BB->getParent() : nullptr;
4849 
4850   // The scopes for variables and !dbg attachments must agree.
4851   DILabel *Label = DLI.getLabel();
4852   DILocation *Loc = DLI.getDebugLoc();
4853   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4854          &DLI, BB, F);
4855 
4856   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4857   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4858   if (!LabelSP || !LocSP)
4859     return;
4860 
4861   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4862                              " label and !dbg attachment",
4863            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4864            Loc->getScope()->getSubprogram());
4865 }
4866 
4867 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4868   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4869   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4870 
4871   // We don't know whether this intrinsic verified correctly.
4872   if (!V || !E || !E->isValid())
4873     return;
4874 
4875   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4876   auto Fragment = E->getFragmentInfo();
4877   if (!Fragment)
4878     return;
4879 
4880   // The frontend helps out GDB by emitting the members of local anonymous
4881   // unions as artificial local variables with shared storage. When SROA splits
4882   // the storage for artificial local variables that are smaller than the entire
4883   // union, the overhang piece will be outside of the allotted space for the
4884   // variable and this check fails.
4885   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4886   if (V->isArtificial())
4887     return;
4888 
4889   verifyFragmentExpression(*V, *Fragment, &I);
4890 }
4891 
4892 template <typename ValueOrMetadata>
4893 void Verifier::verifyFragmentExpression(const DIVariable &V,
4894                                         DIExpression::FragmentInfo Fragment,
4895                                         ValueOrMetadata *Desc) {
4896   // If there's no size, the type is broken, but that should be checked
4897   // elsewhere.
4898   auto VarSize = V.getSizeInBits();
4899   if (!VarSize)
4900     return;
4901 
4902   unsigned FragSize = Fragment.SizeInBits;
4903   unsigned FragOffset = Fragment.OffsetInBits;
4904   AssertDI(FragSize + FragOffset <= *VarSize,
4905          "fragment is larger than or outside of variable", Desc, &V);
4906   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4907 }
4908 
4909 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
4910   // This function does not take the scope of noninlined function arguments into
4911   // account. Don't run it if current function is nodebug, because it may
4912   // contain inlined debug intrinsics.
4913   if (!HasDebugInfo)
4914     return;
4915 
4916   // For performance reasons only check non-inlined ones.
4917   if (I.getDebugLoc()->getInlinedAt())
4918     return;
4919 
4920   DILocalVariable *Var = I.getVariable();
4921   AssertDI(Var, "dbg intrinsic without variable");
4922 
4923   unsigned ArgNo = Var->getArg();
4924   if (!ArgNo)
4925     return;
4926 
4927   // Verify there are no duplicate function argument debug info entries.
4928   // These will cause hard-to-debug assertions in the DWARF backend.
4929   if (DebugFnArgs.size() < ArgNo)
4930     DebugFnArgs.resize(ArgNo, nullptr);
4931 
4932   auto *Prev = DebugFnArgs[ArgNo - 1];
4933   DebugFnArgs[ArgNo - 1] = Var;
4934   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4935            Prev, Var);
4936 }
4937 
4938 void Verifier::verifyCompileUnits() {
4939   // When more than one Module is imported into the same context, such as during
4940   // an LTO build before linking the modules, ODR type uniquing may cause types
4941   // to point to a different CU. This check does not make sense in this case.
4942   if (M.getContext().isODRUniquingDebugTypes())
4943     return;
4944   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4945   SmallPtrSet<const Metadata *, 2> Listed;
4946   if (CUs)
4947     Listed.insert(CUs->op_begin(), CUs->op_end());
4948   for (auto *CU : CUVisited)
4949     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4950   CUVisited.clear();
4951 }
4952 
4953 void Verifier::verifyDeoptimizeCallingConvs() {
4954   if (DeoptimizeDeclarations.empty())
4955     return;
4956 
4957   const Function *First = DeoptimizeDeclarations[0];
4958   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4959     Assert(First->getCallingConv() == F->getCallingConv(),
4960            "All llvm.experimental.deoptimize declarations must have the same "
4961            "calling convention",
4962            First, F);
4963   }
4964 }
4965 
4966 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
4967   bool HasSource = F.getSource().hasValue();
4968   if (!HasSourceDebugInfo.count(&U))
4969     HasSourceDebugInfo[&U] = HasSource;
4970   AssertDI(HasSource == HasSourceDebugInfo[&U],
4971            "inconsistent use of embedded source");
4972 }
4973 
4974 //===----------------------------------------------------------------------===//
4975 //  Implement the public interfaces to this file...
4976 //===----------------------------------------------------------------------===//
4977 
4978 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4979   Function &F = const_cast<Function &>(f);
4980 
4981   // Don't use a raw_null_ostream.  Printing IR is expensive.
4982   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4983 
4984   // Note that this function's return value is inverted from what you would
4985   // expect of a function called "verify".
4986   return !V.verify(F);
4987 }
4988 
4989 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4990                         bool *BrokenDebugInfo) {
4991   // Don't use a raw_null_ostream.  Printing IR is expensive.
4992   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4993 
4994   bool Broken = false;
4995   for (const Function &F : M)
4996     Broken |= !V.verify(F);
4997 
4998   Broken |= !V.verify();
4999   if (BrokenDebugInfo)
5000     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5001   // Note that this function's return value is inverted from what you would
5002   // expect of a function called "verify".
5003   return Broken;
5004 }
5005 
5006 namespace {
5007 
5008 struct VerifierLegacyPass : public FunctionPass {
5009   static char ID;
5010 
5011   std::unique_ptr<Verifier> V;
5012   bool FatalErrors = true;
5013 
5014   VerifierLegacyPass() : FunctionPass(ID) {
5015     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5016   }
5017   explicit VerifierLegacyPass(bool FatalErrors)
5018       : FunctionPass(ID),
5019         FatalErrors(FatalErrors) {
5020     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5021   }
5022 
5023   bool doInitialization(Module &M) override {
5024     V = llvm::make_unique<Verifier>(
5025         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5026     return false;
5027   }
5028 
5029   bool runOnFunction(Function &F) override {
5030     if (!V->verify(F) && FatalErrors) {
5031       errs() << "in function " << F.getName() << '\n';
5032       report_fatal_error("Broken function found, compilation aborted!");
5033     }
5034     return false;
5035   }
5036 
5037   bool doFinalization(Module &M) override {
5038     bool HasErrors = false;
5039     for (Function &F : M)
5040       if (F.isDeclaration())
5041         HasErrors |= !V->verify(F);
5042 
5043     HasErrors |= !V->verify();
5044     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5045       report_fatal_error("Broken module found, compilation aborted!");
5046     return false;
5047   }
5048 
5049   void getAnalysisUsage(AnalysisUsage &AU) const override {
5050     AU.setPreservesAll();
5051   }
5052 };
5053 
5054 } // end anonymous namespace
5055 
5056 /// Helper to issue failure from the TBAA verification
5057 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5058   if (Diagnostic)
5059     return Diagnostic->CheckFailed(Args...);
5060 }
5061 
5062 #define AssertTBAA(C, ...)                                                     \
5063   do {                                                                         \
5064     if (!(C)) {                                                                \
5065       CheckFailed(__VA_ARGS__);                                                \
5066       return false;                                                            \
5067     }                                                                          \
5068   } while (false)
5069 
5070 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5071 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5072 /// struct-type node describing an aggregate data structure (like a struct).
5073 TBAAVerifier::TBAABaseNodeSummary
5074 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5075                                  bool IsNewFormat) {
5076   if (BaseNode->getNumOperands() < 2) {
5077     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5078     return {true, ~0u};
5079   }
5080 
5081   auto Itr = TBAABaseNodes.find(BaseNode);
5082   if (Itr != TBAABaseNodes.end())
5083     return Itr->second;
5084 
5085   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5086   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5087   (void)InsertResult;
5088   assert(InsertResult.second && "We just checked!");
5089   return Result;
5090 }
5091 
5092 TBAAVerifier::TBAABaseNodeSummary
5093 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5094                                      bool IsNewFormat) {
5095   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5096 
5097   if (BaseNode->getNumOperands() == 2) {
5098     // Scalar nodes can only be accessed at offset 0.
5099     return isValidScalarTBAANode(BaseNode)
5100                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5101                : InvalidNode;
5102   }
5103 
5104   if (IsNewFormat) {
5105     if (BaseNode->getNumOperands() % 3 != 0) {
5106       CheckFailed("Access tag nodes must have the number of operands that is a "
5107                   "multiple of 3!", BaseNode);
5108       return InvalidNode;
5109     }
5110   } else {
5111     if (BaseNode->getNumOperands() % 2 != 1) {
5112       CheckFailed("Struct tag nodes must have an odd number of operands!",
5113                   BaseNode);
5114       return InvalidNode;
5115     }
5116   }
5117 
5118   // Check the type size field.
5119   if (IsNewFormat) {
5120     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5121         BaseNode->getOperand(1));
5122     if (!TypeSizeNode) {
5123       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5124       return InvalidNode;
5125     }
5126   }
5127 
5128   // Check the type name field. In the new format it can be anything.
5129   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5130     CheckFailed("Struct tag nodes have a string as their first operand",
5131                 BaseNode);
5132     return InvalidNode;
5133   }
5134 
5135   bool Failed = false;
5136 
5137   Optional<APInt> PrevOffset;
5138   unsigned BitWidth = ~0u;
5139 
5140   // We've already checked that BaseNode is not a degenerate root node with one
5141   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5142   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5143   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5144   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5145            Idx += NumOpsPerField) {
5146     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5147     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5148     if (!isa<MDNode>(FieldTy)) {
5149       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5150       Failed = true;
5151       continue;
5152     }
5153 
5154     auto *OffsetEntryCI =
5155         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5156     if (!OffsetEntryCI) {
5157       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5158       Failed = true;
5159       continue;
5160     }
5161 
5162     if (BitWidth == ~0u)
5163       BitWidth = OffsetEntryCI->getBitWidth();
5164 
5165     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5166       CheckFailed(
5167           "Bitwidth between the offsets and struct type entries must match", &I,
5168           BaseNode);
5169       Failed = true;
5170       continue;
5171     }
5172 
5173     // NB! As far as I can tell, we generate a non-strictly increasing offset
5174     // sequence only from structs that have zero size bit fields.  When
5175     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5176     // pick the field lexically the latest in struct type metadata node.  This
5177     // mirrors the actual behavior of the alias analysis implementation.
5178     bool IsAscending =
5179         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5180 
5181     if (!IsAscending) {
5182       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5183       Failed = true;
5184     }
5185 
5186     PrevOffset = OffsetEntryCI->getValue();
5187 
5188     if (IsNewFormat) {
5189       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5190           BaseNode->getOperand(Idx + 2));
5191       if (!MemberSizeNode) {
5192         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5193         Failed = true;
5194         continue;
5195       }
5196     }
5197   }
5198 
5199   return Failed ? InvalidNode
5200                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5201 }
5202 
5203 static bool IsRootTBAANode(const MDNode *MD) {
5204   return MD->getNumOperands() < 2;
5205 }
5206 
5207 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5208                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5209   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5210     return false;
5211 
5212   if (!isa<MDString>(MD->getOperand(0)))
5213     return false;
5214 
5215   if (MD->getNumOperands() == 3) {
5216     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5217     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5218       return false;
5219   }
5220 
5221   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5222   return Parent && Visited.insert(Parent).second &&
5223          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5224 }
5225 
5226 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5227   auto ResultIt = TBAAScalarNodes.find(MD);
5228   if (ResultIt != TBAAScalarNodes.end())
5229     return ResultIt->second;
5230 
5231   SmallPtrSet<const MDNode *, 4> Visited;
5232   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5233   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5234   (void)InsertResult;
5235   assert(InsertResult.second && "Just checked!");
5236 
5237   return Result;
5238 }
5239 
5240 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5241 /// Offset in place to be the offset within the field node returned.
5242 ///
5243 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5244 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5245                                                    const MDNode *BaseNode,
5246                                                    APInt &Offset,
5247                                                    bool IsNewFormat) {
5248   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5249 
5250   // Scalar nodes have only one possible "field" -- their parent in the access
5251   // hierarchy.  Offset must be zero at this point, but our caller is supposed
5252   // to Assert that.
5253   if (BaseNode->getNumOperands() == 2)
5254     return cast<MDNode>(BaseNode->getOperand(1));
5255 
5256   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5257   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5258   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5259            Idx += NumOpsPerField) {
5260     auto *OffsetEntryCI =
5261         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5262     if (OffsetEntryCI->getValue().ugt(Offset)) {
5263       if (Idx == FirstFieldOpNo) {
5264         CheckFailed("Could not find TBAA parent in struct type node", &I,
5265                     BaseNode, &Offset);
5266         return nullptr;
5267       }
5268 
5269       unsigned PrevIdx = Idx - NumOpsPerField;
5270       auto *PrevOffsetEntryCI =
5271           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5272       Offset -= PrevOffsetEntryCI->getValue();
5273       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5274     }
5275   }
5276 
5277   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5278   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5279       BaseNode->getOperand(LastIdx + 1));
5280   Offset -= LastOffsetEntryCI->getValue();
5281   return cast<MDNode>(BaseNode->getOperand(LastIdx));
5282 }
5283 
5284 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5285   if (!Type || Type->getNumOperands() < 3)
5286     return false;
5287 
5288   // In the new format type nodes shall have a reference to the parent type as
5289   // its first operand.
5290   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5291   if (!Parent)
5292     return false;
5293 
5294   return true;
5295 }
5296 
5297 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5298   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5299                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5300                  isa<AtomicCmpXchgInst>(I),
5301              "This instruction shall not have a TBAA access tag!", &I);
5302 
5303   bool IsStructPathTBAA =
5304       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5305 
5306   AssertTBAA(
5307       IsStructPathTBAA,
5308       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5309 
5310   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5311   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5312 
5313   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5314 
5315   if (IsNewFormat) {
5316     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5317                "Access tag metadata must have either 4 or 5 operands", &I, MD);
5318   } else {
5319     AssertTBAA(MD->getNumOperands() < 5,
5320                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5321   }
5322 
5323   // Check the access size field.
5324   if (IsNewFormat) {
5325     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5326         MD->getOperand(3));
5327     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5328   }
5329 
5330   // Check the immutability flag.
5331   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5332   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5333     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5334         MD->getOperand(ImmutabilityFlagOpNo));
5335     AssertTBAA(IsImmutableCI,
5336                "Immutability tag on struct tag metadata must be a constant",
5337                &I, MD);
5338     AssertTBAA(
5339         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5340         "Immutability part of the struct tag metadata must be either 0 or 1",
5341         &I, MD);
5342   }
5343 
5344   AssertTBAA(BaseNode && AccessType,
5345              "Malformed struct tag metadata: base and access-type "
5346              "should be non-null and point to Metadata nodes",
5347              &I, MD, BaseNode, AccessType);
5348 
5349   if (!IsNewFormat) {
5350     AssertTBAA(isValidScalarTBAANode(AccessType),
5351                "Access type node must be a valid scalar type", &I, MD,
5352                AccessType);
5353   }
5354 
5355   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5356   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5357 
5358   APInt Offset = OffsetCI->getValue();
5359   bool SeenAccessTypeInPath = false;
5360 
5361   SmallPtrSet<MDNode *, 4> StructPath;
5362 
5363   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5364        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5365                                                IsNewFormat)) {
5366     if (!StructPath.insert(BaseNode).second) {
5367       CheckFailed("Cycle detected in struct path", &I, MD);
5368       return false;
5369     }
5370 
5371     bool Invalid;
5372     unsigned BaseNodeBitWidth;
5373     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5374                                                              IsNewFormat);
5375 
5376     // If the base node is invalid in itself, then we've already printed all the
5377     // errors we wanted to print.
5378     if (Invalid)
5379       return false;
5380 
5381     SeenAccessTypeInPath |= BaseNode == AccessType;
5382 
5383     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5384       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5385                  &I, MD, &Offset);
5386 
5387     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5388                    (BaseNodeBitWidth == 0 && Offset == 0) ||
5389                    (IsNewFormat && BaseNodeBitWidth == ~0u),
5390                "Access bit-width not the same as description bit-width", &I, MD,
5391                BaseNodeBitWidth, Offset.getBitWidth());
5392 
5393     if (IsNewFormat && SeenAccessTypeInPath)
5394       break;
5395   }
5396 
5397   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5398              &I, MD);
5399   return true;
5400 }
5401 
5402 char VerifierLegacyPass::ID = 0;
5403 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5404 
5405 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5406   return new VerifierLegacyPass(FatalErrors);
5407 }
5408 
5409 AnalysisKey VerifierAnalysis::Key;
5410 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5411                                                ModuleAnalysisManager &) {
5412   Result Res;
5413   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5414   return Res;
5415 }
5416 
5417 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5418                                                FunctionAnalysisManager &) {
5419   return { llvm::verifyFunction(F, &dbgs()), false };
5420 }
5421 
5422 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5423   auto Res = AM.getResult<VerifierAnalysis>(M);
5424   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5425     report_fatal_error("Broken module found, compilation aborted!");
5426 
5427   return PreservedAnalyses::all();
5428 }
5429 
5430 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5431   auto res = AM.getResult<VerifierAnalysis>(F);
5432   if (res.IRBroken && FatalErrors)
5433     report_fatal_error("Broken function found, compilation aborted!");
5434 
5435   return PreservedAnalyses::all();
5436 }
5437