xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Verifier.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
120 struct VerifierSupport {
121   raw_ostream *OS;
122   const Module &M;
123   ModuleSlotTracker MST;
124   Triple TT;
125   const DataLayout &DL;
126   LLVMContext &Context;
127 
128   /// Track the brokenness of the module while recursively visiting.
129   bool Broken = false;
130   /// Broken debug info can be "recovered" from by stripping the debug info.
131   bool BrokenDebugInfo = false;
132   /// Whether to treat broken debug info as an error.
133   bool TreatBrokenDebugInfoAsError = true;
134 
135   explicit VerifierSupport(raw_ostream *OS, const Module &M)
136       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
137         Context(M.getContext()) {}
138 
139 private:
140   void Write(const Module *M) {
141     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142   }
143 
144   void Write(const Value *V) {
145     if (V)
146       Write(*V);
147   }
148 
149   void Write(const Value &V) {
150     if (isa<Instruction>(V)) {
151       V.print(*OS, MST);
152       *OS << '\n';
153     } else {
154       V.printAsOperand(*OS, true, MST);
155       *OS << '\n';
156     }
157   }
158 
159   void Write(const Metadata *MD) {
160     if (!MD)
161       return;
162     MD->print(*OS, MST, &M);
163     *OS << '\n';
164   }
165 
166   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
167     Write(MD.get());
168   }
169 
170   void Write(const NamedMDNode *NMD) {
171     if (!NMD)
172       return;
173     NMD->print(*OS, MST);
174     *OS << '\n';
175   }
176 
177   void Write(Type *T) {
178     if (!T)
179       return;
180     *OS << ' ' << *T;
181   }
182 
183   void Write(const Comdat *C) {
184     if (!C)
185       return;
186     *OS << *C;
187   }
188 
189   void Write(const APInt *AI) {
190     if (!AI)
191       return;
192     *OS << *AI << '\n';
193   }
194 
195   void Write(const unsigned i) { *OS << i << '\n'; }
196 
197   template <typename T> void Write(ArrayRef<T> Vs) {
198     for (const T &V : Vs)
199       Write(V);
200   }
201 
202   template <typename T1, typename... Ts>
203   void WriteTs(const T1 &V1, const Ts &... Vs) {
204     Write(V1);
205     WriteTs(Vs...);
206   }
207 
208   template <typename... Ts> void WriteTs() {}
209 
210 public:
211   /// A check failed, so printout out the condition and the message.
212   ///
213   /// This provides a nice place to put a breakpoint if you want to see why
214   /// something is not correct.
215   void CheckFailed(const Twine &Message) {
216     if (OS)
217       *OS << Message << '\n';
218     Broken = true;
219   }
220 
221   /// A check failed (with values to print).
222   ///
223   /// This calls the Message-only version so that the above is easier to set a
224   /// breakpoint on.
225   template <typename T1, typename... Ts>
226   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
227     CheckFailed(Message);
228     if (OS)
229       WriteTs(V1, Vs...);
230   }
231 
232   /// A debug info check failed.
233   void DebugInfoCheckFailed(const Twine &Message) {
234     if (OS)
235       *OS << Message << '\n';
236     Broken |= TreatBrokenDebugInfoAsError;
237     BrokenDebugInfo = true;
238   }
239 
240   /// A debug info check failed (with values to print).
241   template <typename T1, typename... Ts>
242   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
243                             const Ts &... Vs) {
244     DebugInfoCheckFailed(Message);
245     if (OS)
246       WriteTs(V1, Vs...);
247   }
248 };
249 
250 } // namespace llvm
251 
252 namespace {
253 
254 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
255   friend class InstVisitor<Verifier>;
256 
257   DominatorTree DT;
258 
259   /// When verifying a basic block, keep track of all of the
260   /// instructions we have seen so far.
261   ///
262   /// This allows us to do efficient dominance checks for the case when an
263   /// instruction has an operand that is an instruction in the same block.
264   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
265 
266   /// Keep track of the metadata nodes that have been checked already.
267   SmallPtrSet<const Metadata *, 32> MDNodes;
268 
269   /// Keep track which DISubprogram is attached to which function.
270   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
271 
272   /// Track all DICompileUnits visited.
273   SmallPtrSet<const Metadata *, 2> CUVisited;
274 
275   /// The result type for a landingpad.
276   Type *LandingPadResultTy;
277 
278   /// Whether we've seen a call to @llvm.localescape in this function
279   /// already.
280   bool SawFrameEscape;
281 
282   /// Whether the current function has a DISubprogram attached to it.
283   bool HasDebugInfo = false;
284 
285   /// Whether source was present on the first DIFile encountered in each CU.
286   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
287 
288   /// Stores the count of how many objects were passed to llvm.localescape for a
289   /// given function and the largest index passed to llvm.localrecover.
290   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
291 
292   // Maps catchswitches and cleanuppads that unwind to siblings to the
293   // terminators that indicate the unwind, used to detect cycles therein.
294   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
295 
296   /// Cache of constants visited in search of ConstantExprs.
297   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
298 
299   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
300   SmallVector<const Function *, 4> DeoptimizeDeclarations;
301 
302   // Verify that this GlobalValue is only used in this module.
303   // This map is used to avoid visiting uses twice. We can arrive at a user
304   // twice, if they have multiple operands. In particular for very large
305   // constant expressions, we can arrive at a particular user many times.
306   SmallPtrSet<const Value *, 32> GlobalValueVisited;
307 
308   // Keeps track of duplicate function argument debug info.
309   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
310 
311   TBAAVerifier TBAAVerifyHelper;
312 
313   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
314 
315 public:
316   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
317                     const Module &M)
318       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
319         SawFrameEscape(false), TBAAVerifyHelper(this) {
320     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
321   }
322 
323   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
324 
325   bool verify(const Function &F) {
326     assert(F.getParent() == &M &&
327            "An instance of this class only works with a specific module!");
328 
329     // First ensure the function is well-enough formed to compute dominance
330     // information, and directly compute a dominance tree. We don't rely on the
331     // pass manager to provide this as it isolates us from a potentially
332     // out-of-date dominator tree and makes it significantly more complex to run
333     // this code outside of a pass manager.
334     // FIXME: It's really gross that we have to cast away constness here.
335     if (!F.empty())
336       DT.recalculate(const_cast<Function &>(F));
337 
338     for (const BasicBlock &BB : F) {
339       if (!BB.empty() && BB.back().isTerminator())
340         continue;
341 
342       if (OS) {
343         *OS << "Basic Block in function '" << F.getName()
344             << "' does not have terminator!\n";
345         BB.printAsOperand(*OS, true, MST);
346         *OS << "\n";
347       }
348       return false;
349     }
350 
351     Broken = false;
352     // FIXME: We strip const here because the inst visitor strips const.
353     visit(const_cast<Function &>(F));
354     verifySiblingFuncletUnwinds();
355     InstsInThisBlock.clear();
356     DebugFnArgs.clear();
357     LandingPadResultTy = nullptr;
358     SawFrameEscape = false;
359     SiblingFuncletInfo.clear();
360 
361     return !Broken;
362   }
363 
364   /// Verify the module that this instance of \c Verifier was initialized with.
365   bool verify() {
366     Broken = false;
367 
368     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
369     for (const Function &F : M)
370       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
371         DeoptimizeDeclarations.push_back(&F);
372 
373     // Now that we've visited every function, verify that we never asked to
374     // recover a frame index that wasn't escaped.
375     verifyFrameRecoverIndices();
376     for (const GlobalVariable &GV : M.globals())
377       visitGlobalVariable(GV);
378 
379     for (const GlobalAlias &GA : M.aliases())
380       visitGlobalAlias(GA);
381 
382     for (const NamedMDNode &NMD : M.named_metadata())
383       visitNamedMDNode(NMD);
384 
385     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
386       visitComdat(SMEC.getValue());
387 
388     visitModuleFlags(M);
389     visitModuleIdents(M);
390     visitModuleCommandLines(M);
391 
392     verifyCompileUnits();
393 
394     verifyDeoptimizeCallingConvs();
395     DISubprogramAttachments.clear();
396     return !Broken;
397   }
398 
399 private:
400   /// Whether a metadata node is allowed to be, or contain, a DILocation.
401   enum class AreDebugLocsAllowed { No, Yes };
402 
403   // Verification methods...
404   void visitGlobalValue(const GlobalValue &GV);
405   void visitGlobalVariable(const GlobalVariable &GV);
406   void visitGlobalAlias(const GlobalAlias &GA);
407   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
408   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
409                            const GlobalAlias &A, const Constant &C);
410   void visitNamedMDNode(const NamedMDNode &NMD);
411   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
412   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
413   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
414   void visitComdat(const Comdat &C);
415   void visitModuleIdents(const Module &M);
416   void visitModuleCommandLines(const Module &M);
417   void visitModuleFlags(const Module &M);
418   void visitModuleFlag(const MDNode *Op,
419                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
420                        SmallVectorImpl<const MDNode *> &Requirements);
421   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
422   void visitFunction(const Function &F);
423   void visitBasicBlock(BasicBlock &BB);
424   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
425   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
426   void visitProfMetadata(Instruction &I, MDNode *MD);
427 
428   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
429 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
430 #include "llvm/IR/Metadata.def"
431   void visitDIScope(const DIScope &N);
432   void visitDIVariable(const DIVariable &N);
433   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
434   void visitDITemplateParameter(const DITemplateParameter &N);
435 
436   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
437 
438   // InstVisitor overrides...
439   using InstVisitor<Verifier>::visit;
440   void visit(Instruction &I);
441 
442   void visitTruncInst(TruncInst &I);
443   void visitZExtInst(ZExtInst &I);
444   void visitSExtInst(SExtInst &I);
445   void visitFPTruncInst(FPTruncInst &I);
446   void visitFPExtInst(FPExtInst &I);
447   void visitFPToUIInst(FPToUIInst &I);
448   void visitFPToSIInst(FPToSIInst &I);
449   void visitUIToFPInst(UIToFPInst &I);
450   void visitSIToFPInst(SIToFPInst &I);
451   void visitIntToPtrInst(IntToPtrInst &I);
452   void visitPtrToIntInst(PtrToIntInst &I);
453   void visitBitCastInst(BitCastInst &I);
454   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
455   void visitPHINode(PHINode &PN);
456   void visitCallBase(CallBase &Call);
457   void visitUnaryOperator(UnaryOperator &U);
458   void visitBinaryOperator(BinaryOperator &B);
459   void visitICmpInst(ICmpInst &IC);
460   void visitFCmpInst(FCmpInst &FC);
461   void visitExtractElementInst(ExtractElementInst &EI);
462   void visitInsertElementInst(InsertElementInst &EI);
463   void visitShuffleVectorInst(ShuffleVectorInst &EI);
464   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
465   void visitCallInst(CallInst &CI);
466   void visitInvokeInst(InvokeInst &II);
467   void visitGetElementPtrInst(GetElementPtrInst &GEP);
468   void visitLoadInst(LoadInst &LI);
469   void visitStoreInst(StoreInst &SI);
470   void verifyDominatesUse(Instruction &I, unsigned i);
471   void visitInstruction(Instruction &I);
472   void visitTerminator(Instruction &I);
473   void visitBranchInst(BranchInst &BI);
474   void visitReturnInst(ReturnInst &RI);
475   void visitSwitchInst(SwitchInst &SI);
476   void visitIndirectBrInst(IndirectBrInst &BI);
477   void visitCallBrInst(CallBrInst &CBI);
478   void visitSelectInst(SelectInst &SI);
479   void visitUserOp1(Instruction &I);
480   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
481   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
482   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
483   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
484   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
485   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
486   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
487   void visitFenceInst(FenceInst &FI);
488   void visitAllocaInst(AllocaInst &AI);
489   void visitExtractValueInst(ExtractValueInst &EVI);
490   void visitInsertValueInst(InsertValueInst &IVI);
491   void visitEHPadPredecessors(Instruction &I);
492   void visitLandingPadInst(LandingPadInst &LPI);
493   void visitResumeInst(ResumeInst &RI);
494   void visitCatchPadInst(CatchPadInst &CPI);
495   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
496   void visitCleanupPadInst(CleanupPadInst &CPI);
497   void visitFuncletPadInst(FuncletPadInst &FPI);
498   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
499   void visitCleanupReturnInst(CleanupReturnInst &CRI);
500 
501   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
502   void verifySwiftErrorValue(const Value *SwiftErrorVal);
503   void verifyMustTailCall(CallInst &CI);
504   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
505                         unsigned ArgNo, std::string &Suffix);
506   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
507   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
508                             const Value *V);
509   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
510   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
511                            const Value *V, bool IsIntrinsic);
512   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
513 
514   void visitConstantExprsRecursively(const Constant *EntryC);
515   void visitConstantExpr(const ConstantExpr *CE);
516   void verifyStatepoint(const CallBase &Call);
517   void verifyFrameRecoverIndices();
518   void verifySiblingFuncletUnwinds();
519 
520   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
521   template <typename ValueOrMetadata>
522   void verifyFragmentExpression(const DIVariable &V,
523                                 DIExpression::FragmentInfo Fragment,
524                                 ValueOrMetadata *Desc);
525   void verifyFnArgs(const DbgVariableIntrinsic &I);
526   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
527 
528   /// Module-level debug info verification...
529   void verifyCompileUnits();
530 
531   /// Module-level verification that all @llvm.experimental.deoptimize
532   /// declarations share the same calling convention.
533   void verifyDeoptimizeCallingConvs();
534 
535   /// Verify all-or-nothing property of DIFile source attribute within a CU.
536   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
537 };
538 
539 } // end anonymous namespace
540 
541 /// We know that cond should be true, if not print an error message.
542 #define Assert(C, ...) \
543   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
544 
545 /// We know that a debug info condition should be true, if not print
546 /// an error message.
547 #define AssertDI(C, ...) \
548   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
549 
550 void Verifier::visit(Instruction &I) {
551   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
552     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
553   InstVisitor<Verifier>::visit(I);
554 }
555 
556 // Helper to recursively iterate over indirect users. By
557 // returning false, the callback can ask to stop recursing
558 // further.
559 static void forEachUser(const Value *User,
560                         SmallPtrSet<const Value *, 32> &Visited,
561                         llvm::function_ref<bool(const Value *)> Callback) {
562   if (!Visited.insert(User).second)
563     return;
564   for (const Value *TheNextUser : User->materialized_users())
565     if (Callback(TheNextUser))
566       forEachUser(TheNextUser, Visited, Callback);
567 }
568 
569 void Verifier::visitGlobalValue(const GlobalValue &GV) {
570   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
571          "Global is external, but doesn't have external or weak linkage!", &GV);
572 
573   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
574     Assert(GO->getAlignment() <= Value::MaximumAlignment,
575            "huge alignment values are unsupported", GO);
576   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
577          "Only global variables can have appending linkage!", &GV);
578 
579   if (GV.hasAppendingLinkage()) {
580     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
581     Assert(GVar && GVar->getValueType()->isArrayTy(),
582            "Only global arrays can have appending linkage!", GVar);
583   }
584 
585   if (GV.isDeclarationForLinker())
586     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
587 
588   if (GV.hasDLLImportStorageClass()) {
589     Assert(!GV.isDSOLocal(),
590            "GlobalValue with DLLImport Storage is dso_local!", &GV);
591 
592     Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
593                GV.hasAvailableExternallyLinkage(),
594            "Global is marked as dllimport, but not external", &GV);
595   }
596 
597   if (GV.isImplicitDSOLocal())
598     Assert(GV.isDSOLocal(),
599            "GlobalValue with local linkage or non-default "
600            "visibility must be dso_local!",
601            &GV);
602 
603   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
604     if (const Instruction *I = dyn_cast<Instruction>(V)) {
605       if (!I->getParent() || !I->getParent()->getParent())
606         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
607                     I);
608       else if (I->getParent()->getParent()->getParent() != &M)
609         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
610                     I->getParent()->getParent(),
611                     I->getParent()->getParent()->getParent());
612       return false;
613     } else if (const Function *F = dyn_cast<Function>(V)) {
614       if (F->getParent() != &M)
615         CheckFailed("Global is used by function in a different module", &GV, &M,
616                     F, F->getParent());
617       return false;
618     }
619     return true;
620   });
621 }
622 
623 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
624   if (GV.hasInitializer()) {
625     Assert(GV.getInitializer()->getType() == GV.getValueType(),
626            "Global variable initializer type does not match global "
627            "variable type!",
628            &GV);
629     // If the global has common linkage, it must have a zero initializer and
630     // cannot be constant.
631     if (GV.hasCommonLinkage()) {
632       Assert(GV.getInitializer()->isNullValue(),
633              "'common' global must have a zero initializer!", &GV);
634       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
635              &GV);
636       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
637     }
638   }
639 
640   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
641                        GV.getName() == "llvm.global_dtors")) {
642     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
643            "invalid linkage for intrinsic global variable", &GV);
644     // Don't worry about emitting an error for it not being an array,
645     // visitGlobalValue will complain on appending non-array.
646     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
647       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
648       PointerType *FuncPtrTy =
649           FunctionType::get(Type::getVoidTy(Context), false)->
650           getPointerTo(DL.getProgramAddressSpace());
651       Assert(STy &&
652                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
653                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
654                  STy->getTypeAtIndex(1) == FuncPtrTy,
655              "wrong type for intrinsic global variable", &GV);
656       Assert(STy->getNumElements() == 3,
657              "the third field of the element type is mandatory, "
658              "specify i8* null to migrate from the obsoleted 2-field form");
659       Type *ETy = STy->getTypeAtIndex(2);
660       Assert(ETy->isPointerTy() &&
661                  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
662              "wrong type for intrinsic global variable", &GV);
663     }
664   }
665 
666   if (GV.hasName() && (GV.getName() == "llvm.used" ||
667                        GV.getName() == "llvm.compiler.used")) {
668     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
669            "invalid linkage for intrinsic global variable", &GV);
670     Type *GVType = GV.getValueType();
671     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
672       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
673       Assert(PTy, "wrong type for intrinsic global variable", &GV);
674       if (GV.hasInitializer()) {
675         const Constant *Init = GV.getInitializer();
676         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
677         Assert(InitArray, "wrong initalizer for intrinsic global variable",
678                Init);
679         for (Value *Op : InitArray->operands()) {
680           Value *V = Op->stripPointerCasts();
681           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
682                      isa<GlobalAlias>(V),
683                  "invalid llvm.used member", V);
684           Assert(V->hasName(), "members of llvm.used must be named", V);
685         }
686       }
687     }
688   }
689 
690   // Visit any debug info attachments.
691   SmallVector<MDNode *, 1> MDs;
692   GV.getMetadata(LLVMContext::MD_dbg, MDs);
693   for (auto *MD : MDs) {
694     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
695       visitDIGlobalVariableExpression(*GVE);
696     else
697       AssertDI(false, "!dbg attachment of global variable must be a "
698                       "DIGlobalVariableExpression");
699   }
700 
701   // Scalable vectors cannot be global variables, since we don't know
702   // the runtime size. If the global is a struct or an array containing
703   // scalable vectors, that will be caught by the isValidElementType methods
704   // in StructType or ArrayType instead.
705   Assert(!isa<ScalableVectorType>(GV.getValueType()),
706          "Globals cannot contain scalable vectors", &GV);
707 
708   if (!GV.hasInitializer()) {
709     visitGlobalValue(GV);
710     return;
711   }
712 
713   // Walk any aggregate initializers looking for bitcasts between address spaces
714   visitConstantExprsRecursively(GV.getInitializer());
715 
716   visitGlobalValue(GV);
717 }
718 
719 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
720   SmallPtrSet<const GlobalAlias*, 4> Visited;
721   Visited.insert(&GA);
722   visitAliaseeSubExpr(Visited, GA, C);
723 }
724 
725 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
726                                    const GlobalAlias &GA, const Constant &C) {
727   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
728     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
729            &GA);
730 
731     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
732       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
733 
734       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
735              &GA);
736     } else {
737       // Only continue verifying subexpressions of GlobalAliases.
738       // Do not recurse into global initializers.
739       return;
740     }
741   }
742 
743   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
744     visitConstantExprsRecursively(CE);
745 
746   for (const Use &U : C.operands()) {
747     Value *V = &*U;
748     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
749       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
750     else if (const auto *C2 = dyn_cast<Constant>(V))
751       visitAliaseeSubExpr(Visited, GA, *C2);
752   }
753 }
754 
755 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
756   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
757          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
758          "weak_odr, or external linkage!",
759          &GA);
760   const Constant *Aliasee = GA.getAliasee();
761   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
762   Assert(GA.getType() == Aliasee->getType(),
763          "Alias and aliasee types should match!", &GA);
764 
765   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
766          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
767 
768   visitAliaseeSubExpr(GA, *Aliasee);
769 
770   visitGlobalValue(GA);
771 }
772 
773 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
774   // There used to be various other llvm.dbg.* nodes, but we don't support
775   // upgrading them and we want to reserve the namespace for future uses.
776   if (NMD.getName().startswith("llvm.dbg."))
777     AssertDI(NMD.getName() == "llvm.dbg.cu",
778              "unrecognized named metadata node in the llvm.dbg namespace",
779              &NMD);
780   for (const MDNode *MD : NMD.operands()) {
781     if (NMD.getName() == "llvm.dbg.cu")
782       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
783 
784     if (!MD)
785       continue;
786 
787     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
788   }
789 }
790 
791 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
792   // Only visit each node once.  Metadata can be mutually recursive, so this
793   // avoids infinite recursion here, as well as being an optimization.
794   if (!MDNodes.insert(&MD).second)
795     return;
796 
797   switch (MD.getMetadataID()) {
798   default:
799     llvm_unreachable("Invalid MDNode subclass");
800   case Metadata::MDTupleKind:
801     break;
802 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
803   case Metadata::CLASS##Kind:                                                  \
804     visit##CLASS(cast<CLASS>(MD));                                             \
805     break;
806 #include "llvm/IR/Metadata.def"
807   }
808 
809   for (const Metadata *Op : MD.operands()) {
810     if (!Op)
811       continue;
812     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
813            &MD, Op);
814     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
815              "DILocation not allowed within this metadata node", &MD, Op);
816     if (auto *N = dyn_cast<MDNode>(Op)) {
817       visitMDNode(*N, AllowLocs);
818       continue;
819     }
820     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
821       visitValueAsMetadata(*V, nullptr);
822       continue;
823     }
824   }
825 
826   // Check these last, so we diagnose problems in operands first.
827   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
828   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
829 }
830 
831 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
832   Assert(MD.getValue(), "Expected valid value", &MD);
833   Assert(!MD.getValue()->getType()->isMetadataTy(),
834          "Unexpected metadata round-trip through values", &MD, MD.getValue());
835 
836   auto *L = dyn_cast<LocalAsMetadata>(&MD);
837   if (!L)
838     return;
839 
840   Assert(F, "function-local metadata used outside a function", L);
841 
842   // If this was an instruction, bb, or argument, verify that it is in the
843   // function that we expect.
844   Function *ActualF = nullptr;
845   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
846     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
847     ActualF = I->getParent()->getParent();
848   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
849     ActualF = BB->getParent();
850   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
851     ActualF = A->getParent();
852   assert(ActualF && "Unimplemented function local metadata case!");
853 
854   Assert(ActualF == F, "function-local metadata used in wrong function", L);
855 }
856 
857 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
858   Metadata *MD = MDV.getMetadata();
859   if (auto *N = dyn_cast<MDNode>(MD)) {
860     visitMDNode(*N, AreDebugLocsAllowed::No);
861     return;
862   }
863 
864   // Only visit each node once.  Metadata can be mutually recursive, so this
865   // avoids infinite recursion here, as well as being an optimization.
866   if (!MDNodes.insert(MD).second)
867     return;
868 
869   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
870     visitValueAsMetadata(*V, F);
871 }
872 
873 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
874 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
875 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
876 
877 void Verifier::visitDILocation(const DILocation &N) {
878   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
879            "location requires a valid scope", &N, N.getRawScope());
880   if (auto *IA = N.getRawInlinedAt())
881     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
882   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
883     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
884 }
885 
886 void Verifier::visitGenericDINode(const GenericDINode &N) {
887   AssertDI(N.getTag(), "invalid tag", &N);
888 }
889 
890 void Verifier::visitDIScope(const DIScope &N) {
891   if (auto *F = N.getRawFile())
892     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
893 }
894 
895 void Verifier::visitDISubrange(const DISubrange &N) {
896   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
897   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
898            "Subrange must contain count or upperBound", &N);
899   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
900            "Subrange can have any one of count or upperBound", &N);
901   AssertDI(!N.getRawCountNode() || N.getCount(),
902            "Count must either be a signed constant or a DIVariable", &N);
903   auto Count = N.getCount();
904   AssertDI(!Count || !Count.is<ConstantInt *>() ||
905                Count.get<ConstantInt *>()->getSExtValue() >= -1,
906            "invalid subrange count", &N);
907   auto *LBound = N.getRawLowerBound();
908   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
909                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
910            "LowerBound must be signed constant or DIVariable or DIExpression",
911            &N);
912   auto *UBound = N.getRawUpperBound();
913   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
914                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
915            "UpperBound must be signed constant or DIVariable or DIExpression",
916            &N);
917   auto *Stride = N.getRawStride();
918   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
919                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
920            "Stride must be signed constant or DIVariable or DIExpression", &N);
921 }
922 
923 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
924   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
925 }
926 
927 void Verifier::visitDIBasicType(const DIBasicType &N) {
928   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
929                N.getTag() == dwarf::DW_TAG_unspecified_type,
930            "invalid tag", &N);
931   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
932             "has conflicting flags", &N);
933 }
934 
935 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
936   // Common scope checks.
937   visitDIScope(N);
938 
939   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
940                N.getTag() == dwarf::DW_TAG_pointer_type ||
941                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
942                N.getTag() == dwarf::DW_TAG_reference_type ||
943                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
944                N.getTag() == dwarf::DW_TAG_const_type ||
945                N.getTag() == dwarf::DW_TAG_volatile_type ||
946                N.getTag() == dwarf::DW_TAG_restrict_type ||
947                N.getTag() == dwarf::DW_TAG_atomic_type ||
948                N.getTag() == dwarf::DW_TAG_member ||
949                N.getTag() == dwarf::DW_TAG_inheritance ||
950                N.getTag() == dwarf::DW_TAG_friend,
951            "invalid tag", &N);
952   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
953     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
954              N.getRawExtraData());
955   }
956 
957   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
958   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
959            N.getRawBaseType());
960 
961   if (N.getDWARFAddressSpace()) {
962     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
963                  N.getTag() == dwarf::DW_TAG_reference_type ||
964                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
965              "DWARF address space only applies to pointer or reference types",
966              &N);
967   }
968 }
969 
970 /// Detect mutually exclusive flags.
971 static bool hasConflictingReferenceFlags(unsigned Flags) {
972   return ((Flags & DINode::FlagLValueReference) &&
973           (Flags & DINode::FlagRValueReference)) ||
974          ((Flags & DINode::FlagTypePassByValue) &&
975           (Flags & DINode::FlagTypePassByReference));
976 }
977 
978 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
979   auto *Params = dyn_cast<MDTuple>(&RawParams);
980   AssertDI(Params, "invalid template params", &N, &RawParams);
981   for (Metadata *Op : Params->operands()) {
982     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
983              &N, Params, Op);
984   }
985 }
986 
987 void Verifier::visitDICompositeType(const DICompositeType &N) {
988   // Common scope checks.
989   visitDIScope(N);
990 
991   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
992                N.getTag() == dwarf::DW_TAG_structure_type ||
993                N.getTag() == dwarf::DW_TAG_union_type ||
994                N.getTag() == dwarf::DW_TAG_enumeration_type ||
995                N.getTag() == dwarf::DW_TAG_class_type ||
996                N.getTag() == dwarf::DW_TAG_variant_part,
997            "invalid tag", &N);
998 
999   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1000   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1001            N.getRawBaseType());
1002 
1003   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1004            "invalid composite elements", &N, N.getRawElements());
1005   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1006            N.getRawVTableHolder());
1007   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1008            "invalid reference flags", &N);
1009   unsigned DIBlockByRefStruct = 1 << 4;
1010   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1011            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1012 
1013   if (N.isVector()) {
1014     const DINodeArray Elements = N.getElements();
1015     AssertDI(Elements.size() == 1 &&
1016              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1017              "invalid vector, expected one element of type subrange", &N);
1018   }
1019 
1020   if (auto *Params = N.getRawTemplateParams())
1021     visitTemplateParams(N, *Params);
1022 
1023   if (N.getTag() == dwarf::DW_TAG_class_type ||
1024       N.getTag() == dwarf::DW_TAG_union_type) {
1025     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
1026              "class/union requires a filename", &N, N.getFile());
1027   }
1028 
1029   if (auto *D = N.getRawDiscriminator()) {
1030     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1031              "discriminator can only appear on variant part");
1032   }
1033 
1034   if (N.getRawDataLocation()) {
1035     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1036              "dataLocation can only appear in array type");
1037   }
1038 }
1039 
1040 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1041   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1042   if (auto *Types = N.getRawTypeArray()) {
1043     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1044     for (Metadata *Ty : N.getTypeArray()->operands()) {
1045       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1046     }
1047   }
1048   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1049            "invalid reference flags", &N);
1050 }
1051 
1052 void Verifier::visitDIFile(const DIFile &N) {
1053   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1054   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1055   if (Checksum) {
1056     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1057              "invalid checksum kind", &N);
1058     size_t Size;
1059     switch (Checksum->Kind) {
1060     case DIFile::CSK_MD5:
1061       Size = 32;
1062       break;
1063     case DIFile::CSK_SHA1:
1064       Size = 40;
1065       break;
1066     case DIFile::CSK_SHA256:
1067       Size = 64;
1068       break;
1069     }
1070     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1071     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1072              "invalid checksum", &N);
1073   }
1074 }
1075 
1076 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1077   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1078   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1079 
1080   // Don't bother verifying the compilation directory or producer string
1081   // as those could be empty.
1082   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1083            N.getRawFile());
1084   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1085            N.getFile());
1086 
1087   verifySourceDebugInfo(N, *N.getFile());
1088 
1089   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1090            "invalid emission kind", &N);
1091 
1092   if (auto *Array = N.getRawEnumTypes()) {
1093     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1094     for (Metadata *Op : N.getEnumTypes()->operands()) {
1095       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1096       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1097                "invalid enum type", &N, N.getEnumTypes(), Op);
1098     }
1099   }
1100   if (auto *Array = N.getRawRetainedTypes()) {
1101     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1102     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1103       AssertDI(Op && (isa<DIType>(Op) ||
1104                       (isa<DISubprogram>(Op) &&
1105                        !cast<DISubprogram>(Op)->isDefinition())),
1106                "invalid retained type", &N, Op);
1107     }
1108   }
1109   if (auto *Array = N.getRawGlobalVariables()) {
1110     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1111     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1112       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1113                "invalid global variable ref", &N, Op);
1114     }
1115   }
1116   if (auto *Array = N.getRawImportedEntities()) {
1117     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1118     for (Metadata *Op : N.getImportedEntities()->operands()) {
1119       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1120                &N, Op);
1121     }
1122   }
1123   if (auto *Array = N.getRawMacros()) {
1124     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1125     for (Metadata *Op : N.getMacros()->operands()) {
1126       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1127     }
1128   }
1129   CUVisited.insert(&N);
1130 }
1131 
1132 void Verifier::visitDISubprogram(const DISubprogram &N) {
1133   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1134   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1135   if (auto *F = N.getRawFile())
1136     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1137   else
1138     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1139   if (auto *T = N.getRawType())
1140     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1141   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1142            N.getRawContainingType());
1143   if (auto *Params = N.getRawTemplateParams())
1144     visitTemplateParams(N, *Params);
1145   if (auto *S = N.getRawDeclaration())
1146     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1147              "invalid subprogram declaration", &N, S);
1148   if (auto *RawNode = N.getRawRetainedNodes()) {
1149     auto *Node = dyn_cast<MDTuple>(RawNode);
1150     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1151     for (Metadata *Op : Node->operands()) {
1152       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1153                "invalid retained nodes, expected DILocalVariable or DILabel",
1154                &N, Node, Op);
1155     }
1156   }
1157   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1158            "invalid reference flags", &N);
1159 
1160   auto *Unit = N.getRawUnit();
1161   if (N.isDefinition()) {
1162     // Subprogram definitions (not part of the type hierarchy).
1163     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1164     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1165     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1166     if (N.getFile())
1167       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1168   } else {
1169     // Subprogram declarations (part of the type hierarchy).
1170     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1171   }
1172 
1173   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1174     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1175     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1176     for (Metadata *Op : ThrownTypes->operands())
1177       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1178                Op);
1179   }
1180 
1181   if (N.areAllCallsDescribed())
1182     AssertDI(N.isDefinition(),
1183              "DIFlagAllCallsDescribed must be attached to a definition");
1184 }
1185 
1186 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1187   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1188   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1189            "invalid local scope", &N, N.getRawScope());
1190   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1191     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1192 }
1193 
1194 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1195   visitDILexicalBlockBase(N);
1196 
1197   AssertDI(N.getLine() || !N.getColumn(),
1198            "cannot have column info without line info", &N);
1199 }
1200 
1201 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1202   visitDILexicalBlockBase(N);
1203 }
1204 
1205 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1206   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1207   if (auto *S = N.getRawScope())
1208     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1209   if (auto *S = N.getRawDecl())
1210     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1211 }
1212 
1213 void Verifier::visitDINamespace(const DINamespace &N) {
1214   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1215   if (auto *S = N.getRawScope())
1216     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1217 }
1218 
1219 void Verifier::visitDIMacro(const DIMacro &N) {
1220   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1221                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1222            "invalid macinfo type", &N);
1223   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1224   if (!N.getValue().empty()) {
1225     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1226   }
1227 }
1228 
1229 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1230   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1231            "invalid macinfo type", &N);
1232   if (auto *F = N.getRawFile())
1233     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1234 
1235   if (auto *Array = N.getRawElements()) {
1236     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1237     for (Metadata *Op : N.getElements()->operands()) {
1238       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1239     }
1240   }
1241 }
1242 
1243 void Verifier::visitDIModule(const DIModule &N) {
1244   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1245   AssertDI(!N.getName().empty(), "anonymous module", &N);
1246 }
1247 
1248 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1249   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1250 }
1251 
1252 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1253   visitDITemplateParameter(N);
1254 
1255   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1256            &N);
1257 }
1258 
1259 void Verifier::visitDITemplateValueParameter(
1260     const DITemplateValueParameter &N) {
1261   visitDITemplateParameter(N);
1262 
1263   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1264                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1265                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1266            "invalid tag", &N);
1267 }
1268 
1269 void Verifier::visitDIVariable(const DIVariable &N) {
1270   if (auto *S = N.getRawScope())
1271     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1272   if (auto *F = N.getRawFile())
1273     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1274 }
1275 
1276 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1277   // Checks common to all variables.
1278   visitDIVariable(N);
1279 
1280   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1281   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1282   // Assert only if the global variable is not an extern
1283   if (N.isDefinition())
1284     AssertDI(N.getType(), "missing global variable type", &N);
1285   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1286     AssertDI(isa<DIDerivedType>(Member),
1287              "invalid static data member declaration", &N, Member);
1288   }
1289 }
1290 
1291 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1292   // Checks common to all variables.
1293   visitDIVariable(N);
1294 
1295   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1296   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1297   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1298            "local variable requires a valid scope", &N, N.getRawScope());
1299   if (auto Ty = N.getType())
1300     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1301 }
1302 
1303 void Verifier::visitDILabel(const DILabel &N) {
1304   if (auto *S = N.getRawScope())
1305     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1306   if (auto *F = N.getRawFile())
1307     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1308 
1309   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1310   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1311            "label requires a valid scope", &N, N.getRawScope());
1312 }
1313 
1314 void Verifier::visitDIExpression(const DIExpression &N) {
1315   AssertDI(N.isValid(), "invalid expression", &N);
1316 }
1317 
1318 void Verifier::visitDIGlobalVariableExpression(
1319     const DIGlobalVariableExpression &GVE) {
1320   AssertDI(GVE.getVariable(), "missing variable");
1321   if (auto *Var = GVE.getVariable())
1322     visitDIGlobalVariable(*Var);
1323   if (auto *Expr = GVE.getExpression()) {
1324     visitDIExpression(*Expr);
1325     if (auto Fragment = Expr->getFragmentInfo())
1326       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1327   }
1328 }
1329 
1330 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1331   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1332   if (auto *T = N.getRawType())
1333     AssertDI(isType(T), "invalid type ref", &N, T);
1334   if (auto *F = N.getRawFile())
1335     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1336 }
1337 
1338 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1339   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1340                N.getTag() == dwarf::DW_TAG_imported_declaration,
1341            "invalid tag", &N);
1342   if (auto *S = N.getRawScope())
1343     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1344   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1345            N.getRawEntity());
1346 }
1347 
1348 void Verifier::visitComdat(const Comdat &C) {
1349   // In COFF the Module is invalid if the GlobalValue has private linkage.
1350   // Entities with private linkage don't have entries in the symbol table.
1351   if (TT.isOSBinFormatCOFF())
1352     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1353       Assert(!GV->hasPrivateLinkage(),
1354              "comdat global value has private linkage", GV);
1355 }
1356 
1357 void Verifier::visitModuleIdents(const Module &M) {
1358   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1359   if (!Idents)
1360     return;
1361 
1362   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1363   // Scan each llvm.ident entry and make sure that this requirement is met.
1364   for (const MDNode *N : Idents->operands()) {
1365     Assert(N->getNumOperands() == 1,
1366            "incorrect number of operands in llvm.ident metadata", N);
1367     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1368            ("invalid value for llvm.ident metadata entry operand"
1369             "(the operand should be a string)"),
1370            N->getOperand(0));
1371   }
1372 }
1373 
1374 void Verifier::visitModuleCommandLines(const Module &M) {
1375   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1376   if (!CommandLines)
1377     return;
1378 
1379   // llvm.commandline takes a list of metadata entry. Each entry has only one
1380   // string. Scan each llvm.commandline entry and make sure that this
1381   // requirement is met.
1382   for (const MDNode *N : CommandLines->operands()) {
1383     Assert(N->getNumOperands() == 1,
1384            "incorrect number of operands in llvm.commandline metadata", N);
1385     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1386            ("invalid value for llvm.commandline metadata entry operand"
1387             "(the operand should be a string)"),
1388            N->getOperand(0));
1389   }
1390 }
1391 
1392 void Verifier::visitModuleFlags(const Module &M) {
1393   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1394   if (!Flags) return;
1395 
1396   // Scan each flag, and track the flags and requirements.
1397   DenseMap<const MDString*, const MDNode*> SeenIDs;
1398   SmallVector<const MDNode*, 16> Requirements;
1399   for (const MDNode *MDN : Flags->operands())
1400     visitModuleFlag(MDN, SeenIDs, Requirements);
1401 
1402   // Validate that the requirements in the module are valid.
1403   for (const MDNode *Requirement : Requirements) {
1404     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1405     const Metadata *ReqValue = Requirement->getOperand(1);
1406 
1407     const MDNode *Op = SeenIDs.lookup(Flag);
1408     if (!Op) {
1409       CheckFailed("invalid requirement on flag, flag is not present in module",
1410                   Flag);
1411       continue;
1412     }
1413 
1414     if (Op->getOperand(2) != ReqValue) {
1415       CheckFailed(("invalid requirement on flag, "
1416                    "flag does not have the required value"),
1417                   Flag);
1418       continue;
1419     }
1420   }
1421 }
1422 
1423 void
1424 Verifier::visitModuleFlag(const MDNode *Op,
1425                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1426                           SmallVectorImpl<const MDNode *> &Requirements) {
1427   // Each module flag should have three arguments, the merge behavior (a
1428   // constant int), the flag ID (an MDString), and the value.
1429   Assert(Op->getNumOperands() == 3,
1430          "incorrect number of operands in module flag", Op);
1431   Module::ModFlagBehavior MFB;
1432   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1433     Assert(
1434         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1435         "invalid behavior operand in module flag (expected constant integer)",
1436         Op->getOperand(0));
1437     Assert(false,
1438            "invalid behavior operand in module flag (unexpected constant)",
1439            Op->getOperand(0));
1440   }
1441   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1442   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1443          Op->getOperand(1));
1444 
1445   // Sanity check the values for behaviors with additional requirements.
1446   switch (MFB) {
1447   case Module::Error:
1448   case Module::Warning:
1449   case Module::Override:
1450     // These behavior types accept any value.
1451     break;
1452 
1453   case Module::Max: {
1454     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1455            "invalid value for 'max' module flag (expected constant integer)",
1456            Op->getOperand(2));
1457     break;
1458   }
1459 
1460   case Module::Require: {
1461     // The value should itself be an MDNode with two operands, a flag ID (an
1462     // MDString), and a value.
1463     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1464     Assert(Value && Value->getNumOperands() == 2,
1465            "invalid value for 'require' module flag (expected metadata pair)",
1466            Op->getOperand(2));
1467     Assert(isa<MDString>(Value->getOperand(0)),
1468            ("invalid value for 'require' module flag "
1469             "(first value operand should be a string)"),
1470            Value->getOperand(0));
1471 
1472     // Append it to the list of requirements, to check once all module flags are
1473     // scanned.
1474     Requirements.push_back(Value);
1475     break;
1476   }
1477 
1478   case Module::Append:
1479   case Module::AppendUnique: {
1480     // These behavior types require the operand be an MDNode.
1481     Assert(isa<MDNode>(Op->getOperand(2)),
1482            "invalid value for 'append'-type module flag "
1483            "(expected a metadata node)",
1484            Op->getOperand(2));
1485     break;
1486   }
1487   }
1488 
1489   // Unless this is a "requires" flag, check the ID is unique.
1490   if (MFB != Module::Require) {
1491     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1492     Assert(Inserted,
1493            "module flag identifiers must be unique (or of 'require' type)", ID);
1494   }
1495 
1496   if (ID->getString() == "wchar_size") {
1497     ConstantInt *Value
1498       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1499     Assert(Value, "wchar_size metadata requires constant integer argument");
1500   }
1501 
1502   if (ID->getString() == "Linker Options") {
1503     // If the llvm.linker.options named metadata exists, we assume that the
1504     // bitcode reader has upgraded the module flag. Otherwise the flag might
1505     // have been created by a client directly.
1506     Assert(M.getNamedMetadata("llvm.linker.options"),
1507            "'Linker Options' named metadata no longer supported");
1508   }
1509 
1510   if (ID->getString() == "SemanticInterposition") {
1511     ConstantInt *Value =
1512         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1513     Assert(Value,
1514            "SemanticInterposition metadata requires constant integer argument");
1515   }
1516 
1517   if (ID->getString() == "CG Profile") {
1518     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1519       visitModuleFlagCGProfileEntry(MDO);
1520   }
1521 }
1522 
1523 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1524   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1525     if (!FuncMDO)
1526       return;
1527     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1528     Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1529            FuncMDO);
1530   };
1531   auto Node = dyn_cast_or_null<MDNode>(MDO);
1532   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1533   CheckFunction(Node->getOperand(0));
1534   CheckFunction(Node->getOperand(1));
1535   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1536   Assert(Count && Count->getType()->isIntegerTy(),
1537          "expected an integer constant", Node->getOperand(2));
1538 }
1539 
1540 /// Return true if this attribute kind only applies to functions.
1541 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1542   switch (Kind) {
1543   case Attribute::NoMerge:
1544   case Attribute::NoReturn:
1545   case Attribute::NoSync:
1546   case Attribute::WillReturn:
1547   case Attribute::NoCfCheck:
1548   case Attribute::NoUnwind:
1549   case Attribute::NoInline:
1550   case Attribute::AlwaysInline:
1551   case Attribute::OptimizeForSize:
1552   case Attribute::StackProtect:
1553   case Attribute::StackProtectReq:
1554   case Attribute::StackProtectStrong:
1555   case Attribute::SafeStack:
1556   case Attribute::ShadowCallStack:
1557   case Attribute::NoRedZone:
1558   case Attribute::NoImplicitFloat:
1559   case Attribute::Naked:
1560   case Attribute::InlineHint:
1561   case Attribute::StackAlignment:
1562   case Attribute::UWTable:
1563   case Attribute::NonLazyBind:
1564   case Attribute::ReturnsTwice:
1565   case Attribute::SanitizeAddress:
1566   case Attribute::SanitizeHWAddress:
1567   case Attribute::SanitizeMemTag:
1568   case Attribute::SanitizeThread:
1569   case Attribute::SanitizeMemory:
1570   case Attribute::MinSize:
1571   case Attribute::NoDuplicate:
1572   case Attribute::Builtin:
1573   case Attribute::NoBuiltin:
1574   case Attribute::Cold:
1575   case Attribute::OptForFuzzing:
1576   case Attribute::OptimizeNone:
1577   case Attribute::JumpTable:
1578   case Attribute::Convergent:
1579   case Attribute::ArgMemOnly:
1580   case Attribute::NoRecurse:
1581   case Attribute::InaccessibleMemOnly:
1582   case Attribute::InaccessibleMemOrArgMemOnly:
1583   case Attribute::AllocSize:
1584   case Attribute::SpeculativeLoadHardening:
1585   case Attribute::Speculatable:
1586   case Attribute::StrictFP:
1587   case Attribute::NullPointerIsValid:
1588     return true;
1589   default:
1590     break;
1591   }
1592   return false;
1593 }
1594 
1595 /// Return true if this is a function attribute that can also appear on
1596 /// arguments.
1597 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1598   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1599          Kind == Attribute::ReadNone || Kind == Attribute::NoFree ||
1600          Kind == Attribute::Preallocated;
1601 }
1602 
1603 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1604                                     const Value *V) {
1605   for (Attribute A : Attrs) {
1606     if (A.isStringAttribute())
1607       continue;
1608 
1609     if (A.isIntAttribute() !=
1610         Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) {
1611       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1612                   V);
1613       return;
1614     }
1615 
1616     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1617       if (!IsFunction) {
1618         CheckFailed("Attribute '" + A.getAsString() +
1619                         "' only applies to functions!",
1620                     V);
1621         return;
1622       }
1623     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1624       CheckFailed("Attribute '" + A.getAsString() +
1625                       "' does not apply to functions!",
1626                   V);
1627       return;
1628     }
1629   }
1630 }
1631 
1632 // VerifyParameterAttrs - Check the given attributes for an argument or return
1633 // value of the specified type.  The value V is printed in error messages.
1634 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1635                                     const Value *V) {
1636   if (!Attrs.hasAttributes())
1637     return;
1638 
1639   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1640 
1641   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1642     Assert(Attrs.getNumAttributes() == 1,
1643            "Attribute 'immarg' is incompatible with other attributes", V);
1644   }
1645 
1646   // Check for mutually incompatible attributes.  Only inreg is compatible with
1647   // sret.
1648   unsigned AttrCount = 0;
1649   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1650   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1651   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1652   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1653                Attrs.hasAttribute(Attribute::InReg);
1654   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1655   Assert(AttrCount <= 1,
1656          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1657          "and 'sret' are incompatible!",
1658          V);
1659 
1660   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1661            Attrs.hasAttribute(Attribute::ReadOnly)),
1662          "Attributes "
1663          "'inalloca and readonly' are incompatible!",
1664          V);
1665 
1666   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1667            Attrs.hasAttribute(Attribute::Returned)),
1668          "Attributes "
1669          "'sret and returned' are incompatible!",
1670          V);
1671 
1672   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1673            Attrs.hasAttribute(Attribute::SExt)),
1674          "Attributes "
1675          "'zeroext and signext' are incompatible!",
1676          V);
1677 
1678   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1679            Attrs.hasAttribute(Attribute::ReadOnly)),
1680          "Attributes "
1681          "'readnone and readonly' are incompatible!",
1682          V);
1683 
1684   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1685            Attrs.hasAttribute(Attribute::WriteOnly)),
1686          "Attributes "
1687          "'readnone and writeonly' are incompatible!",
1688          V);
1689 
1690   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1691            Attrs.hasAttribute(Attribute::WriteOnly)),
1692          "Attributes "
1693          "'readonly and writeonly' are incompatible!",
1694          V);
1695 
1696   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1697            Attrs.hasAttribute(Attribute::AlwaysInline)),
1698          "Attributes "
1699          "'noinline and alwaysinline' are incompatible!",
1700          V);
1701 
1702   if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1703     Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1704            "Attribute 'byval' type does not match parameter!", V);
1705   }
1706 
1707   if (Attrs.hasAttribute(Attribute::Preallocated)) {
1708     Assert(Attrs.getPreallocatedType() ==
1709                cast<PointerType>(Ty)->getElementType(),
1710            "Attribute 'preallocated' type does not match parameter!", V);
1711   }
1712 
1713   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1714   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1715          "Wrong types for attribute: " +
1716              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1717          V);
1718 
1719   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1720     SmallPtrSet<Type*, 4> Visited;
1721     if (!PTy->getElementType()->isSized(&Visited)) {
1722       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1723                  !Attrs.hasAttribute(Attribute::InAlloca) &&
1724                  !Attrs.hasAttribute(Attribute::Preallocated),
1725              "Attributes 'byval', 'inalloca', and 'preallocated' do not "
1726              "support unsized types!",
1727              V);
1728     }
1729     if (!isa<PointerType>(PTy->getElementType()))
1730       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1731              "Attribute 'swifterror' only applies to parameters "
1732              "with pointer to pointer type!",
1733              V);
1734   } else {
1735     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1736            "Attribute 'byval' only applies to parameters with pointer type!",
1737            V);
1738     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1739            "Attribute 'swifterror' only applies to parameters "
1740            "with pointer type!",
1741            V);
1742   }
1743 }
1744 
1745 // Check parameter attributes against a function type.
1746 // The value V is printed in error messages.
1747 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1748                                    const Value *V, bool IsIntrinsic) {
1749   if (Attrs.isEmpty())
1750     return;
1751 
1752   bool SawNest = false;
1753   bool SawReturned = false;
1754   bool SawSRet = false;
1755   bool SawSwiftSelf = false;
1756   bool SawSwiftError = false;
1757 
1758   // Verify return value attributes.
1759   AttributeSet RetAttrs = Attrs.getRetAttributes();
1760   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1761           !RetAttrs.hasAttribute(Attribute::Nest) &&
1762           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1763           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1764           !RetAttrs.hasAttribute(Attribute::NoFree) &&
1765           !RetAttrs.hasAttribute(Attribute::Returned) &&
1766           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1767           !RetAttrs.hasAttribute(Attribute::Preallocated) &&
1768           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1769           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1770          "Attributes 'byval', 'inalloca', 'preallocated', 'nest', 'sret', "
1771          "'nocapture', 'nofree', "
1772          "'returned', 'swiftself', and 'swifterror' do not apply to return "
1773          "values!",
1774          V);
1775   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1776           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1777           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1778          "Attribute '" + RetAttrs.getAsString() +
1779              "' does not apply to function returns",
1780          V);
1781   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1782 
1783   // Verify parameter attributes.
1784   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1785     Type *Ty = FT->getParamType(i);
1786     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1787 
1788     if (!IsIntrinsic) {
1789       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1790              "immarg attribute only applies to intrinsics",V);
1791     }
1792 
1793     verifyParameterAttrs(ArgAttrs, Ty, V);
1794 
1795     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1796       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1797       SawNest = true;
1798     }
1799 
1800     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1801       Assert(!SawReturned, "More than one parameter has attribute returned!",
1802              V);
1803       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1804              "Incompatible argument and return types for 'returned' attribute",
1805              V);
1806       SawReturned = true;
1807     }
1808 
1809     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1810       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1811       Assert(i == 0 || i == 1,
1812              "Attribute 'sret' is not on first or second parameter!", V);
1813       SawSRet = true;
1814     }
1815 
1816     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1817       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1818       SawSwiftSelf = true;
1819     }
1820 
1821     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1822       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1823              V);
1824       SawSwiftError = true;
1825     }
1826 
1827     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1828       Assert(i == FT->getNumParams() - 1,
1829              "inalloca isn't on the last parameter!", V);
1830     }
1831   }
1832 
1833   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1834     return;
1835 
1836   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1837 
1838   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1839            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1840          "Attributes 'readnone and readonly' are incompatible!", V);
1841 
1842   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1843            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1844          "Attributes 'readnone and writeonly' are incompatible!", V);
1845 
1846   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1847            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1848          "Attributes 'readonly and writeonly' are incompatible!", V);
1849 
1850   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1851            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1852          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1853          "incompatible!",
1854          V);
1855 
1856   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1857            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1858          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1859 
1860   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1861            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1862          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1863 
1864   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1865     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1866            "Attribute 'optnone' requires 'noinline'!", V);
1867 
1868     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1869            "Attributes 'optsize and optnone' are incompatible!", V);
1870 
1871     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1872            "Attributes 'minsize and optnone' are incompatible!", V);
1873   }
1874 
1875   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1876     const GlobalValue *GV = cast<GlobalValue>(V);
1877     Assert(GV->hasGlobalUnnamedAddr(),
1878            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1879   }
1880 
1881   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1882     std::pair<unsigned, Optional<unsigned>> Args =
1883         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1884 
1885     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1886       if (ParamNo >= FT->getNumParams()) {
1887         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1888         return false;
1889       }
1890 
1891       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1892         CheckFailed("'allocsize' " + Name +
1893                         " argument must refer to an integer parameter",
1894                     V);
1895         return false;
1896       }
1897 
1898       return true;
1899     };
1900 
1901     if (!CheckParam("element size", Args.first))
1902       return;
1903 
1904     if (Args.second && !CheckParam("number of elements", *Args.second))
1905       return;
1906   }
1907 
1908   if (Attrs.hasFnAttribute("frame-pointer")) {
1909     StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
1910                                       "frame-pointer").getValueAsString();
1911     if (FP != "all" && FP != "non-leaf" && FP != "none")
1912       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
1913   }
1914 
1915   if (Attrs.hasFnAttribute("patchable-function-prefix")) {
1916     StringRef S = Attrs
1917                       .getAttribute(AttributeList::FunctionIndex,
1918                                     "patchable-function-prefix")
1919                       .getValueAsString();
1920     unsigned N;
1921     if (S.getAsInteger(10, N))
1922       CheckFailed(
1923           "\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
1924   }
1925   if (Attrs.hasFnAttribute("patchable-function-entry")) {
1926     StringRef S = Attrs
1927                       .getAttribute(AttributeList::FunctionIndex,
1928                                     "patchable-function-entry")
1929                       .getValueAsString();
1930     unsigned N;
1931     if (S.getAsInteger(10, N))
1932       CheckFailed(
1933           "\"patchable-function-entry\" takes an unsigned integer: " + S, V);
1934   }
1935 }
1936 
1937 void Verifier::verifyFunctionMetadata(
1938     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1939   for (const auto &Pair : MDs) {
1940     if (Pair.first == LLVMContext::MD_prof) {
1941       MDNode *MD = Pair.second;
1942       Assert(MD->getNumOperands() >= 2,
1943              "!prof annotations should have no less than 2 operands", MD);
1944 
1945       // Check first operand.
1946       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1947              MD);
1948       Assert(isa<MDString>(MD->getOperand(0)),
1949              "expected string with name of the !prof annotation", MD);
1950       MDString *MDS = cast<MDString>(MD->getOperand(0));
1951       StringRef ProfName = MDS->getString();
1952       Assert(ProfName.equals("function_entry_count") ||
1953                  ProfName.equals("synthetic_function_entry_count"),
1954              "first operand should be 'function_entry_count'"
1955              " or 'synthetic_function_entry_count'",
1956              MD);
1957 
1958       // Check second operand.
1959       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1960              MD);
1961       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1962              "expected integer argument to function_entry_count", MD);
1963     }
1964   }
1965 }
1966 
1967 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1968   if (!ConstantExprVisited.insert(EntryC).second)
1969     return;
1970 
1971   SmallVector<const Constant *, 16> Stack;
1972   Stack.push_back(EntryC);
1973 
1974   while (!Stack.empty()) {
1975     const Constant *C = Stack.pop_back_val();
1976 
1977     // Check this constant expression.
1978     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1979       visitConstantExpr(CE);
1980 
1981     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1982       // Global Values get visited separately, but we do need to make sure
1983       // that the global value is in the correct module
1984       Assert(GV->getParent() == &M, "Referencing global in another module!",
1985              EntryC, &M, GV, GV->getParent());
1986       continue;
1987     }
1988 
1989     // Visit all sub-expressions.
1990     for (const Use &U : C->operands()) {
1991       const auto *OpC = dyn_cast<Constant>(U);
1992       if (!OpC)
1993         continue;
1994       if (!ConstantExprVisited.insert(OpC).second)
1995         continue;
1996       Stack.push_back(OpC);
1997     }
1998   }
1999 }
2000 
2001 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2002   if (CE->getOpcode() == Instruction::BitCast)
2003     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2004                                  CE->getType()),
2005            "Invalid bitcast", CE);
2006 
2007   if (CE->getOpcode() == Instruction::IntToPtr ||
2008       CE->getOpcode() == Instruction::PtrToInt) {
2009     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
2010                       ? CE->getType()
2011                       : CE->getOperand(0)->getType();
2012     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
2013                         ? "inttoptr not supported for non-integral pointers"
2014                         : "ptrtoint not supported for non-integral pointers";
2015     Assert(
2016         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
2017         Msg);
2018   }
2019 }
2020 
2021 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2022   // There shouldn't be more attribute sets than there are parameters plus the
2023   // function and return value.
2024   return Attrs.getNumAttrSets() <= Params + 2;
2025 }
2026 
2027 /// Verify that statepoint intrinsic is well formed.
2028 void Verifier::verifyStatepoint(const CallBase &Call) {
2029   assert(Call.getCalledFunction() &&
2030          Call.getCalledFunction()->getIntrinsicID() ==
2031              Intrinsic::experimental_gc_statepoint);
2032 
2033   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2034              !Call.onlyAccessesArgMemory(),
2035          "gc.statepoint must read and write all memory to preserve "
2036          "reordering restrictions required by safepoint semantics",
2037          Call);
2038 
2039   const int64_t NumPatchBytes =
2040       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2041   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2042   Assert(NumPatchBytes >= 0,
2043          "gc.statepoint number of patchable bytes must be "
2044          "positive",
2045          Call);
2046 
2047   const Value *Target = Call.getArgOperand(2);
2048   auto *PT = dyn_cast<PointerType>(Target->getType());
2049   Assert(PT && PT->getElementType()->isFunctionTy(),
2050          "gc.statepoint callee must be of function pointer type", Call, Target);
2051   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2052 
2053   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2054   Assert(NumCallArgs >= 0,
2055          "gc.statepoint number of arguments to underlying call "
2056          "must be positive",
2057          Call);
2058   const int NumParams = (int)TargetFuncType->getNumParams();
2059   if (TargetFuncType->isVarArg()) {
2060     Assert(NumCallArgs >= NumParams,
2061            "gc.statepoint mismatch in number of vararg call args", Call);
2062 
2063     // TODO: Remove this limitation
2064     Assert(TargetFuncType->getReturnType()->isVoidTy(),
2065            "gc.statepoint doesn't support wrapping non-void "
2066            "vararg functions yet",
2067            Call);
2068   } else
2069     Assert(NumCallArgs == NumParams,
2070            "gc.statepoint mismatch in number of call args", Call);
2071 
2072   const uint64_t Flags
2073     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2074   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2075          "unknown flag used in gc.statepoint flags argument", Call);
2076 
2077   // Verify that the types of the call parameter arguments match
2078   // the type of the wrapped callee.
2079   AttributeList Attrs = Call.getAttributes();
2080   for (int i = 0; i < NumParams; i++) {
2081     Type *ParamType = TargetFuncType->getParamType(i);
2082     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2083     Assert(ArgType == ParamType,
2084            "gc.statepoint call argument does not match wrapped "
2085            "function type",
2086            Call);
2087 
2088     if (TargetFuncType->isVarArg()) {
2089       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2090       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2091              "Attribute 'sret' cannot be used for vararg call arguments!",
2092              Call);
2093     }
2094   }
2095 
2096   const int EndCallArgsInx = 4 + NumCallArgs;
2097 
2098   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2099   Assert(isa<ConstantInt>(NumTransitionArgsV),
2100          "gc.statepoint number of transition arguments "
2101          "must be constant integer",
2102          Call);
2103   const int NumTransitionArgs =
2104       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2105   Assert(NumTransitionArgs >= 0,
2106          "gc.statepoint number of transition arguments must be positive", Call);
2107   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2108 
2109   // We're migrating away from inline operands to operand bundles, enforce
2110   // the either/or property during transition.
2111   if (Call.getOperandBundle(LLVMContext::OB_gc_transition)) {
2112     Assert(NumTransitionArgs == 0,
2113            "can't use both deopt operands and deopt bundle on a statepoint");
2114   }
2115 
2116   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2117   Assert(isa<ConstantInt>(NumDeoptArgsV),
2118          "gc.statepoint number of deoptimization arguments "
2119          "must be constant integer",
2120          Call);
2121   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2122   Assert(NumDeoptArgs >= 0,
2123          "gc.statepoint number of deoptimization arguments "
2124          "must be positive",
2125          Call);
2126 
2127   // We're migrating away from inline operands to operand bundles, enforce
2128   // the either/or property during transition.
2129   if (Call.getOperandBundle(LLVMContext::OB_deopt)) {
2130     Assert(NumDeoptArgs == 0,
2131            "can't use both deopt operands and deopt bundle on a statepoint");
2132   }
2133 
2134   const int ExpectedNumArgs =
2135       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2136   Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2137          "gc.statepoint too few arguments according to length fields", Call);
2138 
2139   // Check that the only uses of this gc.statepoint are gc.result or
2140   // gc.relocate calls which are tied to this statepoint and thus part
2141   // of the same statepoint sequence
2142   for (const User *U : Call.users()) {
2143     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2144     Assert(UserCall, "illegal use of statepoint token", Call, U);
2145     if (!UserCall)
2146       continue;
2147     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2148            "gc.result or gc.relocate are the only value uses "
2149            "of a gc.statepoint",
2150            Call, U);
2151     if (isa<GCResultInst>(UserCall)) {
2152       Assert(UserCall->getArgOperand(0) == &Call,
2153              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2154     } else if (isa<GCRelocateInst>(Call)) {
2155       Assert(UserCall->getArgOperand(0) == &Call,
2156              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2157     }
2158   }
2159 
2160   // Note: It is legal for a single derived pointer to be listed multiple
2161   // times.  It's non-optimal, but it is legal.  It can also happen after
2162   // insertion if we strip a bitcast away.
2163   // Note: It is really tempting to check that each base is relocated and
2164   // that a derived pointer is never reused as a base pointer.  This turns
2165   // out to be problematic since optimizations run after safepoint insertion
2166   // can recognize equality properties that the insertion logic doesn't know
2167   // about.  See example statepoint.ll in the verifier subdirectory
2168 }
2169 
2170 void Verifier::verifyFrameRecoverIndices() {
2171   for (auto &Counts : FrameEscapeInfo) {
2172     Function *F = Counts.first;
2173     unsigned EscapedObjectCount = Counts.second.first;
2174     unsigned MaxRecoveredIndex = Counts.second.second;
2175     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2176            "all indices passed to llvm.localrecover must be less than the "
2177            "number of arguments passed to llvm.localescape in the parent "
2178            "function",
2179            F);
2180   }
2181 }
2182 
2183 static Instruction *getSuccPad(Instruction *Terminator) {
2184   BasicBlock *UnwindDest;
2185   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2186     UnwindDest = II->getUnwindDest();
2187   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2188     UnwindDest = CSI->getUnwindDest();
2189   else
2190     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2191   return UnwindDest->getFirstNonPHI();
2192 }
2193 
2194 void Verifier::verifySiblingFuncletUnwinds() {
2195   SmallPtrSet<Instruction *, 8> Visited;
2196   SmallPtrSet<Instruction *, 8> Active;
2197   for (const auto &Pair : SiblingFuncletInfo) {
2198     Instruction *PredPad = Pair.first;
2199     if (Visited.count(PredPad))
2200       continue;
2201     Active.insert(PredPad);
2202     Instruction *Terminator = Pair.second;
2203     do {
2204       Instruction *SuccPad = getSuccPad(Terminator);
2205       if (Active.count(SuccPad)) {
2206         // Found a cycle; report error
2207         Instruction *CyclePad = SuccPad;
2208         SmallVector<Instruction *, 8> CycleNodes;
2209         do {
2210           CycleNodes.push_back(CyclePad);
2211           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2212           if (CycleTerminator != CyclePad)
2213             CycleNodes.push_back(CycleTerminator);
2214           CyclePad = getSuccPad(CycleTerminator);
2215         } while (CyclePad != SuccPad);
2216         Assert(false, "EH pads can't handle each other's exceptions",
2217                ArrayRef<Instruction *>(CycleNodes));
2218       }
2219       // Don't re-walk a node we've already checked
2220       if (!Visited.insert(SuccPad).second)
2221         break;
2222       // Walk to this successor if it has a map entry.
2223       PredPad = SuccPad;
2224       auto TermI = SiblingFuncletInfo.find(PredPad);
2225       if (TermI == SiblingFuncletInfo.end())
2226         break;
2227       Terminator = TermI->second;
2228       Active.insert(PredPad);
2229     } while (true);
2230     // Each node only has one successor, so we've walked all the active
2231     // nodes' successors.
2232     Active.clear();
2233   }
2234 }
2235 
2236 // visitFunction - Verify that a function is ok.
2237 //
2238 void Verifier::visitFunction(const Function &F) {
2239   visitGlobalValue(F);
2240 
2241   // Check function arguments.
2242   FunctionType *FT = F.getFunctionType();
2243   unsigned NumArgs = F.arg_size();
2244 
2245   Assert(&Context == &F.getContext(),
2246          "Function context does not match Module context!", &F);
2247 
2248   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2249   Assert(FT->getNumParams() == NumArgs,
2250          "# formal arguments must match # of arguments for function type!", &F,
2251          FT);
2252   Assert(F.getReturnType()->isFirstClassType() ||
2253              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2254          "Functions cannot return aggregate values!", &F);
2255 
2256   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2257          "Invalid struct return type!", &F);
2258 
2259   AttributeList Attrs = F.getAttributes();
2260 
2261   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2262          "Attribute after last parameter!", &F);
2263 
2264   bool isLLVMdotName = F.getName().size() >= 5 &&
2265                        F.getName().substr(0, 5) == "llvm.";
2266 
2267   // Check function attributes.
2268   verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2269 
2270   // On function declarations/definitions, we do not support the builtin
2271   // attribute. We do not check this in VerifyFunctionAttrs since that is
2272   // checking for Attributes that can/can not ever be on functions.
2273   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2274          "Attribute 'builtin' can only be applied to a callsite.", &F);
2275 
2276   // Check that this function meets the restrictions on this calling convention.
2277   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2278   // restrictions can be lifted.
2279   switch (F.getCallingConv()) {
2280   default:
2281   case CallingConv::C:
2282     break;
2283   case CallingConv::AMDGPU_KERNEL:
2284   case CallingConv::SPIR_KERNEL:
2285     Assert(F.getReturnType()->isVoidTy(),
2286            "Calling convention requires void return type", &F);
2287     LLVM_FALLTHROUGH;
2288   case CallingConv::AMDGPU_VS:
2289   case CallingConv::AMDGPU_HS:
2290   case CallingConv::AMDGPU_GS:
2291   case CallingConv::AMDGPU_PS:
2292   case CallingConv::AMDGPU_CS:
2293     Assert(!F.hasStructRetAttr(),
2294            "Calling convention does not allow sret", &F);
2295     LLVM_FALLTHROUGH;
2296   case CallingConv::Fast:
2297   case CallingConv::Cold:
2298   case CallingConv::Intel_OCL_BI:
2299   case CallingConv::PTX_Kernel:
2300   case CallingConv::PTX_Device:
2301     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2302                           "perfect forwarding!",
2303            &F);
2304     break;
2305   }
2306 
2307   // Check that the argument values match the function type for this function...
2308   unsigned i = 0;
2309   for (const Argument &Arg : F.args()) {
2310     Assert(Arg.getType() == FT->getParamType(i),
2311            "Argument value does not match function argument type!", &Arg,
2312            FT->getParamType(i));
2313     Assert(Arg.getType()->isFirstClassType(),
2314            "Function arguments must have first-class types!", &Arg);
2315     if (!isLLVMdotName) {
2316       Assert(!Arg.getType()->isMetadataTy(),
2317              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2318       Assert(!Arg.getType()->isTokenTy(),
2319              "Function takes token but isn't an intrinsic", &Arg, &F);
2320     }
2321 
2322     // Check that swifterror argument is only used by loads and stores.
2323     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2324       verifySwiftErrorValue(&Arg);
2325     }
2326     ++i;
2327   }
2328 
2329   if (!isLLVMdotName)
2330     Assert(!F.getReturnType()->isTokenTy(),
2331            "Functions returns a token but isn't an intrinsic", &F);
2332 
2333   // Get the function metadata attachments.
2334   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2335   F.getAllMetadata(MDs);
2336   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2337   verifyFunctionMetadata(MDs);
2338 
2339   // Check validity of the personality function
2340   if (F.hasPersonalityFn()) {
2341     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2342     if (Per)
2343       Assert(Per->getParent() == F.getParent(),
2344              "Referencing personality function in another module!",
2345              &F, F.getParent(), Per, Per->getParent());
2346   }
2347 
2348   if (F.isMaterializable()) {
2349     // Function has a body somewhere we can't see.
2350     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2351            MDs.empty() ? nullptr : MDs.front().second);
2352   } else if (F.isDeclaration()) {
2353     for (const auto &I : MDs) {
2354       // This is used for call site debug information.
2355       AssertDI(I.first != LLVMContext::MD_dbg ||
2356                    !cast<DISubprogram>(I.second)->isDistinct(),
2357                "function declaration may only have a unique !dbg attachment",
2358                &F);
2359       Assert(I.first != LLVMContext::MD_prof,
2360              "function declaration may not have a !prof attachment", &F);
2361 
2362       // Verify the metadata itself.
2363       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2364     }
2365     Assert(!F.hasPersonalityFn(),
2366            "Function declaration shouldn't have a personality routine", &F);
2367   } else {
2368     // Verify that this function (which has a body) is not named "llvm.*".  It
2369     // is not legal to define intrinsics.
2370     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2371 
2372     // Check the entry node
2373     const BasicBlock *Entry = &F.getEntryBlock();
2374     Assert(pred_empty(Entry),
2375            "Entry block to function must not have predecessors!", Entry);
2376 
2377     // The address of the entry block cannot be taken, unless it is dead.
2378     if (Entry->hasAddressTaken()) {
2379       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2380              "blockaddress may not be used with the entry block!", Entry);
2381     }
2382 
2383     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2384     // Visit metadata attachments.
2385     for (const auto &I : MDs) {
2386       // Verify that the attachment is legal.
2387       auto AllowLocs = AreDebugLocsAllowed::No;
2388       switch (I.first) {
2389       default:
2390         break;
2391       case LLVMContext::MD_dbg: {
2392         ++NumDebugAttachments;
2393         AssertDI(NumDebugAttachments == 1,
2394                  "function must have a single !dbg attachment", &F, I.second);
2395         AssertDI(isa<DISubprogram>(I.second),
2396                  "function !dbg attachment must be a subprogram", &F, I.second);
2397         auto *SP = cast<DISubprogram>(I.second);
2398         const Function *&AttachedTo = DISubprogramAttachments[SP];
2399         AssertDI(!AttachedTo || AttachedTo == &F,
2400                  "DISubprogram attached to more than one function", SP, &F);
2401         AttachedTo = &F;
2402         AllowLocs = AreDebugLocsAllowed::Yes;
2403         break;
2404       }
2405       case LLVMContext::MD_prof:
2406         ++NumProfAttachments;
2407         Assert(NumProfAttachments == 1,
2408                "function must have a single !prof attachment", &F, I.second);
2409         break;
2410       }
2411 
2412       // Verify the metadata itself.
2413       visitMDNode(*I.second, AllowLocs);
2414     }
2415   }
2416 
2417   // If this function is actually an intrinsic, verify that it is only used in
2418   // direct call/invokes, never having its "address taken".
2419   // Only do this if the module is materialized, otherwise we don't have all the
2420   // uses.
2421   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2422     const User *U;
2423     if (F.hasAddressTaken(&U))
2424       Assert(false, "Invalid user of intrinsic instruction!", U);
2425   }
2426 
2427   auto *N = F.getSubprogram();
2428   HasDebugInfo = (N != nullptr);
2429   if (!HasDebugInfo)
2430     return;
2431 
2432   // Check that all !dbg attachments lead to back to N.
2433   //
2434   // FIXME: Check this incrementally while visiting !dbg attachments.
2435   // FIXME: Only check when N is the canonical subprogram for F.
2436   SmallPtrSet<const MDNode *, 32> Seen;
2437   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2438     // Be careful about using DILocation here since we might be dealing with
2439     // broken code (this is the Verifier after all).
2440     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2441     if (!DL)
2442       return;
2443     if (!Seen.insert(DL).second)
2444       return;
2445 
2446     Metadata *Parent = DL->getRawScope();
2447     AssertDI(Parent && isa<DILocalScope>(Parent),
2448              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2449              Parent);
2450 
2451     DILocalScope *Scope = DL->getInlinedAtScope();
2452     Assert(Scope, "Failed to find DILocalScope", DL);
2453 
2454     if (!Seen.insert(Scope).second)
2455       return;
2456 
2457     DISubprogram *SP = Scope->getSubprogram();
2458 
2459     // Scope and SP could be the same MDNode and we don't want to skip
2460     // validation in that case
2461     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2462       return;
2463 
2464     AssertDI(SP->describes(&F),
2465              "!dbg attachment points at wrong subprogram for function", N, &F,
2466              &I, DL, Scope, SP);
2467   };
2468   for (auto &BB : F)
2469     for (auto &I : BB) {
2470       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2471       // The llvm.loop annotations also contain two DILocations.
2472       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2473         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2474           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2475       if (BrokenDebugInfo)
2476         return;
2477     }
2478 }
2479 
2480 // verifyBasicBlock - Verify that a basic block is well formed...
2481 //
2482 void Verifier::visitBasicBlock(BasicBlock &BB) {
2483   InstsInThisBlock.clear();
2484 
2485   // Ensure that basic blocks have terminators!
2486   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2487 
2488   // Check constraints that this basic block imposes on all of the PHI nodes in
2489   // it.
2490   if (isa<PHINode>(BB.front())) {
2491     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2492     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2493     llvm::sort(Preds);
2494     for (const PHINode &PN : BB.phis()) {
2495       // Ensure that PHI nodes have at least one entry!
2496       Assert(PN.getNumIncomingValues() != 0,
2497              "PHI nodes must have at least one entry.  If the block is dead, "
2498              "the PHI should be removed!",
2499              &PN);
2500       Assert(PN.getNumIncomingValues() == Preds.size(),
2501              "PHINode should have one entry for each predecessor of its "
2502              "parent basic block!",
2503              &PN);
2504 
2505       // Get and sort all incoming values in the PHI node...
2506       Values.clear();
2507       Values.reserve(PN.getNumIncomingValues());
2508       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2509         Values.push_back(
2510             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2511       llvm::sort(Values);
2512 
2513       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2514         // Check to make sure that if there is more than one entry for a
2515         // particular basic block in this PHI node, that the incoming values are
2516         // all identical.
2517         //
2518         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2519                    Values[i].second == Values[i - 1].second,
2520                "PHI node has multiple entries for the same basic block with "
2521                "different incoming values!",
2522                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2523 
2524         // Check to make sure that the predecessors and PHI node entries are
2525         // matched up.
2526         Assert(Values[i].first == Preds[i],
2527                "PHI node entries do not match predecessors!", &PN,
2528                Values[i].first, Preds[i]);
2529       }
2530     }
2531   }
2532 
2533   // Check that all instructions have their parent pointers set up correctly.
2534   for (auto &I : BB)
2535   {
2536     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2537   }
2538 }
2539 
2540 void Verifier::visitTerminator(Instruction &I) {
2541   // Ensure that terminators only exist at the end of the basic block.
2542   Assert(&I == I.getParent()->getTerminator(),
2543          "Terminator found in the middle of a basic block!", I.getParent());
2544   visitInstruction(I);
2545 }
2546 
2547 void Verifier::visitBranchInst(BranchInst &BI) {
2548   if (BI.isConditional()) {
2549     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2550            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2551   }
2552   visitTerminator(BI);
2553 }
2554 
2555 void Verifier::visitReturnInst(ReturnInst &RI) {
2556   Function *F = RI.getParent()->getParent();
2557   unsigned N = RI.getNumOperands();
2558   if (F->getReturnType()->isVoidTy())
2559     Assert(N == 0,
2560            "Found return instr that returns non-void in Function of void "
2561            "return type!",
2562            &RI, F->getReturnType());
2563   else
2564     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2565            "Function return type does not match operand "
2566            "type of return inst!",
2567            &RI, F->getReturnType());
2568 
2569   // Check to make sure that the return value has necessary properties for
2570   // terminators...
2571   visitTerminator(RI);
2572 }
2573 
2574 void Verifier::visitSwitchInst(SwitchInst &SI) {
2575   // Check to make sure that all of the constants in the switch instruction
2576   // have the same type as the switched-on value.
2577   Type *SwitchTy = SI.getCondition()->getType();
2578   SmallPtrSet<ConstantInt*, 32> Constants;
2579   for (auto &Case : SI.cases()) {
2580     Assert(Case.getCaseValue()->getType() == SwitchTy,
2581            "Switch constants must all be same type as switch value!", &SI);
2582     Assert(Constants.insert(Case.getCaseValue()).second,
2583            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2584   }
2585 
2586   visitTerminator(SI);
2587 }
2588 
2589 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2590   Assert(BI.getAddress()->getType()->isPointerTy(),
2591          "Indirectbr operand must have pointer type!", &BI);
2592   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2593     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2594            "Indirectbr destinations must all have pointer type!", &BI);
2595 
2596   visitTerminator(BI);
2597 }
2598 
2599 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2600   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2601          &CBI);
2602   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2603     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2604            "Callbr successors must all have pointer type!", &CBI);
2605   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2606     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2607            "Using an unescaped label as a callbr argument!", &CBI);
2608     if (isa<BasicBlock>(CBI.getOperand(i)))
2609       for (unsigned j = i + 1; j != e; ++j)
2610         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2611                "Duplicate callbr destination!", &CBI);
2612   }
2613   {
2614     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2615     for (Value *V : CBI.args())
2616       if (auto *BA = dyn_cast<BlockAddress>(V))
2617         ArgBBs.insert(BA->getBasicBlock());
2618     for (BasicBlock *BB : CBI.getIndirectDests())
2619       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2620   }
2621 
2622   visitTerminator(CBI);
2623 }
2624 
2625 void Verifier::visitSelectInst(SelectInst &SI) {
2626   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2627                                          SI.getOperand(2)),
2628          "Invalid operands for select instruction!", &SI);
2629 
2630   Assert(SI.getTrueValue()->getType() == SI.getType(),
2631          "Select values must have same type as select instruction!", &SI);
2632   visitInstruction(SI);
2633 }
2634 
2635 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2636 /// a pass, if any exist, it's an error.
2637 ///
2638 void Verifier::visitUserOp1(Instruction &I) {
2639   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2640 }
2641 
2642 void Verifier::visitTruncInst(TruncInst &I) {
2643   // Get the source and destination types
2644   Type *SrcTy = I.getOperand(0)->getType();
2645   Type *DestTy = I.getType();
2646 
2647   // Get the size of the types in bits, we'll need this later
2648   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2649   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2650 
2651   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2652   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2653   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2654          "trunc source and destination must both be a vector or neither", &I);
2655   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2656 
2657   visitInstruction(I);
2658 }
2659 
2660 void Verifier::visitZExtInst(ZExtInst &I) {
2661   // Get the source and destination types
2662   Type *SrcTy = I.getOperand(0)->getType();
2663   Type *DestTy = I.getType();
2664 
2665   // Get the size of the types in bits, we'll need this later
2666   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2667   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2668   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2669          "zext source and destination must both be a vector or neither", &I);
2670   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2671   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2672 
2673   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2674 
2675   visitInstruction(I);
2676 }
2677 
2678 void Verifier::visitSExtInst(SExtInst &I) {
2679   // Get the source and destination types
2680   Type *SrcTy = I.getOperand(0)->getType();
2681   Type *DestTy = I.getType();
2682 
2683   // Get the size of the types in bits, we'll need this later
2684   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2685   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2686 
2687   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2688   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2689   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2690          "sext source and destination must both be a vector or neither", &I);
2691   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2692 
2693   visitInstruction(I);
2694 }
2695 
2696 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2697   // Get the source and destination types
2698   Type *SrcTy = I.getOperand(0)->getType();
2699   Type *DestTy = I.getType();
2700   // Get the size of the types in bits, we'll need this later
2701   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2702   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2703 
2704   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2705   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2706   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2707          "fptrunc source and destination must both be a vector or neither", &I);
2708   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2709 
2710   visitInstruction(I);
2711 }
2712 
2713 void Verifier::visitFPExtInst(FPExtInst &I) {
2714   // Get the source and destination types
2715   Type *SrcTy = I.getOperand(0)->getType();
2716   Type *DestTy = I.getType();
2717 
2718   // Get the size of the types in bits, we'll need this later
2719   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2720   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2721 
2722   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2723   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2724   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2725          "fpext source and destination must both be a vector or neither", &I);
2726   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2727 
2728   visitInstruction(I);
2729 }
2730 
2731 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2732   // Get the source and destination types
2733   Type *SrcTy = I.getOperand(0)->getType();
2734   Type *DestTy = I.getType();
2735 
2736   bool SrcVec = SrcTy->isVectorTy();
2737   bool DstVec = DestTy->isVectorTy();
2738 
2739   Assert(SrcVec == DstVec,
2740          "UIToFP source and dest must both be vector or scalar", &I);
2741   Assert(SrcTy->isIntOrIntVectorTy(),
2742          "UIToFP source must be integer or integer vector", &I);
2743   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2744          &I);
2745 
2746   if (SrcVec && DstVec)
2747     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2748                cast<VectorType>(DestTy)->getElementCount(),
2749            "UIToFP source and dest vector length mismatch", &I);
2750 
2751   visitInstruction(I);
2752 }
2753 
2754 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2755   // Get the source and destination types
2756   Type *SrcTy = I.getOperand(0)->getType();
2757   Type *DestTy = I.getType();
2758 
2759   bool SrcVec = SrcTy->isVectorTy();
2760   bool DstVec = DestTy->isVectorTy();
2761 
2762   Assert(SrcVec == DstVec,
2763          "SIToFP source and dest must both be vector or scalar", &I);
2764   Assert(SrcTy->isIntOrIntVectorTy(),
2765          "SIToFP source must be integer or integer vector", &I);
2766   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2767          &I);
2768 
2769   if (SrcVec && DstVec)
2770     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2771                cast<VectorType>(DestTy)->getElementCount(),
2772            "SIToFP source and dest vector length mismatch", &I);
2773 
2774   visitInstruction(I);
2775 }
2776 
2777 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2778   // Get the source and destination types
2779   Type *SrcTy = I.getOperand(0)->getType();
2780   Type *DestTy = I.getType();
2781 
2782   bool SrcVec = SrcTy->isVectorTy();
2783   bool DstVec = DestTy->isVectorTy();
2784 
2785   Assert(SrcVec == DstVec,
2786          "FPToUI source and dest must both be vector or scalar", &I);
2787   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2788          &I);
2789   Assert(DestTy->isIntOrIntVectorTy(),
2790          "FPToUI result must be integer or integer vector", &I);
2791 
2792   if (SrcVec && DstVec)
2793     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2794                cast<VectorType>(DestTy)->getElementCount(),
2795            "FPToUI source and dest vector length mismatch", &I);
2796 
2797   visitInstruction(I);
2798 }
2799 
2800 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2801   // Get the source and destination types
2802   Type *SrcTy = I.getOperand(0)->getType();
2803   Type *DestTy = I.getType();
2804 
2805   bool SrcVec = SrcTy->isVectorTy();
2806   bool DstVec = DestTy->isVectorTy();
2807 
2808   Assert(SrcVec == DstVec,
2809          "FPToSI source and dest must both be vector or scalar", &I);
2810   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2811          &I);
2812   Assert(DestTy->isIntOrIntVectorTy(),
2813          "FPToSI result must be integer or integer vector", &I);
2814 
2815   if (SrcVec && DstVec)
2816     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2817                cast<VectorType>(DestTy)->getElementCount(),
2818            "FPToSI source and dest vector length mismatch", &I);
2819 
2820   visitInstruction(I);
2821 }
2822 
2823 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2824   // Get the source and destination types
2825   Type *SrcTy = I.getOperand(0)->getType();
2826   Type *DestTy = I.getType();
2827 
2828   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2829 
2830   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2831     Assert(!DL.isNonIntegralPointerType(PTy),
2832            "ptrtoint not supported for non-integral pointers");
2833 
2834   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2835   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2836          &I);
2837 
2838   if (SrcTy->isVectorTy()) {
2839     auto *VSrc = cast<VectorType>(SrcTy);
2840     auto *VDest = cast<VectorType>(DestTy);
2841     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2842            "PtrToInt Vector width mismatch", &I);
2843   }
2844 
2845   visitInstruction(I);
2846 }
2847 
2848 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2849   // Get the source and destination types
2850   Type *SrcTy = I.getOperand(0)->getType();
2851   Type *DestTy = I.getType();
2852 
2853   Assert(SrcTy->isIntOrIntVectorTy(),
2854          "IntToPtr source must be an integral", &I);
2855   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2856 
2857   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2858     Assert(!DL.isNonIntegralPointerType(PTy),
2859            "inttoptr not supported for non-integral pointers");
2860 
2861   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2862          &I);
2863   if (SrcTy->isVectorTy()) {
2864     auto *VSrc = cast<VectorType>(SrcTy);
2865     auto *VDest = cast<VectorType>(DestTy);
2866     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2867            "IntToPtr Vector width mismatch", &I);
2868   }
2869   visitInstruction(I);
2870 }
2871 
2872 void Verifier::visitBitCastInst(BitCastInst &I) {
2873   Assert(
2874       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2875       "Invalid bitcast", &I);
2876   visitInstruction(I);
2877 }
2878 
2879 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2880   Type *SrcTy = I.getOperand(0)->getType();
2881   Type *DestTy = I.getType();
2882 
2883   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2884          &I);
2885   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2886          &I);
2887   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2888          "AddrSpaceCast must be between different address spaces", &I);
2889   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
2890     Assert(SrcVTy->getNumElements() ==
2891                cast<VectorType>(DestTy)->getNumElements(),
2892            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2893   visitInstruction(I);
2894 }
2895 
2896 /// visitPHINode - Ensure that a PHI node is well formed.
2897 ///
2898 void Verifier::visitPHINode(PHINode &PN) {
2899   // Ensure that the PHI nodes are all grouped together at the top of the block.
2900   // This can be tested by checking whether the instruction before this is
2901   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2902   // then there is some other instruction before a PHI.
2903   Assert(&PN == &PN.getParent()->front() ||
2904              isa<PHINode>(--BasicBlock::iterator(&PN)),
2905          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2906 
2907   // Check that a PHI doesn't yield a Token.
2908   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2909 
2910   // Check that all of the values of the PHI node have the same type as the
2911   // result, and that the incoming blocks are really basic blocks.
2912   for (Value *IncValue : PN.incoming_values()) {
2913     Assert(PN.getType() == IncValue->getType(),
2914            "PHI node operands are not the same type as the result!", &PN);
2915   }
2916 
2917   // All other PHI node constraints are checked in the visitBasicBlock method.
2918 
2919   visitInstruction(PN);
2920 }
2921 
2922 void Verifier::visitCallBase(CallBase &Call) {
2923   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
2924          "Called function must be a pointer!", Call);
2925   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
2926 
2927   Assert(FPTy->getElementType()->isFunctionTy(),
2928          "Called function is not pointer to function type!", Call);
2929 
2930   Assert(FPTy->getElementType() == Call.getFunctionType(),
2931          "Called function is not the same type as the call!", Call);
2932 
2933   FunctionType *FTy = Call.getFunctionType();
2934 
2935   // Verify that the correct number of arguments are being passed
2936   if (FTy->isVarArg())
2937     Assert(Call.arg_size() >= FTy->getNumParams(),
2938            "Called function requires more parameters than were provided!",
2939            Call);
2940   else
2941     Assert(Call.arg_size() == FTy->getNumParams(),
2942            "Incorrect number of arguments passed to called function!", Call);
2943 
2944   // Verify that all arguments to the call match the function type.
2945   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2946     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2947            "Call parameter type does not match function signature!",
2948            Call.getArgOperand(i), FTy->getParamType(i), Call);
2949 
2950   AttributeList Attrs = Call.getAttributes();
2951 
2952   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2953          "Attribute after last parameter!", Call);
2954 
2955   bool IsIntrinsic = Call.getCalledFunction() &&
2956                      Call.getCalledFunction()->getName().startswith("llvm.");
2957 
2958   Function *Callee =
2959       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
2960 
2961   if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
2962     // Don't allow speculatable on call sites, unless the underlying function
2963     // declaration is also speculatable.
2964     Assert(Callee && Callee->isSpeculatable(),
2965            "speculatable attribute may not apply to call sites", Call);
2966   }
2967 
2968   if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
2969     Assert(Call.getCalledFunction()->getIntrinsicID() ==
2970                Intrinsic::call_preallocated_arg,
2971            "preallocated as a call site attribute can only be on "
2972            "llvm.call.preallocated.arg");
2973   }
2974 
2975   // Verify call attributes.
2976   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2977 
2978   // Conservatively check the inalloca argument.
2979   // We have a bug if we can find that there is an underlying alloca without
2980   // inalloca.
2981   if (Call.hasInAllocaArgument()) {
2982     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2983     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2984       Assert(AI->isUsedWithInAlloca(),
2985              "inalloca argument for call has mismatched alloca", AI, Call);
2986   }
2987 
2988   // For each argument of the callsite, if it has the swifterror argument,
2989   // make sure the underlying alloca/parameter it comes from has a swifterror as
2990   // well.
2991   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2992     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2993       Value *SwiftErrorArg = Call.getArgOperand(i);
2994       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2995         Assert(AI->isSwiftError(),
2996                "swifterror argument for call has mismatched alloca", AI, Call);
2997         continue;
2998       }
2999       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3000       Assert(ArgI,
3001              "swifterror argument should come from an alloca or parameter",
3002              SwiftErrorArg, Call);
3003       Assert(ArgI->hasSwiftErrorAttr(),
3004              "swifterror argument for call has mismatched parameter", ArgI,
3005              Call);
3006     }
3007 
3008     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
3009       // Don't allow immarg on call sites, unless the underlying declaration
3010       // also has the matching immarg.
3011       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3012              "immarg may not apply only to call sites",
3013              Call.getArgOperand(i), Call);
3014     }
3015 
3016     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3017       Value *ArgVal = Call.getArgOperand(i);
3018       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3019              "immarg operand has non-immediate parameter", ArgVal, Call);
3020     }
3021 
3022     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3023       Value *ArgVal = Call.getArgOperand(i);
3024       bool hasOB =
3025           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3026       bool isMustTail = Call.isMustTailCall();
3027       Assert(hasOB != isMustTail,
3028              "preallocated operand either requires a preallocated bundle or "
3029              "the call to be musttail (but not both)",
3030              ArgVal, Call);
3031     }
3032   }
3033 
3034   if (FTy->isVarArg()) {
3035     // FIXME? is 'nest' even legal here?
3036     bool SawNest = false;
3037     bool SawReturned = false;
3038 
3039     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3040       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
3041         SawNest = true;
3042       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
3043         SawReturned = true;
3044     }
3045 
3046     // Check attributes on the varargs part.
3047     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3048       Type *Ty = Call.getArgOperand(Idx)->getType();
3049       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
3050       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3051 
3052       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3053         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3054         SawNest = true;
3055       }
3056 
3057       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3058         Assert(!SawReturned, "More than one parameter has attribute returned!",
3059                Call);
3060         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3061                "Incompatible argument and return types for 'returned' "
3062                "attribute",
3063                Call);
3064         SawReturned = true;
3065       }
3066 
3067       // Statepoint intrinsic is vararg but the wrapped function may be not.
3068       // Allow sret here and check the wrapped function in verifyStatepoint.
3069       if (!Call.getCalledFunction() ||
3070           Call.getCalledFunction()->getIntrinsicID() !=
3071               Intrinsic::experimental_gc_statepoint)
3072         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3073                "Attribute 'sret' cannot be used for vararg call arguments!",
3074                Call);
3075 
3076       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3077         Assert(Idx == Call.arg_size() - 1,
3078                "inalloca isn't on the last argument!", Call);
3079     }
3080   }
3081 
3082   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3083   if (!IsIntrinsic) {
3084     for (Type *ParamTy : FTy->params()) {
3085       Assert(!ParamTy->isMetadataTy(),
3086              "Function has metadata parameter but isn't an intrinsic", Call);
3087       Assert(!ParamTy->isTokenTy(),
3088              "Function has token parameter but isn't an intrinsic", Call);
3089     }
3090   }
3091 
3092   // Verify that indirect calls don't return tokens.
3093   if (!Call.getCalledFunction())
3094     Assert(!FTy->getReturnType()->isTokenTy(),
3095            "Return type cannot be token for indirect call!");
3096 
3097   if (Function *F = Call.getCalledFunction())
3098     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3099       visitIntrinsicCall(ID, Call);
3100 
3101   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3102   // most one "gc-transition", at most one "cfguardtarget",
3103   // and at most one "preallocated" operand bundle.
3104   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3105        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3106        FoundPreallocatedBundle = false, FoundGCLiveBundle = false;;
3107   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3108     OperandBundleUse BU = Call.getOperandBundleAt(i);
3109     uint32_t Tag = BU.getTagID();
3110     if (Tag == LLVMContext::OB_deopt) {
3111       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3112       FoundDeoptBundle = true;
3113     } else if (Tag == LLVMContext::OB_gc_transition) {
3114       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3115              Call);
3116       FoundGCTransitionBundle = true;
3117     } else if (Tag == LLVMContext::OB_funclet) {
3118       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3119       FoundFuncletBundle = true;
3120       Assert(BU.Inputs.size() == 1,
3121              "Expected exactly one funclet bundle operand", Call);
3122       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3123              "Funclet bundle operands should correspond to a FuncletPadInst",
3124              Call);
3125     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3126       Assert(!FoundCFGuardTargetBundle,
3127              "Multiple CFGuardTarget operand bundles", Call);
3128       FoundCFGuardTargetBundle = true;
3129       Assert(BU.Inputs.size() == 1,
3130              "Expected exactly one cfguardtarget bundle operand", Call);
3131     } else if (Tag == LLVMContext::OB_preallocated) {
3132       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3133              Call);
3134       FoundPreallocatedBundle = true;
3135       Assert(BU.Inputs.size() == 1,
3136              "Expected exactly one preallocated bundle operand", Call);
3137       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3138       Assert(Input &&
3139                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3140              "\"preallocated\" argument must be a token from "
3141              "llvm.call.preallocated.setup",
3142              Call);
3143     } else if (Tag == LLVMContext::OB_gc_live) {
3144       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
3145              Call);
3146       FoundGCLiveBundle = true;
3147     }
3148   }
3149 
3150   // Verify that each inlinable callsite of a debug-info-bearing function in a
3151   // debug-info-bearing function has a debug location attached to it. Failure to
3152   // do so causes assertion failures when the inliner sets up inline scope info.
3153   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3154       Call.getCalledFunction()->getSubprogram())
3155     AssertDI(Call.getDebugLoc(),
3156              "inlinable function call in a function with "
3157              "debug info must have a !dbg location",
3158              Call);
3159 
3160   visitInstruction(Call);
3161 }
3162 
3163 /// Two types are "congruent" if they are identical, or if they are both pointer
3164 /// types with different pointee types and the same address space.
3165 static bool isTypeCongruent(Type *L, Type *R) {
3166   if (L == R)
3167     return true;
3168   PointerType *PL = dyn_cast<PointerType>(L);
3169   PointerType *PR = dyn_cast<PointerType>(R);
3170   if (!PL || !PR)
3171     return false;
3172   return PL->getAddressSpace() == PR->getAddressSpace();
3173 }
3174 
3175 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3176   static const Attribute::AttrKind ABIAttrs[] = {
3177       Attribute::StructRet,   Attribute::ByVal,     Attribute::InAlloca,
3178       Attribute::InReg,       Attribute::SwiftSelf, Attribute::SwiftError,
3179       Attribute::Preallocated};
3180   AttrBuilder Copy;
3181   for (auto AK : ABIAttrs) {
3182     if (Attrs.hasParamAttribute(I, AK))
3183       Copy.addAttribute(AK);
3184   }
3185   // `align` is ABI-affecting only in combination with `byval`.
3186   if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
3187       Attrs.hasParamAttribute(I, Attribute::ByVal))
3188     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3189   return Copy;
3190 }
3191 
3192 void Verifier::verifyMustTailCall(CallInst &CI) {
3193   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3194 
3195   // - The caller and callee prototypes must match.  Pointer types of
3196   //   parameters or return types may differ in pointee type, but not
3197   //   address space.
3198   Function *F = CI.getParent()->getParent();
3199   FunctionType *CallerTy = F->getFunctionType();
3200   FunctionType *CalleeTy = CI.getFunctionType();
3201   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3202     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3203            "cannot guarantee tail call due to mismatched parameter counts",
3204            &CI);
3205     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3206       Assert(
3207           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3208           "cannot guarantee tail call due to mismatched parameter types", &CI);
3209     }
3210   }
3211   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3212          "cannot guarantee tail call due to mismatched varargs", &CI);
3213   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3214          "cannot guarantee tail call due to mismatched return types", &CI);
3215 
3216   // - The calling conventions of the caller and callee must match.
3217   Assert(F->getCallingConv() == CI.getCallingConv(),
3218          "cannot guarantee tail call due to mismatched calling conv", &CI);
3219 
3220   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3221   //   returned, preallocated, and inalloca, must match.
3222   AttributeList CallerAttrs = F->getAttributes();
3223   AttributeList CalleeAttrs = CI.getAttributes();
3224   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3225     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3226     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3227     Assert(CallerABIAttrs == CalleeABIAttrs,
3228            "cannot guarantee tail call due to mismatched ABI impacting "
3229            "function attributes",
3230            &CI, CI.getOperand(I));
3231   }
3232 
3233   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3234   //   or a pointer bitcast followed by a ret instruction.
3235   // - The ret instruction must return the (possibly bitcasted) value
3236   //   produced by the call or void.
3237   Value *RetVal = &CI;
3238   Instruction *Next = CI.getNextNode();
3239 
3240   // Handle the optional bitcast.
3241   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3242     Assert(BI->getOperand(0) == RetVal,
3243            "bitcast following musttail call must use the call", BI);
3244     RetVal = BI;
3245     Next = BI->getNextNode();
3246   }
3247 
3248   // Check the return.
3249   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3250   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3251          &CI);
3252   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3253          "musttail call result must be returned", Ret);
3254 }
3255 
3256 void Verifier::visitCallInst(CallInst &CI) {
3257   visitCallBase(CI);
3258 
3259   if (CI.isMustTailCall())
3260     verifyMustTailCall(CI);
3261 }
3262 
3263 void Verifier::visitInvokeInst(InvokeInst &II) {
3264   visitCallBase(II);
3265 
3266   // Verify that the first non-PHI instruction of the unwind destination is an
3267   // exception handling instruction.
3268   Assert(
3269       II.getUnwindDest()->isEHPad(),
3270       "The unwind destination does not have an exception handling instruction!",
3271       &II);
3272 
3273   visitTerminator(II);
3274 }
3275 
3276 /// visitUnaryOperator - Check the argument to the unary operator.
3277 ///
3278 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3279   Assert(U.getType() == U.getOperand(0)->getType(),
3280          "Unary operators must have same type for"
3281          "operands and result!",
3282          &U);
3283 
3284   switch (U.getOpcode()) {
3285   // Check that floating-point arithmetic operators are only used with
3286   // floating-point operands.
3287   case Instruction::FNeg:
3288     Assert(U.getType()->isFPOrFPVectorTy(),
3289            "FNeg operator only works with float types!", &U);
3290     break;
3291   default:
3292     llvm_unreachable("Unknown UnaryOperator opcode!");
3293   }
3294 
3295   visitInstruction(U);
3296 }
3297 
3298 /// visitBinaryOperator - Check that both arguments to the binary operator are
3299 /// of the same type!
3300 ///
3301 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3302   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3303          "Both operands to a binary operator are not of the same type!", &B);
3304 
3305   switch (B.getOpcode()) {
3306   // Check that integer arithmetic operators are only used with
3307   // integral operands.
3308   case Instruction::Add:
3309   case Instruction::Sub:
3310   case Instruction::Mul:
3311   case Instruction::SDiv:
3312   case Instruction::UDiv:
3313   case Instruction::SRem:
3314   case Instruction::URem:
3315     Assert(B.getType()->isIntOrIntVectorTy(),
3316            "Integer arithmetic operators only work with integral types!", &B);
3317     Assert(B.getType() == B.getOperand(0)->getType(),
3318            "Integer arithmetic operators must have same type "
3319            "for operands and result!",
3320            &B);
3321     break;
3322   // Check that floating-point arithmetic operators are only used with
3323   // floating-point operands.
3324   case Instruction::FAdd:
3325   case Instruction::FSub:
3326   case Instruction::FMul:
3327   case Instruction::FDiv:
3328   case Instruction::FRem:
3329     Assert(B.getType()->isFPOrFPVectorTy(),
3330            "Floating-point arithmetic operators only work with "
3331            "floating-point types!",
3332            &B);
3333     Assert(B.getType() == B.getOperand(0)->getType(),
3334            "Floating-point arithmetic operators must have same type "
3335            "for operands and result!",
3336            &B);
3337     break;
3338   // Check that logical operators are only used with integral operands.
3339   case Instruction::And:
3340   case Instruction::Or:
3341   case Instruction::Xor:
3342     Assert(B.getType()->isIntOrIntVectorTy(),
3343            "Logical operators only work with integral types!", &B);
3344     Assert(B.getType() == B.getOperand(0)->getType(),
3345            "Logical operators must have same type for operands and result!",
3346            &B);
3347     break;
3348   case Instruction::Shl:
3349   case Instruction::LShr:
3350   case Instruction::AShr:
3351     Assert(B.getType()->isIntOrIntVectorTy(),
3352            "Shifts only work with integral types!", &B);
3353     Assert(B.getType() == B.getOperand(0)->getType(),
3354            "Shift return type must be same as operands!", &B);
3355     break;
3356   default:
3357     llvm_unreachable("Unknown BinaryOperator opcode!");
3358   }
3359 
3360   visitInstruction(B);
3361 }
3362 
3363 void Verifier::visitICmpInst(ICmpInst &IC) {
3364   // Check that the operands are the same type
3365   Type *Op0Ty = IC.getOperand(0)->getType();
3366   Type *Op1Ty = IC.getOperand(1)->getType();
3367   Assert(Op0Ty == Op1Ty,
3368          "Both operands to ICmp instruction are not of the same type!", &IC);
3369   // Check that the operands are the right type
3370   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3371          "Invalid operand types for ICmp instruction", &IC);
3372   // Check that the predicate is valid.
3373   Assert(IC.isIntPredicate(),
3374          "Invalid predicate in ICmp instruction!", &IC);
3375 
3376   visitInstruction(IC);
3377 }
3378 
3379 void Verifier::visitFCmpInst(FCmpInst &FC) {
3380   // Check that the operands are the same type
3381   Type *Op0Ty = FC.getOperand(0)->getType();
3382   Type *Op1Ty = FC.getOperand(1)->getType();
3383   Assert(Op0Ty == Op1Ty,
3384          "Both operands to FCmp instruction are not of the same type!", &FC);
3385   // Check that the operands are the right type
3386   Assert(Op0Ty->isFPOrFPVectorTy(),
3387          "Invalid operand types for FCmp instruction", &FC);
3388   // Check that the predicate is valid.
3389   Assert(FC.isFPPredicate(),
3390          "Invalid predicate in FCmp instruction!", &FC);
3391 
3392   visitInstruction(FC);
3393 }
3394 
3395 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3396   Assert(
3397       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3398       "Invalid extractelement operands!", &EI);
3399   visitInstruction(EI);
3400 }
3401 
3402 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3403   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3404                                             IE.getOperand(2)),
3405          "Invalid insertelement operands!", &IE);
3406   visitInstruction(IE);
3407 }
3408 
3409 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3410   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3411                                             SV.getShuffleMask()),
3412          "Invalid shufflevector operands!", &SV);
3413   visitInstruction(SV);
3414 }
3415 
3416 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3417   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3418 
3419   Assert(isa<PointerType>(TargetTy),
3420          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3421   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3422 
3423   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3424   Assert(all_of(
3425       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3426       "GEP indexes must be integers", &GEP);
3427   Type *ElTy =
3428       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3429   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3430 
3431   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3432              GEP.getResultElementType() == ElTy,
3433          "GEP is not of right type for indices!", &GEP, ElTy);
3434 
3435   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3436     // Additional checks for vector GEPs.
3437     ElementCount GEPWidth = GEPVTy->getElementCount();
3438     if (GEP.getPointerOperandType()->isVectorTy())
3439       Assert(
3440           GEPWidth ==
3441               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3442           "Vector GEP result width doesn't match operand's", &GEP);
3443     for (Value *Idx : Idxs) {
3444       Type *IndexTy = Idx->getType();
3445       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3446         ElementCount IndexWidth = IndexVTy->getElementCount();
3447         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3448       }
3449       Assert(IndexTy->isIntOrIntVectorTy(),
3450              "All GEP indices should be of integer type");
3451     }
3452   }
3453 
3454   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3455     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3456            "GEP address space doesn't match type", &GEP);
3457   }
3458 
3459   visitInstruction(GEP);
3460 }
3461 
3462 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3463   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3464 }
3465 
3466 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3467   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3468          "precondition violation");
3469 
3470   unsigned NumOperands = Range->getNumOperands();
3471   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3472   unsigned NumRanges = NumOperands / 2;
3473   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3474 
3475   ConstantRange LastRange(1, true); // Dummy initial value
3476   for (unsigned i = 0; i < NumRanges; ++i) {
3477     ConstantInt *Low =
3478         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3479     Assert(Low, "The lower limit must be an integer!", Low);
3480     ConstantInt *High =
3481         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3482     Assert(High, "The upper limit must be an integer!", High);
3483     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3484            "Range types must match instruction type!", &I);
3485 
3486     APInt HighV = High->getValue();
3487     APInt LowV = Low->getValue();
3488     ConstantRange CurRange(LowV, HighV);
3489     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3490            "Range must not be empty!", Range);
3491     if (i != 0) {
3492       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3493              "Intervals are overlapping", Range);
3494       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3495              Range);
3496       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3497              Range);
3498     }
3499     LastRange = ConstantRange(LowV, HighV);
3500   }
3501   if (NumRanges > 2) {
3502     APInt FirstLow =
3503         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3504     APInt FirstHigh =
3505         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3506     ConstantRange FirstRange(FirstLow, FirstHigh);
3507     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3508            "Intervals are overlapping", Range);
3509     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3510            Range);
3511   }
3512 }
3513 
3514 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3515   unsigned Size = DL.getTypeSizeInBits(Ty);
3516   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3517   Assert(!(Size & (Size - 1)),
3518          "atomic memory access' operand must have a power-of-two size", Ty, I);
3519 }
3520 
3521 void Verifier::visitLoadInst(LoadInst &LI) {
3522   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3523   Assert(PTy, "Load operand must be a pointer.", &LI);
3524   Type *ElTy = LI.getType();
3525   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3526          "huge alignment values are unsupported", &LI);
3527   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3528   if (LI.isAtomic()) {
3529     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3530                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3531            "Load cannot have Release ordering", &LI);
3532     Assert(LI.getAlignment() != 0,
3533            "Atomic load must specify explicit alignment", &LI);
3534     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3535            "atomic load operand must have integer, pointer, or floating point "
3536            "type!",
3537            ElTy, &LI);
3538     checkAtomicMemAccessSize(ElTy, &LI);
3539   } else {
3540     Assert(LI.getSyncScopeID() == SyncScope::System,
3541            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3542   }
3543 
3544   visitInstruction(LI);
3545 }
3546 
3547 void Verifier::visitStoreInst(StoreInst &SI) {
3548   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3549   Assert(PTy, "Store operand must be a pointer.", &SI);
3550   Type *ElTy = PTy->getElementType();
3551   Assert(ElTy == SI.getOperand(0)->getType(),
3552          "Stored value type does not match pointer operand type!", &SI, ElTy);
3553   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3554          "huge alignment values are unsupported", &SI);
3555   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3556   if (SI.isAtomic()) {
3557     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3558                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3559            "Store cannot have Acquire ordering", &SI);
3560     Assert(SI.getAlignment() != 0,
3561            "Atomic store must specify explicit alignment", &SI);
3562     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3563            "atomic store operand must have integer, pointer, or floating point "
3564            "type!",
3565            ElTy, &SI);
3566     checkAtomicMemAccessSize(ElTy, &SI);
3567   } else {
3568     Assert(SI.getSyncScopeID() == SyncScope::System,
3569            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3570   }
3571   visitInstruction(SI);
3572 }
3573 
3574 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3575 void Verifier::verifySwiftErrorCall(CallBase &Call,
3576                                     const Value *SwiftErrorVal) {
3577   unsigned Idx = 0;
3578   for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3579     if (*I == SwiftErrorVal) {
3580       Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3581              "swifterror value when used in a callsite should be marked "
3582              "with swifterror attribute",
3583              SwiftErrorVal, Call);
3584     }
3585   }
3586 }
3587 
3588 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3589   // Check that swifterror value is only used by loads, stores, or as
3590   // a swifterror argument.
3591   for (const User *U : SwiftErrorVal->users()) {
3592     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3593            isa<InvokeInst>(U),
3594            "swifterror value can only be loaded and stored from, or "
3595            "as a swifterror argument!",
3596            SwiftErrorVal, U);
3597     // If it is used by a store, check it is the second operand.
3598     if (auto StoreI = dyn_cast<StoreInst>(U))
3599       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3600              "swifterror value should be the second operand when used "
3601              "by stores", SwiftErrorVal, U);
3602     if (auto *Call = dyn_cast<CallBase>(U))
3603       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3604   }
3605 }
3606 
3607 void Verifier::visitAllocaInst(AllocaInst &AI) {
3608   SmallPtrSet<Type*, 4> Visited;
3609   PointerType *PTy = AI.getType();
3610   // TODO: Relax this restriction?
3611   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3612          "Allocation instruction pointer not in the stack address space!",
3613          &AI);
3614   Assert(AI.getAllocatedType()->isSized(&Visited),
3615          "Cannot allocate unsized type", &AI);
3616   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3617          "Alloca array size must have integer type", &AI);
3618   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3619          "huge alignment values are unsupported", &AI);
3620 
3621   if (AI.isSwiftError()) {
3622     verifySwiftErrorValue(&AI);
3623   }
3624 
3625   visitInstruction(AI);
3626 }
3627 
3628 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3629 
3630   // FIXME: more conditions???
3631   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3632          "cmpxchg instructions must be atomic.", &CXI);
3633   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3634          "cmpxchg instructions must be atomic.", &CXI);
3635   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3636          "cmpxchg instructions cannot be unordered.", &CXI);
3637   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3638          "cmpxchg instructions cannot be unordered.", &CXI);
3639   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3640          "cmpxchg instructions failure argument shall be no stronger than the "
3641          "success argument",
3642          &CXI);
3643   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3644              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3645          "cmpxchg failure ordering cannot include release semantics", &CXI);
3646 
3647   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3648   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3649   Type *ElTy = PTy->getElementType();
3650   Assert(ElTy->isIntOrPtrTy(),
3651          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3652   checkAtomicMemAccessSize(ElTy, &CXI);
3653   Assert(ElTy == CXI.getOperand(1)->getType(),
3654          "Expected value type does not match pointer operand type!", &CXI,
3655          ElTy);
3656   Assert(ElTy == CXI.getOperand(2)->getType(),
3657          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3658   visitInstruction(CXI);
3659 }
3660 
3661 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3662   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3663          "atomicrmw instructions must be atomic.", &RMWI);
3664   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3665          "atomicrmw instructions cannot be unordered.", &RMWI);
3666   auto Op = RMWI.getOperation();
3667   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3668   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3669   Type *ElTy = PTy->getElementType();
3670   if (Op == AtomicRMWInst::Xchg) {
3671     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3672            AtomicRMWInst::getOperationName(Op) +
3673            " operand must have integer or floating point type!",
3674            &RMWI, ElTy);
3675   } else if (AtomicRMWInst::isFPOperation(Op)) {
3676     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3677            AtomicRMWInst::getOperationName(Op) +
3678            " operand must have floating point type!",
3679            &RMWI, ElTy);
3680   } else {
3681     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3682            AtomicRMWInst::getOperationName(Op) +
3683            " operand must have integer type!",
3684            &RMWI, ElTy);
3685   }
3686   checkAtomicMemAccessSize(ElTy, &RMWI);
3687   Assert(ElTy == RMWI.getOperand(1)->getType(),
3688          "Argument value type does not match pointer operand type!", &RMWI,
3689          ElTy);
3690   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3691          "Invalid binary operation!", &RMWI);
3692   visitInstruction(RMWI);
3693 }
3694 
3695 void Verifier::visitFenceInst(FenceInst &FI) {
3696   const AtomicOrdering Ordering = FI.getOrdering();
3697   Assert(Ordering == AtomicOrdering::Acquire ||
3698              Ordering == AtomicOrdering::Release ||
3699              Ordering == AtomicOrdering::AcquireRelease ||
3700              Ordering == AtomicOrdering::SequentiallyConsistent,
3701          "fence instructions may only have acquire, release, acq_rel, or "
3702          "seq_cst ordering.",
3703          &FI);
3704   visitInstruction(FI);
3705 }
3706 
3707 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3708   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3709                                           EVI.getIndices()) == EVI.getType(),
3710          "Invalid ExtractValueInst operands!", &EVI);
3711 
3712   visitInstruction(EVI);
3713 }
3714 
3715 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3716   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3717                                           IVI.getIndices()) ==
3718              IVI.getOperand(1)->getType(),
3719          "Invalid InsertValueInst operands!", &IVI);
3720 
3721   visitInstruction(IVI);
3722 }
3723 
3724 static Value *getParentPad(Value *EHPad) {
3725   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3726     return FPI->getParentPad();
3727 
3728   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3729 }
3730 
3731 void Verifier::visitEHPadPredecessors(Instruction &I) {
3732   assert(I.isEHPad());
3733 
3734   BasicBlock *BB = I.getParent();
3735   Function *F = BB->getParent();
3736 
3737   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3738 
3739   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3740     // The landingpad instruction defines its parent as a landing pad block. The
3741     // landing pad block may be branched to only by the unwind edge of an
3742     // invoke.
3743     for (BasicBlock *PredBB : predecessors(BB)) {
3744       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3745       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3746              "Block containing LandingPadInst must be jumped to "
3747              "only by the unwind edge of an invoke.",
3748              LPI);
3749     }
3750     return;
3751   }
3752   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3753     if (!pred_empty(BB))
3754       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3755              "Block containg CatchPadInst must be jumped to "
3756              "only by its catchswitch.",
3757              CPI);
3758     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3759            "Catchswitch cannot unwind to one of its catchpads",
3760            CPI->getCatchSwitch(), CPI);
3761     return;
3762   }
3763 
3764   // Verify that each pred has a legal terminator with a legal to/from EH
3765   // pad relationship.
3766   Instruction *ToPad = &I;
3767   Value *ToPadParent = getParentPad(ToPad);
3768   for (BasicBlock *PredBB : predecessors(BB)) {
3769     Instruction *TI = PredBB->getTerminator();
3770     Value *FromPad;
3771     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3772       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3773              "EH pad must be jumped to via an unwind edge", ToPad, II);
3774       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3775         FromPad = Bundle->Inputs[0];
3776       else
3777         FromPad = ConstantTokenNone::get(II->getContext());
3778     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3779       FromPad = CRI->getOperand(0);
3780       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3781     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3782       FromPad = CSI;
3783     } else {
3784       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3785     }
3786 
3787     // The edge may exit from zero or more nested pads.
3788     SmallSet<Value *, 8> Seen;
3789     for (;; FromPad = getParentPad(FromPad)) {
3790       Assert(FromPad != ToPad,
3791              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3792       if (FromPad == ToPadParent) {
3793         // This is a legal unwind edge.
3794         break;
3795       }
3796       Assert(!isa<ConstantTokenNone>(FromPad),
3797              "A single unwind edge may only enter one EH pad", TI);
3798       Assert(Seen.insert(FromPad).second,
3799              "EH pad jumps through a cycle of pads", FromPad);
3800     }
3801   }
3802 }
3803 
3804 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3805   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3806   // isn't a cleanup.
3807   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3808          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3809 
3810   visitEHPadPredecessors(LPI);
3811 
3812   if (!LandingPadResultTy)
3813     LandingPadResultTy = LPI.getType();
3814   else
3815     Assert(LandingPadResultTy == LPI.getType(),
3816            "The landingpad instruction should have a consistent result type "
3817            "inside a function.",
3818            &LPI);
3819 
3820   Function *F = LPI.getParent()->getParent();
3821   Assert(F->hasPersonalityFn(),
3822          "LandingPadInst needs to be in a function with a personality.", &LPI);
3823 
3824   // The landingpad instruction must be the first non-PHI instruction in the
3825   // block.
3826   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3827          "LandingPadInst not the first non-PHI instruction in the block.",
3828          &LPI);
3829 
3830   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3831     Constant *Clause = LPI.getClause(i);
3832     if (LPI.isCatch(i)) {
3833       Assert(isa<PointerType>(Clause->getType()),
3834              "Catch operand does not have pointer type!", &LPI);
3835     } else {
3836       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3837       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3838              "Filter operand is not an array of constants!", &LPI);
3839     }
3840   }
3841 
3842   visitInstruction(LPI);
3843 }
3844 
3845 void Verifier::visitResumeInst(ResumeInst &RI) {
3846   Assert(RI.getFunction()->hasPersonalityFn(),
3847          "ResumeInst needs to be in a function with a personality.", &RI);
3848 
3849   if (!LandingPadResultTy)
3850     LandingPadResultTy = RI.getValue()->getType();
3851   else
3852     Assert(LandingPadResultTy == RI.getValue()->getType(),
3853            "The resume instruction should have a consistent result type "
3854            "inside a function.",
3855            &RI);
3856 
3857   visitTerminator(RI);
3858 }
3859 
3860 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3861   BasicBlock *BB = CPI.getParent();
3862 
3863   Function *F = BB->getParent();
3864   Assert(F->hasPersonalityFn(),
3865          "CatchPadInst needs to be in a function with a personality.", &CPI);
3866 
3867   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3868          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3869          CPI.getParentPad());
3870 
3871   // The catchpad instruction must be the first non-PHI instruction in the
3872   // block.
3873   Assert(BB->getFirstNonPHI() == &CPI,
3874          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3875 
3876   visitEHPadPredecessors(CPI);
3877   visitFuncletPadInst(CPI);
3878 }
3879 
3880 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3881   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3882          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3883          CatchReturn.getOperand(0));
3884 
3885   visitTerminator(CatchReturn);
3886 }
3887 
3888 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3889   BasicBlock *BB = CPI.getParent();
3890 
3891   Function *F = BB->getParent();
3892   Assert(F->hasPersonalityFn(),
3893          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3894 
3895   // The cleanuppad instruction must be the first non-PHI instruction in the
3896   // block.
3897   Assert(BB->getFirstNonPHI() == &CPI,
3898          "CleanupPadInst not the first non-PHI instruction in the block.",
3899          &CPI);
3900 
3901   auto *ParentPad = CPI.getParentPad();
3902   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3903          "CleanupPadInst has an invalid parent.", &CPI);
3904 
3905   visitEHPadPredecessors(CPI);
3906   visitFuncletPadInst(CPI);
3907 }
3908 
3909 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3910   User *FirstUser = nullptr;
3911   Value *FirstUnwindPad = nullptr;
3912   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3913   SmallSet<FuncletPadInst *, 8> Seen;
3914 
3915   while (!Worklist.empty()) {
3916     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3917     Assert(Seen.insert(CurrentPad).second,
3918            "FuncletPadInst must not be nested within itself", CurrentPad);
3919     Value *UnresolvedAncestorPad = nullptr;
3920     for (User *U : CurrentPad->users()) {
3921       BasicBlock *UnwindDest;
3922       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3923         UnwindDest = CRI->getUnwindDest();
3924       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3925         // We allow catchswitch unwind to caller to nest
3926         // within an outer pad that unwinds somewhere else,
3927         // because catchswitch doesn't have a nounwind variant.
3928         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3929         if (CSI->unwindsToCaller())
3930           continue;
3931         UnwindDest = CSI->getUnwindDest();
3932       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3933         UnwindDest = II->getUnwindDest();
3934       } else if (isa<CallInst>(U)) {
3935         // Calls which don't unwind may be found inside funclet
3936         // pads that unwind somewhere else.  We don't *require*
3937         // such calls to be annotated nounwind.
3938         continue;
3939       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3940         // The unwind dest for a cleanup can only be found by
3941         // recursive search.  Add it to the worklist, and we'll
3942         // search for its first use that determines where it unwinds.
3943         Worklist.push_back(CPI);
3944         continue;
3945       } else {
3946         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3947         continue;
3948       }
3949 
3950       Value *UnwindPad;
3951       bool ExitsFPI;
3952       if (UnwindDest) {
3953         UnwindPad = UnwindDest->getFirstNonPHI();
3954         if (!cast<Instruction>(UnwindPad)->isEHPad())
3955           continue;
3956         Value *UnwindParent = getParentPad(UnwindPad);
3957         // Ignore unwind edges that don't exit CurrentPad.
3958         if (UnwindParent == CurrentPad)
3959           continue;
3960         // Determine whether the original funclet pad is exited,
3961         // and if we are scanning nested pads determine how many
3962         // of them are exited so we can stop searching their
3963         // children.
3964         Value *ExitedPad = CurrentPad;
3965         ExitsFPI = false;
3966         do {
3967           if (ExitedPad == &FPI) {
3968             ExitsFPI = true;
3969             // Now we can resolve any ancestors of CurrentPad up to
3970             // FPI, but not including FPI since we need to make sure
3971             // to check all direct users of FPI for consistency.
3972             UnresolvedAncestorPad = &FPI;
3973             break;
3974           }
3975           Value *ExitedParent = getParentPad(ExitedPad);
3976           if (ExitedParent == UnwindParent) {
3977             // ExitedPad is the ancestor-most pad which this unwind
3978             // edge exits, so we can resolve up to it, meaning that
3979             // ExitedParent is the first ancestor still unresolved.
3980             UnresolvedAncestorPad = ExitedParent;
3981             break;
3982           }
3983           ExitedPad = ExitedParent;
3984         } while (!isa<ConstantTokenNone>(ExitedPad));
3985       } else {
3986         // Unwinding to caller exits all pads.
3987         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3988         ExitsFPI = true;
3989         UnresolvedAncestorPad = &FPI;
3990       }
3991 
3992       if (ExitsFPI) {
3993         // This unwind edge exits FPI.  Make sure it agrees with other
3994         // such edges.
3995         if (FirstUser) {
3996           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3997                                               "pad must have the same unwind "
3998                                               "dest",
3999                  &FPI, U, FirstUser);
4000         } else {
4001           FirstUser = U;
4002           FirstUnwindPad = UnwindPad;
4003           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4004           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4005               getParentPad(UnwindPad) == getParentPad(&FPI))
4006             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4007         }
4008       }
4009       // Make sure we visit all uses of FPI, but for nested pads stop as
4010       // soon as we know where they unwind to.
4011       if (CurrentPad != &FPI)
4012         break;
4013     }
4014     if (UnresolvedAncestorPad) {
4015       if (CurrentPad == UnresolvedAncestorPad) {
4016         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4017         // we've found an unwind edge that exits it, because we need to verify
4018         // all direct uses of FPI.
4019         assert(CurrentPad == &FPI);
4020         continue;
4021       }
4022       // Pop off the worklist any nested pads that we've found an unwind
4023       // destination for.  The pads on the worklist are the uncles,
4024       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4025       // for all ancestors of CurrentPad up to but not including
4026       // UnresolvedAncestorPad.
4027       Value *ResolvedPad = CurrentPad;
4028       while (!Worklist.empty()) {
4029         Value *UnclePad = Worklist.back();
4030         Value *AncestorPad = getParentPad(UnclePad);
4031         // Walk ResolvedPad up the ancestor list until we either find the
4032         // uncle's parent or the last resolved ancestor.
4033         while (ResolvedPad != AncestorPad) {
4034           Value *ResolvedParent = getParentPad(ResolvedPad);
4035           if (ResolvedParent == UnresolvedAncestorPad) {
4036             break;
4037           }
4038           ResolvedPad = ResolvedParent;
4039         }
4040         // If the resolved ancestor search didn't find the uncle's parent,
4041         // then the uncle is not yet resolved.
4042         if (ResolvedPad != AncestorPad)
4043           break;
4044         // This uncle is resolved, so pop it from the worklist.
4045         Worklist.pop_back();
4046       }
4047     }
4048   }
4049 
4050   if (FirstUnwindPad) {
4051     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4052       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4053       Value *SwitchUnwindPad;
4054       if (SwitchUnwindDest)
4055         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4056       else
4057         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4058       Assert(SwitchUnwindPad == FirstUnwindPad,
4059              "Unwind edges out of a catch must have the same unwind dest as "
4060              "the parent catchswitch",
4061              &FPI, FirstUser, CatchSwitch);
4062     }
4063   }
4064 
4065   visitInstruction(FPI);
4066 }
4067 
4068 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4069   BasicBlock *BB = CatchSwitch.getParent();
4070 
4071   Function *F = BB->getParent();
4072   Assert(F->hasPersonalityFn(),
4073          "CatchSwitchInst needs to be in a function with a personality.",
4074          &CatchSwitch);
4075 
4076   // The catchswitch instruction must be the first non-PHI instruction in the
4077   // block.
4078   Assert(BB->getFirstNonPHI() == &CatchSwitch,
4079          "CatchSwitchInst not the first non-PHI instruction in the block.",
4080          &CatchSwitch);
4081 
4082   auto *ParentPad = CatchSwitch.getParentPad();
4083   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4084          "CatchSwitchInst has an invalid parent.", ParentPad);
4085 
4086   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4087     Instruction *I = UnwindDest->getFirstNonPHI();
4088     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4089            "CatchSwitchInst must unwind to an EH block which is not a "
4090            "landingpad.",
4091            &CatchSwitch);
4092 
4093     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4094     if (getParentPad(I) == ParentPad)
4095       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4096   }
4097 
4098   Assert(CatchSwitch.getNumHandlers() != 0,
4099          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4100 
4101   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4102     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4103            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4104   }
4105 
4106   visitEHPadPredecessors(CatchSwitch);
4107   visitTerminator(CatchSwitch);
4108 }
4109 
4110 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4111   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4112          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4113          CRI.getOperand(0));
4114 
4115   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4116     Instruction *I = UnwindDest->getFirstNonPHI();
4117     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4118            "CleanupReturnInst must unwind to an EH block which is not a "
4119            "landingpad.",
4120            &CRI);
4121   }
4122 
4123   visitTerminator(CRI);
4124 }
4125 
4126 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4127   Instruction *Op = cast<Instruction>(I.getOperand(i));
4128   // If the we have an invalid invoke, don't try to compute the dominance.
4129   // We already reject it in the invoke specific checks and the dominance
4130   // computation doesn't handle multiple edges.
4131   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4132     if (II->getNormalDest() == II->getUnwindDest())
4133       return;
4134   }
4135 
4136   // Quick check whether the def has already been encountered in the same block.
4137   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4138   // uses are defined to happen on the incoming edge, not at the instruction.
4139   //
4140   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4141   // wrapping an SSA value, assert that we've already encountered it.  See
4142   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4143   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4144     return;
4145 
4146   const Use &U = I.getOperandUse(i);
4147   Assert(DT.dominates(Op, U),
4148          "Instruction does not dominate all uses!", Op, &I);
4149 }
4150 
4151 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4152   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4153          "apply only to pointer types", &I);
4154   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4155          "dereferenceable, dereferenceable_or_null apply only to load"
4156          " and inttoptr instructions, use attributes for calls or invokes", &I);
4157   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4158          "take one operand!", &I);
4159   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4160   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4161          "dereferenceable_or_null metadata value must be an i64!", &I);
4162 }
4163 
4164 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4165   Assert(MD->getNumOperands() >= 2,
4166          "!prof annotations should have no less than 2 operands", MD);
4167 
4168   // Check first operand.
4169   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4170   Assert(isa<MDString>(MD->getOperand(0)),
4171          "expected string with name of the !prof annotation", MD);
4172   MDString *MDS = cast<MDString>(MD->getOperand(0));
4173   StringRef ProfName = MDS->getString();
4174 
4175   // Check consistency of !prof branch_weights metadata.
4176   if (ProfName.equals("branch_weights")) {
4177     if (isa<InvokeInst>(&I)) {
4178       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4179              "Wrong number of InvokeInst branch_weights operands", MD);
4180     } else {
4181       unsigned ExpectedNumOperands = 0;
4182       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4183         ExpectedNumOperands = BI->getNumSuccessors();
4184       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4185         ExpectedNumOperands = SI->getNumSuccessors();
4186       else if (isa<CallInst>(&I))
4187         ExpectedNumOperands = 1;
4188       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4189         ExpectedNumOperands = IBI->getNumDestinations();
4190       else if (isa<SelectInst>(&I))
4191         ExpectedNumOperands = 2;
4192       else
4193         CheckFailed("!prof branch_weights are not allowed for this instruction",
4194                     MD);
4195 
4196       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4197              "Wrong number of operands", MD);
4198     }
4199     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4200       auto &MDO = MD->getOperand(i);
4201       Assert(MDO, "second operand should not be null", MD);
4202       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4203              "!prof brunch_weights operand is not a const int");
4204     }
4205   }
4206 }
4207 
4208 /// verifyInstruction - Verify that an instruction is well formed.
4209 ///
4210 void Verifier::visitInstruction(Instruction &I) {
4211   BasicBlock *BB = I.getParent();
4212   Assert(BB, "Instruction not embedded in basic block!", &I);
4213 
4214   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4215     for (User *U : I.users()) {
4216       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4217              "Only PHI nodes may reference their own value!", &I);
4218     }
4219   }
4220 
4221   // Check that void typed values don't have names
4222   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4223          "Instruction has a name, but provides a void value!", &I);
4224 
4225   // Check that the return value of the instruction is either void or a legal
4226   // value type.
4227   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4228          "Instruction returns a non-scalar type!", &I);
4229 
4230   // Check that the instruction doesn't produce metadata. Calls are already
4231   // checked against the callee type.
4232   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4233          "Invalid use of metadata!", &I);
4234 
4235   // Check that all uses of the instruction, if they are instructions
4236   // themselves, actually have parent basic blocks.  If the use is not an
4237   // instruction, it is an error!
4238   for (Use &U : I.uses()) {
4239     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4240       Assert(Used->getParent() != nullptr,
4241              "Instruction referencing"
4242              " instruction not embedded in a basic block!",
4243              &I, Used);
4244     else {
4245       CheckFailed("Use of instruction is not an instruction!", U);
4246       return;
4247     }
4248   }
4249 
4250   // Get a pointer to the call base of the instruction if it is some form of
4251   // call.
4252   const CallBase *CBI = dyn_cast<CallBase>(&I);
4253 
4254   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4255     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4256 
4257     // Check to make sure that only first-class-values are operands to
4258     // instructions.
4259     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4260       Assert(false, "Instruction operands must be first-class values!", &I);
4261     }
4262 
4263     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4264       // Check to make sure that the "address of" an intrinsic function is never
4265       // taken.
4266       Assert(!F->isIntrinsic() ||
4267                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4268              "Cannot take the address of an intrinsic!", &I);
4269       Assert(
4270           !F->isIntrinsic() || isa<CallInst>(I) ||
4271               F->getIntrinsicID() == Intrinsic::donothing ||
4272               F->getIntrinsicID() == Intrinsic::coro_resume ||
4273               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4274               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4275               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4276               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4277               F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4278           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4279           "statepoint, coro_resume or coro_destroy",
4280           &I);
4281       Assert(F->getParent() == &M, "Referencing function in another module!",
4282              &I, &M, F, F->getParent());
4283     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4284       Assert(OpBB->getParent() == BB->getParent(),
4285              "Referring to a basic block in another function!", &I);
4286     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4287       Assert(OpArg->getParent() == BB->getParent(),
4288              "Referring to an argument in another function!", &I);
4289     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4290       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4291              &M, GV, GV->getParent());
4292     } else if (isa<Instruction>(I.getOperand(i))) {
4293       verifyDominatesUse(I, i);
4294     } else if (isa<InlineAsm>(I.getOperand(i))) {
4295       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4296              "Cannot take the address of an inline asm!", &I);
4297     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4298       if (CE->getType()->isPtrOrPtrVectorTy() ||
4299           !DL.getNonIntegralAddressSpaces().empty()) {
4300         // If we have a ConstantExpr pointer, we need to see if it came from an
4301         // illegal bitcast.  If the datalayout string specifies non-integral
4302         // address spaces then we also need to check for illegal ptrtoint and
4303         // inttoptr expressions.
4304         visitConstantExprsRecursively(CE);
4305       }
4306     }
4307   }
4308 
4309   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4310     Assert(I.getType()->isFPOrFPVectorTy(),
4311            "fpmath requires a floating point result!", &I);
4312     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4313     if (ConstantFP *CFP0 =
4314             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4315       const APFloat &Accuracy = CFP0->getValueAPF();
4316       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4317              "fpmath accuracy must have float type", &I);
4318       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4319              "fpmath accuracy not a positive number!", &I);
4320     } else {
4321       Assert(false, "invalid fpmath accuracy!", &I);
4322     }
4323   }
4324 
4325   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4326     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4327            "Ranges are only for loads, calls and invokes!", &I);
4328     visitRangeMetadata(I, Range, I.getType());
4329   }
4330 
4331   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4332     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4333            &I);
4334     Assert(isa<LoadInst>(I),
4335            "nonnull applies only to load instructions, use attributes"
4336            " for calls or invokes",
4337            &I);
4338   }
4339 
4340   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4341     visitDereferenceableMetadata(I, MD);
4342 
4343   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4344     visitDereferenceableMetadata(I, MD);
4345 
4346   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4347     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4348 
4349   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4350     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4351            &I);
4352     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4353            "use attributes for calls or invokes", &I);
4354     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4355     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4356     Assert(CI && CI->getType()->isIntegerTy(64),
4357            "align metadata value must be an i64!", &I);
4358     uint64_t Align = CI->getZExtValue();
4359     Assert(isPowerOf2_64(Align),
4360            "align metadata value must be a power of 2!", &I);
4361     Assert(Align <= Value::MaximumAlignment,
4362            "alignment is larger that implementation defined limit", &I);
4363   }
4364 
4365   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4366     visitProfMetadata(I, MD);
4367 
4368   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4369     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4370     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4371   }
4372 
4373   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4374     verifyFragmentExpression(*DII);
4375     verifyNotEntryValue(*DII);
4376   }
4377 
4378   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4379   I.getAllMetadata(MDs);
4380   for (auto Attachment : MDs) {
4381     unsigned Kind = Attachment.first;
4382     auto AllowLocs =
4383         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4384             ? AreDebugLocsAllowed::Yes
4385             : AreDebugLocsAllowed::No;
4386     visitMDNode(*Attachment.second, AllowLocs);
4387   }
4388 
4389   InstsInThisBlock.insert(&I);
4390 }
4391 
4392 /// Allow intrinsics to be verified in different ways.
4393 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4394   Function *IF = Call.getCalledFunction();
4395   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4396          IF);
4397 
4398   // Verify that the intrinsic prototype lines up with what the .td files
4399   // describe.
4400   FunctionType *IFTy = IF->getFunctionType();
4401   bool IsVarArg = IFTy->isVarArg();
4402 
4403   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4404   getIntrinsicInfoTableEntries(ID, Table);
4405   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4406 
4407   // Walk the descriptors to extract overloaded types.
4408   SmallVector<Type *, 4> ArgTys;
4409   Intrinsic::MatchIntrinsicTypesResult Res =
4410       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4411   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4412          "Intrinsic has incorrect return type!", IF);
4413   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4414          "Intrinsic has incorrect argument type!", IF);
4415 
4416   // Verify if the intrinsic call matches the vararg property.
4417   if (IsVarArg)
4418     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4419            "Intrinsic was not defined with variable arguments!", IF);
4420   else
4421     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4422            "Callsite was not defined with variable arguments!", IF);
4423 
4424   // All descriptors should be absorbed by now.
4425   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4426 
4427   // Now that we have the intrinsic ID and the actual argument types (and we
4428   // know they are legal for the intrinsic!) get the intrinsic name through the
4429   // usual means.  This allows us to verify the mangling of argument types into
4430   // the name.
4431   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4432   Assert(ExpectedName == IF->getName(),
4433          "Intrinsic name not mangled correctly for type arguments! "
4434          "Should be: " +
4435              ExpectedName,
4436          IF);
4437 
4438   // If the intrinsic takes MDNode arguments, verify that they are either global
4439   // or are local to *this* function.
4440   for (Value *V : Call.args())
4441     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4442       visitMetadataAsValue(*MD, Call.getCaller());
4443 
4444   switch (ID) {
4445   default:
4446     break;
4447   case Intrinsic::assume: {
4448     for (auto &Elem : Call.bundle_op_infos()) {
4449       Assert(Elem.Tag->getKey() == "ignore" ||
4450                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4451              "tags must be valid attribute names");
4452       Assert(Elem.End - Elem.Begin <= 2, "to many arguments");
4453       Attribute::AttrKind Kind =
4454           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4455       if (Kind == Attribute::None)
4456         break;
4457       if (Attribute::doesAttrKindHaveArgument(Kind)) {
4458         Assert(Elem.End - Elem.Begin == 2,
4459                "this attribute should have 2 arguments");
4460         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4461                "the second argument should be a constant integral value");
4462       } else if (isFuncOnlyAttr(Kind)) {
4463         Assert((Elem.End - Elem.Begin) == 0, "this attribute has no argument");
4464       } else if (!isFuncOrArgAttr(Kind)) {
4465         Assert((Elem.End - Elem.Begin) == 1,
4466                "this attribute should have one argument");
4467       }
4468     }
4469     break;
4470   }
4471   case Intrinsic::coro_id: {
4472     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4473     if (isa<ConstantPointerNull>(InfoArg))
4474       break;
4475     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4476     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4477       "info argument of llvm.coro.begin must refer to an initialized "
4478       "constant");
4479     Constant *Init = GV->getInitializer();
4480     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4481       "info argument of llvm.coro.begin must refer to either a struct or "
4482       "an array");
4483     break;
4484   }
4485 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4486   case Intrinsic::INTRINSIC:
4487 #include "llvm/IR/ConstrainedOps.def"
4488     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4489     break;
4490   case Intrinsic::dbg_declare: // llvm.dbg.declare
4491     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4492            "invalid llvm.dbg.declare intrinsic call 1", Call);
4493     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4494     break;
4495   case Intrinsic::dbg_addr: // llvm.dbg.addr
4496     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4497     break;
4498   case Intrinsic::dbg_value: // llvm.dbg.value
4499     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4500     break;
4501   case Intrinsic::dbg_label: // llvm.dbg.label
4502     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4503     break;
4504   case Intrinsic::memcpy:
4505   case Intrinsic::memcpy_inline:
4506   case Intrinsic::memmove:
4507   case Intrinsic::memset: {
4508     const auto *MI = cast<MemIntrinsic>(&Call);
4509     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4510       return Alignment == 0 || isPowerOf2_32(Alignment);
4511     };
4512     Assert(IsValidAlignment(MI->getDestAlignment()),
4513            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4514            Call);
4515     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4516       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4517              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4518              Call);
4519     }
4520 
4521     break;
4522   }
4523   case Intrinsic::memcpy_element_unordered_atomic:
4524   case Intrinsic::memmove_element_unordered_atomic:
4525   case Intrinsic::memset_element_unordered_atomic: {
4526     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4527 
4528     ConstantInt *ElementSizeCI =
4529         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4530     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4531     Assert(ElementSizeVal.isPowerOf2(),
4532            "element size of the element-wise atomic memory intrinsic "
4533            "must be a power of 2",
4534            Call);
4535 
4536     auto IsValidAlignment = [&](uint64_t Alignment) {
4537       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4538     };
4539     uint64_t DstAlignment = AMI->getDestAlignment();
4540     Assert(IsValidAlignment(DstAlignment),
4541            "incorrect alignment of the destination argument", Call);
4542     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4543       uint64_t SrcAlignment = AMT->getSourceAlignment();
4544       Assert(IsValidAlignment(SrcAlignment),
4545              "incorrect alignment of the source argument", Call);
4546     }
4547     break;
4548   }
4549   case Intrinsic::call_preallocated_setup: {
4550     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4551     Assert(NumArgs != nullptr,
4552            "llvm.call.preallocated.setup argument must be a constant");
4553     bool FoundCall = false;
4554     for (User *U : Call.users()) {
4555       auto *UseCall = dyn_cast<CallBase>(U);
4556       Assert(UseCall != nullptr,
4557              "Uses of llvm.call.preallocated.setup must be calls");
4558       const Function *Fn = UseCall->getCalledFunction();
4559       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4560         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4561         Assert(AllocArgIndex != nullptr,
4562                "llvm.call.preallocated.alloc arg index must be a constant");
4563         auto AllocArgIndexInt = AllocArgIndex->getValue();
4564         Assert(AllocArgIndexInt.sge(0) &&
4565                    AllocArgIndexInt.slt(NumArgs->getValue()),
4566                "llvm.call.preallocated.alloc arg index must be between 0 and "
4567                "corresponding "
4568                "llvm.call.preallocated.setup's argument count");
4569       } else if (Fn && Fn->getIntrinsicID() ==
4570                            Intrinsic::call_preallocated_teardown) {
4571         // nothing to do
4572       } else {
4573         Assert(!FoundCall, "Can have at most one call corresponding to a "
4574                            "llvm.call.preallocated.setup");
4575         FoundCall = true;
4576         size_t NumPreallocatedArgs = 0;
4577         for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) {
4578           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4579             ++NumPreallocatedArgs;
4580           }
4581         }
4582         Assert(NumPreallocatedArgs != 0,
4583                "cannot use preallocated intrinsics on a call without "
4584                "preallocated arguments");
4585         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4586                "llvm.call.preallocated.setup arg size must be equal to number "
4587                "of preallocated arguments "
4588                "at call site",
4589                Call, *UseCall);
4590         // getOperandBundle() cannot be called if more than one of the operand
4591         // bundle exists. There is already a check elsewhere for this, so skip
4592         // here if we see more than one.
4593         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4594             1) {
4595           return;
4596         }
4597         auto PreallocatedBundle =
4598             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4599         Assert(PreallocatedBundle,
4600                "Use of llvm.call.preallocated.setup outside intrinsics "
4601                "must be in \"preallocated\" operand bundle");
4602         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4603                "preallocated bundle must have token from corresponding "
4604                "llvm.call.preallocated.setup");
4605       }
4606     }
4607     break;
4608   }
4609   case Intrinsic::call_preallocated_arg: {
4610     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4611     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4612                         Intrinsic::call_preallocated_setup,
4613            "llvm.call.preallocated.arg token argument must be a "
4614            "llvm.call.preallocated.setup");
4615     Assert(Call.hasFnAttr(Attribute::Preallocated),
4616            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4617            "call site attribute");
4618     break;
4619   }
4620   case Intrinsic::call_preallocated_teardown: {
4621     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4622     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4623                         Intrinsic::call_preallocated_setup,
4624            "llvm.call.preallocated.teardown token argument must be a "
4625            "llvm.call.preallocated.setup");
4626     break;
4627   }
4628   case Intrinsic::gcroot:
4629   case Intrinsic::gcwrite:
4630   case Intrinsic::gcread:
4631     if (ID == Intrinsic::gcroot) {
4632       AllocaInst *AI =
4633           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4634       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4635       Assert(isa<Constant>(Call.getArgOperand(1)),
4636              "llvm.gcroot parameter #2 must be a constant.", Call);
4637       if (!AI->getAllocatedType()->isPointerTy()) {
4638         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4639                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4640                "or argument #2 must be a non-null constant.",
4641                Call);
4642       }
4643     }
4644 
4645     Assert(Call.getParent()->getParent()->hasGC(),
4646            "Enclosing function does not use GC.", Call);
4647     break;
4648   case Intrinsic::init_trampoline:
4649     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4650            "llvm.init_trampoline parameter #2 must resolve to a function.",
4651            Call);
4652     break;
4653   case Intrinsic::prefetch:
4654     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4655            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4656            "invalid arguments to llvm.prefetch", Call);
4657     break;
4658   case Intrinsic::stackprotector:
4659     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4660            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4661     break;
4662   case Intrinsic::localescape: {
4663     BasicBlock *BB = Call.getParent();
4664     Assert(BB == &BB->getParent()->front(),
4665            "llvm.localescape used outside of entry block", Call);
4666     Assert(!SawFrameEscape,
4667            "multiple calls to llvm.localescape in one function", Call);
4668     for (Value *Arg : Call.args()) {
4669       if (isa<ConstantPointerNull>(Arg))
4670         continue; // Null values are allowed as placeholders.
4671       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4672       Assert(AI && AI->isStaticAlloca(),
4673              "llvm.localescape only accepts static allocas", Call);
4674     }
4675     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4676     SawFrameEscape = true;
4677     break;
4678   }
4679   case Intrinsic::localrecover: {
4680     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4681     Function *Fn = dyn_cast<Function>(FnArg);
4682     Assert(Fn && !Fn->isDeclaration(),
4683            "llvm.localrecover first "
4684            "argument must be function defined in this module",
4685            Call);
4686     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4687     auto &Entry = FrameEscapeInfo[Fn];
4688     Entry.second = unsigned(
4689         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4690     break;
4691   }
4692 
4693   case Intrinsic::experimental_gc_statepoint:
4694     if (auto *CI = dyn_cast<CallInst>(&Call))
4695       Assert(!CI->isInlineAsm(),
4696              "gc.statepoint support for inline assembly unimplemented", CI);
4697     Assert(Call.getParent()->getParent()->hasGC(),
4698            "Enclosing function does not use GC.", Call);
4699 
4700     verifyStatepoint(Call);
4701     break;
4702   case Intrinsic::experimental_gc_result: {
4703     Assert(Call.getParent()->getParent()->hasGC(),
4704            "Enclosing function does not use GC.", Call);
4705     // Are we tied to a statepoint properly?
4706     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4707     const Function *StatepointFn =
4708         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4709     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4710                StatepointFn->getIntrinsicID() ==
4711                    Intrinsic::experimental_gc_statepoint,
4712            "gc.result operand #1 must be from a statepoint", Call,
4713            Call.getArgOperand(0));
4714 
4715     // Assert that result type matches wrapped callee.
4716     const Value *Target = StatepointCall->getArgOperand(2);
4717     auto *PT = cast<PointerType>(Target->getType());
4718     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4719     Assert(Call.getType() == TargetFuncType->getReturnType(),
4720            "gc.result result type does not match wrapped callee", Call);
4721     break;
4722   }
4723   case Intrinsic::experimental_gc_relocate: {
4724     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4725 
4726     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4727            "gc.relocate must return a pointer or a vector of pointers", Call);
4728 
4729     // Check that this relocate is correctly tied to the statepoint
4730 
4731     // This is case for relocate on the unwinding path of an invoke statepoint
4732     if (LandingPadInst *LandingPad =
4733             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4734 
4735       const BasicBlock *InvokeBB =
4736           LandingPad->getParent()->getUniquePredecessor();
4737 
4738       // Landingpad relocates should have only one predecessor with invoke
4739       // statepoint terminator
4740       Assert(InvokeBB, "safepoints should have unique landingpads",
4741              LandingPad->getParent());
4742       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4743              InvokeBB);
4744       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
4745              "gc relocate should be linked to a statepoint", InvokeBB);
4746     } else {
4747       // In all other cases relocate should be tied to the statepoint directly.
4748       // This covers relocates on a normal return path of invoke statepoint and
4749       // relocates of a call statepoint.
4750       auto Token = Call.getArgOperand(0);
4751       Assert(isa<GCStatepointInst>(Token),
4752              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4753     }
4754 
4755     // Verify rest of the relocate arguments.
4756     const CallBase &StatepointCall =
4757       *cast<GCRelocateInst>(Call).getStatepoint();
4758 
4759     // Both the base and derived must be piped through the safepoint.
4760     Value *Base = Call.getArgOperand(1);
4761     Assert(isa<ConstantInt>(Base),
4762            "gc.relocate operand #2 must be integer offset", Call);
4763 
4764     Value *Derived = Call.getArgOperand(2);
4765     Assert(isa<ConstantInt>(Derived),
4766            "gc.relocate operand #3 must be integer offset", Call);
4767 
4768     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4769     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4770 
4771     // Check the bounds
4772     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
4773       Assert(BaseIndex < Opt->Inputs.size(),
4774              "gc.relocate: statepoint base index out of bounds", Call);
4775       Assert(DerivedIndex < Opt->Inputs.size(),
4776              "gc.relocate: statepoint derived index out of bounds", Call);
4777     } else {
4778       Assert(BaseIndex < StatepointCall.arg_size(),
4779              "gc.relocate: statepoint base index out of bounds", Call);
4780       Assert(DerivedIndex < StatepointCall.arg_size(),
4781              "gc.relocate: statepoint derived index out of bounds", Call);
4782 
4783       // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4784       // section of the statepoint's argument.
4785       Assert(StatepointCall.arg_size() > 0,
4786              "gc.statepoint: insufficient arguments");
4787       Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4788              "gc.statement: number of call arguments must be constant integer");
4789       const uint64_t NumCallArgs =
4790         cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4791       Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4792              "gc.statepoint: mismatch in number of call arguments");
4793       Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4794              "gc.statepoint: number of transition arguments must be "
4795              "a constant integer");
4796       const uint64_t NumTransitionArgs =
4797           cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4798               ->getZExtValue();
4799       const uint64_t DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4800       Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4801              "gc.statepoint: number of deoptimization arguments must be "
4802              "a constant integer");
4803       const uint64_t NumDeoptArgs =
4804           cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4805               ->getZExtValue();
4806       const uint64_t GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4807       const uint64_t GCParamArgsEnd = StatepointCall.arg_size();
4808       Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4809              "gc.relocate: statepoint base index doesn't fall within the "
4810              "'gc parameters' section of the statepoint call",
4811              Call);
4812       Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4813              "gc.relocate: statepoint derived index doesn't fall within the "
4814              "'gc parameters' section of the statepoint call",
4815              Call);
4816     }
4817 
4818     // Relocated value must be either a pointer type or vector-of-pointer type,
4819     // but gc_relocate does not need to return the same pointer type as the
4820     // relocated pointer. It can be casted to the correct type later if it's
4821     // desired. However, they must have the same address space and 'vectorness'
4822     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4823     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4824            "gc.relocate: relocated value must be a gc pointer", Call);
4825 
4826     auto ResultType = Call.getType();
4827     auto DerivedType = Relocate.getDerivedPtr()->getType();
4828     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4829            "gc.relocate: vector relocates to vector and pointer to pointer",
4830            Call);
4831     Assert(
4832         ResultType->getPointerAddressSpace() ==
4833             DerivedType->getPointerAddressSpace(),
4834         "gc.relocate: relocating a pointer shouldn't change its address space",
4835         Call);
4836     break;
4837   }
4838   case Intrinsic::eh_exceptioncode:
4839   case Intrinsic::eh_exceptionpointer: {
4840     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4841            "eh.exceptionpointer argument must be a catchpad", Call);
4842     break;
4843   }
4844   case Intrinsic::get_active_lane_mask: {
4845     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
4846            "vector", Call);
4847     auto *ElemTy = Call.getType()->getScalarType();
4848     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
4849            "i1", Call);
4850     break;
4851   }
4852   case Intrinsic::masked_load: {
4853     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4854            Call);
4855 
4856     Value *Ptr = Call.getArgOperand(0);
4857     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4858     Value *Mask = Call.getArgOperand(2);
4859     Value *PassThru = Call.getArgOperand(3);
4860     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4861            Call);
4862     Assert(Alignment->getValue().isPowerOf2(),
4863            "masked_load: alignment must be a power of 2", Call);
4864 
4865     // DataTy is the overloaded type
4866     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4867     Assert(DataTy == Call.getType(),
4868            "masked_load: return must match pointer type", Call);
4869     Assert(PassThru->getType() == DataTy,
4870            "masked_load: pass through and data type must match", Call);
4871     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
4872                cast<VectorType>(DataTy)->getElementCount(),
4873            "masked_load: vector mask must be same length as data", Call);
4874     break;
4875   }
4876   case Intrinsic::masked_store: {
4877     Value *Val = Call.getArgOperand(0);
4878     Value *Ptr = Call.getArgOperand(1);
4879     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4880     Value *Mask = Call.getArgOperand(3);
4881     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4882            Call);
4883     Assert(Alignment->getValue().isPowerOf2(),
4884            "masked_store: alignment must be a power of 2", Call);
4885 
4886     // DataTy is the overloaded type
4887     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4888     Assert(DataTy == Val->getType(),
4889            "masked_store: storee must match pointer type", Call);
4890     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
4891                cast<VectorType>(DataTy)->getElementCount(),
4892            "masked_store: vector mask must be same length as data", Call);
4893     break;
4894   }
4895 
4896   case Intrinsic::masked_gather: {
4897     const APInt &Alignment =
4898         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
4899     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
4900            "masked_gather: alignment must be 0 or a power of 2", Call);
4901     break;
4902   }
4903   case Intrinsic::masked_scatter: {
4904     const APInt &Alignment =
4905         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
4906     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
4907            "masked_scatter: alignment must be 0 or a power of 2", Call);
4908     break;
4909   }
4910 
4911   case Intrinsic::experimental_guard: {
4912     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4913     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4914            "experimental_guard must have exactly one "
4915            "\"deopt\" operand bundle");
4916     break;
4917   }
4918 
4919   case Intrinsic::experimental_deoptimize: {
4920     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4921            Call);
4922     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4923            "experimental_deoptimize must have exactly one "
4924            "\"deopt\" operand bundle");
4925     Assert(Call.getType() == Call.getFunction()->getReturnType(),
4926            "experimental_deoptimize return type must match caller return type");
4927 
4928     if (isa<CallInst>(Call)) {
4929       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4930       Assert(RI,
4931              "calls to experimental_deoptimize must be followed by a return");
4932 
4933       if (!Call.getType()->isVoidTy() && RI)
4934         Assert(RI->getReturnValue() == &Call,
4935                "calls to experimental_deoptimize must be followed by a return "
4936                "of the value computed by experimental_deoptimize");
4937     }
4938 
4939     break;
4940   }
4941   case Intrinsic::sadd_sat:
4942   case Intrinsic::uadd_sat:
4943   case Intrinsic::ssub_sat:
4944   case Intrinsic::usub_sat: {
4945     Value *Op1 = Call.getArgOperand(0);
4946     Value *Op2 = Call.getArgOperand(1);
4947     Assert(Op1->getType()->isIntOrIntVectorTy(),
4948            "first operand of [us][add|sub]_sat must be an int type or vector "
4949            "of ints");
4950     Assert(Op2->getType()->isIntOrIntVectorTy(),
4951            "second operand of [us][add|sub]_sat must be an int type or vector "
4952            "of ints");
4953     break;
4954   }
4955   case Intrinsic::smul_fix:
4956   case Intrinsic::smul_fix_sat:
4957   case Intrinsic::umul_fix:
4958   case Intrinsic::umul_fix_sat:
4959   case Intrinsic::sdiv_fix:
4960   case Intrinsic::sdiv_fix_sat:
4961   case Intrinsic::udiv_fix:
4962   case Intrinsic::udiv_fix_sat: {
4963     Value *Op1 = Call.getArgOperand(0);
4964     Value *Op2 = Call.getArgOperand(1);
4965     Assert(Op1->getType()->isIntOrIntVectorTy(),
4966            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
4967            "vector of ints");
4968     Assert(Op2->getType()->isIntOrIntVectorTy(),
4969            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
4970            "vector of ints");
4971 
4972     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4973     Assert(Op3->getType()->getBitWidth() <= 32,
4974            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
4975 
4976     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
4977         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
4978       Assert(
4979           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4980           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
4981           "the operands");
4982     } else {
4983       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4984              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
4985              "to the width of the operands");
4986     }
4987     break;
4988   }
4989   case Intrinsic::lround:
4990   case Intrinsic::llround:
4991   case Intrinsic::lrint:
4992   case Intrinsic::llrint: {
4993     Type *ValTy = Call.getArgOperand(0)->getType();
4994     Type *ResultTy = Call.getType();
4995     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4996            "Intrinsic does not support vectors", &Call);
4997     break;
4998   }
4999   case Intrinsic::bswap: {
5000     Type *Ty = Call.getType();
5001     unsigned Size = Ty->getScalarSizeInBits();
5002     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5003     break;
5004   }
5005   case Intrinsic::matrix_multiply:
5006   case Intrinsic::matrix_transpose:
5007   case Intrinsic::matrix_column_major_load:
5008   case Intrinsic::matrix_column_major_store: {
5009     Function *IF = Call.getCalledFunction();
5010     ConstantInt *Stride = nullptr;
5011     ConstantInt *NumRows;
5012     ConstantInt *NumColumns;
5013     VectorType *ResultTy;
5014     Type *Op0ElemTy = nullptr;
5015     Type *Op1ElemTy = nullptr;
5016     switch (ID) {
5017     case Intrinsic::matrix_multiply:
5018       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5019       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5020       ResultTy = cast<VectorType>(Call.getType());
5021       Op0ElemTy =
5022           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5023       Op1ElemTy =
5024           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5025       break;
5026     case Intrinsic::matrix_transpose:
5027       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5028       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5029       ResultTy = cast<VectorType>(Call.getType());
5030       Op0ElemTy =
5031           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5032       break;
5033     case Intrinsic::matrix_column_major_load:
5034       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5035       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5036       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5037       ResultTy = cast<VectorType>(Call.getType());
5038       Op0ElemTy =
5039           cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType();
5040       break;
5041     case Intrinsic::matrix_column_major_store:
5042       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5043       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5044       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5045       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5046       Op0ElemTy =
5047           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5048       Op1ElemTy =
5049           cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType();
5050       break;
5051     default:
5052       llvm_unreachable("unexpected intrinsic");
5053     }
5054 
5055     Assert(ResultTy->getElementType()->isIntegerTy() ||
5056            ResultTy->getElementType()->isFloatingPointTy(),
5057            "Result type must be an integer or floating-point type!", IF);
5058 
5059     Assert(ResultTy->getElementType() == Op0ElemTy,
5060            "Vector element type mismatch of the result and first operand "
5061            "vector!", IF);
5062 
5063     if (Op1ElemTy)
5064       Assert(ResultTy->getElementType() == Op1ElemTy,
5065              "Vector element type mismatch of the result and second operand "
5066              "vector!", IF);
5067 
5068     Assert(ResultTy->getNumElements() ==
5069                NumRows->getZExtValue() * NumColumns->getZExtValue(),
5070            "Result of a matrix operation does not fit in the returned vector!");
5071 
5072     if (Stride)
5073       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
5074              "Stride must be greater or equal than the number of rows!", IF);
5075 
5076     break;
5077   }
5078   };
5079 }
5080 
5081 /// Carefully grab the subprogram from a local scope.
5082 ///
5083 /// This carefully grabs the subprogram from a local scope, avoiding the
5084 /// built-in assertions that would typically fire.
5085 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5086   if (!LocalScope)
5087     return nullptr;
5088 
5089   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5090     return SP;
5091 
5092   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5093     return getSubprogram(LB->getRawScope());
5094 
5095   // Just return null; broken scope chains are checked elsewhere.
5096   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5097   return nullptr;
5098 }
5099 
5100 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5101   unsigned NumOperands;
5102   bool HasRoundingMD;
5103   switch (FPI.getIntrinsicID()) {
5104 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5105   case Intrinsic::INTRINSIC:                                                   \
5106     NumOperands = NARG;                                                        \
5107     HasRoundingMD = ROUND_MODE;                                                \
5108     break;
5109 #include "llvm/IR/ConstrainedOps.def"
5110   default:
5111     llvm_unreachable("Invalid constrained FP intrinsic!");
5112   }
5113   NumOperands += (1 + HasRoundingMD);
5114   // Compare intrinsics carry an extra predicate metadata operand.
5115   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5116     NumOperands += 1;
5117   Assert((FPI.getNumArgOperands() == NumOperands),
5118          "invalid arguments for constrained FP intrinsic", &FPI);
5119 
5120   switch (FPI.getIntrinsicID()) {
5121   case Intrinsic::experimental_constrained_lrint:
5122   case Intrinsic::experimental_constrained_llrint: {
5123     Type *ValTy = FPI.getArgOperand(0)->getType();
5124     Type *ResultTy = FPI.getType();
5125     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5126            "Intrinsic does not support vectors", &FPI);
5127   }
5128     break;
5129 
5130   case Intrinsic::experimental_constrained_lround:
5131   case Intrinsic::experimental_constrained_llround: {
5132     Type *ValTy = FPI.getArgOperand(0)->getType();
5133     Type *ResultTy = FPI.getType();
5134     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5135            "Intrinsic does not support vectors", &FPI);
5136     break;
5137   }
5138 
5139   case Intrinsic::experimental_constrained_fcmp:
5140   case Intrinsic::experimental_constrained_fcmps: {
5141     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5142     Assert(CmpInst::isFPPredicate(Pred),
5143            "invalid predicate for constrained FP comparison intrinsic", &FPI);
5144     break;
5145   }
5146 
5147   case Intrinsic::experimental_constrained_fptosi:
5148   case Intrinsic::experimental_constrained_fptoui: {
5149     Value *Operand = FPI.getArgOperand(0);
5150     uint64_t NumSrcElem = 0;
5151     Assert(Operand->getType()->isFPOrFPVectorTy(),
5152            "Intrinsic first argument must be floating point", &FPI);
5153     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5154       NumSrcElem = OperandT->getNumElements();
5155     }
5156 
5157     Operand = &FPI;
5158     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5159            "Intrinsic first argument and result disagree on vector use", &FPI);
5160     Assert(Operand->getType()->isIntOrIntVectorTy(),
5161            "Intrinsic result must be an integer", &FPI);
5162     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5163       Assert(NumSrcElem == OperandT->getNumElements(),
5164              "Intrinsic first argument and result vector lengths must be equal",
5165              &FPI);
5166     }
5167   }
5168     break;
5169 
5170   case Intrinsic::experimental_constrained_sitofp:
5171   case Intrinsic::experimental_constrained_uitofp: {
5172     Value *Operand = FPI.getArgOperand(0);
5173     uint64_t NumSrcElem = 0;
5174     Assert(Operand->getType()->isIntOrIntVectorTy(),
5175            "Intrinsic first argument must be integer", &FPI);
5176     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5177       NumSrcElem = OperandT->getNumElements();
5178     }
5179 
5180     Operand = &FPI;
5181     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5182            "Intrinsic first argument and result disagree on vector use", &FPI);
5183     Assert(Operand->getType()->isFPOrFPVectorTy(),
5184            "Intrinsic result must be a floating point", &FPI);
5185     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5186       Assert(NumSrcElem == OperandT->getNumElements(),
5187              "Intrinsic first argument and result vector lengths must be equal",
5188              &FPI);
5189     }
5190   } break;
5191 
5192   case Intrinsic::experimental_constrained_fptrunc:
5193   case Intrinsic::experimental_constrained_fpext: {
5194     Value *Operand = FPI.getArgOperand(0);
5195     Type *OperandTy = Operand->getType();
5196     Value *Result = &FPI;
5197     Type *ResultTy = Result->getType();
5198     Assert(OperandTy->isFPOrFPVectorTy(),
5199            "Intrinsic first argument must be FP or FP vector", &FPI);
5200     Assert(ResultTy->isFPOrFPVectorTy(),
5201            "Intrinsic result must be FP or FP vector", &FPI);
5202     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5203            "Intrinsic first argument and result disagree on vector use", &FPI);
5204     if (OperandTy->isVectorTy()) {
5205       auto *OperandVecTy = cast<VectorType>(OperandTy);
5206       auto *ResultVecTy = cast<VectorType>(ResultTy);
5207       Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
5208              "Intrinsic first argument and result vector lengths must be equal",
5209              &FPI);
5210     }
5211     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5212       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5213              "Intrinsic first argument's type must be larger than result type",
5214              &FPI);
5215     } else {
5216       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5217              "Intrinsic first argument's type must be smaller than result type",
5218              &FPI);
5219     }
5220   }
5221     break;
5222 
5223   default:
5224     break;
5225   }
5226 
5227   // If a non-metadata argument is passed in a metadata slot then the
5228   // error will be caught earlier when the incorrect argument doesn't
5229   // match the specification in the intrinsic call table. Thus, no
5230   // argument type check is needed here.
5231 
5232   Assert(FPI.getExceptionBehavior().hasValue(),
5233          "invalid exception behavior argument", &FPI);
5234   if (HasRoundingMD) {
5235     Assert(FPI.getRoundingMode().hasValue(),
5236            "invalid rounding mode argument", &FPI);
5237   }
5238 }
5239 
5240 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5241   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
5242   AssertDI(isa<ValueAsMetadata>(MD) ||
5243              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5244          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5245   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
5246          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5247          DII.getRawVariable());
5248   AssertDI(isa<DIExpression>(DII.getRawExpression()),
5249          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5250          DII.getRawExpression());
5251 
5252   // Ignore broken !dbg attachments; they're checked elsewhere.
5253   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5254     if (!isa<DILocation>(N))
5255       return;
5256 
5257   BasicBlock *BB = DII.getParent();
5258   Function *F = BB ? BB->getParent() : nullptr;
5259 
5260   // The scopes for variables and !dbg attachments must agree.
5261   DILocalVariable *Var = DII.getVariable();
5262   DILocation *Loc = DII.getDebugLoc();
5263   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5264            &DII, BB, F);
5265 
5266   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5267   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5268   if (!VarSP || !LocSP)
5269     return; // Broken scope chains are checked elsewhere.
5270 
5271   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5272                                " variable and !dbg attachment",
5273            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5274            Loc->getScope()->getSubprogram());
5275 
5276   // This check is redundant with one in visitLocalVariable().
5277   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
5278            Var->getRawType());
5279   verifyFnArgs(DII);
5280 }
5281 
5282 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5283   AssertDI(isa<DILabel>(DLI.getRawLabel()),
5284          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5285          DLI.getRawLabel());
5286 
5287   // Ignore broken !dbg attachments; they're checked elsewhere.
5288   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5289     if (!isa<DILocation>(N))
5290       return;
5291 
5292   BasicBlock *BB = DLI.getParent();
5293   Function *F = BB ? BB->getParent() : nullptr;
5294 
5295   // The scopes for variables and !dbg attachments must agree.
5296   DILabel *Label = DLI.getLabel();
5297   DILocation *Loc = DLI.getDebugLoc();
5298   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5299          &DLI, BB, F);
5300 
5301   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5302   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5303   if (!LabelSP || !LocSP)
5304     return;
5305 
5306   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5307                              " label and !dbg attachment",
5308            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5309            Loc->getScope()->getSubprogram());
5310 }
5311 
5312 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5313   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5314   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5315 
5316   // We don't know whether this intrinsic verified correctly.
5317   if (!V || !E || !E->isValid())
5318     return;
5319 
5320   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5321   auto Fragment = E->getFragmentInfo();
5322   if (!Fragment)
5323     return;
5324 
5325   // The frontend helps out GDB by emitting the members of local anonymous
5326   // unions as artificial local variables with shared storage. When SROA splits
5327   // the storage for artificial local variables that are smaller than the entire
5328   // union, the overhang piece will be outside of the allotted space for the
5329   // variable and this check fails.
5330   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5331   if (V->isArtificial())
5332     return;
5333 
5334   verifyFragmentExpression(*V, *Fragment, &I);
5335 }
5336 
5337 template <typename ValueOrMetadata>
5338 void Verifier::verifyFragmentExpression(const DIVariable &V,
5339                                         DIExpression::FragmentInfo Fragment,
5340                                         ValueOrMetadata *Desc) {
5341   // If there's no size, the type is broken, but that should be checked
5342   // elsewhere.
5343   auto VarSize = V.getSizeInBits();
5344   if (!VarSize)
5345     return;
5346 
5347   unsigned FragSize = Fragment.SizeInBits;
5348   unsigned FragOffset = Fragment.OffsetInBits;
5349   AssertDI(FragSize + FragOffset <= *VarSize,
5350          "fragment is larger than or outside of variable", Desc, &V);
5351   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5352 }
5353 
5354 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5355   // This function does not take the scope of noninlined function arguments into
5356   // account. Don't run it if current function is nodebug, because it may
5357   // contain inlined debug intrinsics.
5358   if (!HasDebugInfo)
5359     return;
5360 
5361   // For performance reasons only check non-inlined ones.
5362   if (I.getDebugLoc()->getInlinedAt())
5363     return;
5364 
5365   DILocalVariable *Var = I.getVariable();
5366   AssertDI(Var, "dbg intrinsic without variable");
5367 
5368   unsigned ArgNo = Var->getArg();
5369   if (!ArgNo)
5370     return;
5371 
5372   // Verify there are no duplicate function argument debug info entries.
5373   // These will cause hard-to-debug assertions in the DWARF backend.
5374   if (DebugFnArgs.size() < ArgNo)
5375     DebugFnArgs.resize(ArgNo, nullptr);
5376 
5377   auto *Prev = DebugFnArgs[ArgNo - 1];
5378   DebugFnArgs[ArgNo - 1] = Var;
5379   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5380            Prev, Var);
5381 }
5382 
5383 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5384   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5385 
5386   // We don't know whether this intrinsic verified correctly.
5387   if (!E || !E->isValid())
5388     return;
5389 
5390   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5391 }
5392 
5393 void Verifier::verifyCompileUnits() {
5394   // When more than one Module is imported into the same context, such as during
5395   // an LTO build before linking the modules, ODR type uniquing may cause types
5396   // to point to a different CU. This check does not make sense in this case.
5397   if (M.getContext().isODRUniquingDebugTypes())
5398     return;
5399   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5400   SmallPtrSet<const Metadata *, 2> Listed;
5401   if (CUs)
5402     Listed.insert(CUs->op_begin(), CUs->op_end());
5403   for (auto *CU : CUVisited)
5404     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5405   CUVisited.clear();
5406 }
5407 
5408 void Verifier::verifyDeoptimizeCallingConvs() {
5409   if (DeoptimizeDeclarations.empty())
5410     return;
5411 
5412   const Function *First = DeoptimizeDeclarations[0];
5413   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5414     Assert(First->getCallingConv() == F->getCallingConv(),
5415            "All llvm.experimental.deoptimize declarations must have the same "
5416            "calling convention",
5417            First, F);
5418   }
5419 }
5420 
5421 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5422   bool HasSource = F.getSource().hasValue();
5423   if (!HasSourceDebugInfo.count(&U))
5424     HasSourceDebugInfo[&U] = HasSource;
5425   AssertDI(HasSource == HasSourceDebugInfo[&U],
5426            "inconsistent use of embedded source");
5427 }
5428 
5429 //===----------------------------------------------------------------------===//
5430 //  Implement the public interfaces to this file...
5431 //===----------------------------------------------------------------------===//
5432 
5433 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5434   Function &F = const_cast<Function &>(f);
5435 
5436   // Don't use a raw_null_ostream.  Printing IR is expensive.
5437   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5438 
5439   // Note that this function's return value is inverted from what you would
5440   // expect of a function called "verify".
5441   return !V.verify(F);
5442 }
5443 
5444 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5445                         bool *BrokenDebugInfo) {
5446   // Don't use a raw_null_ostream.  Printing IR is expensive.
5447   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5448 
5449   bool Broken = false;
5450   for (const Function &F : M)
5451     Broken |= !V.verify(F);
5452 
5453   Broken |= !V.verify();
5454   if (BrokenDebugInfo)
5455     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5456   // Note that this function's return value is inverted from what you would
5457   // expect of a function called "verify".
5458   return Broken;
5459 }
5460 
5461 namespace {
5462 
5463 struct VerifierLegacyPass : public FunctionPass {
5464   static char ID;
5465 
5466   std::unique_ptr<Verifier> V;
5467   bool FatalErrors = true;
5468 
5469   VerifierLegacyPass() : FunctionPass(ID) {
5470     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5471   }
5472   explicit VerifierLegacyPass(bool FatalErrors)
5473       : FunctionPass(ID),
5474         FatalErrors(FatalErrors) {
5475     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5476   }
5477 
5478   bool doInitialization(Module &M) override {
5479     V = std::make_unique<Verifier>(
5480         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5481     return false;
5482   }
5483 
5484   bool runOnFunction(Function &F) override {
5485     if (!V->verify(F) && FatalErrors) {
5486       errs() << "in function " << F.getName() << '\n';
5487       report_fatal_error("Broken function found, compilation aborted!");
5488     }
5489     return false;
5490   }
5491 
5492   bool doFinalization(Module &M) override {
5493     bool HasErrors = false;
5494     for (Function &F : M)
5495       if (F.isDeclaration())
5496         HasErrors |= !V->verify(F);
5497 
5498     HasErrors |= !V->verify();
5499     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5500       report_fatal_error("Broken module found, compilation aborted!");
5501     return false;
5502   }
5503 
5504   void getAnalysisUsage(AnalysisUsage &AU) const override {
5505     AU.setPreservesAll();
5506   }
5507 };
5508 
5509 } // end anonymous namespace
5510 
5511 /// Helper to issue failure from the TBAA verification
5512 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5513   if (Diagnostic)
5514     return Diagnostic->CheckFailed(Args...);
5515 }
5516 
5517 #define AssertTBAA(C, ...)                                                     \
5518   do {                                                                         \
5519     if (!(C)) {                                                                \
5520       CheckFailed(__VA_ARGS__);                                                \
5521       return false;                                                            \
5522     }                                                                          \
5523   } while (false)
5524 
5525 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5526 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5527 /// struct-type node describing an aggregate data structure (like a struct).
5528 TBAAVerifier::TBAABaseNodeSummary
5529 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5530                                  bool IsNewFormat) {
5531   if (BaseNode->getNumOperands() < 2) {
5532     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5533     return {true, ~0u};
5534   }
5535 
5536   auto Itr = TBAABaseNodes.find(BaseNode);
5537   if (Itr != TBAABaseNodes.end())
5538     return Itr->second;
5539 
5540   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5541   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5542   (void)InsertResult;
5543   assert(InsertResult.second && "We just checked!");
5544   return Result;
5545 }
5546 
5547 TBAAVerifier::TBAABaseNodeSummary
5548 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5549                                      bool IsNewFormat) {
5550   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5551 
5552   if (BaseNode->getNumOperands() == 2) {
5553     // Scalar nodes can only be accessed at offset 0.
5554     return isValidScalarTBAANode(BaseNode)
5555                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5556                : InvalidNode;
5557   }
5558 
5559   if (IsNewFormat) {
5560     if (BaseNode->getNumOperands() % 3 != 0) {
5561       CheckFailed("Access tag nodes must have the number of operands that is a "
5562                   "multiple of 3!", BaseNode);
5563       return InvalidNode;
5564     }
5565   } else {
5566     if (BaseNode->getNumOperands() % 2 != 1) {
5567       CheckFailed("Struct tag nodes must have an odd number of operands!",
5568                   BaseNode);
5569       return InvalidNode;
5570     }
5571   }
5572 
5573   // Check the type size field.
5574   if (IsNewFormat) {
5575     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5576         BaseNode->getOperand(1));
5577     if (!TypeSizeNode) {
5578       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5579       return InvalidNode;
5580     }
5581   }
5582 
5583   // Check the type name field. In the new format it can be anything.
5584   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5585     CheckFailed("Struct tag nodes have a string as their first operand",
5586                 BaseNode);
5587     return InvalidNode;
5588   }
5589 
5590   bool Failed = false;
5591 
5592   Optional<APInt> PrevOffset;
5593   unsigned BitWidth = ~0u;
5594 
5595   // We've already checked that BaseNode is not a degenerate root node with one
5596   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5597   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5598   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5599   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5600            Idx += NumOpsPerField) {
5601     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5602     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5603     if (!isa<MDNode>(FieldTy)) {
5604       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5605       Failed = true;
5606       continue;
5607     }
5608 
5609     auto *OffsetEntryCI =
5610         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5611     if (!OffsetEntryCI) {
5612       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5613       Failed = true;
5614       continue;
5615     }
5616 
5617     if (BitWidth == ~0u)
5618       BitWidth = OffsetEntryCI->getBitWidth();
5619 
5620     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5621       CheckFailed(
5622           "Bitwidth between the offsets and struct type entries must match", &I,
5623           BaseNode);
5624       Failed = true;
5625       continue;
5626     }
5627 
5628     // NB! As far as I can tell, we generate a non-strictly increasing offset
5629     // sequence only from structs that have zero size bit fields.  When
5630     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5631     // pick the field lexically the latest in struct type metadata node.  This
5632     // mirrors the actual behavior of the alias analysis implementation.
5633     bool IsAscending =
5634         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5635 
5636     if (!IsAscending) {
5637       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5638       Failed = true;
5639     }
5640 
5641     PrevOffset = OffsetEntryCI->getValue();
5642 
5643     if (IsNewFormat) {
5644       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5645           BaseNode->getOperand(Idx + 2));
5646       if (!MemberSizeNode) {
5647         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5648         Failed = true;
5649         continue;
5650       }
5651     }
5652   }
5653 
5654   return Failed ? InvalidNode
5655                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5656 }
5657 
5658 static bool IsRootTBAANode(const MDNode *MD) {
5659   return MD->getNumOperands() < 2;
5660 }
5661 
5662 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5663                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5664   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5665     return false;
5666 
5667   if (!isa<MDString>(MD->getOperand(0)))
5668     return false;
5669 
5670   if (MD->getNumOperands() == 3) {
5671     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5672     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5673       return false;
5674   }
5675 
5676   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5677   return Parent && Visited.insert(Parent).second &&
5678          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5679 }
5680 
5681 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5682   auto ResultIt = TBAAScalarNodes.find(MD);
5683   if (ResultIt != TBAAScalarNodes.end())
5684     return ResultIt->second;
5685 
5686   SmallPtrSet<const MDNode *, 4> Visited;
5687   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5688   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5689   (void)InsertResult;
5690   assert(InsertResult.second && "Just checked!");
5691 
5692   return Result;
5693 }
5694 
5695 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5696 /// Offset in place to be the offset within the field node returned.
5697 ///
5698 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5699 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5700                                                    const MDNode *BaseNode,
5701                                                    APInt &Offset,
5702                                                    bool IsNewFormat) {
5703   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5704 
5705   // Scalar nodes have only one possible "field" -- their parent in the access
5706   // hierarchy.  Offset must be zero at this point, but our caller is supposed
5707   // to Assert that.
5708   if (BaseNode->getNumOperands() == 2)
5709     return cast<MDNode>(BaseNode->getOperand(1));
5710 
5711   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5712   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5713   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5714            Idx += NumOpsPerField) {
5715     auto *OffsetEntryCI =
5716         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5717     if (OffsetEntryCI->getValue().ugt(Offset)) {
5718       if (Idx == FirstFieldOpNo) {
5719         CheckFailed("Could not find TBAA parent in struct type node", &I,
5720                     BaseNode, &Offset);
5721         return nullptr;
5722       }
5723 
5724       unsigned PrevIdx = Idx - NumOpsPerField;
5725       auto *PrevOffsetEntryCI =
5726           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5727       Offset -= PrevOffsetEntryCI->getValue();
5728       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5729     }
5730   }
5731 
5732   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5733   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5734       BaseNode->getOperand(LastIdx + 1));
5735   Offset -= LastOffsetEntryCI->getValue();
5736   return cast<MDNode>(BaseNode->getOperand(LastIdx));
5737 }
5738 
5739 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5740   if (!Type || Type->getNumOperands() < 3)
5741     return false;
5742 
5743   // In the new format type nodes shall have a reference to the parent type as
5744   // its first operand.
5745   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5746   if (!Parent)
5747     return false;
5748 
5749   return true;
5750 }
5751 
5752 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5753   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5754                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5755                  isa<AtomicCmpXchgInst>(I),
5756              "This instruction shall not have a TBAA access tag!", &I);
5757 
5758   bool IsStructPathTBAA =
5759       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5760 
5761   AssertTBAA(
5762       IsStructPathTBAA,
5763       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5764 
5765   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5766   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5767 
5768   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5769 
5770   if (IsNewFormat) {
5771     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5772                "Access tag metadata must have either 4 or 5 operands", &I, MD);
5773   } else {
5774     AssertTBAA(MD->getNumOperands() < 5,
5775                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5776   }
5777 
5778   // Check the access size field.
5779   if (IsNewFormat) {
5780     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5781         MD->getOperand(3));
5782     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5783   }
5784 
5785   // Check the immutability flag.
5786   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5787   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5788     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5789         MD->getOperand(ImmutabilityFlagOpNo));
5790     AssertTBAA(IsImmutableCI,
5791                "Immutability tag on struct tag metadata must be a constant",
5792                &I, MD);
5793     AssertTBAA(
5794         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5795         "Immutability part of the struct tag metadata must be either 0 or 1",
5796         &I, MD);
5797   }
5798 
5799   AssertTBAA(BaseNode && AccessType,
5800              "Malformed struct tag metadata: base and access-type "
5801              "should be non-null and point to Metadata nodes",
5802              &I, MD, BaseNode, AccessType);
5803 
5804   if (!IsNewFormat) {
5805     AssertTBAA(isValidScalarTBAANode(AccessType),
5806                "Access type node must be a valid scalar type", &I, MD,
5807                AccessType);
5808   }
5809 
5810   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5811   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5812 
5813   APInt Offset = OffsetCI->getValue();
5814   bool SeenAccessTypeInPath = false;
5815 
5816   SmallPtrSet<MDNode *, 4> StructPath;
5817 
5818   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5819        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5820                                                IsNewFormat)) {
5821     if (!StructPath.insert(BaseNode).second) {
5822       CheckFailed("Cycle detected in struct path", &I, MD);
5823       return false;
5824     }
5825 
5826     bool Invalid;
5827     unsigned BaseNodeBitWidth;
5828     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5829                                                              IsNewFormat);
5830 
5831     // If the base node is invalid in itself, then we've already printed all the
5832     // errors we wanted to print.
5833     if (Invalid)
5834       return false;
5835 
5836     SeenAccessTypeInPath |= BaseNode == AccessType;
5837 
5838     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5839       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5840                  &I, MD, &Offset);
5841 
5842     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5843                    (BaseNodeBitWidth == 0 && Offset == 0) ||
5844                    (IsNewFormat && BaseNodeBitWidth == ~0u),
5845                "Access bit-width not the same as description bit-width", &I, MD,
5846                BaseNodeBitWidth, Offset.getBitWidth());
5847 
5848     if (IsNewFormat && SeenAccessTypeInPath)
5849       break;
5850   }
5851 
5852   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5853              &I, MD);
5854   return true;
5855 }
5856 
5857 char VerifierLegacyPass::ID = 0;
5858 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5859 
5860 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5861   return new VerifierLegacyPass(FatalErrors);
5862 }
5863 
5864 AnalysisKey VerifierAnalysis::Key;
5865 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5866                                                ModuleAnalysisManager &) {
5867   Result Res;
5868   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5869   return Res;
5870 }
5871 
5872 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5873                                                FunctionAnalysisManager &) {
5874   return { llvm::verifyFunction(F, &dbgs()), false };
5875 }
5876 
5877 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5878   auto Res = AM.getResult<VerifierAnalysis>(M);
5879   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5880     report_fatal_error("Broken module found, compilation aborted!");
5881 
5882   return PreservedAnalyses::all();
5883 }
5884 
5885 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5886   auto res = AM.getResult<VerifierAnalysis>(F);
5887   if (res.IRBroken && FatalErrors)
5888     report_fatal_error("Broken function found, compilation aborted!");
5889 
5890   return PreservedAnalyses::all();
5891 }
5892