1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // basic correctness checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/BinaryFormat/Dwarf.h" 62 #include "llvm/IR/Argument.h" 63 #include "llvm/IR/Attributes.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/CallingConv.h" 67 #include "llvm/IR/Comdat.h" 68 #include "llvm/IR/Constant.h" 69 #include "llvm/IR/ConstantRange.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include "llvm/IR/DebugLoc.h" 74 #include "llvm/IR/DerivedTypes.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/GlobalAlias.h" 78 #include "llvm/IR/GlobalValue.h" 79 #include "llvm/IR/GlobalVariable.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstVisitor.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/IntrinsicsAArch64.h" 88 #include "llvm/IR/IntrinsicsARM.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include <algorithm> 109 #include <cassert> 110 #include <cstdint> 111 #include <memory> 112 #include <string> 113 #include <utility> 114 115 using namespace llvm; 116 117 static cl::opt<bool> VerifyNoAliasScopeDomination( 118 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 119 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 120 "scopes are not dominating")); 121 122 namespace llvm { 123 124 struct VerifierSupport { 125 raw_ostream *OS; 126 const Module &M; 127 ModuleSlotTracker MST; 128 Triple TT; 129 const DataLayout &DL; 130 LLVMContext &Context; 131 132 /// Track the brokenness of the module while recursively visiting. 133 bool Broken = false; 134 /// Broken debug info can be "recovered" from by stripping the debug info. 135 bool BrokenDebugInfo = false; 136 /// Whether to treat broken debug info as an error. 137 bool TreatBrokenDebugInfoAsError = true; 138 139 explicit VerifierSupport(raw_ostream *OS, const Module &M) 140 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 141 Context(M.getContext()) {} 142 143 private: 144 void Write(const Module *M) { 145 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 146 } 147 148 void Write(const Value *V) { 149 if (V) 150 Write(*V); 151 } 152 153 void Write(const Value &V) { 154 if (isa<Instruction>(V)) { 155 V.print(*OS, MST); 156 *OS << '\n'; 157 } else { 158 V.printAsOperand(*OS, true, MST); 159 *OS << '\n'; 160 } 161 } 162 163 void Write(const Metadata *MD) { 164 if (!MD) 165 return; 166 MD->print(*OS, MST, &M); 167 *OS << '\n'; 168 } 169 170 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 171 Write(MD.get()); 172 } 173 174 void Write(const NamedMDNode *NMD) { 175 if (!NMD) 176 return; 177 NMD->print(*OS, MST); 178 *OS << '\n'; 179 } 180 181 void Write(Type *T) { 182 if (!T) 183 return; 184 *OS << ' ' << *T; 185 } 186 187 void Write(const Comdat *C) { 188 if (!C) 189 return; 190 *OS << *C; 191 } 192 193 void Write(const APInt *AI) { 194 if (!AI) 195 return; 196 *OS << *AI << '\n'; 197 } 198 199 void Write(const unsigned i) { *OS << i << '\n'; } 200 201 // NOLINTNEXTLINE(readability-identifier-naming) 202 void Write(const Attribute *A) { 203 if (!A) 204 return; 205 *OS << A->getAsString() << '\n'; 206 } 207 208 // NOLINTNEXTLINE(readability-identifier-naming) 209 void Write(const AttributeSet *AS) { 210 if (!AS) 211 return; 212 *OS << AS->getAsString() << '\n'; 213 } 214 215 // NOLINTNEXTLINE(readability-identifier-naming) 216 void Write(const AttributeList *AL) { 217 if (!AL) 218 return; 219 AL->print(*OS); 220 } 221 222 template <typename T> void Write(ArrayRef<T> Vs) { 223 for (const T &V : Vs) 224 Write(V); 225 } 226 227 template <typename T1, typename... Ts> 228 void WriteTs(const T1 &V1, const Ts &... Vs) { 229 Write(V1); 230 WriteTs(Vs...); 231 } 232 233 template <typename... Ts> void WriteTs() {} 234 235 public: 236 /// A check failed, so printout out the condition and the message. 237 /// 238 /// This provides a nice place to put a breakpoint if you want to see why 239 /// something is not correct. 240 void CheckFailed(const Twine &Message) { 241 if (OS) 242 *OS << Message << '\n'; 243 Broken = true; 244 } 245 246 /// A check failed (with values to print). 247 /// 248 /// This calls the Message-only version so that the above is easier to set a 249 /// breakpoint on. 250 template <typename T1, typename... Ts> 251 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 252 CheckFailed(Message); 253 if (OS) 254 WriteTs(V1, Vs...); 255 } 256 257 /// A debug info check failed. 258 void DebugInfoCheckFailed(const Twine &Message) { 259 if (OS) 260 *OS << Message << '\n'; 261 Broken |= TreatBrokenDebugInfoAsError; 262 BrokenDebugInfo = true; 263 } 264 265 /// A debug info check failed (with values to print). 266 template <typename T1, typename... Ts> 267 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 268 const Ts &... Vs) { 269 DebugInfoCheckFailed(Message); 270 if (OS) 271 WriteTs(V1, Vs...); 272 } 273 }; 274 275 } // namespace llvm 276 277 namespace { 278 279 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 280 friend class InstVisitor<Verifier>; 281 282 // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so 283 // the alignment size should not exceed 2^15. Since encode(Align) 284 // would plus the shift value by 1, the alignment size should 285 // not exceed 2^14, otherwise it can NOT be properly lowered 286 // in backend. 287 static constexpr unsigned ParamMaxAlignment = 1 << 14; 288 DominatorTree DT; 289 290 /// When verifying a basic block, keep track of all of the 291 /// instructions we have seen so far. 292 /// 293 /// This allows us to do efficient dominance checks for the case when an 294 /// instruction has an operand that is an instruction in the same block. 295 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 296 297 /// Keep track of the metadata nodes that have been checked already. 298 SmallPtrSet<const Metadata *, 32> MDNodes; 299 300 /// Keep track which DISubprogram is attached to which function. 301 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 302 303 /// Track all DICompileUnits visited. 304 SmallPtrSet<const Metadata *, 2> CUVisited; 305 306 /// The result type for a landingpad. 307 Type *LandingPadResultTy; 308 309 /// Whether we've seen a call to @llvm.localescape in this function 310 /// already. 311 bool SawFrameEscape; 312 313 /// Whether the current function has a DISubprogram attached to it. 314 bool HasDebugInfo = false; 315 316 /// The current source language. 317 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 318 319 /// Whether source was present on the first DIFile encountered in each CU. 320 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 321 322 /// Stores the count of how many objects were passed to llvm.localescape for a 323 /// given function and the largest index passed to llvm.localrecover. 324 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 325 326 // Maps catchswitches and cleanuppads that unwind to siblings to the 327 // terminators that indicate the unwind, used to detect cycles therein. 328 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 329 330 /// Cache of constants visited in search of ConstantExprs. 331 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 332 333 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 334 SmallVector<const Function *, 4> DeoptimizeDeclarations; 335 336 /// Cache of attribute lists verified. 337 SmallPtrSet<const void *, 32> AttributeListsVisited; 338 339 // Verify that this GlobalValue is only used in this module. 340 // This map is used to avoid visiting uses twice. We can arrive at a user 341 // twice, if they have multiple operands. In particular for very large 342 // constant expressions, we can arrive at a particular user many times. 343 SmallPtrSet<const Value *, 32> GlobalValueVisited; 344 345 // Keeps track of duplicate function argument debug info. 346 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 347 348 TBAAVerifier TBAAVerifyHelper; 349 350 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 351 352 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 353 354 public: 355 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 356 const Module &M) 357 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 358 SawFrameEscape(false), TBAAVerifyHelper(this) { 359 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 360 } 361 362 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 363 364 bool verify(const Function &F) { 365 assert(F.getParent() == &M && 366 "An instance of this class only works with a specific module!"); 367 368 // First ensure the function is well-enough formed to compute dominance 369 // information, and directly compute a dominance tree. We don't rely on the 370 // pass manager to provide this as it isolates us from a potentially 371 // out-of-date dominator tree and makes it significantly more complex to run 372 // this code outside of a pass manager. 373 // FIXME: It's really gross that we have to cast away constness here. 374 if (!F.empty()) 375 DT.recalculate(const_cast<Function &>(F)); 376 377 for (const BasicBlock &BB : F) { 378 if (!BB.empty() && BB.back().isTerminator()) 379 continue; 380 381 if (OS) { 382 *OS << "Basic Block in function '" << F.getName() 383 << "' does not have terminator!\n"; 384 BB.printAsOperand(*OS, true, MST); 385 *OS << "\n"; 386 } 387 return false; 388 } 389 390 Broken = false; 391 // FIXME: We strip const here because the inst visitor strips const. 392 visit(const_cast<Function &>(F)); 393 verifySiblingFuncletUnwinds(); 394 InstsInThisBlock.clear(); 395 DebugFnArgs.clear(); 396 LandingPadResultTy = nullptr; 397 SawFrameEscape = false; 398 SiblingFuncletInfo.clear(); 399 verifyNoAliasScopeDecl(); 400 NoAliasScopeDecls.clear(); 401 402 return !Broken; 403 } 404 405 /// Verify the module that this instance of \c Verifier was initialized with. 406 bool verify() { 407 Broken = false; 408 409 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 410 for (const Function &F : M) 411 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 412 DeoptimizeDeclarations.push_back(&F); 413 414 // Now that we've visited every function, verify that we never asked to 415 // recover a frame index that wasn't escaped. 416 verifyFrameRecoverIndices(); 417 for (const GlobalVariable &GV : M.globals()) 418 visitGlobalVariable(GV); 419 420 for (const GlobalAlias &GA : M.aliases()) 421 visitGlobalAlias(GA); 422 423 for (const GlobalIFunc &GI : M.ifuncs()) 424 visitGlobalIFunc(GI); 425 426 for (const NamedMDNode &NMD : M.named_metadata()) 427 visitNamedMDNode(NMD); 428 429 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 430 visitComdat(SMEC.getValue()); 431 432 visitModuleFlags(); 433 visitModuleIdents(); 434 visitModuleCommandLines(); 435 436 verifyCompileUnits(); 437 438 verifyDeoptimizeCallingConvs(); 439 DISubprogramAttachments.clear(); 440 return !Broken; 441 } 442 443 private: 444 /// Whether a metadata node is allowed to be, or contain, a DILocation. 445 enum class AreDebugLocsAllowed { No, Yes }; 446 447 // Verification methods... 448 void visitGlobalValue(const GlobalValue &GV); 449 void visitGlobalVariable(const GlobalVariable &GV); 450 void visitGlobalAlias(const GlobalAlias &GA); 451 void visitGlobalIFunc(const GlobalIFunc &GI); 452 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 453 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 454 const GlobalAlias &A, const Constant &C); 455 void visitNamedMDNode(const NamedMDNode &NMD); 456 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 457 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 458 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 459 void visitComdat(const Comdat &C); 460 void visitModuleIdents(); 461 void visitModuleCommandLines(); 462 void visitModuleFlags(); 463 void visitModuleFlag(const MDNode *Op, 464 DenseMap<const MDString *, const MDNode *> &SeenIDs, 465 SmallVectorImpl<const MDNode *> &Requirements); 466 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 467 void visitFunction(const Function &F); 468 void visitBasicBlock(BasicBlock &BB); 469 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 470 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 471 void visitProfMetadata(Instruction &I, MDNode *MD); 472 void visitCallStackMetadata(MDNode *MD); 473 void visitMemProfMetadata(Instruction &I, MDNode *MD); 474 void visitCallsiteMetadata(Instruction &I, MDNode *MD); 475 void visitAnnotationMetadata(MDNode *Annotation); 476 void visitAliasScopeMetadata(const MDNode *MD); 477 void visitAliasScopeListMetadata(const MDNode *MD); 478 void visitAccessGroupMetadata(const MDNode *MD); 479 480 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 481 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 482 #include "llvm/IR/Metadata.def" 483 void visitDIScope(const DIScope &N); 484 void visitDIVariable(const DIVariable &N); 485 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 486 void visitDITemplateParameter(const DITemplateParameter &N); 487 488 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 489 490 // InstVisitor overrides... 491 using InstVisitor<Verifier>::visit; 492 void visit(Instruction &I); 493 494 void visitTruncInst(TruncInst &I); 495 void visitZExtInst(ZExtInst &I); 496 void visitSExtInst(SExtInst &I); 497 void visitFPTruncInst(FPTruncInst &I); 498 void visitFPExtInst(FPExtInst &I); 499 void visitFPToUIInst(FPToUIInst &I); 500 void visitFPToSIInst(FPToSIInst &I); 501 void visitUIToFPInst(UIToFPInst &I); 502 void visitSIToFPInst(SIToFPInst &I); 503 void visitIntToPtrInst(IntToPtrInst &I); 504 void visitPtrToIntInst(PtrToIntInst &I); 505 void visitBitCastInst(BitCastInst &I); 506 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 507 void visitPHINode(PHINode &PN); 508 void visitCallBase(CallBase &Call); 509 void visitUnaryOperator(UnaryOperator &U); 510 void visitBinaryOperator(BinaryOperator &B); 511 void visitICmpInst(ICmpInst &IC); 512 void visitFCmpInst(FCmpInst &FC); 513 void visitExtractElementInst(ExtractElementInst &EI); 514 void visitInsertElementInst(InsertElementInst &EI); 515 void visitShuffleVectorInst(ShuffleVectorInst &EI); 516 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 517 void visitCallInst(CallInst &CI); 518 void visitInvokeInst(InvokeInst &II); 519 void visitGetElementPtrInst(GetElementPtrInst &GEP); 520 void visitLoadInst(LoadInst &LI); 521 void visitStoreInst(StoreInst &SI); 522 void verifyDominatesUse(Instruction &I, unsigned i); 523 void visitInstruction(Instruction &I); 524 void visitTerminator(Instruction &I); 525 void visitBranchInst(BranchInst &BI); 526 void visitReturnInst(ReturnInst &RI); 527 void visitSwitchInst(SwitchInst &SI); 528 void visitIndirectBrInst(IndirectBrInst &BI); 529 void visitCallBrInst(CallBrInst &CBI); 530 void visitSelectInst(SelectInst &SI); 531 void visitUserOp1(Instruction &I); 532 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 533 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 534 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 535 void visitVPIntrinsic(VPIntrinsic &VPI); 536 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 537 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 538 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 539 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 540 void visitFenceInst(FenceInst &FI); 541 void visitAllocaInst(AllocaInst &AI); 542 void visitExtractValueInst(ExtractValueInst &EVI); 543 void visitInsertValueInst(InsertValueInst &IVI); 544 void visitEHPadPredecessors(Instruction &I); 545 void visitLandingPadInst(LandingPadInst &LPI); 546 void visitResumeInst(ResumeInst &RI); 547 void visitCatchPadInst(CatchPadInst &CPI); 548 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 549 void visitCleanupPadInst(CleanupPadInst &CPI); 550 void visitFuncletPadInst(FuncletPadInst &FPI); 551 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 552 void visitCleanupReturnInst(CleanupReturnInst &CRI); 553 554 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 555 void verifySwiftErrorValue(const Value *SwiftErrorVal); 556 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context); 557 void verifyMustTailCall(CallInst &CI); 558 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 559 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 560 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 561 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 562 const Value *V); 563 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 564 const Value *V, bool IsIntrinsic, bool IsInlineAsm); 565 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 566 567 void visitConstantExprsRecursively(const Constant *EntryC); 568 void visitConstantExpr(const ConstantExpr *CE); 569 void verifyInlineAsmCall(const CallBase &Call); 570 void verifyStatepoint(const CallBase &Call); 571 void verifyFrameRecoverIndices(); 572 void verifySiblingFuncletUnwinds(); 573 574 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 575 template <typename ValueOrMetadata> 576 void verifyFragmentExpression(const DIVariable &V, 577 DIExpression::FragmentInfo Fragment, 578 ValueOrMetadata *Desc); 579 void verifyFnArgs(const DbgVariableIntrinsic &I); 580 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 581 582 /// Module-level debug info verification... 583 void verifyCompileUnits(); 584 585 /// Module-level verification that all @llvm.experimental.deoptimize 586 /// declarations share the same calling convention. 587 void verifyDeoptimizeCallingConvs(); 588 589 void verifyAttachedCallBundle(const CallBase &Call, 590 const OperandBundleUse &BU); 591 592 /// Verify all-or-nothing property of DIFile source attribute within a CU. 593 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 594 595 /// Verify the llvm.experimental.noalias.scope.decl declarations 596 void verifyNoAliasScopeDecl(); 597 }; 598 599 } // end anonymous namespace 600 601 /// We know that cond should be true, if not print an error message. 602 #define Check(C, ...) \ 603 do { \ 604 if (!(C)) { \ 605 CheckFailed(__VA_ARGS__); \ 606 return; \ 607 } \ 608 } while (false) 609 610 /// We know that a debug info condition should be true, if not print 611 /// an error message. 612 #define CheckDI(C, ...) \ 613 do { \ 614 if (!(C)) { \ 615 DebugInfoCheckFailed(__VA_ARGS__); \ 616 return; \ 617 } \ 618 } while (false) 619 620 void Verifier::visit(Instruction &I) { 621 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 622 Check(I.getOperand(i) != nullptr, "Operand is null", &I); 623 InstVisitor<Verifier>::visit(I); 624 } 625 626 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further. 627 static void forEachUser(const Value *User, 628 SmallPtrSet<const Value *, 32> &Visited, 629 llvm::function_ref<bool(const Value *)> Callback) { 630 if (!Visited.insert(User).second) 631 return; 632 633 SmallVector<const Value *> WorkList; 634 append_range(WorkList, User->materialized_users()); 635 while (!WorkList.empty()) { 636 const Value *Cur = WorkList.pop_back_val(); 637 if (!Visited.insert(Cur).second) 638 continue; 639 if (Callback(Cur)) 640 append_range(WorkList, Cur->materialized_users()); 641 } 642 } 643 644 void Verifier::visitGlobalValue(const GlobalValue &GV) { 645 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 646 "Global is external, but doesn't have external or weak linkage!", &GV); 647 648 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) { 649 650 if (MaybeAlign A = GO->getAlign()) { 651 Check(A->value() <= Value::MaximumAlignment, 652 "huge alignment values are unsupported", GO); 653 } 654 } 655 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 656 "Only global variables can have appending linkage!", &GV); 657 658 if (GV.hasAppendingLinkage()) { 659 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 660 Check(GVar && GVar->getValueType()->isArrayTy(), 661 "Only global arrays can have appending linkage!", GVar); 662 } 663 664 if (GV.isDeclarationForLinker()) 665 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 666 667 if (GV.hasDLLImportStorageClass()) { 668 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!", 669 &GV); 670 671 Check((GV.isDeclaration() && 672 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 673 GV.hasAvailableExternallyLinkage(), 674 "Global is marked as dllimport, but not external", &GV); 675 } 676 677 if (GV.isImplicitDSOLocal()) 678 Check(GV.isDSOLocal(), 679 "GlobalValue with local linkage or non-default " 680 "visibility must be dso_local!", 681 &GV); 682 683 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 684 if (const Instruction *I = dyn_cast<Instruction>(V)) { 685 if (!I->getParent() || !I->getParent()->getParent()) 686 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 687 I); 688 else if (I->getParent()->getParent()->getParent() != &M) 689 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 690 I->getParent()->getParent(), 691 I->getParent()->getParent()->getParent()); 692 return false; 693 } else if (const Function *F = dyn_cast<Function>(V)) { 694 if (F->getParent() != &M) 695 CheckFailed("Global is used by function in a different module", &GV, &M, 696 F, F->getParent()); 697 return false; 698 } 699 return true; 700 }); 701 } 702 703 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 704 if (GV.hasInitializer()) { 705 Check(GV.getInitializer()->getType() == GV.getValueType(), 706 "Global variable initializer type does not match global " 707 "variable type!", 708 &GV); 709 // If the global has common linkage, it must have a zero initializer and 710 // cannot be constant. 711 if (GV.hasCommonLinkage()) { 712 Check(GV.getInitializer()->isNullValue(), 713 "'common' global must have a zero initializer!", &GV); 714 Check(!GV.isConstant(), "'common' global may not be marked constant!", 715 &GV); 716 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 717 } 718 } 719 720 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 721 GV.getName() == "llvm.global_dtors")) { 722 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), 723 "invalid linkage for intrinsic global variable", &GV); 724 // Don't worry about emitting an error for it not being an array, 725 // visitGlobalValue will complain on appending non-array. 726 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 727 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 728 PointerType *FuncPtrTy = 729 FunctionType::get(Type::getVoidTy(Context), false)-> 730 getPointerTo(DL.getProgramAddressSpace()); 731 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 732 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 733 STy->getTypeAtIndex(1) == FuncPtrTy, 734 "wrong type for intrinsic global variable", &GV); 735 Check(STy->getNumElements() == 3, 736 "the third field of the element type is mandatory, " 737 "specify i8* null to migrate from the obsoleted 2-field form"); 738 Type *ETy = STy->getTypeAtIndex(2); 739 Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); 740 Check(ETy->isPointerTy() && 741 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), 742 "wrong type for intrinsic global variable", &GV); 743 } 744 } 745 746 if (GV.hasName() && (GV.getName() == "llvm.used" || 747 GV.getName() == "llvm.compiler.used")) { 748 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), 749 "invalid linkage for intrinsic global variable", &GV); 750 Type *GVType = GV.getValueType(); 751 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 752 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 753 Check(PTy, "wrong type for intrinsic global variable", &GV); 754 if (GV.hasInitializer()) { 755 const Constant *Init = GV.getInitializer(); 756 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 757 Check(InitArray, "wrong initalizer for intrinsic global variable", 758 Init); 759 for (Value *Op : InitArray->operands()) { 760 Value *V = Op->stripPointerCasts(); 761 Check(isa<GlobalVariable>(V) || isa<Function>(V) || 762 isa<GlobalAlias>(V), 763 Twine("invalid ") + GV.getName() + " member", V); 764 Check(V->hasName(), 765 Twine("members of ") + GV.getName() + " must be named", V); 766 } 767 } 768 } 769 } 770 771 // Visit any debug info attachments. 772 SmallVector<MDNode *, 1> MDs; 773 GV.getMetadata(LLVMContext::MD_dbg, MDs); 774 for (auto *MD : MDs) { 775 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 776 visitDIGlobalVariableExpression(*GVE); 777 else 778 CheckDI(false, "!dbg attachment of global variable must be a " 779 "DIGlobalVariableExpression"); 780 } 781 782 // Scalable vectors cannot be global variables, since we don't know 783 // the runtime size. If the global is an array containing scalable vectors, 784 // that will be caught by the isValidElementType methods in StructType or 785 // ArrayType instead. 786 Check(!isa<ScalableVectorType>(GV.getValueType()), 787 "Globals cannot contain scalable vectors", &GV); 788 789 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 790 Check(!STy->containsScalableVectorType(), 791 "Globals cannot contain scalable vectors", &GV); 792 793 if (!GV.hasInitializer()) { 794 visitGlobalValue(GV); 795 return; 796 } 797 798 // Walk any aggregate initializers looking for bitcasts between address spaces 799 visitConstantExprsRecursively(GV.getInitializer()); 800 801 visitGlobalValue(GV); 802 } 803 804 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 805 SmallPtrSet<const GlobalAlias*, 4> Visited; 806 Visited.insert(&GA); 807 visitAliaseeSubExpr(Visited, GA, C); 808 } 809 810 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 811 const GlobalAlias &GA, const Constant &C) { 812 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 813 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition", 814 &GA); 815 816 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 817 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 818 819 Check(!GA2->isInterposable(), 820 "Alias cannot point to an interposable alias", &GA); 821 } else { 822 // Only continue verifying subexpressions of GlobalAliases. 823 // Do not recurse into global initializers. 824 return; 825 } 826 } 827 828 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 829 visitConstantExprsRecursively(CE); 830 831 for (const Use &U : C.operands()) { 832 Value *V = &*U; 833 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 834 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 835 else if (const auto *C2 = dyn_cast<Constant>(V)) 836 visitAliaseeSubExpr(Visited, GA, *C2); 837 } 838 } 839 840 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 841 Check(GlobalAlias::isValidLinkage(GA.getLinkage()), 842 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 843 "weak_odr, or external linkage!", 844 &GA); 845 const Constant *Aliasee = GA.getAliasee(); 846 Check(Aliasee, "Aliasee cannot be NULL!", &GA); 847 Check(GA.getType() == Aliasee->getType(), 848 "Alias and aliasee types should match!", &GA); 849 850 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 851 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 852 853 visitAliaseeSubExpr(GA, *Aliasee); 854 855 visitGlobalValue(GA); 856 } 857 858 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { 859 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()), 860 "IFunc should have private, internal, linkonce, weak, linkonce_odr, " 861 "weak_odr, or external linkage!", 862 &GI); 863 // Pierce through ConstantExprs and GlobalAliases and check that the resolver 864 // is a Function definition. 865 const Function *Resolver = GI.getResolverFunction(); 866 Check(Resolver, "IFunc must have a Function resolver", &GI); 867 Check(!Resolver->isDeclarationForLinker(), 868 "IFunc resolver must be a definition", &GI); 869 870 // Check that the immediate resolver operand (prior to any bitcasts) has the 871 // correct type. 872 const Type *ResolverTy = GI.getResolver()->getType(); 873 const Type *ResolverFuncTy = 874 GlobalIFunc::getResolverFunctionType(GI.getValueType()); 875 Check(ResolverTy == ResolverFuncTy->getPointerTo(), 876 "IFunc resolver has incorrect type", &GI); 877 } 878 879 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 880 // There used to be various other llvm.dbg.* nodes, but we don't support 881 // upgrading them and we want to reserve the namespace for future uses. 882 if (NMD.getName().startswith("llvm.dbg.")) 883 CheckDI(NMD.getName() == "llvm.dbg.cu", 884 "unrecognized named metadata node in the llvm.dbg namespace", &NMD); 885 for (const MDNode *MD : NMD.operands()) { 886 if (NMD.getName() == "llvm.dbg.cu") 887 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 888 889 if (!MD) 890 continue; 891 892 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 893 } 894 } 895 896 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 897 // Only visit each node once. Metadata can be mutually recursive, so this 898 // avoids infinite recursion here, as well as being an optimization. 899 if (!MDNodes.insert(&MD).second) 900 return; 901 902 Check(&MD.getContext() == &Context, 903 "MDNode context does not match Module context!", &MD); 904 905 switch (MD.getMetadataID()) { 906 default: 907 llvm_unreachable("Invalid MDNode subclass"); 908 case Metadata::MDTupleKind: 909 break; 910 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 911 case Metadata::CLASS##Kind: \ 912 visit##CLASS(cast<CLASS>(MD)); \ 913 break; 914 #include "llvm/IR/Metadata.def" 915 } 916 917 for (const Metadata *Op : MD.operands()) { 918 if (!Op) 919 continue; 920 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 921 &MD, Op); 922 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 923 "DILocation not allowed within this metadata node", &MD, Op); 924 if (auto *N = dyn_cast<MDNode>(Op)) { 925 visitMDNode(*N, AllowLocs); 926 continue; 927 } 928 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 929 visitValueAsMetadata(*V, nullptr); 930 continue; 931 } 932 } 933 934 // Check these last, so we diagnose problems in operands first. 935 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD); 936 Check(MD.isResolved(), "All nodes should be resolved!", &MD); 937 } 938 939 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 940 Check(MD.getValue(), "Expected valid value", &MD); 941 Check(!MD.getValue()->getType()->isMetadataTy(), 942 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 943 944 auto *L = dyn_cast<LocalAsMetadata>(&MD); 945 if (!L) 946 return; 947 948 Check(F, "function-local metadata used outside a function", L); 949 950 // If this was an instruction, bb, or argument, verify that it is in the 951 // function that we expect. 952 Function *ActualF = nullptr; 953 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 954 Check(I->getParent(), "function-local metadata not in basic block", L, I); 955 ActualF = I->getParent()->getParent(); 956 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 957 ActualF = BB->getParent(); 958 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 959 ActualF = A->getParent(); 960 assert(ActualF && "Unimplemented function local metadata case!"); 961 962 Check(ActualF == F, "function-local metadata used in wrong function", L); 963 } 964 965 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 966 Metadata *MD = MDV.getMetadata(); 967 if (auto *N = dyn_cast<MDNode>(MD)) { 968 visitMDNode(*N, AreDebugLocsAllowed::No); 969 return; 970 } 971 972 // Only visit each node once. Metadata can be mutually recursive, so this 973 // avoids infinite recursion here, as well as being an optimization. 974 if (!MDNodes.insert(MD).second) 975 return; 976 977 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 978 visitValueAsMetadata(*V, F); 979 } 980 981 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 982 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 983 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 984 985 void Verifier::visitDILocation(const DILocation &N) { 986 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 987 "location requires a valid scope", &N, N.getRawScope()); 988 if (auto *IA = N.getRawInlinedAt()) 989 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 990 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 991 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 992 } 993 994 void Verifier::visitGenericDINode(const GenericDINode &N) { 995 CheckDI(N.getTag(), "invalid tag", &N); 996 } 997 998 void Verifier::visitDIScope(const DIScope &N) { 999 if (auto *F = N.getRawFile()) 1000 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1001 } 1002 1003 void Verifier::visitDISubrange(const DISubrange &N) { 1004 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 1005 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 1006 CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 1007 N.getRawUpperBound(), 1008 "Subrange must contain count or upperBound", &N); 1009 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1010 "Subrange can have any one of count or upperBound", &N); 1011 auto *CBound = N.getRawCountNode(); 1012 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) || 1013 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1014 "Count must be signed constant or DIVariable or DIExpression", &N); 1015 auto Count = N.getCount(); 1016 CheckDI(!Count || !Count.is<ConstantInt *>() || 1017 Count.get<ConstantInt *>()->getSExtValue() >= -1, 1018 "invalid subrange count", &N); 1019 auto *LBound = N.getRawLowerBound(); 1020 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) || 1021 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1022 "LowerBound must be signed constant or DIVariable or DIExpression", 1023 &N); 1024 auto *UBound = N.getRawUpperBound(); 1025 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) || 1026 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1027 "UpperBound must be signed constant or DIVariable or DIExpression", 1028 &N); 1029 auto *Stride = N.getRawStride(); 1030 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) || 1031 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1032 "Stride must be signed constant or DIVariable or DIExpression", &N); 1033 } 1034 1035 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 1036 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 1037 CheckDI(N.getRawCountNode() || N.getRawUpperBound(), 1038 "GenericSubrange must contain count or upperBound", &N); 1039 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1040 "GenericSubrange can have any one of count or upperBound", &N); 1041 auto *CBound = N.getRawCountNode(); 1042 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1043 "Count must be signed constant or DIVariable or DIExpression", &N); 1044 auto *LBound = N.getRawLowerBound(); 1045 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N); 1046 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1047 "LowerBound must be signed constant or DIVariable or DIExpression", 1048 &N); 1049 auto *UBound = N.getRawUpperBound(); 1050 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1051 "UpperBound must be signed constant or DIVariable or DIExpression", 1052 &N); 1053 auto *Stride = N.getRawStride(); 1054 CheckDI(Stride, "GenericSubrange must contain stride", &N); 1055 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1056 "Stride must be signed constant or DIVariable or DIExpression", &N); 1057 } 1058 1059 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1060 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1061 } 1062 1063 void Verifier::visitDIBasicType(const DIBasicType &N) { 1064 CheckDI(N.getTag() == dwarf::DW_TAG_base_type || 1065 N.getTag() == dwarf::DW_TAG_unspecified_type || 1066 N.getTag() == dwarf::DW_TAG_string_type, 1067 "invalid tag", &N); 1068 } 1069 1070 void Verifier::visitDIStringType(const DIStringType &N) { 1071 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1072 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags", 1073 &N); 1074 } 1075 1076 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1077 // Common scope checks. 1078 visitDIScope(N); 1079 1080 CheckDI(N.getTag() == dwarf::DW_TAG_typedef || 1081 N.getTag() == dwarf::DW_TAG_pointer_type || 1082 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1083 N.getTag() == dwarf::DW_TAG_reference_type || 1084 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1085 N.getTag() == dwarf::DW_TAG_const_type || 1086 N.getTag() == dwarf::DW_TAG_immutable_type || 1087 N.getTag() == dwarf::DW_TAG_volatile_type || 1088 N.getTag() == dwarf::DW_TAG_restrict_type || 1089 N.getTag() == dwarf::DW_TAG_atomic_type || 1090 N.getTag() == dwarf::DW_TAG_member || 1091 N.getTag() == dwarf::DW_TAG_inheritance || 1092 N.getTag() == dwarf::DW_TAG_friend || 1093 N.getTag() == dwarf::DW_TAG_set_type, 1094 "invalid tag", &N); 1095 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1096 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1097 N.getRawExtraData()); 1098 } 1099 1100 if (N.getTag() == dwarf::DW_TAG_set_type) { 1101 if (auto *T = N.getRawBaseType()) { 1102 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1103 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1104 CheckDI( 1105 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1106 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1107 Basic->getEncoding() == dwarf::DW_ATE_signed || 1108 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1109 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1110 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1111 "invalid set base type", &N, T); 1112 } 1113 } 1114 1115 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1116 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, 1117 N.getRawBaseType()); 1118 1119 if (N.getDWARFAddressSpace()) { 1120 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1121 N.getTag() == dwarf::DW_TAG_reference_type || 1122 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1123 "DWARF address space only applies to pointer or reference types", 1124 &N); 1125 } 1126 } 1127 1128 /// Detect mutually exclusive flags. 1129 static bool hasConflictingReferenceFlags(unsigned Flags) { 1130 return ((Flags & DINode::FlagLValueReference) && 1131 (Flags & DINode::FlagRValueReference)) || 1132 ((Flags & DINode::FlagTypePassByValue) && 1133 (Flags & DINode::FlagTypePassByReference)); 1134 } 1135 1136 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1137 auto *Params = dyn_cast<MDTuple>(&RawParams); 1138 CheckDI(Params, "invalid template params", &N, &RawParams); 1139 for (Metadata *Op : Params->operands()) { 1140 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1141 &N, Params, Op); 1142 } 1143 } 1144 1145 void Verifier::visitDICompositeType(const DICompositeType &N) { 1146 // Common scope checks. 1147 visitDIScope(N); 1148 1149 CheckDI(N.getTag() == dwarf::DW_TAG_array_type || 1150 N.getTag() == dwarf::DW_TAG_structure_type || 1151 N.getTag() == dwarf::DW_TAG_union_type || 1152 N.getTag() == dwarf::DW_TAG_enumeration_type || 1153 N.getTag() == dwarf::DW_TAG_class_type || 1154 N.getTag() == dwarf::DW_TAG_variant_part || 1155 N.getTag() == dwarf::DW_TAG_namelist, 1156 "invalid tag", &N); 1157 1158 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1159 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, 1160 N.getRawBaseType()); 1161 1162 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1163 "invalid composite elements", &N, N.getRawElements()); 1164 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1165 N.getRawVTableHolder()); 1166 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1167 "invalid reference flags", &N); 1168 unsigned DIBlockByRefStruct = 1 << 4; 1169 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0, 1170 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1171 1172 if (N.isVector()) { 1173 const DINodeArray Elements = N.getElements(); 1174 CheckDI(Elements.size() == 1 && 1175 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1176 "invalid vector, expected one element of type subrange", &N); 1177 } 1178 1179 if (auto *Params = N.getRawTemplateParams()) 1180 visitTemplateParams(N, *Params); 1181 1182 if (auto *D = N.getRawDiscriminator()) { 1183 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1184 "discriminator can only appear on variant part"); 1185 } 1186 1187 if (N.getRawDataLocation()) { 1188 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1189 "dataLocation can only appear in array type"); 1190 } 1191 1192 if (N.getRawAssociated()) { 1193 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1194 "associated can only appear in array type"); 1195 } 1196 1197 if (N.getRawAllocated()) { 1198 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1199 "allocated can only appear in array type"); 1200 } 1201 1202 if (N.getRawRank()) { 1203 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1204 "rank can only appear in array type"); 1205 } 1206 } 1207 1208 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1209 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1210 if (auto *Types = N.getRawTypeArray()) { 1211 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1212 for (Metadata *Ty : N.getTypeArray()->operands()) { 1213 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1214 } 1215 } 1216 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1217 "invalid reference flags", &N); 1218 } 1219 1220 void Verifier::visitDIFile(const DIFile &N) { 1221 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1222 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1223 if (Checksum) { 1224 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1225 "invalid checksum kind", &N); 1226 size_t Size; 1227 switch (Checksum->Kind) { 1228 case DIFile::CSK_MD5: 1229 Size = 32; 1230 break; 1231 case DIFile::CSK_SHA1: 1232 Size = 40; 1233 break; 1234 case DIFile::CSK_SHA256: 1235 Size = 64; 1236 break; 1237 } 1238 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1239 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1240 "invalid checksum", &N); 1241 } 1242 } 1243 1244 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1245 CheckDI(N.isDistinct(), "compile units must be distinct", &N); 1246 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1247 1248 // Don't bother verifying the compilation directory or producer string 1249 // as those could be empty. 1250 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1251 N.getRawFile()); 1252 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1253 N.getFile()); 1254 1255 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1256 1257 verifySourceDebugInfo(N, *N.getFile()); 1258 1259 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1260 "invalid emission kind", &N); 1261 1262 if (auto *Array = N.getRawEnumTypes()) { 1263 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1264 for (Metadata *Op : N.getEnumTypes()->operands()) { 1265 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1266 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1267 "invalid enum type", &N, N.getEnumTypes(), Op); 1268 } 1269 } 1270 if (auto *Array = N.getRawRetainedTypes()) { 1271 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1272 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1273 CheckDI( 1274 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) && 1275 !cast<DISubprogram>(Op)->isDefinition())), 1276 "invalid retained type", &N, Op); 1277 } 1278 } 1279 if (auto *Array = N.getRawGlobalVariables()) { 1280 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1281 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1282 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1283 "invalid global variable ref", &N, Op); 1284 } 1285 } 1286 if (auto *Array = N.getRawImportedEntities()) { 1287 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1288 for (Metadata *Op : N.getImportedEntities()->operands()) { 1289 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1290 &N, Op); 1291 } 1292 } 1293 if (auto *Array = N.getRawMacros()) { 1294 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1295 for (Metadata *Op : N.getMacros()->operands()) { 1296 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1297 } 1298 } 1299 CUVisited.insert(&N); 1300 } 1301 1302 void Verifier::visitDISubprogram(const DISubprogram &N) { 1303 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1304 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1305 if (auto *F = N.getRawFile()) 1306 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1307 else 1308 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1309 if (auto *T = N.getRawType()) 1310 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1311 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1312 N.getRawContainingType()); 1313 if (auto *Params = N.getRawTemplateParams()) 1314 visitTemplateParams(N, *Params); 1315 if (auto *S = N.getRawDeclaration()) 1316 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1317 "invalid subprogram declaration", &N, S); 1318 if (auto *RawNode = N.getRawRetainedNodes()) { 1319 auto *Node = dyn_cast<MDTuple>(RawNode); 1320 CheckDI(Node, "invalid retained nodes list", &N, RawNode); 1321 for (Metadata *Op : Node->operands()) { 1322 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1323 "invalid retained nodes, expected DILocalVariable or DILabel", &N, 1324 Node, Op); 1325 } 1326 } 1327 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1328 "invalid reference flags", &N); 1329 1330 auto *Unit = N.getRawUnit(); 1331 if (N.isDefinition()) { 1332 // Subprogram definitions (not part of the type hierarchy). 1333 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1334 CheckDI(Unit, "subprogram definitions must have a compile unit", &N); 1335 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1336 if (N.getFile()) 1337 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1338 } else { 1339 // Subprogram declarations (part of the type hierarchy). 1340 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1341 } 1342 1343 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1344 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1345 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1346 for (Metadata *Op : ThrownTypes->operands()) 1347 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1348 Op); 1349 } 1350 1351 if (N.areAllCallsDescribed()) 1352 CheckDI(N.isDefinition(), 1353 "DIFlagAllCallsDescribed must be attached to a definition"); 1354 } 1355 1356 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1357 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1358 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1359 "invalid local scope", &N, N.getRawScope()); 1360 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1361 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1362 } 1363 1364 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1365 visitDILexicalBlockBase(N); 1366 1367 CheckDI(N.getLine() || !N.getColumn(), 1368 "cannot have column info without line info", &N); 1369 } 1370 1371 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1372 visitDILexicalBlockBase(N); 1373 } 1374 1375 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1376 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1377 if (auto *S = N.getRawScope()) 1378 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1379 if (auto *S = N.getRawDecl()) 1380 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1381 } 1382 1383 void Verifier::visitDINamespace(const DINamespace &N) { 1384 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1385 if (auto *S = N.getRawScope()) 1386 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1387 } 1388 1389 void Verifier::visitDIMacro(const DIMacro &N) { 1390 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1391 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1392 "invalid macinfo type", &N); 1393 CheckDI(!N.getName().empty(), "anonymous macro", &N); 1394 if (!N.getValue().empty()) { 1395 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1396 } 1397 } 1398 1399 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1400 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1401 "invalid macinfo type", &N); 1402 if (auto *F = N.getRawFile()) 1403 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1404 1405 if (auto *Array = N.getRawElements()) { 1406 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1407 for (Metadata *Op : N.getElements()->operands()) { 1408 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1409 } 1410 } 1411 } 1412 1413 void Verifier::visitDIArgList(const DIArgList &N) { 1414 CheckDI(!N.getNumOperands(), 1415 "DIArgList should have no operands other than a list of " 1416 "ValueAsMetadata", 1417 &N); 1418 } 1419 1420 void Verifier::visitDIModule(const DIModule &N) { 1421 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1422 CheckDI(!N.getName().empty(), "anonymous module", &N); 1423 } 1424 1425 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1426 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1427 } 1428 1429 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1430 visitDITemplateParameter(N); 1431 1432 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1433 &N); 1434 } 1435 1436 void Verifier::visitDITemplateValueParameter( 1437 const DITemplateValueParameter &N) { 1438 visitDITemplateParameter(N); 1439 1440 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1441 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1442 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1443 "invalid tag", &N); 1444 } 1445 1446 void Verifier::visitDIVariable(const DIVariable &N) { 1447 if (auto *S = N.getRawScope()) 1448 CheckDI(isa<DIScope>(S), "invalid scope", &N, S); 1449 if (auto *F = N.getRawFile()) 1450 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1451 } 1452 1453 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1454 // Checks common to all variables. 1455 visitDIVariable(N); 1456 1457 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1458 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1459 // Check only if the global variable is not an extern 1460 if (N.isDefinition()) 1461 CheckDI(N.getType(), "missing global variable type", &N); 1462 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1463 CheckDI(isa<DIDerivedType>(Member), 1464 "invalid static data member declaration", &N, Member); 1465 } 1466 } 1467 1468 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1469 // Checks common to all variables. 1470 visitDIVariable(N); 1471 1472 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1473 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1474 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1475 "local variable requires a valid scope", &N, N.getRawScope()); 1476 if (auto Ty = N.getType()) 1477 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1478 } 1479 1480 void Verifier::visitDILabel(const DILabel &N) { 1481 if (auto *S = N.getRawScope()) 1482 CheckDI(isa<DIScope>(S), "invalid scope", &N, S); 1483 if (auto *F = N.getRawFile()) 1484 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1485 1486 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1487 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1488 "label requires a valid scope", &N, N.getRawScope()); 1489 } 1490 1491 void Verifier::visitDIExpression(const DIExpression &N) { 1492 CheckDI(N.isValid(), "invalid expression", &N); 1493 } 1494 1495 void Verifier::visitDIGlobalVariableExpression( 1496 const DIGlobalVariableExpression &GVE) { 1497 CheckDI(GVE.getVariable(), "missing variable"); 1498 if (auto *Var = GVE.getVariable()) 1499 visitDIGlobalVariable(*Var); 1500 if (auto *Expr = GVE.getExpression()) { 1501 visitDIExpression(*Expr); 1502 if (auto Fragment = Expr->getFragmentInfo()) 1503 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1504 } 1505 } 1506 1507 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1508 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1509 if (auto *T = N.getRawType()) 1510 CheckDI(isType(T), "invalid type ref", &N, T); 1511 if (auto *F = N.getRawFile()) 1512 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1513 } 1514 1515 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1516 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module || 1517 N.getTag() == dwarf::DW_TAG_imported_declaration, 1518 "invalid tag", &N); 1519 if (auto *S = N.getRawScope()) 1520 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1521 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1522 N.getRawEntity()); 1523 } 1524 1525 void Verifier::visitComdat(const Comdat &C) { 1526 // In COFF the Module is invalid if the GlobalValue has private linkage. 1527 // Entities with private linkage don't have entries in the symbol table. 1528 if (TT.isOSBinFormatCOFF()) 1529 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1530 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1531 GV); 1532 } 1533 1534 void Verifier::visitModuleIdents() { 1535 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1536 if (!Idents) 1537 return; 1538 1539 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1540 // Scan each llvm.ident entry and make sure that this requirement is met. 1541 for (const MDNode *N : Idents->operands()) { 1542 Check(N->getNumOperands() == 1, 1543 "incorrect number of operands in llvm.ident metadata", N); 1544 Check(dyn_cast_or_null<MDString>(N->getOperand(0)), 1545 ("invalid value for llvm.ident metadata entry operand" 1546 "(the operand should be a string)"), 1547 N->getOperand(0)); 1548 } 1549 } 1550 1551 void Verifier::visitModuleCommandLines() { 1552 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1553 if (!CommandLines) 1554 return; 1555 1556 // llvm.commandline takes a list of metadata entry. Each entry has only one 1557 // string. Scan each llvm.commandline entry and make sure that this 1558 // requirement is met. 1559 for (const MDNode *N : CommandLines->operands()) { 1560 Check(N->getNumOperands() == 1, 1561 "incorrect number of operands in llvm.commandline metadata", N); 1562 Check(dyn_cast_or_null<MDString>(N->getOperand(0)), 1563 ("invalid value for llvm.commandline metadata entry operand" 1564 "(the operand should be a string)"), 1565 N->getOperand(0)); 1566 } 1567 } 1568 1569 void Verifier::visitModuleFlags() { 1570 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1571 if (!Flags) return; 1572 1573 // Scan each flag, and track the flags and requirements. 1574 DenseMap<const MDString*, const MDNode*> SeenIDs; 1575 SmallVector<const MDNode*, 16> Requirements; 1576 for (const MDNode *MDN : Flags->operands()) 1577 visitModuleFlag(MDN, SeenIDs, Requirements); 1578 1579 // Validate that the requirements in the module are valid. 1580 for (const MDNode *Requirement : Requirements) { 1581 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1582 const Metadata *ReqValue = Requirement->getOperand(1); 1583 1584 const MDNode *Op = SeenIDs.lookup(Flag); 1585 if (!Op) { 1586 CheckFailed("invalid requirement on flag, flag is not present in module", 1587 Flag); 1588 continue; 1589 } 1590 1591 if (Op->getOperand(2) != ReqValue) { 1592 CheckFailed(("invalid requirement on flag, " 1593 "flag does not have the required value"), 1594 Flag); 1595 continue; 1596 } 1597 } 1598 } 1599 1600 void 1601 Verifier::visitModuleFlag(const MDNode *Op, 1602 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1603 SmallVectorImpl<const MDNode *> &Requirements) { 1604 // Each module flag should have three arguments, the merge behavior (a 1605 // constant int), the flag ID (an MDString), and the value. 1606 Check(Op->getNumOperands() == 3, 1607 "incorrect number of operands in module flag", Op); 1608 Module::ModFlagBehavior MFB; 1609 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1610 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1611 "invalid behavior operand in module flag (expected constant integer)", 1612 Op->getOperand(0)); 1613 Check(false, 1614 "invalid behavior operand in module flag (unexpected constant)", 1615 Op->getOperand(0)); 1616 } 1617 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1618 Check(ID, "invalid ID operand in module flag (expected metadata string)", 1619 Op->getOperand(1)); 1620 1621 // Check the values for behaviors with additional requirements. 1622 switch (MFB) { 1623 case Module::Error: 1624 case Module::Warning: 1625 case Module::Override: 1626 // These behavior types accept any value. 1627 break; 1628 1629 case Module::Min: { 1630 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1631 Check(V && V->getValue().isNonNegative(), 1632 "invalid value for 'min' module flag (expected constant non-negative " 1633 "integer)", 1634 Op->getOperand(2)); 1635 break; 1636 } 1637 1638 case Module::Max: { 1639 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1640 "invalid value for 'max' module flag (expected constant integer)", 1641 Op->getOperand(2)); 1642 break; 1643 } 1644 1645 case Module::Require: { 1646 // The value should itself be an MDNode with two operands, a flag ID (an 1647 // MDString), and a value. 1648 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1649 Check(Value && Value->getNumOperands() == 2, 1650 "invalid value for 'require' module flag (expected metadata pair)", 1651 Op->getOperand(2)); 1652 Check(isa<MDString>(Value->getOperand(0)), 1653 ("invalid value for 'require' module flag " 1654 "(first value operand should be a string)"), 1655 Value->getOperand(0)); 1656 1657 // Append it to the list of requirements, to check once all module flags are 1658 // scanned. 1659 Requirements.push_back(Value); 1660 break; 1661 } 1662 1663 case Module::Append: 1664 case Module::AppendUnique: { 1665 // These behavior types require the operand be an MDNode. 1666 Check(isa<MDNode>(Op->getOperand(2)), 1667 "invalid value for 'append'-type module flag " 1668 "(expected a metadata node)", 1669 Op->getOperand(2)); 1670 break; 1671 } 1672 } 1673 1674 // Unless this is a "requires" flag, check the ID is unique. 1675 if (MFB != Module::Require) { 1676 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1677 Check(Inserted, 1678 "module flag identifiers must be unique (or of 'require' type)", ID); 1679 } 1680 1681 if (ID->getString() == "wchar_size") { 1682 ConstantInt *Value 1683 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1684 Check(Value, "wchar_size metadata requires constant integer argument"); 1685 } 1686 1687 if (ID->getString() == "Linker Options") { 1688 // If the llvm.linker.options named metadata exists, we assume that the 1689 // bitcode reader has upgraded the module flag. Otherwise the flag might 1690 // have been created by a client directly. 1691 Check(M.getNamedMetadata("llvm.linker.options"), 1692 "'Linker Options' named metadata no longer supported"); 1693 } 1694 1695 if (ID->getString() == "SemanticInterposition") { 1696 ConstantInt *Value = 1697 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1698 Check(Value, 1699 "SemanticInterposition metadata requires constant integer argument"); 1700 } 1701 1702 if (ID->getString() == "CG Profile") { 1703 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1704 visitModuleFlagCGProfileEntry(MDO); 1705 } 1706 } 1707 1708 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1709 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1710 if (!FuncMDO) 1711 return; 1712 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1713 Check(F && isa<Function>(F->getValue()->stripPointerCasts()), 1714 "expected a Function or null", FuncMDO); 1715 }; 1716 auto Node = dyn_cast_or_null<MDNode>(MDO); 1717 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1718 CheckFunction(Node->getOperand(0)); 1719 CheckFunction(Node->getOperand(1)); 1720 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1721 Check(Count && Count->getType()->isIntegerTy(), 1722 "expected an integer constant", Node->getOperand(2)); 1723 } 1724 1725 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1726 for (Attribute A : Attrs) { 1727 1728 if (A.isStringAttribute()) { 1729 #define GET_ATTR_NAMES 1730 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1731 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1732 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1733 auto V = A.getValueAsString(); \ 1734 if (!(V.empty() || V == "true" || V == "false")) \ 1735 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1736 ""); \ 1737 } 1738 1739 #include "llvm/IR/Attributes.inc" 1740 continue; 1741 } 1742 1743 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1744 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1745 V); 1746 return; 1747 } 1748 } 1749 } 1750 1751 // VerifyParameterAttrs - Check the given attributes for an argument or return 1752 // value of the specified type. The value V is printed in error messages. 1753 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1754 const Value *V) { 1755 if (!Attrs.hasAttributes()) 1756 return; 1757 1758 verifyAttributeTypes(Attrs, V); 1759 1760 for (Attribute Attr : Attrs) 1761 Check(Attr.isStringAttribute() || 1762 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1763 "Attribute '" + Attr.getAsString() + "' does not apply to parameters", 1764 V); 1765 1766 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1767 Check(Attrs.getNumAttributes() == 1, 1768 "Attribute 'immarg' is incompatible with other attributes", V); 1769 } 1770 1771 // Check for mutually incompatible attributes. Only inreg is compatible with 1772 // sret. 1773 unsigned AttrCount = 0; 1774 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1775 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1776 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1777 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1778 Attrs.hasAttribute(Attribute::InReg); 1779 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1780 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1781 Check(AttrCount <= 1, 1782 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1783 "'byref', and 'sret' are incompatible!", 1784 V); 1785 1786 Check(!(Attrs.hasAttribute(Attribute::InAlloca) && 1787 Attrs.hasAttribute(Attribute::ReadOnly)), 1788 "Attributes " 1789 "'inalloca and readonly' are incompatible!", 1790 V); 1791 1792 Check(!(Attrs.hasAttribute(Attribute::StructRet) && 1793 Attrs.hasAttribute(Attribute::Returned)), 1794 "Attributes " 1795 "'sret and returned' are incompatible!", 1796 V); 1797 1798 Check(!(Attrs.hasAttribute(Attribute::ZExt) && 1799 Attrs.hasAttribute(Attribute::SExt)), 1800 "Attributes " 1801 "'zeroext and signext' are incompatible!", 1802 V); 1803 1804 Check(!(Attrs.hasAttribute(Attribute::ReadNone) && 1805 Attrs.hasAttribute(Attribute::ReadOnly)), 1806 "Attributes " 1807 "'readnone and readonly' are incompatible!", 1808 V); 1809 1810 Check(!(Attrs.hasAttribute(Attribute::ReadNone) && 1811 Attrs.hasAttribute(Attribute::WriteOnly)), 1812 "Attributes " 1813 "'readnone and writeonly' are incompatible!", 1814 V); 1815 1816 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1817 Attrs.hasAttribute(Attribute::WriteOnly)), 1818 "Attributes " 1819 "'readonly and writeonly' are incompatible!", 1820 V); 1821 1822 Check(!(Attrs.hasAttribute(Attribute::NoInline) && 1823 Attrs.hasAttribute(Attribute::AlwaysInline)), 1824 "Attributes " 1825 "'noinline and alwaysinline' are incompatible!", 1826 V); 1827 1828 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1829 for (Attribute Attr : Attrs) { 1830 if (!Attr.isStringAttribute() && 1831 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1832 CheckFailed("Attribute '" + Attr.getAsString() + 1833 "' applied to incompatible type!", V); 1834 return; 1835 } 1836 } 1837 1838 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1839 if (Attrs.hasAttribute(Attribute::ByVal)) { 1840 if (Attrs.hasAttribute(Attribute::Alignment)) { 1841 Align AttrAlign = Attrs.getAlignment().valueOrOne(); 1842 Align MaxAlign(ParamMaxAlignment); 1843 Check(AttrAlign <= MaxAlign, 1844 "Attribute 'align' exceed the max size 2^14", V); 1845 } 1846 SmallPtrSet<Type *, 4> Visited; 1847 Check(Attrs.getByValType()->isSized(&Visited), 1848 "Attribute 'byval' does not support unsized types!", V); 1849 } 1850 if (Attrs.hasAttribute(Attribute::ByRef)) { 1851 SmallPtrSet<Type *, 4> Visited; 1852 Check(Attrs.getByRefType()->isSized(&Visited), 1853 "Attribute 'byref' does not support unsized types!", V); 1854 } 1855 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1856 SmallPtrSet<Type *, 4> Visited; 1857 Check(Attrs.getInAllocaType()->isSized(&Visited), 1858 "Attribute 'inalloca' does not support unsized types!", V); 1859 } 1860 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1861 SmallPtrSet<Type *, 4> Visited; 1862 Check(Attrs.getPreallocatedType()->isSized(&Visited), 1863 "Attribute 'preallocated' does not support unsized types!", V); 1864 } 1865 if (!PTy->isOpaque()) { 1866 if (!isa<PointerType>(PTy->getNonOpaquePointerElementType())) 1867 Check(!Attrs.hasAttribute(Attribute::SwiftError), 1868 "Attribute 'swifterror' only applies to parameters " 1869 "with pointer to pointer type!", 1870 V); 1871 if (Attrs.hasAttribute(Attribute::ByRef)) { 1872 Check(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(), 1873 "Attribute 'byref' type does not match parameter!", V); 1874 } 1875 1876 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1877 Check(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(), 1878 "Attribute 'byval' type does not match parameter!", V); 1879 } 1880 1881 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1882 Check(Attrs.getPreallocatedType() == 1883 PTy->getNonOpaquePointerElementType(), 1884 "Attribute 'preallocated' type does not match parameter!", V); 1885 } 1886 1887 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1888 Check(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(), 1889 "Attribute 'inalloca' type does not match parameter!", V); 1890 } 1891 1892 if (Attrs.hasAttribute(Attribute::ElementType)) { 1893 Check(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(), 1894 "Attribute 'elementtype' type does not match parameter!", V); 1895 } 1896 } 1897 } 1898 } 1899 1900 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1901 const Value *V) { 1902 if (Attrs.hasFnAttr(Attr)) { 1903 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 1904 unsigned N; 1905 if (S.getAsInteger(10, N)) 1906 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 1907 } 1908 } 1909 1910 // Check parameter attributes against a function type. 1911 // The value V is printed in error messages. 1912 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1913 const Value *V, bool IsIntrinsic, 1914 bool IsInlineAsm) { 1915 if (Attrs.isEmpty()) 1916 return; 1917 1918 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1919 Check(Attrs.hasParentContext(Context), 1920 "Attribute list does not match Module context!", &Attrs, V); 1921 for (const auto &AttrSet : Attrs) { 1922 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1923 "Attribute set does not match Module context!", &AttrSet, V); 1924 for (const auto &A : AttrSet) { 1925 Check(A.hasParentContext(Context), 1926 "Attribute does not match Module context!", &A, V); 1927 } 1928 } 1929 } 1930 1931 bool SawNest = false; 1932 bool SawReturned = false; 1933 bool SawSRet = false; 1934 bool SawSwiftSelf = false; 1935 bool SawSwiftAsync = false; 1936 bool SawSwiftError = false; 1937 1938 // Verify return value attributes. 1939 AttributeSet RetAttrs = Attrs.getRetAttrs(); 1940 for (Attribute RetAttr : RetAttrs) 1941 Check(RetAttr.isStringAttribute() || 1942 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 1943 "Attribute '" + RetAttr.getAsString() + 1944 "' does not apply to function return values", 1945 V); 1946 1947 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1948 1949 // Verify parameter attributes. 1950 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1951 Type *Ty = FT->getParamType(i); 1952 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 1953 1954 if (!IsIntrinsic) { 1955 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1956 "immarg attribute only applies to intrinsics", V); 1957 if (!IsInlineAsm) 1958 Check(!ArgAttrs.hasAttribute(Attribute::ElementType), 1959 "Attribute 'elementtype' can only be applied to intrinsics" 1960 " and inline asm.", 1961 V); 1962 } 1963 1964 verifyParameterAttrs(ArgAttrs, Ty, V); 1965 1966 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1967 Check(!SawNest, "More than one parameter has attribute nest!", V); 1968 SawNest = true; 1969 } 1970 1971 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1972 Check(!SawReturned, "More than one parameter has attribute returned!", V); 1973 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1974 "Incompatible argument and return types for 'returned' attribute", 1975 V); 1976 SawReturned = true; 1977 } 1978 1979 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1980 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1981 Check(i == 0 || i == 1, 1982 "Attribute 'sret' is not on first or second parameter!", V); 1983 SawSRet = true; 1984 } 1985 1986 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1987 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1988 SawSwiftSelf = true; 1989 } 1990 1991 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 1992 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 1993 SawSwiftAsync = true; 1994 } 1995 1996 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1997 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V); 1998 SawSwiftError = true; 1999 } 2000 2001 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 2002 Check(i == FT->getNumParams() - 1, 2003 "inalloca isn't on the last parameter!", V); 2004 } 2005 } 2006 2007 if (!Attrs.hasFnAttrs()) 2008 return; 2009 2010 verifyAttributeTypes(Attrs.getFnAttrs(), V); 2011 for (Attribute FnAttr : Attrs.getFnAttrs()) 2012 Check(FnAttr.isStringAttribute() || 2013 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 2014 "Attribute '" + FnAttr.getAsString() + 2015 "' does not apply to functions!", 2016 V); 2017 2018 Check(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2019 Attrs.hasFnAttr(Attribute::ReadOnly)), 2020 "Attributes 'readnone and readonly' are incompatible!", V); 2021 2022 Check(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2023 Attrs.hasFnAttr(Attribute::WriteOnly)), 2024 "Attributes 'readnone and writeonly' are incompatible!", V); 2025 2026 Check(!(Attrs.hasFnAttr(Attribute::ReadOnly) && 2027 Attrs.hasFnAttr(Attribute::WriteOnly)), 2028 "Attributes 'readonly and writeonly' are incompatible!", V); 2029 2030 Check(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2031 Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)), 2032 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 2033 "incompatible!", 2034 V); 2035 2036 Check(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2037 Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)), 2038 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 2039 2040 Check(!(Attrs.hasFnAttr(Attribute::NoInline) && 2041 Attrs.hasFnAttr(Attribute::AlwaysInline)), 2042 "Attributes 'noinline and alwaysinline' are incompatible!", V); 2043 2044 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 2045 Check(Attrs.hasFnAttr(Attribute::NoInline), 2046 "Attribute 'optnone' requires 'noinline'!", V); 2047 2048 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2049 "Attributes 'optsize and optnone' are incompatible!", V); 2050 2051 Check(!Attrs.hasFnAttr(Attribute::MinSize), 2052 "Attributes 'minsize and optnone' are incompatible!", V); 2053 } 2054 2055 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 2056 const GlobalValue *GV = cast<GlobalValue>(V); 2057 Check(GV->hasGlobalUnnamedAddr(), 2058 "Attribute 'jumptable' requires 'unnamed_addr'", V); 2059 } 2060 2061 if (Attrs.hasFnAttr(Attribute::AllocSize)) { 2062 std::pair<unsigned, Optional<unsigned>> Args = 2063 Attrs.getFnAttrs().getAllocSizeArgs(); 2064 2065 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 2066 if (ParamNo >= FT->getNumParams()) { 2067 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 2068 return false; 2069 } 2070 2071 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2072 CheckFailed("'allocsize' " + Name + 2073 " argument must refer to an integer parameter", 2074 V); 2075 return false; 2076 } 2077 2078 return true; 2079 }; 2080 2081 if (!CheckParam("element size", Args.first)) 2082 return; 2083 2084 if (Args.second && !CheckParam("number of elements", *Args.second)) 2085 return; 2086 } 2087 2088 if (Attrs.hasFnAttr(Attribute::AllocKind)) { 2089 AllocFnKind K = Attrs.getAllocKind(); 2090 AllocFnKind Type = 2091 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free); 2092 if (!is_contained( 2093 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free}, 2094 Type)) 2095 CheckFailed( 2096 "'allockind()' requires exactly one of alloc, realloc, and free"); 2097 if ((Type == AllocFnKind::Free) && 2098 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed | 2099 AllocFnKind::Aligned)) != AllocFnKind::Unknown)) 2100 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, " 2101 "or aligned modifiers."); 2102 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed; 2103 if ((K & ZeroedUninit) == ZeroedUninit) 2104 CheckFailed("'allockind()' can't be both zeroed and uninitialized"); 2105 } 2106 2107 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2108 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin(); 2109 if (VScaleMin == 0) 2110 CheckFailed("'vscale_range' minimum must be greater than 0", V); 2111 2112 Optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax(); 2113 if (VScaleMax && VScaleMin > VScaleMax) 2114 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2115 } 2116 2117 if (Attrs.hasFnAttr("frame-pointer")) { 2118 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2119 if (FP != "all" && FP != "non-leaf" && FP != "none") 2120 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2121 } 2122 2123 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2124 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2125 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2126 } 2127 2128 void Verifier::verifyFunctionMetadata( 2129 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2130 for (const auto &Pair : MDs) { 2131 if (Pair.first == LLVMContext::MD_prof) { 2132 MDNode *MD = Pair.second; 2133 Check(MD->getNumOperands() >= 2, 2134 "!prof annotations should have no less than 2 operands", MD); 2135 2136 // Check first operand. 2137 Check(MD->getOperand(0) != nullptr, "first operand should not be null", 2138 MD); 2139 Check(isa<MDString>(MD->getOperand(0)), 2140 "expected string with name of the !prof annotation", MD); 2141 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2142 StringRef ProfName = MDS->getString(); 2143 Check(ProfName.equals("function_entry_count") || 2144 ProfName.equals("synthetic_function_entry_count"), 2145 "first operand should be 'function_entry_count'" 2146 " or 'synthetic_function_entry_count'", 2147 MD); 2148 2149 // Check second operand. 2150 Check(MD->getOperand(1) != nullptr, "second operand should not be null", 2151 MD); 2152 Check(isa<ConstantAsMetadata>(MD->getOperand(1)), 2153 "expected integer argument to function_entry_count", MD); 2154 } 2155 } 2156 } 2157 2158 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2159 if (!ConstantExprVisited.insert(EntryC).second) 2160 return; 2161 2162 SmallVector<const Constant *, 16> Stack; 2163 Stack.push_back(EntryC); 2164 2165 while (!Stack.empty()) { 2166 const Constant *C = Stack.pop_back_val(); 2167 2168 // Check this constant expression. 2169 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2170 visitConstantExpr(CE); 2171 2172 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2173 // Global Values get visited separately, but we do need to make sure 2174 // that the global value is in the correct module 2175 Check(GV->getParent() == &M, "Referencing global in another module!", 2176 EntryC, &M, GV, GV->getParent()); 2177 continue; 2178 } 2179 2180 // Visit all sub-expressions. 2181 for (const Use &U : C->operands()) { 2182 const auto *OpC = dyn_cast<Constant>(U); 2183 if (!OpC) 2184 continue; 2185 if (!ConstantExprVisited.insert(OpC).second) 2186 continue; 2187 Stack.push_back(OpC); 2188 } 2189 } 2190 } 2191 2192 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2193 if (CE->getOpcode() == Instruction::BitCast) 2194 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2195 CE->getType()), 2196 "Invalid bitcast", CE); 2197 } 2198 2199 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2200 // There shouldn't be more attribute sets than there are parameters plus the 2201 // function and return value. 2202 return Attrs.getNumAttrSets() <= Params + 2; 2203 } 2204 2205 void Verifier::verifyInlineAsmCall(const CallBase &Call) { 2206 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 2207 unsigned ArgNo = 0; 2208 unsigned LabelNo = 0; 2209 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2210 if (CI.Type == InlineAsm::isLabel) { 2211 ++LabelNo; 2212 continue; 2213 } 2214 2215 // Only deal with constraints that correspond to call arguments. 2216 if (!CI.hasArg()) 2217 continue; 2218 2219 if (CI.isIndirect) { 2220 const Value *Arg = Call.getArgOperand(ArgNo); 2221 Check(Arg->getType()->isPointerTy(), 2222 "Operand for indirect constraint must have pointer type", &Call); 2223 2224 Check(Call.getParamElementType(ArgNo), 2225 "Operand for indirect constraint must have elementtype attribute", 2226 &Call); 2227 } else { 2228 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType), 2229 "Elementtype attribute can only be applied for indirect " 2230 "constraints", 2231 &Call); 2232 } 2233 2234 ArgNo++; 2235 } 2236 2237 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) { 2238 Check(LabelNo == CallBr->getNumIndirectDests(), 2239 "Number of label constraints does not match number of callbr dests", 2240 &Call); 2241 } else { 2242 Check(LabelNo == 0, "Label constraints can only be used with callbr", 2243 &Call); 2244 } 2245 } 2246 2247 /// Verify that statepoint intrinsic is well formed. 2248 void Verifier::verifyStatepoint(const CallBase &Call) { 2249 assert(Call.getCalledFunction() && 2250 Call.getCalledFunction()->getIntrinsicID() == 2251 Intrinsic::experimental_gc_statepoint); 2252 2253 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2254 !Call.onlyAccessesArgMemory(), 2255 "gc.statepoint must read and write all memory to preserve " 2256 "reordering restrictions required by safepoint semantics", 2257 Call); 2258 2259 const int64_t NumPatchBytes = 2260 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2261 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2262 Check(NumPatchBytes >= 0, 2263 "gc.statepoint number of patchable bytes must be " 2264 "positive", 2265 Call); 2266 2267 Type *TargetElemType = Call.getParamElementType(2); 2268 Check(TargetElemType, 2269 "gc.statepoint callee argument must have elementtype attribute", Call); 2270 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType); 2271 Check(TargetFuncType, 2272 "gc.statepoint callee elementtype must be function type", Call); 2273 2274 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2275 Check(NumCallArgs >= 0, 2276 "gc.statepoint number of arguments to underlying call " 2277 "must be positive", 2278 Call); 2279 const int NumParams = (int)TargetFuncType->getNumParams(); 2280 if (TargetFuncType->isVarArg()) { 2281 Check(NumCallArgs >= NumParams, 2282 "gc.statepoint mismatch in number of vararg call args", Call); 2283 2284 // TODO: Remove this limitation 2285 Check(TargetFuncType->getReturnType()->isVoidTy(), 2286 "gc.statepoint doesn't support wrapping non-void " 2287 "vararg functions yet", 2288 Call); 2289 } else 2290 Check(NumCallArgs == NumParams, 2291 "gc.statepoint mismatch in number of call args", Call); 2292 2293 const uint64_t Flags 2294 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2295 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2296 "unknown flag used in gc.statepoint flags argument", Call); 2297 2298 // Verify that the types of the call parameter arguments match 2299 // the type of the wrapped callee. 2300 AttributeList Attrs = Call.getAttributes(); 2301 for (int i = 0; i < NumParams; i++) { 2302 Type *ParamType = TargetFuncType->getParamType(i); 2303 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2304 Check(ArgType == ParamType, 2305 "gc.statepoint call argument does not match wrapped " 2306 "function type", 2307 Call); 2308 2309 if (TargetFuncType->isVarArg()) { 2310 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2311 Check(!ArgAttrs.hasAttribute(Attribute::StructRet), 2312 "Attribute 'sret' cannot be used for vararg call arguments!", Call); 2313 } 2314 } 2315 2316 const int EndCallArgsInx = 4 + NumCallArgs; 2317 2318 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2319 Check(isa<ConstantInt>(NumTransitionArgsV), 2320 "gc.statepoint number of transition arguments " 2321 "must be constant integer", 2322 Call); 2323 const int NumTransitionArgs = 2324 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2325 Check(NumTransitionArgs == 0, 2326 "gc.statepoint w/inline transition bundle is deprecated", Call); 2327 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2328 2329 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2330 Check(isa<ConstantInt>(NumDeoptArgsV), 2331 "gc.statepoint number of deoptimization arguments " 2332 "must be constant integer", 2333 Call); 2334 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2335 Check(NumDeoptArgs == 0, 2336 "gc.statepoint w/inline deopt operands is deprecated", Call); 2337 2338 const int ExpectedNumArgs = 7 + NumCallArgs; 2339 Check(ExpectedNumArgs == (int)Call.arg_size(), 2340 "gc.statepoint too many arguments", Call); 2341 2342 // Check that the only uses of this gc.statepoint are gc.result or 2343 // gc.relocate calls which are tied to this statepoint and thus part 2344 // of the same statepoint sequence 2345 for (const User *U : Call.users()) { 2346 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2347 Check(UserCall, "illegal use of statepoint token", Call, U); 2348 if (!UserCall) 2349 continue; 2350 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2351 "gc.result or gc.relocate are the only value uses " 2352 "of a gc.statepoint", 2353 Call, U); 2354 if (isa<GCResultInst>(UserCall)) { 2355 Check(UserCall->getArgOperand(0) == &Call, 2356 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2357 } else if (isa<GCRelocateInst>(Call)) { 2358 Check(UserCall->getArgOperand(0) == &Call, 2359 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2360 } 2361 } 2362 2363 // Note: It is legal for a single derived pointer to be listed multiple 2364 // times. It's non-optimal, but it is legal. It can also happen after 2365 // insertion if we strip a bitcast away. 2366 // Note: It is really tempting to check that each base is relocated and 2367 // that a derived pointer is never reused as a base pointer. This turns 2368 // out to be problematic since optimizations run after safepoint insertion 2369 // can recognize equality properties that the insertion logic doesn't know 2370 // about. See example statepoint.ll in the verifier subdirectory 2371 } 2372 2373 void Verifier::verifyFrameRecoverIndices() { 2374 for (auto &Counts : FrameEscapeInfo) { 2375 Function *F = Counts.first; 2376 unsigned EscapedObjectCount = Counts.second.first; 2377 unsigned MaxRecoveredIndex = Counts.second.second; 2378 Check(MaxRecoveredIndex <= EscapedObjectCount, 2379 "all indices passed to llvm.localrecover must be less than the " 2380 "number of arguments passed to llvm.localescape in the parent " 2381 "function", 2382 F); 2383 } 2384 } 2385 2386 static Instruction *getSuccPad(Instruction *Terminator) { 2387 BasicBlock *UnwindDest; 2388 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2389 UnwindDest = II->getUnwindDest(); 2390 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2391 UnwindDest = CSI->getUnwindDest(); 2392 else 2393 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2394 return UnwindDest->getFirstNonPHI(); 2395 } 2396 2397 void Verifier::verifySiblingFuncletUnwinds() { 2398 SmallPtrSet<Instruction *, 8> Visited; 2399 SmallPtrSet<Instruction *, 8> Active; 2400 for (const auto &Pair : SiblingFuncletInfo) { 2401 Instruction *PredPad = Pair.first; 2402 if (Visited.count(PredPad)) 2403 continue; 2404 Active.insert(PredPad); 2405 Instruction *Terminator = Pair.second; 2406 do { 2407 Instruction *SuccPad = getSuccPad(Terminator); 2408 if (Active.count(SuccPad)) { 2409 // Found a cycle; report error 2410 Instruction *CyclePad = SuccPad; 2411 SmallVector<Instruction *, 8> CycleNodes; 2412 do { 2413 CycleNodes.push_back(CyclePad); 2414 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2415 if (CycleTerminator != CyclePad) 2416 CycleNodes.push_back(CycleTerminator); 2417 CyclePad = getSuccPad(CycleTerminator); 2418 } while (CyclePad != SuccPad); 2419 Check(false, "EH pads can't handle each other's exceptions", 2420 ArrayRef<Instruction *>(CycleNodes)); 2421 } 2422 // Don't re-walk a node we've already checked 2423 if (!Visited.insert(SuccPad).second) 2424 break; 2425 // Walk to this successor if it has a map entry. 2426 PredPad = SuccPad; 2427 auto TermI = SiblingFuncletInfo.find(PredPad); 2428 if (TermI == SiblingFuncletInfo.end()) 2429 break; 2430 Terminator = TermI->second; 2431 Active.insert(PredPad); 2432 } while (true); 2433 // Each node only has one successor, so we've walked all the active 2434 // nodes' successors. 2435 Active.clear(); 2436 } 2437 } 2438 2439 // visitFunction - Verify that a function is ok. 2440 // 2441 void Verifier::visitFunction(const Function &F) { 2442 visitGlobalValue(F); 2443 2444 // Check function arguments. 2445 FunctionType *FT = F.getFunctionType(); 2446 unsigned NumArgs = F.arg_size(); 2447 2448 Check(&Context == &F.getContext(), 2449 "Function context does not match Module context!", &F); 2450 2451 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2452 Check(FT->getNumParams() == NumArgs, 2453 "# formal arguments must match # of arguments for function type!", &F, 2454 FT); 2455 Check(F.getReturnType()->isFirstClassType() || 2456 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2457 "Functions cannot return aggregate values!", &F); 2458 2459 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2460 "Invalid struct return type!", &F); 2461 2462 AttributeList Attrs = F.getAttributes(); 2463 2464 Check(verifyAttributeCount(Attrs, FT->getNumParams()), 2465 "Attribute after last parameter!", &F); 2466 2467 bool IsIntrinsic = F.isIntrinsic(); 2468 2469 // Check function attributes. 2470 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false); 2471 2472 // On function declarations/definitions, we do not support the builtin 2473 // attribute. We do not check this in VerifyFunctionAttrs since that is 2474 // checking for Attributes that can/can not ever be on functions. 2475 Check(!Attrs.hasFnAttr(Attribute::Builtin), 2476 "Attribute 'builtin' can only be applied to a callsite.", &F); 2477 2478 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2479 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2480 2481 // Check that this function meets the restrictions on this calling convention. 2482 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2483 // restrictions can be lifted. 2484 switch (F.getCallingConv()) { 2485 default: 2486 case CallingConv::C: 2487 break; 2488 case CallingConv::X86_INTR: { 2489 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2490 "Calling convention parameter requires byval", &F); 2491 break; 2492 } 2493 case CallingConv::AMDGPU_KERNEL: 2494 case CallingConv::SPIR_KERNEL: 2495 Check(F.getReturnType()->isVoidTy(), 2496 "Calling convention requires void return type", &F); 2497 LLVM_FALLTHROUGH; 2498 case CallingConv::AMDGPU_VS: 2499 case CallingConv::AMDGPU_HS: 2500 case CallingConv::AMDGPU_GS: 2501 case CallingConv::AMDGPU_PS: 2502 case CallingConv::AMDGPU_CS: 2503 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F); 2504 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2505 const unsigned StackAS = DL.getAllocaAddrSpace(); 2506 unsigned i = 0; 2507 for (const Argument &Arg : F.args()) { 2508 Check(!Attrs.hasParamAttr(i, Attribute::ByVal), 2509 "Calling convention disallows byval", &F); 2510 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2511 "Calling convention disallows preallocated", &F); 2512 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2513 "Calling convention disallows inalloca", &F); 2514 2515 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2516 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2517 // value here. 2518 Check(Arg.getType()->getPointerAddressSpace() != StackAS, 2519 "Calling convention disallows stack byref", &F); 2520 } 2521 2522 ++i; 2523 } 2524 } 2525 2526 LLVM_FALLTHROUGH; 2527 case CallingConv::Fast: 2528 case CallingConv::Cold: 2529 case CallingConv::Intel_OCL_BI: 2530 case CallingConv::PTX_Kernel: 2531 case CallingConv::PTX_Device: 2532 Check(!F.isVarArg(), 2533 "Calling convention does not support varargs or " 2534 "perfect forwarding!", 2535 &F); 2536 break; 2537 } 2538 2539 // Check that the argument values match the function type for this function... 2540 unsigned i = 0; 2541 for (const Argument &Arg : F.args()) { 2542 Check(Arg.getType() == FT->getParamType(i), 2543 "Argument value does not match function argument type!", &Arg, 2544 FT->getParamType(i)); 2545 Check(Arg.getType()->isFirstClassType(), 2546 "Function arguments must have first-class types!", &Arg); 2547 if (!IsIntrinsic) { 2548 Check(!Arg.getType()->isMetadataTy(), 2549 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2550 Check(!Arg.getType()->isTokenTy(), 2551 "Function takes token but isn't an intrinsic", &Arg, &F); 2552 Check(!Arg.getType()->isX86_AMXTy(), 2553 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2554 } 2555 2556 // Check that swifterror argument is only used by loads and stores. 2557 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2558 verifySwiftErrorValue(&Arg); 2559 } 2560 ++i; 2561 } 2562 2563 if (!IsIntrinsic) { 2564 Check(!F.getReturnType()->isTokenTy(), 2565 "Function returns a token but isn't an intrinsic", &F); 2566 Check(!F.getReturnType()->isX86_AMXTy(), 2567 "Function returns a x86_amx but isn't an intrinsic", &F); 2568 } 2569 2570 // Get the function metadata attachments. 2571 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2572 F.getAllMetadata(MDs); 2573 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2574 verifyFunctionMetadata(MDs); 2575 2576 // Check validity of the personality function 2577 if (F.hasPersonalityFn()) { 2578 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2579 if (Per) 2580 Check(Per->getParent() == F.getParent(), 2581 "Referencing personality function in another module!", &F, 2582 F.getParent(), Per, Per->getParent()); 2583 } 2584 2585 if (F.isMaterializable()) { 2586 // Function has a body somewhere we can't see. 2587 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2588 MDs.empty() ? nullptr : MDs.front().second); 2589 } else if (F.isDeclaration()) { 2590 for (const auto &I : MDs) { 2591 // This is used for call site debug information. 2592 CheckDI(I.first != LLVMContext::MD_dbg || 2593 !cast<DISubprogram>(I.second)->isDistinct(), 2594 "function declaration may only have a unique !dbg attachment", 2595 &F); 2596 Check(I.first != LLVMContext::MD_prof, 2597 "function declaration may not have a !prof attachment", &F); 2598 2599 // Verify the metadata itself. 2600 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2601 } 2602 Check(!F.hasPersonalityFn(), 2603 "Function declaration shouldn't have a personality routine", &F); 2604 } else { 2605 // Verify that this function (which has a body) is not named "llvm.*". It 2606 // is not legal to define intrinsics. 2607 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2608 2609 // Check the entry node 2610 const BasicBlock *Entry = &F.getEntryBlock(); 2611 Check(pred_empty(Entry), 2612 "Entry block to function must not have predecessors!", Entry); 2613 2614 // The address of the entry block cannot be taken, unless it is dead. 2615 if (Entry->hasAddressTaken()) { 2616 Check(!BlockAddress::lookup(Entry)->isConstantUsed(), 2617 "blockaddress may not be used with the entry block!", Entry); 2618 } 2619 2620 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2621 // Visit metadata attachments. 2622 for (const auto &I : MDs) { 2623 // Verify that the attachment is legal. 2624 auto AllowLocs = AreDebugLocsAllowed::No; 2625 switch (I.first) { 2626 default: 2627 break; 2628 case LLVMContext::MD_dbg: { 2629 ++NumDebugAttachments; 2630 CheckDI(NumDebugAttachments == 1, 2631 "function must have a single !dbg attachment", &F, I.second); 2632 CheckDI(isa<DISubprogram>(I.second), 2633 "function !dbg attachment must be a subprogram", &F, I.second); 2634 CheckDI(cast<DISubprogram>(I.second)->isDistinct(), 2635 "function definition may only have a distinct !dbg attachment", 2636 &F); 2637 2638 auto *SP = cast<DISubprogram>(I.second); 2639 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2640 CheckDI(!AttachedTo || AttachedTo == &F, 2641 "DISubprogram attached to more than one function", SP, &F); 2642 AttachedTo = &F; 2643 AllowLocs = AreDebugLocsAllowed::Yes; 2644 break; 2645 } 2646 case LLVMContext::MD_prof: 2647 ++NumProfAttachments; 2648 Check(NumProfAttachments == 1, 2649 "function must have a single !prof attachment", &F, I.second); 2650 break; 2651 } 2652 2653 // Verify the metadata itself. 2654 visitMDNode(*I.second, AllowLocs); 2655 } 2656 } 2657 2658 // If this function is actually an intrinsic, verify that it is only used in 2659 // direct call/invokes, never having its "address taken". 2660 // Only do this if the module is materialized, otherwise we don't have all the 2661 // uses. 2662 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2663 const User *U; 2664 if (F.hasAddressTaken(&U, false, true, false, 2665 /*IgnoreARCAttachedCall=*/true)) 2666 Check(false, "Invalid user of intrinsic instruction!", U); 2667 } 2668 2669 // Check intrinsics' signatures. 2670 switch (F.getIntrinsicID()) { 2671 case Intrinsic::experimental_gc_get_pointer_base: { 2672 FunctionType *FT = F.getFunctionType(); 2673 Check(FT->getNumParams() == 1, "wrong number of parameters", F); 2674 Check(isa<PointerType>(F.getReturnType()), 2675 "gc.get.pointer.base must return a pointer", F); 2676 Check(FT->getParamType(0) == F.getReturnType(), 2677 "gc.get.pointer.base operand and result must be of the same type", F); 2678 break; 2679 } 2680 case Intrinsic::experimental_gc_get_pointer_offset: { 2681 FunctionType *FT = F.getFunctionType(); 2682 Check(FT->getNumParams() == 1, "wrong number of parameters", F); 2683 Check(isa<PointerType>(FT->getParamType(0)), 2684 "gc.get.pointer.offset operand must be a pointer", F); 2685 Check(F.getReturnType()->isIntegerTy(), 2686 "gc.get.pointer.offset must return integer", F); 2687 break; 2688 } 2689 } 2690 2691 auto *N = F.getSubprogram(); 2692 HasDebugInfo = (N != nullptr); 2693 if (!HasDebugInfo) 2694 return; 2695 2696 // Check that all !dbg attachments lead to back to N. 2697 // 2698 // FIXME: Check this incrementally while visiting !dbg attachments. 2699 // FIXME: Only check when N is the canonical subprogram for F. 2700 SmallPtrSet<const MDNode *, 32> Seen; 2701 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2702 // Be careful about using DILocation here since we might be dealing with 2703 // broken code (this is the Verifier after all). 2704 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2705 if (!DL) 2706 return; 2707 if (!Seen.insert(DL).second) 2708 return; 2709 2710 Metadata *Parent = DL->getRawScope(); 2711 CheckDI(Parent && isa<DILocalScope>(Parent), 2712 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent); 2713 2714 DILocalScope *Scope = DL->getInlinedAtScope(); 2715 Check(Scope, "Failed to find DILocalScope", DL); 2716 2717 if (!Seen.insert(Scope).second) 2718 return; 2719 2720 DISubprogram *SP = Scope->getSubprogram(); 2721 2722 // Scope and SP could be the same MDNode and we don't want to skip 2723 // validation in that case 2724 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2725 return; 2726 2727 CheckDI(SP->describes(&F), 2728 "!dbg attachment points at wrong subprogram for function", N, &F, 2729 &I, DL, Scope, SP); 2730 }; 2731 for (auto &BB : F) 2732 for (auto &I : BB) { 2733 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2734 // The llvm.loop annotations also contain two DILocations. 2735 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2736 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2737 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2738 if (BrokenDebugInfo) 2739 return; 2740 } 2741 } 2742 2743 // verifyBasicBlock - Verify that a basic block is well formed... 2744 // 2745 void Verifier::visitBasicBlock(BasicBlock &BB) { 2746 InstsInThisBlock.clear(); 2747 2748 // Ensure that basic blocks have terminators! 2749 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2750 2751 // Check constraints that this basic block imposes on all of the PHI nodes in 2752 // it. 2753 if (isa<PHINode>(BB.front())) { 2754 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2755 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2756 llvm::sort(Preds); 2757 for (const PHINode &PN : BB.phis()) { 2758 Check(PN.getNumIncomingValues() == Preds.size(), 2759 "PHINode should have one entry for each predecessor of its " 2760 "parent basic block!", 2761 &PN); 2762 2763 // Get and sort all incoming values in the PHI node... 2764 Values.clear(); 2765 Values.reserve(PN.getNumIncomingValues()); 2766 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2767 Values.push_back( 2768 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2769 llvm::sort(Values); 2770 2771 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2772 // Check to make sure that if there is more than one entry for a 2773 // particular basic block in this PHI node, that the incoming values are 2774 // all identical. 2775 // 2776 Check(i == 0 || Values[i].first != Values[i - 1].first || 2777 Values[i].second == Values[i - 1].second, 2778 "PHI node has multiple entries for the same basic block with " 2779 "different incoming values!", 2780 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2781 2782 // Check to make sure that the predecessors and PHI node entries are 2783 // matched up. 2784 Check(Values[i].first == Preds[i], 2785 "PHI node entries do not match predecessors!", &PN, 2786 Values[i].first, Preds[i]); 2787 } 2788 } 2789 } 2790 2791 // Check that all instructions have their parent pointers set up correctly. 2792 for (auto &I : BB) 2793 { 2794 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2795 } 2796 } 2797 2798 void Verifier::visitTerminator(Instruction &I) { 2799 // Ensure that terminators only exist at the end of the basic block. 2800 Check(&I == I.getParent()->getTerminator(), 2801 "Terminator found in the middle of a basic block!", I.getParent()); 2802 visitInstruction(I); 2803 } 2804 2805 void Verifier::visitBranchInst(BranchInst &BI) { 2806 if (BI.isConditional()) { 2807 Check(BI.getCondition()->getType()->isIntegerTy(1), 2808 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2809 } 2810 visitTerminator(BI); 2811 } 2812 2813 void Verifier::visitReturnInst(ReturnInst &RI) { 2814 Function *F = RI.getParent()->getParent(); 2815 unsigned N = RI.getNumOperands(); 2816 if (F->getReturnType()->isVoidTy()) 2817 Check(N == 0, 2818 "Found return instr that returns non-void in Function of void " 2819 "return type!", 2820 &RI, F->getReturnType()); 2821 else 2822 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2823 "Function return type does not match operand " 2824 "type of return inst!", 2825 &RI, F->getReturnType()); 2826 2827 // Check to make sure that the return value has necessary properties for 2828 // terminators... 2829 visitTerminator(RI); 2830 } 2831 2832 void Verifier::visitSwitchInst(SwitchInst &SI) { 2833 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 2834 // Check to make sure that all of the constants in the switch instruction 2835 // have the same type as the switched-on value. 2836 Type *SwitchTy = SI.getCondition()->getType(); 2837 SmallPtrSet<ConstantInt*, 32> Constants; 2838 for (auto &Case : SI.cases()) { 2839 Check(Case.getCaseValue()->getType() == SwitchTy, 2840 "Switch constants must all be same type as switch value!", &SI); 2841 Check(Constants.insert(Case.getCaseValue()).second, 2842 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2843 } 2844 2845 visitTerminator(SI); 2846 } 2847 2848 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2849 Check(BI.getAddress()->getType()->isPointerTy(), 2850 "Indirectbr operand must have pointer type!", &BI); 2851 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2852 Check(BI.getDestination(i)->getType()->isLabelTy(), 2853 "Indirectbr destinations must all have pointer type!", &BI); 2854 2855 visitTerminator(BI); 2856 } 2857 2858 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2859 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI); 2860 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2861 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 2862 2863 verifyInlineAsmCall(CBI); 2864 visitTerminator(CBI); 2865 } 2866 2867 void Verifier::visitSelectInst(SelectInst &SI) { 2868 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2869 SI.getOperand(2)), 2870 "Invalid operands for select instruction!", &SI); 2871 2872 Check(SI.getTrueValue()->getType() == SI.getType(), 2873 "Select values must have same type as select instruction!", &SI); 2874 visitInstruction(SI); 2875 } 2876 2877 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2878 /// a pass, if any exist, it's an error. 2879 /// 2880 void Verifier::visitUserOp1(Instruction &I) { 2881 Check(false, "User-defined operators should not live outside of a pass!", &I); 2882 } 2883 2884 void Verifier::visitTruncInst(TruncInst &I) { 2885 // Get the source and destination types 2886 Type *SrcTy = I.getOperand(0)->getType(); 2887 Type *DestTy = I.getType(); 2888 2889 // Get the size of the types in bits, we'll need this later 2890 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2891 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2892 2893 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2894 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2895 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2896 "trunc source and destination must both be a vector or neither", &I); 2897 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2898 2899 visitInstruction(I); 2900 } 2901 2902 void Verifier::visitZExtInst(ZExtInst &I) { 2903 // Get the source and destination types 2904 Type *SrcTy = I.getOperand(0)->getType(); 2905 Type *DestTy = I.getType(); 2906 2907 // Get the size of the types in bits, we'll need this later 2908 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2909 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2910 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2911 "zext source and destination must both be a vector or neither", &I); 2912 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2913 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2914 2915 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2916 2917 visitInstruction(I); 2918 } 2919 2920 void Verifier::visitSExtInst(SExtInst &I) { 2921 // Get the source and destination types 2922 Type *SrcTy = I.getOperand(0)->getType(); 2923 Type *DestTy = I.getType(); 2924 2925 // Get the size of the types in bits, we'll need this later 2926 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2927 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2928 2929 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2930 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2931 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2932 "sext source and destination must both be a vector or neither", &I); 2933 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2934 2935 visitInstruction(I); 2936 } 2937 2938 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2939 // Get the source and destination types 2940 Type *SrcTy = I.getOperand(0)->getType(); 2941 Type *DestTy = I.getType(); 2942 // Get the size of the types in bits, we'll need this later 2943 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2944 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2945 2946 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2947 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2948 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2949 "fptrunc source and destination must both be a vector or neither", &I); 2950 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2951 2952 visitInstruction(I); 2953 } 2954 2955 void Verifier::visitFPExtInst(FPExtInst &I) { 2956 // Get the source and destination types 2957 Type *SrcTy = I.getOperand(0)->getType(); 2958 Type *DestTy = I.getType(); 2959 2960 // Get the size of the types in bits, we'll need this later 2961 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2962 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2963 2964 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2965 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2966 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2967 "fpext source and destination must both be a vector or neither", &I); 2968 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2969 2970 visitInstruction(I); 2971 } 2972 2973 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2974 // Get the source and destination types 2975 Type *SrcTy = I.getOperand(0)->getType(); 2976 Type *DestTy = I.getType(); 2977 2978 bool SrcVec = SrcTy->isVectorTy(); 2979 bool DstVec = DestTy->isVectorTy(); 2980 2981 Check(SrcVec == DstVec, 2982 "UIToFP source and dest must both be vector or scalar", &I); 2983 Check(SrcTy->isIntOrIntVectorTy(), 2984 "UIToFP source must be integer or integer vector", &I); 2985 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2986 &I); 2987 2988 if (SrcVec && DstVec) 2989 Check(cast<VectorType>(SrcTy)->getElementCount() == 2990 cast<VectorType>(DestTy)->getElementCount(), 2991 "UIToFP source and dest vector length mismatch", &I); 2992 2993 visitInstruction(I); 2994 } 2995 2996 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2997 // Get the source and destination types 2998 Type *SrcTy = I.getOperand(0)->getType(); 2999 Type *DestTy = I.getType(); 3000 3001 bool SrcVec = SrcTy->isVectorTy(); 3002 bool DstVec = DestTy->isVectorTy(); 3003 3004 Check(SrcVec == DstVec, 3005 "SIToFP source and dest must both be vector or scalar", &I); 3006 Check(SrcTy->isIntOrIntVectorTy(), 3007 "SIToFP source must be integer or integer vector", &I); 3008 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 3009 &I); 3010 3011 if (SrcVec && DstVec) 3012 Check(cast<VectorType>(SrcTy)->getElementCount() == 3013 cast<VectorType>(DestTy)->getElementCount(), 3014 "SIToFP source and dest vector length mismatch", &I); 3015 3016 visitInstruction(I); 3017 } 3018 3019 void Verifier::visitFPToUIInst(FPToUIInst &I) { 3020 // Get the source and destination types 3021 Type *SrcTy = I.getOperand(0)->getType(); 3022 Type *DestTy = I.getType(); 3023 3024 bool SrcVec = SrcTy->isVectorTy(); 3025 bool DstVec = DestTy->isVectorTy(); 3026 3027 Check(SrcVec == DstVec, 3028 "FPToUI source and dest must both be vector or scalar", &I); 3029 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I); 3030 Check(DestTy->isIntOrIntVectorTy(), 3031 "FPToUI result must be integer or integer vector", &I); 3032 3033 if (SrcVec && DstVec) 3034 Check(cast<VectorType>(SrcTy)->getElementCount() == 3035 cast<VectorType>(DestTy)->getElementCount(), 3036 "FPToUI source and dest vector length mismatch", &I); 3037 3038 visitInstruction(I); 3039 } 3040 3041 void Verifier::visitFPToSIInst(FPToSIInst &I) { 3042 // Get the source and destination types 3043 Type *SrcTy = I.getOperand(0)->getType(); 3044 Type *DestTy = I.getType(); 3045 3046 bool SrcVec = SrcTy->isVectorTy(); 3047 bool DstVec = DestTy->isVectorTy(); 3048 3049 Check(SrcVec == DstVec, 3050 "FPToSI source and dest must both be vector or scalar", &I); 3051 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I); 3052 Check(DestTy->isIntOrIntVectorTy(), 3053 "FPToSI result must be integer or integer vector", &I); 3054 3055 if (SrcVec && DstVec) 3056 Check(cast<VectorType>(SrcTy)->getElementCount() == 3057 cast<VectorType>(DestTy)->getElementCount(), 3058 "FPToSI source and dest vector length mismatch", &I); 3059 3060 visitInstruction(I); 3061 } 3062 3063 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 3064 // Get the source and destination types 3065 Type *SrcTy = I.getOperand(0)->getType(); 3066 Type *DestTy = I.getType(); 3067 3068 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 3069 3070 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 3071 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 3072 &I); 3073 3074 if (SrcTy->isVectorTy()) { 3075 auto *VSrc = cast<VectorType>(SrcTy); 3076 auto *VDest = cast<VectorType>(DestTy); 3077 Check(VSrc->getElementCount() == VDest->getElementCount(), 3078 "PtrToInt Vector width mismatch", &I); 3079 } 3080 3081 visitInstruction(I); 3082 } 3083 3084 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 3085 // Get the source and destination types 3086 Type *SrcTy = I.getOperand(0)->getType(); 3087 Type *DestTy = I.getType(); 3088 3089 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I); 3090 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 3091 3092 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 3093 &I); 3094 if (SrcTy->isVectorTy()) { 3095 auto *VSrc = cast<VectorType>(SrcTy); 3096 auto *VDest = cast<VectorType>(DestTy); 3097 Check(VSrc->getElementCount() == VDest->getElementCount(), 3098 "IntToPtr Vector width mismatch", &I); 3099 } 3100 visitInstruction(I); 3101 } 3102 3103 void Verifier::visitBitCastInst(BitCastInst &I) { 3104 Check( 3105 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3106 "Invalid bitcast", &I); 3107 visitInstruction(I); 3108 } 3109 3110 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3111 Type *SrcTy = I.getOperand(0)->getType(); 3112 Type *DestTy = I.getType(); 3113 3114 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3115 &I); 3116 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3117 &I); 3118 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3119 "AddrSpaceCast must be between different address spaces", &I); 3120 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3121 Check(SrcVTy->getElementCount() == 3122 cast<VectorType>(DestTy)->getElementCount(), 3123 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3124 visitInstruction(I); 3125 } 3126 3127 /// visitPHINode - Ensure that a PHI node is well formed. 3128 /// 3129 void Verifier::visitPHINode(PHINode &PN) { 3130 // Ensure that the PHI nodes are all grouped together at the top of the block. 3131 // This can be tested by checking whether the instruction before this is 3132 // either nonexistent (because this is begin()) or is a PHI node. If not, 3133 // then there is some other instruction before a PHI. 3134 Check(&PN == &PN.getParent()->front() || 3135 isa<PHINode>(--BasicBlock::iterator(&PN)), 3136 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3137 3138 // Check that a PHI doesn't yield a Token. 3139 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3140 3141 // Check that all of the values of the PHI node have the same type as the 3142 // result, and that the incoming blocks are really basic blocks. 3143 for (Value *IncValue : PN.incoming_values()) { 3144 Check(PN.getType() == IncValue->getType(), 3145 "PHI node operands are not the same type as the result!", &PN); 3146 } 3147 3148 // All other PHI node constraints are checked in the visitBasicBlock method. 3149 3150 visitInstruction(PN); 3151 } 3152 3153 void Verifier::visitCallBase(CallBase &Call) { 3154 Check(Call.getCalledOperand()->getType()->isPointerTy(), 3155 "Called function must be a pointer!", Call); 3156 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3157 3158 Check(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), 3159 "Called function is not the same type as the call!", Call); 3160 3161 FunctionType *FTy = Call.getFunctionType(); 3162 3163 // Verify that the correct number of arguments are being passed 3164 if (FTy->isVarArg()) 3165 Check(Call.arg_size() >= FTy->getNumParams(), 3166 "Called function requires more parameters than were provided!", Call); 3167 else 3168 Check(Call.arg_size() == FTy->getNumParams(), 3169 "Incorrect number of arguments passed to called function!", Call); 3170 3171 // Verify that all arguments to the call match the function type. 3172 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3173 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3174 "Call parameter type does not match function signature!", 3175 Call.getArgOperand(i), FTy->getParamType(i), Call); 3176 3177 AttributeList Attrs = Call.getAttributes(); 3178 3179 Check(verifyAttributeCount(Attrs, Call.arg_size()), 3180 "Attribute after last parameter!", Call); 3181 3182 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) { 3183 if (!Ty->isSized()) 3184 return; 3185 Align ABIAlign = DL.getABITypeAlign(Ty); 3186 Align MaxAlign(ParamMaxAlignment); 3187 Check(ABIAlign <= MaxAlign, 3188 "Incorrect alignment of " + Message + " to called function!", Call); 3189 }; 3190 3191 VerifyTypeAlign(FTy->getReturnType(), "return type"); 3192 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3193 Type *Ty = FTy->getParamType(i); 3194 VerifyTypeAlign(Ty, "argument passed"); 3195 } 3196 3197 Function *Callee = 3198 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3199 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3200 if (IsIntrinsic) 3201 Check(Callee->getValueType() == FTy, 3202 "Intrinsic called with incompatible signature", Call); 3203 3204 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3205 // Don't allow speculatable on call sites, unless the underlying function 3206 // declaration is also speculatable. 3207 Check(Callee && Callee->isSpeculatable(), 3208 "speculatable attribute may not apply to call sites", Call); 3209 } 3210 3211 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3212 Check(Call.getCalledFunction()->getIntrinsicID() == 3213 Intrinsic::call_preallocated_arg, 3214 "preallocated as a call site attribute can only be on " 3215 "llvm.call.preallocated.arg"); 3216 } 3217 3218 // Verify call attributes. 3219 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm()); 3220 3221 // Conservatively check the inalloca argument. 3222 // We have a bug if we can find that there is an underlying alloca without 3223 // inalloca. 3224 if (Call.hasInAllocaArgument()) { 3225 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3226 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3227 Check(AI->isUsedWithInAlloca(), 3228 "inalloca argument for call has mismatched alloca", AI, Call); 3229 } 3230 3231 // For each argument of the callsite, if it has the swifterror argument, 3232 // make sure the underlying alloca/parameter it comes from has a swifterror as 3233 // well. 3234 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3235 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3236 Value *SwiftErrorArg = Call.getArgOperand(i); 3237 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3238 Check(AI->isSwiftError(), 3239 "swifterror argument for call has mismatched alloca", AI, Call); 3240 continue; 3241 } 3242 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3243 Check(ArgI, "swifterror argument should come from an alloca or parameter", 3244 SwiftErrorArg, Call); 3245 Check(ArgI->hasSwiftErrorAttr(), 3246 "swifterror argument for call has mismatched parameter", ArgI, 3247 Call); 3248 } 3249 3250 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3251 // Don't allow immarg on call sites, unless the underlying declaration 3252 // also has the matching immarg. 3253 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3254 "immarg may not apply only to call sites", Call.getArgOperand(i), 3255 Call); 3256 } 3257 3258 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3259 Value *ArgVal = Call.getArgOperand(i); 3260 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3261 "immarg operand has non-immediate parameter", ArgVal, Call); 3262 } 3263 3264 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3265 Value *ArgVal = Call.getArgOperand(i); 3266 bool hasOB = 3267 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3268 bool isMustTail = Call.isMustTailCall(); 3269 Check(hasOB != isMustTail, 3270 "preallocated operand either requires a preallocated bundle or " 3271 "the call to be musttail (but not both)", 3272 ArgVal, Call); 3273 } 3274 } 3275 3276 if (FTy->isVarArg()) { 3277 // FIXME? is 'nest' even legal here? 3278 bool SawNest = false; 3279 bool SawReturned = false; 3280 3281 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3282 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3283 SawNest = true; 3284 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3285 SawReturned = true; 3286 } 3287 3288 // Check attributes on the varargs part. 3289 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3290 Type *Ty = Call.getArgOperand(Idx)->getType(); 3291 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3292 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3293 3294 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3295 Check(!SawNest, "More than one parameter has attribute nest!", Call); 3296 SawNest = true; 3297 } 3298 3299 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3300 Check(!SawReturned, "More than one parameter has attribute returned!", 3301 Call); 3302 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3303 "Incompatible argument and return types for 'returned' " 3304 "attribute", 3305 Call); 3306 SawReturned = true; 3307 } 3308 3309 // Statepoint intrinsic is vararg but the wrapped function may be not. 3310 // Allow sret here and check the wrapped function in verifyStatepoint. 3311 if (!Call.getCalledFunction() || 3312 Call.getCalledFunction()->getIntrinsicID() != 3313 Intrinsic::experimental_gc_statepoint) 3314 Check(!ArgAttrs.hasAttribute(Attribute::StructRet), 3315 "Attribute 'sret' cannot be used for vararg call arguments!", 3316 Call); 3317 3318 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3319 Check(Idx == Call.arg_size() - 1, 3320 "inalloca isn't on the last argument!", Call); 3321 } 3322 } 3323 3324 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3325 if (!IsIntrinsic) { 3326 for (Type *ParamTy : FTy->params()) { 3327 Check(!ParamTy->isMetadataTy(), 3328 "Function has metadata parameter but isn't an intrinsic", Call); 3329 Check(!ParamTy->isTokenTy(), 3330 "Function has token parameter but isn't an intrinsic", Call); 3331 } 3332 } 3333 3334 // Verify that indirect calls don't return tokens. 3335 if (!Call.getCalledFunction()) { 3336 Check(!FTy->getReturnType()->isTokenTy(), 3337 "Return type cannot be token for indirect call!"); 3338 Check(!FTy->getReturnType()->isX86_AMXTy(), 3339 "Return type cannot be x86_amx for indirect call!"); 3340 } 3341 3342 if (Function *F = Call.getCalledFunction()) 3343 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3344 visitIntrinsicCall(ID, Call); 3345 3346 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3347 // most one "gc-transition", at most one "cfguardtarget", at most one 3348 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle. 3349 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3350 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3351 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3352 FoundPtrauthBundle = false, 3353 FoundAttachedCallBundle = false; 3354 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3355 OperandBundleUse BU = Call.getOperandBundleAt(i); 3356 uint32_t Tag = BU.getTagID(); 3357 if (Tag == LLVMContext::OB_deopt) { 3358 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3359 FoundDeoptBundle = true; 3360 } else if (Tag == LLVMContext::OB_gc_transition) { 3361 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3362 Call); 3363 FoundGCTransitionBundle = true; 3364 } else if (Tag == LLVMContext::OB_funclet) { 3365 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3366 FoundFuncletBundle = true; 3367 Check(BU.Inputs.size() == 1, 3368 "Expected exactly one funclet bundle operand", Call); 3369 Check(isa<FuncletPadInst>(BU.Inputs.front()), 3370 "Funclet bundle operands should correspond to a FuncletPadInst", 3371 Call); 3372 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3373 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles", 3374 Call); 3375 FoundCFGuardTargetBundle = true; 3376 Check(BU.Inputs.size() == 1, 3377 "Expected exactly one cfguardtarget bundle operand", Call); 3378 } else if (Tag == LLVMContext::OB_ptrauth) { 3379 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call); 3380 FoundPtrauthBundle = true; 3381 Check(BU.Inputs.size() == 2, 3382 "Expected exactly two ptrauth bundle operands", Call); 3383 Check(isa<ConstantInt>(BU.Inputs[0]) && 3384 BU.Inputs[0]->getType()->isIntegerTy(32), 3385 "Ptrauth bundle key operand must be an i32 constant", Call); 3386 Check(BU.Inputs[1]->getType()->isIntegerTy(64), 3387 "Ptrauth bundle discriminator operand must be an i64", Call); 3388 } else if (Tag == LLVMContext::OB_preallocated) { 3389 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3390 Call); 3391 FoundPreallocatedBundle = true; 3392 Check(BU.Inputs.size() == 1, 3393 "Expected exactly one preallocated bundle operand", Call); 3394 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3395 Check(Input && 3396 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3397 "\"preallocated\" argument must be a token from " 3398 "llvm.call.preallocated.setup", 3399 Call); 3400 } else if (Tag == LLVMContext::OB_gc_live) { 3401 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call); 3402 FoundGCLiveBundle = true; 3403 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3404 Check(!FoundAttachedCallBundle, 3405 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3406 FoundAttachedCallBundle = true; 3407 verifyAttachedCallBundle(Call, BU); 3408 } 3409 } 3410 3411 // Verify that callee and callsite agree on whether to use pointer auth. 3412 Check(!(Call.getCalledFunction() && FoundPtrauthBundle), 3413 "Direct call cannot have a ptrauth bundle", Call); 3414 3415 // Verify that each inlinable callsite of a debug-info-bearing function in a 3416 // debug-info-bearing function has a debug location attached to it. Failure to 3417 // do so causes assertion failures when the inliner sets up inline scope info. 3418 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3419 Call.getCalledFunction()->getSubprogram()) 3420 CheckDI(Call.getDebugLoc(), 3421 "inlinable function call in a function with " 3422 "debug info must have a !dbg location", 3423 Call); 3424 3425 if (Call.isInlineAsm()) 3426 verifyInlineAsmCall(Call); 3427 3428 visitInstruction(Call); 3429 } 3430 3431 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, 3432 StringRef Context) { 3433 Check(!Attrs.contains(Attribute::InAlloca), 3434 Twine("inalloca attribute not allowed in ") + Context); 3435 Check(!Attrs.contains(Attribute::InReg), 3436 Twine("inreg attribute not allowed in ") + Context); 3437 Check(!Attrs.contains(Attribute::SwiftError), 3438 Twine("swifterror attribute not allowed in ") + Context); 3439 Check(!Attrs.contains(Attribute::Preallocated), 3440 Twine("preallocated attribute not allowed in ") + Context); 3441 Check(!Attrs.contains(Attribute::ByRef), 3442 Twine("byref attribute not allowed in ") + Context); 3443 } 3444 3445 /// Two types are "congruent" if they are identical, or if they are both pointer 3446 /// types with different pointee types and the same address space. 3447 static bool isTypeCongruent(Type *L, Type *R) { 3448 if (L == R) 3449 return true; 3450 PointerType *PL = dyn_cast<PointerType>(L); 3451 PointerType *PR = dyn_cast<PointerType>(R); 3452 if (!PL || !PR) 3453 return false; 3454 return PL->getAddressSpace() == PR->getAddressSpace(); 3455 } 3456 3457 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) { 3458 static const Attribute::AttrKind ABIAttrs[] = { 3459 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3460 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3461 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3462 Attribute::ByRef}; 3463 AttrBuilder Copy(C); 3464 for (auto AK : ABIAttrs) { 3465 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3466 if (Attr.isValid()) 3467 Copy.addAttribute(Attr); 3468 } 3469 3470 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3471 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3472 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3473 Attrs.hasParamAttr(I, Attribute::ByRef))) 3474 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3475 return Copy; 3476 } 3477 3478 void Verifier::verifyMustTailCall(CallInst &CI) { 3479 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3480 3481 Function *F = CI.getParent()->getParent(); 3482 FunctionType *CallerTy = F->getFunctionType(); 3483 FunctionType *CalleeTy = CI.getFunctionType(); 3484 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3485 "cannot guarantee tail call due to mismatched varargs", &CI); 3486 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3487 "cannot guarantee tail call due to mismatched return types", &CI); 3488 3489 // - The calling conventions of the caller and callee must match. 3490 Check(F->getCallingConv() == CI.getCallingConv(), 3491 "cannot guarantee tail call due to mismatched calling conv", &CI); 3492 3493 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3494 // or a pointer bitcast followed by a ret instruction. 3495 // - The ret instruction must return the (possibly bitcasted) value 3496 // produced by the call or void. 3497 Value *RetVal = &CI; 3498 Instruction *Next = CI.getNextNode(); 3499 3500 // Handle the optional bitcast. 3501 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3502 Check(BI->getOperand(0) == RetVal, 3503 "bitcast following musttail call must use the call", BI); 3504 RetVal = BI; 3505 Next = BI->getNextNode(); 3506 } 3507 3508 // Check the return. 3509 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3510 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI); 3511 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3512 isa<UndefValue>(Ret->getReturnValue()), 3513 "musttail call result must be returned", Ret); 3514 3515 AttributeList CallerAttrs = F->getAttributes(); 3516 AttributeList CalleeAttrs = CI.getAttributes(); 3517 if (CI.getCallingConv() == CallingConv::SwiftTail || 3518 CI.getCallingConv() == CallingConv::Tail) { 3519 StringRef CCName = 3520 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3521 3522 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3523 // are allowed in swifttailcc call 3524 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3525 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3526 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3527 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3528 } 3529 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3530 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3531 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3532 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3533 } 3534 // - Varargs functions are not allowed 3535 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3536 " tail call for varargs function"); 3537 return; 3538 } 3539 3540 // - The caller and callee prototypes must match. Pointer types of 3541 // parameters or return types may differ in pointee type, but not 3542 // address space. 3543 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3544 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3545 "cannot guarantee tail call due to mismatched parameter counts", &CI); 3546 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3547 Check( 3548 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3549 "cannot guarantee tail call due to mismatched parameter types", &CI); 3550 } 3551 } 3552 3553 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3554 // returned, preallocated, and inalloca, must match. 3555 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3556 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3557 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3558 Check(CallerABIAttrs == CalleeABIAttrs, 3559 "cannot guarantee tail call due to mismatched ABI impacting " 3560 "function attributes", 3561 &CI, CI.getOperand(I)); 3562 } 3563 } 3564 3565 void Verifier::visitCallInst(CallInst &CI) { 3566 visitCallBase(CI); 3567 3568 if (CI.isMustTailCall()) 3569 verifyMustTailCall(CI); 3570 } 3571 3572 void Verifier::visitInvokeInst(InvokeInst &II) { 3573 visitCallBase(II); 3574 3575 // Verify that the first non-PHI instruction of the unwind destination is an 3576 // exception handling instruction. 3577 Check( 3578 II.getUnwindDest()->isEHPad(), 3579 "The unwind destination does not have an exception handling instruction!", 3580 &II); 3581 3582 visitTerminator(II); 3583 } 3584 3585 /// visitUnaryOperator - Check the argument to the unary operator. 3586 /// 3587 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3588 Check(U.getType() == U.getOperand(0)->getType(), 3589 "Unary operators must have same type for" 3590 "operands and result!", 3591 &U); 3592 3593 switch (U.getOpcode()) { 3594 // Check that floating-point arithmetic operators are only used with 3595 // floating-point operands. 3596 case Instruction::FNeg: 3597 Check(U.getType()->isFPOrFPVectorTy(), 3598 "FNeg operator only works with float types!", &U); 3599 break; 3600 default: 3601 llvm_unreachable("Unknown UnaryOperator opcode!"); 3602 } 3603 3604 visitInstruction(U); 3605 } 3606 3607 /// visitBinaryOperator - Check that both arguments to the binary operator are 3608 /// of the same type! 3609 /// 3610 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3611 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3612 "Both operands to a binary operator are not of the same type!", &B); 3613 3614 switch (B.getOpcode()) { 3615 // Check that integer arithmetic operators are only used with 3616 // integral operands. 3617 case Instruction::Add: 3618 case Instruction::Sub: 3619 case Instruction::Mul: 3620 case Instruction::SDiv: 3621 case Instruction::UDiv: 3622 case Instruction::SRem: 3623 case Instruction::URem: 3624 Check(B.getType()->isIntOrIntVectorTy(), 3625 "Integer arithmetic operators only work with integral types!", &B); 3626 Check(B.getType() == B.getOperand(0)->getType(), 3627 "Integer arithmetic operators must have same type " 3628 "for operands and result!", 3629 &B); 3630 break; 3631 // Check that floating-point arithmetic operators are only used with 3632 // floating-point operands. 3633 case Instruction::FAdd: 3634 case Instruction::FSub: 3635 case Instruction::FMul: 3636 case Instruction::FDiv: 3637 case Instruction::FRem: 3638 Check(B.getType()->isFPOrFPVectorTy(), 3639 "Floating-point arithmetic operators only work with " 3640 "floating-point types!", 3641 &B); 3642 Check(B.getType() == B.getOperand(0)->getType(), 3643 "Floating-point arithmetic operators must have same type " 3644 "for operands and result!", 3645 &B); 3646 break; 3647 // Check that logical operators are only used with integral operands. 3648 case Instruction::And: 3649 case Instruction::Or: 3650 case Instruction::Xor: 3651 Check(B.getType()->isIntOrIntVectorTy(), 3652 "Logical operators only work with integral types!", &B); 3653 Check(B.getType() == B.getOperand(0)->getType(), 3654 "Logical operators must have same type for operands and result!", &B); 3655 break; 3656 case Instruction::Shl: 3657 case Instruction::LShr: 3658 case Instruction::AShr: 3659 Check(B.getType()->isIntOrIntVectorTy(), 3660 "Shifts only work with integral types!", &B); 3661 Check(B.getType() == B.getOperand(0)->getType(), 3662 "Shift return type must be same as operands!", &B); 3663 break; 3664 default: 3665 llvm_unreachable("Unknown BinaryOperator opcode!"); 3666 } 3667 3668 visitInstruction(B); 3669 } 3670 3671 void Verifier::visitICmpInst(ICmpInst &IC) { 3672 // Check that the operands are the same type 3673 Type *Op0Ty = IC.getOperand(0)->getType(); 3674 Type *Op1Ty = IC.getOperand(1)->getType(); 3675 Check(Op0Ty == Op1Ty, 3676 "Both operands to ICmp instruction are not of the same type!", &IC); 3677 // Check that the operands are the right type 3678 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3679 "Invalid operand types for ICmp instruction", &IC); 3680 // Check that the predicate is valid. 3681 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC); 3682 3683 visitInstruction(IC); 3684 } 3685 3686 void Verifier::visitFCmpInst(FCmpInst &FC) { 3687 // Check that the operands are the same type 3688 Type *Op0Ty = FC.getOperand(0)->getType(); 3689 Type *Op1Ty = FC.getOperand(1)->getType(); 3690 Check(Op0Ty == Op1Ty, 3691 "Both operands to FCmp instruction are not of the same type!", &FC); 3692 // Check that the operands are the right type 3693 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", 3694 &FC); 3695 // Check that the predicate is valid. 3696 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC); 3697 3698 visitInstruction(FC); 3699 } 3700 3701 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3702 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3703 "Invalid extractelement operands!", &EI); 3704 visitInstruction(EI); 3705 } 3706 3707 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3708 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3709 IE.getOperand(2)), 3710 "Invalid insertelement operands!", &IE); 3711 visitInstruction(IE); 3712 } 3713 3714 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3715 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3716 SV.getShuffleMask()), 3717 "Invalid shufflevector operands!", &SV); 3718 visitInstruction(SV); 3719 } 3720 3721 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3722 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3723 3724 Check(isa<PointerType>(TargetTy), 3725 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3726 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3727 3728 SmallVector<Value *, 16> Idxs(GEP.indices()); 3729 Check( 3730 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }), 3731 "GEP indexes must be integers", &GEP); 3732 Type *ElTy = 3733 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3734 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3735 3736 Check(GEP.getType()->isPtrOrPtrVectorTy() && 3737 GEP.getResultElementType() == ElTy, 3738 "GEP is not of right type for indices!", &GEP, ElTy); 3739 3740 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3741 // Additional checks for vector GEPs. 3742 ElementCount GEPWidth = GEPVTy->getElementCount(); 3743 if (GEP.getPointerOperandType()->isVectorTy()) 3744 Check( 3745 GEPWidth == 3746 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3747 "Vector GEP result width doesn't match operand's", &GEP); 3748 for (Value *Idx : Idxs) { 3749 Type *IndexTy = Idx->getType(); 3750 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3751 ElementCount IndexWidth = IndexVTy->getElementCount(); 3752 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3753 } 3754 Check(IndexTy->isIntOrIntVectorTy(), 3755 "All GEP indices should be of integer type"); 3756 } 3757 } 3758 3759 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3760 Check(GEP.getAddressSpace() == PTy->getAddressSpace(), 3761 "GEP address space doesn't match type", &GEP); 3762 } 3763 3764 visitInstruction(GEP); 3765 } 3766 3767 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3768 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3769 } 3770 3771 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3772 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3773 "precondition violation"); 3774 3775 unsigned NumOperands = Range->getNumOperands(); 3776 Check(NumOperands % 2 == 0, "Unfinished range!", Range); 3777 unsigned NumRanges = NumOperands / 2; 3778 Check(NumRanges >= 1, "It should have at least one range!", Range); 3779 3780 ConstantRange LastRange(1, true); // Dummy initial value 3781 for (unsigned i = 0; i < NumRanges; ++i) { 3782 ConstantInt *Low = 3783 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3784 Check(Low, "The lower limit must be an integer!", Low); 3785 ConstantInt *High = 3786 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3787 Check(High, "The upper limit must be an integer!", High); 3788 Check(High->getType() == Low->getType() && High->getType() == Ty, 3789 "Range types must match instruction type!", &I); 3790 3791 APInt HighV = High->getValue(); 3792 APInt LowV = Low->getValue(); 3793 ConstantRange CurRange(LowV, HighV); 3794 Check(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3795 "Range must not be empty!", Range); 3796 if (i != 0) { 3797 Check(CurRange.intersectWith(LastRange).isEmptySet(), 3798 "Intervals are overlapping", Range); 3799 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3800 Range); 3801 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3802 Range); 3803 } 3804 LastRange = ConstantRange(LowV, HighV); 3805 } 3806 if (NumRanges > 2) { 3807 APInt FirstLow = 3808 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3809 APInt FirstHigh = 3810 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3811 ConstantRange FirstRange(FirstLow, FirstHigh); 3812 Check(FirstRange.intersectWith(LastRange).isEmptySet(), 3813 "Intervals are overlapping", Range); 3814 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3815 Range); 3816 } 3817 } 3818 3819 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3820 unsigned Size = DL.getTypeSizeInBits(Ty); 3821 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3822 Check(!(Size & (Size - 1)), 3823 "atomic memory access' operand must have a power-of-two size", Ty, I); 3824 } 3825 3826 void Verifier::visitLoadInst(LoadInst &LI) { 3827 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3828 Check(PTy, "Load operand must be a pointer.", &LI); 3829 Type *ElTy = LI.getType(); 3830 if (MaybeAlign A = LI.getAlign()) { 3831 Check(A->value() <= Value::MaximumAlignment, 3832 "huge alignment values are unsupported", &LI); 3833 } 3834 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3835 if (LI.isAtomic()) { 3836 Check(LI.getOrdering() != AtomicOrdering::Release && 3837 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3838 "Load cannot have Release ordering", &LI); 3839 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3840 "atomic load operand must have integer, pointer, or floating point " 3841 "type!", 3842 ElTy, &LI); 3843 checkAtomicMemAccessSize(ElTy, &LI); 3844 } else { 3845 Check(LI.getSyncScopeID() == SyncScope::System, 3846 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3847 } 3848 3849 visitInstruction(LI); 3850 } 3851 3852 void Verifier::visitStoreInst(StoreInst &SI) { 3853 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3854 Check(PTy, "Store operand must be a pointer.", &SI); 3855 Type *ElTy = SI.getOperand(0)->getType(); 3856 Check(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 3857 "Stored value type does not match pointer operand type!", &SI, ElTy); 3858 if (MaybeAlign A = SI.getAlign()) { 3859 Check(A->value() <= Value::MaximumAlignment, 3860 "huge alignment values are unsupported", &SI); 3861 } 3862 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3863 if (SI.isAtomic()) { 3864 Check(SI.getOrdering() != AtomicOrdering::Acquire && 3865 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3866 "Store cannot have Acquire ordering", &SI); 3867 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3868 "atomic store operand must have integer, pointer, or floating point " 3869 "type!", 3870 ElTy, &SI); 3871 checkAtomicMemAccessSize(ElTy, &SI); 3872 } else { 3873 Check(SI.getSyncScopeID() == SyncScope::System, 3874 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3875 } 3876 visitInstruction(SI); 3877 } 3878 3879 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3880 void Verifier::verifySwiftErrorCall(CallBase &Call, 3881 const Value *SwiftErrorVal) { 3882 for (const auto &I : llvm::enumerate(Call.args())) { 3883 if (I.value() == SwiftErrorVal) { 3884 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3885 "swifterror value when used in a callsite should be marked " 3886 "with swifterror attribute", 3887 SwiftErrorVal, Call); 3888 } 3889 } 3890 } 3891 3892 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3893 // Check that swifterror value is only used by loads, stores, or as 3894 // a swifterror argument. 3895 for (const User *U : SwiftErrorVal->users()) { 3896 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3897 isa<InvokeInst>(U), 3898 "swifterror value can only be loaded and stored from, or " 3899 "as a swifterror argument!", 3900 SwiftErrorVal, U); 3901 // If it is used by a store, check it is the second operand. 3902 if (auto StoreI = dyn_cast<StoreInst>(U)) 3903 Check(StoreI->getOperand(1) == SwiftErrorVal, 3904 "swifterror value should be the second operand when used " 3905 "by stores", 3906 SwiftErrorVal, U); 3907 if (auto *Call = dyn_cast<CallBase>(U)) 3908 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3909 } 3910 } 3911 3912 void Verifier::visitAllocaInst(AllocaInst &AI) { 3913 SmallPtrSet<Type*, 4> Visited; 3914 Check(AI.getAllocatedType()->isSized(&Visited), 3915 "Cannot allocate unsized type", &AI); 3916 Check(AI.getArraySize()->getType()->isIntegerTy(), 3917 "Alloca array size must have integer type", &AI); 3918 if (MaybeAlign A = AI.getAlign()) { 3919 Check(A->value() <= Value::MaximumAlignment, 3920 "huge alignment values are unsupported", &AI); 3921 } 3922 3923 if (AI.isSwiftError()) { 3924 Check(AI.getAllocatedType()->isPointerTy(), 3925 "swifterror alloca must have pointer type", &AI); 3926 Check(!AI.isArrayAllocation(), 3927 "swifterror alloca must not be array allocation", &AI); 3928 verifySwiftErrorValue(&AI); 3929 } 3930 3931 visitInstruction(AI); 3932 } 3933 3934 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3935 Type *ElTy = CXI.getOperand(1)->getType(); 3936 Check(ElTy->isIntOrPtrTy(), 3937 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3938 checkAtomicMemAccessSize(ElTy, &CXI); 3939 visitInstruction(CXI); 3940 } 3941 3942 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3943 Check(RMWI.getOrdering() != AtomicOrdering::Unordered, 3944 "atomicrmw instructions cannot be unordered.", &RMWI); 3945 auto Op = RMWI.getOperation(); 3946 Type *ElTy = RMWI.getOperand(1)->getType(); 3947 if (Op == AtomicRMWInst::Xchg) { 3948 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() || 3949 ElTy->isPointerTy(), 3950 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 3951 " operand must have integer or floating point type!", 3952 &RMWI, ElTy); 3953 } else if (AtomicRMWInst::isFPOperation(Op)) { 3954 Check(ElTy->isFloatingPointTy(), 3955 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 3956 " operand must have floating point type!", 3957 &RMWI, ElTy); 3958 } else { 3959 Check(ElTy->isIntegerTy(), 3960 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 3961 " operand must have integer type!", 3962 &RMWI, ElTy); 3963 } 3964 checkAtomicMemAccessSize(ElTy, &RMWI); 3965 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3966 "Invalid binary operation!", &RMWI); 3967 visitInstruction(RMWI); 3968 } 3969 3970 void Verifier::visitFenceInst(FenceInst &FI) { 3971 const AtomicOrdering Ordering = FI.getOrdering(); 3972 Check(Ordering == AtomicOrdering::Acquire || 3973 Ordering == AtomicOrdering::Release || 3974 Ordering == AtomicOrdering::AcquireRelease || 3975 Ordering == AtomicOrdering::SequentiallyConsistent, 3976 "fence instructions may only have acquire, release, acq_rel, or " 3977 "seq_cst ordering.", 3978 &FI); 3979 visitInstruction(FI); 3980 } 3981 3982 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3983 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3984 EVI.getIndices()) == EVI.getType(), 3985 "Invalid ExtractValueInst operands!", &EVI); 3986 3987 visitInstruction(EVI); 3988 } 3989 3990 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3991 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3992 IVI.getIndices()) == 3993 IVI.getOperand(1)->getType(), 3994 "Invalid InsertValueInst operands!", &IVI); 3995 3996 visitInstruction(IVI); 3997 } 3998 3999 static Value *getParentPad(Value *EHPad) { 4000 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 4001 return FPI->getParentPad(); 4002 4003 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 4004 } 4005 4006 void Verifier::visitEHPadPredecessors(Instruction &I) { 4007 assert(I.isEHPad()); 4008 4009 BasicBlock *BB = I.getParent(); 4010 Function *F = BB->getParent(); 4011 4012 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 4013 4014 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 4015 // The landingpad instruction defines its parent as a landing pad block. The 4016 // landing pad block may be branched to only by the unwind edge of an 4017 // invoke. 4018 for (BasicBlock *PredBB : predecessors(BB)) { 4019 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 4020 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 4021 "Block containing LandingPadInst must be jumped to " 4022 "only by the unwind edge of an invoke.", 4023 LPI); 4024 } 4025 return; 4026 } 4027 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 4028 if (!pred_empty(BB)) 4029 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 4030 "Block containg CatchPadInst must be jumped to " 4031 "only by its catchswitch.", 4032 CPI); 4033 Check(BB != CPI->getCatchSwitch()->getUnwindDest(), 4034 "Catchswitch cannot unwind to one of its catchpads", 4035 CPI->getCatchSwitch(), CPI); 4036 return; 4037 } 4038 4039 // Verify that each pred has a legal terminator with a legal to/from EH 4040 // pad relationship. 4041 Instruction *ToPad = &I; 4042 Value *ToPadParent = getParentPad(ToPad); 4043 for (BasicBlock *PredBB : predecessors(BB)) { 4044 Instruction *TI = PredBB->getTerminator(); 4045 Value *FromPad; 4046 if (auto *II = dyn_cast<InvokeInst>(TI)) { 4047 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB, 4048 "EH pad must be jumped to via an unwind edge", ToPad, II); 4049 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 4050 FromPad = Bundle->Inputs[0]; 4051 else 4052 FromPad = ConstantTokenNone::get(II->getContext()); 4053 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4054 FromPad = CRI->getOperand(0); 4055 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 4056 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4057 FromPad = CSI; 4058 } else { 4059 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 4060 } 4061 4062 // The edge may exit from zero or more nested pads. 4063 SmallSet<Value *, 8> Seen; 4064 for (;; FromPad = getParentPad(FromPad)) { 4065 Check(FromPad != ToPad, 4066 "EH pad cannot handle exceptions raised within it", FromPad, TI); 4067 if (FromPad == ToPadParent) { 4068 // This is a legal unwind edge. 4069 break; 4070 } 4071 Check(!isa<ConstantTokenNone>(FromPad), 4072 "A single unwind edge may only enter one EH pad", TI); 4073 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads", 4074 FromPad); 4075 4076 // This will be diagnosed on the corresponding instruction already. We 4077 // need the extra check here to make sure getParentPad() works. 4078 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad), 4079 "Parent pad must be catchpad/cleanuppad/catchswitch", TI); 4080 } 4081 } 4082 } 4083 4084 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 4085 // The landingpad instruction is ill-formed if it doesn't have any clauses and 4086 // isn't a cleanup. 4087 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(), 4088 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 4089 4090 visitEHPadPredecessors(LPI); 4091 4092 if (!LandingPadResultTy) 4093 LandingPadResultTy = LPI.getType(); 4094 else 4095 Check(LandingPadResultTy == LPI.getType(), 4096 "The landingpad instruction should have a consistent result type " 4097 "inside a function.", 4098 &LPI); 4099 4100 Function *F = LPI.getParent()->getParent(); 4101 Check(F->hasPersonalityFn(), 4102 "LandingPadInst needs to be in a function with a personality.", &LPI); 4103 4104 // The landingpad instruction must be the first non-PHI instruction in the 4105 // block. 4106 Check(LPI.getParent()->getLandingPadInst() == &LPI, 4107 "LandingPadInst not the first non-PHI instruction in the block.", &LPI); 4108 4109 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 4110 Constant *Clause = LPI.getClause(i); 4111 if (LPI.isCatch(i)) { 4112 Check(isa<PointerType>(Clause->getType()), 4113 "Catch operand does not have pointer type!", &LPI); 4114 } else { 4115 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 4116 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 4117 "Filter operand is not an array of constants!", &LPI); 4118 } 4119 } 4120 4121 visitInstruction(LPI); 4122 } 4123 4124 void Verifier::visitResumeInst(ResumeInst &RI) { 4125 Check(RI.getFunction()->hasPersonalityFn(), 4126 "ResumeInst needs to be in a function with a personality.", &RI); 4127 4128 if (!LandingPadResultTy) 4129 LandingPadResultTy = RI.getValue()->getType(); 4130 else 4131 Check(LandingPadResultTy == RI.getValue()->getType(), 4132 "The resume instruction should have a consistent result type " 4133 "inside a function.", 4134 &RI); 4135 4136 visitTerminator(RI); 4137 } 4138 4139 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 4140 BasicBlock *BB = CPI.getParent(); 4141 4142 Function *F = BB->getParent(); 4143 Check(F->hasPersonalityFn(), 4144 "CatchPadInst needs to be in a function with a personality.", &CPI); 4145 4146 Check(isa<CatchSwitchInst>(CPI.getParentPad()), 4147 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4148 CPI.getParentPad()); 4149 4150 // The catchpad instruction must be the first non-PHI instruction in the 4151 // block. 4152 Check(BB->getFirstNonPHI() == &CPI, 4153 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4154 4155 visitEHPadPredecessors(CPI); 4156 visitFuncletPadInst(CPI); 4157 } 4158 4159 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4160 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4161 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4162 CatchReturn.getOperand(0)); 4163 4164 visitTerminator(CatchReturn); 4165 } 4166 4167 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4168 BasicBlock *BB = CPI.getParent(); 4169 4170 Function *F = BB->getParent(); 4171 Check(F->hasPersonalityFn(), 4172 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4173 4174 // The cleanuppad instruction must be the first non-PHI instruction in the 4175 // block. 4176 Check(BB->getFirstNonPHI() == &CPI, 4177 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI); 4178 4179 auto *ParentPad = CPI.getParentPad(); 4180 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4181 "CleanupPadInst has an invalid parent.", &CPI); 4182 4183 visitEHPadPredecessors(CPI); 4184 visitFuncletPadInst(CPI); 4185 } 4186 4187 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4188 User *FirstUser = nullptr; 4189 Value *FirstUnwindPad = nullptr; 4190 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4191 SmallSet<FuncletPadInst *, 8> Seen; 4192 4193 while (!Worklist.empty()) { 4194 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4195 Check(Seen.insert(CurrentPad).second, 4196 "FuncletPadInst must not be nested within itself", CurrentPad); 4197 Value *UnresolvedAncestorPad = nullptr; 4198 for (User *U : CurrentPad->users()) { 4199 BasicBlock *UnwindDest; 4200 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4201 UnwindDest = CRI->getUnwindDest(); 4202 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4203 // We allow catchswitch unwind to caller to nest 4204 // within an outer pad that unwinds somewhere else, 4205 // because catchswitch doesn't have a nounwind variant. 4206 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4207 if (CSI->unwindsToCaller()) 4208 continue; 4209 UnwindDest = CSI->getUnwindDest(); 4210 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4211 UnwindDest = II->getUnwindDest(); 4212 } else if (isa<CallInst>(U)) { 4213 // Calls which don't unwind may be found inside funclet 4214 // pads that unwind somewhere else. We don't *require* 4215 // such calls to be annotated nounwind. 4216 continue; 4217 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4218 // The unwind dest for a cleanup can only be found by 4219 // recursive search. Add it to the worklist, and we'll 4220 // search for its first use that determines where it unwinds. 4221 Worklist.push_back(CPI); 4222 continue; 4223 } else { 4224 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4225 continue; 4226 } 4227 4228 Value *UnwindPad; 4229 bool ExitsFPI; 4230 if (UnwindDest) { 4231 UnwindPad = UnwindDest->getFirstNonPHI(); 4232 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4233 continue; 4234 Value *UnwindParent = getParentPad(UnwindPad); 4235 // Ignore unwind edges that don't exit CurrentPad. 4236 if (UnwindParent == CurrentPad) 4237 continue; 4238 // Determine whether the original funclet pad is exited, 4239 // and if we are scanning nested pads determine how many 4240 // of them are exited so we can stop searching their 4241 // children. 4242 Value *ExitedPad = CurrentPad; 4243 ExitsFPI = false; 4244 do { 4245 if (ExitedPad == &FPI) { 4246 ExitsFPI = true; 4247 // Now we can resolve any ancestors of CurrentPad up to 4248 // FPI, but not including FPI since we need to make sure 4249 // to check all direct users of FPI for consistency. 4250 UnresolvedAncestorPad = &FPI; 4251 break; 4252 } 4253 Value *ExitedParent = getParentPad(ExitedPad); 4254 if (ExitedParent == UnwindParent) { 4255 // ExitedPad is the ancestor-most pad which this unwind 4256 // edge exits, so we can resolve up to it, meaning that 4257 // ExitedParent is the first ancestor still unresolved. 4258 UnresolvedAncestorPad = ExitedParent; 4259 break; 4260 } 4261 ExitedPad = ExitedParent; 4262 } while (!isa<ConstantTokenNone>(ExitedPad)); 4263 } else { 4264 // Unwinding to caller exits all pads. 4265 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4266 ExitsFPI = true; 4267 UnresolvedAncestorPad = &FPI; 4268 } 4269 4270 if (ExitsFPI) { 4271 // This unwind edge exits FPI. Make sure it agrees with other 4272 // such edges. 4273 if (FirstUser) { 4274 Check(UnwindPad == FirstUnwindPad, 4275 "Unwind edges out of a funclet " 4276 "pad must have the same unwind " 4277 "dest", 4278 &FPI, U, FirstUser); 4279 } else { 4280 FirstUser = U; 4281 FirstUnwindPad = UnwindPad; 4282 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4283 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4284 getParentPad(UnwindPad) == getParentPad(&FPI)) 4285 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4286 } 4287 } 4288 // Make sure we visit all uses of FPI, but for nested pads stop as 4289 // soon as we know where they unwind to. 4290 if (CurrentPad != &FPI) 4291 break; 4292 } 4293 if (UnresolvedAncestorPad) { 4294 if (CurrentPad == UnresolvedAncestorPad) { 4295 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4296 // we've found an unwind edge that exits it, because we need to verify 4297 // all direct uses of FPI. 4298 assert(CurrentPad == &FPI); 4299 continue; 4300 } 4301 // Pop off the worklist any nested pads that we've found an unwind 4302 // destination for. The pads on the worklist are the uncles, 4303 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4304 // for all ancestors of CurrentPad up to but not including 4305 // UnresolvedAncestorPad. 4306 Value *ResolvedPad = CurrentPad; 4307 while (!Worklist.empty()) { 4308 Value *UnclePad = Worklist.back(); 4309 Value *AncestorPad = getParentPad(UnclePad); 4310 // Walk ResolvedPad up the ancestor list until we either find the 4311 // uncle's parent or the last resolved ancestor. 4312 while (ResolvedPad != AncestorPad) { 4313 Value *ResolvedParent = getParentPad(ResolvedPad); 4314 if (ResolvedParent == UnresolvedAncestorPad) { 4315 break; 4316 } 4317 ResolvedPad = ResolvedParent; 4318 } 4319 // If the resolved ancestor search didn't find the uncle's parent, 4320 // then the uncle is not yet resolved. 4321 if (ResolvedPad != AncestorPad) 4322 break; 4323 // This uncle is resolved, so pop it from the worklist. 4324 Worklist.pop_back(); 4325 } 4326 } 4327 } 4328 4329 if (FirstUnwindPad) { 4330 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4331 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4332 Value *SwitchUnwindPad; 4333 if (SwitchUnwindDest) 4334 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4335 else 4336 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4337 Check(SwitchUnwindPad == FirstUnwindPad, 4338 "Unwind edges out of a catch must have the same unwind dest as " 4339 "the parent catchswitch", 4340 &FPI, FirstUser, CatchSwitch); 4341 } 4342 } 4343 4344 visitInstruction(FPI); 4345 } 4346 4347 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4348 BasicBlock *BB = CatchSwitch.getParent(); 4349 4350 Function *F = BB->getParent(); 4351 Check(F->hasPersonalityFn(), 4352 "CatchSwitchInst needs to be in a function with a personality.", 4353 &CatchSwitch); 4354 4355 // The catchswitch instruction must be the first non-PHI instruction in the 4356 // block. 4357 Check(BB->getFirstNonPHI() == &CatchSwitch, 4358 "CatchSwitchInst not the first non-PHI instruction in the block.", 4359 &CatchSwitch); 4360 4361 auto *ParentPad = CatchSwitch.getParentPad(); 4362 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4363 "CatchSwitchInst has an invalid parent.", ParentPad); 4364 4365 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4366 Instruction *I = UnwindDest->getFirstNonPHI(); 4367 Check(I->isEHPad() && !isa<LandingPadInst>(I), 4368 "CatchSwitchInst must unwind to an EH block which is not a " 4369 "landingpad.", 4370 &CatchSwitch); 4371 4372 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4373 if (getParentPad(I) == ParentPad) 4374 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4375 } 4376 4377 Check(CatchSwitch.getNumHandlers() != 0, 4378 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4379 4380 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4381 Check(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4382 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4383 } 4384 4385 visitEHPadPredecessors(CatchSwitch); 4386 visitTerminator(CatchSwitch); 4387 } 4388 4389 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4390 Check(isa<CleanupPadInst>(CRI.getOperand(0)), 4391 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4392 CRI.getOperand(0)); 4393 4394 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4395 Instruction *I = UnwindDest->getFirstNonPHI(); 4396 Check(I->isEHPad() && !isa<LandingPadInst>(I), 4397 "CleanupReturnInst must unwind to an EH block which is not a " 4398 "landingpad.", 4399 &CRI); 4400 } 4401 4402 visitTerminator(CRI); 4403 } 4404 4405 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4406 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4407 // If the we have an invalid invoke, don't try to compute the dominance. 4408 // We already reject it in the invoke specific checks and the dominance 4409 // computation doesn't handle multiple edges. 4410 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4411 if (II->getNormalDest() == II->getUnwindDest()) 4412 return; 4413 } 4414 4415 // Quick check whether the def has already been encountered in the same block. 4416 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4417 // uses are defined to happen on the incoming edge, not at the instruction. 4418 // 4419 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4420 // wrapping an SSA value, assert that we've already encountered it. See 4421 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4422 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4423 return; 4424 4425 const Use &U = I.getOperandUse(i); 4426 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I); 4427 } 4428 4429 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4430 Check(I.getType()->isPointerTy(), 4431 "dereferenceable, dereferenceable_or_null " 4432 "apply only to pointer types", 4433 &I); 4434 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4435 "dereferenceable, dereferenceable_or_null apply only to load" 4436 " and inttoptr instructions, use attributes for calls or invokes", 4437 &I); 4438 Check(MD->getNumOperands() == 1, 4439 "dereferenceable, dereferenceable_or_null " 4440 "take one operand!", 4441 &I); 4442 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4443 Check(CI && CI->getType()->isIntegerTy(64), 4444 "dereferenceable, " 4445 "dereferenceable_or_null metadata value must be an i64!", 4446 &I); 4447 } 4448 4449 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4450 Check(MD->getNumOperands() >= 2, 4451 "!prof annotations should have no less than 2 operands", MD); 4452 4453 // Check first operand. 4454 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4455 Check(isa<MDString>(MD->getOperand(0)), 4456 "expected string with name of the !prof annotation", MD); 4457 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4458 StringRef ProfName = MDS->getString(); 4459 4460 // Check consistency of !prof branch_weights metadata. 4461 if (ProfName.equals("branch_weights")) { 4462 if (isa<InvokeInst>(&I)) { 4463 Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4464 "Wrong number of InvokeInst branch_weights operands", MD); 4465 } else { 4466 unsigned ExpectedNumOperands = 0; 4467 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4468 ExpectedNumOperands = BI->getNumSuccessors(); 4469 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4470 ExpectedNumOperands = SI->getNumSuccessors(); 4471 else if (isa<CallInst>(&I)) 4472 ExpectedNumOperands = 1; 4473 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4474 ExpectedNumOperands = IBI->getNumDestinations(); 4475 else if (isa<SelectInst>(&I)) 4476 ExpectedNumOperands = 2; 4477 else 4478 CheckFailed("!prof branch_weights are not allowed for this instruction", 4479 MD); 4480 4481 Check(MD->getNumOperands() == 1 + ExpectedNumOperands, 4482 "Wrong number of operands", MD); 4483 } 4484 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4485 auto &MDO = MD->getOperand(i); 4486 Check(MDO, "second operand should not be null", MD); 4487 Check(mdconst::dyn_extract<ConstantInt>(MDO), 4488 "!prof brunch_weights operand is not a const int"); 4489 } 4490 } 4491 } 4492 4493 void Verifier::visitCallStackMetadata(MDNode *MD) { 4494 // Call stack metadata should consist of a list of at least 1 constant int 4495 // (representing a hash of the location). 4496 Check(MD->getNumOperands() >= 1, 4497 "call stack metadata should have at least 1 operand", MD); 4498 4499 for (const auto &Op : MD->operands()) 4500 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op), 4501 "call stack metadata operand should be constant integer", Op); 4502 } 4503 4504 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) { 4505 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I); 4506 Check(MD->getNumOperands() >= 1, 4507 "!memprof annotations should have at least 1 metadata operand " 4508 "(MemInfoBlock)", 4509 MD); 4510 4511 // Check each MIB 4512 for (auto &MIBOp : MD->operands()) { 4513 MDNode *MIB = dyn_cast<MDNode>(MIBOp); 4514 // The first operand of an MIB should be the call stack metadata. 4515 // There rest of the operands should be MDString tags, and there should be 4516 // at least one. 4517 Check(MIB->getNumOperands() >= 2, 4518 "Each !memprof MemInfoBlock should have at least 2 operands", MIB); 4519 4520 // Check call stack metadata (first operand). 4521 Check(MIB->getOperand(0) != nullptr, 4522 "!memprof MemInfoBlock first operand should not be null", MIB); 4523 Check(isa<MDNode>(MIB->getOperand(0)), 4524 "!memprof MemInfoBlock first operand should be an MDNode", MIB); 4525 MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0)); 4526 visitCallStackMetadata(StackMD); 4527 4528 // Check that remaining operands are MDString. 4529 Check(std::all_of(MIB->op_begin() + 1, MIB->op_end(), 4530 [](const MDOperand &Op) { return isa<MDString>(Op); }), 4531 "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB); 4532 } 4533 } 4534 4535 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) { 4536 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I); 4537 // Verify the partial callstack annotated from memprof profiles. This callsite 4538 // is a part of a profiled allocation callstack. 4539 visitCallStackMetadata(MD); 4540 } 4541 4542 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4543 Check(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4544 Check(Annotation->getNumOperands() >= 1, 4545 "annotation must have at least one operand"); 4546 for (const MDOperand &Op : Annotation->operands()) 4547 Check(isa<MDString>(Op.get()), "operands must be strings"); 4548 } 4549 4550 void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 4551 unsigned NumOps = MD->getNumOperands(); 4552 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 4553 MD); 4554 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 4555 "first scope operand must be self-referential or string", MD); 4556 if (NumOps == 3) 4557 Check(isa<MDString>(MD->getOperand(2)), 4558 "third scope operand must be string (if used)", MD); 4559 4560 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 4561 Check(Domain != nullptr, "second scope operand must be MDNode", MD); 4562 4563 unsigned NumDomainOps = Domain->getNumOperands(); 4564 Check(NumDomainOps >= 1 && NumDomainOps <= 2, 4565 "domain must have one or two operands", Domain); 4566 Check(Domain->getOperand(0).get() == Domain || 4567 isa<MDString>(Domain->getOperand(0)), 4568 "first domain operand must be self-referential or string", Domain); 4569 if (NumDomainOps == 2) 4570 Check(isa<MDString>(Domain->getOperand(1)), 4571 "second domain operand must be string (if used)", Domain); 4572 } 4573 4574 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 4575 for (const MDOperand &Op : MD->operands()) { 4576 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4577 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD); 4578 visitAliasScopeMetadata(OpMD); 4579 } 4580 } 4581 4582 void Verifier::visitAccessGroupMetadata(const MDNode *MD) { 4583 auto IsValidAccessScope = [](const MDNode *MD) { 4584 return MD->getNumOperands() == 0 && MD->isDistinct(); 4585 }; 4586 4587 // It must be either an access scope itself... 4588 if (IsValidAccessScope(MD)) 4589 return; 4590 4591 // ...or a list of access scopes. 4592 for (const MDOperand &Op : MD->operands()) { 4593 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4594 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD); 4595 Check(IsValidAccessScope(OpMD), 4596 "Access scope list contains invalid access scope", MD); 4597 } 4598 } 4599 4600 /// verifyInstruction - Verify that an instruction is well formed. 4601 /// 4602 void Verifier::visitInstruction(Instruction &I) { 4603 BasicBlock *BB = I.getParent(); 4604 Check(BB, "Instruction not embedded in basic block!", &I); 4605 4606 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4607 for (User *U : I.users()) { 4608 Check(U != (User *)&I || !DT.isReachableFromEntry(BB), 4609 "Only PHI nodes may reference their own value!", &I); 4610 } 4611 } 4612 4613 // Check that void typed values don't have names 4614 Check(!I.getType()->isVoidTy() || !I.hasName(), 4615 "Instruction has a name, but provides a void value!", &I); 4616 4617 // Check that the return value of the instruction is either void or a legal 4618 // value type. 4619 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4620 "Instruction returns a non-scalar type!", &I); 4621 4622 // Check that the instruction doesn't produce metadata. Calls are already 4623 // checked against the callee type. 4624 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4625 "Invalid use of metadata!", &I); 4626 4627 // Check that all uses of the instruction, if they are instructions 4628 // themselves, actually have parent basic blocks. If the use is not an 4629 // instruction, it is an error! 4630 for (Use &U : I.uses()) { 4631 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4632 Check(Used->getParent() != nullptr, 4633 "Instruction referencing" 4634 " instruction not embedded in a basic block!", 4635 &I, Used); 4636 else { 4637 CheckFailed("Use of instruction is not an instruction!", U); 4638 return; 4639 } 4640 } 4641 4642 // Get a pointer to the call base of the instruction if it is some form of 4643 // call. 4644 const CallBase *CBI = dyn_cast<CallBase>(&I); 4645 4646 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4647 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4648 4649 // Check to make sure that only first-class-values are operands to 4650 // instructions. 4651 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4652 Check(false, "Instruction operands must be first-class values!", &I); 4653 } 4654 4655 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4656 // This code checks whether the function is used as the operand of a 4657 // clang_arc_attachedcall operand bundle. 4658 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 4659 int Idx) { 4660 return CBI && CBI->isOperandBundleOfType( 4661 LLVMContext::OB_clang_arc_attachedcall, Idx); 4662 }; 4663 4664 // Check to make sure that the "address of" an intrinsic function is never 4665 // taken. Ignore cases where the address of the intrinsic function is used 4666 // as the argument of operand bundle "clang.arc.attachedcall" as those 4667 // cases are handled in verifyAttachedCallBundle. 4668 Check((!F->isIntrinsic() || 4669 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 4670 IsAttachedCallOperand(F, CBI, i)), 4671 "Cannot take the address of an intrinsic!", &I); 4672 Check(!F->isIntrinsic() || isa<CallInst>(I) || 4673 F->getIntrinsicID() == Intrinsic::donothing || 4674 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4675 F->getIntrinsicID() == Intrinsic::seh_try_end || 4676 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4677 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4678 F->getIntrinsicID() == Intrinsic::coro_resume || 4679 F->getIntrinsicID() == Intrinsic::coro_destroy || 4680 F->getIntrinsicID() == 4681 Intrinsic::experimental_patchpoint_void || 4682 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4683 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4684 F->getIntrinsicID() == Intrinsic::wasm_rethrow || 4685 IsAttachedCallOperand(F, CBI, i), 4686 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4687 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 4688 &I); 4689 Check(F->getParent() == &M, "Referencing function in another module!", &I, 4690 &M, F, F->getParent()); 4691 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4692 Check(OpBB->getParent() == BB->getParent(), 4693 "Referring to a basic block in another function!", &I); 4694 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4695 Check(OpArg->getParent() == BB->getParent(), 4696 "Referring to an argument in another function!", &I); 4697 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4698 Check(GV->getParent() == &M, "Referencing global in another module!", &I, 4699 &M, GV, GV->getParent()); 4700 } else if (isa<Instruction>(I.getOperand(i))) { 4701 verifyDominatesUse(I, i); 4702 } else if (isa<InlineAsm>(I.getOperand(i))) { 4703 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4704 "Cannot take the address of an inline asm!", &I); 4705 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4706 if (CE->getType()->isPtrOrPtrVectorTy()) { 4707 // If we have a ConstantExpr pointer, we need to see if it came from an 4708 // illegal bitcast. 4709 visitConstantExprsRecursively(CE); 4710 } 4711 } 4712 } 4713 4714 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4715 Check(I.getType()->isFPOrFPVectorTy(), 4716 "fpmath requires a floating point result!", &I); 4717 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4718 if (ConstantFP *CFP0 = 4719 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4720 const APFloat &Accuracy = CFP0->getValueAPF(); 4721 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4722 "fpmath accuracy must have float type", &I); 4723 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4724 "fpmath accuracy not a positive number!", &I); 4725 } else { 4726 Check(false, "invalid fpmath accuracy!", &I); 4727 } 4728 } 4729 4730 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4731 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4732 "Ranges are only for loads, calls and invokes!", &I); 4733 visitRangeMetadata(I, Range, I.getType()); 4734 } 4735 4736 if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 4737 Check(isa<LoadInst>(I) || isa<StoreInst>(I), 4738 "invariant.group metadata is only for loads and stores", &I); 4739 } 4740 4741 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4742 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4743 &I); 4744 Check(isa<LoadInst>(I), 4745 "nonnull applies only to load instructions, use attributes" 4746 " for calls or invokes", 4747 &I); 4748 } 4749 4750 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4751 visitDereferenceableMetadata(I, MD); 4752 4753 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4754 visitDereferenceableMetadata(I, MD); 4755 4756 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4757 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4758 4759 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 4760 visitAliasScopeListMetadata(MD); 4761 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 4762 visitAliasScopeListMetadata(MD); 4763 4764 if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group)) 4765 visitAccessGroupMetadata(MD); 4766 4767 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4768 Check(I.getType()->isPointerTy(), "align applies only to pointer types", 4769 &I); 4770 Check(isa<LoadInst>(I), 4771 "align applies only to load instructions, " 4772 "use attributes for calls or invokes", 4773 &I); 4774 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4775 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4776 Check(CI && CI->getType()->isIntegerTy(64), 4777 "align metadata value must be an i64!", &I); 4778 uint64_t Align = CI->getZExtValue(); 4779 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!", 4780 &I); 4781 Check(Align <= Value::MaximumAlignment, 4782 "alignment is larger that implementation defined limit", &I); 4783 } 4784 4785 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4786 visitProfMetadata(I, MD); 4787 4788 if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof)) 4789 visitMemProfMetadata(I, MD); 4790 4791 if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite)) 4792 visitCallsiteMetadata(I, MD); 4793 4794 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4795 visitAnnotationMetadata(Annotation); 4796 4797 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4798 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4799 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4800 } 4801 4802 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4803 verifyFragmentExpression(*DII); 4804 verifyNotEntryValue(*DII); 4805 } 4806 4807 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4808 I.getAllMetadata(MDs); 4809 for (auto Attachment : MDs) { 4810 unsigned Kind = Attachment.first; 4811 auto AllowLocs = 4812 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4813 ? AreDebugLocsAllowed::Yes 4814 : AreDebugLocsAllowed::No; 4815 visitMDNode(*Attachment.second, AllowLocs); 4816 } 4817 4818 InstsInThisBlock.insert(&I); 4819 } 4820 4821 /// Allow intrinsics to be verified in different ways. 4822 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4823 Function *IF = Call.getCalledFunction(); 4824 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4825 IF); 4826 4827 // Verify that the intrinsic prototype lines up with what the .td files 4828 // describe. 4829 FunctionType *IFTy = IF->getFunctionType(); 4830 bool IsVarArg = IFTy->isVarArg(); 4831 4832 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4833 getIntrinsicInfoTableEntries(ID, Table); 4834 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4835 4836 // Walk the descriptors to extract overloaded types. 4837 SmallVector<Type *, 4> ArgTys; 4838 Intrinsic::MatchIntrinsicTypesResult Res = 4839 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4840 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4841 "Intrinsic has incorrect return type!", IF); 4842 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4843 "Intrinsic has incorrect argument type!", IF); 4844 4845 // Verify if the intrinsic call matches the vararg property. 4846 if (IsVarArg) 4847 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4848 "Intrinsic was not defined with variable arguments!", IF); 4849 else 4850 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4851 "Callsite was not defined with variable arguments!", IF); 4852 4853 // All descriptors should be absorbed by now. 4854 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4855 4856 // Now that we have the intrinsic ID and the actual argument types (and we 4857 // know they are legal for the intrinsic!) get the intrinsic name through the 4858 // usual means. This allows us to verify the mangling of argument types into 4859 // the name. 4860 const std::string ExpectedName = 4861 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4862 Check(ExpectedName == IF->getName(), 4863 "Intrinsic name not mangled correctly for type arguments! " 4864 "Should be: " + 4865 ExpectedName, 4866 IF); 4867 4868 // If the intrinsic takes MDNode arguments, verify that they are either global 4869 // or are local to *this* function. 4870 for (Value *V : Call.args()) { 4871 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4872 visitMetadataAsValue(*MD, Call.getCaller()); 4873 if (auto *Const = dyn_cast<Constant>(V)) 4874 Check(!Const->getType()->isX86_AMXTy(), 4875 "const x86_amx is not allowed in argument!"); 4876 } 4877 4878 switch (ID) { 4879 default: 4880 break; 4881 case Intrinsic::assume: { 4882 for (auto &Elem : Call.bundle_op_infos()) { 4883 Check(Elem.Tag->getKey() == "ignore" || 4884 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4885 "tags must be valid attribute names", Call); 4886 Attribute::AttrKind Kind = 4887 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4888 unsigned ArgCount = Elem.End - Elem.Begin; 4889 if (Kind == Attribute::Alignment) { 4890 Check(ArgCount <= 3 && ArgCount >= 2, 4891 "alignment assumptions should have 2 or 3 arguments", Call); 4892 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4893 "first argument should be a pointer", Call); 4894 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4895 "second argument should be an integer", Call); 4896 if (ArgCount == 3) 4897 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4898 "third argument should be an integer if present", Call); 4899 return; 4900 } 4901 Check(ArgCount <= 2, "too many arguments", Call); 4902 if (Kind == Attribute::None) 4903 break; 4904 if (Attribute::isIntAttrKind(Kind)) { 4905 Check(ArgCount == 2, "this attribute should have 2 arguments", Call); 4906 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4907 "the second argument should be a constant integral value", Call); 4908 } else if (Attribute::canUseAsParamAttr(Kind)) { 4909 Check((ArgCount) == 1, "this attribute should have one argument", Call); 4910 } else if (Attribute::canUseAsFnAttr(Kind)) { 4911 Check((ArgCount) == 0, "this attribute has no argument", Call); 4912 } 4913 } 4914 break; 4915 } 4916 case Intrinsic::coro_id: { 4917 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4918 if (isa<ConstantPointerNull>(InfoArg)) 4919 break; 4920 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4921 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4922 "info argument of llvm.coro.id must refer to an initialized " 4923 "constant"); 4924 Constant *Init = GV->getInitializer(); 4925 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4926 "info argument of llvm.coro.id must refer to either a struct or " 4927 "an array"); 4928 break; 4929 } 4930 case Intrinsic::fptrunc_round: { 4931 // Check the rounding mode 4932 Metadata *MD = nullptr; 4933 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1)); 4934 if (MAV) 4935 MD = MAV->getMetadata(); 4936 4937 Check(MD != nullptr, "missing rounding mode argument", Call); 4938 4939 Check(isa<MDString>(MD), 4940 ("invalid value for llvm.fptrunc.round metadata operand" 4941 " (the operand should be a string)"), 4942 MD); 4943 4944 Optional<RoundingMode> RoundMode = 4945 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 4946 Check(RoundMode && *RoundMode != RoundingMode::Dynamic, 4947 "unsupported rounding mode argument", Call); 4948 break; 4949 } 4950 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 4951 #include "llvm/IR/VPIntrinsics.def" 4952 visitVPIntrinsic(cast<VPIntrinsic>(Call)); 4953 break; 4954 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4955 case Intrinsic::INTRINSIC: 4956 #include "llvm/IR/ConstrainedOps.def" 4957 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4958 break; 4959 case Intrinsic::dbg_declare: // llvm.dbg.declare 4960 Check(isa<MetadataAsValue>(Call.getArgOperand(0)), 4961 "invalid llvm.dbg.declare intrinsic call 1", Call); 4962 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4963 break; 4964 case Intrinsic::dbg_addr: // llvm.dbg.addr 4965 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4966 break; 4967 case Intrinsic::dbg_value: // llvm.dbg.value 4968 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4969 break; 4970 case Intrinsic::dbg_label: // llvm.dbg.label 4971 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4972 break; 4973 case Intrinsic::memcpy: 4974 case Intrinsic::memcpy_inline: 4975 case Intrinsic::memmove: 4976 case Intrinsic::memset: 4977 case Intrinsic::memset_inline: { 4978 const auto *MI = cast<MemIntrinsic>(&Call); 4979 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4980 return Alignment == 0 || isPowerOf2_32(Alignment); 4981 }; 4982 Check(IsValidAlignment(MI->getDestAlignment()), 4983 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4984 Call); 4985 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4986 Check(IsValidAlignment(MTI->getSourceAlignment()), 4987 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4988 Call); 4989 } 4990 4991 break; 4992 } 4993 case Intrinsic::memcpy_element_unordered_atomic: 4994 case Intrinsic::memmove_element_unordered_atomic: 4995 case Intrinsic::memset_element_unordered_atomic: { 4996 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4997 4998 ConstantInt *ElementSizeCI = 4999 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 5000 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 5001 Check(ElementSizeVal.isPowerOf2(), 5002 "element size of the element-wise atomic memory intrinsic " 5003 "must be a power of 2", 5004 Call); 5005 5006 auto IsValidAlignment = [&](uint64_t Alignment) { 5007 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 5008 }; 5009 uint64_t DstAlignment = AMI->getDestAlignment(); 5010 Check(IsValidAlignment(DstAlignment), 5011 "incorrect alignment of the destination argument", Call); 5012 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 5013 uint64_t SrcAlignment = AMT->getSourceAlignment(); 5014 Check(IsValidAlignment(SrcAlignment), 5015 "incorrect alignment of the source argument", Call); 5016 } 5017 break; 5018 } 5019 case Intrinsic::call_preallocated_setup: { 5020 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5021 Check(NumArgs != nullptr, 5022 "llvm.call.preallocated.setup argument must be a constant"); 5023 bool FoundCall = false; 5024 for (User *U : Call.users()) { 5025 auto *UseCall = dyn_cast<CallBase>(U); 5026 Check(UseCall != nullptr, 5027 "Uses of llvm.call.preallocated.setup must be calls"); 5028 const Function *Fn = UseCall->getCalledFunction(); 5029 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 5030 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 5031 Check(AllocArgIndex != nullptr, 5032 "llvm.call.preallocated.alloc arg index must be a constant"); 5033 auto AllocArgIndexInt = AllocArgIndex->getValue(); 5034 Check(AllocArgIndexInt.sge(0) && 5035 AllocArgIndexInt.slt(NumArgs->getValue()), 5036 "llvm.call.preallocated.alloc arg index must be between 0 and " 5037 "corresponding " 5038 "llvm.call.preallocated.setup's argument count"); 5039 } else if (Fn && Fn->getIntrinsicID() == 5040 Intrinsic::call_preallocated_teardown) { 5041 // nothing to do 5042 } else { 5043 Check(!FoundCall, "Can have at most one call corresponding to a " 5044 "llvm.call.preallocated.setup"); 5045 FoundCall = true; 5046 size_t NumPreallocatedArgs = 0; 5047 for (unsigned i = 0; i < UseCall->arg_size(); i++) { 5048 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 5049 ++NumPreallocatedArgs; 5050 } 5051 } 5052 Check(NumPreallocatedArgs != 0, 5053 "cannot use preallocated intrinsics on a call without " 5054 "preallocated arguments"); 5055 Check(NumArgs->equalsInt(NumPreallocatedArgs), 5056 "llvm.call.preallocated.setup arg size must be equal to number " 5057 "of preallocated arguments " 5058 "at call site", 5059 Call, *UseCall); 5060 // getOperandBundle() cannot be called if more than one of the operand 5061 // bundle exists. There is already a check elsewhere for this, so skip 5062 // here if we see more than one. 5063 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 5064 1) { 5065 return; 5066 } 5067 auto PreallocatedBundle = 5068 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 5069 Check(PreallocatedBundle, 5070 "Use of llvm.call.preallocated.setup outside intrinsics " 5071 "must be in \"preallocated\" operand bundle"); 5072 Check(PreallocatedBundle->Inputs.front().get() == &Call, 5073 "preallocated bundle must have token from corresponding " 5074 "llvm.call.preallocated.setup"); 5075 } 5076 } 5077 break; 5078 } 5079 case Intrinsic::call_preallocated_arg: { 5080 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 5081 Check(Token && Token->getCalledFunction()->getIntrinsicID() == 5082 Intrinsic::call_preallocated_setup, 5083 "llvm.call.preallocated.arg token argument must be a " 5084 "llvm.call.preallocated.setup"); 5085 Check(Call.hasFnAttr(Attribute::Preallocated), 5086 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 5087 "call site attribute"); 5088 break; 5089 } 5090 case Intrinsic::call_preallocated_teardown: { 5091 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 5092 Check(Token && Token->getCalledFunction()->getIntrinsicID() == 5093 Intrinsic::call_preallocated_setup, 5094 "llvm.call.preallocated.teardown token argument must be a " 5095 "llvm.call.preallocated.setup"); 5096 break; 5097 } 5098 case Intrinsic::gcroot: 5099 case Intrinsic::gcwrite: 5100 case Intrinsic::gcread: 5101 if (ID == Intrinsic::gcroot) { 5102 AllocaInst *AI = 5103 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 5104 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 5105 Check(isa<Constant>(Call.getArgOperand(1)), 5106 "llvm.gcroot parameter #2 must be a constant.", Call); 5107 if (!AI->getAllocatedType()->isPointerTy()) { 5108 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 5109 "llvm.gcroot parameter #1 must either be a pointer alloca, " 5110 "or argument #2 must be a non-null constant.", 5111 Call); 5112 } 5113 } 5114 5115 Check(Call.getParent()->getParent()->hasGC(), 5116 "Enclosing function does not use GC.", Call); 5117 break; 5118 case Intrinsic::init_trampoline: 5119 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 5120 "llvm.init_trampoline parameter #2 must resolve to a function.", 5121 Call); 5122 break; 5123 case Intrinsic::prefetch: 5124 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 5125 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 5126 "invalid arguments to llvm.prefetch", Call); 5127 break; 5128 case Intrinsic::stackprotector: 5129 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 5130 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 5131 break; 5132 case Intrinsic::localescape: { 5133 BasicBlock *BB = Call.getParent(); 5134 Check(BB == &BB->getParent()->front(), 5135 "llvm.localescape used outside of entry block", Call); 5136 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function", 5137 Call); 5138 for (Value *Arg : Call.args()) { 5139 if (isa<ConstantPointerNull>(Arg)) 5140 continue; // Null values are allowed as placeholders. 5141 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 5142 Check(AI && AI->isStaticAlloca(), 5143 "llvm.localescape only accepts static allocas", Call); 5144 } 5145 FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 5146 SawFrameEscape = true; 5147 break; 5148 } 5149 case Intrinsic::localrecover: { 5150 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 5151 Function *Fn = dyn_cast<Function>(FnArg); 5152 Check(Fn && !Fn->isDeclaration(), 5153 "llvm.localrecover first " 5154 "argument must be function defined in this module", 5155 Call); 5156 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 5157 auto &Entry = FrameEscapeInfo[Fn]; 5158 Entry.second = unsigned( 5159 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 5160 break; 5161 } 5162 5163 case Intrinsic::experimental_gc_statepoint: 5164 if (auto *CI = dyn_cast<CallInst>(&Call)) 5165 Check(!CI->isInlineAsm(), 5166 "gc.statepoint support for inline assembly unimplemented", CI); 5167 Check(Call.getParent()->getParent()->hasGC(), 5168 "Enclosing function does not use GC.", Call); 5169 5170 verifyStatepoint(Call); 5171 break; 5172 case Intrinsic::experimental_gc_result: { 5173 Check(Call.getParent()->getParent()->hasGC(), 5174 "Enclosing function does not use GC.", Call); 5175 // Are we tied to a statepoint properly? 5176 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 5177 const Function *StatepointFn = 5178 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 5179 Check(StatepointFn && StatepointFn->isDeclaration() && 5180 StatepointFn->getIntrinsicID() == 5181 Intrinsic::experimental_gc_statepoint, 5182 "gc.result operand #1 must be from a statepoint", Call, 5183 Call.getArgOperand(0)); 5184 5185 // Check that result type matches wrapped callee. 5186 auto *TargetFuncType = 5187 cast<FunctionType>(StatepointCall->getParamElementType(2)); 5188 Check(Call.getType() == TargetFuncType->getReturnType(), 5189 "gc.result result type does not match wrapped callee", Call); 5190 break; 5191 } 5192 case Intrinsic::experimental_gc_relocate: { 5193 Check(Call.arg_size() == 3, "wrong number of arguments", Call); 5194 5195 Check(isa<PointerType>(Call.getType()->getScalarType()), 5196 "gc.relocate must return a pointer or a vector of pointers", Call); 5197 5198 // Check that this relocate is correctly tied to the statepoint 5199 5200 // This is case for relocate on the unwinding path of an invoke statepoint 5201 if (LandingPadInst *LandingPad = 5202 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 5203 5204 const BasicBlock *InvokeBB = 5205 LandingPad->getParent()->getUniquePredecessor(); 5206 5207 // Landingpad relocates should have only one predecessor with invoke 5208 // statepoint terminator 5209 Check(InvokeBB, "safepoints should have unique landingpads", 5210 LandingPad->getParent()); 5211 Check(InvokeBB->getTerminator(), "safepoint block should be well formed", 5212 InvokeBB); 5213 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()), 5214 "gc relocate should be linked to a statepoint", InvokeBB); 5215 } else { 5216 // In all other cases relocate should be tied to the statepoint directly. 5217 // This covers relocates on a normal return path of invoke statepoint and 5218 // relocates of a call statepoint. 5219 auto *Token = Call.getArgOperand(0); 5220 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token), 5221 "gc relocate is incorrectly tied to the statepoint", Call, Token); 5222 } 5223 5224 // Verify rest of the relocate arguments. 5225 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint(); 5226 5227 // Both the base and derived must be piped through the safepoint. 5228 Value *Base = Call.getArgOperand(1); 5229 Check(isa<ConstantInt>(Base), 5230 "gc.relocate operand #2 must be integer offset", Call); 5231 5232 Value *Derived = Call.getArgOperand(2); 5233 Check(isa<ConstantInt>(Derived), 5234 "gc.relocate operand #3 must be integer offset", Call); 5235 5236 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 5237 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 5238 5239 // Check the bounds 5240 if (isa<UndefValue>(StatepointCall)) 5241 break; 5242 if (auto Opt = cast<GCStatepointInst>(StatepointCall) 5243 .getOperandBundle(LLVMContext::OB_gc_live)) { 5244 Check(BaseIndex < Opt->Inputs.size(), 5245 "gc.relocate: statepoint base index out of bounds", Call); 5246 Check(DerivedIndex < Opt->Inputs.size(), 5247 "gc.relocate: statepoint derived index out of bounds", Call); 5248 } 5249 5250 // Relocated value must be either a pointer type or vector-of-pointer type, 5251 // but gc_relocate does not need to return the same pointer type as the 5252 // relocated pointer. It can be casted to the correct type later if it's 5253 // desired. However, they must have the same address space and 'vectorness' 5254 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 5255 Check(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 5256 "gc.relocate: relocated value must be a gc pointer", Call); 5257 5258 auto ResultType = Call.getType(); 5259 auto DerivedType = Relocate.getDerivedPtr()->getType(); 5260 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5261 "gc.relocate: vector relocates to vector and pointer to pointer", 5262 Call); 5263 Check( 5264 ResultType->getPointerAddressSpace() == 5265 DerivedType->getPointerAddressSpace(), 5266 "gc.relocate: relocating a pointer shouldn't change its address space", 5267 Call); 5268 break; 5269 } 5270 case Intrinsic::eh_exceptioncode: 5271 case Intrinsic::eh_exceptionpointer: { 5272 Check(isa<CatchPadInst>(Call.getArgOperand(0)), 5273 "eh.exceptionpointer argument must be a catchpad", Call); 5274 break; 5275 } 5276 case Intrinsic::get_active_lane_mask: { 5277 Check(Call.getType()->isVectorTy(), 5278 "get_active_lane_mask: must return a " 5279 "vector", 5280 Call); 5281 auto *ElemTy = Call.getType()->getScalarType(); 5282 Check(ElemTy->isIntegerTy(1), 5283 "get_active_lane_mask: element type is not " 5284 "i1", 5285 Call); 5286 break; 5287 } 5288 case Intrinsic::masked_load: { 5289 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5290 Call); 5291 5292 Value *Ptr = Call.getArgOperand(0); 5293 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5294 Value *Mask = Call.getArgOperand(2); 5295 Value *PassThru = Call.getArgOperand(3); 5296 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5297 Call); 5298 Check(Alignment->getValue().isPowerOf2(), 5299 "masked_load: alignment must be a power of 2", Call); 5300 5301 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5302 Check(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), 5303 "masked_load: return must match pointer type", Call); 5304 Check(PassThru->getType() == Call.getType(), 5305 "masked_load: pass through and return type must match", Call); 5306 Check(cast<VectorType>(Mask->getType())->getElementCount() == 5307 cast<VectorType>(Call.getType())->getElementCount(), 5308 "masked_load: vector mask must be same length as return", Call); 5309 break; 5310 } 5311 case Intrinsic::masked_store: { 5312 Value *Val = Call.getArgOperand(0); 5313 Value *Ptr = Call.getArgOperand(1); 5314 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5315 Value *Mask = Call.getArgOperand(3); 5316 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5317 Call); 5318 Check(Alignment->getValue().isPowerOf2(), 5319 "masked_store: alignment must be a power of 2", Call); 5320 5321 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5322 Check(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), 5323 "masked_store: storee must match pointer type", Call); 5324 Check(cast<VectorType>(Mask->getType())->getElementCount() == 5325 cast<VectorType>(Val->getType())->getElementCount(), 5326 "masked_store: vector mask must be same length as value", Call); 5327 break; 5328 } 5329 5330 case Intrinsic::masked_gather: { 5331 const APInt &Alignment = 5332 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5333 Check(Alignment.isZero() || Alignment.isPowerOf2(), 5334 "masked_gather: alignment must be 0 or a power of 2", Call); 5335 break; 5336 } 5337 case Intrinsic::masked_scatter: { 5338 const APInt &Alignment = 5339 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5340 Check(Alignment.isZero() || Alignment.isPowerOf2(), 5341 "masked_scatter: alignment must be 0 or a power of 2", Call); 5342 break; 5343 } 5344 5345 case Intrinsic::experimental_guard: { 5346 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5347 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5348 "experimental_guard must have exactly one " 5349 "\"deopt\" operand bundle"); 5350 break; 5351 } 5352 5353 case Intrinsic::experimental_deoptimize: { 5354 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5355 Call); 5356 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5357 "experimental_deoptimize must have exactly one " 5358 "\"deopt\" operand bundle"); 5359 Check(Call.getType() == Call.getFunction()->getReturnType(), 5360 "experimental_deoptimize return type must match caller return type"); 5361 5362 if (isa<CallInst>(Call)) { 5363 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5364 Check(RI, 5365 "calls to experimental_deoptimize must be followed by a return"); 5366 5367 if (!Call.getType()->isVoidTy() && RI) 5368 Check(RI->getReturnValue() == &Call, 5369 "calls to experimental_deoptimize must be followed by a return " 5370 "of the value computed by experimental_deoptimize"); 5371 } 5372 5373 break; 5374 } 5375 case Intrinsic::vector_reduce_and: 5376 case Intrinsic::vector_reduce_or: 5377 case Intrinsic::vector_reduce_xor: 5378 case Intrinsic::vector_reduce_add: 5379 case Intrinsic::vector_reduce_mul: 5380 case Intrinsic::vector_reduce_smax: 5381 case Intrinsic::vector_reduce_smin: 5382 case Intrinsic::vector_reduce_umax: 5383 case Intrinsic::vector_reduce_umin: { 5384 Type *ArgTy = Call.getArgOperand(0)->getType(); 5385 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5386 "Intrinsic has incorrect argument type!"); 5387 break; 5388 } 5389 case Intrinsic::vector_reduce_fmax: 5390 case Intrinsic::vector_reduce_fmin: { 5391 Type *ArgTy = Call.getArgOperand(0)->getType(); 5392 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5393 "Intrinsic has incorrect argument type!"); 5394 break; 5395 } 5396 case Intrinsic::vector_reduce_fadd: 5397 case Intrinsic::vector_reduce_fmul: { 5398 // Unlike the other reductions, the first argument is a start value. The 5399 // second argument is the vector to be reduced. 5400 Type *ArgTy = Call.getArgOperand(1)->getType(); 5401 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5402 "Intrinsic has incorrect argument type!"); 5403 break; 5404 } 5405 case Intrinsic::smul_fix: 5406 case Intrinsic::smul_fix_sat: 5407 case Intrinsic::umul_fix: 5408 case Intrinsic::umul_fix_sat: 5409 case Intrinsic::sdiv_fix: 5410 case Intrinsic::sdiv_fix_sat: 5411 case Intrinsic::udiv_fix: 5412 case Intrinsic::udiv_fix_sat: { 5413 Value *Op1 = Call.getArgOperand(0); 5414 Value *Op2 = Call.getArgOperand(1); 5415 Check(Op1->getType()->isIntOrIntVectorTy(), 5416 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5417 "vector of ints"); 5418 Check(Op2->getType()->isIntOrIntVectorTy(), 5419 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5420 "vector of ints"); 5421 5422 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5423 Check(Op3->getType()->getBitWidth() <= 32, 5424 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5425 5426 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5427 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5428 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5429 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5430 "the operands"); 5431 } else { 5432 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5433 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5434 "to the width of the operands"); 5435 } 5436 break; 5437 } 5438 case Intrinsic::lround: 5439 case Intrinsic::llround: 5440 case Intrinsic::lrint: 5441 case Intrinsic::llrint: { 5442 Type *ValTy = Call.getArgOperand(0)->getType(); 5443 Type *ResultTy = Call.getType(); 5444 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5445 "Intrinsic does not support vectors", &Call); 5446 break; 5447 } 5448 case Intrinsic::bswap: { 5449 Type *Ty = Call.getType(); 5450 unsigned Size = Ty->getScalarSizeInBits(); 5451 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5452 break; 5453 } 5454 case Intrinsic::invariant_start: { 5455 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5456 Check(InvariantSize && 5457 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5458 "invariant_start parameter must be -1, 0 or a positive number", 5459 &Call); 5460 break; 5461 } 5462 case Intrinsic::matrix_multiply: 5463 case Intrinsic::matrix_transpose: 5464 case Intrinsic::matrix_column_major_load: 5465 case Intrinsic::matrix_column_major_store: { 5466 Function *IF = Call.getCalledFunction(); 5467 ConstantInt *Stride = nullptr; 5468 ConstantInt *NumRows; 5469 ConstantInt *NumColumns; 5470 VectorType *ResultTy; 5471 Type *Op0ElemTy = nullptr; 5472 Type *Op1ElemTy = nullptr; 5473 switch (ID) { 5474 case Intrinsic::matrix_multiply: 5475 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5476 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5477 ResultTy = cast<VectorType>(Call.getType()); 5478 Op0ElemTy = 5479 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5480 Op1ElemTy = 5481 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5482 break; 5483 case Intrinsic::matrix_transpose: 5484 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5485 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5486 ResultTy = cast<VectorType>(Call.getType()); 5487 Op0ElemTy = 5488 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5489 break; 5490 case Intrinsic::matrix_column_major_load: { 5491 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5492 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5493 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5494 ResultTy = cast<VectorType>(Call.getType()); 5495 5496 PointerType *Op0PtrTy = 5497 cast<PointerType>(Call.getArgOperand(0)->getType()); 5498 if (!Op0PtrTy->isOpaque()) 5499 Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType(); 5500 break; 5501 } 5502 case Intrinsic::matrix_column_major_store: { 5503 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5504 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5505 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5506 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5507 Op0ElemTy = 5508 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5509 5510 PointerType *Op1PtrTy = 5511 cast<PointerType>(Call.getArgOperand(1)->getType()); 5512 if (!Op1PtrTy->isOpaque()) 5513 Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType(); 5514 break; 5515 } 5516 default: 5517 llvm_unreachable("unexpected intrinsic"); 5518 } 5519 5520 Check(ResultTy->getElementType()->isIntegerTy() || 5521 ResultTy->getElementType()->isFloatingPointTy(), 5522 "Result type must be an integer or floating-point type!", IF); 5523 5524 if (Op0ElemTy) 5525 Check(ResultTy->getElementType() == Op0ElemTy, 5526 "Vector element type mismatch of the result and first operand " 5527 "vector!", 5528 IF); 5529 5530 if (Op1ElemTy) 5531 Check(ResultTy->getElementType() == Op1ElemTy, 5532 "Vector element type mismatch of the result and second operand " 5533 "vector!", 5534 IF); 5535 5536 Check(cast<FixedVectorType>(ResultTy)->getNumElements() == 5537 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5538 "Result of a matrix operation does not fit in the returned vector!"); 5539 5540 if (Stride) 5541 Check(Stride->getZExtValue() >= NumRows->getZExtValue(), 5542 "Stride must be greater or equal than the number of rows!", IF); 5543 5544 break; 5545 } 5546 case Intrinsic::experimental_vector_splice: { 5547 VectorType *VecTy = cast<VectorType>(Call.getType()); 5548 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue(); 5549 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue(); 5550 if (Call.getParent() && Call.getParent()->getParent()) { 5551 AttributeList Attrs = Call.getParent()->getParent()->getAttributes(); 5552 if (Attrs.hasFnAttr(Attribute::VScaleRange)) 5553 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin(); 5554 } 5555 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) || 5556 (Idx >= 0 && Idx < KnownMinNumElements), 5557 "The splice index exceeds the range [-VL, VL-1] where VL is the " 5558 "known minimum number of elements in the vector. For scalable " 5559 "vectors the minimum number of elements is determined from " 5560 "vscale_range.", 5561 &Call); 5562 break; 5563 } 5564 case Intrinsic::experimental_stepvector: { 5565 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5566 Check(VecTy && VecTy->getScalarType()->isIntegerTy() && 5567 VecTy->getScalarSizeInBits() >= 8, 5568 "experimental_stepvector only supported for vectors of integers " 5569 "with a bitwidth of at least 8.", 5570 &Call); 5571 break; 5572 } 5573 case Intrinsic::vector_insert: { 5574 Value *Vec = Call.getArgOperand(0); 5575 Value *SubVec = Call.getArgOperand(1); 5576 Value *Idx = Call.getArgOperand(2); 5577 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5578 5579 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5580 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5581 5582 ElementCount VecEC = VecTy->getElementCount(); 5583 ElementCount SubVecEC = SubVecTy->getElementCount(); 5584 Check(VecTy->getElementType() == SubVecTy->getElementType(), 5585 "vector_insert parameters must have the same element " 5586 "type.", 5587 &Call); 5588 Check(IdxN % SubVecEC.getKnownMinValue() == 0, 5589 "vector_insert index must be a constant multiple of " 5590 "the subvector's known minimum vector length."); 5591 5592 // If this insertion is not the 'mixed' case where a fixed vector is 5593 // inserted into a scalable vector, ensure that the insertion of the 5594 // subvector does not overrun the parent vector. 5595 if (VecEC.isScalable() == SubVecEC.isScalable()) { 5596 Check(IdxN < VecEC.getKnownMinValue() && 5597 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5598 "subvector operand of vector_insert would overrun the " 5599 "vector being inserted into."); 5600 } 5601 break; 5602 } 5603 case Intrinsic::vector_extract: { 5604 Value *Vec = Call.getArgOperand(0); 5605 Value *Idx = Call.getArgOperand(1); 5606 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5607 5608 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5609 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5610 5611 ElementCount VecEC = VecTy->getElementCount(); 5612 ElementCount ResultEC = ResultTy->getElementCount(); 5613 5614 Check(ResultTy->getElementType() == VecTy->getElementType(), 5615 "vector_extract result must have the same element " 5616 "type as the input vector.", 5617 &Call); 5618 Check(IdxN % ResultEC.getKnownMinValue() == 0, 5619 "vector_extract index must be a constant multiple of " 5620 "the result type's known minimum vector length."); 5621 5622 // If this extraction is not the 'mixed' case where a fixed vector is is 5623 // extracted from a scalable vector, ensure that the extraction does not 5624 // overrun the parent vector. 5625 if (VecEC.isScalable() == ResultEC.isScalable()) { 5626 Check(IdxN < VecEC.getKnownMinValue() && 5627 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5628 "vector_extract would overrun."); 5629 } 5630 break; 5631 } 5632 case Intrinsic::experimental_noalias_scope_decl: { 5633 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5634 break; 5635 } 5636 case Intrinsic::preserve_array_access_index: 5637 case Intrinsic::preserve_struct_access_index: 5638 case Intrinsic::aarch64_ldaxr: 5639 case Intrinsic::aarch64_ldxr: 5640 case Intrinsic::arm_ldaex: 5641 case Intrinsic::arm_ldrex: { 5642 Type *ElemTy = Call.getParamElementType(0); 5643 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.", 5644 &Call); 5645 break; 5646 } 5647 case Intrinsic::aarch64_stlxr: 5648 case Intrinsic::aarch64_stxr: 5649 case Intrinsic::arm_stlex: 5650 case Intrinsic::arm_strex: { 5651 Type *ElemTy = Call.getAttributes().getParamElementType(1); 5652 Check(ElemTy, 5653 "Intrinsic requires elementtype attribute on second argument.", 5654 &Call); 5655 break; 5656 } 5657 }; 5658 } 5659 5660 /// Carefully grab the subprogram from a local scope. 5661 /// 5662 /// This carefully grabs the subprogram from a local scope, avoiding the 5663 /// built-in assertions that would typically fire. 5664 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5665 if (!LocalScope) 5666 return nullptr; 5667 5668 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5669 return SP; 5670 5671 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5672 return getSubprogram(LB->getRawScope()); 5673 5674 // Just return null; broken scope chains are checked elsewhere. 5675 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5676 return nullptr; 5677 } 5678 5679 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) { 5680 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) { 5681 auto *RetTy = cast<VectorType>(VPCast->getType()); 5682 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType()); 5683 Check(RetTy->getElementCount() == ValTy->getElementCount(), 5684 "VP cast intrinsic first argument and result vector lengths must be " 5685 "equal", 5686 *VPCast); 5687 5688 switch (VPCast->getIntrinsicID()) { 5689 default: 5690 llvm_unreachable("Unknown VP cast intrinsic"); 5691 case Intrinsic::vp_trunc: 5692 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), 5693 "llvm.vp.trunc intrinsic first argument and result element type " 5694 "must be integer", 5695 *VPCast); 5696 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), 5697 "llvm.vp.trunc intrinsic the bit size of first argument must be " 5698 "larger than the bit size of the return type", 5699 *VPCast); 5700 break; 5701 case Intrinsic::vp_zext: 5702 case Intrinsic::vp_sext: 5703 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), 5704 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result " 5705 "element type must be integer", 5706 *VPCast); 5707 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), 5708 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first " 5709 "argument must be smaller than the bit size of the return type", 5710 *VPCast); 5711 break; 5712 case Intrinsic::vp_fptoui: 5713 case Intrinsic::vp_fptosi: 5714 Check( 5715 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(), 5716 "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element " 5717 "type must be floating-point and result element type must be integer", 5718 *VPCast); 5719 break; 5720 case Intrinsic::vp_uitofp: 5721 case Intrinsic::vp_sitofp: 5722 Check( 5723 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(), 5724 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element " 5725 "type must be integer and result element type must be floating-point", 5726 *VPCast); 5727 break; 5728 case Intrinsic::vp_fptrunc: 5729 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), 5730 "llvm.vp.fptrunc intrinsic first argument and result element type " 5731 "must be floating-point", 5732 *VPCast); 5733 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), 5734 "llvm.vp.fptrunc intrinsic the bit size of first argument must be " 5735 "larger than the bit size of the return type", 5736 *VPCast); 5737 break; 5738 case Intrinsic::vp_fpext: 5739 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), 5740 "llvm.vp.fpext intrinsic first argument and result element type " 5741 "must be floating-point", 5742 *VPCast); 5743 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), 5744 "llvm.vp.fpext intrinsic the bit size of first argument must be " 5745 "smaller than the bit size of the return type", 5746 *VPCast); 5747 break; 5748 case Intrinsic::vp_ptrtoint: 5749 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(), 5750 "llvm.vp.ptrtoint intrinsic first argument element type must be " 5751 "pointer and result element type must be integer", 5752 *VPCast); 5753 break; 5754 case Intrinsic::vp_inttoptr: 5755 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(), 5756 "llvm.vp.inttoptr intrinsic first argument element type must be " 5757 "integer and result element type must be pointer", 5758 *VPCast); 5759 break; 5760 } 5761 } 5762 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) { 5763 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); 5764 Check(CmpInst::isFPPredicate(Pred), 5765 "invalid predicate for VP FP comparison intrinsic", &VPI); 5766 } 5767 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) { 5768 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); 5769 Check(CmpInst::isIntPredicate(Pred), 5770 "invalid predicate for VP integer comparison intrinsic", &VPI); 5771 } 5772 } 5773 5774 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5775 unsigned NumOperands; 5776 bool HasRoundingMD; 5777 switch (FPI.getIntrinsicID()) { 5778 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5779 case Intrinsic::INTRINSIC: \ 5780 NumOperands = NARG; \ 5781 HasRoundingMD = ROUND_MODE; \ 5782 break; 5783 #include "llvm/IR/ConstrainedOps.def" 5784 default: 5785 llvm_unreachable("Invalid constrained FP intrinsic!"); 5786 } 5787 NumOperands += (1 + HasRoundingMD); 5788 // Compare intrinsics carry an extra predicate metadata operand. 5789 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5790 NumOperands += 1; 5791 Check((FPI.arg_size() == NumOperands), 5792 "invalid arguments for constrained FP intrinsic", &FPI); 5793 5794 switch (FPI.getIntrinsicID()) { 5795 case Intrinsic::experimental_constrained_lrint: 5796 case Intrinsic::experimental_constrained_llrint: { 5797 Type *ValTy = FPI.getArgOperand(0)->getType(); 5798 Type *ResultTy = FPI.getType(); 5799 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5800 "Intrinsic does not support vectors", &FPI); 5801 } 5802 break; 5803 5804 case Intrinsic::experimental_constrained_lround: 5805 case Intrinsic::experimental_constrained_llround: { 5806 Type *ValTy = FPI.getArgOperand(0)->getType(); 5807 Type *ResultTy = FPI.getType(); 5808 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5809 "Intrinsic does not support vectors", &FPI); 5810 break; 5811 } 5812 5813 case Intrinsic::experimental_constrained_fcmp: 5814 case Intrinsic::experimental_constrained_fcmps: { 5815 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5816 Check(CmpInst::isFPPredicate(Pred), 5817 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5818 break; 5819 } 5820 5821 case Intrinsic::experimental_constrained_fptosi: 5822 case Intrinsic::experimental_constrained_fptoui: { 5823 Value *Operand = FPI.getArgOperand(0); 5824 uint64_t NumSrcElem = 0; 5825 Check(Operand->getType()->isFPOrFPVectorTy(), 5826 "Intrinsic first argument must be floating point", &FPI); 5827 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5828 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5829 } 5830 5831 Operand = &FPI; 5832 Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5833 "Intrinsic first argument and result disagree on vector use", &FPI); 5834 Check(Operand->getType()->isIntOrIntVectorTy(), 5835 "Intrinsic result must be an integer", &FPI); 5836 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5837 Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5838 "Intrinsic first argument and result vector lengths must be equal", 5839 &FPI); 5840 } 5841 } 5842 break; 5843 5844 case Intrinsic::experimental_constrained_sitofp: 5845 case Intrinsic::experimental_constrained_uitofp: { 5846 Value *Operand = FPI.getArgOperand(0); 5847 uint64_t NumSrcElem = 0; 5848 Check(Operand->getType()->isIntOrIntVectorTy(), 5849 "Intrinsic first argument must be integer", &FPI); 5850 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5851 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5852 } 5853 5854 Operand = &FPI; 5855 Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5856 "Intrinsic first argument and result disagree on vector use", &FPI); 5857 Check(Operand->getType()->isFPOrFPVectorTy(), 5858 "Intrinsic result must be a floating point", &FPI); 5859 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5860 Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5861 "Intrinsic first argument and result vector lengths must be equal", 5862 &FPI); 5863 } 5864 } break; 5865 5866 case Intrinsic::experimental_constrained_fptrunc: 5867 case Intrinsic::experimental_constrained_fpext: { 5868 Value *Operand = FPI.getArgOperand(0); 5869 Type *OperandTy = Operand->getType(); 5870 Value *Result = &FPI; 5871 Type *ResultTy = Result->getType(); 5872 Check(OperandTy->isFPOrFPVectorTy(), 5873 "Intrinsic first argument must be FP or FP vector", &FPI); 5874 Check(ResultTy->isFPOrFPVectorTy(), 5875 "Intrinsic result must be FP or FP vector", &FPI); 5876 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5877 "Intrinsic first argument and result disagree on vector use", &FPI); 5878 if (OperandTy->isVectorTy()) { 5879 Check(cast<FixedVectorType>(OperandTy)->getNumElements() == 5880 cast<FixedVectorType>(ResultTy)->getNumElements(), 5881 "Intrinsic first argument and result vector lengths must be equal", 5882 &FPI); 5883 } 5884 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5885 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5886 "Intrinsic first argument's type must be larger than result type", 5887 &FPI); 5888 } else { 5889 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5890 "Intrinsic first argument's type must be smaller than result type", 5891 &FPI); 5892 } 5893 } 5894 break; 5895 5896 default: 5897 break; 5898 } 5899 5900 // If a non-metadata argument is passed in a metadata slot then the 5901 // error will be caught earlier when the incorrect argument doesn't 5902 // match the specification in the intrinsic call table. Thus, no 5903 // argument type check is needed here. 5904 5905 Check(FPI.getExceptionBehavior().has_value(), 5906 "invalid exception behavior argument", &FPI); 5907 if (HasRoundingMD) { 5908 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument", 5909 &FPI); 5910 } 5911 } 5912 5913 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5914 auto *MD = DII.getRawLocation(); 5915 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 5916 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5917 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5918 CheckDI(isa<DILocalVariable>(DII.getRawVariable()), 5919 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5920 DII.getRawVariable()); 5921 CheckDI(isa<DIExpression>(DII.getRawExpression()), 5922 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5923 DII.getRawExpression()); 5924 5925 // Ignore broken !dbg attachments; they're checked elsewhere. 5926 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5927 if (!isa<DILocation>(N)) 5928 return; 5929 5930 BasicBlock *BB = DII.getParent(); 5931 Function *F = BB ? BB->getParent() : nullptr; 5932 5933 // The scopes for variables and !dbg attachments must agree. 5934 DILocalVariable *Var = DII.getVariable(); 5935 DILocation *Loc = DII.getDebugLoc(); 5936 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5937 &DII, BB, F); 5938 5939 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5940 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5941 if (!VarSP || !LocSP) 5942 return; // Broken scope chains are checked elsewhere. 5943 5944 CheckDI(VarSP == LocSP, 5945 "mismatched subprogram between llvm.dbg." + Kind + 5946 " variable and !dbg attachment", 5947 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5948 Loc->getScope()->getSubprogram()); 5949 5950 // This check is redundant with one in visitLocalVariable(). 5951 CheckDI(isType(Var->getRawType()), "invalid type ref", Var, 5952 Var->getRawType()); 5953 verifyFnArgs(DII); 5954 } 5955 5956 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5957 CheckDI(isa<DILabel>(DLI.getRawLabel()), 5958 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5959 DLI.getRawLabel()); 5960 5961 // Ignore broken !dbg attachments; they're checked elsewhere. 5962 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5963 if (!isa<DILocation>(N)) 5964 return; 5965 5966 BasicBlock *BB = DLI.getParent(); 5967 Function *F = BB ? BB->getParent() : nullptr; 5968 5969 // The scopes for variables and !dbg attachments must agree. 5970 DILabel *Label = DLI.getLabel(); 5971 DILocation *Loc = DLI.getDebugLoc(); 5972 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI, 5973 BB, F); 5974 5975 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5976 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5977 if (!LabelSP || !LocSP) 5978 return; 5979 5980 CheckDI(LabelSP == LocSP, 5981 "mismatched subprogram between llvm.dbg." + Kind + 5982 " label and !dbg attachment", 5983 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5984 Loc->getScope()->getSubprogram()); 5985 } 5986 5987 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5988 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5989 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5990 5991 // We don't know whether this intrinsic verified correctly. 5992 if (!V || !E || !E->isValid()) 5993 return; 5994 5995 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5996 auto Fragment = E->getFragmentInfo(); 5997 if (!Fragment) 5998 return; 5999 6000 // The frontend helps out GDB by emitting the members of local anonymous 6001 // unions as artificial local variables with shared storage. When SROA splits 6002 // the storage for artificial local variables that are smaller than the entire 6003 // union, the overhang piece will be outside of the allotted space for the 6004 // variable and this check fails. 6005 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 6006 if (V->isArtificial()) 6007 return; 6008 6009 verifyFragmentExpression(*V, *Fragment, &I); 6010 } 6011 6012 template <typename ValueOrMetadata> 6013 void Verifier::verifyFragmentExpression(const DIVariable &V, 6014 DIExpression::FragmentInfo Fragment, 6015 ValueOrMetadata *Desc) { 6016 // If there's no size, the type is broken, but that should be checked 6017 // elsewhere. 6018 auto VarSize = V.getSizeInBits(); 6019 if (!VarSize) 6020 return; 6021 6022 unsigned FragSize = Fragment.SizeInBits; 6023 unsigned FragOffset = Fragment.OffsetInBits; 6024 CheckDI(FragSize + FragOffset <= *VarSize, 6025 "fragment is larger than or outside of variable", Desc, &V); 6026 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 6027 } 6028 6029 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 6030 // This function does not take the scope of noninlined function arguments into 6031 // account. Don't run it if current function is nodebug, because it may 6032 // contain inlined debug intrinsics. 6033 if (!HasDebugInfo) 6034 return; 6035 6036 // For performance reasons only check non-inlined ones. 6037 if (I.getDebugLoc()->getInlinedAt()) 6038 return; 6039 6040 DILocalVariable *Var = I.getVariable(); 6041 CheckDI(Var, "dbg intrinsic without variable"); 6042 6043 unsigned ArgNo = Var->getArg(); 6044 if (!ArgNo) 6045 return; 6046 6047 // Verify there are no duplicate function argument debug info entries. 6048 // These will cause hard-to-debug assertions in the DWARF backend. 6049 if (DebugFnArgs.size() < ArgNo) 6050 DebugFnArgs.resize(ArgNo, nullptr); 6051 6052 auto *Prev = DebugFnArgs[ArgNo - 1]; 6053 DebugFnArgs[ArgNo - 1] = Var; 6054 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 6055 Prev, Var); 6056 } 6057 6058 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 6059 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 6060 6061 // We don't know whether this intrinsic verified correctly. 6062 if (!E || !E->isValid()) 6063 return; 6064 6065 CheckDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 6066 } 6067 6068 void Verifier::verifyCompileUnits() { 6069 // When more than one Module is imported into the same context, such as during 6070 // an LTO build before linking the modules, ODR type uniquing may cause types 6071 // to point to a different CU. This check does not make sense in this case. 6072 if (M.getContext().isODRUniquingDebugTypes()) 6073 return; 6074 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 6075 SmallPtrSet<const Metadata *, 2> Listed; 6076 if (CUs) 6077 Listed.insert(CUs->op_begin(), CUs->op_end()); 6078 for (auto *CU : CUVisited) 6079 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 6080 CUVisited.clear(); 6081 } 6082 6083 void Verifier::verifyDeoptimizeCallingConvs() { 6084 if (DeoptimizeDeclarations.empty()) 6085 return; 6086 6087 const Function *First = DeoptimizeDeclarations[0]; 6088 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 6089 Check(First->getCallingConv() == F->getCallingConv(), 6090 "All llvm.experimental.deoptimize declarations must have the same " 6091 "calling convention", 6092 First, F); 6093 } 6094 } 6095 6096 void Verifier::verifyAttachedCallBundle(const CallBase &Call, 6097 const OperandBundleUse &BU) { 6098 FunctionType *FTy = Call.getFunctionType(); 6099 6100 Check((FTy->getReturnType()->isPointerTy() || 6101 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 6102 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 6103 "function returning a pointer or a non-returning function that has a " 6104 "void return type", 6105 Call); 6106 6107 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()), 6108 "operand bundle \"clang.arc.attachedcall\" requires one function as " 6109 "an argument", 6110 Call); 6111 6112 auto *Fn = cast<Function>(BU.Inputs.front()); 6113 Intrinsic::ID IID = Fn->getIntrinsicID(); 6114 6115 if (IID) { 6116 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 6117 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 6118 "invalid function argument", Call); 6119 } else { 6120 StringRef FnName = Fn->getName(); 6121 Check((FnName == "objc_retainAutoreleasedReturnValue" || 6122 FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 6123 "invalid function argument", Call); 6124 } 6125 } 6126 6127 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 6128 bool HasSource = F.getSource().has_value(); 6129 if (!HasSourceDebugInfo.count(&U)) 6130 HasSourceDebugInfo[&U] = HasSource; 6131 CheckDI(HasSource == HasSourceDebugInfo[&U], 6132 "inconsistent use of embedded source"); 6133 } 6134 6135 void Verifier::verifyNoAliasScopeDecl() { 6136 if (NoAliasScopeDecls.empty()) 6137 return; 6138 6139 // only a single scope must be declared at a time. 6140 for (auto *II : NoAliasScopeDecls) { 6141 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 6142 "Not a llvm.experimental.noalias.scope.decl ?"); 6143 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 6144 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 6145 Check(ScopeListMV != nullptr, 6146 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 6147 "argument", 6148 II); 6149 6150 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 6151 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II); 6152 Check(ScopeListMD->getNumOperands() == 1, 6153 "!id.scope.list must point to a list with a single scope", II); 6154 visitAliasScopeListMetadata(ScopeListMD); 6155 } 6156 6157 // Only check the domination rule when requested. Once all passes have been 6158 // adapted this option can go away. 6159 if (!VerifyNoAliasScopeDomination) 6160 return; 6161 6162 // Now sort the intrinsics based on the scope MDNode so that declarations of 6163 // the same scopes are next to each other. 6164 auto GetScope = [](IntrinsicInst *II) { 6165 const auto *ScopeListMV = cast<MetadataAsValue>( 6166 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 6167 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 6168 }; 6169 6170 // We are sorting on MDNode pointers here. For valid input IR this is ok. 6171 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 6172 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 6173 return GetScope(Lhs) < GetScope(Rhs); 6174 }; 6175 6176 llvm::sort(NoAliasScopeDecls, Compare); 6177 6178 // Go over the intrinsics and check that for the same scope, they are not 6179 // dominating each other. 6180 auto ItCurrent = NoAliasScopeDecls.begin(); 6181 while (ItCurrent != NoAliasScopeDecls.end()) { 6182 auto CurScope = GetScope(*ItCurrent); 6183 auto ItNext = ItCurrent; 6184 do { 6185 ++ItNext; 6186 } while (ItNext != NoAliasScopeDecls.end() && 6187 GetScope(*ItNext) == CurScope); 6188 6189 // [ItCurrent, ItNext) represents the declarations for the same scope. 6190 // Ensure they are not dominating each other.. but only if it is not too 6191 // expensive. 6192 if (ItNext - ItCurrent < 32) 6193 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 6194 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 6195 if (I != J) 6196 Check(!DT.dominates(I, J), 6197 "llvm.experimental.noalias.scope.decl dominates another one " 6198 "with the same scope", 6199 I); 6200 ItCurrent = ItNext; 6201 } 6202 } 6203 6204 //===----------------------------------------------------------------------===// 6205 // Implement the public interfaces to this file... 6206 //===----------------------------------------------------------------------===// 6207 6208 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 6209 Function &F = const_cast<Function &>(f); 6210 6211 // Don't use a raw_null_ostream. Printing IR is expensive. 6212 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 6213 6214 // Note that this function's return value is inverted from what you would 6215 // expect of a function called "verify". 6216 return !V.verify(F); 6217 } 6218 6219 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 6220 bool *BrokenDebugInfo) { 6221 // Don't use a raw_null_ostream. Printing IR is expensive. 6222 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 6223 6224 bool Broken = false; 6225 for (const Function &F : M) 6226 Broken |= !V.verify(F); 6227 6228 Broken |= !V.verify(); 6229 if (BrokenDebugInfo) 6230 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 6231 // Note that this function's return value is inverted from what you would 6232 // expect of a function called "verify". 6233 return Broken; 6234 } 6235 6236 namespace { 6237 6238 struct VerifierLegacyPass : public FunctionPass { 6239 static char ID; 6240 6241 std::unique_ptr<Verifier> V; 6242 bool FatalErrors = true; 6243 6244 VerifierLegacyPass() : FunctionPass(ID) { 6245 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 6246 } 6247 explicit VerifierLegacyPass(bool FatalErrors) 6248 : FunctionPass(ID), 6249 FatalErrors(FatalErrors) { 6250 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 6251 } 6252 6253 bool doInitialization(Module &M) override { 6254 V = std::make_unique<Verifier>( 6255 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 6256 return false; 6257 } 6258 6259 bool runOnFunction(Function &F) override { 6260 if (!V->verify(F) && FatalErrors) { 6261 errs() << "in function " << F.getName() << '\n'; 6262 report_fatal_error("Broken function found, compilation aborted!"); 6263 } 6264 return false; 6265 } 6266 6267 bool doFinalization(Module &M) override { 6268 bool HasErrors = false; 6269 for (Function &F : M) 6270 if (F.isDeclaration()) 6271 HasErrors |= !V->verify(F); 6272 6273 HasErrors |= !V->verify(); 6274 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 6275 report_fatal_error("Broken module found, compilation aborted!"); 6276 return false; 6277 } 6278 6279 void getAnalysisUsage(AnalysisUsage &AU) const override { 6280 AU.setPreservesAll(); 6281 } 6282 }; 6283 6284 } // end anonymous namespace 6285 6286 /// Helper to issue failure from the TBAA verification 6287 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 6288 if (Diagnostic) 6289 return Diagnostic->CheckFailed(Args...); 6290 } 6291 6292 #define CheckTBAA(C, ...) \ 6293 do { \ 6294 if (!(C)) { \ 6295 CheckFailed(__VA_ARGS__); \ 6296 return false; \ 6297 } \ 6298 } while (false) 6299 6300 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 6301 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 6302 /// struct-type node describing an aggregate data structure (like a struct). 6303 TBAAVerifier::TBAABaseNodeSummary 6304 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 6305 bool IsNewFormat) { 6306 if (BaseNode->getNumOperands() < 2) { 6307 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 6308 return {true, ~0u}; 6309 } 6310 6311 auto Itr = TBAABaseNodes.find(BaseNode); 6312 if (Itr != TBAABaseNodes.end()) 6313 return Itr->second; 6314 6315 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 6316 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 6317 (void)InsertResult; 6318 assert(InsertResult.second && "We just checked!"); 6319 return Result; 6320 } 6321 6322 TBAAVerifier::TBAABaseNodeSummary 6323 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 6324 bool IsNewFormat) { 6325 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 6326 6327 if (BaseNode->getNumOperands() == 2) { 6328 // Scalar nodes can only be accessed at offset 0. 6329 return isValidScalarTBAANode(BaseNode) 6330 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 6331 : InvalidNode; 6332 } 6333 6334 if (IsNewFormat) { 6335 if (BaseNode->getNumOperands() % 3 != 0) { 6336 CheckFailed("Access tag nodes must have the number of operands that is a " 6337 "multiple of 3!", BaseNode); 6338 return InvalidNode; 6339 } 6340 } else { 6341 if (BaseNode->getNumOperands() % 2 != 1) { 6342 CheckFailed("Struct tag nodes must have an odd number of operands!", 6343 BaseNode); 6344 return InvalidNode; 6345 } 6346 } 6347 6348 // Check the type size field. 6349 if (IsNewFormat) { 6350 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6351 BaseNode->getOperand(1)); 6352 if (!TypeSizeNode) { 6353 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 6354 return InvalidNode; 6355 } 6356 } 6357 6358 // Check the type name field. In the new format it can be anything. 6359 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 6360 CheckFailed("Struct tag nodes have a string as their first operand", 6361 BaseNode); 6362 return InvalidNode; 6363 } 6364 6365 bool Failed = false; 6366 6367 Optional<APInt> PrevOffset; 6368 unsigned BitWidth = ~0u; 6369 6370 // We've already checked that BaseNode is not a degenerate root node with one 6371 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 6372 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6373 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6374 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6375 Idx += NumOpsPerField) { 6376 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 6377 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 6378 if (!isa<MDNode>(FieldTy)) { 6379 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 6380 Failed = true; 6381 continue; 6382 } 6383 6384 auto *OffsetEntryCI = 6385 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 6386 if (!OffsetEntryCI) { 6387 CheckFailed("Offset entries must be constants!", &I, BaseNode); 6388 Failed = true; 6389 continue; 6390 } 6391 6392 if (BitWidth == ~0u) 6393 BitWidth = OffsetEntryCI->getBitWidth(); 6394 6395 if (OffsetEntryCI->getBitWidth() != BitWidth) { 6396 CheckFailed( 6397 "Bitwidth between the offsets and struct type entries must match", &I, 6398 BaseNode); 6399 Failed = true; 6400 continue; 6401 } 6402 6403 // NB! As far as I can tell, we generate a non-strictly increasing offset 6404 // sequence only from structs that have zero size bit fields. When 6405 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 6406 // pick the field lexically the latest in struct type metadata node. This 6407 // mirrors the actual behavior of the alias analysis implementation. 6408 bool IsAscending = 6409 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 6410 6411 if (!IsAscending) { 6412 CheckFailed("Offsets must be increasing!", &I, BaseNode); 6413 Failed = true; 6414 } 6415 6416 PrevOffset = OffsetEntryCI->getValue(); 6417 6418 if (IsNewFormat) { 6419 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6420 BaseNode->getOperand(Idx + 2)); 6421 if (!MemberSizeNode) { 6422 CheckFailed("Member size entries must be constants!", &I, BaseNode); 6423 Failed = true; 6424 continue; 6425 } 6426 } 6427 } 6428 6429 return Failed ? InvalidNode 6430 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 6431 } 6432 6433 static bool IsRootTBAANode(const MDNode *MD) { 6434 return MD->getNumOperands() < 2; 6435 } 6436 6437 static bool IsScalarTBAANodeImpl(const MDNode *MD, 6438 SmallPtrSetImpl<const MDNode *> &Visited) { 6439 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 6440 return false; 6441 6442 if (!isa<MDString>(MD->getOperand(0))) 6443 return false; 6444 6445 if (MD->getNumOperands() == 3) { 6446 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 6447 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 6448 return false; 6449 } 6450 6451 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6452 return Parent && Visited.insert(Parent).second && 6453 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 6454 } 6455 6456 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 6457 auto ResultIt = TBAAScalarNodes.find(MD); 6458 if (ResultIt != TBAAScalarNodes.end()) 6459 return ResultIt->second; 6460 6461 SmallPtrSet<const MDNode *, 4> Visited; 6462 bool Result = IsScalarTBAANodeImpl(MD, Visited); 6463 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 6464 (void)InsertResult; 6465 assert(InsertResult.second && "Just checked!"); 6466 6467 return Result; 6468 } 6469 6470 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 6471 /// Offset in place to be the offset within the field node returned. 6472 /// 6473 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 6474 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 6475 const MDNode *BaseNode, 6476 APInt &Offset, 6477 bool IsNewFormat) { 6478 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 6479 6480 // Scalar nodes have only one possible "field" -- their parent in the access 6481 // hierarchy. Offset must be zero at this point, but our caller is supposed 6482 // to check that. 6483 if (BaseNode->getNumOperands() == 2) 6484 return cast<MDNode>(BaseNode->getOperand(1)); 6485 6486 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6487 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6488 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6489 Idx += NumOpsPerField) { 6490 auto *OffsetEntryCI = 6491 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6492 if (OffsetEntryCI->getValue().ugt(Offset)) { 6493 if (Idx == FirstFieldOpNo) { 6494 CheckFailed("Could not find TBAA parent in struct type node", &I, 6495 BaseNode, &Offset); 6496 return nullptr; 6497 } 6498 6499 unsigned PrevIdx = Idx - NumOpsPerField; 6500 auto *PrevOffsetEntryCI = 6501 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 6502 Offset -= PrevOffsetEntryCI->getValue(); 6503 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 6504 } 6505 } 6506 6507 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 6508 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 6509 BaseNode->getOperand(LastIdx + 1)); 6510 Offset -= LastOffsetEntryCI->getValue(); 6511 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 6512 } 6513 6514 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 6515 if (!Type || Type->getNumOperands() < 3) 6516 return false; 6517 6518 // In the new format type nodes shall have a reference to the parent type as 6519 // its first operand. 6520 return isa_and_nonnull<MDNode>(Type->getOperand(0)); 6521 } 6522 6523 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6524 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6525 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6526 isa<AtomicCmpXchgInst>(I), 6527 "This instruction shall not have a TBAA access tag!", &I); 6528 6529 bool IsStructPathTBAA = 6530 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6531 6532 CheckTBAA(IsStructPathTBAA, 6533 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", 6534 &I); 6535 6536 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6537 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6538 6539 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6540 6541 if (IsNewFormat) { 6542 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6543 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6544 } else { 6545 CheckTBAA(MD->getNumOperands() < 5, 6546 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6547 } 6548 6549 // Check the access size field. 6550 if (IsNewFormat) { 6551 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6552 MD->getOperand(3)); 6553 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6554 } 6555 6556 // Check the immutability flag. 6557 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6558 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6559 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6560 MD->getOperand(ImmutabilityFlagOpNo)); 6561 CheckTBAA(IsImmutableCI, 6562 "Immutability tag on struct tag metadata must be a constant", &I, 6563 MD); 6564 CheckTBAA( 6565 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6566 "Immutability part of the struct tag metadata must be either 0 or 1", 6567 &I, MD); 6568 } 6569 6570 CheckTBAA(BaseNode && AccessType, 6571 "Malformed struct tag metadata: base and access-type " 6572 "should be non-null and point to Metadata nodes", 6573 &I, MD, BaseNode, AccessType); 6574 6575 if (!IsNewFormat) { 6576 CheckTBAA(isValidScalarTBAANode(AccessType), 6577 "Access type node must be a valid scalar type", &I, MD, 6578 AccessType); 6579 } 6580 6581 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6582 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6583 6584 APInt Offset = OffsetCI->getValue(); 6585 bool SeenAccessTypeInPath = false; 6586 6587 SmallPtrSet<MDNode *, 4> StructPath; 6588 6589 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6590 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6591 IsNewFormat)) { 6592 if (!StructPath.insert(BaseNode).second) { 6593 CheckFailed("Cycle detected in struct path", &I, MD); 6594 return false; 6595 } 6596 6597 bool Invalid; 6598 unsigned BaseNodeBitWidth; 6599 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6600 IsNewFormat); 6601 6602 // If the base node is invalid in itself, then we've already printed all the 6603 // errors we wanted to print. 6604 if (Invalid) 6605 return false; 6606 6607 SeenAccessTypeInPath |= BaseNode == AccessType; 6608 6609 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6610 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6611 &I, MD, &Offset); 6612 6613 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6614 (BaseNodeBitWidth == 0 && Offset == 0) || 6615 (IsNewFormat && BaseNodeBitWidth == ~0u), 6616 "Access bit-width not the same as description bit-width", &I, MD, 6617 BaseNodeBitWidth, Offset.getBitWidth()); 6618 6619 if (IsNewFormat && SeenAccessTypeInPath) 6620 break; 6621 } 6622 6623 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I, 6624 MD); 6625 return true; 6626 } 6627 6628 char VerifierLegacyPass::ID = 0; 6629 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6630 6631 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6632 return new VerifierLegacyPass(FatalErrors); 6633 } 6634 6635 AnalysisKey VerifierAnalysis::Key; 6636 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6637 ModuleAnalysisManager &) { 6638 Result Res; 6639 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6640 return Res; 6641 } 6642 6643 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6644 FunctionAnalysisManager &) { 6645 return { llvm::verifyFunction(F, &dbgs()), false }; 6646 } 6647 6648 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6649 auto Res = AM.getResult<VerifierAnalysis>(M); 6650 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6651 report_fatal_error("Broken module found, compilation aborted!"); 6652 6653 return PreservedAnalyses::all(); 6654 } 6655 6656 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6657 auto res = AM.getResult<VerifierAnalysis>(F); 6658 if (res.IRBroken && FatalErrors) 6659 report_fatal_error("Broken function found, compilation aborted!"); 6660 6661 return PreservedAnalyses::all(); 6662 } 6663