1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/LLVMContext.h" 90 #include "llvm/IR/Metadata.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/ModuleSlotTracker.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Statepoint.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/AtomicOrdering.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <memory> 111 #include <string> 112 #include <utility> 113 114 using namespace llvm; 115 116 namespace llvm { 117 118 struct VerifierSupport { 119 raw_ostream *OS; 120 const Module &M; 121 ModuleSlotTracker MST; 122 const DataLayout &DL; 123 LLVMContext &Context; 124 125 /// Track the brokenness of the module while recursively visiting. 126 bool Broken = false; 127 /// Broken debug info can be "recovered" from by stripping the debug info. 128 bool BrokenDebugInfo = false; 129 /// Whether to treat broken debug info as an error. 130 bool TreatBrokenDebugInfoAsError = true; 131 132 explicit VerifierSupport(raw_ostream *OS, const Module &M) 133 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {} 134 135 private: 136 void Write(const Module *M) { 137 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 138 } 139 140 void Write(const Value *V) { 141 if (V) 142 Write(*V); 143 } 144 145 void Write(const Value &V) { 146 if (isa<Instruction>(V)) { 147 V.print(*OS, MST); 148 *OS << '\n'; 149 } else { 150 V.printAsOperand(*OS, true, MST); 151 *OS << '\n'; 152 } 153 } 154 155 void Write(const Metadata *MD) { 156 if (!MD) 157 return; 158 MD->print(*OS, MST, &M); 159 *OS << '\n'; 160 } 161 162 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 163 Write(MD.get()); 164 } 165 166 void Write(const NamedMDNode *NMD) { 167 if (!NMD) 168 return; 169 NMD->print(*OS, MST); 170 *OS << '\n'; 171 } 172 173 void Write(Type *T) { 174 if (!T) 175 return; 176 *OS << ' ' << *T; 177 } 178 179 void Write(const Comdat *C) { 180 if (!C) 181 return; 182 *OS << *C; 183 } 184 185 void Write(const APInt *AI) { 186 if (!AI) 187 return; 188 *OS << *AI << '\n'; 189 } 190 191 void Write(const unsigned i) { *OS << i << '\n'; } 192 193 template <typename T> void Write(ArrayRef<T> Vs) { 194 for (const T &V : Vs) 195 Write(V); 196 } 197 198 template <typename T1, typename... Ts> 199 void WriteTs(const T1 &V1, const Ts &... Vs) { 200 Write(V1); 201 WriteTs(Vs...); 202 } 203 204 template <typename... Ts> void WriteTs() {} 205 206 public: 207 /// A check failed, so printout out the condition and the message. 208 /// 209 /// This provides a nice place to put a breakpoint if you want to see why 210 /// something is not correct. 211 void CheckFailed(const Twine &Message) { 212 if (OS) 213 *OS << Message << '\n'; 214 Broken = true; 215 } 216 217 /// A check failed (with values to print). 218 /// 219 /// This calls the Message-only version so that the above is easier to set a 220 /// breakpoint on. 221 template <typename T1, typename... Ts> 222 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 223 CheckFailed(Message); 224 if (OS) 225 WriteTs(V1, Vs...); 226 } 227 228 /// A debug info check failed. 229 void DebugInfoCheckFailed(const Twine &Message) { 230 if (OS) 231 *OS << Message << '\n'; 232 Broken |= TreatBrokenDebugInfoAsError; 233 BrokenDebugInfo = true; 234 } 235 236 /// A debug info check failed (with values to print). 237 template <typename T1, typename... Ts> 238 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 239 const Ts &... Vs) { 240 DebugInfoCheckFailed(Message); 241 if (OS) 242 WriteTs(V1, Vs...); 243 } 244 }; 245 246 } // namespace llvm 247 248 namespace { 249 250 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 251 friend class InstVisitor<Verifier>; 252 253 DominatorTree DT; 254 255 /// When verifying a basic block, keep track of all of the 256 /// instructions we have seen so far. 257 /// 258 /// This allows us to do efficient dominance checks for the case when an 259 /// instruction has an operand that is an instruction in the same block. 260 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 261 262 /// Keep track of the metadata nodes that have been checked already. 263 SmallPtrSet<const Metadata *, 32> MDNodes; 264 265 /// Keep track which DISubprogram is attached to which function. 266 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 267 268 /// Track all DICompileUnits visited. 269 SmallPtrSet<const Metadata *, 2> CUVisited; 270 271 /// The result type for a landingpad. 272 Type *LandingPadResultTy; 273 274 /// Whether we've seen a call to @llvm.localescape in this function 275 /// already. 276 bool SawFrameEscape; 277 278 /// Whether the current function has a DISubprogram attached to it. 279 bool HasDebugInfo = false; 280 281 /// Whether source was present on the first DIFile encountered in each CU. 282 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 283 284 /// Stores the count of how many objects were passed to llvm.localescape for a 285 /// given function and the largest index passed to llvm.localrecover. 286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 287 288 // Maps catchswitches and cleanuppads that unwind to siblings to the 289 // terminators that indicate the unwind, used to detect cycles therein. 290 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 291 292 /// Cache of constants visited in search of ConstantExprs. 293 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 294 295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 296 SmallVector<const Function *, 4> DeoptimizeDeclarations; 297 298 // Verify that this GlobalValue is only used in this module. 299 // This map is used to avoid visiting uses twice. We can arrive at a user 300 // twice, if they have multiple operands. In particular for very large 301 // constant expressions, we can arrive at a particular user many times. 302 SmallPtrSet<const Value *, 32> GlobalValueVisited; 303 304 // Keeps track of duplicate function argument debug info. 305 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 306 307 TBAAVerifier TBAAVerifyHelper; 308 309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 310 311 public: 312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 313 const Module &M) 314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 315 SawFrameEscape(false), TBAAVerifyHelper(this) { 316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 317 } 318 319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 320 321 bool verify(const Function &F) { 322 assert(F.getParent() == &M && 323 "An instance of this class only works with a specific module!"); 324 325 // First ensure the function is well-enough formed to compute dominance 326 // information, and directly compute a dominance tree. We don't rely on the 327 // pass manager to provide this as it isolates us from a potentially 328 // out-of-date dominator tree and makes it significantly more complex to run 329 // this code outside of a pass manager. 330 // FIXME: It's really gross that we have to cast away constness here. 331 if (!F.empty()) 332 DT.recalculate(const_cast<Function &>(F)); 333 334 for (const BasicBlock &BB : F) { 335 if (!BB.empty() && BB.back().isTerminator()) 336 continue; 337 338 if (OS) { 339 *OS << "Basic Block in function '" << F.getName() 340 << "' does not have terminator!\n"; 341 BB.printAsOperand(*OS, true, MST); 342 *OS << "\n"; 343 } 344 return false; 345 } 346 347 Broken = false; 348 // FIXME: We strip const here because the inst visitor strips const. 349 visit(const_cast<Function &>(F)); 350 verifySiblingFuncletUnwinds(); 351 InstsInThisBlock.clear(); 352 DebugFnArgs.clear(); 353 LandingPadResultTy = nullptr; 354 SawFrameEscape = false; 355 SiblingFuncletInfo.clear(); 356 357 return !Broken; 358 } 359 360 /// Verify the module that this instance of \c Verifier was initialized with. 361 bool verify() { 362 Broken = false; 363 364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 365 for (const Function &F : M) 366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 367 DeoptimizeDeclarations.push_back(&F); 368 369 // Now that we've visited every function, verify that we never asked to 370 // recover a frame index that wasn't escaped. 371 verifyFrameRecoverIndices(); 372 for (const GlobalVariable &GV : M.globals()) 373 visitGlobalVariable(GV); 374 375 for (const GlobalAlias &GA : M.aliases()) 376 visitGlobalAlias(GA); 377 378 for (const NamedMDNode &NMD : M.named_metadata()) 379 visitNamedMDNode(NMD); 380 381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 382 visitComdat(SMEC.getValue()); 383 384 visitModuleFlags(M); 385 visitModuleIdents(M); 386 visitModuleCommandLines(M); 387 388 verifyCompileUnits(); 389 390 verifyDeoptimizeCallingConvs(); 391 DISubprogramAttachments.clear(); 392 return !Broken; 393 } 394 395 private: 396 // Verification methods... 397 void visitGlobalValue(const GlobalValue &GV); 398 void visitGlobalVariable(const GlobalVariable &GV); 399 void visitGlobalAlias(const GlobalAlias &GA); 400 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 401 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 402 const GlobalAlias &A, const Constant &C); 403 void visitNamedMDNode(const NamedMDNode &NMD); 404 void visitMDNode(const MDNode &MD); 405 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 406 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 407 void visitComdat(const Comdat &C); 408 void visitModuleIdents(const Module &M); 409 void visitModuleCommandLines(const Module &M); 410 void visitModuleFlags(const Module &M); 411 void visitModuleFlag(const MDNode *Op, 412 DenseMap<const MDString *, const MDNode *> &SeenIDs, 413 SmallVectorImpl<const MDNode *> &Requirements); 414 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 415 void visitFunction(const Function &F); 416 void visitBasicBlock(BasicBlock &BB); 417 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 418 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 419 420 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 422 #include "llvm/IR/Metadata.def" 423 void visitDIScope(const DIScope &N); 424 void visitDIVariable(const DIVariable &N); 425 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 426 void visitDITemplateParameter(const DITemplateParameter &N); 427 428 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 429 430 // InstVisitor overrides... 431 using InstVisitor<Verifier>::visit; 432 void visit(Instruction &I); 433 434 void visitTruncInst(TruncInst &I); 435 void visitZExtInst(ZExtInst &I); 436 void visitSExtInst(SExtInst &I); 437 void visitFPTruncInst(FPTruncInst &I); 438 void visitFPExtInst(FPExtInst &I); 439 void visitFPToUIInst(FPToUIInst &I); 440 void visitFPToSIInst(FPToSIInst &I); 441 void visitUIToFPInst(UIToFPInst &I); 442 void visitSIToFPInst(SIToFPInst &I); 443 void visitIntToPtrInst(IntToPtrInst &I); 444 void visitPtrToIntInst(PtrToIntInst &I); 445 void visitBitCastInst(BitCastInst &I); 446 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 447 void visitPHINode(PHINode &PN); 448 void visitCallBase(CallBase &Call); 449 void visitUnaryOperator(UnaryOperator &U); 450 void visitBinaryOperator(BinaryOperator &B); 451 void visitICmpInst(ICmpInst &IC); 452 void visitFCmpInst(FCmpInst &FC); 453 void visitExtractElementInst(ExtractElementInst &EI); 454 void visitInsertElementInst(InsertElementInst &EI); 455 void visitShuffleVectorInst(ShuffleVectorInst &EI); 456 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 457 void visitCallInst(CallInst &CI); 458 void visitInvokeInst(InvokeInst &II); 459 void visitGetElementPtrInst(GetElementPtrInst &GEP); 460 void visitLoadInst(LoadInst &LI); 461 void visitStoreInst(StoreInst &SI); 462 void verifyDominatesUse(Instruction &I, unsigned i); 463 void visitInstruction(Instruction &I); 464 void visitTerminator(Instruction &I); 465 void visitBranchInst(BranchInst &BI); 466 void visitReturnInst(ReturnInst &RI); 467 void visitSwitchInst(SwitchInst &SI); 468 void visitIndirectBrInst(IndirectBrInst &BI); 469 void visitCallBrInst(CallBrInst &CBI); 470 void visitSelectInst(SelectInst &SI); 471 void visitUserOp1(Instruction &I); 472 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 473 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 474 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 475 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 476 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 477 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 478 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 479 void visitFenceInst(FenceInst &FI); 480 void visitAllocaInst(AllocaInst &AI); 481 void visitExtractValueInst(ExtractValueInst &EVI); 482 void visitInsertValueInst(InsertValueInst &IVI); 483 void visitEHPadPredecessors(Instruction &I); 484 void visitLandingPadInst(LandingPadInst &LPI); 485 void visitResumeInst(ResumeInst &RI); 486 void visitCatchPadInst(CatchPadInst &CPI); 487 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 488 void visitCleanupPadInst(CleanupPadInst &CPI); 489 void visitFuncletPadInst(FuncletPadInst &FPI); 490 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 491 void visitCleanupReturnInst(CleanupReturnInst &CRI); 492 493 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 494 void verifySwiftErrorValue(const Value *SwiftErrorVal); 495 void verifyMustTailCall(CallInst &CI); 496 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 497 unsigned ArgNo, std::string &Suffix); 498 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 499 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 500 const Value *V); 501 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 502 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 503 const Value *V, bool IsIntrinsic); 504 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 505 506 void visitConstantExprsRecursively(const Constant *EntryC); 507 void visitConstantExpr(const ConstantExpr *CE); 508 void verifyStatepoint(const CallBase &Call); 509 void verifyFrameRecoverIndices(); 510 void verifySiblingFuncletUnwinds(); 511 512 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 513 template <typename ValueOrMetadata> 514 void verifyFragmentExpression(const DIVariable &V, 515 DIExpression::FragmentInfo Fragment, 516 ValueOrMetadata *Desc); 517 void verifyFnArgs(const DbgVariableIntrinsic &I); 518 519 /// Module-level debug info verification... 520 void verifyCompileUnits(); 521 522 /// Module-level verification that all @llvm.experimental.deoptimize 523 /// declarations share the same calling convention. 524 void verifyDeoptimizeCallingConvs(); 525 526 /// Verify all-or-nothing property of DIFile source attribute within a CU. 527 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 528 }; 529 530 } // end anonymous namespace 531 532 /// We know that cond should be true, if not print an error message. 533 #define Assert(C, ...) \ 534 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 535 536 /// We know that a debug info condition should be true, if not print 537 /// an error message. 538 #define AssertDI(C, ...) \ 539 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 540 541 void Verifier::visit(Instruction &I) { 542 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 543 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 544 InstVisitor<Verifier>::visit(I); 545 } 546 547 // Helper to recursively iterate over indirect users. By 548 // returning false, the callback can ask to stop recursing 549 // further. 550 static void forEachUser(const Value *User, 551 SmallPtrSet<const Value *, 32> &Visited, 552 llvm::function_ref<bool(const Value *)> Callback) { 553 if (!Visited.insert(User).second) 554 return; 555 for (const Value *TheNextUser : User->materialized_users()) 556 if (Callback(TheNextUser)) 557 forEachUser(TheNextUser, Visited, Callback); 558 } 559 560 void Verifier::visitGlobalValue(const GlobalValue &GV) { 561 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 562 "Global is external, but doesn't have external or weak linkage!", &GV); 563 564 Assert(GV.getAlignment() <= Value::MaximumAlignment, 565 "huge alignment values are unsupported", &GV); 566 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 567 "Only global variables can have appending linkage!", &GV); 568 569 if (GV.hasAppendingLinkage()) { 570 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 571 Assert(GVar && GVar->getValueType()->isArrayTy(), 572 "Only global arrays can have appending linkage!", GVar); 573 } 574 575 if (GV.isDeclarationForLinker()) 576 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 577 578 if (GV.hasDLLImportStorageClass()) { 579 Assert(!GV.isDSOLocal(), 580 "GlobalValue with DLLImport Storage is dso_local!", &GV); 581 582 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 583 GV.hasAvailableExternallyLinkage(), 584 "Global is marked as dllimport, but not external", &GV); 585 } 586 587 if (GV.hasLocalLinkage()) 588 Assert(GV.isDSOLocal(), 589 "GlobalValue with private or internal linkage must be dso_local!", 590 &GV); 591 592 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 593 Assert(GV.isDSOLocal(), 594 "GlobalValue with non default visibility must be dso_local!", &GV); 595 596 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 597 if (const Instruction *I = dyn_cast<Instruction>(V)) { 598 if (!I->getParent() || !I->getParent()->getParent()) 599 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 600 I); 601 else if (I->getParent()->getParent()->getParent() != &M) 602 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 603 I->getParent()->getParent(), 604 I->getParent()->getParent()->getParent()); 605 return false; 606 } else if (const Function *F = dyn_cast<Function>(V)) { 607 if (F->getParent() != &M) 608 CheckFailed("Global is used by function in a different module", &GV, &M, 609 F, F->getParent()); 610 return false; 611 } 612 return true; 613 }); 614 } 615 616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 617 if (GV.hasInitializer()) { 618 Assert(GV.getInitializer()->getType() == GV.getValueType(), 619 "Global variable initializer type does not match global " 620 "variable type!", 621 &GV); 622 // If the global has common linkage, it must have a zero initializer and 623 // cannot be constant. 624 if (GV.hasCommonLinkage()) { 625 Assert(GV.getInitializer()->isNullValue(), 626 "'common' global must have a zero initializer!", &GV); 627 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 628 &GV); 629 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 630 } 631 } 632 633 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 634 GV.getName() == "llvm.global_dtors")) { 635 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 636 "invalid linkage for intrinsic global variable", &GV); 637 // Don't worry about emitting an error for it not being an array, 638 // visitGlobalValue will complain on appending non-array. 639 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 640 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 641 PointerType *FuncPtrTy = 642 FunctionType::get(Type::getVoidTy(Context), false)-> 643 getPointerTo(DL.getProgramAddressSpace()); 644 Assert(STy && 645 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 646 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 647 STy->getTypeAtIndex(1) == FuncPtrTy, 648 "wrong type for intrinsic global variable", &GV); 649 Assert(STy->getNumElements() == 3, 650 "the third field of the element type is mandatory, " 651 "specify i8* null to migrate from the obsoleted 2-field form"); 652 Type *ETy = STy->getTypeAtIndex(2); 653 Assert(ETy->isPointerTy() && 654 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 655 "wrong type for intrinsic global variable", &GV); 656 } 657 } 658 659 if (GV.hasName() && (GV.getName() == "llvm.used" || 660 GV.getName() == "llvm.compiler.used")) { 661 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 662 "invalid linkage for intrinsic global variable", &GV); 663 Type *GVType = GV.getValueType(); 664 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 665 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 666 Assert(PTy, "wrong type for intrinsic global variable", &GV); 667 if (GV.hasInitializer()) { 668 const Constant *Init = GV.getInitializer(); 669 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 670 Assert(InitArray, "wrong initalizer for intrinsic global variable", 671 Init); 672 for (Value *Op : InitArray->operands()) { 673 Value *V = Op->stripPointerCastsNoFollowAliases(); 674 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 675 isa<GlobalAlias>(V), 676 "invalid llvm.used member", V); 677 Assert(V->hasName(), "members of llvm.used must be named", V); 678 } 679 } 680 } 681 } 682 683 // Visit any debug info attachments. 684 SmallVector<MDNode *, 1> MDs; 685 GV.getMetadata(LLVMContext::MD_dbg, MDs); 686 for (auto *MD : MDs) { 687 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 688 visitDIGlobalVariableExpression(*GVE); 689 else 690 AssertDI(false, "!dbg attachment of global variable must be a " 691 "DIGlobalVariableExpression"); 692 } 693 694 // Scalable vectors cannot be global variables, since we don't know 695 // the runtime size. If the global is a struct or an array containing 696 // scalable vectors, that will be caught by the isValidElementType methods 697 // in StructType or ArrayType instead. 698 if (auto *VTy = dyn_cast<VectorType>(GV.getValueType())) 699 Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV); 700 701 if (!GV.hasInitializer()) { 702 visitGlobalValue(GV); 703 return; 704 } 705 706 // Walk any aggregate initializers looking for bitcasts between address spaces 707 visitConstantExprsRecursively(GV.getInitializer()); 708 709 visitGlobalValue(GV); 710 } 711 712 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 713 SmallPtrSet<const GlobalAlias*, 4> Visited; 714 Visited.insert(&GA); 715 visitAliaseeSubExpr(Visited, GA, C); 716 } 717 718 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 719 const GlobalAlias &GA, const Constant &C) { 720 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 721 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 722 &GA); 723 724 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 725 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 726 727 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 728 &GA); 729 } else { 730 // Only continue verifying subexpressions of GlobalAliases. 731 // Do not recurse into global initializers. 732 return; 733 } 734 } 735 736 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 737 visitConstantExprsRecursively(CE); 738 739 for (const Use &U : C.operands()) { 740 Value *V = &*U; 741 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 742 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 743 else if (const auto *C2 = dyn_cast<Constant>(V)) 744 visitAliaseeSubExpr(Visited, GA, *C2); 745 } 746 } 747 748 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 749 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 750 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 751 "weak_odr, or external linkage!", 752 &GA); 753 const Constant *Aliasee = GA.getAliasee(); 754 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 755 Assert(GA.getType() == Aliasee->getType(), 756 "Alias and aliasee types should match!", &GA); 757 758 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 759 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 760 761 visitAliaseeSubExpr(GA, *Aliasee); 762 763 visitGlobalValue(GA); 764 } 765 766 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 767 // There used to be various other llvm.dbg.* nodes, but we don't support 768 // upgrading them and we want to reserve the namespace for future uses. 769 if (NMD.getName().startswith("llvm.dbg.")) 770 AssertDI(NMD.getName() == "llvm.dbg.cu", 771 "unrecognized named metadata node in the llvm.dbg namespace", 772 &NMD); 773 for (const MDNode *MD : NMD.operands()) { 774 if (NMD.getName() == "llvm.dbg.cu") 775 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 776 777 if (!MD) 778 continue; 779 780 visitMDNode(*MD); 781 } 782 } 783 784 void Verifier::visitMDNode(const MDNode &MD) { 785 // Only visit each node once. Metadata can be mutually recursive, so this 786 // avoids infinite recursion here, as well as being an optimization. 787 if (!MDNodes.insert(&MD).second) 788 return; 789 790 switch (MD.getMetadataID()) { 791 default: 792 llvm_unreachable("Invalid MDNode subclass"); 793 case Metadata::MDTupleKind: 794 break; 795 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 796 case Metadata::CLASS##Kind: \ 797 visit##CLASS(cast<CLASS>(MD)); \ 798 break; 799 #include "llvm/IR/Metadata.def" 800 } 801 802 for (const Metadata *Op : MD.operands()) { 803 if (!Op) 804 continue; 805 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 806 &MD, Op); 807 if (auto *N = dyn_cast<MDNode>(Op)) { 808 visitMDNode(*N); 809 continue; 810 } 811 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 812 visitValueAsMetadata(*V, nullptr); 813 continue; 814 } 815 } 816 817 // Check these last, so we diagnose problems in operands first. 818 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 819 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 820 } 821 822 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 823 Assert(MD.getValue(), "Expected valid value", &MD); 824 Assert(!MD.getValue()->getType()->isMetadataTy(), 825 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 826 827 auto *L = dyn_cast<LocalAsMetadata>(&MD); 828 if (!L) 829 return; 830 831 Assert(F, "function-local metadata used outside a function", L); 832 833 // If this was an instruction, bb, or argument, verify that it is in the 834 // function that we expect. 835 Function *ActualF = nullptr; 836 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 837 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 838 ActualF = I->getParent()->getParent(); 839 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 840 ActualF = BB->getParent(); 841 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 842 ActualF = A->getParent(); 843 assert(ActualF && "Unimplemented function local metadata case!"); 844 845 Assert(ActualF == F, "function-local metadata used in wrong function", L); 846 } 847 848 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 849 Metadata *MD = MDV.getMetadata(); 850 if (auto *N = dyn_cast<MDNode>(MD)) { 851 visitMDNode(*N); 852 return; 853 } 854 855 // Only visit each node once. Metadata can be mutually recursive, so this 856 // avoids infinite recursion here, as well as being an optimization. 857 if (!MDNodes.insert(MD).second) 858 return; 859 860 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 861 visitValueAsMetadata(*V, F); 862 } 863 864 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 865 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 866 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 867 868 void Verifier::visitDILocation(const DILocation &N) { 869 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 870 "location requires a valid scope", &N, N.getRawScope()); 871 if (auto *IA = N.getRawInlinedAt()) 872 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 873 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 874 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 875 } 876 877 void Verifier::visitGenericDINode(const GenericDINode &N) { 878 AssertDI(N.getTag(), "invalid tag", &N); 879 } 880 881 void Verifier::visitDIScope(const DIScope &N) { 882 if (auto *F = N.getRawFile()) 883 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 884 } 885 886 void Verifier::visitDISubrange(const DISubrange &N) { 887 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 888 auto Count = N.getCount(); 889 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 890 &N); 891 AssertDI(!Count.is<ConstantInt*>() || 892 Count.get<ConstantInt*>()->getSExtValue() >= -1, 893 "invalid subrange count", &N); 894 } 895 896 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 897 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 898 } 899 900 void Verifier::visitDIBasicType(const DIBasicType &N) { 901 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 902 N.getTag() == dwarf::DW_TAG_unspecified_type, 903 "invalid tag", &N); 904 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 905 "has conflicting flags", &N); 906 } 907 908 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 909 // Common scope checks. 910 visitDIScope(N); 911 912 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 913 N.getTag() == dwarf::DW_TAG_pointer_type || 914 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 915 N.getTag() == dwarf::DW_TAG_reference_type || 916 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 917 N.getTag() == dwarf::DW_TAG_const_type || 918 N.getTag() == dwarf::DW_TAG_volatile_type || 919 N.getTag() == dwarf::DW_TAG_restrict_type || 920 N.getTag() == dwarf::DW_TAG_atomic_type || 921 N.getTag() == dwarf::DW_TAG_member || 922 N.getTag() == dwarf::DW_TAG_inheritance || 923 N.getTag() == dwarf::DW_TAG_friend, 924 "invalid tag", &N); 925 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 926 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 927 N.getRawExtraData()); 928 } 929 930 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 931 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 932 N.getRawBaseType()); 933 934 if (N.getDWARFAddressSpace()) { 935 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 936 N.getTag() == dwarf::DW_TAG_reference_type || 937 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 938 "DWARF address space only applies to pointer or reference types", 939 &N); 940 } 941 } 942 943 /// Detect mutually exclusive flags. 944 static bool hasConflictingReferenceFlags(unsigned Flags) { 945 return ((Flags & DINode::FlagLValueReference) && 946 (Flags & DINode::FlagRValueReference)) || 947 ((Flags & DINode::FlagTypePassByValue) && 948 (Flags & DINode::FlagTypePassByReference)); 949 } 950 951 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 952 auto *Params = dyn_cast<MDTuple>(&RawParams); 953 AssertDI(Params, "invalid template params", &N, &RawParams); 954 for (Metadata *Op : Params->operands()) { 955 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 956 &N, Params, Op); 957 } 958 } 959 960 void Verifier::visitDICompositeType(const DICompositeType &N) { 961 // Common scope checks. 962 visitDIScope(N); 963 964 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 965 N.getTag() == dwarf::DW_TAG_structure_type || 966 N.getTag() == dwarf::DW_TAG_union_type || 967 N.getTag() == dwarf::DW_TAG_enumeration_type || 968 N.getTag() == dwarf::DW_TAG_class_type || 969 N.getTag() == dwarf::DW_TAG_variant_part, 970 "invalid tag", &N); 971 972 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 973 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 974 N.getRawBaseType()); 975 976 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 977 "invalid composite elements", &N, N.getRawElements()); 978 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 979 N.getRawVTableHolder()); 980 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 981 "invalid reference flags", &N); 982 983 if (N.isVector()) { 984 const DINodeArray Elements = N.getElements(); 985 AssertDI(Elements.size() == 1 && 986 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 987 "invalid vector, expected one element of type subrange", &N); 988 } 989 990 if (auto *Params = N.getRawTemplateParams()) 991 visitTemplateParams(N, *Params); 992 993 if (N.getTag() == dwarf::DW_TAG_class_type || 994 N.getTag() == dwarf::DW_TAG_union_type) { 995 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 996 "class/union requires a filename", &N, N.getFile()); 997 } 998 999 if (auto *D = N.getRawDiscriminator()) { 1000 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1001 "discriminator can only appear on variant part"); 1002 } 1003 } 1004 1005 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1006 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1007 if (auto *Types = N.getRawTypeArray()) { 1008 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1009 for (Metadata *Ty : N.getTypeArray()->operands()) { 1010 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1011 } 1012 } 1013 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1014 "invalid reference flags", &N); 1015 } 1016 1017 void Verifier::visitDIFile(const DIFile &N) { 1018 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1019 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1020 if (Checksum) { 1021 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1022 "invalid checksum kind", &N); 1023 size_t Size; 1024 switch (Checksum->Kind) { 1025 case DIFile::CSK_MD5: 1026 Size = 32; 1027 break; 1028 case DIFile::CSK_SHA1: 1029 Size = 40; 1030 break; 1031 } 1032 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1033 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1034 "invalid checksum", &N); 1035 } 1036 } 1037 1038 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1039 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1040 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1041 1042 // Don't bother verifying the compilation directory or producer string 1043 // as those could be empty. 1044 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1045 N.getRawFile()); 1046 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1047 N.getFile()); 1048 1049 verifySourceDebugInfo(N, *N.getFile()); 1050 1051 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1052 "invalid emission kind", &N); 1053 1054 if (auto *Array = N.getRawEnumTypes()) { 1055 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1056 for (Metadata *Op : N.getEnumTypes()->operands()) { 1057 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1058 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1059 "invalid enum type", &N, N.getEnumTypes(), Op); 1060 } 1061 } 1062 if (auto *Array = N.getRawRetainedTypes()) { 1063 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1064 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1065 AssertDI(Op && (isa<DIType>(Op) || 1066 (isa<DISubprogram>(Op) && 1067 !cast<DISubprogram>(Op)->isDefinition())), 1068 "invalid retained type", &N, Op); 1069 } 1070 } 1071 if (auto *Array = N.getRawGlobalVariables()) { 1072 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1073 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1074 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1075 "invalid global variable ref", &N, Op); 1076 } 1077 } 1078 if (auto *Array = N.getRawImportedEntities()) { 1079 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1080 for (Metadata *Op : N.getImportedEntities()->operands()) { 1081 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1082 &N, Op); 1083 } 1084 } 1085 if (auto *Array = N.getRawMacros()) { 1086 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1087 for (Metadata *Op : N.getMacros()->operands()) { 1088 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1089 } 1090 } 1091 CUVisited.insert(&N); 1092 } 1093 1094 void Verifier::visitDISubprogram(const DISubprogram &N) { 1095 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1096 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1097 if (auto *F = N.getRawFile()) 1098 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1099 else 1100 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1101 if (auto *T = N.getRawType()) 1102 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1103 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1104 N.getRawContainingType()); 1105 if (auto *Params = N.getRawTemplateParams()) 1106 visitTemplateParams(N, *Params); 1107 if (auto *S = N.getRawDeclaration()) 1108 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1109 "invalid subprogram declaration", &N, S); 1110 if (auto *RawNode = N.getRawRetainedNodes()) { 1111 auto *Node = dyn_cast<MDTuple>(RawNode); 1112 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1113 for (Metadata *Op : Node->operands()) { 1114 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1115 "invalid retained nodes, expected DILocalVariable or DILabel", 1116 &N, Node, Op); 1117 } 1118 } 1119 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1120 "invalid reference flags", &N); 1121 1122 auto *Unit = N.getRawUnit(); 1123 if (N.isDefinition()) { 1124 // Subprogram definitions (not part of the type hierarchy). 1125 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1126 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1127 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1128 if (N.getFile()) 1129 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1130 } else { 1131 // Subprogram declarations (part of the type hierarchy). 1132 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1133 } 1134 1135 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1136 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1137 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1138 for (Metadata *Op : ThrownTypes->operands()) 1139 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1140 Op); 1141 } 1142 1143 if (N.areAllCallsDescribed()) 1144 AssertDI(N.isDefinition(), 1145 "DIFlagAllCallsDescribed must be attached to a definition"); 1146 } 1147 1148 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1149 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1150 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1151 "invalid local scope", &N, N.getRawScope()); 1152 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1153 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1154 } 1155 1156 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1157 visitDILexicalBlockBase(N); 1158 1159 AssertDI(N.getLine() || !N.getColumn(), 1160 "cannot have column info without line info", &N); 1161 } 1162 1163 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1164 visitDILexicalBlockBase(N); 1165 } 1166 1167 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1168 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1169 if (auto *S = N.getRawScope()) 1170 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1171 if (auto *S = N.getRawDecl()) 1172 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1173 } 1174 1175 void Verifier::visitDINamespace(const DINamespace &N) { 1176 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1177 if (auto *S = N.getRawScope()) 1178 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1179 } 1180 1181 void Verifier::visitDIMacro(const DIMacro &N) { 1182 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1183 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1184 "invalid macinfo type", &N); 1185 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1186 if (!N.getValue().empty()) { 1187 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1188 } 1189 } 1190 1191 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1192 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1193 "invalid macinfo type", &N); 1194 if (auto *F = N.getRawFile()) 1195 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1196 1197 if (auto *Array = N.getRawElements()) { 1198 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1199 for (Metadata *Op : N.getElements()->operands()) { 1200 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1201 } 1202 } 1203 } 1204 1205 void Verifier::visitDIModule(const DIModule &N) { 1206 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1207 AssertDI(!N.getName().empty(), "anonymous module", &N); 1208 } 1209 1210 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1211 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1212 } 1213 1214 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1215 visitDITemplateParameter(N); 1216 1217 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1218 &N); 1219 } 1220 1221 void Verifier::visitDITemplateValueParameter( 1222 const DITemplateValueParameter &N) { 1223 visitDITemplateParameter(N); 1224 1225 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1226 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1227 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1228 "invalid tag", &N); 1229 } 1230 1231 void Verifier::visitDIVariable(const DIVariable &N) { 1232 if (auto *S = N.getRawScope()) 1233 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1234 if (auto *F = N.getRawFile()) 1235 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1236 } 1237 1238 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1239 // Checks common to all variables. 1240 visitDIVariable(N); 1241 1242 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1243 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1244 AssertDI(N.getType(), "missing global variable type", &N); 1245 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1246 AssertDI(isa<DIDerivedType>(Member), 1247 "invalid static data member declaration", &N, Member); 1248 } 1249 } 1250 1251 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1252 // Checks common to all variables. 1253 visitDIVariable(N); 1254 1255 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1256 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1257 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1258 "local variable requires a valid scope", &N, N.getRawScope()); 1259 if (auto Ty = N.getType()) 1260 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1261 } 1262 1263 void Verifier::visitDILabel(const DILabel &N) { 1264 if (auto *S = N.getRawScope()) 1265 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1266 if (auto *F = N.getRawFile()) 1267 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1268 1269 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1270 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1271 "label requires a valid scope", &N, N.getRawScope()); 1272 } 1273 1274 void Verifier::visitDIExpression(const DIExpression &N) { 1275 AssertDI(N.isValid(), "invalid expression", &N); 1276 } 1277 1278 void Verifier::visitDIGlobalVariableExpression( 1279 const DIGlobalVariableExpression &GVE) { 1280 AssertDI(GVE.getVariable(), "missing variable"); 1281 if (auto *Var = GVE.getVariable()) 1282 visitDIGlobalVariable(*Var); 1283 if (auto *Expr = GVE.getExpression()) { 1284 visitDIExpression(*Expr); 1285 if (auto Fragment = Expr->getFragmentInfo()) 1286 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1287 } 1288 } 1289 1290 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1291 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1292 if (auto *T = N.getRawType()) 1293 AssertDI(isType(T), "invalid type ref", &N, T); 1294 if (auto *F = N.getRawFile()) 1295 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1296 } 1297 1298 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1299 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1300 N.getTag() == dwarf::DW_TAG_imported_declaration, 1301 "invalid tag", &N); 1302 if (auto *S = N.getRawScope()) 1303 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1304 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1305 N.getRawEntity()); 1306 } 1307 1308 void Verifier::visitComdat(const Comdat &C) { 1309 // The Module is invalid if the GlobalValue has private linkage. Entities 1310 // with private linkage don't have entries in the symbol table. 1311 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1312 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1313 GV); 1314 } 1315 1316 void Verifier::visitModuleIdents(const Module &M) { 1317 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1318 if (!Idents) 1319 return; 1320 1321 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1322 // Scan each llvm.ident entry and make sure that this requirement is met. 1323 for (const MDNode *N : Idents->operands()) { 1324 Assert(N->getNumOperands() == 1, 1325 "incorrect number of operands in llvm.ident metadata", N); 1326 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1327 ("invalid value for llvm.ident metadata entry operand" 1328 "(the operand should be a string)"), 1329 N->getOperand(0)); 1330 } 1331 } 1332 1333 void Verifier::visitModuleCommandLines(const Module &M) { 1334 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1335 if (!CommandLines) 1336 return; 1337 1338 // llvm.commandline takes a list of metadata entry. Each entry has only one 1339 // string. Scan each llvm.commandline entry and make sure that this 1340 // requirement is met. 1341 for (const MDNode *N : CommandLines->operands()) { 1342 Assert(N->getNumOperands() == 1, 1343 "incorrect number of operands in llvm.commandline metadata", N); 1344 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1345 ("invalid value for llvm.commandline metadata entry operand" 1346 "(the operand should be a string)"), 1347 N->getOperand(0)); 1348 } 1349 } 1350 1351 void Verifier::visitModuleFlags(const Module &M) { 1352 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1353 if (!Flags) return; 1354 1355 // Scan each flag, and track the flags and requirements. 1356 DenseMap<const MDString*, const MDNode*> SeenIDs; 1357 SmallVector<const MDNode*, 16> Requirements; 1358 for (const MDNode *MDN : Flags->operands()) 1359 visitModuleFlag(MDN, SeenIDs, Requirements); 1360 1361 // Validate that the requirements in the module are valid. 1362 for (const MDNode *Requirement : Requirements) { 1363 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1364 const Metadata *ReqValue = Requirement->getOperand(1); 1365 1366 const MDNode *Op = SeenIDs.lookup(Flag); 1367 if (!Op) { 1368 CheckFailed("invalid requirement on flag, flag is not present in module", 1369 Flag); 1370 continue; 1371 } 1372 1373 if (Op->getOperand(2) != ReqValue) { 1374 CheckFailed(("invalid requirement on flag, " 1375 "flag does not have the required value"), 1376 Flag); 1377 continue; 1378 } 1379 } 1380 } 1381 1382 void 1383 Verifier::visitModuleFlag(const MDNode *Op, 1384 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1385 SmallVectorImpl<const MDNode *> &Requirements) { 1386 // Each module flag should have three arguments, the merge behavior (a 1387 // constant int), the flag ID (an MDString), and the value. 1388 Assert(Op->getNumOperands() == 3, 1389 "incorrect number of operands in module flag", Op); 1390 Module::ModFlagBehavior MFB; 1391 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1392 Assert( 1393 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1394 "invalid behavior operand in module flag (expected constant integer)", 1395 Op->getOperand(0)); 1396 Assert(false, 1397 "invalid behavior operand in module flag (unexpected constant)", 1398 Op->getOperand(0)); 1399 } 1400 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1401 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1402 Op->getOperand(1)); 1403 1404 // Sanity check the values for behaviors with additional requirements. 1405 switch (MFB) { 1406 case Module::Error: 1407 case Module::Warning: 1408 case Module::Override: 1409 // These behavior types accept any value. 1410 break; 1411 1412 case Module::Max: { 1413 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1414 "invalid value for 'max' module flag (expected constant integer)", 1415 Op->getOperand(2)); 1416 break; 1417 } 1418 1419 case Module::Require: { 1420 // The value should itself be an MDNode with two operands, a flag ID (an 1421 // MDString), and a value. 1422 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1423 Assert(Value && Value->getNumOperands() == 2, 1424 "invalid value for 'require' module flag (expected metadata pair)", 1425 Op->getOperand(2)); 1426 Assert(isa<MDString>(Value->getOperand(0)), 1427 ("invalid value for 'require' module flag " 1428 "(first value operand should be a string)"), 1429 Value->getOperand(0)); 1430 1431 // Append it to the list of requirements, to check once all module flags are 1432 // scanned. 1433 Requirements.push_back(Value); 1434 break; 1435 } 1436 1437 case Module::Append: 1438 case Module::AppendUnique: { 1439 // These behavior types require the operand be an MDNode. 1440 Assert(isa<MDNode>(Op->getOperand(2)), 1441 "invalid value for 'append'-type module flag " 1442 "(expected a metadata node)", 1443 Op->getOperand(2)); 1444 break; 1445 } 1446 } 1447 1448 // Unless this is a "requires" flag, check the ID is unique. 1449 if (MFB != Module::Require) { 1450 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1451 Assert(Inserted, 1452 "module flag identifiers must be unique (or of 'require' type)", ID); 1453 } 1454 1455 if (ID->getString() == "wchar_size") { 1456 ConstantInt *Value 1457 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1458 Assert(Value, "wchar_size metadata requires constant integer argument"); 1459 } 1460 1461 if (ID->getString() == "Linker Options") { 1462 // If the llvm.linker.options named metadata exists, we assume that the 1463 // bitcode reader has upgraded the module flag. Otherwise the flag might 1464 // have been created by a client directly. 1465 Assert(M.getNamedMetadata("llvm.linker.options"), 1466 "'Linker Options' named metadata no longer supported"); 1467 } 1468 1469 if (ID->getString() == "CG Profile") { 1470 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1471 visitModuleFlagCGProfileEntry(MDO); 1472 } 1473 } 1474 1475 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1476 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1477 if (!FuncMDO) 1478 return; 1479 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1480 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1481 FuncMDO); 1482 }; 1483 auto Node = dyn_cast_or_null<MDNode>(MDO); 1484 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1485 CheckFunction(Node->getOperand(0)); 1486 CheckFunction(Node->getOperand(1)); 1487 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1488 Assert(Count && Count->getType()->isIntegerTy(), 1489 "expected an integer constant", Node->getOperand(2)); 1490 } 1491 1492 /// Return true if this attribute kind only applies to functions. 1493 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1494 switch (Kind) { 1495 case Attribute::NoReturn: 1496 case Attribute::NoSync: 1497 case Attribute::WillReturn: 1498 case Attribute::NoCfCheck: 1499 case Attribute::NoUnwind: 1500 case Attribute::NoInline: 1501 case Attribute::NoFree: 1502 case Attribute::AlwaysInline: 1503 case Attribute::OptimizeForSize: 1504 case Attribute::StackProtect: 1505 case Attribute::StackProtectReq: 1506 case Attribute::StackProtectStrong: 1507 case Attribute::SafeStack: 1508 case Attribute::ShadowCallStack: 1509 case Attribute::NoRedZone: 1510 case Attribute::NoImplicitFloat: 1511 case Attribute::Naked: 1512 case Attribute::InlineHint: 1513 case Attribute::StackAlignment: 1514 case Attribute::UWTable: 1515 case Attribute::NonLazyBind: 1516 case Attribute::ReturnsTwice: 1517 case Attribute::SanitizeAddress: 1518 case Attribute::SanitizeHWAddress: 1519 case Attribute::SanitizeMemTag: 1520 case Attribute::SanitizeThread: 1521 case Attribute::SanitizeMemory: 1522 case Attribute::MinSize: 1523 case Attribute::NoDuplicate: 1524 case Attribute::Builtin: 1525 case Attribute::NoBuiltin: 1526 case Attribute::Cold: 1527 case Attribute::OptForFuzzing: 1528 case Attribute::OptimizeNone: 1529 case Attribute::JumpTable: 1530 case Attribute::Convergent: 1531 case Attribute::ArgMemOnly: 1532 case Attribute::NoRecurse: 1533 case Attribute::InaccessibleMemOnly: 1534 case Attribute::InaccessibleMemOrArgMemOnly: 1535 case Attribute::AllocSize: 1536 case Attribute::SpeculativeLoadHardening: 1537 case Attribute::Speculatable: 1538 case Attribute::StrictFP: 1539 return true; 1540 default: 1541 break; 1542 } 1543 return false; 1544 } 1545 1546 /// Return true if this is a function attribute that can also appear on 1547 /// arguments. 1548 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1549 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1550 Kind == Attribute::ReadNone; 1551 } 1552 1553 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1554 const Value *V) { 1555 for (Attribute A : Attrs) { 1556 if (A.isStringAttribute()) 1557 continue; 1558 1559 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1560 if (!IsFunction) { 1561 CheckFailed("Attribute '" + A.getAsString() + 1562 "' only applies to functions!", 1563 V); 1564 return; 1565 } 1566 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1567 CheckFailed("Attribute '" + A.getAsString() + 1568 "' does not apply to functions!", 1569 V); 1570 return; 1571 } 1572 } 1573 } 1574 1575 // VerifyParameterAttrs - Check the given attributes for an argument or return 1576 // value of the specified type. The value V is printed in error messages. 1577 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1578 const Value *V) { 1579 if (!Attrs.hasAttributes()) 1580 return; 1581 1582 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1583 1584 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1585 Assert(Attrs.getNumAttributes() == 1, 1586 "Attribute 'immarg' is incompatible with other attributes", V); 1587 } 1588 1589 // Check for mutually incompatible attributes. Only inreg is compatible with 1590 // sret. 1591 unsigned AttrCount = 0; 1592 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1593 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1594 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1595 Attrs.hasAttribute(Attribute::InReg); 1596 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1597 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1598 "and 'sret' are incompatible!", 1599 V); 1600 1601 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1602 Attrs.hasAttribute(Attribute::ReadOnly)), 1603 "Attributes " 1604 "'inalloca and readonly' are incompatible!", 1605 V); 1606 1607 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1608 Attrs.hasAttribute(Attribute::Returned)), 1609 "Attributes " 1610 "'sret and returned' are incompatible!", 1611 V); 1612 1613 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1614 Attrs.hasAttribute(Attribute::SExt)), 1615 "Attributes " 1616 "'zeroext and signext' are incompatible!", 1617 V); 1618 1619 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1620 Attrs.hasAttribute(Attribute::ReadOnly)), 1621 "Attributes " 1622 "'readnone and readonly' are incompatible!", 1623 V); 1624 1625 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1626 Attrs.hasAttribute(Attribute::WriteOnly)), 1627 "Attributes " 1628 "'readnone and writeonly' are incompatible!", 1629 V); 1630 1631 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1632 Attrs.hasAttribute(Attribute::WriteOnly)), 1633 "Attributes " 1634 "'readonly and writeonly' are incompatible!", 1635 V); 1636 1637 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1638 Attrs.hasAttribute(Attribute::AlwaysInline)), 1639 "Attributes " 1640 "'noinline and alwaysinline' are incompatible!", 1641 V); 1642 1643 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1644 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1645 "Attribute 'byval' type does not match parameter!", V); 1646 } 1647 1648 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1649 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1650 "Wrong types for attribute: " + 1651 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1652 V); 1653 1654 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1655 SmallPtrSet<Type*, 4> Visited; 1656 if (!PTy->getElementType()->isSized(&Visited)) { 1657 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1658 !Attrs.hasAttribute(Attribute::InAlloca), 1659 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1660 V); 1661 } 1662 if (!isa<PointerType>(PTy->getElementType())) 1663 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1664 "Attribute 'swifterror' only applies to parameters " 1665 "with pointer to pointer type!", 1666 V); 1667 } else { 1668 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1669 "Attribute 'byval' only applies to parameters with pointer type!", 1670 V); 1671 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1672 "Attribute 'swifterror' only applies to parameters " 1673 "with pointer type!", 1674 V); 1675 } 1676 } 1677 1678 // Check parameter attributes against a function type. 1679 // The value V is printed in error messages. 1680 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1681 const Value *V, bool IsIntrinsic) { 1682 if (Attrs.isEmpty()) 1683 return; 1684 1685 bool SawNest = false; 1686 bool SawReturned = false; 1687 bool SawSRet = false; 1688 bool SawSwiftSelf = false; 1689 bool SawSwiftError = false; 1690 1691 // Verify return value attributes. 1692 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1693 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1694 !RetAttrs.hasAttribute(Attribute::Nest) && 1695 !RetAttrs.hasAttribute(Attribute::StructRet) && 1696 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1697 !RetAttrs.hasAttribute(Attribute::Returned) && 1698 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1699 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1700 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1701 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1702 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1703 "values!", 1704 V); 1705 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1706 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1707 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1708 "Attribute '" + RetAttrs.getAsString() + 1709 "' does not apply to function returns", 1710 V); 1711 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1712 1713 // Verify parameter attributes. 1714 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1715 Type *Ty = FT->getParamType(i); 1716 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1717 1718 if (!IsIntrinsic) { 1719 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1720 "immarg attribute only applies to intrinsics",V); 1721 } 1722 1723 verifyParameterAttrs(ArgAttrs, Ty, V); 1724 1725 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1726 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1727 SawNest = true; 1728 } 1729 1730 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1731 Assert(!SawReturned, "More than one parameter has attribute returned!", 1732 V); 1733 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1734 "Incompatible argument and return types for 'returned' attribute", 1735 V); 1736 SawReturned = true; 1737 } 1738 1739 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1740 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1741 Assert(i == 0 || i == 1, 1742 "Attribute 'sret' is not on first or second parameter!", V); 1743 SawSRet = true; 1744 } 1745 1746 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1747 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1748 SawSwiftSelf = true; 1749 } 1750 1751 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1752 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1753 V); 1754 SawSwiftError = true; 1755 } 1756 1757 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1758 Assert(i == FT->getNumParams() - 1, 1759 "inalloca isn't on the last parameter!", V); 1760 } 1761 } 1762 1763 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1764 return; 1765 1766 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1767 1768 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1769 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1770 "Attributes 'readnone and readonly' are incompatible!", V); 1771 1772 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1773 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1774 "Attributes 'readnone and writeonly' are incompatible!", V); 1775 1776 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1777 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1778 "Attributes 'readonly and writeonly' are incompatible!", V); 1779 1780 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1781 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1782 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1783 "incompatible!", 1784 V); 1785 1786 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1787 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1788 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1789 1790 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1791 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1792 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1793 1794 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1795 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1796 "Attribute 'optnone' requires 'noinline'!", V); 1797 1798 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1799 "Attributes 'optsize and optnone' are incompatible!", V); 1800 1801 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1802 "Attributes 'minsize and optnone' are incompatible!", V); 1803 } 1804 1805 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1806 const GlobalValue *GV = cast<GlobalValue>(V); 1807 Assert(GV->hasGlobalUnnamedAddr(), 1808 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1809 } 1810 1811 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1812 std::pair<unsigned, Optional<unsigned>> Args = 1813 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1814 1815 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1816 if (ParamNo >= FT->getNumParams()) { 1817 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1818 return false; 1819 } 1820 1821 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1822 CheckFailed("'allocsize' " + Name + 1823 " argument must refer to an integer parameter", 1824 V); 1825 return false; 1826 } 1827 1828 return true; 1829 }; 1830 1831 if (!CheckParam("element size", Args.first)) 1832 return; 1833 1834 if (Args.second && !CheckParam("number of elements", *Args.second)) 1835 return; 1836 } 1837 } 1838 1839 void Verifier::verifyFunctionMetadata( 1840 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1841 for (const auto &Pair : MDs) { 1842 if (Pair.first == LLVMContext::MD_prof) { 1843 MDNode *MD = Pair.second; 1844 Assert(MD->getNumOperands() >= 2, 1845 "!prof annotations should have no less than 2 operands", MD); 1846 1847 // Check first operand. 1848 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1849 MD); 1850 Assert(isa<MDString>(MD->getOperand(0)), 1851 "expected string with name of the !prof annotation", MD); 1852 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1853 StringRef ProfName = MDS->getString(); 1854 Assert(ProfName.equals("function_entry_count") || 1855 ProfName.equals("synthetic_function_entry_count"), 1856 "first operand should be 'function_entry_count'" 1857 " or 'synthetic_function_entry_count'", 1858 MD); 1859 1860 // Check second operand. 1861 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1862 MD); 1863 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1864 "expected integer argument to function_entry_count", MD); 1865 } 1866 } 1867 } 1868 1869 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1870 if (!ConstantExprVisited.insert(EntryC).second) 1871 return; 1872 1873 SmallVector<const Constant *, 16> Stack; 1874 Stack.push_back(EntryC); 1875 1876 while (!Stack.empty()) { 1877 const Constant *C = Stack.pop_back_val(); 1878 1879 // Check this constant expression. 1880 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1881 visitConstantExpr(CE); 1882 1883 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1884 // Global Values get visited separately, but we do need to make sure 1885 // that the global value is in the correct module 1886 Assert(GV->getParent() == &M, "Referencing global in another module!", 1887 EntryC, &M, GV, GV->getParent()); 1888 continue; 1889 } 1890 1891 // Visit all sub-expressions. 1892 for (const Use &U : C->operands()) { 1893 const auto *OpC = dyn_cast<Constant>(U); 1894 if (!OpC) 1895 continue; 1896 if (!ConstantExprVisited.insert(OpC).second) 1897 continue; 1898 Stack.push_back(OpC); 1899 } 1900 } 1901 } 1902 1903 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1904 if (CE->getOpcode() == Instruction::BitCast) 1905 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1906 CE->getType()), 1907 "Invalid bitcast", CE); 1908 1909 if (CE->getOpcode() == Instruction::IntToPtr || 1910 CE->getOpcode() == Instruction::PtrToInt) { 1911 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1912 ? CE->getType() 1913 : CE->getOperand(0)->getType(); 1914 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1915 ? "inttoptr not supported for non-integral pointers" 1916 : "ptrtoint not supported for non-integral pointers"; 1917 Assert( 1918 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1919 Msg); 1920 } 1921 } 1922 1923 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1924 // There shouldn't be more attribute sets than there are parameters plus the 1925 // function and return value. 1926 return Attrs.getNumAttrSets() <= Params + 2; 1927 } 1928 1929 /// Verify that statepoint intrinsic is well formed. 1930 void Verifier::verifyStatepoint(const CallBase &Call) { 1931 assert(Call.getCalledFunction() && 1932 Call.getCalledFunction()->getIntrinsicID() == 1933 Intrinsic::experimental_gc_statepoint); 1934 1935 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 1936 !Call.onlyAccessesArgMemory(), 1937 "gc.statepoint must read and write all memory to preserve " 1938 "reordering restrictions required by safepoint semantics", 1939 Call); 1940 1941 const int64_t NumPatchBytes = 1942 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 1943 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1944 Assert(NumPatchBytes >= 0, 1945 "gc.statepoint number of patchable bytes must be " 1946 "positive", 1947 Call); 1948 1949 const Value *Target = Call.getArgOperand(2); 1950 auto *PT = dyn_cast<PointerType>(Target->getType()); 1951 Assert(PT && PT->getElementType()->isFunctionTy(), 1952 "gc.statepoint callee must be of function pointer type", Call, Target); 1953 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1954 1955 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 1956 Assert(NumCallArgs >= 0, 1957 "gc.statepoint number of arguments to underlying call " 1958 "must be positive", 1959 Call); 1960 const int NumParams = (int)TargetFuncType->getNumParams(); 1961 if (TargetFuncType->isVarArg()) { 1962 Assert(NumCallArgs >= NumParams, 1963 "gc.statepoint mismatch in number of vararg call args", Call); 1964 1965 // TODO: Remove this limitation 1966 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1967 "gc.statepoint doesn't support wrapping non-void " 1968 "vararg functions yet", 1969 Call); 1970 } else 1971 Assert(NumCallArgs == NumParams, 1972 "gc.statepoint mismatch in number of call args", Call); 1973 1974 const uint64_t Flags 1975 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 1976 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1977 "unknown flag used in gc.statepoint flags argument", Call); 1978 1979 // Verify that the types of the call parameter arguments match 1980 // the type of the wrapped callee. 1981 AttributeList Attrs = Call.getAttributes(); 1982 for (int i = 0; i < NumParams; i++) { 1983 Type *ParamType = TargetFuncType->getParamType(i); 1984 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 1985 Assert(ArgType == ParamType, 1986 "gc.statepoint call argument does not match wrapped " 1987 "function type", 1988 Call); 1989 1990 if (TargetFuncType->isVarArg()) { 1991 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 1992 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 1993 "Attribute 'sret' cannot be used for vararg call arguments!", 1994 Call); 1995 } 1996 } 1997 1998 const int EndCallArgsInx = 4 + NumCallArgs; 1999 2000 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2001 Assert(isa<ConstantInt>(NumTransitionArgsV), 2002 "gc.statepoint number of transition arguments " 2003 "must be constant integer", 2004 Call); 2005 const int NumTransitionArgs = 2006 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2007 Assert(NumTransitionArgs >= 0, 2008 "gc.statepoint number of transition arguments must be positive", Call); 2009 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2010 2011 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2012 Assert(isa<ConstantInt>(NumDeoptArgsV), 2013 "gc.statepoint number of deoptimization arguments " 2014 "must be constant integer", 2015 Call); 2016 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2017 Assert(NumDeoptArgs >= 0, 2018 "gc.statepoint number of deoptimization arguments " 2019 "must be positive", 2020 Call); 2021 2022 const int ExpectedNumArgs = 2023 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2024 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2025 "gc.statepoint too few arguments according to length fields", Call); 2026 2027 // Check that the only uses of this gc.statepoint are gc.result or 2028 // gc.relocate calls which are tied to this statepoint and thus part 2029 // of the same statepoint sequence 2030 for (const User *U : Call.users()) { 2031 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2032 Assert(UserCall, "illegal use of statepoint token", Call, U); 2033 if (!UserCall) 2034 continue; 2035 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2036 "gc.result or gc.relocate are the only value uses " 2037 "of a gc.statepoint", 2038 Call, U); 2039 if (isa<GCResultInst>(UserCall)) { 2040 Assert(UserCall->getArgOperand(0) == &Call, 2041 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2042 } else if (isa<GCRelocateInst>(Call)) { 2043 Assert(UserCall->getArgOperand(0) == &Call, 2044 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2045 } 2046 } 2047 2048 // Note: It is legal for a single derived pointer to be listed multiple 2049 // times. It's non-optimal, but it is legal. It can also happen after 2050 // insertion if we strip a bitcast away. 2051 // Note: It is really tempting to check that each base is relocated and 2052 // that a derived pointer is never reused as a base pointer. This turns 2053 // out to be problematic since optimizations run after safepoint insertion 2054 // can recognize equality properties that the insertion logic doesn't know 2055 // about. See example statepoint.ll in the verifier subdirectory 2056 } 2057 2058 void Verifier::verifyFrameRecoverIndices() { 2059 for (auto &Counts : FrameEscapeInfo) { 2060 Function *F = Counts.first; 2061 unsigned EscapedObjectCount = Counts.second.first; 2062 unsigned MaxRecoveredIndex = Counts.second.second; 2063 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2064 "all indices passed to llvm.localrecover must be less than the " 2065 "number of arguments passed to llvm.localescape in the parent " 2066 "function", 2067 F); 2068 } 2069 } 2070 2071 static Instruction *getSuccPad(Instruction *Terminator) { 2072 BasicBlock *UnwindDest; 2073 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2074 UnwindDest = II->getUnwindDest(); 2075 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2076 UnwindDest = CSI->getUnwindDest(); 2077 else 2078 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2079 return UnwindDest->getFirstNonPHI(); 2080 } 2081 2082 void Verifier::verifySiblingFuncletUnwinds() { 2083 SmallPtrSet<Instruction *, 8> Visited; 2084 SmallPtrSet<Instruction *, 8> Active; 2085 for (const auto &Pair : SiblingFuncletInfo) { 2086 Instruction *PredPad = Pair.first; 2087 if (Visited.count(PredPad)) 2088 continue; 2089 Active.insert(PredPad); 2090 Instruction *Terminator = Pair.second; 2091 do { 2092 Instruction *SuccPad = getSuccPad(Terminator); 2093 if (Active.count(SuccPad)) { 2094 // Found a cycle; report error 2095 Instruction *CyclePad = SuccPad; 2096 SmallVector<Instruction *, 8> CycleNodes; 2097 do { 2098 CycleNodes.push_back(CyclePad); 2099 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2100 if (CycleTerminator != CyclePad) 2101 CycleNodes.push_back(CycleTerminator); 2102 CyclePad = getSuccPad(CycleTerminator); 2103 } while (CyclePad != SuccPad); 2104 Assert(false, "EH pads can't handle each other's exceptions", 2105 ArrayRef<Instruction *>(CycleNodes)); 2106 } 2107 // Don't re-walk a node we've already checked 2108 if (!Visited.insert(SuccPad).second) 2109 break; 2110 // Walk to this successor if it has a map entry. 2111 PredPad = SuccPad; 2112 auto TermI = SiblingFuncletInfo.find(PredPad); 2113 if (TermI == SiblingFuncletInfo.end()) 2114 break; 2115 Terminator = TermI->second; 2116 Active.insert(PredPad); 2117 } while (true); 2118 // Each node only has one successor, so we've walked all the active 2119 // nodes' successors. 2120 Active.clear(); 2121 } 2122 } 2123 2124 // visitFunction - Verify that a function is ok. 2125 // 2126 void Verifier::visitFunction(const Function &F) { 2127 visitGlobalValue(F); 2128 2129 // Check function arguments. 2130 FunctionType *FT = F.getFunctionType(); 2131 unsigned NumArgs = F.arg_size(); 2132 2133 Assert(&Context == &F.getContext(), 2134 "Function context does not match Module context!", &F); 2135 2136 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2137 Assert(FT->getNumParams() == NumArgs, 2138 "# formal arguments must match # of arguments for function type!", &F, 2139 FT); 2140 Assert(F.getReturnType()->isFirstClassType() || 2141 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2142 "Functions cannot return aggregate values!", &F); 2143 2144 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2145 "Invalid struct return type!", &F); 2146 2147 AttributeList Attrs = F.getAttributes(); 2148 2149 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2150 "Attribute after last parameter!", &F); 2151 2152 bool isLLVMdotName = F.getName().size() >= 5 && 2153 F.getName().substr(0, 5) == "llvm."; 2154 2155 // Check function attributes. 2156 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2157 2158 // On function declarations/definitions, we do not support the builtin 2159 // attribute. We do not check this in VerifyFunctionAttrs since that is 2160 // checking for Attributes that can/can not ever be on functions. 2161 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2162 "Attribute 'builtin' can only be applied to a callsite.", &F); 2163 2164 // Check that this function meets the restrictions on this calling convention. 2165 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2166 // restrictions can be lifted. 2167 switch (F.getCallingConv()) { 2168 default: 2169 case CallingConv::C: 2170 break; 2171 case CallingConv::AMDGPU_KERNEL: 2172 case CallingConv::SPIR_KERNEL: 2173 Assert(F.getReturnType()->isVoidTy(), 2174 "Calling convention requires void return type", &F); 2175 LLVM_FALLTHROUGH; 2176 case CallingConv::AMDGPU_VS: 2177 case CallingConv::AMDGPU_HS: 2178 case CallingConv::AMDGPU_GS: 2179 case CallingConv::AMDGPU_PS: 2180 case CallingConv::AMDGPU_CS: 2181 Assert(!F.hasStructRetAttr(), 2182 "Calling convention does not allow sret", &F); 2183 LLVM_FALLTHROUGH; 2184 case CallingConv::Fast: 2185 case CallingConv::Cold: 2186 case CallingConv::Intel_OCL_BI: 2187 case CallingConv::PTX_Kernel: 2188 case CallingConv::PTX_Device: 2189 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2190 "perfect forwarding!", 2191 &F); 2192 break; 2193 } 2194 2195 // Check that the argument values match the function type for this function... 2196 unsigned i = 0; 2197 for (const Argument &Arg : F.args()) { 2198 Assert(Arg.getType() == FT->getParamType(i), 2199 "Argument value does not match function argument type!", &Arg, 2200 FT->getParamType(i)); 2201 Assert(Arg.getType()->isFirstClassType(), 2202 "Function arguments must have first-class types!", &Arg); 2203 if (!isLLVMdotName) { 2204 Assert(!Arg.getType()->isMetadataTy(), 2205 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2206 Assert(!Arg.getType()->isTokenTy(), 2207 "Function takes token but isn't an intrinsic", &Arg, &F); 2208 } 2209 2210 // Check that swifterror argument is only used by loads and stores. 2211 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2212 verifySwiftErrorValue(&Arg); 2213 } 2214 ++i; 2215 } 2216 2217 if (!isLLVMdotName) 2218 Assert(!F.getReturnType()->isTokenTy(), 2219 "Functions returns a token but isn't an intrinsic", &F); 2220 2221 // Get the function metadata attachments. 2222 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2223 F.getAllMetadata(MDs); 2224 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2225 verifyFunctionMetadata(MDs); 2226 2227 // Check validity of the personality function 2228 if (F.hasPersonalityFn()) { 2229 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2230 if (Per) 2231 Assert(Per->getParent() == F.getParent(), 2232 "Referencing personality function in another module!", 2233 &F, F.getParent(), Per, Per->getParent()); 2234 } 2235 2236 if (F.isMaterializable()) { 2237 // Function has a body somewhere we can't see. 2238 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2239 MDs.empty() ? nullptr : MDs.front().second); 2240 } else if (F.isDeclaration()) { 2241 for (const auto &I : MDs) { 2242 // This is used for call site debug information. 2243 AssertDI(I.first != LLVMContext::MD_dbg || 2244 !cast<DISubprogram>(I.second)->isDistinct(), 2245 "function declaration may only have a unique !dbg attachment", 2246 &F); 2247 Assert(I.first != LLVMContext::MD_prof, 2248 "function declaration may not have a !prof attachment", &F); 2249 2250 // Verify the metadata itself. 2251 visitMDNode(*I.second); 2252 } 2253 Assert(!F.hasPersonalityFn(), 2254 "Function declaration shouldn't have a personality routine", &F); 2255 } else { 2256 // Verify that this function (which has a body) is not named "llvm.*". It 2257 // is not legal to define intrinsics. 2258 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2259 2260 // Check the entry node 2261 const BasicBlock *Entry = &F.getEntryBlock(); 2262 Assert(pred_empty(Entry), 2263 "Entry block to function must not have predecessors!", Entry); 2264 2265 // The address of the entry block cannot be taken, unless it is dead. 2266 if (Entry->hasAddressTaken()) { 2267 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2268 "blockaddress may not be used with the entry block!", Entry); 2269 } 2270 2271 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2272 // Visit metadata attachments. 2273 for (const auto &I : MDs) { 2274 // Verify that the attachment is legal. 2275 switch (I.first) { 2276 default: 2277 break; 2278 case LLVMContext::MD_dbg: { 2279 ++NumDebugAttachments; 2280 AssertDI(NumDebugAttachments == 1, 2281 "function must have a single !dbg attachment", &F, I.second); 2282 AssertDI(isa<DISubprogram>(I.second), 2283 "function !dbg attachment must be a subprogram", &F, I.second); 2284 auto *SP = cast<DISubprogram>(I.second); 2285 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2286 AssertDI(!AttachedTo || AttachedTo == &F, 2287 "DISubprogram attached to more than one function", SP, &F); 2288 AttachedTo = &F; 2289 break; 2290 } 2291 case LLVMContext::MD_prof: 2292 ++NumProfAttachments; 2293 Assert(NumProfAttachments == 1, 2294 "function must have a single !prof attachment", &F, I.second); 2295 break; 2296 } 2297 2298 // Verify the metadata itself. 2299 visitMDNode(*I.second); 2300 } 2301 } 2302 2303 // If this function is actually an intrinsic, verify that it is only used in 2304 // direct call/invokes, never having its "address taken". 2305 // Only do this if the module is materialized, otherwise we don't have all the 2306 // uses. 2307 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2308 const User *U; 2309 if (F.hasAddressTaken(&U)) 2310 Assert(false, "Invalid user of intrinsic instruction!", U); 2311 } 2312 2313 auto *N = F.getSubprogram(); 2314 HasDebugInfo = (N != nullptr); 2315 if (!HasDebugInfo) 2316 return; 2317 2318 // Check that all !dbg attachments lead to back to N (or, at least, another 2319 // subprogram that describes the same function). 2320 // 2321 // FIXME: Check this incrementally while visiting !dbg attachments. 2322 // FIXME: Only check when N is the canonical subprogram for F. 2323 SmallPtrSet<const MDNode *, 32> Seen; 2324 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2325 // Be careful about using DILocation here since we might be dealing with 2326 // broken code (this is the Verifier after all). 2327 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2328 if (!DL) 2329 return; 2330 if (!Seen.insert(DL).second) 2331 return; 2332 2333 Metadata *Parent = DL->getRawScope(); 2334 AssertDI(Parent && isa<DILocalScope>(Parent), 2335 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2336 Parent); 2337 DILocalScope *Scope = DL->getInlinedAtScope(); 2338 if (Scope && !Seen.insert(Scope).second) 2339 return; 2340 2341 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2342 2343 // Scope and SP could be the same MDNode and we don't want to skip 2344 // validation in that case 2345 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2346 return; 2347 2348 // FIXME: Once N is canonical, check "SP == &N". 2349 AssertDI(SP->describes(&F), 2350 "!dbg attachment points at wrong subprogram for function", N, &F, 2351 &I, DL, Scope, SP); 2352 }; 2353 for (auto &BB : F) 2354 for (auto &I : BB) { 2355 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2356 // The llvm.loop annotations also contain two DILocations. 2357 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2358 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2359 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2360 if (BrokenDebugInfo) 2361 return; 2362 } 2363 } 2364 2365 // verifyBasicBlock - Verify that a basic block is well formed... 2366 // 2367 void Verifier::visitBasicBlock(BasicBlock &BB) { 2368 InstsInThisBlock.clear(); 2369 2370 // Ensure that basic blocks have terminators! 2371 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2372 2373 // Check constraints that this basic block imposes on all of the PHI nodes in 2374 // it. 2375 if (isa<PHINode>(BB.front())) { 2376 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2377 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2378 llvm::sort(Preds); 2379 for (const PHINode &PN : BB.phis()) { 2380 // Ensure that PHI nodes have at least one entry! 2381 Assert(PN.getNumIncomingValues() != 0, 2382 "PHI nodes must have at least one entry. If the block is dead, " 2383 "the PHI should be removed!", 2384 &PN); 2385 Assert(PN.getNumIncomingValues() == Preds.size(), 2386 "PHINode should have one entry for each predecessor of its " 2387 "parent basic block!", 2388 &PN); 2389 2390 // Get and sort all incoming values in the PHI node... 2391 Values.clear(); 2392 Values.reserve(PN.getNumIncomingValues()); 2393 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2394 Values.push_back( 2395 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2396 llvm::sort(Values); 2397 2398 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2399 // Check to make sure that if there is more than one entry for a 2400 // particular basic block in this PHI node, that the incoming values are 2401 // all identical. 2402 // 2403 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2404 Values[i].second == Values[i - 1].second, 2405 "PHI node has multiple entries for the same basic block with " 2406 "different incoming values!", 2407 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2408 2409 // Check to make sure that the predecessors and PHI node entries are 2410 // matched up. 2411 Assert(Values[i].first == Preds[i], 2412 "PHI node entries do not match predecessors!", &PN, 2413 Values[i].first, Preds[i]); 2414 } 2415 } 2416 } 2417 2418 // Check that all instructions have their parent pointers set up correctly. 2419 for (auto &I : BB) 2420 { 2421 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2422 } 2423 } 2424 2425 void Verifier::visitTerminator(Instruction &I) { 2426 // Ensure that terminators only exist at the end of the basic block. 2427 Assert(&I == I.getParent()->getTerminator(), 2428 "Terminator found in the middle of a basic block!", I.getParent()); 2429 visitInstruction(I); 2430 } 2431 2432 void Verifier::visitBranchInst(BranchInst &BI) { 2433 if (BI.isConditional()) { 2434 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2435 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2436 } 2437 visitTerminator(BI); 2438 } 2439 2440 void Verifier::visitReturnInst(ReturnInst &RI) { 2441 Function *F = RI.getParent()->getParent(); 2442 unsigned N = RI.getNumOperands(); 2443 if (F->getReturnType()->isVoidTy()) 2444 Assert(N == 0, 2445 "Found return instr that returns non-void in Function of void " 2446 "return type!", 2447 &RI, F->getReturnType()); 2448 else 2449 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2450 "Function return type does not match operand " 2451 "type of return inst!", 2452 &RI, F->getReturnType()); 2453 2454 // Check to make sure that the return value has necessary properties for 2455 // terminators... 2456 visitTerminator(RI); 2457 } 2458 2459 void Verifier::visitSwitchInst(SwitchInst &SI) { 2460 // Check to make sure that all of the constants in the switch instruction 2461 // have the same type as the switched-on value. 2462 Type *SwitchTy = SI.getCondition()->getType(); 2463 SmallPtrSet<ConstantInt*, 32> Constants; 2464 for (auto &Case : SI.cases()) { 2465 Assert(Case.getCaseValue()->getType() == SwitchTy, 2466 "Switch constants must all be same type as switch value!", &SI); 2467 Assert(Constants.insert(Case.getCaseValue()).second, 2468 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2469 } 2470 2471 visitTerminator(SI); 2472 } 2473 2474 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2475 Assert(BI.getAddress()->getType()->isPointerTy(), 2476 "Indirectbr operand must have pointer type!", &BI); 2477 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2478 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2479 "Indirectbr destinations must all have pointer type!", &BI); 2480 2481 visitTerminator(BI); 2482 } 2483 2484 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2485 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2486 &CBI); 2487 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", 2488 &CBI); 2489 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2490 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2491 "Callbr successors must all have pointer type!", &CBI); 2492 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2493 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2494 "Using an unescaped label as a callbr argument!", &CBI); 2495 if (isa<BasicBlock>(CBI.getOperand(i))) 2496 for (unsigned j = i + 1; j != e; ++j) 2497 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2498 "Duplicate callbr destination!", &CBI); 2499 } 2500 2501 visitTerminator(CBI); 2502 } 2503 2504 void Verifier::visitSelectInst(SelectInst &SI) { 2505 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2506 SI.getOperand(2)), 2507 "Invalid operands for select instruction!", &SI); 2508 2509 Assert(SI.getTrueValue()->getType() == SI.getType(), 2510 "Select values must have same type as select instruction!", &SI); 2511 visitInstruction(SI); 2512 } 2513 2514 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2515 /// a pass, if any exist, it's an error. 2516 /// 2517 void Verifier::visitUserOp1(Instruction &I) { 2518 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2519 } 2520 2521 void Verifier::visitTruncInst(TruncInst &I) { 2522 // Get the source and destination types 2523 Type *SrcTy = I.getOperand(0)->getType(); 2524 Type *DestTy = I.getType(); 2525 2526 // Get the size of the types in bits, we'll need this later 2527 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2528 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2529 2530 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2531 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2532 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2533 "trunc source and destination must both be a vector or neither", &I); 2534 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2535 2536 visitInstruction(I); 2537 } 2538 2539 void Verifier::visitZExtInst(ZExtInst &I) { 2540 // Get the source and destination types 2541 Type *SrcTy = I.getOperand(0)->getType(); 2542 Type *DestTy = I.getType(); 2543 2544 // Get the size of the types in bits, we'll need this later 2545 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2546 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2547 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2548 "zext source and destination must both be a vector or neither", &I); 2549 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2550 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2551 2552 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2553 2554 visitInstruction(I); 2555 } 2556 2557 void Verifier::visitSExtInst(SExtInst &I) { 2558 // Get the source and destination types 2559 Type *SrcTy = I.getOperand(0)->getType(); 2560 Type *DestTy = I.getType(); 2561 2562 // Get the size of the types in bits, we'll need this later 2563 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2564 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2565 2566 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2567 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2568 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2569 "sext source and destination must both be a vector or neither", &I); 2570 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2571 2572 visitInstruction(I); 2573 } 2574 2575 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2576 // Get the source and destination types 2577 Type *SrcTy = I.getOperand(0)->getType(); 2578 Type *DestTy = I.getType(); 2579 // Get the size of the types in bits, we'll need this later 2580 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2581 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2582 2583 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2584 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2585 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2586 "fptrunc source and destination must both be a vector or neither", &I); 2587 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2588 2589 visitInstruction(I); 2590 } 2591 2592 void Verifier::visitFPExtInst(FPExtInst &I) { 2593 // Get the source and destination types 2594 Type *SrcTy = I.getOperand(0)->getType(); 2595 Type *DestTy = I.getType(); 2596 2597 // Get the size of the types in bits, we'll need this later 2598 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2599 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2600 2601 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2602 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2603 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2604 "fpext source and destination must both be a vector or neither", &I); 2605 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2606 2607 visitInstruction(I); 2608 } 2609 2610 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2611 // Get the source and destination types 2612 Type *SrcTy = I.getOperand(0)->getType(); 2613 Type *DestTy = I.getType(); 2614 2615 bool SrcVec = SrcTy->isVectorTy(); 2616 bool DstVec = DestTy->isVectorTy(); 2617 2618 Assert(SrcVec == DstVec, 2619 "UIToFP source and dest must both be vector or scalar", &I); 2620 Assert(SrcTy->isIntOrIntVectorTy(), 2621 "UIToFP source must be integer or integer vector", &I); 2622 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2623 &I); 2624 2625 if (SrcVec && DstVec) 2626 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2627 cast<VectorType>(DestTy)->getNumElements(), 2628 "UIToFP source and dest vector length mismatch", &I); 2629 2630 visitInstruction(I); 2631 } 2632 2633 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2634 // Get the source and destination types 2635 Type *SrcTy = I.getOperand(0)->getType(); 2636 Type *DestTy = I.getType(); 2637 2638 bool SrcVec = SrcTy->isVectorTy(); 2639 bool DstVec = DestTy->isVectorTy(); 2640 2641 Assert(SrcVec == DstVec, 2642 "SIToFP source and dest must both be vector or scalar", &I); 2643 Assert(SrcTy->isIntOrIntVectorTy(), 2644 "SIToFP source must be integer or integer vector", &I); 2645 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2646 &I); 2647 2648 if (SrcVec && DstVec) 2649 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2650 cast<VectorType>(DestTy)->getNumElements(), 2651 "SIToFP source and dest vector length mismatch", &I); 2652 2653 visitInstruction(I); 2654 } 2655 2656 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2657 // Get the source and destination types 2658 Type *SrcTy = I.getOperand(0)->getType(); 2659 Type *DestTy = I.getType(); 2660 2661 bool SrcVec = SrcTy->isVectorTy(); 2662 bool DstVec = DestTy->isVectorTy(); 2663 2664 Assert(SrcVec == DstVec, 2665 "FPToUI source and dest must both be vector or scalar", &I); 2666 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2667 &I); 2668 Assert(DestTy->isIntOrIntVectorTy(), 2669 "FPToUI result must be integer or integer vector", &I); 2670 2671 if (SrcVec && DstVec) 2672 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2673 cast<VectorType>(DestTy)->getNumElements(), 2674 "FPToUI source and dest vector length mismatch", &I); 2675 2676 visitInstruction(I); 2677 } 2678 2679 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2680 // Get the source and destination types 2681 Type *SrcTy = I.getOperand(0)->getType(); 2682 Type *DestTy = I.getType(); 2683 2684 bool SrcVec = SrcTy->isVectorTy(); 2685 bool DstVec = DestTy->isVectorTy(); 2686 2687 Assert(SrcVec == DstVec, 2688 "FPToSI source and dest must both be vector or scalar", &I); 2689 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2690 &I); 2691 Assert(DestTy->isIntOrIntVectorTy(), 2692 "FPToSI result must be integer or integer vector", &I); 2693 2694 if (SrcVec && DstVec) 2695 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2696 cast<VectorType>(DestTy)->getNumElements(), 2697 "FPToSI source and dest vector length mismatch", &I); 2698 2699 visitInstruction(I); 2700 } 2701 2702 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2703 // Get the source and destination types 2704 Type *SrcTy = I.getOperand(0)->getType(); 2705 Type *DestTy = I.getType(); 2706 2707 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2708 2709 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2710 Assert(!DL.isNonIntegralPointerType(PTy), 2711 "ptrtoint not supported for non-integral pointers"); 2712 2713 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2714 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2715 &I); 2716 2717 if (SrcTy->isVectorTy()) { 2718 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2719 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2720 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2721 "PtrToInt Vector width mismatch", &I); 2722 } 2723 2724 visitInstruction(I); 2725 } 2726 2727 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2728 // Get the source and destination types 2729 Type *SrcTy = I.getOperand(0)->getType(); 2730 Type *DestTy = I.getType(); 2731 2732 Assert(SrcTy->isIntOrIntVectorTy(), 2733 "IntToPtr source must be an integral", &I); 2734 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2735 2736 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2737 Assert(!DL.isNonIntegralPointerType(PTy), 2738 "inttoptr not supported for non-integral pointers"); 2739 2740 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2741 &I); 2742 if (SrcTy->isVectorTy()) { 2743 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2744 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2745 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2746 "IntToPtr Vector width mismatch", &I); 2747 } 2748 visitInstruction(I); 2749 } 2750 2751 void Verifier::visitBitCastInst(BitCastInst &I) { 2752 Assert( 2753 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2754 "Invalid bitcast", &I); 2755 visitInstruction(I); 2756 } 2757 2758 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2759 Type *SrcTy = I.getOperand(0)->getType(); 2760 Type *DestTy = I.getType(); 2761 2762 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2763 &I); 2764 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2765 &I); 2766 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2767 "AddrSpaceCast must be between different address spaces", &I); 2768 if (SrcTy->isVectorTy()) 2769 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2770 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2771 visitInstruction(I); 2772 } 2773 2774 /// visitPHINode - Ensure that a PHI node is well formed. 2775 /// 2776 void Verifier::visitPHINode(PHINode &PN) { 2777 // Ensure that the PHI nodes are all grouped together at the top of the block. 2778 // This can be tested by checking whether the instruction before this is 2779 // either nonexistent (because this is begin()) or is a PHI node. If not, 2780 // then there is some other instruction before a PHI. 2781 Assert(&PN == &PN.getParent()->front() || 2782 isa<PHINode>(--BasicBlock::iterator(&PN)), 2783 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2784 2785 // Check that a PHI doesn't yield a Token. 2786 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2787 2788 // Check that all of the values of the PHI node have the same type as the 2789 // result, and that the incoming blocks are really basic blocks. 2790 for (Value *IncValue : PN.incoming_values()) { 2791 Assert(PN.getType() == IncValue->getType(), 2792 "PHI node operands are not the same type as the result!", &PN); 2793 } 2794 2795 // All other PHI node constraints are checked in the visitBasicBlock method. 2796 2797 visitInstruction(PN); 2798 } 2799 2800 void Verifier::visitCallBase(CallBase &Call) { 2801 Assert(Call.getCalledValue()->getType()->isPointerTy(), 2802 "Called function must be a pointer!", Call); 2803 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); 2804 2805 Assert(FPTy->getElementType()->isFunctionTy(), 2806 "Called function is not pointer to function type!", Call); 2807 2808 Assert(FPTy->getElementType() == Call.getFunctionType(), 2809 "Called function is not the same type as the call!", Call); 2810 2811 FunctionType *FTy = Call.getFunctionType(); 2812 2813 // Verify that the correct number of arguments are being passed 2814 if (FTy->isVarArg()) 2815 Assert(Call.arg_size() >= FTy->getNumParams(), 2816 "Called function requires more parameters than were provided!", 2817 Call); 2818 else 2819 Assert(Call.arg_size() == FTy->getNumParams(), 2820 "Incorrect number of arguments passed to called function!", Call); 2821 2822 // Verify that all arguments to the call match the function type. 2823 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2824 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2825 "Call parameter type does not match function signature!", 2826 Call.getArgOperand(i), FTy->getParamType(i), Call); 2827 2828 AttributeList Attrs = Call.getAttributes(); 2829 2830 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2831 "Attribute after last parameter!", Call); 2832 2833 bool IsIntrinsic = Call.getCalledFunction() && 2834 Call.getCalledFunction()->getName().startswith("llvm."); 2835 2836 Function *Callee 2837 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 2838 2839 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2840 // Don't allow speculatable on call sites, unless the underlying function 2841 // declaration is also speculatable. 2842 Assert(Callee && Callee->isSpeculatable(), 2843 "speculatable attribute may not apply to call sites", Call); 2844 } 2845 2846 // Verify call attributes. 2847 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2848 2849 // Conservatively check the inalloca argument. 2850 // We have a bug if we can find that there is an underlying alloca without 2851 // inalloca. 2852 if (Call.hasInAllocaArgument()) { 2853 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2854 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2855 Assert(AI->isUsedWithInAlloca(), 2856 "inalloca argument for call has mismatched alloca", AI, Call); 2857 } 2858 2859 // For each argument of the callsite, if it has the swifterror argument, 2860 // make sure the underlying alloca/parameter it comes from has a swifterror as 2861 // well. 2862 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2863 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2864 Value *SwiftErrorArg = Call.getArgOperand(i); 2865 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2866 Assert(AI->isSwiftError(), 2867 "swifterror argument for call has mismatched alloca", AI, Call); 2868 continue; 2869 } 2870 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2871 Assert(ArgI, 2872 "swifterror argument should come from an alloca or parameter", 2873 SwiftErrorArg, Call); 2874 Assert(ArgI->hasSwiftErrorAttr(), 2875 "swifterror argument for call has mismatched parameter", ArgI, 2876 Call); 2877 } 2878 2879 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 2880 // Don't allow immarg on call sites, unless the underlying declaration 2881 // also has the matching immarg. 2882 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 2883 "immarg may not apply only to call sites", 2884 Call.getArgOperand(i), Call); 2885 } 2886 2887 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 2888 Value *ArgVal = Call.getArgOperand(i); 2889 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 2890 "immarg operand has non-immediate parameter", ArgVal, Call); 2891 } 2892 } 2893 2894 if (FTy->isVarArg()) { 2895 // FIXME? is 'nest' even legal here? 2896 bool SawNest = false; 2897 bool SawReturned = false; 2898 2899 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2900 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2901 SawNest = true; 2902 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2903 SawReturned = true; 2904 } 2905 2906 // Check attributes on the varargs part. 2907 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 2908 Type *Ty = Call.getArgOperand(Idx)->getType(); 2909 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2910 verifyParameterAttrs(ArgAttrs, Ty, &Call); 2911 2912 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2913 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 2914 SawNest = true; 2915 } 2916 2917 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2918 Assert(!SawReturned, "More than one parameter has attribute returned!", 2919 Call); 2920 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2921 "Incompatible argument and return types for 'returned' " 2922 "attribute", 2923 Call); 2924 SawReturned = true; 2925 } 2926 2927 // Statepoint intrinsic is vararg but the wrapped function may be not. 2928 // Allow sret here and check the wrapped function in verifyStatepoint. 2929 if (!Call.getCalledFunction() || 2930 Call.getCalledFunction()->getIntrinsicID() != 2931 Intrinsic::experimental_gc_statepoint) 2932 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2933 "Attribute 'sret' cannot be used for vararg call arguments!", 2934 Call); 2935 2936 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2937 Assert(Idx == Call.arg_size() - 1, 2938 "inalloca isn't on the last argument!", Call); 2939 } 2940 } 2941 2942 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2943 if (!IsIntrinsic) { 2944 for (Type *ParamTy : FTy->params()) { 2945 Assert(!ParamTy->isMetadataTy(), 2946 "Function has metadata parameter but isn't an intrinsic", Call); 2947 Assert(!ParamTy->isTokenTy(), 2948 "Function has token parameter but isn't an intrinsic", Call); 2949 } 2950 } 2951 2952 // Verify that indirect calls don't return tokens. 2953 if (!Call.getCalledFunction()) 2954 Assert(!FTy->getReturnType()->isTokenTy(), 2955 "Return type cannot be token for indirect call!"); 2956 2957 if (Function *F = Call.getCalledFunction()) 2958 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2959 visitIntrinsicCall(ID, Call); 2960 2961 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2962 // at most one "gc-transition" operand bundle. 2963 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2964 FoundGCTransitionBundle = false; 2965 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 2966 OperandBundleUse BU = Call.getOperandBundleAt(i); 2967 uint32_t Tag = BU.getTagID(); 2968 if (Tag == LLVMContext::OB_deopt) { 2969 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 2970 FoundDeoptBundle = true; 2971 } else if (Tag == LLVMContext::OB_gc_transition) { 2972 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2973 Call); 2974 FoundGCTransitionBundle = true; 2975 } else if (Tag == LLVMContext::OB_funclet) { 2976 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 2977 FoundFuncletBundle = true; 2978 Assert(BU.Inputs.size() == 1, 2979 "Expected exactly one funclet bundle operand", Call); 2980 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2981 "Funclet bundle operands should correspond to a FuncletPadInst", 2982 Call); 2983 } 2984 } 2985 2986 // Verify that each inlinable callsite of a debug-info-bearing function in a 2987 // debug-info-bearing function has a debug location attached to it. Failure to 2988 // do so causes assertion failures when the inliner sets up inline scope info. 2989 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 2990 Call.getCalledFunction()->getSubprogram()) 2991 AssertDI(Call.getDebugLoc(), 2992 "inlinable function call in a function with " 2993 "debug info must have a !dbg location", 2994 Call); 2995 2996 visitInstruction(Call); 2997 } 2998 2999 /// Two types are "congruent" if they are identical, or if they are both pointer 3000 /// types with different pointee types and the same address space. 3001 static bool isTypeCongruent(Type *L, Type *R) { 3002 if (L == R) 3003 return true; 3004 PointerType *PL = dyn_cast<PointerType>(L); 3005 PointerType *PR = dyn_cast<PointerType>(R); 3006 if (!PL || !PR) 3007 return false; 3008 return PL->getAddressSpace() == PR->getAddressSpace(); 3009 } 3010 3011 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3012 static const Attribute::AttrKind ABIAttrs[] = { 3013 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3014 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 3015 Attribute::SwiftError}; 3016 AttrBuilder Copy; 3017 for (auto AK : ABIAttrs) { 3018 if (Attrs.hasParamAttribute(I, AK)) 3019 Copy.addAttribute(AK); 3020 } 3021 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 3022 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3023 return Copy; 3024 } 3025 3026 void Verifier::verifyMustTailCall(CallInst &CI) { 3027 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3028 3029 // - The caller and callee prototypes must match. Pointer types of 3030 // parameters or return types may differ in pointee type, but not 3031 // address space. 3032 Function *F = CI.getParent()->getParent(); 3033 FunctionType *CallerTy = F->getFunctionType(); 3034 FunctionType *CalleeTy = CI.getFunctionType(); 3035 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3036 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3037 "cannot guarantee tail call due to mismatched parameter counts", 3038 &CI); 3039 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3040 Assert( 3041 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3042 "cannot guarantee tail call due to mismatched parameter types", &CI); 3043 } 3044 } 3045 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3046 "cannot guarantee tail call due to mismatched varargs", &CI); 3047 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3048 "cannot guarantee tail call due to mismatched return types", &CI); 3049 3050 // - The calling conventions of the caller and callee must match. 3051 Assert(F->getCallingConv() == CI.getCallingConv(), 3052 "cannot guarantee tail call due to mismatched calling conv", &CI); 3053 3054 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3055 // returned, and inalloca, must match. 3056 AttributeList CallerAttrs = F->getAttributes(); 3057 AttributeList CalleeAttrs = CI.getAttributes(); 3058 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3059 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3060 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3061 Assert(CallerABIAttrs == CalleeABIAttrs, 3062 "cannot guarantee tail call due to mismatched ABI impacting " 3063 "function attributes", 3064 &CI, CI.getOperand(I)); 3065 } 3066 3067 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3068 // or a pointer bitcast followed by a ret instruction. 3069 // - The ret instruction must return the (possibly bitcasted) value 3070 // produced by the call or void. 3071 Value *RetVal = &CI; 3072 Instruction *Next = CI.getNextNode(); 3073 3074 // Handle the optional bitcast. 3075 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3076 Assert(BI->getOperand(0) == RetVal, 3077 "bitcast following musttail call must use the call", BI); 3078 RetVal = BI; 3079 Next = BI->getNextNode(); 3080 } 3081 3082 // Check the return. 3083 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3084 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3085 &CI); 3086 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3087 "musttail call result must be returned", Ret); 3088 } 3089 3090 void Verifier::visitCallInst(CallInst &CI) { 3091 visitCallBase(CI); 3092 3093 if (CI.isMustTailCall()) 3094 verifyMustTailCall(CI); 3095 } 3096 3097 void Verifier::visitInvokeInst(InvokeInst &II) { 3098 visitCallBase(II); 3099 3100 // Verify that the first non-PHI instruction of the unwind destination is an 3101 // exception handling instruction. 3102 Assert( 3103 II.getUnwindDest()->isEHPad(), 3104 "The unwind destination does not have an exception handling instruction!", 3105 &II); 3106 3107 visitTerminator(II); 3108 } 3109 3110 /// visitUnaryOperator - Check the argument to the unary operator. 3111 /// 3112 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3113 Assert(U.getType() == U.getOperand(0)->getType(), 3114 "Unary operators must have same type for" 3115 "operands and result!", 3116 &U); 3117 3118 switch (U.getOpcode()) { 3119 // Check that floating-point arithmetic operators are only used with 3120 // floating-point operands. 3121 case Instruction::FNeg: 3122 Assert(U.getType()->isFPOrFPVectorTy(), 3123 "FNeg operator only works with float types!", &U); 3124 break; 3125 default: 3126 llvm_unreachable("Unknown UnaryOperator opcode!"); 3127 } 3128 3129 visitInstruction(U); 3130 } 3131 3132 /// visitBinaryOperator - Check that both arguments to the binary operator are 3133 /// of the same type! 3134 /// 3135 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3136 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3137 "Both operands to a binary operator are not of the same type!", &B); 3138 3139 switch (B.getOpcode()) { 3140 // Check that integer arithmetic operators are only used with 3141 // integral operands. 3142 case Instruction::Add: 3143 case Instruction::Sub: 3144 case Instruction::Mul: 3145 case Instruction::SDiv: 3146 case Instruction::UDiv: 3147 case Instruction::SRem: 3148 case Instruction::URem: 3149 Assert(B.getType()->isIntOrIntVectorTy(), 3150 "Integer arithmetic operators only work with integral types!", &B); 3151 Assert(B.getType() == B.getOperand(0)->getType(), 3152 "Integer arithmetic operators must have same type " 3153 "for operands and result!", 3154 &B); 3155 break; 3156 // Check that floating-point arithmetic operators are only used with 3157 // floating-point operands. 3158 case Instruction::FAdd: 3159 case Instruction::FSub: 3160 case Instruction::FMul: 3161 case Instruction::FDiv: 3162 case Instruction::FRem: 3163 Assert(B.getType()->isFPOrFPVectorTy(), 3164 "Floating-point arithmetic operators only work with " 3165 "floating-point types!", 3166 &B); 3167 Assert(B.getType() == B.getOperand(0)->getType(), 3168 "Floating-point arithmetic operators must have same type " 3169 "for operands and result!", 3170 &B); 3171 break; 3172 // Check that logical operators are only used with integral operands. 3173 case Instruction::And: 3174 case Instruction::Or: 3175 case Instruction::Xor: 3176 Assert(B.getType()->isIntOrIntVectorTy(), 3177 "Logical operators only work with integral types!", &B); 3178 Assert(B.getType() == B.getOperand(0)->getType(), 3179 "Logical operators must have same type for operands and result!", 3180 &B); 3181 break; 3182 case Instruction::Shl: 3183 case Instruction::LShr: 3184 case Instruction::AShr: 3185 Assert(B.getType()->isIntOrIntVectorTy(), 3186 "Shifts only work with integral types!", &B); 3187 Assert(B.getType() == B.getOperand(0)->getType(), 3188 "Shift return type must be same as operands!", &B); 3189 break; 3190 default: 3191 llvm_unreachable("Unknown BinaryOperator opcode!"); 3192 } 3193 3194 visitInstruction(B); 3195 } 3196 3197 void Verifier::visitICmpInst(ICmpInst &IC) { 3198 // Check that the operands are the same type 3199 Type *Op0Ty = IC.getOperand(0)->getType(); 3200 Type *Op1Ty = IC.getOperand(1)->getType(); 3201 Assert(Op0Ty == Op1Ty, 3202 "Both operands to ICmp instruction are not of the same type!", &IC); 3203 // Check that the operands are the right type 3204 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3205 "Invalid operand types for ICmp instruction", &IC); 3206 // Check that the predicate is valid. 3207 Assert(IC.isIntPredicate(), 3208 "Invalid predicate in ICmp instruction!", &IC); 3209 3210 visitInstruction(IC); 3211 } 3212 3213 void Verifier::visitFCmpInst(FCmpInst &FC) { 3214 // Check that the operands are the same type 3215 Type *Op0Ty = FC.getOperand(0)->getType(); 3216 Type *Op1Ty = FC.getOperand(1)->getType(); 3217 Assert(Op0Ty == Op1Ty, 3218 "Both operands to FCmp instruction are not of the same type!", &FC); 3219 // Check that the operands are the right type 3220 Assert(Op0Ty->isFPOrFPVectorTy(), 3221 "Invalid operand types for FCmp instruction", &FC); 3222 // Check that the predicate is valid. 3223 Assert(FC.isFPPredicate(), 3224 "Invalid predicate in FCmp instruction!", &FC); 3225 3226 visitInstruction(FC); 3227 } 3228 3229 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3230 Assert( 3231 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3232 "Invalid extractelement operands!", &EI); 3233 visitInstruction(EI); 3234 } 3235 3236 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3237 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3238 IE.getOperand(2)), 3239 "Invalid insertelement operands!", &IE); 3240 visitInstruction(IE); 3241 } 3242 3243 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3244 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3245 SV.getOperand(2)), 3246 "Invalid shufflevector operands!", &SV); 3247 visitInstruction(SV); 3248 } 3249 3250 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3251 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3252 3253 Assert(isa<PointerType>(TargetTy), 3254 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3255 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3256 3257 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3258 Assert(all_of( 3259 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3260 "GEP indexes must be integers", &GEP); 3261 Type *ElTy = 3262 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3263 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3264 3265 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3266 GEP.getResultElementType() == ElTy, 3267 "GEP is not of right type for indices!", &GEP, ElTy); 3268 3269 if (GEP.getType()->isVectorTy()) { 3270 // Additional checks for vector GEPs. 3271 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3272 if (GEP.getPointerOperandType()->isVectorTy()) 3273 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3274 "Vector GEP result width doesn't match operand's", &GEP); 3275 for (Value *Idx : Idxs) { 3276 Type *IndexTy = Idx->getType(); 3277 if (IndexTy->isVectorTy()) { 3278 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3279 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3280 } 3281 Assert(IndexTy->isIntOrIntVectorTy(), 3282 "All GEP indices should be of integer type"); 3283 } 3284 } 3285 3286 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3287 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3288 "GEP address space doesn't match type", &GEP); 3289 } 3290 3291 visitInstruction(GEP); 3292 } 3293 3294 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3295 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3296 } 3297 3298 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3299 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3300 "precondition violation"); 3301 3302 unsigned NumOperands = Range->getNumOperands(); 3303 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3304 unsigned NumRanges = NumOperands / 2; 3305 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3306 3307 ConstantRange LastRange(1, true); // Dummy initial value 3308 for (unsigned i = 0; i < NumRanges; ++i) { 3309 ConstantInt *Low = 3310 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3311 Assert(Low, "The lower limit must be an integer!", Low); 3312 ConstantInt *High = 3313 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3314 Assert(High, "The upper limit must be an integer!", High); 3315 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3316 "Range types must match instruction type!", &I); 3317 3318 APInt HighV = High->getValue(); 3319 APInt LowV = Low->getValue(); 3320 ConstantRange CurRange(LowV, HighV); 3321 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3322 "Range must not be empty!", Range); 3323 if (i != 0) { 3324 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3325 "Intervals are overlapping", Range); 3326 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3327 Range); 3328 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3329 Range); 3330 } 3331 LastRange = ConstantRange(LowV, HighV); 3332 } 3333 if (NumRanges > 2) { 3334 APInt FirstLow = 3335 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3336 APInt FirstHigh = 3337 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3338 ConstantRange FirstRange(FirstLow, FirstHigh); 3339 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3340 "Intervals are overlapping", Range); 3341 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3342 Range); 3343 } 3344 } 3345 3346 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3347 unsigned Size = DL.getTypeSizeInBits(Ty); 3348 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3349 Assert(!(Size & (Size - 1)), 3350 "atomic memory access' operand must have a power-of-two size", Ty, I); 3351 } 3352 3353 void Verifier::visitLoadInst(LoadInst &LI) { 3354 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3355 Assert(PTy, "Load operand must be a pointer.", &LI); 3356 Type *ElTy = LI.getType(); 3357 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3358 "huge alignment values are unsupported", &LI); 3359 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3360 if (LI.isAtomic()) { 3361 Assert(LI.getOrdering() != AtomicOrdering::Release && 3362 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3363 "Load cannot have Release ordering", &LI); 3364 Assert(LI.getAlignment() != 0, 3365 "Atomic load must specify explicit alignment", &LI); 3366 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3367 "atomic load operand must have integer, pointer, or floating point " 3368 "type!", 3369 ElTy, &LI); 3370 checkAtomicMemAccessSize(ElTy, &LI); 3371 } else { 3372 Assert(LI.getSyncScopeID() == SyncScope::System, 3373 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3374 } 3375 3376 visitInstruction(LI); 3377 } 3378 3379 void Verifier::visitStoreInst(StoreInst &SI) { 3380 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3381 Assert(PTy, "Store operand must be a pointer.", &SI); 3382 Type *ElTy = PTy->getElementType(); 3383 Assert(ElTy == SI.getOperand(0)->getType(), 3384 "Stored value type does not match pointer operand type!", &SI, ElTy); 3385 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3386 "huge alignment values are unsupported", &SI); 3387 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3388 if (SI.isAtomic()) { 3389 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3390 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3391 "Store cannot have Acquire ordering", &SI); 3392 Assert(SI.getAlignment() != 0, 3393 "Atomic store must specify explicit alignment", &SI); 3394 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3395 "atomic store operand must have integer, pointer, or floating point " 3396 "type!", 3397 ElTy, &SI); 3398 checkAtomicMemAccessSize(ElTy, &SI); 3399 } else { 3400 Assert(SI.getSyncScopeID() == SyncScope::System, 3401 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3402 } 3403 visitInstruction(SI); 3404 } 3405 3406 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3407 void Verifier::verifySwiftErrorCall(CallBase &Call, 3408 const Value *SwiftErrorVal) { 3409 unsigned Idx = 0; 3410 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3411 if (*I == SwiftErrorVal) { 3412 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3413 "swifterror value when used in a callsite should be marked " 3414 "with swifterror attribute", 3415 SwiftErrorVal, Call); 3416 } 3417 } 3418 } 3419 3420 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3421 // Check that swifterror value is only used by loads, stores, or as 3422 // a swifterror argument. 3423 for (const User *U : SwiftErrorVal->users()) { 3424 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3425 isa<InvokeInst>(U), 3426 "swifterror value can only be loaded and stored from, or " 3427 "as a swifterror argument!", 3428 SwiftErrorVal, U); 3429 // If it is used by a store, check it is the second operand. 3430 if (auto StoreI = dyn_cast<StoreInst>(U)) 3431 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3432 "swifterror value should be the second operand when used " 3433 "by stores", SwiftErrorVal, U); 3434 if (auto *Call = dyn_cast<CallBase>(U)) 3435 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3436 } 3437 } 3438 3439 void Verifier::visitAllocaInst(AllocaInst &AI) { 3440 SmallPtrSet<Type*, 4> Visited; 3441 PointerType *PTy = AI.getType(); 3442 // TODO: Relax this restriction? 3443 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3444 "Allocation instruction pointer not in the stack address space!", 3445 &AI); 3446 Assert(AI.getAllocatedType()->isSized(&Visited), 3447 "Cannot allocate unsized type", &AI); 3448 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3449 "Alloca array size must have integer type", &AI); 3450 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3451 "huge alignment values are unsupported", &AI); 3452 3453 if (AI.isSwiftError()) { 3454 verifySwiftErrorValue(&AI); 3455 } 3456 3457 visitInstruction(AI); 3458 } 3459 3460 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3461 3462 // FIXME: more conditions??? 3463 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3464 "cmpxchg instructions must be atomic.", &CXI); 3465 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3466 "cmpxchg instructions must be atomic.", &CXI); 3467 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3468 "cmpxchg instructions cannot be unordered.", &CXI); 3469 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3470 "cmpxchg instructions cannot be unordered.", &CXI); 3471 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3472 "cmpxchg instructions failure argument shall be no stronger than the " 3473 "success argument", 3474 &CXI); 3475 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3476 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3477 "cmpxchg failure ordering cannot include release semantics", &CXI); 3478 3479 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3480 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3481 Type *ElTy = PTy->getElementType(); 3482 Assert(ElTy->isIntOrPtrTy(), 3483 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3484 checkAtomicMemAccessSize(ElTy, &CXI); 3485 Assert(ElTy == CXI.getOperand(1)->getType(), 3486 "Expected value type does not match pointer operand type!", &CXI, 3487 ElTy); 3488 Assert(ElTy == CXI.getOperand(2)->getType(), 3489 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3490 visitInstruction(CXI); 3491 } 3492 3493 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3494 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3495 "atomicrmw instructions must be atomic.", &RMWI); 3496 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3497 "atomicrmw instructions cannot be unordered.", &RMWI); 3498 auto Op = RMWI.getOperation(); 3499 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3500 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3501 Type *ElTy = PTy->getElementType(); 3502 if (Op == AtomicRMWInst::Xchg) { 3503 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3504 AtomicRMWInst::getOperationName(Op) + 3505 " operand must have integer or floating point type!", 3506 &RMWI, ElTy); 3507 } else if (AtomicRMWInst::isFPOperation(Op)) { 3508 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3509 AtomicRMWInst::getOperationName(Op) + 3510 " operand must have floating point type!", 3511 &RMWI, ElTy); 3512 } else { 3513 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3514 AtomicRMWInst::getOperationName(Op) + 3515 " operand must have integer type!", 3516 &RMWI, ElTy); 3517 } 3518 checkAtomicMemAccessSize(ElTy, &RMWI); 3519 Assert(ElTy == RMWI.getOperand(1)->getType(), 3520 "Argument value type does not match pointer operand type!", &RMWI, 3521 ElTy); 3522 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3523 "Invalid binary operation!", &RMWI); 3524 visitInstruction(RMWI); 3525 } 3526 3527 void Verifier::visitFenceInst(FenceInst &FI) { 3528 const AtomicOrdering Ordering = FI.getOrdering(); 3529 Assert(Ordering == AtomicOrdering::Acquire || 3530 Ordering == AtomicOrdering::Release || 3531 Ordering == AtomicOrdering::AcquireRelease || 3532 Ordering == AtomicOrdering::SequentiallyConsistent, 3533 "fence instructions may only have acquire, release, acq_rel, or " 3534 "seq_cst ordering.", 3535 &FI); 3536 visitInstruction(FI); 3537 } 3538 3539 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3540 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3541 EVI.getIndices()) == EVI.getType(), 3542 "Invalid ExtractValueInst operands!", &EVI); 3543 3544 visitInstruction(EVI); 3545 } 3546 3547 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3548 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3549 IVI.getIndices()) == 3550 IVI.getOperand(1)->getType(), 3551 "Invalid InsertValueInst operands!", &IVI); 3552 3553 visitInstruction(IVI); 3554 } 3555 3556 static Value *getParentPad(Value *EHPad) { 3557 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3558 return FPI->getParentPad(); 3559 3560 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3561 } 3562 3563 void Verifier::visitEHPadPredecessors(Instruction &I) { 3564 assert(I.isEHPad()); 3565 3566 BasicBlock *BB = I.getParent(); 3567 Function *F = BB->getParent(); 3568 3569 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3570 3571 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3572 // The landingpad instruction defines its parent as a landing pad block. The 3573 // landing pad block may be branched to only by the unwind edge of an 3574 // invoke. 3575 for (BasicBlock *PredBB : predecessors(BB)) { 3576 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3577 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3578 "Block containing LandingPadInst must be jumped to " 3579 "only by the unwind edge of an invoke.", 3580 LPI); 3581 } 3582 return; 3583 } 3584 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3585 if (!pred_empty(BB)) 3586 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3587 "Block containg CatchPadInst must be jumped to " 3588 "only by its catchswitch.", 3589 CPI); 3590 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3591 "Catchswitch cannot unwind to one of its catchpads", 3592 CPI->getCatchSwitch(), CPI); 3593 return; 3594 } 3595 3596 // Verify that each pred has a legal terminator with a legal to/from EH 3597 // pad relationship. 3598 Instruction *ToPad = &I; 3599 Value *ToPadParent = getParentPad(ToPad); 3600 for (BasicBlock *PredBB : predecessors(BB)) { 3601 Instruction *TI = PredBB->getTerminator(); 3602 Value *FromPad; 3603 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3604 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3605 "EH pad must be jumped to via an unwind edge", ToPad, II); 3606 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3607 FromPad = Bundle->Inputs[0]; 3608 else 3609 FromPad = ConstantTokenNone::get(II->getContext()); 3610 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3611 FromPad = CRI->getOperand(0); 3612 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3613 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3614 FromPad = CSI; 3615 } else { 3616 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3617 } 3618 3619 // The edge may exit from zero or more nested pads. 3620 SmallSet<Value *, 8> Seen; 3621 for (;; FromPad = getParentPad(FromPad)) { 3622 Assert(FromPad != ToPad, 3623 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3624 if (FromPad == ToPadParent) { 3625 // This is a legal unwind edge. 3626 break; 3627 } 3628 Assert(!isa<ConstantTokenNone>(FromPad), 3629 "A single unwind edge may only enter one EH pad", TI); 3630 Assert(Seen.insert(FromPad).second, 3631 "EH pad jumps through a cycle of pads", FromPad); 3632 } 3633 } 3634 } 3635 3636 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3637 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3638 // isn't a cleanup. 3639 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3640 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3641 3642 visitEHPadPredecessors(LPI); 3643 3644 if (!LandingPadResultTy) 3645 LandingPadResultTy = LPI.getType(); 3646 else 3647 Assert(LandingPadResultTy == LPI.getType(), 3648 "The landingpad instruction should have a consistent result type " 3649 "inside a function.", 3650 &LPI); 3651 3652 Function *F = LPI.getParent()->getParent(); 3653 Assert(F->hasPersonalityFn(), 3654 "LandingPadInst needs to be in a function with a personality.", &LPI); 3655 3656 // The landingpad instruction must be the first non-PHI instruction in the 3657 // block. 3658 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3659 "LandingPadInst not the first non-PHI instruction in the block.", 3660 &LPI); 3661 3662 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3663 Constant *Clause = LPI.getClause(i); 3664 if (LPI.isCatch(i)) { 3665 Assert(isa<PointerType>(Clause->getType()), 3666 "Catch operand does not have pointer type!", &LPI); 3667 } else { 3668 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3669 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3670 "Filter operand is not an array of constants!", &LPI); 3671 } 3672 } 3673 3674 visitInstruction(LPI); 3675 } 3676 3677 void Verifier::visitResumeInst(ResumeInst &RI) { 3678 Assert(RI.getFunction()->hasPersonalityFn(), 3679 "ResumeInst needs to be in a function with a personality.", &RI); 3680 3681 if (!LandingPadResultTy) 3682 LandingPadResultTy = RI.getValue()->getType(); 3683 else 3684 Assert(LandingPadResultTy == RI.getValue()->getType(), 3685 "The resume instruction should have a consistent result type " 3686 "inside a function.", 3687 &RI); 3688 3689 visitTerminator(RI); 3690 } 3691 3692 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3693 BasicBlock *BB = CPI.getParent(); 3694 3695 Function *F = BB->getParent(); 3696 Assert(F->hasPersonalityFn(), 3697 "CatchPadInst needs to be in a function with a personality.", &CPI); 3698 3699 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3700 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3701 CPI.getParentPad()); 3702 3703 // The catchpad instruction must be the first non-PHI instruction in the 3704 // block. 3705 Assert(BB->getFirstNonPHI() == &CPI, 3706 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3707 3708 visitEHPadPredecessors(CPI); 3709 visitFuncletPadInst(CPI); 3710 } 3711 3712 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3713 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3714 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3715 CatchReturn.getOperand(0)); 3716 3717 visitTerminator(CatchReturn); 3718 } 3719 3720 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3721 BasicBlock *BB = CPI.getParent(); 3722 3723 Function *F = BB->getParent(); 3724 Assert(F->hasPersonalityFn(), 3725 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3726 3727 // The cleanuppad instruction must be the first non-PHI instruction in the 3728 // block. 3729 Assert(BB->getFirstNonPHI() == &CPI, 3730 "CleanupPadInst not the first non-PHI instruction in the block.", 3731 &CPI); 3732 3733 auto *ParentPad = CPI.getParentPad(); 3734 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3735 "CleanupPadInst has an invalid parent.", &CPI); 3736 3737 visitEHPadPredecessors(CPI); 3738 visitFuncletPadInst(CPI); 3739 } 3740 3741 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3742 User *FirstUser = nullptr; 3743 Value *FirstUnwindPad = nullptr; 3744 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3745 SmallSet<FuncletPadInst *, 8> Seen; 3746 3747 while (!Worklist.empty()) { 3748 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3749 Assert(Seen.insert(CurrentPad).second, 3750 "FuncletPadInst must not be nested within itself", CurrentPad); 3751 Value *UnresolvedAncestorPad = nullptr; 3752 for (User *U : CurrentPad->users()) { 3753 BasicBlock *UnwindDest; 3754 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3755 UnwindDest = CRI->getUnwindDest(); 3756 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3757 // We allow catchswitch unwind to caller to nest 3758 // within an outer pad that unwinds somewhere else, 3759 // because catchswitch doesn't have a nounwind variant. 3760 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3761 if (CSI->unwindsToCaller()) 3762 continue; 3763 UnwindDest = CSI->getUnwindDest(); 3764 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3765 UnwindDest = II->getUnwindDest(); 3766 } else if (isa<CallInst>(U)) { 3767 // Calls which don't unwind may be found inside funclet 3768 // pads that unwind somewhere else. We don't *require* 3769 // such calls to be annotated nounwind. 3770 continue; 3771 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3772 // The unwind dest for a cleanup can only be found by 3773 // recursive search. Add it to the worklist, and we'll 3774 // search for its first use that determines where it unwinds. 3775 Worklist.push_back(CPI); 3776 continue; 3777 } else { 3778 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3779 continue; 3780 } 3781 3782 Value *UnwindPad; 3783 bool ExitsFPI; 3784 if (UnwindDest) { 3785 UnwindPad = UnwindDest->getFirstNonPHI(); 3786 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3787 continue; 3788 Value *UnwindParent = getParentPad(UnwindPad); 3789 // Ignore unwind edges that don't exit CurrentPad. 3790 if (UnwindParent == CurrentPad) 3791 continue; 3792 // Determine whether the original funclet pad is exited, 3793 // and if we are scanning nested pads determine how many 3794 // of them are exited so we can stop searching their 3795 // children. 3796 Value *ExitedPad = CurrentPad; 3797 ExitsFPI = false; 3798 do { 3799 if (ExitedPad == &FPI) { 3800 ExitsFPI = true; 3801 // Now we can resolve any ancestors of CurrentPad up to 3802 // FPI, but not including FPI since we need to make sure 3803 // to check all direct users of FPI for consistency. 3804 UnresolvedAncestorPad = &FPI; 3805 break; 3806 } 3807 Value *ExitedParent = getParentPad(ExitedPad); 3808 if (ExitedParent == UnwindParent) { 3809 // ExitedPad is the ancestor-most pad which this unwind 3810 // edge exits, so we can resolve up to it, meaning that 3811 // ExitedParent is the first ancestor still unresolved. 3812 UnresolvedAncestorPad = ExitedParent; 3813 break; 3814 } 3815 ExitedPad = ExitedParent; 3816 } while (!isa<ConstantTokenNone>(ExitedPad)); 3817 } else { 3818 // Unwinding to caller exits all pads. 3819 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3820 ExitsFPI = true; 3821 UnresolvedAncestorPad = &FPI; 3822 } 3823 3824 if (ExitsFPI) { 3825 // This unwind edge exits FPI. Make sure it agrees with other 3826 // such edges. 3827 if (FirstUser) { 3828 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3829 "pad must have the same unwind " 3830 "dest", 3831 &FPI, U, FirstUser); 3832 } else { 3833 FirstUser = U; 3834 FirstUnwindPad = UnwindPad; 3835 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3836 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3837 getParentPad(UnwindPad) == getParentPad(&FPI)) 3838 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3839 } 3840 } 3841 // Make sure we visit all uses of FPI, but for nested pads stop as 3842 // soon as we know where they unwind to. 3843 if (CurrentPad != &FPI) 3844 break; 3845 } 3846 if (UnresolvedAncestorPad) { 3847 if (CurrentPad == UnresolvedAncestorPad) { 3848 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3849 // we've found an unwind edge that exits it, because we need to verify 3850 // all direct uses of FPI. 3851 assert(CurrentPad == &FPI); 3852 continue; 3853 } 3854 // Pop off the worklist any nested pads that we've found an unwind 3855 // destination for. The pads on the worklist are the uncles, 3856 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3857 // for all ancestors of CurrentPad up to but not including 3858 // UnresolvedAncestorPad. 3859 Value *ResolvedPad = CurrentPad; 3860 while (!Worklist.empty()) { 3861 Value *UnclePad = Worklist.back(); 3862 Value *AncestorPad = getParentPad(UnclePad); 3863 // Walk ResolvedPad up the ancestor list until we either find the 3864 // uncle's parent or the last resolved ancestor. 3865 while (ResolvedPad != AncestorPad) { 3866 Value *ResolvedParent = getParentPad(ResolvedPad); 3867 if (ResolvedParent == UnresolvedAncestorPad) { 3868 break; 3869 } 3870 ResolvedPad = ResolvedParent; 3871 } 3872 // If the resolved ancestor search didn't find the uncle's parent, 3873 // then the uncle is not yet resolved. 3874 if (ResolvedPad != AncestorPad) 3875 break; 3876 // This uncle is resolved, so pop it from the worklist. 3877 Worklist.pop_back(); 3878 } 3879 } 3880 } 3881 3882 if (FirstUnwindPad) { 3883 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3884 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3885 Value *SwitchUnwindPad; 3886 if (SwitchUnwindDest) 3887 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3888 else 3889 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3890 Assert(SwitchUnwindPad == FirstUnwindPad, 3891 "Unwind edges out of a catch must have the same unwind dest as " 3892 "the parent catchswitch", 3893 &FPI, FirstUser, CatchSwitch); 3894 } 3895 } 3896 3897 visitInstruction(FPI); 3898 } 3899 3900 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3901 BasicBlock *BB = CatchSwitch.getParent(); 3902 3903 Function *F = BB->getParent(); 3904 Assert(F->hasPersonalityFn(), 3905 "CatchSwitchInst needs to be in a function with a personality.", 3906 &CatchSwitch); 3907 3908 // The catchswitch instruction must be the first non-PHI instruction in the 3909 // block. 3910 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3911 "CatchSwitchInst not the first non-PHI instruction in the block.", 3912 &CatchSwitch); 3913 3914 auto *ParentPad = CatchSwitch.getParentPad(); 3915 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3916 "CatchSwitchInst has an invalid parent.", ParentPad); 3917 3918 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3919 Instruction *I = UnwindDest->getFirstNonPHI(); 3920 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3921 "CatchSwitchInst must unwind to an EH block which is not a " 3922 "landingpad.", 3923 &CatchSwitch); 3924 3925 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3926 if (getParentPad(I) == ParentPad) 3927 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3928 } 3929 3930 Assert(CatchSwitch.getNumHandlers() != 0, 3931 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3932 3933 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3934 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3935 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3936 } 3937 3938 visitEHPadPredecessors(CatchSwitch); 3939 visitTerminator(CatchSwitch); 3940 } 3941 3942 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3943 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3944 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3945 CRI.getOperand(0)); 3946 3947 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3948 Instruction *I = UnwindDest->getFirstNonPHI(); 3949 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3950 "CleanupReturnInst must unwind to an EH block which is not a " 3951 "landingpad.", 3952 &CRI); 3953 } 3954 3955 visitTerminator(CRI); 3956 } 3957 3958 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3959 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3960 // If the we have an invalid invoke, don't try to compute the dominance. 3961 // We already reject it in the invoke specific checks and the dominance 3962 // computation doesn't handle multiple edges. 3963 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3964 if (II->getNormalDest() == II->getUnwindDest()) 3965 return; 3966 } 3967 3968 // Quick check whether the def has already been encountered in the same block. 3969 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 3970 // uses are defined to happen on the incoming edge, not at the instruction. 3971 // 3972 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3973 // wrapping an SSA value, assert that we've already encountered it. See 3974 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3975 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3976 return; 3977 3978 const Use &U = I.getOperandUse(i); 3979 Assert(DT.dominates(Op, U), 3980 "Instruction does not dominate all uses!", Op, &I); 3981 } 3982 3983 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3984 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3985 "apply only to pointer types", &I); 3986 Assert(isa<LoadInst>(I), 3987 "dereferenceable, dereferenceable_or_null apply only to load" 3988 " instructions, use attributes for calls or invokes", &I); 3989 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3990 "take one operand!", &I); 3991 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3992 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3993 "dereferenceable_or_null metadata value must be an i64!", &I); 3994 } 3995 3996 /// verifyInstruction - Verify that an instruction is well formed. 3997 /// 3998 void Verifier::visitInstruction(Instruction &I) { 3999 BasicBlock *BB = I.getParent(); 4000 Assert(BB, "Instruction not embedded in basic block!", &I); 4001 4002 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4003 for (User *U : I.users()) { 4004 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4005 "Only PHI nodes may reference their own value!", &I); 4006 } 4007 } 4008 4009 // Check that void typed values don't have names 4010 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4011 "Instruction has a name, but provides a void value!", &I); 4012 4013 // Check that the return value of the instruction is either void or a legal 4014 // value type. 4015 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4016 "Instruction returns a non-scalar type!", &I); 4017 4018 // Check that the instruction doesn't produce metadata. Calls are already 4019 // checked against the callee type. 4020 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4021 "Invalid use of metadata!", &I); 4022 4023 // Check that all uses of the instruction, if they are instructions 4024 // themselves, actually have parent basic blocks. If the use is not an 4025 // instruction, it is an error! 4026 for (Use &U : I.uses()) { 4027 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4028 Assert(Used->getParent() != nullptr, 4029 "Instruction referencing" 4030 " instruction not embedded in a basic block!", 4031 &I, Used); 4032 else { 4033 CheckFailed("Use of instruction is not an instruction!", U); 4034 return; 4035 } 4036 } 4037 4038 // Get a pointer to the call base of the instruction if it is some form of 4039 // call. 4040 const CallBase *CBI = dyn_cast<CallBase>(&I); 4041 4042 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4043 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4044 4045 // Check to make sure that only first-class-values are operands to 4046 // instructions. 4047 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4048 Assert(false, "Instruction operands must be first-class values!", &I); 4049 } 4050 4051 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4052 // Check to make sure that the "address of" an intrinsic function is never 4053 // taken. 4054 Assert(!F->isIntrinsic() || 4055 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4056 "Cannot take the address of an intrinsic!", &I); 4057 Assert( 4058 !F->isIntrinsic() || isa<CallInst>(I) || 4059 F->getIntrinsicID() == Intrinsic::donothing || 4060 F->getIntrinsicID() == Intrinsic::coro_resume || 4061 F->getIntrinsicID() == Intrinsic::coro_destroy || 4062 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4063 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4064 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4065 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4066 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4067 "statepoint, coro_resume or coro_destroy", 4068 &I); 4069 Assert(F->getParent() == &M, "Referencing function in another module!", 4070 &I, &M, F, F->getParent()); 4071 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4072 Assert(OpBB->getParent() == BB->getParent(), 4073 "Referring to a basic block in another function!", &I); 4074 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4075 Assert(OpArg->getParent() == BB->getParent(), 4076 "Referring to an argument in another function!", &I); 4077 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4078 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4079 &M, GV, GV->getParent()); 4080 } else if (isa<Instruction>(I.getOperand(i))) { 4081 verifyDominatesUse(I, i); 4082 } else if (isa<InlineAsm>(I.getOperand(i))) { 4083 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4084 "Cannot take the address of an inline asm!", &I); 4085 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4086 if (CE->getType()->isPtrOrPtrVectorTy() || 4087 !DL.getNonIntegralAddressSpaces().empty()) { 4088 // If we have a ConstantExpr pointer, we need to see if it came from an 4089 // illegal bitcast. If the datalayout string specifies non-integral 4090 // address spaces then we also need to check for illegal ptrtoint and 4091 // inttoptr expressions. 4092 visitConstantExprsRecursively(CE); 4093 } 4094 } 4095 } 4096 4097 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4098 Assert(I.getType()->isFPOrFPVectorTy(), 4099 "fpmath requires a floating point result!", &I); 4100 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4101 if (ConstantFP *CFP0 = 4102 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4103 const APFloat &Accuracy = CFP0->getValueAPF(); 4104 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4105 "fpmath accuracy must have float type", &I); 4106 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4107 "fpmath accuracy not a positive number!", &I); 4108 } else { 4109 Assert(false, "invalid fpmath accuracy!", &I); 4110 } 4111 } 4112 4113 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4114 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4115 "Ranges are only for loads, calls and invokes!", &I); 4116 visitRangeMetadata(I, Range, I.getType()); 4117 } 4118 4119 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4120 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4121 &I); 4122 Assert(isa<LoadInst>(I), 4123 "nonnull applies only to load instructions, use attributes" 4124 " for calls or invokes", 4125 &I); 4126 } 4127 4128 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4129 visitDereferenceableMetadata(I, MD); 4130 4131 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4132 visitDereferenceableMetadata(I, MD); 4133 4134 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4135 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4136 4137 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4138 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4139 &I); 4140 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4141 "use attributes for calls or invokes", &I); 4142 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4143 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4144 Assert(CI && CI->getType()->isIntegerTy(64), 4145 "align metadata value must be an i64!", &I); 4146 uint64_t Align = CI->getZExtValue(); 4147 Assert(isPowerOf2_64(Align), 4148 "align metadata value must be a power of 2!", &I); 4149 Assert(Align <= Value::MaximumAlignment, 4150 "alignment is larger that implementation defined limit", &I); 4151 } 4152 4153 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4154 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4155 visitMDNode(*N); 4156 } 4157 4158 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) 4159 verifyFragmentExpression(*DII); 4160 4161 InstsInThisBlock.insert(&I); 4162 } 4163 4164 /// Allow intrinsics to be verified in different ways. 4165 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4166 Function *IF = Call.getCalledFunction(); 4167 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4168 IF); 4169 4170 // Verify that the intrinsic prototype lines up with what the .td files 4171 // describe. 4172 FunctionType *IFTy = IF->getFunctionType(); 4173 bool IsVarArg = IFTy->isVarArg(); 4174 4175 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4176 getIntrinsicInfoTableEntries(ID, Table); 4177 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4178 4179 // Walk the descriptors to extract overloaded types. 4180 SmallVector<Type *, 4> ArgTys; 4181 Intrinsic::MatchIntrinsicTypesResult Res = 4182 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4183 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4184 "Intrinsic has incorrect return type!", IF); 4185 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4186 "Intrinsic has incorrect argument type!", IF); 4187 4188 // Verify if the intrinsic call matches the vararg property. 4189 if (IsVarArg) 4190 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4191 "Intrinsic was not defined with variable arguments!", IF); 4192 else 4193 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4194 "Callsite was not defined with variable arguments!", IF); 4195 4196 // All descriptors should be absorbed by now. 4197 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4198 4199 // Now that we have the intrinsic ID and the actual argument types (and we 4200 // know they are legal for the intrinsic!) get the intrinsic name through the 4201 // usual means. This allows us to verify the mangling of argument types into 4202 // the name. 4203 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4204 Assert(ExpectedName == IF->getName(), 4205 "Intrinsic name not mangled correctly for type arguments! " 4206 "Should be: " + 4207 ExpectedName, 4208 IF); 4209 4210 // If the intrinsic takes MDNode arguments, verify that they are either global 4211 // or are local to *this* function. 4212 for (Value *V : Call.args()) 4213 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4214 visitMetadataAsValue(*MD, Call.getCaller()); 4215 4216 switch (ID) { 4217 default: 4218 break; 4219 case Intrinsic::coro_id: { 4220 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4221 if (isa<ConstantPointerNull>(InfoArg)) 4222 break; 4223 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4224 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4225 "info argument of llvm.coro.begin must refer to an initialized " 4226 "constant"); 4227 Constant *Init = GV->getInitializer(); 4228 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4229 "info argument of llvm.coro.begin must refer to either a struct or " 4230 "an array"); 4231 break; 4232 } 4233 case Intrinsic::experimental_constrained_fadd: 4234 case Intrinsic::experimental_constrained_fsub: 4235 case Intrinsic::experimental_constrained_fmul: 4236 case Intrinsic::experimental_constrained_fdiv: 4237 case Intrinsic::experimental_constrained_frem: 4238 case Intrinsic::experimental_constrained_fma: 4239 case Intrinsic::experimental_constrained_fptrunc: 4240 case Intrinsic::experimental_constrained_fpext: 4241 case Intrinsic::experimental_constrained_sqrt: 4242 case Intrinsic::experimental_constrained_pow: 4243 case Intrinsic::experimental_constrained_powi: 4244 case Intrinsic::experimental_constrained_sin: 4245 case Intrinsic::experimental_constrained_cos: 4246 case Intrinsic::experimental_constrained_exp: 4247 case Intrinsic::experimental_constrained_exp2: 4248 case Intrinsic::experimental_constrained_log: 4249 case Intrinsic::experimental_constrained_log10: 4250 case Intrinsic::experimental_constrained_log2: 4251 case Intrinsic::experimental_constrained_rint: 4252 case Intrinsic::experimental_constrained_nearbyint: 4253 case Intrinsic::experimental_constrained_maxnum: 4254 case Intrinsic::experimental_constrained_minnum: 4255 case Intrinsic::experimental_constrained_ceil: 4256 case Intrinsic::experimental_constrained_floor: 4257 case Intrinsic::experimental_constrained_round: 4258 case Intrinsic::experimental_constrained_trunc: 4259 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4260 break; 4261 case Intrinsic::dbg_declare: // llvm.dbg.declare 4262 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4263 "invalid llvm.dbg.declare intrinsic call 1", Call); 4264 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4265 break; 4266 case Intrinsic::dbg_addr: // llvm.dbg.addr 4267 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4268 break; 4269 case Intrinsic::dbg_value: // llvm.dbg.value 4270 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4271 break; 4272 case Intrinsic::dbg_label: // llvm.dbg.label 4273 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4274 break; 4275 case Intrinsic::memcpy: 4276 case Intrinsic::memmove: 4277 case Intrinsic::memset: { 4278 const auto *MI = cast<MemIntrinsic>(&Call); 4279 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4280 return Alignment == 0 || isPowerOf2_32(Alignment); 4281 }; 4282 Assert(IsValidAlignment(MI->getDestAlignment()), 4283 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4284 Call); 4285 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4286 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4287 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4288 Call); 4289 } 4290 4291 break; 4292 } 4293 case Intrinsic::memcpy_element_unordered_atomic: 4294 case Intrinsic::memmove_element_unordered_atomic: 4295 case Intrinsic::memset_element_unordered_atomic: { 4296 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4297 4298 ConstantInt *ElementSizeCI = 4299 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4300 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4301 Assert(ElementSizeVal.isPowerOf2(), 4302 "element size of the element-wise atomic memory intrinsic " 4303 "must be a power of 2", 4304 Call); 4305 4306 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4307 uint64_t Length = LengthCI->getZExtValue(); 4308 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4309 Assert((Length % ElementSize) == 0, 4310 "constant length must be a multiple of the element size in the " 4311 "element-wise atomic memory intrinsic", 4312 Call); 4313 } 4314 4315 auto IsValidAlignment = [&](uint64_t Alignment) { 4316 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4317 }; 4318 uint64_t DstAlignment = AMI->getDestAlignment(); 4319 Assert(IsValidAlignment(DstAlignment), 4320 "incorrect alignment of the destination argument", Call); 4321 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4322 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4323 Assert(IsValidAlignment(SrcAlignment), 4324 "incorrect alignment of the source argument", Call); 4325 } 4326 break; 4327 } 4328 case Intrinsic::gcroot: 4329 case Intrinsic::gcwrite: 4330 case Intrinsic::gcread: 4331 if (ID == Intrinsic::gcroot) { 4332 AllocaInst *AI = 4333 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4334 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4335 Assert(isa<Constant>(Call.getArgOperand(1)), 4336 "llvm.gcroot parameter #2 must be a constant.", Call); 4337 if (!AI->getAllocatedType()->isPointerTy()) { 4338 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4339 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4340 "or argument #2 must be a non-null constant.", 4341 Call); 4342 } 4343 } 4344 4345 Assert(Call.getParent()->getParent()->hasGC(), 4346 "Enclosing function does not use GC.", Call); 4347 break; 4348 case Intrinsic::init_trampoline: 4349 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4350 "llvm.init_trampoline parameter #2 must resolve to a function.", 4351 Call); 4352 break; 4353 case Intrinsic::prefetch: 4354 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4355 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4356 "invalid arguments to llvm.prefetch", Call); 4357 break; 4358 case Intrinsic::stackprotector: 4359 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4360 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4361 break; 4362 case Intrinsic::localescape: { 4363 BasicBlock *BB = Call.getParent(); 4364 Assert(BB == &BB->getParent()->front(), 4365 "llvm.localescape used outside of entry block", Call); 4366 Assert(!SawFrameEscape, 4367 "multiple calls to llvm.localescape in one function", Call); 4368 for (Value *Arg : Call.args()) { 4369 if (isa<ConstantPointerNull>(Arg)) 4370 continue; // Null values are allowed as placeholders. 4371 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4372 Assert(AI && AI->isStaticAlloca(), 4373 "llvm.localescape only accepts static allocas", Call); 4374 } 4375 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4376 SawFrameEscape = true; 4377 break; 4378 } 4379 case Intrinsic::localrecover: { 4380 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4381 Function *Fn = dyn_cast<Function>(FnArg); 4382 Assert(Fn && !Fn->isDeclaration(), 4383 "llvm.localrecover first " 4384 "argument must be function defined in this module", 4385 Call); 4386 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4387 auto &Entry = FrameEscapeInfo[Fn]; 4388 Entry.second = unsigned( 4389 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4390 break; 4391 } 4392 4393 case Intrinsic::experimental_gc_statepoint: 4394 if (auto *CI = dyn_cast<CallInst>(&Call)) 4395 Assert(!CI->isInlineAsm(), 4396 "gc.statepoint support for inline assembly unimplemented", CI); 4397 Assert(Call.getParent()->getParent()->hasGC(), 4398 "Enclosing function does not use GC.", Call); 4399 4400 verifyStatepoint(Call); 4401 break; 4402 case Intrinsic::experimental_gc_result: { 4403 Assert(Call.getParent()->getParent()->hasGC(), 4404 "Enclosing function does not use GC.", Call); 4405 // Are we tied to a statepoint properly? 4406 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4407 const Function *StatepointFn = 4408 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4409 Assert(StatepointFn && StatepointFn->isDeclaration() && 4410 StatepointFn->getIntrinsicID() == 4411 Intrinsic::experimental_gc_statepoint, 4412 "gc.result operand #1 must be from a statepoint", Call, 4413 Call.getArgOperand(0)); 4414 4415 // Assert that result type matches wrapped callee. 4416 const Value *Target = StatepointCall->getArgOperand(2); 4417 auto *PT = cast<PointerType>(Target->getType()); 4418 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4419 Assert(Call.getType() == TargetFuncType->getReturnType(), 4420 "gc.result result type does not match wrapped callee", Call); 4421 break; 4422 } 4423 case Intrinsic::experimental_gc_relocate: { 4424 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4425 4426 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4427 "gc.relocate must return a pointer or a vector of pointers", Call); 4428 4429 // Check that this relocate is correctly tied to the statepoint 4430 4431 // This is case for relocate on the unwinding path of an invoke statepoint 4432 if (LandingPadInst *LandingPad = 4433 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4434 4435 const BasicBlock *InvokeBB = 4436 LandingPad->getParent()->getUniquePredecessor(); 4437 4438 // Landingpad relocates should have only one predecessor with invoke 4439 // statepoint terminator 4440 Assert(InvokeBB, "safepoints should have unique landingpads", 4441 LandingPad->getParent()); 4442 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4443 InvokeBB); 4444 Assert(isStatepoint(InvokeBB->getTerminator()), 4445 "gc relocate should be linked to a statepoint", InvokeBB); 4446 } else { 4447 // In all other cases relocate should be tied to the statepoint directly. 4448 // This covers relocates on a normal return path of invoke statepoint and 4449 // relocates of a call statepoint. 4450 auto Token = Call.getArgOperand(0); 4451 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4452 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4453 } 4454 4455 // Verify rest of the relocate arguments. 4456 const CallBase &StatepointCall = 4457 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4458 4459 // Both the base and derived must be piped through the safepoint. 4460 Value *Base = Call.getArgOperand(1); 4461 Assert(isa<ConstantInt>(Base), 4462 "gc.relocate operand #2 must be integer offset", Call); 4463 4464 Value *Derived = Call.getArgOperand(2); 4465 Assert(isa<ConstantInt>(Derived), 4466 "gc.relocate operand #3 must be integer offset", Call); 4467 4468 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4469 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4470 // Check the bounds 4471 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4472 "gc.relocate: statepoint base index out of bounds", Call); 4473 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4474 "gc.relocate: statepoint derived index out of bounds", Call); 4475 4476 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4477 // section of the statepoint's argument. 4478 Assert(StatepointCall.arg_size() > 0, 4479 "gc.statepoint: insufficient arguments"); 4480 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4481 "gc.statement: number of call arguments must be constant integer"); 4482 const unsigned NumCallArgs = 4483 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4484 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4485 "gc.statepoint: mismatch in number of call arguments"); 4486 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4487 "gc.statepoint: number of transition arguments must be " 4488 "a constant integer"); 4489 const int NumTransitionArgs = 4490 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4491 ->getZExtValue(); 4492 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4493 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4494 "gc.statepoint: number of deoptimization arguments must be " 4495 "a constant integer"); 4496 const int NumDeoptArgs = 4497 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4498 ->getZExtValue(); 4499 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4500 const int GCParamArgsEnd = StatepointCall.arg_size(); 4501 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4502 "gc.relocate: statepoint base index doesn't fall within the " 4503 "'gc parameters' section of the statepoint call", 4504 Call); 4505 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4506 "gc.relocate: statepoint derived index doesn't fall within the " 4507 "'gc parameters' section of the statepoint call", 4508 Call); 4509 4510 // Relocated value must be either a pointer type or vector-of-pointer type, 4511 // but gc_relocate does not need to return the same pointer type as the 4512 // relocated pointer. It can be casted to the correct type later if it's 4513 // desired. However, they must have the same address space and 'vectorness' 4514 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4515 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4516 "gc.relocate: relocated value must be a gc pointer", Call); 4517 4518 auto ResultType = Call.getType(); 4519 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4520 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4521 "gc.relocate: vector relocates to vector and pointer to pointer", 4522 Call); 4523 Assert( 4524 ResultType->getPointerAddressSpace() == 4525 DerivedType->getPointerAddressSpace(), 4526 "gc.relocate: relocating a pointer shouldn't change its address space", 4527 Call); 4528 break; 4529 } 4530 case Intrinsic::eh_exceptioncode: 4531 case Intrinsic::eh_exceptionpointer: { 4532 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4533 "eh.exceptionpointer argument must be a catchpad", Call); 4534 break; 4535 } 4536 case Intrinsic::masked_load: { 4537 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4538 Call); 4539 4540 Value *Ptr = Call.getArgOperand(0); 4541 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4542 Value *Mask = Call.getArgOperand(2); 4543 Value *PassThru = Call.getArgOperand(3); 4544 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4545 Call); 4546 Assert(Alignment->getValue().isPowerOf2(), 4547 "masked_load: alignment must be a power of 2", Call); 4548 4549 // DataTy is the overloaded type 4550 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4551 Assert(DataTy == Call.getType(), 4552 "masked_load: return must match pointer type", Call); 4553 Assert(PassThru->getType() == DataTy, 4554 "masked_load: pass through and data type must match", Call); 4555 Assert(Mask->getType()->getVectorNumElements() == 4556 DataTy->getVectorNumElements(), 4557 "masked_load: vector mask must be same length as data", Call); 4558 break; 4559 } 4560 case Intrinsic::masked_store: { 4561 Value *Val = Call.getArgOperand(0); 4562 Value *Ptr = Call.getArgOperand(1); 4563 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4564 Value *Mask = Call.getArgOperand(3); 4565 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4566 Call); 4567 Assert(Alignment->getValue().isPowerOf2(), 4568 "masked_store: alignment must be a power of 2", Call); 4569 4570 // DataTy is the overloaded type 4571 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4572 Assert(DataTy == Val->getType(), 4573 "masked_store: storee must match pointer type", Call); 4574 Assert(Mask->getType()->getVectorNumElements() == 4575 DataTy->getVectorNumElements(), 4576 "masked_store: vector mask must be same length as data", Call); 4577 break; 4578 } 4579 4580 case Intrinsic::experimental_guard: { 4581 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4582 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4583 "experimental_guard must have exactly one " 4584 "\"deopt\" operand bundle"); 4585 break; 4586 } 4587 4588 case Intrinsic::experimental_deoptimize: { 4589 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4590 Call); 4591 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4592 "experimental_deoptimize must have exactly one " 4593 "\"deopt\" operand bundle"); 4594 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4595 "experimental_deoptimize return type must match caller return type"); 4596 4597 if (isa<CallInst>(Call)) { 4598 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4599 Assert(RI, 4600 "calls to experimental_deoptimize must be followed by a return"); 4601 4602 if (!Call.getType()->isVoidTy() && RI) 4603 Assert(RI->getReturnValue() == &Call, 4604 "calls to experimental_deoptimize must be followed by a return " 4605 "of the value computed by experimental_deoptimize"); 4606 } 4607 4608 break; 4609 } 4610 case Intrinsic::sadd_sat: 4611 case Intrinsic::uadd_sat: 4612 case Intrinsic::ssub_sat: 4613 case Intrinsic::usub_sat: { 4614 Value *Op1 = Call.getArgOperand(0); 4615 Value *Op2 = Call.getArgOperand(1); 4616 Assert(Op1->getType()->isIntOrIntVectorTy(), 4617 "first operand of [us][add|sub]_sat must be an int type or vector " 4618 "of ints"); 4619 Assert(Op2->getType()->isIntOrIntVectorTy(), 4620 "second operand of [us][add|sub]_sat must be an int type or vector " 4621 "of ints"); 4622 break; 4623 } 4624 case Intrinsic::smul_fix: 4625 case Intrinsic::smul_fix_sat: 4626 case Intrinsic::umul_fix: { 4627 Value *Op1 = Call.getArgOperand(0); 4628 Value *Op2 = Call.getArgOperand(1); 4629 Assert(Op1->getType()->isIntOrIntVectorTy(), 4630 "first operand of [us]mul_fix[_sat] must be an int type or vector " 4631 "of ints"); 4632 Assert(Op2->getType()->isIntOrIntVectorTy(), 4633 "second operand of [us]mul_fix_[sat] must be an int type or vector " 4634 "of ints"); 4635 4636 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4637 Assert(Op3->getType()->getBitWidth() <= 32, 4638 "third argument of [us]mul_fix[_sat] must fit within 32 bits"); 4639 4640 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) { 4641 Assert( 4642 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4643 "the scale of smul_fix[_sat] must be less than the width of the operands"); 4644 } else { 4645 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4646 "the scale of umul_fix[_sat] must be less than or equal to the width of " 4647 "the operands"); 4648 } 4649 break; 4650 } 4651 case Intrinsic::lround: 4652 case Intrinsic::llround: 4653 case Intrinsic::lrint: 4654 case Intrinsic::llrint: { 4655 Type *ValTy = Call.getArgOperand(0)->getType(); 4656 Type *ResultTy = Call.getType(); 4657 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4658 "Intrinsic does not support vectors", &Call); 4659 break; 4660 } 4661 }; 4662 } 4663 4664 /// Carefully grab the subprogram from a local scope. 4665 /// 4666 /// This carefully grabs the subprogram from a local scope, avoiding the 4667 /// built-in assertions that would typically fire. 4668 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4669 if (!LocalScope) 4670 return nullptr; 4671 4672 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4673 return SP; 4674 4675 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4676 return getSubprogram(LB->getRawScope()); 4677 4678 // Just return null; broken scope chains are checked elsewhere. 4679 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4680 return nullptr; 4681 } 4682 4683 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4684 unsigned NumOperands = FPI.getNumArgOperands(); 4685 bool HasExceptionMD = false; 4686 bool HasRoundingMD = false; 4687 switch (FPI.getIntrinsicID()) { 4688 case Intrinsic::experimental_constrained_sqrt: 4689 case Intrinsic::experimental_constrained_sin: 4690 case Intrinsic::experimental_constrained_cos: 4691 case Intrinsic::experimental_constrained_exp: 4692 case Intrinsic::experimental_constrained_exp2: 4693 case Intrinsic::experimental_constrained_log: 4694 case Intrinsic::experimental_constrained_log10: 4695 case Intrinsic::experimental_constrained_log2: 4696 case Intrinsic::experimental_constrained_rint: 4697 case Intrinsic::experimental_constrained_nearbyint: 4698 case Intrinsic::experimental_constrained_ceil: 4699 case Intrinsic::experimental_constrained_floor: 4700 case Intrinsic::experimental_constrained_round: 4701 case Intrinsic::experimental_constrained_trunc: 4702 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", 4703 &FPI); 4704 HasExceptionMD = true; 4705 HasRoundingMD = true; 4706 break; 4707 4708 case Intrinsic::experimental_constrained_fma: 4709 Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic", 4710 &FPI); 4711 HasExceptionMD = true; 4712 HasRoundingMD = true; 4713 break; 4714 4715 case Intrinsic::experimental_constrained_fadd: 4716 case Intrinsic::experimental_constrained_fsub: 4717 case Intrinsic::experimental_constrained_fmul: 4718 case Intrinsic::experimental_constrained_fdiv: 4719 case Intrinsic::experimental_constrained_frem: 4720 case Intrinsic::experimental_constrained_pow: 4721 case Intrinsic::experimental_constrained_powi: 4722 case Intrinsic::experimental_constrained_maxnum: 4723 case Intrinsic::experimental_constrained_minnum: 4724 Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic", 4725 &FPI); 4726 HasExceptionMD = true; 4727 HasRoundingMD = true; 4728 break; 4729 4730 case Intrinsic::experimental_constrained_fptrunc: 4731 case Intrinsic::experimental_constrained_fpext: { 4732 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4733 Assert((NumOperands == 3), 4734 "invalid arguments for constrained FP intrinsic", &FPI); 4735 HasRoundingMD = true; 4736 } else { 4737 Assert((NumOperands == 2), 4738 "invalid arguments for constrained FP intrinsic", &FPI); 4739 } 4740 HasExceptionMD = true; 4741 4742 Value *Operand = FPI.getArgOperand(0); 4743 Type *OperandTy = Operand->getType(); 4744 Value *Result = &FPI; 4745 Type *ResultTy = Result->getType(); 4746 Assert(OperandTy->isFPOrFPVectorTy(), 4747 "Intrinsic first argument must be FP or FP vector", &FPI); 4748 Assert(ResultTy->isFPOrFPVectorTy(), 4749 "Intrinsic result must be FP or FP vector", &FPI); 4750 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 4751 "Intrinsic first argument and result disagree on vector use", &FPI); 4752 if (OperandTy->isVectorTy()) { 4753 auto *OperandVecTy = cast<VectorType>(OperandTy); 4754 auto *ResultVecTy = cast<VectorType>(ResultTy); 4755 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 4756 "Intrinsic first argument and result vector lengths must be equal", 4757 &FPI); 4758 } 4759 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4760 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 4761 "Intrinsic first argument's type must be larger than result type", 4762 &FPI); 4763 } else { 4764 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 4765 "Intrinsic first argument's type must be smaller than result type", 4766 &FPI); 4767 } 4768 } 4769 break; 4770 4771 default: 4772 llvm_unreachable("Invalid constrained FP intrinsic!"); 4773 } 4774 4775 // If a non-metadata argument is passed in a metadata slot then the 4776 // error will be caught earlier when the incorrect argument doesn't 4777 // match the specification in the intrinsic call table. Thus, no 4778 // argument type check is needed here. 4779 4780 if (HasExceptionMD) { 4781 Assert(FPI.getExceptionBehavior().hasValue(), 4782 "invalid exception behavior argument", &FPI); 4783 } 4784 if (HasRoundingMD) { 4785 Assert(FPI.getRoundingMode().hasValue(), 4786 "invalid rounding mode argument", &FPI); 4787 } 4788 } 4789 4790 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4791 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4792 AssertDI(isa<ValueAsMetadata>(MD) || 4793 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4794 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4795 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4796 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4797 DII.getRawVariable()); 4798 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4799 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4800 DII.getRawExpression()); 4801 4802 // Ignore broken !dbg attachments; they're checked elsewhere. 4803 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4804 if (!isa<DILocation>(N)) 4805 return; 4806 4807 BasicBlock *BB = DII.getParent(); 4808 Function *F = BB ? BB->getParent() : nullptr; 4809 4810 // The scopes for variables and !dbg attachments must agree. 4811 DILocalVariable *Var = DII.getVariable(); 4812 DILocation *Loc = DII.getDebugLoc(); 4813 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4814 &DII, BB, F); 4815 4816 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4817 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4818 if (!VarSP || !LocSP) 4819 return; // Broken scope chains are checked elsewhere. 4820 4821 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4822 " variable and !dbg attachment", 4823 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4824 Loc->getScope()->getSubprogram()); 4825 4826 // This check is redundant with one in visitLocalVariable(). 4827 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4828 Var->getRawType()); 4829 if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType())) 4830 if (Type->isBlockByrefStruct()) 4831 AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(), 4832 "BlockByRef variable without complex expression", Var, &DII); 4833 4834 verifyFnArgs(DII); 4835 } 4836 4837 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4838 AssertDI(isa<DILabel>(DLI.getRawLabel()), 4839 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4840 DLI.getRawLabel()); 4841 4842 // Ignore broken !dbg attachments; they're checked elsewhere. 4843 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4844 if (!isa<DILocation>(N)) 4845 return; 4846 4847 BasicBlock *BB = DLI.getParent(); 4848 Function *F = BB ? BB->getParent() : nullptr; 4849 4850 // The scopes for variables and !dbg attachments must agree. 4851 DILabel *Label = DLI.getLabel(); 4852 DILocation *Loc = DLI.getDebugLoc(); 4853 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4854 &DLI, BB, F); 4855 4856 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4857 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4858 if (!LabelSP || !LocSP) 4859 return; 4860 4861 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4862 " label and !dbg attachment", 4863 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4864 Loc->getScope()->getSubprogram()); 4865 } 4866 4867 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 4868 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4869 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4870 4871 // We don't know whether this intrinsic verified correctly. 4872 if (!V || !E || !E->isValid()) 4873 return; 4874 4875 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4876 auto Fragment = E->getFragmentInfo(); 4877 if (!Fragment) 4878 return; 4879 4880 // The frontend helps out GDB by emitting the members of local anonymous 4881 // unions as artificial local variables with shared storage. When SROA splits 4882 // the storage for artificial local variables that are smaller than the entire 4883 // union, the overhang piece will be outside of the allotted space for the 4884 // variable and this check fails. 4885 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4886 if (V->isArtificial()) 4887 return; 4888 4889 verifyFragmentExpression(*V, *Fragment, &I); 4890 } 4891 4892 template <typename ValueOrMetadata> 4893 void Verifier::verifyFragmentExpression(const DIVariable &V, 4894 DIExpression::FragmentInfo Fragment, 4895 ValueOrMetadata *Desc) { 4896 // If there's no size, the type is broken, but that should be checked 4897 // elsewhere. 4898 auto VarSize = V.getSizeInBits(); 4899 if (!VarSize) 4900 return; 4901 4902 unsigned FragSize = Fragment.SizeInBits; 4903 unsigned FragOffset = Fragment.OffsetInBits; 4904 AssertDI(FragSize + FragOffset <= *VarSize, 4905 "fragment is larger than or outside of variable", Desc, &V); 4906 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 4907 } 4908 4909 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 4910 // This function does not take the scope of noninlined function arguments into 4911 // account. Don't run it if current function is nodebug, because it may 4912 // contain inlined debug intrinsics. 4913 if (!HasDebugInfo) 4914 return; 4915 4916 // For performance reasons only check non-inlined ones. 4917 if (I.getDebugLoc()->getInlinedAt()) 4918 return; 4919 4920 DILocalVariable *Var = I.getVariable(); 4921 AssertDI(Var, "dbg intrinsic without variable"); 4922 4923 unsigned ArgNo = Var->getArg(); 4924 if (!ArgNo) 4925 return; 4926 4927 // Verify there are no duplicate function argument debug info entries. 4928 // These will cause hard-to-debug assertions in the DWARF backend. 4929 if (DebugFnArgs.size() < ArgNo) 4930 DebugFnArgs.resize(ArgNo, nullptr); 4931 4932 auto *Prev = DebugFnArgs[ArgNo - 1]; 4933 DebugFnArgs[ArgNo - 1] = Var; 4934 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 4935 Prev, Var); 4936 } 4937 4938 void Verifier::verifyCompileUnits() { 4939 // When more than one Module is imported into the same context, such as during 4940 // an LTO build before linking the modules, ODR type uniquing may cause types 4941 // to point to a different CU. This check does not make sense in this case. 4942 if (M.getContext().isODRUniquingDebugTypes()) 4943 return; 4944 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 4945 SmallPtrSet<const Metadata *, 2> Listed; 4946 if (CUs) 4947 Listed.insert(CUs->op_begin(), CUs->op_end()); 4948 for (auto *CU : CUVisited) 4949 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 4950 CUVisited.clear(); 4951 } 4952 4953 void Verifier::verifyDeoptimizeCallingConvs() { 4954 if (DeoptimizeDeclarations.empty()) 4955 return; 4956 4957 const Function *First = DeoptimizeDeclarations[0]; 4958 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 4959 Assert(First->getCallingConv() == F->getCallingConv(), 4960 "All llvm.experimental.deoptimize declarations must have the same " 4961 "calling convention", 4962 First, F); 4963 } 4964 } 4965 4966 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 4967 bool HasSource = F.getSource().hasValue(); 4968 if (!HasSourceDebugInfo.count(&U)) 4969 HasSourceDebugInfo[&U] = HasSource; 4970 AssertDI(HasSource == HasSourceDebugInfo[&U], 4971 "inconsistent use of embedded source"); 4972 } 4973 4974 //===----------------------------------------------------------------------===// 4975 // Implement the public interfaces to this file... 4976 //===----------------------------------------------------------------------===// 4977 4978 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4979 Function &F = const_cast<Function &>(f); 4980 4981 // Don't use a raw_null_ostream. Printing IR is expensive. 4982 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 4983 4984 // Note that this function's return value is inverted from what you would 4985 // expect of a function called "verify". 4986 return !V.verify(F); 4987 } 4988 4989 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 4990 bool *BrokenDebugInfo) { 4991 // Don't use a raw_null_ostream. Printing IR is expensive. 4992 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 4993 4994 bool Broken = false; 4995 for (const Function &F : M) 4996 Broken |= !V.verify(F); 4997 4998 Broken |= !V.verify(); 4999 if (BrokenDebugInfo) 5000 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5001 // Note that this function's return value is inverted from what you would 5002 // expect of a function called "verify". 5003 return Broken; 5004 } 5005 5006 namespace { 5007 5008 struct VerifierLegacyPass : public FunctionPass { 5009 static char ID; 5010 5011 std::unique_ptr<Verifier> V; 5012 bool FatalErrors = true; 5013 5014 VerifierLegacyPass() : FunctionPass(ID) { 5015 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5016 } 5017 explicit VerifierLegacyPass(bool FatalErrors) 5018 : FunctionPass(ID), 5019 FatalErrors(FatalErrors) { 5020 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5021 } 5022 5023 bool doInitialization(Module &M) override { 5024 V = llvm::make_unique<Verifier>( 5025 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5026 return false; 5027 } 5028 5029 bool runOnFunction(Function &F) override { 5030 if (!V->verify(F) && FatalErrors) { 5031 errs() << "in function " << F.getName() << '\n'; 5032 report_fatal_error("Broken function found, compilation aborted!"); 5033 } 5034 return false; 5035 } 5036 5037 bool doFinalization(Module &M) override { 5038 bool HasErrors = false; 5039 for (Function &F : M) 5040 if (F.isDeclaration()) 5041 HasErrors |= !V->verify(F); 5042 5043 HasErrors |= !V->verify(); 5044 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5045 report_fatal_error("Broken module found, compilation aborted!"); 5046 return false; 5047 } 5048 5049 void getAnalysisUsage(AnalysisUsage &AU) const override { 5050 AU.setPreservesAll(); 5051 } 5052 }; 5053 5054 } // end anonymous namespace 5055 5056 /// Helper to issue failure from the TBAA verification 5057 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5058 if (Diagnostic) 5059 return Diagnostic->CheckFailed(Args...); 5060 } 5061 5062 #define AssertTBAA(C, ...) \ 5063 do { \ 5064 if (!(C)) { \ 5065 CheckFailed(__VA_ARGS__); \ 5066 return false; \ 5067 } \ 5068 } while (false) 5069 5070 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5071 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5072 /// struct-type node describing an aggregate data structure (like a struct). 5073 TBAAVerifier::TBAABaseNodeSummary 5074 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5075 bool IsNewFormat) { 5076 if (BaseNode->getNumOperands() < 2) { 5077 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5078 return {true, ~0u}; 5079 } 5080 5081 auto Itr = TBAABaseNodes.find(BaseNode); 5082 if (Itr != TBAABaseNodes.end()) 5083 return Itr->second; 5084 5085 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5086 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5087 (void)InsertResult; 5088 assert(InsertResult.second && "We just checked!"); 5089 return Result; 5090 } 5091 5092 TBAAVerifier::TBAABaseNodeSummary 5093 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5094 bool IsNewFormat) { 5095 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5096 5097 if (BaseNode->getNumOperands() == 2) { 5098 // Scalar nodes can only be accessed at offset 0. 5099 return isValidScalarTBAANode(BaseNode) 5100 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5101 : InvalidNode; 5102 } 5103 5104 if (IsNewFormat) { 5105 if (BaseNode->getNumOperands() % 3 != 0) { 5106 CheckFailed("Access tag nodes must have the number of operands that is a " 5107 "multiple of 3!", BaseNode); 5108 return InvalidNode; 5109 } 5110 } else { 5111 if (BaseNode->getNumOperands() % 2 != 1) { 5112 CheckFailed("Struct tag nodes must have an odd number of operands!", 5113 BaseNode); 5114 return InvalidNode; 5115 } 5116 } 5117 5118 // Check the type size field. 5119 if (IsNewFormat) { 5120 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5121 BaseNode->getOperand(1)); 5122 if (!TypeSizeNode) { 5123 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5124 return InvalidNode; 5125 } 5126 } 5127 5128 // Check the type name field. In the new format it can be anything. 5129 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5130 CheckFailed("Struct tag nodes have a string as their first operand", 5131 BaseNode); 5132 return InvalidNode; 5133 } 5134 5135 bool Failed = false; 5136 5137 Optional<APInt> PrevOffset; 5138 unsigned BitWidth = ~0u; 5139 5140 // We've already checked that BaseNode is not a degenerate root node with one 5141 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5142 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5143 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5144 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5145 Idx += NumOpsPerField) { 5146 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5147 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5148 if (!isa<MDNode>(FieldTy)) { 5149 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5150 Failed = true; 5151 continue; 5152 } 5153 5154 auto *OffsetEntryCI = 5155 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5156 if (!OffsetEntryCI) { 5157 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5158 Failed = true; 5159 continue; 5160 } 5161 5162 if (BitWidth == ~0u) 5163 BitWidth = OffsetEntryCI->getBitWidth(); 5164 5165 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5166 CheckFailed( 5167 "Bitwidth between the offsets and struct type entries must match", &I, 5168 BaseNode); 5169 Failed = true; 5170 continue; 5171 } 5172 5173 // NB! As far as I can tell, we generate a non-strictly increasing offset 5174 // sequence only from structs that have zero size bit fields. When 5175 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5176 // pick the field lexically the latest in struct type metadata node. This 5177 // mirrors the actual behavior of the alias analysis implementation. 5178 bool IsAscending = 5179 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5180 5181 if (!IsAscending) { 5182 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5183 Failed = true; 5184 } 5185 5186 PrevOffset = OffsetEntryCI->getValue(); 5187 5188 if (IsNewFormat) { 5189 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5190 BaseNode->getOperand(Idx + 2)); 5191 if (!MemberSizeNode) { 5192 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5193 Failed = true; 5194 continue; 5195 } 5196 } 5197 } 5198 5199 return Failed ? InvalidNode 5200 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5201 } 5202 5203 static bool IsRootTBAANode(const MDNode *MD) { 5204 return MD->getNumOperands() < 2; 5205 } 5206 5207 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5208 SmallPtrSetImpl<const MDNode *> &Visited) { 5209 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5210 return false; 5211 5212 if (!isa<MDString>(MD->getOperand(0))) 5213 return false; 5214 5215 if (MD->getNumOperands() == 3) { 5216 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5217 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5218 return false; 5219 } 5220 5221 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5222 return Parent && Visited.insert(Parent).second && 5223 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5224 } 5225 5226 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5227 auto ResultIt = TBAAScalarNodes.find(MD); 5228 if (ResultIt != TBAAScalarNodes.end()) 5229 return ResultIt->second; 5230 5231 SmallPtrSet<const MDNode *, 4> Visited; 5232 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5233 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5234 (void)InsertResult; 5235 assert(InsertResult.second && "Just checked!"); 5236 5237 return Result; 5238 } 5239 5240 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5241 /// Offset in place to be the offset within the field node returned. 5242 /// 5243 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5244 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5245 const MDNode *BaseNode, 5246 APInt &Offset, 5247 bool IsNewFormat) { 5248 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5249 5250 // Scalar nodes have only one possible "field" -- their parent in the access 5251 // hierarchy. Offset must be zero at this point, but our caller is supposed 5252 // to Assert that. 5253 if (BaseNode->getNumOperands() == 2) 5254 return cast<MDNode>(BaseNode->getOperand(1)); 5255 5256 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5257 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5258 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5259 Idx += NumOpsPerField) { 5260 auto *OffsetEntryCI = 5261 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5262 if (OffsetEntryCI->getValue().ugt(Offset)) { 5263 if (Idx == FirstFieldOpNo) { 5264 CheckFailed("Could not find TBAA parent in struct type node", &I, 5265 BaseNode, &Offset); 5266 return nullptr; 5267 } 5268 5269 unsigned PrevIdx = Idx - NumOpsPerField; 5270 auto *PrevOffsetEntryCI = 5271 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5272 Offset -= PrevOffsetEntryCI->getValue(); 5273 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5274 } 5275 } 5276 5277 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5278 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5279 BaseNode->getOperand(LastIdx + 1)); 5280 Offset -= LastOffsetEntryCI->getValue(); 5281 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5282 } 5283 5284 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5285 if (!Type || Type->getNumOperands() < 3) 5286 return false; 5287 5288 // In the new format type nodes shall have a reference to the parent type as 5289 // its first operand. 5290 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5291 if (!Parent) 5292 return false; 5293 5294 return true; 5295 } 5296 5297 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5298 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5299 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5300 isa<AtomicCmpXchgInst>(I), 5301 "This instruction shall not have a TBAA access tag!", &I); 5302 5303 bool IsStructPathTBAA = 5304 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5305 5306 AssertTBAA( 5307 IsStructPathTBAA, 5308 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5309 5310 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5311 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5312 5313 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5314 5315 if (IsNewFormat) { 5316 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5317 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5318 } else { 5319 AssertTBAA(MD->getNumOperands() < 5, 5320 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5321 } 5322 5323 // Check the access size field. 5324 if (IsNewFormat) { 5325 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5326 MD->getOperand(3)); 5327 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5328 } 5329 5330 // Check the immutability flag. 5331 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5332 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5333 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5334 MD->getOperand(ImmutabilityFlagOpNo)); 5335 AssertTBAA(IsImmutableCI, 5336 "Immutability tag on struct tag metadata must be a constant", 5337 &I, MD); 5338 AssertTBAA( 5339 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5340 "Immutability part of the struct tag metadata must be either 0 or 1", 5341 &I, MD); 5342 } 5343 5344 AssertTBAA(BaseNode && AccessType, 5345 "Malformed struct tag metadata: base and access-type " 5346 "should be non-null and point to Metadata nodes", 5347 &I, MD, BaseNode, AccessType); 5348 5349 if (!IsNewFormat) { 5350 AssertTBAA(isValidScalarTBAANode(AccessType), 5351 "Access type node must be a valid scalar type", &I, MD, 5352 AccessType); 5353 } 5354 5355 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5356 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5357 5358 APInt Offset = OffsetCI->getValue(); 5359 bool SeenAccessTypeInPath = false; 5360 5361 SmallPtrSet<MDNode *, 4> StructPath; 5362 5363 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5364 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5365 IsNewFormat)) { 5366 if (!StructPath.insert(BaseNode).second) { 5367 CheckFailed("Cycle detected in struct path", &I, MD); 5368 return false; 5369 } 5370 5371 bool Invalid; 5372 unsigned BaseNodeBitWidth; 5373 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5374 IsNewFormat); 5375 5376 // If the base node is invalid in itself, then we've already printed all the 5377 // errors we wanted to print. 5378 if (Invalid) 5379 return false; 5380 5381 SeenAccessTypeInPath |= BaseNode == AccessType; 5382 5383 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5384 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5385 &I, MD, &Offset); 5386 5387 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5388 (BaseNodeBitWidth == 0 && Offset == 0) || 5389 (IsNewFormat && BaseNodeBitWidth == ~0u), 5390 "Access bit-width not the same as description bit-width", &I, MD, 5391 BaseNodeBitWidth, Offset.getBitWidth()); 5392 5393 if (IsNewFormat && SeenAccessTypeInPath) 5394 break; 5395 } 5396 5397 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5398 &I, MD); 5399 return true; 5400 } 5401 5402 char VerifierLegacyPass::ID = 0; 5403 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5404 5405 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5406 return new VerifierLegacyPass(FatalErrors); 5407 } 5408 5409 AnalysisKey VerifierAnalysis::Key; 5410 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5411 ModuleAnalysisManager &) { 5412 Result Res; 5413 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5414 return Res; 5415 } 5416 5417 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5418 FunctionAnalysisManager &) { 5419 return { llvm::verifyFunction(F, &dbgs()), false }; 5420 } 5421 5422 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5423 auto Res = AM.getResult<VerifierAnalysis>(M); 5424 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5425 report_fatal_error("Broken module found, compilation aborted!"); 5426 5427 return PreservedAnalyses::all(); 5428 } 5429 5430 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5431 auto res = AM.getResult<VerifierAnalysis>(F); 5432 if (res.IRBroken && FatalErrors) 5433 report_fatal_error("Broken function found, compilation aborted!"); 5434 5435 return PreservedAnalyses::all(); 5436 } 5437