1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/LLVMContext.h" 90 #include "llvm/IR/Metadata.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/ModuleSlotTracker.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Statepoint.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/AtomicOrdering.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <memory> 111 #include <string> 112 #include <utility> 113 114 using namespace llvm; 115 116 namespace llvm { 117 118 struct VerifierSupport { 119 raw_ostream *OS; 120 const Module &M; 121 ModuleSlotTracker MST; 122 Triple TT; 123 const DataLayout &DL; 124 LLVMContext &Context; 125 126 /// Track the brokenness of the module while recursively visiting. 127 bool Broken = false; 128 /// Broken debug info can be "recovered" from by stripping the debug info. 129 bool BrokenDebugInfo = false; 130 /// Whether to treat broken debug info as an error. 131 bool TreatBrokenDebugInfoAsError = true; 132 133 explicit VerifierSupport(raw_ostream *OS, const Module &M) 134 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 135 Context(M.getContext()) {} 136 137 private: 138 void Write(const Module *M) { 139 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 140 } 141 142 void Write(const Value *V) { 143 if (V) 144 Write(*V); 145 } 146 147 void Write(const Value &V) { 148 if (isa<Instruction>(V)) { 149 V.print(*OS, MST); 150 *OS << '\n'; 151 } else { 152 V.printAsOperand(*OS, true, MST); 153 *OS << '\n'; 154 } 155 } 156 157 void Write(const Metadata *MD) { 158 if (!MD) 159 return; 160 MD->print(*OS, MST, &M); 161 *OS << '\n'; 162 } 163 164 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 165 Write(MD.get()); 166 } 167 168 void Write(const NamedMDNode *NMD) { 169 if (!NMD) 170 return; 171 NMD->print(*OS, MST); 172 *OS << '\n'; 173 } 174 175 void Write(Type *T) { 176 if (!T) 177 return; 178 *OS << ' ' << *T; 179 } 180 181 void Write(const Comdat *C) { 182 if (!C) 183 return; 184 *OS << *C; 185 } 186 187 void Write(const APInt *AI) { 188 if (!AI) 189 return; 190 *OS << *AI << '\n'; 191 } 192 193 void Write(const unsigned i) { *OS << i << '\n'; } 194 195 template <typename T> void Write(ArrayRef<T> Vs) { 196 for (const T &V : Vs) 197 Write(V); 198 } 199 200 template <typename T1, typename... Ts> 201 void WriteTs(const T1 &V1, const Ts &... Vs) { 202 Write(V1); 203 WriteTs(Vs...); 204 } 205 206 template <typename... Ts> void WriteTs() {} 207 208 public: 209 /// A check failed, so printout out the condition and the message. 210 /// 211 /// This provides a nice place to put a breakpoint if you want to see why 212 /// something is not correct. 213 void CheckFailed(const Twine &Message) { 214 if (OS) 215 *OS << Message << '\n'; 216 Broken = true; 217 } 218 219 /// A check failed (with values to print). 220 /// 221 /// This calls the Message-only version so that the above is easier to set a 222 /// breakpoint on. 223 template <typename T1, typename... Ts> 224 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 225 CheckFailed(Message); 226 if (OS) 227 WriteTs(V1, Vs...); 228 } 229 230 /// A debug info check failed. 231 void DebugInfoCheckFailed(const Twine &Message) { 232 if (OS) 233 *OS << Message << '\n'; 234 Broken |= TreatBrokenDebugInfoAsError; 235 BrokenDebugInfo = true; 236 } 237 238 /// A debug info check failed (with values to print). 239 template <typename T1, typename... Ts> 240 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 241 const Ts &... Vs) { 242 DebugInfoCheckFailed(Message); 243 if (OS) 244 WriteTs(V1, Vs...); 245 } 246 }; 247 248 } // namespace llvm 249 250 namespace { 251 252 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 253 friend class InstVisitor<Verifier>; 254 255 DominatorTree DT; 256 257 /// When verifying a basic block, keep track of all of the 258 /// instructions we have seen so far. 259 /// 260 /// This allows us to do efficient dominance checks for the case when an 261 /// instruction has an operand that is an instruction in the same block. 262 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 263 264 /// Keep track of the metadata nodes that have been checked already. 265 SmallPtrSet<const Metadata *, 32> MDNodes; 266 267 /// Keep track which DISubprogram is attached to which function. 268 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 269 270 /// Track all DICompileUnits visited. 271 SmallPtrSet<const Metadata *, 2> CUVisited; 272 273 /// The result type for a landingpad. 274 Type *LandingPadResultTy; 275 276 /// Whether we've seen a call to @llvm.localescape in this function 277 /// already. 278 bool SawFrameEscape; 279 280 /// Whether the current function has a DISubprogram attached to it. 281 bool HasDebugInfo = false; 282 283 /// Whether source was present on the first DIFile encountered in each CU. 284 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 285 286 /// Stores the count of how many objects were passed to llvm.localescape for a 287 /// given function and the largest index passed to llvm.localrecover. 288 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 289 290 // Maps catchswitches and cleanuppads that unwind to siblings to the 291 // terminators that indicate the unwind, used to detect cycles therein. 292 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 293 294 /// Cache of constants visited in search of ConstantExprs. 295 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 296 297 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 298 SmallVector<const Function *, 4> DeoptimizeDeclarations; 299 300 // Verify that this GlobalValue is only used in this module. 301 // This map is used to avoid visiting uses twice. We can arrive at a user 302 // twice, if they have multiple operands. In particular for very large 303 // constant expressions, we can arrive at a particular user many times. 304 SmallPtrSet<const Value *, 32> GlobalValueVisited; 305 306 // Keeps track of duplicate function argument debug info. 307 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 308 309 TBAAVerifier TBAAVerifyHelper; 310 311 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 312 313 public: 314 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 315 const Module &M) 316 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 317 SawFrameEscape(false), TBAAVerifyHelper(this) { 318 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 319 } 320 321 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 322 323 bool verify(const Function &F) { 324 assert(F.getParent() == &M && 325 "An instance of this class only works with a specific module!"); 326 327 // First ensure the function is well-enough formed to compute dominance 328 // information, and directly compute a dominance tree. We don't rely on the 329 // pass manager to provide this as it isolates us from a potentially 330 // out-of-date dominator tree and makes it significantly more complex to run 331 // this code outside of a pass manager. 332 // FIXME: It's really gross that we have to cast away constness here. 333 if (!F.empty()) 334 DT.recalculate(const_cast<Function &>(F)); 335 336 for (const BasicBlock &BB : F) { 337 if (!BB.empty() && BB.back().isTerminator()) 338 continue; 339 340 if (OS) { 341 *OS << "Basic Block in function '" << F.getName() 342 << "' does not have terminator!\n"; 343 BB.printAsOperand(*OS, true, MST); 344 *OS << "\n"; 345 } 346 return false; 347 } 348 349 Broken = false; 350 // FIXME: We strip const here because the inst visitor strips const. 351 visit(const_cast<Function &>(F)); 352 verifySiblingFuncletUnwinds(); 353 InstsInThisBlock.clear(); 354 DebugFnArgs.clear(); 355 LandingPadResultTy = nullptr; 356 SawFrameEscape = false; 357 SiblingFuncletInfo.clear(); 358 359 return !Broken; 360 } 361 362 /// Verify the module that this instance of \c Verifier was initialized with. 363 bool verify() { 364 Broken = false; 365 366 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 367 for (const Function &F : M) 368 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 369 DeoptimizeDeclarations.push_back(&F); 370 371 // Now that we've visited every function, verify that we never asked to 372 // recover a frame index that wasn't escaped. 373 verifyFrameRecoverIndices(); 374 for (const GlobalVariable &GV : M.globals()) 375 visitGlobalVariable(GV); 376 377 for (const GlobalAlias &GA : M.aliases()) 378 visitGlobalAlias(GA); 379 380 for (const NamedMDNode &NMD : M.named_metadata()) 381 visitNamedMDNode(NMD); 382 383 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 384 visitComdat(SMEC.getValue()); 385 386 visitModuleFlags(M); 387 visitModuleIdents(M); 388 visitModuleCommandLines(M); 389 390 verifyCompileUnits(); 391 392 verifyDeoptimizeCallingConvs(); 393 DISubprogramAttachments.clear(); 394 return !Broken; 395 } 396 397 private: 398 // Verification methods... 399 void visitGlobalValue(const GlobalValue &GV); 400 void visitGlobalVariable(const GlobalVariable &GV); 401 void visitGlobalAlias(const GlobalAlias &GA); 402 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 403 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 404 const GlobalAlias &A, const Constant &C); 405 void visitNamedMDNode(const NamedMDNode &NMD); 406 void visitMDNode(const MDNode &MD); 407 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 408 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 409 void visitComdat(const Comdat &C); 410 void visitModuleIdents(const Module &M); 411 void visitModuleCommandLines(const Module &M); 412 void visitModuleFlags(const Module &M); 413 void visitModuleFlag(const MDNode *Op, 414 DenseMap<const MDString *, const MDNode *> &SeenIDs, 415 SmallVectorImpl<const MDNode *> &Requirements); 416 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 417 void visitFunction(const Function &F); 418 void visitBasicBlock(BasicBlock &BB); 419 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 420 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 421 void visitProfMetadata(Instruction &I, MDNode *MD); 422 423 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 424 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 425 #include "llvm/IR/Metadata.def" 426 void visitDIScope(const DIScope &N); 427 void visitDIVariable(const DIVariable &N); 428 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 429 void visitDITemplateParameter(const DITemplateParameter &N); 430 431 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 432 433 // InstVisitor overrides... 434 using InstVisitor<Verifier>::visit; 435 void visit(Instruction &I); 436 437 void visitTruncInst(TruncInst &I); 438 void visitZExtInst(ZExtInst &I); 439 void visitSExtInst(SExtInst &I); 440 void visitFPTruncInst(FPTruncInst &I); 441 void visitFPExtInst(FPExtInst &I); 442 void visitFPToUIInst(FPToUIInst &I); 443 void visitFPToSIInst(FPToSIInst &I); 444 void visitUIToFPInst(UIToFPInst &I); 445 void visitSIToFPInst(SIToFPInst &I); 446 void visitIntToPtrInst(IntToPtrInst &I); 447 void visitPtrToIntInst(PtrToIntInst &I); 448 void visitBitCastInst(BitCastInst &I); 449 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 450 void visitPHINode(PHINode &PN); 451 void visitCallBase(CallBase &Call); 452 void visitUnaryOperator(UnaryOperator &U); 453 void visitBinaryOperator(BinaryOperator &B); 454 void visitICmpInst(ICmpInst &IC); 455 void visitFCmpInst(FCmpInst &FC); 456 void visitExtractElementInst(ExtractElementInst &EI); 457 void visitInsertElementInst(InsertElementInst &EI); 458 void visitShuffleVectorInst(ShuffleVectorInst &EI); 459 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 460 void visitCallInst(CallInst &CI); 461 void visitInvokeInst(InvokeInst &II); 462 void visitGetElementPtrInst(GetElementPtrInst &GEP); 463 void visitLoadInst(LoadInst &LI); 464 void visitStoreInst(StoreInst &SI); 465 void verifyDominatesUse(Instruction &I, unsigned i); 466 void visitInstruction(Instruction &I); 467 void visitTerminator(Instruction &I); 468 void visitBranchInst(BranchInst &BI); 469 void visitReturnInst(ReturnInst &RI); 470 void visitSwitchInst(SwitchInst &SI); 471 void visitIndirectBrInst(IndirectBrInst &BI); 472 void visitCallBrInst(CallBrInst &CBI); 473 void visitSelectInst(SelectInst &SI); 474 void visitUserOp1(Instruction &I); 475 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 476 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 477 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 478 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 479 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 480 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 481 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 482 void visitFenceInst(FenceInst &FI); 483 void visitAllocaInst(AllocaInst &AI); 484 void visitExtractValueInst(ExtractValueInst &EVI); 485 void visitInsertValueInst(InsertValueInst &IVI); 486 void visitEHPadPredecessors(Instruction &I); 487 void visitLandingPadInst(LandingPadInst &LPI); 488 void visitResumeInst(ResumeInst &RI); 489 void visitCatchPadInst(CatchPadInst &CPI); 490 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 491 void visitCleanupPadInst(CleanupPadInst &CPI); 492 void visitFuncletPadInst(FuncletPadInst &FPI); 493 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 494 void visitCleanupReturnInst(CleanupReturnInst &CRI); 495 496 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 497 void verifySwiftErrorValue(const Value *SwiftErrorVal); 498 void verifyMustTailCall(CallInst &CI); 499 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 500 unsigned ArgNo, std::string &Suffix); 501 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 502 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 503 const Value *V); 504 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 505 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 506 const Value *V, bool IsIntrinsic); 507 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 508 509 void visitConstantExprsRecursively(const Constant *EntryC); 510 void visitConstantExpr(const ConstantExpr *CE); 511 void verifyStatepoint(const CallBase &Call); 512 void verifyFrameRecoverIndices(); 513 void verifySiblingFuncletUnwinds(); 514 515 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 516 template <typename ValueOrMetadata> 517 void verifyFragmentExpression(const DIVariable &V, 518 DIExpression::FragmentInfo Fragment, 519 ValueOrMetadata *Desc); 520 void verifyFnArgs(const DbgVariableIntrinsic &I); 521 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 522 523 /// Module-level debug info verification... 524 void verifyCompileUnits(); 525 526 /// Module-level verification that all @llvm.experimental.deoptimize 527 /// declarations share the same calling convention. 528 void verifyDeoptimizeCallingConvs(); 529 530 /// Verify all-or-nothing property of DIFile source attribute within a CU. 531 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 532 }; 533 534 } // end anonymous namespace 535 536 /// We know that cond should be true, if not print an error message. 537 #define Assert(C, ...) \ 538 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 539 540 /// We know that a debug info condition should be true, if not print 541 /// an error message. 542 #define AssertDI(C, ...) \ 543 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 544 545 void Verifier::visit(Instruction &I) { 546 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 547 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 548 InstVisitor<Verifier>::visit(I); 549 } 550 551 // Helper to recursively iterate over indirect users. By 552 // returning false, the callback can ask to stop recursing 553 // further. 554 static void forEachUser(const Value *User, 555 SmallPtrSet<const Value *, 32> &Visited, 556 llvm::function_ref<bool(const Value *)> Callback) { 557 if (!Visited.insert(User).second) 558 return; 559 for (const Value *TheNextUser : User->materialized_users()) 560 if (Callback(TheNextUser)) 561 forEachUser(TheNextUser, Visited, Callback); 562 } 563 564 void Verifier::visitGlobalValue(const GlobalValue &GV) { 565 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 566 "Global is external, but doesn't have external or weak linkage!", &GV); 567 568 Assert(GV.getAlignment() <= Value::MaximumAlignment, 569 "huge alignment values are unsupported", &GV); 570 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 571 "Only global variables can have appending linkage!", &GV); 572 573 if (GV.hasAppendingLinkage()) { 574 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 575 Assert(GVar && GVar->getValueType()->isArrayTy(), 576 "Only global arrays can have appending linkage!", GVar); 577 } 578 579 if (GV.isDeclarationForLinker()) 580 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 581 582 if (GV.hasDLLImportStorageClass()) { 583 Assert(!GV.isDSOLocal(), 584 "GlobalValue with DLLImport Storage is dso_local!", &GV); 585 586 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 587 GV.hasAvailableExternallyLinkage(), 588 "Global is marked as dllimport, but not external", &GV); 589 } 590 591 if (GV.hasLocalLinkage()) 592 Assert(GV.isDSOLocal(), 593 "GlobalValue with private or internal linkage must be dso_local!", 594 &GV); 595 596 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 597 Assert(GV.isDSOLocal(), 598 "GlobalValue with non default visibility must be dso_local!", &GV); 599 600 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 601 if (const Instruction *I = dyn_cast<Instruction>(V)) { 602 if (!I->getParent() || !I->getParent()->getParent()) 603 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 604 I); 605 else if (I->getParent()->getParent()->getParent() != &M) 606 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 607 I->getParent()->getParent(), 608 I->getParent()->getParent()->getParent()); 609 return false; 610 } else if (const Function *F = dyn_cast<Function>(V)) { 611 if (F->getParent() != &M) 612 CheckFailed("Global is used by function in a different module", &GV, &M, 613 F, F->getParent()); 614 return false; 615 } 616 return true; 617 }); 618 } 619 620 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 621 if (GV.hasInitializer()) { 622 Assert(GV.getInitializer()->getType() == GV.getValueType(), 623 "Global variable initializer type does not match global " 624 "variable type!", 625 &GV); 626 // If the global has common linkage, it must have a zero initializer and 627 // cannot be constant. 628 if (GV.hasCommonLinkage()) { 629 Assert(GV.getInitializer()->isNullValue(), 630 "'common' global must have a zero initializer!", &GV); 631 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 632 &GV); 633 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 634 } 635 } 636 637 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 638 GV.getName() == "llvm.global_dtors")) { 639 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 640 "invalid linkage for intrinsic global variable", &GV); 641 // Don't worry about emitting an error for it not being an array, 642 // visitGlobalValue will complain on appending non-array. 643 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 644 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 645 PointerType *FuncPtrTy = 646 FunctionType::get(Type::getVoidTy(Context), false)-> 647 getPointerTo(DL.getProgramAddressSpace()); 648 Assert(STy && 649 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 650 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 651 STy->getTypeAtIndex(1) == FuncPtrTy, 652 "wrong type for intrinsic global variable", &GV); 653 Assert(STy->getNumElements() == 3, 654 "the third field of the element type is mandatory, " 655 "specify i8* null to migrate from the obsoleted 2-field form"); 656 Type *ETy = STy->getTypeAtIndex(2); 657 Assert(ETy->isPointerTy() && 658 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 659 "wrong type for intrinsic global variable", &GV); 660 } 661 } 662 663 if (GV.hasName() && (GV.getName() == "llvm.used" || 664 GV.getName() == "llvm.compiler.used")) { 665 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 666 "invalid linkage for intrinsic global variable", &GV); 667 Type *GVType = GV.getValueType(); 668 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 669 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 670 Assert(PTy, "wrong type for intrinsic global variable", &GV); 671 if (GV.hasInitializer()) { 672 const Constant *Init = GV.getInitializer(); 673 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 674 Assert(InitArray, "wrong initalizer for intrinsic global variable", 675 Init); 676 for (Value *Op : InitArray->operands()) { 677 Value *V = Op->stripPointerCasts(); 678 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 679 isa<GlobalAlias>(V), 680 "invalid llvm.used member", V); 681 Assert(V->hasName(), "members of llvm.used must be named", V); 682 } 683 } 684 } 685 } 686 687 // Visit any debug info attachments. 688 SmallVector<MDNode *, 1> MDs; 689 GV.getMetadata(LLVMContext::MD_dbg, MDs); 690 for (auto *MD : MDs) { 691 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 692 visitDIGlobalVariableExpression(*GVE); 693 else 694 AssertDI(false, "!dbg attachment of global variable must be a " 695 "DIGlobalVariableExpression"); 696 } 697 698 // Scalable vectors cannot be global variables, since we don't know 699 // the runtime size. If the global is a struct or an array containing 700 // scalable vectors, that will be caught by the isValidElementType methods 701 // in StructType or ArrayType instead. 702 if (auto *VTy = dyn_cast<VectorType>(GV.getValueType())) 703 Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV); 704 705 if (!GV.hasInitializer()) { 706 visitGlobalValue(GV); 707 return; 708 } 709 710 // Walk any aggregate initializers looking for bitcasts between address spaces 711 visitConstantExprsRecursively(GV.getInitializer()); 712 713 visitGlobalValue(GV); 714 } 715 716 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 717 SmallPtrSet<const GlobalAlias*, 4> Visited; 718 Visited.insert(&GA); 719 visitAliaseeSubExpr(Visited, GA, C); 720 } 721 722 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 723 const GlobalAlias &GA, const Constant &C) { 724 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 725 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 726 &GA); 727 728 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 729 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 730 731 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 732 &GA); 733 } else { 734 // Only continue verifying subexpressions of GlobalAliases. 735 // Do not recurse into global initializers. 736 return; 737 } 738 } 739 740 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 741 visitConstantExprsRecursively(CE); 742 743 for (const Use &U : C.operands()) { 744 Value *V = &*U; 745 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 746 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 747 else if (const auto *C2 = dyn_cast<Constant>(V)) 748 visitAliaseeSubExpr(Visited, GA, *C2); 749 } 750 } 751 752 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 753 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 754 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 755 "weak_odr, or external linkage!", 756 &GA); 757 const Constant *Aliasee = GA.getAliasee(); 758 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 759 Assert(GA.getType() == Aliasee->getType(), 760 "Alias and aliasee types should match!", &GA); 761 762 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 763 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 764 765 visitAliaseeSubExpr(GA, *Aliasee); 766 767 visitGlobalValue(GA); 768 } 769 770 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 771 // There used to be various other llvm.dbg.* nodes, but we don't support 772 // upgrading them and we want to reserve the namespace for future uses. 773 if (NMD.getName().startswith("llvm.dbg.")) 774 AssertDI(NMD.getName() == "llvm.dbg.cu", 775 "unrecognized named metadata node in the llvm.dbg namespace", 776 &NMD); 777 for (const MDNode *MD : NMD.operands()) { 778 if (NMD.getName() == "llvm.dbg.cu") 779 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 780 781 if (!MD) 782 continue; 783 784 visitMDNode(*MD); 785 } 786 } 787 788 void Verifier::visitMDNode(const MDNode &MD) { 789 // Only visit each node once. Metadata can be mutually recursive, so this 790 // avoids infinite recursion here, as well as being an optimization. 791 if (!MDNodes.insert(&MD).second) 792 return; 793 794 switch (MD.getMetadataID()) { 795 default: 796 llvm_unreachable("Invalid MDNode subclass"); 797 case Metadata::MDTupleKind: 798 break; 799 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 800 case Metadata::CLASS##Kind: \ 801 visit##CLASS(cast<CLASS>(MD)); \ 802 break; 803 #include "llvm/IR/Metadata.def" 804 } 805 806 for (const Metadata *Op : MD.operands()) { 807 if (!Op) 808 continue; 809 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 810 &MD, Op); 811 if (auto *N = dyn_cast<MDNode>(Op)) { 812 visitMDNode(*N); 813 continue; 814 } 815 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 816 visitValueAsMetadata(*V, nullptr); 817 continue; 818 } 819 } 820 821 // Check these last, so we diagnose problems in operands first. 822 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 823 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 824 } 825 826 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 827 Assert(MD.getValue(), "Expected valid value", &MD); 828 Assert(!MD.getValue()->getType()->isMetadataTy(), 829 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 830 831 auto *L = dyn_cast<LocalAsMetadata>(&MD); 832 if (!L) 833 return; 834 835 Assert(F, "function-local metadata used outside a function", L); 836 837 // If this was an instruction, bb, or argument, verify that it is in the 838 // function that we expect. 839 Function *ActualF = nullptr; 840 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 841 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 842 ActualF = I->getParent()->getParent(); 843 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 844 ActualF = BB->getParent(); 845 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 846 ActualF = A->getParent(); 847 assert(ActualF && "Unimplemented function local metadata case!"); 848 849 Assert(ActualF == F, "function-local metadata used in wrong function", L); 850 } 851 852 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 853 Metadata *MD = MDV.getMetadata(); 854 if (auto *N = dyn_cast<MDNode>(MD)) { 855 visitMDNode(*N); 856 return; 857 } 858 859 // Only visit each node once. Metadata can be mutually recursive, so this 860 // avoids infinite recursion here, as well as being an optimization. 861 if (!MDNodes.insert(MD).second) 862 return; 863 864 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 865 visitValueAsMetadata(*V, F); 866 } 867 868 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 869 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 870 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 871 872 void Verifier::visitDILocation(const DILocation &N) { 873 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 874 "location requires a valid scope", &N, N.getRawScope()); 875 if (auto *IA = N.getRawInlinedAt()) 876 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 877 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 878 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 879 } 880 881 void Verifier::visitGenericDINode(const GenericDINode &N) { 882 AssertDI(N.getTag(), "invalid tag", &N); 883 } 884 885 void Verifier::visitDIScope(const DIScope &N) { 886 if (auto *F = N.getRawFile()) 887 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 888 } 889 890 void Verifier::visitDISubrange(const DISubrange &N) { 891 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 892 auto Count = N.getCount(); 893 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 894 &N); 895 AssertDI(!Count.is<ConstantInt*>() || 896 Count.get<ConstantInt*>()->getSExtValue() >= -1, 897 "invalid subrange count", &N); 898 } 899 900 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 901 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 902 } 903 904 void Verifier::visitDIBasicType(const DIBasicType &N) { 905 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 906 N.getTag() == dwarf::DW_TAG_unspecified_type, 907 "invalid tag", &N); 908 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 909 "has conflicting flags", &N); 910 } 911 912 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 913 // Common scope checks. 914 visitDIScope(N); 915 916 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 917 N.getTag() == dwarf::DW_TAG_pointer_type || 918 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 919 N.getTag() == dwarf::DW_TAG_reference_type || 920 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 921 N.getTag() == dwarf::DW_TAG_const_type || 922 N.getTag() == dwarf::DW_TAG_volatile_type || 923 N.getTag() == dwarf::DW_TAG_restrict_type || 924 N.getTag() == dwarf::DW_TAG_atomic_type || 925 N.getTag() == dwarf::DW_TAG_member || 926 N.getTag() == dwarf::DW_TAG_inheritance || 927 N.getTag() == dwarf::DW_TAG_friend, 928 "invalid tag", &N); 929 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 930 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 931 N.getRawExtraData()); 932 } 933 934 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 935 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 936 N.getRawBaseType()); 937 938 if (N.getDWARFAddressSpace()) { 939 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 940 N.getTag() == dwarf::DW_TAG_reference_type || 941 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 942 "DWARF address space only applies to pointer or reference types", 943 &N); 944 } 945 } 946 947 /// Detect mutually exclusive flags. 948 static bool hasConflictingReferenceFlags(unsigned Flags) { 949 return ((Flags & DINode::FlagLValueReference) && 950 (Flags & DINode::FlagRValueReference)) || 951 ((Flags & DINode::FlagTypePassByValue) && 952 (Flags & DINode::FlagTypePassByReference)); 953 } 954 955 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 956 auto *Params = dyn_cast<MDTuple>(&RawParams); 957 AssertDI(Params, "invalid template params", &N, &RawParams); 958 for (Metadata *Op : Params->operands()) { 959 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 960 &N, Params, Op); 961 } 962 } 963 964 void Verifier::visitDICompositeType(const DICompositeType &N) { 965 // Common scope checks. 966 visitDIScope(N); 967 968 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 969 N.getTag() == dwarf::DW_TAG_structure_type || 970 N.getTag() == dwarf::DW_TAG_union_type || 971 N.getTag() == dwarf::DW_TAG_enumeration_type || 972 N.getTag() == dwarf::DW_TAG_class_type || 973 N.getTag() == dwarf::DW_TAG_variant_part, 974 "invalid tag", &N); 975 976 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 977 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 978 N.getRawBaseType()); 979 980 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 981 "invalid composite elements", &N, N.getRawElements()); 982 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 983 N.getRawVTableHolder()); 984 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 985 "invalid reference flags", &N); 986 unsigned DIBlockByRefStruct = 1 << 4; 987 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 988 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 989 990 if (N.isVector()) { 991 const DINodeArray Elements = N.getElements(); 992 AssertDI(Elements.size() == 1 && 993 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 994 "invalid vector, expected one element of type subrange", &N); 995 } 996 997 if (auto *Params = N.getRawTemplateParams()) 998 visitTemplateParams(N, *Params); 999 1000 if (N.getTag() == dwarf::DW_TAG_class_type || 1001 N.getTag() == dwarf::DW_TAG_union_type) { 1002 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1003 "class/union requires a filename", &N, N.getFile()); 1004 } 1005 1006 if (auto *D = N.getRawDiscriminator()) { 1007 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1008 "discriminator can only appear on variant part"); 1009 } 1010 } 1011 1012 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1013 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1014 if (auto *Types = N.getRawTypeArray()) { 1015 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1016 for (Metadata *Ty : N.getTypeArray()->operands()) { 1017 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1018 } 1019 } 1020 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1021 "invalid reference flags", &N); 1022 } 1023 1024 void Verifier::visitDIFile(const DIFile &N) { 1025 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1026 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1027 if (Checksum) { 1028 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1029 "invalid checksum kind", &N); 1030 size_t Size; 1031 switch (Checksum->Kind) { 1032 case DIFile::CSK_MD5: 1033 Size = 32; 1034 break; 1035 case DIFile::CSK_SHA1: 1036 Size = 40; 1037 break; 1038 } 1039 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1040 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1041 "invalid checksum", &N); 1042 } 1043 } 1044 1045 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1046 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1047 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1048 1049 // Don't bother verifying the compilation directory or producer string 1050 // as those could be empty. 1051 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1052 N.getRawFile()); 1053 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1054 N.getFile()); 1055 1056 verifySourceDebugInfo(N, *N.getFile()); 1057 1058 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1059 "invalid emission kind", &N); 1060 1061 if (auto *Array = N.getRawEnumTypes()) { 1062 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1063 for (Metadata *Op : N.getEnumTypes()->operands()) { 1064 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1065 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1066 "invalid enum type", &N, N.getEnumTypes(), Op); 1067 } 1068 } 1069 if (auto *Array = N.getRawRetainedTypes()) { 1070 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1071 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1072 AssertDI(Op && (isa<DIType>(Op) || 1073 (isa<DISubprogram>(Op) && 1074 !cast<DISubprogram>(Op)->isDefinition())), 1075 "invalid retained type", &N, Op); 1076 } 1077 } 1078 if (auto *Array = N.getRawGlobalVariables()) { 1079 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1080 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1081 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1082 "invalid global variable ref", &N, Op); 1083 } 1084 } 1085 if (auto *Array = N.getRawImportedEntities()) { 1086 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1087 for (Metadata *Op : N.getImportedEntities()->operands()) { 1088 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1089 &N, Op); 1090 } 1091 } 1092 if (auto *Array = N.getRawMacros()) { 1093 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1094 for (Metadata *Op : N.getMacros()->operands()) { 1095 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1096 } 1097 } 1098 CUVisited.insert(&N); 1099 } 1100 1101 void Verifier::visitDISubprogram(const DISubprogram &N) { 1102 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1103 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1104 if (auto *F = N.getRawFile()) 1105 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1106 else 1107 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1108 if (auto *T = N.getRawType()) 1109 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1110 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1111 N.getRawContainingType()); 1112 if (auto *Params = N.getRawTemplateParams()) 1113 visitTemplateParams(N, *Params); 1114 if (auto *S = N.getRawDeclaration()) 1115 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1116 "invalid subprogram declaration", &N, S); 1117 if (auto *RawNode = N.getRawRetainedNodes()) { 1118 auto *Node = dyn_cast<MDTuple>(RawNode); 1119 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1120 for (Metadata *Op : Node->operands()) { 1121 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1122 "invalid retained nodes, expected DILocalVariable or DILabel", 1123 &N, Node, Op); 1124 } 1125 } 1126 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1127 "invalid reference flags", &N); 1128 1129 auto *Unit = N.getRawUnit(); 1130 if (N.isDefinition()) { 1131 // Subprogram definitions (not part of the type hierarchy). 1132 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1133 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1134 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1135 if (N.getFile()) 1136 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1137 } else { 1138 // Subprogram declarations (part of the type hierarchy). 1139 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1140 } 1141 1142 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1143 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1144 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1145 for (Metadata *Op : ThrownTypes->operands()) 1146 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1147 Op); 1148 } 1149 1150 if (N.areAllCallsDescribed()) 1151 AssertDI(N.isDefinition(), 1152 "DIFlagAllCallsDescribed must be attached to a definition"); 1153 } 1154 1155 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1156 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1157 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1158 "invalid local scope", &N, N.getRawScope()); 1159 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1160 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1161 } 1162 1163 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1164 visitDILexicalBlockBase(N); 1165 1166 AssertDI(N.getLine() || !N.getColumn(), 1167 "cannot have column info without line info", &N); 1168 } 1169 1170 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1171 visitDILexicalBlockBase(N); 1172 } 1173 1174 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1175 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1176 if (auto *S = N.getRawScope()) 1177 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1178 if (auto *S = N.getRawDecl()) 1179 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1180 } 1181 1182 void Verifier::visitDINamespace(const DINamespace &N) { 1183 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1184 if (auto *S = N.getRawScope()) 1185 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1186 } 1187 1188 void Verifier::visitDIMacro(const DIMacro &N) { 1189 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1190 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1191 "invalid macinfo type", &N); 1192 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1193 if (!N.getValue().empty()) { 1194 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1195 } 1196 } 1197 1198 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1199 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1200 "invalid macinfo type", &N); 1201 if (auto *F = N.getRawFile()) 1202 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1203 1204 if (auto *Array = N.getRawElements()) { 1205 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1206 for (Metadata *Op : N.getElements()->operands()) { 1207 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1208 } 1209 } 1210 } 1211 1212 void Verifier::visitDIModule(const DIModule &N) { 1213 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1214 AssertDI(!N.getName().empty(), "anonymous module", &N); 1215 } 1216 1217 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1218 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1219 } 1220 1221 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1222 visitDITemplateParameter(N); 1223 1224 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1225 &N); 1226 } 1227 1228 void Verifier::visitDITemplateValueParameter( 1229 const DITemplateValueParameter &N) { 1230 visitDITemplateParameter(N); 1231 1232 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1233 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1234 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1235 "invalid tag", &N); 1236 } 1237 1238 void Verifier::visitDIVariable(const DIVariable &N) { 1239 if (auto *S = N.getRawScope()) 1240 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1241 if (auto *F = N.getRawFile()) 1242 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1243 } 1244 1245 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1246 // Checks common to all variables. 1247 visitDIVariable(N); 1248 1249 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1250 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1251 AssertDI(N.getType(), "missing global variable type", &N); 1252 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1253 AssertDI(isa<DIDerivedType>(Member), 1254 "invalid static data member declaration", &N, Member); 1255 } 1256 } 1257 1258 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1259 // Checks common to all variables. 1260 visitDIVariable(N); 1261 1262 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1263 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1264 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1265 "local variable requires a valid scope", &N, N.getRawScope()); 1266 if (auto Ty = N.getType()) 1267 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1268 } 1269 1270 void Verifier::visitDILabel(const DILabel &N) { 1271 if (auto *S = N.getRawScope()) 1272 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1273 if (auto *F = N.getRawFile()) 1274 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1275 1276 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1277 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1278 "label requires a valid scope", &N, N.getRawScope()); 1279 } 1280 1281 void Verifier::visitDIExpression(const DIExpression &N) { 1282 AssertDI(N.isValid(), "invalid expression", &N); 1283 } 1284 1285 void Verifier::visitDIGlobalVariableExpression( 1286 const DIGlobalVariableExpression &GVE) { 1287 AssertDI(GVE.getVariable(), "missing variable"); 1288 if (auto *Var = GVE.getVariable()) 1289 visitDIGlobalVariable(*Var); 1290 if (auto *Expr = GVE.getExpression()) { 1291 visitDIExpression(*Expr); 1292 if (auto Fragment = Expr->getFragmentInfo()) 1293 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1294 } 1295 } 1296 1297 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1298 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1299 if (auto *T = N.getRawType()) 1300 AssertDI(isType(T), "invalid type ref", &N, T); 1301 if (auto *F = N.getRawFile()) 1302 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1303 } 1304 1305 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1306 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1307 N.getTag() == dwarf::DW_TAG_imported_declaration, 1308 "invalid tag", &N); 1309 if (auto *S = N.getRawScope()) 1310 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1311 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1312 N.getRawEntity()); 1313 } 1314 1315 void Verifier::visitComdat(const Comdat &C) { 1316 // In COFF the Module is invalid if the GlobalValue has private linkage. 1317 // Entities with private linkage don't have entries in the symbol table. 1318 if (TT.isOSBinFormatCOFF()) 1319 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1320 Assert(!GV->hasPrivateLinkage(), 1321 "comdat global value has private linkage", GV); 1322 } 1323 1324 void Verifier::visitModuleIdents(const Module &M) { 1325 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1326 if (!Idents) 1327 return; 1328 1329 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1330 // Scan each llvm.ident entry and make sure that this requirement is met. 1331 for (const MDNode *N : Idents->operands()) { 1332 Assert(N->getNumOperands() == 1, 1333 "incorrect number of operands in llvm.ident metadata", N); 1334 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1335 ("invalid value for llvm.ident metadata entry operand" 1336 "(the operand should be a string)"), 1337 N->getOperand(0)); 1338 } 1339 } 1340 1341 void Verifier::visitModuleCommandLines(const Module &M) { 1342 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1343 if (!CommandLines) 1344 return; 1345 1346 // llvm.commandline takes a list of metadata entry. Each entry has only one 1347 // string. Scan each llvm.commandline entry and make sure that this 1348 // requirement is met. 1349 for (const MDNode *N : CommandLines->operands()) { 1350 Assert(N->getNumOperands() == 1, 1351 "incorrect number of operands in llvm.commandline metadata", N); 1352 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1353 ("invalid value for llvm.commandline metadata entry operand" 1354 "(the operand should be a string)"), 1355 N->getOperand(0)); 1356 } 1357 } 1358 1359 void Verifier::visitModuleFlags(const Module &M) { 1360 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1361 if (!Flags) return; 1362 1363 // Scan each flag, and track the flags and requirements. 1364 DenseMap<const MDString*, const MDNode*> SeenIDs; 1365 SmallVector<const MDNode*, 16> Requirements; 1366 for (const MDNode *MDN : Flags->operands()) 1367 visitModuleFlag(MDN, SeenIDs, Requirements); 1368 1369 // Validate that the requirements in the module are valid. 1370 for (const MDNode *Requirement : Requirements) { 1371 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1372 const Metadata *ReqValue = Requirement->getOperand(1); 1373 1374 const MDNode *Op = SeenIDs.lookup(Flag); 1375 if (!Op) { 1376 CheckFailed("invalid requirement on flag, flag is not present in module", 1377 Flag); 1378 continue; 1379 } 1380 1381 if (Op->getOperand(2) != ReqValue) { 1382 CheckFailed(("invalid requirement on flag, " 1383 "flag does not have the required value"), 1384 Flag); 1385 continue; 1386 } 1387 } 1388 } 1389 1390 void 1391 Verifier::visitModuleFlag(const MDNode *Op, 1392 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1393 SmallVectorImpl<const MDNode *> &Requirements) { 1394 // Each module flag should have three arguments, the merge behavior (a 1395 // constant int), the flag ID (an MDString), and the value. 1396 Assert(Op->getNumOperands() == 3, 1397 "incorrect number of operands in module flag", Op); 1398 Module::ModFlagBehavior MFB; 1399 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1400 Assert( 1401 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1402 "invalid behavior operand in module flag (expected constant integer)", 1403 Op->getOperand(0)); 1404 Assert(false, 1405 "invalid behavior operand in module flag (unexpected constant)", 1406 Op->getOperand(0)); 1407 } 1408 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1409 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1410 Op->getOperand(1)); 1411 1412 // Sanity check the values for behaviors with additional requirements. 1413 switch (MFB) { 1414 case Module::Error: 1415 case Module::Warning: 1416 case Module::Override: 1417 // These behavior types accept any value. 1418 break; 1419 1420 case Module::Max: { 1421 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1422 "invalid value for 'max' module flag (expected constant integer)", 1423 Op->getOperand(2)); 1424 break; 1425 } 1426 1427 case Module::Require: { 1428 // The value should itself be an MDNode with two operands, a flag ID (an 1429 // MDString), and a value. 1430 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1431 Assert(Value && Value->getNumOperands() == 2, 1432 "invalid value for 'require' module flag (expected metadata pair)", 1433 Op->getOperand(2)); 1434 Assert(isa<MDString>(Value->getOperand(0)), 1435 ("invalid value for 'require' module flag " 1436 "(first value operand should be a string)"), 1437 Value->getOperand(0)); 1438 1439 // Append it to the list of requirements, to check once all module flags are 1440 // scanned. 1441 Requirements.push_back(Value); 1442 break; 1443 } 1444 1445 case Module::Append: 1446 case Module::AppendUnique: { 1447 // These behavior types require the operand be an MDNode. 1448 Assert(isa<MDNode>(Op->getOperand(2)), 1449 "invalid value for 'append'-type module flag " 1450 "(expected a metadata node)", 1451 Op->getOperand(2)); 1452 break; 1453 } 1454 } 1455 1456 // Unless this is a "requires" flag, check the ID is unique. 1457 if (MFB != Module::Require) { 1458 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1459 Assert(Inserted, 1460 "module flag identifiers must be unique (or of 'require' type)", ID); 1461 } 1462 1463 if (ID->getString() == "wchar_size") { 1464 ConstantInt *Value 1465 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1466 Assert(Value, "wchar_size metadata requires constant integer argument"); 1467 } 1468 1469 if (ID->getString() == "Linker Options") { 1470 // If the llvm.linker.options named metadata exists, we assume that the 1471 // bitcode reader has upgraded the module flag. Otherwise the flag might 1472 // have been created by a client directly. 1473 Assert(M.getNamedMetadata("llvm.linker.options"), 1474 "'Linker Options' named metadata no longer supported"); 1475 } 1476 1477 if (ID->getString() == "CG Profile") { 1478 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1479 visitModuleFlagCGProfileEntry(MDO); 1480 } 1481 } 1482 1483 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1484 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1485 if (!FuncMDO) 1486 return; 1487 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1488 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1489 FuncMDO); 1490 }; 1491 auto Node = dyn_cast_or_null<MDNode>(MDO); 1492 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1493 CheckFunction(Node->getOperand(0)); 1494 CheckFunction(Node->getOperand(1)); 1495 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1496 Assert(Count && Count->getType()->isIntegerTy(), 1497 "expected an integer constant", Node->getOperand(2)); 1498 } 1499 1500 /// Return true if this attribute kind only applies to functions. 1501 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1502 switch (Kind) { 1503 case Attribute::NoReturn: 1504 case Attribute::NoSync: 1505 case Attribute::WillReturn: 1506 case Attribute::NoCfCheck: 1507 case Attribute::NoUnwind: 1508 case Attribute::NoInline: 1509 case Attribute::NoFree: 1510 case Attribute::AlwaysInline: 1511 case Attribute::OptimizeForSize: 1512 case Attribute::StackProtect: 1513 case Attribute::StackProtectReq: 1514 case Attribute::StackProtectStrong: 1515 case Attribute::SafeStack: 1516 case Attribute::ShadowCallStack: 1517 case Attribute::NoRedZone: 1518 case Attribute::NoImplicitFloat: 1519 case Attribute::Naked: 1520 case Attribute::InlineHint: 1521 case Attribute::StackAlignment: 1522 case Attribute::UWTable: 1523 case Attribute::NonLazyBind: 1524 case Attribute::ReturnsTwice: 1525 case Attribute::SanitizeAddress: 1526 case Attribute::SanitizeHWAddress: 1527 case Attribute::SanitizeMemTag: 1528 case Attribute::SanitizeThread: 1529 case Attribute::SanitizeMemory: 1530 case Attribute::MinSize: 1531 case Attribute::NoDuplicate: 1532 case Attribute::Builtin: 1533 case Attribute::NoBuiltin: 1534 case Attribute::Cold: 1535 case Attribute::OptForFuzzing: 1536 case Attribute::OptimizeNone: 1537 case Attribute::JumpTable: 1538 case Attribute::Convergent: 1539 case Attribute::ArgMemOnly: 1540 case Attribute::NoRecurse: 1541 case Attribute::InaccessibleMemOnly: 1542 case Attribute::InaccessibleMemOrArgMemOnly: 1543 case Attribute::AllocSize: 1544 case Attribute::SpeculativeLoadHardening: 1545 case Attribute::Speculatable: 1546 case Attribute::StrictFP: 1547 return true; 1548 default: 1549 break; 1550 } 1551 return false; 1552 } 1553 1554 /// Return true if this is a function attribute that can also appear on 1555 /// arguments. 1556 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1557 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1558 Kind == Attribute::ReadNone; 1559 } 1560 1561 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1562 const Value *V) { 1563 for (Attribute A : Attrs) { 1564 if (A.isStringAttribute()) 1565 continue; 1566 1567 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1568 if (!IsFunction) { 1569 CheckFailed("Attribute '" + A.getAsString() + 1570 "' only applies to functions!", 1571 V); 1572 return; 1573 } 1574 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1575 CheckFailed("Attribute '" + A.getAsString() + 1576 "' does not apply to functions!", 1577 V); 1578 return; 1579 } 1580 } 1581 } 1582 1583 // VerifyParameterAttrs - Check the given attributes for an argument or return 1584 // value of the specified type. The value V is printed in error messages. 1585 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1586 const Value *V) { 1587 if (!Attrs.hasAttributes()) 1588 return; 1589 1590 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1591 1592 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1593 Assert(Attrs.getNumAttributes() == 1, 1594 "Attribute 'immarg' is incompatible with other attributes", V); 1595 } 1596 1597 // Check for mutually incompatible attributes. Only inreg is compatible with 1598 // sret. 1599 unsigned AttrCount = 0; 1600 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1601 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1602 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1603 Attrs.hasAttribute(Attribute::InReg); 1604 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1605 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1606 "and 'sret' are incompatible!", 1607 V); 1608 1609 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1610 Attrs.hasAttribute(Attribute::ReadOnly)), 1611 "Attributes " 1612 "'inalloca and readonly' are incompatible!", 1613 V); 1614 1615 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1616 Attrs.hasAttribute(Attribute::Returned)), 1617 "Attributes " 1618 "'sret and returned' are incompatible!", 1619 V); 1620 1621 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1622 Attrs.hasAttribute(Attribute::SExt)), 1623 "Attributes " 1624 "'zeroext and signext' are incompatible!", 1625 V); 1626 1627 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1628 Attrs.hasAttribute(Attribute::ReadOnly)), 1629 "Attributes " 1630 "'readnone and readonly' are incompatible!", 1631 V); 1632 1633 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1634 Attrs.hasAttribute(Attribute::WriteOnly)), 1635 "Attributes " 1636 "'readnone and writeonly' are incompatible!", 1637 V); 1638 1639 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1640 Attrs.hasAttribute(Attribute::WriteOnly)), 1641 "Attributes " 1642 "'readonly and writeonly' are incompatible!", 1643 V); 1644 1645 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1646 Attrs.hasAttribute(Attribute::AlwaysInline)), 1647 "Attributes " 1648 "'noinline and alwaysinline' are incompatible!", 1649 V); 1650 1651 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1652 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1653 "Attribute 'byval' type does not match parameter!", V); 1654 } 1655 1656 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1657 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1658 "Wrong types for attribute: " + 1659 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1660 V); 1661 1662 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1663 SmallPtrSet<Type*, 4> Visited; 1664 if (!PTy->getElementType()->isSized(&Visited)) { 1665 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1666 !Attrs.hasAttribute(Attribute::InAlloca), 1667 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1668 V); 1669 } 1670 if (!isa<PointerType>(PTy->getElementType())) 1671 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1672 "Attribute 'swifterror' only applies to parameters " 1673 "with pointer to pointer type!", 1674 V); 1675 } else { 1676 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1677 "Attribute 'byval' only applies to parameters with pointer type!", 1678 V); 1679 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1680 "Attribute 'swifterror' only applies to parameters " 1681 "with pointer type!", 1682 V); 1683 } 1684 } 1685 1686 // Check parameter attributes against a function type. 1687 // The value V is printed in error messages. 1688 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1689 const Value *V, bool IsIntrinsic) { 1690 if (Attrs.isEmpty()) 1691 return; 1692 1693 bool SawNest = false; 1694 bool SawReturned = false; 1695 bool SawSRet = false; 1696 bool SawSwiftSelf = false; 1697 bool SawSwiftError = false; 1698 1699 // Verify return value attributes. 1700 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1701 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1702 !RetAttrs.hasAttribute(Attribute::Nest) && 1703 !RetAttrs.hasAttribute(Attribute::StructRet) && 1704 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1705 !RetAttrs.hasAttribute(Attribute::Returned) && 1706 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1707 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1708 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1709 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1710 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1711 "values!", 1712 V); 1713 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1714 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1715 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1716 "Attribute '" + RetAttrs.getAsString() + 1717 "' does not apply to function returns", 1718 V); 1719 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1720 1721 // Verify parameter attributes. 1722 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1723 Type *Ty = FT->getParamType(i); 1724 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1725 1726 if (!IsIntrinsic) { 1727 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1728 "immarg attribute only applies to intrinsics",V); 1729 } 1730 1731 verifyParameterAttrs(ArgAttrs, Ty, V); 1732 1733 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1734 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1735 SawNest = true; 1736 } 1737 1738 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1739 Assert(!SawReturned, "More than one parameter has attribute returned!", 1740 V); 1741 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1742 "Incompatible argument and return types for 'returned' attribute", 1743 V); 1744 SawReturned = true; 1745 } 1746 1747 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1748 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1749 Assert(i == 0 || i == 1, 1750 "Attribute 'sret' is not on first or second parameter!", V); 1751 SawSRet = true; 1752 } 1753 1754 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1755 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1756 SawSwiftSelf = true; 1757 } 1758 1759 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1760 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1761 V); 1762 SawSwiftError = true; 1763 } 1764 1765 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1766 Assert(i == FT->getNumParams() - 1, 1767 "inalloca isn't on the last parameter!", V); 1768 } 1769 } 1770 1771 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1772 return; 1773 1774 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1775 1776 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1777 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1778 "Attributes 'readnone and readonly' are incompatible!", V); 1779 1780 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1781 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1782 "Attributes 'readnone and writeonly' are incompatible!", V); 1783 1784 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1785 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1786 "Attributes 'readonly and writeonly' are incompatible!", V); 1787 1788 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1789 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1790 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1791 "incompatible!", 1792 V); 1793 1794 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1795 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1796 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1797 1798 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1799 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1800 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1801 1802 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1803 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1804 "Attribute 'optnone' requires 'noinline'!", V); 1805 1806 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1807 "Attributes 'optsize and optnone' are incompatible!", V); 1808 1809 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1810 "Attributes 'minsize and optnone' are incompatible!", V); 1811 } 1812 1813 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1814 const GlobalValue *GV = cast<GlobalValue>(V); 1815 Assert(GV->hasGlobalUnnamedAddr(), 1816 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1817 } 1818 1819 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1820 std::pair<unsigned, Optional<unsigned>> Args = 1821 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1822 1823 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1824 if (ParamNo >= FT->getNumParams()) { 1825 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1826 return false; 1827 } 1828 1829 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1830 CheckFailed("'allocsize' " + Name + 1831 " argument must refer to an integer parameter", 1832 V); 1833 return false; 1834 } 1835 1836 return true; 1837 }; 1838 1839 if (!CheckParam("element size", Args.first)) 1840 return; 1841 1842 if (Args.second && !CheckParam("number of elements", *Args.second)) 1843 return; 1844 } 1845 } 1846 1847 void Verifier::verifyFunctionMetadata( 1848 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1849 for (const auto &Pair : MDs) { 1850 if (Pair.first == LLVMContext::MD_prof) { 1851 MDNode *MD = Pair.second; 1852 Assert(MD->getNumOperands() >= 2, 1853 "!prof annotations should have no less than 2 operands", MD); 1854 1855 // Check first operand. 1856 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1857 MD); 1858 Assert(isa<MDString>(MD->getOperand(0)), 1859 "expected string with name of the !prof annotation", MD); 1860 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1861 StringRef ProfName = MDS->getString(); 1862 Assert(ProfName.equals("function_entry_count") || 1863 ProfName.equals("synthetic_function_entry_count"), 1864 "first operand should be 'function_entry_count'" 1865 " or 'synthetic_function_entry_count'", 1866 MD); 1867 1868 // Check second operand. 1869 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1870 MD); 1871 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1872 "expected integer argument to function_entry_count", MD); 1873 } 1874 } 1875 } 1876 1877 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1878 if (!ConstantExprVisited.insert(EntryC).second) 1879 return; 1880 1881 SmallVector<const Constant *, 16> Stack; 1882 Stack.push_back(EntryC); 1883 1884 while (!Stack.empty()) { 1885 const Constant *C = Stack.pop_back_val(); 1886 1887 // Check this constant expression. 1888 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1889 visitConstantExpr(CE); 1890 1891 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1892 // Global Values get visited separately, but we do need to make sure 1893 // that the global value is in the correct module 1894 Assert(GV->getParent() == &M, "Referencing global in another module!", 1895 EntryC, &M, GV, GV->getParent()); 1896 continue; 1897 } 1898 1899 // Visit all sub-expressions. 1900 for (const Use &U : C->operands()) { 1901 const auto *OpC = dyn_cast<Constant>(U); 1902 if (!OpC) 1903 continue; 1904 if (!ConstantExprVisited.insert(OpC).second) 1905 continue; 1906 Stack.push_back(OpC); 1907 } 1908 } 1909 } 1910 1911 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1912 if (CE->getOpcode() == Instruction::BitCast) 1913 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1914 CE->getType()), 1915 "Invalid bitcast", CE); 1916 1917 if (CE->getOpcode() == Instruction::IntToPtr || 1918 CE->getOpcode() == Instruction::PtrToInt) { 1919 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1920 ? CE->getType() 1921 : CE->getOperand(0)->getType(); 1922 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1923 ? "inttoptr not supported for non-integral pointers" 1924 : "ptrtoint not supported for non-integral pointers"; 1925 Assert( 1926 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1927 Msg); 1928 } 1929 } 1930 1931 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1932 // There shouldn't be more attribute sets than there are parameters plus the 1933 // function and return value. 1934 return Attrs.getNumAttrSets() <= Params + 2; 1935 } 1936 1937 /// Verify that statepoint intrinsic is well formed. 1938 void Verifier::verifyStatepoint(const CallBase &Call) { 1939 assert(Call.getCalledFunction() && 1940 Call.getCalledFunction()->getIntrinsicID() == 1941 Intrinsic::experimental_gc_statepoint); 1942 1943 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 1944 !Call.onlyAccessesArgMemory(), 1945 "gc.statepoint must read and write all memory to preserve " 1946 "reordering restrictions required by safepoint semantics", 1947 Call); 1948 1949 const int64_t NumPatchBytes = 1950 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 1951 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1952 Assert(NumPatchBytes >= 0, 1953 "gc.statepoint number of patchable bytes must be " 1954 "positive", 1955 Call); 1956 1957 const Value *Target = Call.getArgOperand(2); 1958 auto *PT = dyn_cast<PointerType>(Target->getType()); 1959 Assert(PT && PT->getElementType()->isFunctionTy(), 1960 "gc.statepoint callee must be of function pointer type", Call, Target); 1961 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1962 1963 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 1964 Assert(NumCallArgs >= 0, 1965 "gc.statepoint number of arguments to underlying call " 1966 "must be positive", 1967 Call); 1968 const int NumParams = (int)TargetFuncType->getNumParams(); 1969 if (TargetFuncType->isVarArg()) { 1970 Assert(NumCallArgs >= NumParams, 1971 "gc.statepoint mismatch in number of vararg call args", Call); 1972 1973 // TODO: Remove this limitation 1974 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1975 "gc.statepoint doesn't support wrapping non-void " 1976 "vararg functions yet", 1977 Call); 1978 } else 1979 Assert(NumCallArgs == NumParams, 1980 "gc.statepoint mismatch in number of call args", Call); 1981 1982 const uint64_t Flags 1983 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 1984 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1985 "unknown flag used in gc.statepoint flags argument", Call); 1986 1987 // Verify that the types of the call parameter arguments match 1988 // the type of the wrapped callee. 1989 AttributeList Attrs = Call.getAttributes(); 1990 for (int i = 0; i < NumParams; i++) { 1991 Type *ParamType = TargetFuncType->getParamType(i); 1992 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 1993 Assert(ArgType == ParamType, 1994 "gc.statepoint call argument does not match wrapped " 1995 "function type", 1996 Call); 1997 1998 if (TargetFuncType->isVarArg()) { 1999 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2000 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2001 "Attribute 'sret' cannot be used for vararg call arguments!", 2002 Call); 2003 } 2004 } 2005 2006 const int EndCallArgsInx = 4 + NumCallArgs; 2007 2008 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2009 Assert(isa<ConstantInt>(NumTransitionArgsV), 2010 "gc.statepoint number of transition arguments " 2011 "must be constant integer", 2012 Call); 2013 const int NumTransitionArgs = 2014 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2015 Assert(NumTransitionArgs >= 0, 2016 "gc.statepoint number of transition arguments must be positive", Call); 2017 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2018 2019 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2020 Assert(isa<ConstantInt>(NumDeoptArgsV), 2021 "gc.statepoint number of deoptimization arguments " 2022 "must be constant integer", 2023 Call); 2024 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2025 Assert(NumDeoptArgs >= 0, 2026 "gc.statepoint number of deoptimization arguments " 2027 "must be positive", 2028 Call); 2029 2030 const int ExpectedNumArgs = 2031 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2032 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2033 "gc.statepoint too few arguments according to length fields", Call); 2034 2035 // Check that the only uses of this gc.statepoint are gc.result or 2036 // gc.relocate calls which are tied to this statepoint and thus part 2037 // of the same statepoint sequence 2038 for (const User *U : Call.users()) { 2039 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2040 Assert(UserCall, "illegal use of statepoint token", Call, U); 2041 if (!UserCall) 2042 continue; 2043 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2044 "gc.result or gc.relocate are the only value uses " 2045 "of a gc.statepoint", 2046 Call, U); 2047 if (isa<GCResultInst>(UserCall)) { 2048 Assert(UserCall->getArgOperand(0) == &Call, 2049 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2050 } else if (isa<GCRelocateInst>(Call)) { 2051 Assert(UserCall->getArgOperand(0) == &Call, 2052 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2053 } 2054 } 2055 2056 // Note: It is legal for a single derived pointer to be listed multiple 2057 // times. It's non-optimal, but it is legal. It can also happen after 2058 // insertion if we strip a bitcast away. 2059 // Note: It is really tempting to check that each base is relocated and 2060 // that a derived pointer is never reused as a base pointer. This turns 2061 // out to be problematic since optimizations run after safepoint insertion 2062 // can recognize equality properties that the insertion logic doesn't know 2063 // about. See example statepoint.ll in the verifier subdirectory 2064 } 2065 2066 void Verifier::verifyFrameRecoverIndices() { 2067 for (auto &Counts : FrameEscapeInfo) { 2068 Function *F = Counts.first; 2069 unsigned EscapedObjectCount = Counts.second.first; 2070 unsigned MaxRecoveredIndex = Counts.second.second; 2071 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2072 "all indices passed to llvm.localrecover must be less than the " 2073 "number of arguments passed to llvm.localescape in the parent " 2074 "function", 2075 F); 2076 } 2077 } 2078 2079 static Instruction *getSuccPad(Instruction *Terminator) { 2080 BasicBlock *UnwindDest; 2081 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2082 UnwindDest = II->getUnwindDest(); 2083 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2084 UnwindDest = CSI->getUnwindDest(); 2085 else 2086 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2087 return UnwindDest->getFirstNonPHI(); 2088 } 2089 2090 void Verifier::verifySiblingFuncletUnwinds() { 2091 SmallPtrSet<Instruction *, 8> Visited; 2092 SmallPtrSet<Instruction *, 8> Active; 2093 for (const auto &Pair : SiblingFuncletInfo) { 2094 Instruction *PredPad = Pair.first; 2095 if (Visited.count(PredPad)) 2096 continue; 2097 Active.insert(PredPad); 2098 Instruction *Terminator = Pair.second; 2099 do { 2100 Instruction *SuccPad = getSuccPad(Terminator); 2101 if (Active.count(SuccPad)) { 2102 // Found a cycle; report error 2103 Instruction *CyclePad = SuccPad; 2104 SmallVector<Instruction *, 8> CycleNodes; 2105 do { 2106 CycleNodes.push_back(CyclePad); 2107 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2108 if (CycleTerminator != CyclePad) 2109 CycleNodes.push_back(CycleTerminator); 2110 CyclePad = getSuccPad(CycleTerminator); 2111 } while (CyclePad != SuccPad); 2112 Assert(false, "EH pads can't handle each other's exceptions", 2113 ArrayRef<Instruction *>(CycleNodes)); 2114 } 2115 // Don't re-walk a node we've already checked 2116 if (!Visited.insert(SuccPad).second) 2117 break; 2118 // Walk to this successor if it has a map entry. 2119 PredPad = SuccPad; 2120 auto TermI = SiblingFuncletInfo.find(PredPad); 2121 if (TermI == SiblingFuncletInfo.end()) 2122 break; 2123 Terminator = TermI->second; 2124 Active.insert(PredPad); 2125 } while (true); 2126 // Each node only has one successor, so we've walked all the active 2127 // nodes' successors. 2128 Active.clear(); 2129 } 2130 } 2131 2132 // visitFunction - Verify that a function is ok. 2133 // 2134 void Verifier::visitFunction(const Function &F) { 2135 visitGlobalValue(F); 2136 2137 // Check function arguments. 2138 FunctionType *FT = F.getFunctionType(); 2139 unsigned NumArgs = F.arg_size(); 2140 2141 Assert(&Context == &F.getContext(), 2142 "Function context does not match Module context!", &F); 2143 2144 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2145 Assert(FT->getNumParams() == NumArgs, 2146 "# formal arguments must match # of arguments for function type!", &F, 2147 FT); 2148 Assert(F.getReturnType()->isFirstClassType() || 2149 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2150 "Functions cannot return aggregate values!", &F); 2151 2152 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2153 "Invalid struct return type!", &F); 2154 2155 AttributeList Attrs = F.getAttributes(); 2156 2157 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2158 "Attribute after last parameter!", &F); 2159 2160 bool isLLVMdotName = F.getName().size() >= 5 && 2161 F.getName().substr(0, 5) == "llvm."; 2162 2163 // Check function attributes. 2164 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2165 2166 // On function declarations/definitions, we do not support the builtin 2167 // attribute. We do not check this in VerifyFunctionAttrs since that is 2168 // checking for Attributes that can/can not ever be on functions. 2169 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2170 "Attribute 'builtin' can only be applied to a callsite.", &F); 2171 2172 // Check that this function meets the restrictions on this calling convention. 2173 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2174 // restrictions can be lifted. 2175 switch (F.getCallingConv()) { 2176 default: 2177 case CallingConv::C: 2178 break; 2179 case CallingConv::AMDGPU_KERNEL: 2180 case CallingConv::SPIR_KERNEL: 2181 Assert(F.getReturnType()->isVoidTy(), 2182 "Calling convention requires void return type", &F); 2183 LLVM_FALLTHROUGH; 2184 case CallingConv::AMDGPU_VS: 2185 case CallingConv::AMDGPU_HS: 2186 case CallingConv::AMDGPU_GS: 2187 case CallingConv::AMDGPU_PS: 2188 case CallingConv::AMDGPU_CS: 2189 Assert(!F.hasStructRetAttr(), 2190 "Calling convention does not allow sret", &F); 2191 LLVM_FALLTHROUGH; 2192 case CallingConv::Fast: 2193 case CallingConv::Cold: 2194 case CallingConv::Intel_OCL_BI: 2195 case CallingConv::PTX_Kernel: 2196 case CallingConv::PTX_Device: 2197 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2198 "perfect forwarding!", 2199 &F); 2200 break; 2201 } 2202 2203 // Check that the argument values match the function type for this function... 2204 unsigned i = 0; 2205 for (const Argument &Arg : F.args()) { 2206 Assert(Arg.getType() == FT->getParamType(i), 2207 "Argument value does not match function argument type!", &Arg, 2208 FT->getParamType(i)); 2209 Assert(Arg.getType()->isFirstClassType(), 2210 "Function arguments must have first-class types!", &Arg); 2211 if (!isLLVMdotName) { 2212 Assert(!Arg.getType()->isMetadataTy(), 2213 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2214 Assert(!Arg.getType()->isTokenTy(), 2215 "Function takes token but isn't an intrinsic", &Arg, &F); 2216 } 2217 2218 // Check that swifterror argument is only used by loads and stores. 2219 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2220 verifySwiftErrorValue(&Arg); 2221 } 2222 ++i; 2223 } 2224 2225 if (!isLLVMdotName) 2226 Assert(!F.getReturnType()->isTokenTy(), 2227 "Functions returns a token but isn't an intrinsic", &F); 2228 2229 // Get the function metadata attachments. 2230 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2231 F.getAllMetadata(MDs); 2232 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2233 verifyFunctionMetadata(MDs); 2234 2235 // Check validity of the personality function 2236 if (F.hasPersonalityFn()) { 2237 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2238 if (Per) 2239 Assert(Per->getParent() == F.getParent(), 2240 "Referencing personality function in another module!", 2241 &F, F.getParent(), Per, Per->getParent()); 2242 } 2243 2244 if (F.isMaterializable()) { 2245 // Function has a body somewhere we can't see. 2246 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2247 MDs.empty() ? nullptr : MDs.front().second); 2248 } else if (F.isDeclaration()) { 2249 for (const auto &I : MDs) { 2250 // This is used for call site debug information. 2251 AssertDI(I.first != LLVMContext::MD_dbg || 2252 !cast<DISubprogram>(I.second)->isDistinct(), 2253 "function declaration may only have a unique !dbg attachment", 2254 &F); 2255 Assert(I.first != LLVMContext::MD_prof, 2256 "function declaration may not have a !prof attachment", &F); 2257 2258 // Verify the metadata itself. 2259 visitMDNode(*I.second); 2260 } 2261 Assert(!F.hasPersonalityFn(), 2262 "Function declaration shouldn't have a personality routine", &F); 2263 } else { 2264 // Verify that this function (which has a body) is not named "llvm.*". It 2265 // is not legal to define intrinsics. 2266 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2267 2268 // Check the entry node 2269 const BasicBlock *Entry = &F.getEntryBlock(); 2270 Assert(pred_empty(Entry), 2271 "Entry block to function must not have predecessors!", Entry); 2272 2273 // The address of the entry block cannot be taken, unless it is dead. 2274 if (Entry->hasAddressTaken()) { 2275 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2276 "blockaddress may not be used with the entry block!", Entry); 2277 } 2278 2279 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2280 // Visit metadata attachments. 2281 for (const auto &I : MDs) { 2282 // Verify that the attachment is legal. 2283 switch (I.first) { 2284 default: 2285 break; 2286 case LLVMContext::MD_dbg: { 2287 ++NumDebugAttachments; 2288 AssertDI(NumDebugAttachments == 1, 2289 "function must have a single !dbg attachment", &F, I.second); 2290 AssertDI(isa<DISubprogram>(I.second), 2291 "function !dbg attachment must be a subprogram", &F, I.second); 2292 auto *SP = cast<DISubprogram>(I.second); 2293 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2294 AssertDI(!AttachedTo || AttachedTo == &F, 2295 "DISubprogram attached to more than one function", SP, &F); 2296 AttachedTo = &F; 2297 break; 2298 } 2299 case LLVMContext::MD_prof: 2300 ++NumProfAttachments; 2301 Assert(NumProfAttachments == 1, 2302 "function must have a single !prof attachment", &F, I.second); 2303 break; 2304 } 2305 2306 // Verify the metadata itself. 2307 visitMDNode(*I.second); 2308 } 2309 } 2310 2311 // If this function is actually an intrinsic, verify that it is only used in 2312 // direct call/invokes, never having its "address taken". 2313 // Only do this if the module is materialized, otherwise we don't have all the 2314 // uses. 2315 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2316 const User *U; 2317 if (F.hasAddressTaken(&U)) 2318 Assert(false, "Invalid user of intrinsic instruction!", U); 2319 } 2320 2321 auto *N = F.getSubprogram(); 2322 HasDebugInfo = (N != nullptr); 2323 if (!HasDebugInfo) 2324 return; 2325 2326 // Check that all !dbg attachments lead to back to N (or, at least, another 2327 // subprogram that describes the same function). 2328 // 2329 // FIXME: Check this incrementally while visiting !dbg attachments. 2330 // FIXME: Only check when N is the canonical subprogram for F. 2331 SmallPtrSet<const MDNode *, 32> Seen; 2332 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2333 // Be careful about using DILocation here since we might be dealing with 2334 // broken code (this is the Verifier after all). 2335 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2336 if (!DL) 2337 return; 2338 if (!Seen.insert(DL).second) 2339 return; 2340 2341 Metadata *Parent = DL->getRawScope(); 2342 AssertDI(Parent && isa<DILocalScope>(Parent), 2343 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2344 Parent); 2345 DILocalScope *Scope = DL->getInlinedAtScope(); 2346 if (Scope && !Seen.insert(Scope).second) 2347 return; 2348 2349 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2350 2351 // Scope and SP could be the same MDNode and we don't want to skip 2352 // validation in that case 2353 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2354 return; 2355 2356 // FIXME: Once N is canonical, check "SP == &N". 2357 AssertDI(SP->describes(&F), 2358 "!dbg attachment points at wrong subprogram for function", N, &F, 2359 &I, DL, Scope, SP); 2360 }; 2361 for (auto &BB : F) 2362 for (auto &I : BB) { 2363 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2364 // The llvm.loop annotations also contain two DILocations. 2365 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2366 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2367 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2368 if (BrokenDebugInfo) 2369 return; 2370 } 2371 } 2372 2373 // verifyBasicBlock - Verify that a basic block is well formed... 2374 // 2375 void Verifier::visitBasicBlock(BasicBlock &BB) { 2376 InstsInThisBlock.clear(); 2377 2378 // Ensure that basic blocks have terminators! 2379 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2380 2381 // Check constraints that this basic block imposes on all of the PHI nodes in 2382 // it. 2383 if (isa<PHINode>(BB.front())) { 2384 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2385 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2386 llvm::sort(Preds); 2387 for (const PHINode &PN : BB.phis()) { 2388 // Ensure that PHI nodes have at least one entry! 2389 Assert(PN.getNumIncomingValues() != 0, 2390 "PHI nodes must have at least one entry. If the block is dead, " 2391 "the PHI should be removed!", 2392 &PN); 2393 Assert(PN.getNumIncomingValues() == Preds.size(), 2394 "PHINode should have one entry for each predecessor of its " 2395 "parent basic block!", 2396 &PN); 2397 2398 // Get and sort all incoming values in the PHI node... 2399 Values.clear(); 2400 Values.reserve(PN.getNumIncomingValues()); 2401 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2402 Values.push_back( 2403 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2404 llvm::sort(Values); 2405 2406 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2407 // Check to make sure that if there is more than one entry for a 2408 // particular basic block in this PHI node, that the incoming values are 2409 // all identical. 2410 // 2411 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2412 Values[i].second == Values[i - 1].second, 2413 "PHI node has multiple entries for the same basic block with " 2414 "different incoming values!", 2415 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2416 2417 // Check to make sure that the predecessors and PHI node entries are 2418 // matched up. 2419 Assert(Values[i].first == Preds[i], 2420 "PHI node entries do not match predecessors!", &PN, 2421 Values[i].first, Preds[i]); 2422 } 2423 } 2424 } 2425 2426 // Check that all instructions have their parent pointers set up correctly. 2427 for (auto &I : BB) 2428 { 2429 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2430 } 2431 } 2432 2433 void Verifier::visitTerminator(Instruction &I) { 2434 // Ensure that terminators only exist at the end of the basic block. 2435 Assert(&I == I.getParent()->getTerminator(), 2436 "Terminator found in the middle of a basic block!", I.getParent()); 2437 visitInstruction(I); 2438 } 2439 2440 void Verifier::visitBranchInst(BranchInst &BI) { 2441 if (BI.isConditional()) { 2442 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2443 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2444 } 2445 visitTerminator(BI); 2446 } 2447 2448 void Verifier::visitReturnInst(ReturnInst &RI) { 2449 Function *F = RI.getParent()->getParent(); 2450 unsigned N = RI.getNumOperands(); 2451 if (F->getReturnType()->isVoidTy()) 2452 Assert(N == 0, 2453 "Found return instr that returns non-void in Function of void " 2454 "return type!", 2455 &RI, F->getReturnType()); 2456 else 2457 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2458 "Function return type does not match operand " 2459 "type of return inst!", 2460 &RI, F->getReturnType()); 2461 2462 // Check to make sure that the return value has necessary properties for 2463 // terminators... 2464 visitTerminator(RI); 2465 } 2466 2467 void Verifier::visitSwitchInst(SwitchInst &SI) { 2468 // Check to make sure that all of the constants in the switch instruction 2469 // have the same type as the switched-on value. 2470 Type *SwitchTy = SI.getCondition()->getType(); 2471 SmallPtrSet<ConstantInt*, 32> Constants; 2472 for (auto &Case : SI.cases()) { 2473 Assert(Case.getCaseValue()->getType() == SwitchTy, 2474 "Switch constants must all be same type as switch value!", &SI); 2475 Assert(Constants.insert(Case.getCaseValue()).second, 2476 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2477 } 2478 2479 visitTerminator(SI); 2480 } 2481 2482 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2483 Assert(BI.getAddress()->getType()->isPointerTy(), 2484 "Indirectbr operand must have pointer type!", &BI); 2485 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2486 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2487 "Indirectbr destinations must all have pointer type!", &BI); 2488 2489 visitTerminator(BI); 2490 } 2491 2492 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2493 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2494 &CBI); 2495 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", 2496 &CBI); 2497 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2498 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2499 "Callbr successors must all have pointer type!", &CBI); 2500 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2501 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2502 "Using an unescaped label as a callbr argument!", &CBI); 2503 if (isa<BasicBlock>(CBI.getOperand(i))) 2504 for (unsigned j = i + 1; j != e; ++j) 2505 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2506 "Duplicate callbr destination!", &CBI); 2507 } 2508 { 2509 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2510 for (Value *V : CBI.args()) 2511 if (auto *BA = dyn_cast<BlockAddress>(V)) 2512 ArgBBs.insert(BA->getBasicBlock()); 2513 for (BasicBlock *BB : CBI.getIndirectDests()) 2514 Assert(ArgBBs.find(BB) != ArgBBs.end(), 2515 "Indirect label missing from arglist.", &CBI); 2516 } 2517 2518 visitTerminator(CBI); 2519 } 2520 2521 void Verifier::visitSelectInst(SelectInst &SI) { 2522 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2523 SI.getOperand(2)), 2524 "Invalid operands for select instruction!", &SI); 2525 2526 Assert(SI.getTrueValue()->getType() == SI.getType(), 2527 "Select values must have same type as select instruction!", &SI); 2528 visitInstruction(SI); 2529 } 2530 2531 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2532 /// a pass, if any exist, it's an error. 2533 /// 2534 void Verifier::visitUserOp1(Instruction &I) { 2535 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2536 } 2537 2538 void Verifier::visitTruncInst(TruncInst &I) { 2539 // Get the source and destination types 2540 Type *SrcTy = I.getOperand(0)->getType(); 2541 Type *DestTy = I.getType(); 2542 2543 // Get the size of the types in bits, we'll need this later 2544 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2545 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2546 2547 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2548 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2549 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2550 "trunc source and destination must both be a vector or neither", &I); 2551 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2552 2553 visitInstruction(I); 2554 } 2555 2556 void Verifier::visitZExtInst(ZExtInst &I) { 2557 // Get the source and destination types 2558 Type *SrcTy = I.getOperand(0)->getType(); 2559 Type *DestTy = I.getType(); 2560 2561 // Get the size of the types in bits, we'll need this later 2562 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2563 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2564 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2565 "zext source and destination must both be a vector or neither", &I); 2566 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2567 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2568 2569 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2570 2571 visitInstruction(I); 2572 } 2573 2574 void Verifier::visitSExtInst(SExtInst &I) { 2575 // Get the source and destination types 2576 Type *SrcTy = I.getOperand(0)->getType(); 2577 Type *DestTy = I.getType(); 2578 2579 // Get the size of the types in bits, we'll need this later 2580 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2581 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2582 2583 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2584 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2585 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2586 "sext source and destination must both be a vector or neither", &I); 2587 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2588 2589 visitInstruction(I); 2590 } 2591 2592 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2593 // Get the source and destination types 2594 Type *SrcTy = I.getOperand(0)->getType(); 2595 Type *DestTy = I.getType(); 2596 // Get the size of the types in bits, we'll need this later 2597 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2598 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2599 2600 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2601 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2602 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2603 "fptrunc source and destination must both be a vector or neither", &I); 2604 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2605 2606 visitInstruction(I); 2607 } 2608 2609 void Verifier::visitFPExtInst(FPExtInst &I) { 2610 // Get the source and destination types 2611 Type *SrcTy = I.getOperand(0)->getType(); 2612 Type *DestTy = I.getType(); 2613 2614 // Get the size of the types in bits, we'll need this later 2615 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2616 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2617 2618 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2619 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2620 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2621 "fpext source and destination must both be a vector or neither", &I); 2622 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2623 2624 visitInstruction(I); 2625 } 2626 2627 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2628 // Get the source and destination types 2629 Type *SrcTy = I.getOperand(0)->getType(); 2630 Type *DestTy = I.getType(); 2631 2632 bool SrcVec = SrcTy->isVectorTy(); 2633 bool DstVec = DestTy->isVectorTy(); 2634 2635 Assert(SrcVec == DstVec, 2636 "UIToFP source and dest must both be vector or scalar", &I); 2637 Assert(SrcTy->isIntOrIntVectorTy(), 2638 "UIToFP source must be integer or integer vector", &I); 2639 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2640 &I); 2641 2642 if (SrcVec && DstVec) 2643 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2644 cast<VectorType>(DestTy)->getNumElements(), 2645 "UIToFP source and dest vector length mismatch", &I); 2646 2647 visitInstruction(I); 2648 } 2649 2650 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2651 // Get the source and destination types 2652 Type *SrcTy = I.getOperand(0)->getType(); 2653 Type *DestTy = I.getType(); 2654 2655 bool SrcVec = SrcTy->isVectorTy(); 2656 bool DstVec = DestTy->isVectorTy(); 2657 2658 Assert(SrcVec == DstVec, 2659 "SIToFP source and dest must both be vector or scalar", &I); 2660 Assert(SrcTy->isIntOrIntVectorTy(), 2661 "SIToFP source must be integer or integer vector", &I); 2662 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2663 &I); 2664 2665 if (SrcVec && DstVec) 2666 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2667 cast<VectorType>(DestTy)->getNumElements(), 2668 "SIToFP source and dest vector length mismatch", &I); 2669 2670 visitInstruction(I); 2671 } 2672 2673 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2674 // Get the source and destination types 2675 Type *SrcTy = I.getOperand(0)->getType(); 2676 Type *DestTy = I.getType(); 2677 2678 bool SrcVec = SrcTy->isVectorTy(); 2679 bool DstVec = DestTy->isVectorTy(); 2680 2681 Assert(SrcVec == DstVec, 2682 "FPToUI source and dest must both be vector or scalar", &I); 2683 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2684 &I); 2685 Assert(DestTy->isIntOrIntVectorTy(), 2686 "FPToUI result must be integer or integer vector", &I); 2687 2688 if (SrcVec && DstVec) 2689 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2690 cast<VectorType>(DestTy)->getNumElements(), 2691 "FPToUI source and dest vector length mismatch", &I); 2692 2693 visitInstruction(I); 2694 } 2695 2696 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2697 // Get the source and destination types 2698 Type *SrcTy = I.getOperand(0)->getType(); 2699 Type *DestTy = I.getType(); 2700 2701 bool SrcVec = SrcTy->isVectorTy(); 2702 bool DstVec = DestTy->isVectorTy(); 2703 2704 Assert(SrcVec == DstVec, 2705 "FPToSI source and dest must both be vector or scalar", &I); 2706 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2707 &I); 2708 Assert(DestTy->isIntOrIntVectorTy(), 2709 "FPToSI result must be integer or integer vector", &I); 2710 2711 if (SrcVec && DstVec) 2712 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2713 cast<VectorType>(DestTy)->getNumElements(), 2714 "FPToSI source and dest vector length mismatch", &I); 2715 2716 visitInstruction(I); 2717 } 2718 2719 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2720 // Get the source and destination types 2721 Type *SrcTy = I.getOperand(0)->getType(); 2722 Type *DestTy = I.getType(); 2723 2724 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2725 2726 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2727 Assert(!DL.isNonIntegralPointerType(PTy), 2728 "ptrtoint not supported for non-integral pointers"); 2729 2730 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2731 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2732 &I); 2733 2734 if (SrcTy->isVectorTy()) { 2735 VectorType *VSrc = cast<VectorType>(SrcTy); 2736 VectorType *VDest = cast<VectorType>(DestTy); 2737 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2738 "PtrToInt Vector width mismatch", &I); 2739 } 2740 2741 visitInstruction(I); 2742 } 2743 2744 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2745 // Get the source and destination types 2746 Type *SrcTy = I.getOperand(0)->getType(); 2747 Type *DestTy = I.getType(); 2748 2749 Assert(SrcTy->isIntOrIntVectorTy(), 2750 "IntToPtr source must be an integral", &I); 2751 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2752 2753 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2754 Assert(!DL.isNonIntegralPointerType(PTy), 2755 "inttoptr not supported for non-integral pointers"); 2756 2757 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2758 &I); 2759 if (SrcTy->isVectorTy()) { 2760 VectorType *VSrc = cast<VectorType>(SrcTy); 2761 VectorType *VDest = cast<VectorType>(DestTy); 2762 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2763 "IntToPtr Vector width mismatch", &I); 2764 } 2765 visitInstruction(I); 2766 } 2767 2768 void Verifier::visitBitCastInst(BitCastInst &I) { 2769 Assert( 2770 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2771 "Invalid bitcast", &I); 2772 visitInstruction(I); 2773 } 2774 2775 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2776 Type *SrcTy = I.getOperand(0)->getType(); 2777 Type *DestTy = I.getType(); 2778 2779 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2780 &I); 2781 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2782 &I); 2783 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2784 "AddrSpaceCast must be between different address spaces", &I); 2785 if (SrcTy->isVectorTy()) 2786 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2787 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2788 visitInstruction(I); 2789 } 2790 2791 /// visitPHINode - Ensure that a PHI node is well formed. 2792 /// 2793 void Verifier::visitPHINode(PHINode &PN) { 2794 // Ensure that the PHI nodes are all grouped together at the top of the block. 2795 // This can be tested by checking whether the instruction before this is 2796 // either nonexistent (because this is begin()) or is a PHI node. If not, 2797 // then there is some other instruction before a PHI. 2798 Assert(&PN == &PN.getParent()->front() || 2799 isa<PHINode>(--BasicBlock::iterator(&PN)), 2800 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2801 2802 // Check that a PHI doesn't yield a Token. 2803 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2804 2805 // Check that all of the values of the PHI node have the same type as the 2806 // result, and that the incoming blocks are really basic blocks. 2807 for (Value *IncValue : PN.incoming_values()) { 2808 Assert(PN.getType() == IncValue->getType(), 2809 "PHI node operands are not the same type as the result!", &PN); 2810 } 2811 2812 // All other PHI node constraints are checked in the visitBasicBlock method. 2813 2814 visitInstruction(PN); 2815 } 2816 2817 void Verifier::visitCallBase(CallBase &Call) { 2818 Assert(Call.getCalledValue()->getType()->isPointerTy(), 2819 "Called function must be a pointer!", Call); 2820 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); 2821 2822 Assert(FPTy->getElementType()->isFunctionTy(), 2823 "Called function is not pointer to function type!", Call); 2824 2825 Assert(FPTy->getElementType() == Call.getFunctionType(), 2826 "Called function is not the same type as the call!", Call); 2827 2828 FunctionType *FTy = Call.getFunctionType(); 2829 2830 // Verify that the correct number of arguments are being passed 2831 if (FTy->isVarArg()) 2832 Assert(Call.arg_size() >= FTy->getNumParams(), 2833 "Called function requires more parameters than were provided!", 2834 Call); 2835 else 2836 Assert(Call.arg_size() == FTy->getNumParams(), 2837 "Incorrect number of arguments passed to called function!", Call); 2838 2839 // Verify that all arguments to the call match the function type. 2840 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2841 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2842 "Call parameter type does not match function signature!", 2843 Call.getArgOperand(i), FTy->getParamType(i), Call); 2844 2845 AttributeList Attrs = Call.getAttributes(); 2846 2847 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2848 "Attribute after last parameter!", Call); 2849 2850 bool IsIntrinsic = Call.getCalledFunction() && 2851 Call.getCalledFunction()->getName().startswith("llvm."); 2852 2853 Function *Callee 2854 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 2855 2856 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2857 // Don't allow speculatable on call sites, unless the underlying function 2858 // declaration is also speculatable. 2859 Assert(Callee && Callee->isSpeculatable(), 2860 "speculatable attribute may not apply to call sites", Call); 2861 } 2862 2863 // Verify call attributes. 2864 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2865 2866 // Conservatively check the inalloca argument. 2867 // We have a bug if we can find that there is an underlying alloca without 2868 // inalloca. 2869 if (Call.hasInAllocaArgument()) { 2870 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2871 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2872 Assert(AI->isUsedWithInAlloca(), 2873 "inalloca argument for call has mismatched alloca", AI, Call); 2874 } 2875 2876 // For each argument of the callsite, if it has the swifterror argument, 2877 // make sure the underlying alloca/parameter it comes from has a swifterror as 2878 // well. 2879 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2880 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2881 Value *SwiftErrorArg = Call.getArgOperand(i); 2882 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2883 Assert(AI->isSwiftError(), 2884 "swifterror argument for call has mismatched alloca", AI, Call); 2885 continue; 2886 } 2887 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2888 Assert(ArgI, 2889 "swifterror argument should come from an alloca or parameter", 2890 SwiftErrorArg, Call); 2891 Assert(ArgI->hasSwiftErrorAttr(), 2892 "swifterror argument for call has mismatched parameter", ArgI, 2893 Call); 2894 } 2895 2896 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 2897 // Don't allow immarg on call sites, unless the underlying declaration 2898 // also has the matching immarg. 2899 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 2900 "immarg may not apply only to call sites", 2901 Call.getArgOperand(i), Call); 2902 } 2903 2904 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 2905 Value *ArgVal = Call.getArgOperand(i); 2906 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 2907 "immarg operand has non-immediate parameter", ArgVal, Call); 2908 } 2909 } 2910 2911 if (FTy->isVarArg()) { 2912 // FIXME? is 'nest' even legal here? 2913 bool SawNest = false; 2914 bool SawReturned = false; 2915 2916 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2917 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2918 SawNest = true; 2919 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2920 SawReturned = true; 2921 } 2922 2923 // Check attributes on the varargs part. 2924 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 2925 Type *Ty = Call.getArgOperand(Idx)->getType(); 2926 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2927 verifyParameterAttrs(ArgAttrs, Ty, &Call); 2928 2929 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2930 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 2931 SawNest = true; 2932 } 2933 2934 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2935 Assert(!SawReturned, "More than one parameter has attribute returned!", 2936 Call); 2937 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2938 "Incompatible argument and return types for 'returned' " 2939 "attribute", 2940 Call); 2941 SawReturned = true; 2942 } 2943 2944 // Statepoint intrinsic is vararg but the wrapped function may be not. 2945 // Allow sret here and check the wrapped function in verifyStatepoint. 2946 if (!Call.getCalledFunction() || 2947 Call.getCalledFunction()->getIntrinsicID() != 2948 Intrinsic::experimental_gc_statepoint) 2949 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2950 "Attribute 'sret' cannot be used for vararg call arguments!", 2951 Call); 2952 2953 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2954 Assert(Idx == Call.arg_size() - 1, 2955 "inalloca isn't on the last argument!", Call); 2956 } 2957 } 2958 2959 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2960 if (!IsIntrinsic) { 2961 for (Type *ParamTy : FTy->params()) { 2962 Assert(!ParamTy->isMetadataTy(), 2963 "Function has metadata parameter but isn't an intrinsic", Call); 2964 Assert(!ParamTy->isTokenTy(), 2965 "Function has token parameter but isn't an intrinsic", Call); 2966 } 2967 } 2968 2969 // Verify that indirect calls don't return tokens. 2970 if (!Call.getCalledFunction()) 2971 Assert(!FTy->getReturnType()->isTokenTy(), 2972 "Return type cannot be token for indirect call!"); 2973 2974 if (Function *F = Call.getCalledFunction()) 2975 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2976 visitIntrinsicCall(ID, Call); 2977 2978 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2979 // at most one "gc-transition" operand bundle. 2980 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2981 FoundGCTransitionBundle = false; 2982 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 2983 OperandBundleUse BU = Call.getOperandBundleAt(i); 2984 uint32_t Tag = BU.getTagID(); 2985 if (Tag == LLVMContext::OB_deopt) { 2986 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 2987 FoundDeoptBundle = true; 2988 } else if (Tag == LLVMContext::OB_gc_transition) { 2989 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2990 Call); 2991 FoundGCTransitionBundle = true; 2992 } else if (Tag == LLVMContext::OB_funclet) { 2993 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 2994 FoundFuncletBundle = true; 2995 Assert(BU.Inputs.size() == 1, 2996 "Expected exactly one funclet bundle operand", Call); 2997 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2998 "Funclet bundle operands should correspond to a FuncletPadInst", 2999 Call); 3000 } 3001 } 3002 3003 // Verify that each inlinable callsite of a debug-info-bearing function in a 3004 // debug-info-bearing function has a debug location attached to it. Failure to 3005 // do so causes assertion failures when the inliner sets up inline scope info. 3006 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3007 Call.getCalledFunction()->getSubprogram()) 3008 AssertDI(Call.getDebugLoc(), 3009 "inlinable function call in a function with " 3010 "debug info must have a !dbg location", 3011 Call); 3012 3013 visitInstruction(Call); 3014 } 3015 3016 /// Two types are "congruent" if they are identical, or if they are both pointer 3017 /// types with different pointee types and the same address space. 3018 static bool isTypeCongruent(Type *L, Type *R) { 3019 if (L == R) 3020 return true; 3021 PointerType *PL = dyn_cast<PointerType>(L); 3022 PointerType *PR = dyn_cast<PointerType>(R); 3023 if (!PL || !PR) 3024 return false; 3025 return PL->getAddressSpace() == PR->getAddressSpace(); 3026 } 3027 3028 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3029 static const Attribute::AttrKind ABIAttrs[] = { 3030 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3031 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 3032 Attribute::SwiftError}; 3033 AttrBuilder Copy; 3034 for (auto AK : ABIAttrs) { 3035 if (Attrs.hasParamAttribute(I, AK)) 3036 Copy.addAttribute(AK); 3037 } 3038 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 3039 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3040 return Copy; 3041 } 3042 3043 void Verifier::verifyMustTailCall(CallInst &CI) { 3044 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3045 3046 // - The caller and callee prototypes must match. Pointer types of 3047 // parameters or return types may differ in pointee type, but not 3048 // address space. 3049 Function *F = CI.getParent()->getParent(); 3050 FunctionType *CallerTy = F->getFunctionType(); 3051 FunctionType *CalleeTy = CI.getFunctionType(); 3052 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3053 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3054 "cannot guarantee tail call due to mismatched parameter counts", 3055 &CI); 3056 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3057 Assert( 3058 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3059 "cannot guarantee tail call due to mismatched parameter types", &CI); 3060 } 3061 } 3062 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3063 "cannot guarantee tail call due to mismatched varargs", &CI); 3064 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3065 "cannot guarantee tail call due to mismatched return types", &CI); 3066 3067 // - The calling conventions of the caller and callee must match. 3068 Assert(F->getCallingConv() == CI.getCallingConv(), 3069 "cannot guarantee tail call due to mismatched calling conv", &CI); 3070 3071 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3072 // returned, and inalloca, must match. 3073 AttributeList CallerAttrs = F->getAttributes(); 3074 AttributeList CalleeAttrs = CI.getAttributes(); 3075 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3076 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3077 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3078 Assert(CallerABIAttrs == CalleeABIAttrs, 3079 "cannot guarantee tail call due to mismatched ABI impacting " 3080 "function attributes", 3081 &CI, CI.getOperand(I)); 3082 } 3083 3084 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3085 // or a pointer bitcast followed by a ret instruction. 3086 // - The ret instruction must return the (possibly bitcasted) value 3087 // produced by the call or void. 3088 Value *RetVal = &CI; 3089 Instruction *Next = CI.getNextNode(); 3090 3091 // Handle the optional bitcast. 3092 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3093 Assert(BI->getOperand(0) == RetVal, 3094 "bitcast following musttail call must use the call", BI); 3095 RetVal = BI; 3096 Next = BI->getNextNode(); 3097 } 3098 3099 // Check the return. 3100 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3101 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3102 &CI); 3103 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3104 "musttail call result must be returned", Ret); 3105 } 3106 3107 void Verifier::visitCallInst(CallInst &CI) { 3108 visitCallBase(CI); 3109 3110 if (CI.isMustTailCall()) 3111 verifyMustTailCall(CI); 3112 } 3113 3114 void Verifier::visitInvokeInst(InvokeInst &II) { 3115 visitCallBase(II); 3116 3117 // Verify that the first non-PHI instruction of the unwind destination is an 3118 // exception handling instruction. 3119 Assert( 3120 II.getUnwindDest()->isEHPad(), 3121 "The unwind destination does not have an exception handling instruction!", 3122 &II); 3123 3124 visitTerminator(II); 3125 } 3126 3127 /// visitUnaryOperator - Check the argument to the unary operator. 3128 /// 3129 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3130 Assert(U.getType() == U.getOperand(0)->getType(), 3131 "Unary operators must have same type for" 3132 "operands and result!", 3133 &U); 3134 3135 switch (U.getOpcode()) { 3136 // Check that floating-point arithmetic operators are only used with 3137 // floating-point operands. 3138 case Instruction::FNeg: 3139 Assert(U.getType()->isFPOrFPVectorTy(), 3140 "FNeg operator only works with float types!", &U); 3141 break; 3142 default: 3143 llvm_unreachable("Unknown UnaryOperator opcode!"); 3144 } 3145 3146 visitInstruction(U); 3147 } 3148 3149 /// visitBinaryOperator - Check that both arguments to the binary operator are 3150 /// of the same type! 3151 /// 3152 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3153 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3154 "Both operands to a binary operator are not of the same type!", &B); 3155 3156 switch (B.getOpcode()) { 3157 // Check that integer arithmetic operators are only used with 3158 // integral operands. 3159 case Instruction::Add: 3160 case Instruction::Sub: 3161 case Instruction::Mul: 3162 case Instruction::SDiv: 3163 case Instruction::UDiv: 3164 case Instruction::SRem: 3165 case Instruction::URem: 3166 Assert(B.getType()->isIntOrIntVectorTy(), 3167 "Integer arithmetic operators only work with integral types!", &B); 3168 Assert(B.getType() == B.getOperand(0)->getType(), 3169 "Integer arithmetic operators must have same type " 3170 "for operands and result!", 3171 &B); 3172 break; 3173 // Check that floating-point arithmetic operators are only used with 3174 // floating-point operands. 3175 case Instruction::FAdd: 3176 case Instruction::FSub: 3177 case Instruction::FMul: 3178 case Instruction::FDiv: 3179 case Instruction::FRem: 3180 Assert(B.getType()->isFPOrFPVectorTy(), 3181 "Floating-point arithmetic operators only work with " 3182 "floating-point types!", 3183 &B); 3184 Assert(B.getType() == B.getOperand(0)->getType(), 3185 "Floating-point arithmetic operators must have same type " 3186 "for operands and result!", 3187 &B); 3188 break; 3189 // Check that logical operators are only used with integral operands. 3190 case Instruction::And: 3191 case Instruction::Or: 3192 case Instruction::Xor: 3193 Assert(B.getType()->isIntOrIntVectorTy(), 3194 "Logical operators only work with integral types!", &B); 3195 Assert(B.getType() == B.getOperand(0)->getType(), 3196 "Logical operators must have same type for operands and result!", 3197 &B); 3198 break; 3199 case Instruction::Shl: 3200 case Instruction::LShr: 3201 case Instruction::AShr: 3202 Assert(B.getType()->isIntOrIntVectorTy(), 3203 "Shifts only work with integral types!", &B); 3204 Assert(B.getType() == B.getOperand(0)->getType(), 3205 "Shift return type must be same as operands!", &B); 3206 break; 3207 default: 3208 llvm_unreachable("Unknown BinaryOperator opcode!"); 3209 } 3210 3211 visitInstruction(B); 3212 } 3213 3214 void Verifier::visitICmpInst(ICmpInst &IC) { 3215 // Check that the operands are the same type 3216 Type *Op0Ty = IC.getOperand(0)->getType(); 3217 Type *Op1Ty = IC.getOperand(1)->getType(); 3218 Assert(Op0Ty == Op1Ty, 3219 "Both operands to ICmp instruction are not of the same type!", &IC); 3220 // Check that the operands are the right type 3221 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3222 "Invalid operand types for ICmp instruction", &IC); 3223 // Check that the predicate is valid. 3224 Assert(IC.isIntPredicate(), 3225 "Invalid predicate in ICmp instruction!", &IC); 3226 3227 visitInstruction(IC); 3228 } 3229 3230 void Verifier::visitFCmpInst(FCmpInst &FC) { 3231 // Check that the operands are the same type 3232 Type *Op0Ty = FC.getOperand(0)->getType(); 3233 Type *Op1Ty = FC.getOperand(1)->getType(); 3234 Assert(Op0Ty == Op1Ty, 3235 "Both operands to FCmp instruction are not of the same type!", &FC); 3236 // Check that the operands are the right type 3237 Assert(Op0Ty->isFPOrFPVectorTy(), 3238 "Invalid operand types for FCmp instruction", &FC); 3239 // Check that the predicate is valid. 3240 Assert(FC.isFPPredicate(), 3241 "Invalid predicate in FCmp instruction!", &FC); 3242 3243 visitInstruction(FC); 3244 } 3245 3246 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3247 Assert( 3248 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3249 "Invalid extractelement operands!", &EI); 3250 visitInstruction(EI); 3251 } 3252 3253 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3254 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3255 IE.getOperand(2)), 3256 "Invalid insertelement operands!", &IE); 3257 visitInstruction(IE); 3258 } 3259 3260 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3261 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3262 SV.getOperand(2)), 3263 "Invalid shufflevector operands!", &SV); 3264 visitInstruction(SV); 3265 } 3266 3267 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3268 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3269 3270 Assert(isa<PointerType>(TargetTy), 3271 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3272 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3273 3274 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3275 Assert(all_of( 3276 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3277 "GEP indexes must be integers", &GEP); 3278 Type *ElTy = 3279 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3280 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3281 3282 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3283 GEP.getResultElementType() == ElTy, 3284 "GEP is not of right type for indices!", &GEP, ElTy); 3285 3286 if (GEP.getType()->isVectorTy()) { 3287 // Additional checks for vector GEPs. 3288 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3289 if (GEP.getPointerOperandType()->isVectorTy()) 3290 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3291 "Vector GEP result width doesn't match operand's", &GEP); 3292 for (Value *Idx : Idxs) { 3293 Type *IndexTy = Idx->getType(); 3294 if (IndexTy->isVectorTy()) { 3295 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3296 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3297 } 3298 Assert(IndexTy->isIntOrIntVectorTy(), 3299 "All GEP indices should be of integer type"); 3300 } 3301 } 3302 3303 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3304 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3305 "GEP address space doesn't match type", &GEP); 3306 } 3307 3308 visitInstruction(GEP); 3309 } 3310 3311 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3312 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3313 } 3314 3315 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3316 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3317 "precondition violation"); 3318 3319 unsigned NumOperands = Range->getNumOperands(); 3320 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3321 unsigned NumRanges = NumOperands / 2; 3322 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3323 3324 ConstantRange LastRange(1, true); // Dummy initial value 3325 for (unsigned i = 0; i < NumRanges; ++i) { 3326 ConstantInt *Low = 3327 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3328 Assert(Low, "The lower limit must be an integer!", Low); 3329 ConstantInt *High = 3330 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3331 Assert(High, "The upper limit must be an integer!", High); 3332 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3333 "Range types must match instruction type!", &I); 3334 3335 APInt HighV = High->getValue(); 3336 APInt LowV = Low->getValue(); 3337 ConstantRange CurRange(LowV, HighV); 3338 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3339 "Range must not be empty!", Range); 3340 if (i != 0) { 3341 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3342 "Intervals are overlapping", Range); 3343 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3344 Range); 3345 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3346 Range); 3347 } 3348 LastRange = ConstantRange(LowV, HighV); 3349 } 3350 if (NumRanges > 2) { 3351 APInt FirstLow = 3352 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3353 APInt FirstHigh = 3354 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3355 ConstantRange FirstRange(FirstLow, FirstHigh); 3356 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3357 "Intervals are overlapping", Range); 3358 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3359 Range); 3360 } 3361 } 3362 3363 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3364 unsigned Size = DL.getTypeSizeInBits(Ty); 3365 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3366 Assert(!(Size & (Size - 1)), 3367 "atomic memory access' operand must have a power-of-two size", Ty, I); 3368 } 3369 3370 void Verifier::visitLoadInst(LoadInst &LI) { 3371 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3372 Assert(PTy, "Load operand must be a pointer.", &LI); 3373 Type *ElTy = LI.getType(); 3374 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3375 "huge alignment values are unsupported", &LI); 3376 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3377 if (LI.isAtomic()) { 3378 Assert(LI.getOrdering() != AtomicOrdering::Release && 3379 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3380 "Load cannot have Release ordering", &LI); 3381 Assert(LI.getAlignment() != 0, 3382 "Atomic load must specify explicit alignment", &LI); 3383 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3384 "atomic load operand must have integer, pointer, or floating point " 3385 "type!", 3386 ElTy, &LI); 3387 checkAtomicMemAccessSize(ElTy, &LI); 3388 } else { 3389 Assert(LI.getSyncScopeID() == SyncScope::System, 3390 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3391 } 3392 3393 visitInstruction(LI); 3394 } 3395 3396 void Verifier::visitStoreInst(StoreInst &SI) { 3397 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3398 Assert(PTy, "Store operand must be a pointer.", &SI); 3399 Type *ElTy = PTy->getElementType(); 3400 Assert(ElTy == SI.getOperand(0)->getType(), 3401 "Stored value type does not match pointer operand type!", &SI, ElTy); 3402 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3403 "huge alignment values are unsupported", &SI); 3404 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3405 if (SI.isAtomic()) { 3406 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3407 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3408 "Store cannot have Acquire ordering", &SI); 3409 Assert(SI.getAlignment() != 0, 3410 "Atomic store must specify explicit alignment", &SI); 3411 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3412 "atomic store operand must have integer, pointer, or floating point " 3413 "type!", 3414 ElTy, &SI); 3415 checkAtomicMemAccessSize(ElTy, &SI); 3416 } else { 3417 Assert(SI.getSyncScopeID() == SyncScope::System, 3418 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3419 } 3420 visitInstruction(SI); 3421 } 3422 3423 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3424 void Verifier::verifySwiftErrorCall(CallBase &Call, 3425 const Value *SwiftErrorVal) { 3426 unsigned Idx = 0; 3427 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3428 if (*I == SwiftErrorVal) { 3429 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3430 "swifterror value when used in a callsite should be marked " 3431 "with swifterror attribute", 3432 SwiftErrorVal, Call); 3433 } 3434 } 3435 } 3436 3437 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3438 // Check that swifterror value is only used by loads, stores, or as 3439 // a swifterror argument. 3440 for (const User *U : SwiftErrorVal->users()) { 3441 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3442 isa<InvokeInst>(U), 3443 "swifterror value can only be loaded and stored from, or " 3444 "as a swifterror argument!", 3445 SwiftErrorVal, U); 3446 // If it is used by a store, check it is the second operand. 3447 if (auto StoreI = dyn_cast<StoreInst>(U)) 3448 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3449 "swifterror value should be the second operand when used " 3450 "by stores", SwiftErrorVal, U); 3451 if (auto *Call = dyn_cast<CallBase>(U)) 3452 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3453 } 3454 } 3455 3456 void Verifier::visitAllocaInst(AllocaInst &AI) { 3457 SmallPtrSet<Type*, 4> Visited; 3458 PointerType *PTy = AI.getType(); 3459 // TODO: Relax this restriction? 3460 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3461 "Allocation instruction pointer not in the stack address space!", 3462 &AI); 3463 Assert(AI.getAllocatedType()->isSized(&Visited), 3464 "Cannot allocate unsized type", &AI); 3465 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3466 "Alloca array size must have integer type", &AI); 3467 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3468 "huge alignment values are unsupported", &AI); 3469 3470 if (AI.isSwiftError()) { 3471 verifySwiftErrorValue(&AI); 3472 } 3473 3474 visitInstruction(AI); 3475 } 3476 3477 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3478 3479 // FIXME: more conditions??? 3480 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3481 "cmpxchg instructions must be atomic.", &CXI); 3482 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3483 "cmpxchg instructions must be atomic.", &CXI); 3484 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3485 "cmpxchg instructions cannot be unordered.", &CXI); 3486 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3487 "cmpxchg instructions cannot be unordered.", &CXI); 3488 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3489 "cmpxchg instructions failure argument shall be no stronger than the " 3490 "success argument", 3491 &CXI); 3492 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3493 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3494 "cmpxchg failure ordering cannot include release semantics", &CXI); 3495 3496 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3497 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3498 Type *ElTy = PTy->getElementType(); 3499 Assert(ElTy->isIntOrPtrTy(), 3500 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3501 checkAtomicMemAccessSize(ElTy, &CXI); 3502 Assert(ElTy == CXI.getOperand(1)->getType(), 3503 "Expected value type does not match pointer operand type!", &CXI, 3504 ElTy); 3505 Assert(ElTy == CXI.getOperand(2)->getType(), 3506 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3507 visitInstruction(CXI); 3508 } 3509 3510 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3511 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3512 "atomicrmw instructions must be atomic.", &RMWI); 3513 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3514 "atomicrmw instructions cannot be unordered.", &RMWI); 3515 auto Op = RMWI.getOperation(); 3516 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3517 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3518 Type *ElTy = PTy->getElementType(); 3519 if (Op == AtomicRMWInst::Xchg) { 3520 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3521 AtomicRMWInst::getOperationName(Op) + 3522 " operand must have integer or floating point type!", 3523 &RMWI, ElTy); 3524 } else if (AtomicRMWInst::isFPOperation(Op)) { 3525 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3526 AtomicRMWInst::getOperationName(Op) + 3527 " operand must have floating point type!", 3528 &RMWI, ElTy); 3529 } else { 3530 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3531 AtomicRMWInst::getOperationName(Op) + 3532 " operand must have integer type!", 3533 &RMWI, ElTy); 3534 } 3535 checkAtomicMemAccessSize(ElTy, &RMWI); 3536 Assert(ElTy == RMWI.getOperand(1)->getType(), 3537 "Argument value type does not match pointer operand type!", &RMWI, 3538 ElTy); 3539 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3540 "Invalid binary operation!", &RMWI); 3541 visitInstruction(RMWI); 3542 } 3543 3544 void Verifier::visitFenceInst(FenceInst &FI) { 3545 const AtomicOrdering Ordering = FI.getOrdering(); 3546 Assert(Ordering == AtomicOrdering::Acquire || 3547 Ordering == AtomicOrdering::Release || 3548 Ordering == AtomicOrdering::AcquireRelease || 3549 Ordering == AtomicOrdering::SequentiallyConsistent, 3550 "fence instructions may only have acquire, release, acq_rel, or " 3551 "seq_cst ordering.", 3552 &FI); 3553 visitInstruction(FI); 3554 } 3555 3556 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3557 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3558 EVI.getIndices()) == EVI.getType(), 3559 "Invalid ExtractValueInst operands!", &EVI); 3560 3561 visitInstruction(EVI); 3562 } 3563 3564 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3565 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3566 IVI.getIndices()) == 3567 IVI.getOperand(1)->getType(), 3568 "Invalid InsertValueInst operands!", &IVI); 3569 3570 visitInstruction(IVI); 3571 } 3572 3573 static Value *getParentPad(Value *EHPad) { 3574 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3575 return FPI->getParentPad(); 3576 3577 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3578 } 3579 3580 void Verifier::visitEHPadPredecessors(Instruction &I) { 3581 assert(I.isEHPad()); 3582 3583 BasicBlock *BB = I.getParent(); 3584 Function *F = BB->getParent(); 3585 3586 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3587 3588 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3589 // The landingpad instruction defines its parent as a landing pad block. The 3590 // landing pad block may be branched to only by the unwind edge of an 3591 // invoke. 3592 for (BasicBlock *PredBB : predecessors(BB)) { 3593 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3594 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3595 "Block containing LandingPadInst must be jumped to " 3596 "only by the unwind edge of an invoke.", 3597 LPI); 3598 } 3599 return; 3600 } 3601 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3602 if (!pred_empty(BB)) 3603 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3604 "Block containg CatchPadInst must be jumped to " 3605 "only by its catchswitch.", 3606 CPI); 3607 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3608 "Catchswitch cannot unwind to one of its catchpads", 3609 CPI->getCatchSwitch(), CPI); 3610 return; 3611 } 3612 3613 // Verify that each pred has a legal terminator with a legal to/from EH 3614 // pad relationship. 3615 Instruction *ToPad = &I; 3616 Value *ToPadParent = getParentPad(ToPad); 3617 for (BasicBlock *PredBB : predecessors(BB)) { 3618 Instruction *TI = PredBB->getTerminator(); 3619 Value *FromPad; 3620 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3621 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3622 "EH pad must be jumped to via an unwind edge", ToPad, II); 3623 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3624 FromPad = Bundle->Inputs[0]; 3625 else 3626 FromPad = ConstantTokenNone::get(II->getContext()); 3627 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3628 FromPad = CRI->getOperand(0); 3629 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3630 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3631 FromPad = CSI; 3632 } else { 3633 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3634 } 3635 3636 // The edge may exit from zero or more nested pads. 3637 SmallSet<Value *, 8> Seen; 3638 for (;; FromPad = getParentPad(FromPad)) { 3639 Assert(FromPad != ToPad, 3640 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3641 if (FromPad == ToPadParent) { 3642 // This is a legal unwind edge. 3643 break; 3644 } 3645 Assert(!isa<ConstantTokenNone>(FromPad), 3646 "A single unwind edge may only enter one EH pad", TI); 3647 Assert(Seen.insert(FromPad).second, 3648 "EH pad jumps through a cycle of pads", FromPad); 3649 } 3650 } 3651 } 3652 3653 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3654 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3655 // isn't a cleanup. 3656 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3657 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3658 3659 visitEHPadPredecessors(LPI); 3660 3661 if (!LandingPadResultTy) 3662 LandingPadResultTy = LPI.getType(); 3663 else 3664 Assert(LandingPadResultTy == LPI.getType(), 3665 "The landingpad instruction should have a consistent result type " 3666 "inside a function.", 3667 &LPI); 3668 3669 Function *F = LPI.getParent()->getParent(); 3670 Assert(F->hasPersonalityFn(), 3671 "LandingPadInst needs to be in a function with a personality.", &LPI); 3672 3673 // The landingpad instruction must be the first non-PHI instruction in the 3674 // block. 3675 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3676 "LandingPadInst not the first non-PHI instruction in the block.", 3677 &LPI); 3678 3679 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3680 Constant *Clause = LPI.getClause(i); 3681 if (LPI.isCatch(i)) { 3682 Assert(isa<PointerType>(Clause->getType()), 3683 "Catch operand does not have pointer type!", &LPI); 3684 } else { 3685 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3686 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3687 "Filter operand is not an array of constants!", &LPI); 3688 } 3689 } 3690 3691 visitInstruction(LPI); 3692 } 3693 3694 void Verifier::visitResumeInst(ResumeInst &RI) { 3695 Assert(RI.getFunction()->hasPersonalityFn(), 3696 "ResumeInst needs to be in a function with a personality.", &RI); 3697 3698 if (!LandingPadResultTy) 3699 LandingPadResultTy = RI.getValue()->getType(); 3700 else 3701 Assert(LandingPadResultTy == RI.getValue()->getType(), 3702 "The resume instruction should have a consistent result type " 3703 "inside a function.", 3704 &RI); 3705 3706 visitTerminator(RI); 3707 } 3708 3709 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3710 BasicBlock *BB = CPI.getParent(); 3711 3712 Function *F = BB->getParent(); 3713 Assert(F->hasPersonalityFn(), 3714 "CatchPadInst needs to be in a function with a personality.", &CPI); 3715 3716 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3717 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3718 CPI.getParentPad()); 3719 3720 // The catchpad instruction must be the first non-PHI instruction in the 3721 // block. 3722 Assert(BB->getFirstNonPHI() == &CPI, 3723 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3724 3725 visitEHPadPredecessors(CPI); 3726 visitFuncletPadInst(CPI); 3727 } 3728 3729 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3730 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3731 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3732 CatchReturn.getOperand(0)); 3733 3734 visitTerminator(CatchReturn); 3735 } 3736 3737 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3738 BasicBlock *BB = CPI.getParent(); 3739 3740 Function *F = BB->getParent(); 3741 Assert(F->hasPersonalityFn(), 3742 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3743 3744 // The cleanuppad instruction must be the first non-PHI instruction in the 3745 // block. 3746 Assert(BB->getFirstNonPHI() == &CPI, 3747 "CleanupPadInst not the first non-PHI instruction in the block.", 3748 &CPI); 3749 3750 auto *ParentPad = CPI.getParentPad(); 3751 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3752 "CleanupPadInst has an invalid parent.", &CPI); 3753 3754 visitEHPadPredecessors(CPI); 3755 visitFuncletPadInst(CPI); 3756 } 3757 3758 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3759 User *FirstUser = nullptr; 3760 Value *FirstUnwindPad = nullptr; 3761 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3762 SmallSet<FuncletPadInst *, 8> Seen; 3763 3764 while (!Worklist.empty()) { 3765 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3766 Assert(Seen.insert(CurrentPad).second, 3767 "FuncletPadInst must not be nested within itself", CurrentPad); 3768 Value *UnresolvedAncestorPad = nullptr; 3769 for (User *U : CurrentPad->users()) { 3770 BasicBlock *UnwindDest; 3771 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3772 UnwindDest = CRI->getUnwindDest(); 3773 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3774 // We allow catchswitch unwind to caller to nest 3775 // within an outer pad that unwinds somewhere else, 3776 // because catchswitch doesn't have a nounwind variant. 3777 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3778 if (CSI->unwindsToCaller()) 3779 continue; 3780 UnwindDest = CSI->getUnwindDest(); 3781 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3782 UnwindDest = II->getUnwindDest(); 3783 } else if (isa<CallInst>(U)) { 3784 // Calls which don't unwind may be found inside funclet 3785 // pads that unwind somewhere else. We don't *require* 3786 // such calls to be annotated nounwind. 3787 continue; 3788 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3789 // The unwind dest for a cleanup can only be found by 3790 // recursive search. Add it to the worklist, and we'll 3791 // search for its first use that determines where it unwinds. 3792 Worklist.push_back(CPI); 3793 continue; 3794 } else { 3795 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3796 continue; 3797 } 3798 3799 Value *UnwindPad; 3800 bool ExitsFPI; 3801 if (UnwindDest) { 3802 UnwindPad = UnwindDest->getFirstNonPHI(); 3803 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3804 continue; 3805 Value *UnwindParent = getParentPad(UnwindPad); 3806 // Ignore unwind edges that don't exit CurrentPad. 3807 if (UnwindParent == CurrentPad) 3808 continue; 3809 // Determine whether the original funclet pad is exited, 3810 // and if we are scanning nested pads determine how many 3811 // of them are exited so we can stop searching their 3812 // children. 3813 Value *ExitedPad = CurrentPad; 3814 ExitsFPI = false; 3815 do { 3816 if (ExitedPad == &FPI) { 3817 ExitsFPI = true; 3818 // Now we can resolve any ancestors of CurrentPad up to 3819 // FPI, but not including FPI since we need to make sure 3820 // to check all direct users of FPI for consistency. 3821 UnresolvedAncestorPad = &FPI; 3822 break; 3823 } 3824 Value *ExitedParent = getParentPad(ExitedPad); 3825 if (ExitedParent == UnwindParent) { 3826 // ExitedPad is the ancestor-most pad which this unwind 3827 // edge exits, so we can resolve up to it, meaning that 3828 // ExitedParent is the first ancestor still unresolved. 3829 UnresolvedAncestorPad = ExitedParent; 3830 break; 3831 } 3832 ExitedPad = ExitedParent; 3833 } while (!isa<ConstantTokenNone>(ExitedPad)); 3834 } else { 3835 // Unwinding to caller exits all pads. 3836 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3837 ExitsFPI = true; 3838 UnresolvedAncestorPad = &FPI; 3839 } 3840 3841 if (ExitsFPI) { 3842 // This unwind edge exits FPI. Make sure it agrees with other 3843 // such edges. 3844 if (FirstUser) { 3845 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3846 "pad must have the same unwind " 3847 "dest", 3848 &FPI, U, FirstUser); 3849 } else { 3850 FirstUser = U; 3851 FirstUnwindPad = UnwindPad; 3852 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3853 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3854 getParentPad(UnwindPad) == getParentPad(&FPI)) 3855 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3856 } 3857 } 3858 // Make sure we visit all uses of FPI, but for nested pads stop as 3859 // soon as we know where they unwind to. 3860 if (CurrentPad != &FPI) 3861 break; 3862 } 3863 if (UnresolvedAncestorPad) { 3864 if (CurrentPad == UnresolvedAncestorPad) { 3865 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3866 // we've found an unwind edge that exits it, because we need to verify 3867 // all direct uses of FPI. 3868 assert(CurrentPad == &FPI); 3869 continue; 3870 } 3871 // Pop off the worklist any nested pads that we've found an unwind 3872 // destination for. The pads on the worklist are the uncles, 3873 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3874 // for all ancestors of CurrentPad up to but not including 3875 // UnresolvedAncestorPad. 3876 Value *ResolvedPad = CurrentPad; 3877 while (!Worklist.empty()) { 3878 Value *UnclePad = Worklist.back(); 3879 Value *AncestorPad = getParentPad(UnclePad); 3880 // Walk ResolvedPad up the ancestor list until we either find the 3881 // uncle's parent or the last resolved ancestor. 3882 while (ResolvedPad != AncestorPad) { 3883 Value *ResolvedParent = getParentPad(ResolvedPad); 3884 if (ResolvedParent == UnresolvedAncestorPad) { 3885 break; 3886 } 3887 ResolvedPad = ResolvedParent; 3888 } 3889 // If the resolved ancestor search didn't find the uncle's parent, 3890 // then the uncle is not yet resolved. 3891 if (ResolvedPad != AncestorPad) 3892 break; 3893 // This uncle is resolved, so pop it from the worklist. 3894 Worklist.pop_back(); 3895 } 3896 } 3897 } 3898 3899 if (FirstUnwindPad) { 3900 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3901 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3902 Value *SwitchUnwindPad; 3903 if (SwitchUnwindDest) 3904 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3905 else 3906 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3907 Assert(SwitchUnwindPad == FirstUnwindPad, 3908 "Unwind edges out of a catch must have the same unwind dest as " 3909 "the parent catchswitch", 3910 &FPI, FirstUser, CatchSwitch); 3911 } 3912 } 3913 3914 visitInstruction(FPI); 3915 } 3916 3917 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3918 BasicBlock *BB = CatchSwitch.getParent(); 3919 3920 Function *F = BB->getParent(); 3921 Assert(F->hasPersonalityFn(), 3922 "CatchSwitchInst needs to be in a function with a personality.", 3923 &CatchSwitch); 3924 3925 // The catchswitch instruction must be the first non-PHI instruction in the 3926 // block. 3927 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3928 "CatchSwitchInst not the first non-PHI instruction in the block.", 3929 &CatchSwitch); 3930 3931 auto *ParentPad = CatchSwitch.getParentPad(); 3932 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3933 "CatchSwitchInst has an invalid parent.", ParentPad); 3934 3935 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3936 Instruction *I = UnwindDest->getFirstNonPHI(); 3937 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3938 "CatchSwitchInst must unwind to an EH block which is not a " 3939 "landingpad.", 3940 &CatchSwitch); 3941 3942 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3943 if (getParentPad(I) == ParentPad) 3944 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3945 } 3946 3947 Assert(CatchSwitch.getNumHandlers() != 0, 3948 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3949 3950 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3951 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3952 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3953 } 3954 3955 visitEHPadPredecessors(CatchSwitch); 3956 visitTerminator(CatchSwitch); 3957 } 3958 3959 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3960 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3961 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3962 CRI.getOperand(0)); 3963 3964 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3965 Instruction *I = UnwindDest->getFirstNonPHI(); 3966 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3967 "CleanupReturnInst must unwind to an EH block which is not a " 3968 "landingpad.", 3969 &CRI); 3970 } 3971 3972 visitTerminator(CRI); 3973 } 3974 3975 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3976 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3977 // If the we have an invalid invoke, don't try to compute the dominance. 3978 // We already reject it in the invoke specific checks and the dominance 3979 // computation doesn't handle multiple edges. 3980 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3981 if (II->getNormalDest() == II->getUnwindDest()) 3982 return; 3983 } 3984 3985 // Quick check whether the def has already been encountered in the same block. 3986 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 3987 // uses are defined to happen on the incoming edge, not at the instruction. 3988 // 3989 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3990 // wrapping an SSA value, assert that we've already encountered it. See 3991 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3992 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3993 return; 3994 3995 const Use &U = I.getOperandUse(i); 3996 Assert(DT.dominates(Op, U), 3997 "Instruction does not dominate all uses!", Op, &I); 3998 } 3999 4000 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4001 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4002 "apply only to pointer types", &I); 4003 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4004 "dereferenceable, dereferenceable_or_null apply only to load" 4005 " and inttoptr instructions, use attributes for calls or invokes", &I); 4006 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4007 "take one operand!", &I); 4008 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4009 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4010 "dereferenceable_or_null metadata value must be an i64!", &I); 4011 } 4012 4013 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4014 Assert(MD->getNumOperands() >= 2, 4015 "!prof annotations should have no less than 2 operands", MD); 4016 4017 // Check first operand. 4018 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4019 Assert(isa<MDString>(MD->getOperand(0)), 4020 "expected string with name of the !prof annotation", MD); 4021 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4022 StringRef ProfName = MDS->getString(); 4023 4024 // Check consistency of !prof branch_weights metadata. 4025 if (ProfName.equals("branch_weights")) { 4026 unsigned ExpectedNumOperands = 0; 4027 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4028 ExpectedNumOperands = BI->getNumSuccessors(); 4029 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4030 ExpectedNumOperands = SI->getNumSuccessors(); 4031 else if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) 4032 ExpectedNumOperands = 1; 4033 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4034 ExpectedNumOperands = IBI->getNumDestinations(); 4035 else if (isa<SelectInst>(&I)) 4036 ExpectedNumOperands = 2; 4037 else 4038 CheckFailed("!prof branch_weights are not allowed for this instruction", 4039 MD); 4040 4041 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4042 "Wrong number of operands", MD); 4043 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4044 auto &MDO = MD->getOperand(i); 4045 Assert(MDO, "second operand should not be null", MD); 4046 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4047 "!prof brunch_weights operand is not a const int"); 4048 } 4049 } 4050 } 4051 4052 /// verifyInstruction - Verify that an instruction is well formed. 4053 /// 4054 void Verifier::visitInstruction(Instruction &I) { 4055 BasicBlock *BB = I.getParent(); 4056 Assert(BB, "Instruction not embedded in basic block!", &I); 4057 4058 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4059 for (User *U : I.users()) { 4060 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4061 "Only PHI nodes may reference their own value!", &I); 4062 } 4063 } 4064 4065 // Check that void typed values don't have names 4066 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4067 "Instruction has a name, but provides a void value!", &I); 4068 4069 // Check that the return value of the instruction is either void or a legal 4070 // value type. 4071 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4072 "Instruction returns a non-scalar type!", &I); 4073 4074 // Check that the instruction doesn't produce metadata. Calls are already 4075 // checked against the callee type. 4076 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4077 "Invalid use of metadata!", &I); 4078 4079 // Check that all uses of the instruction, if they are instructions 4080 // themselves, actually have parent basic blocks. If the use is not an 4081 // instruction, it is an error! 4082 for (Use &U : I.uses()) { 4083 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4084 Assert(Used->getParent() != nullptr, 4085 "Instruction referencing" 4086 " instruction not embedded in a basic block!", 4087 &I, Used); 4088 else { 4089 CheckFailed("Use of instruction is not an instruction!", U); 4090 return; 4091 } 4092 } 4093 4094 // Get a pointer to the call base of the instruction if it is some form of 4095 // call. 4096 const CallBase *CBI = dyn_cast<CallBase>(&I); 4097 4098 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4099 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4100 4101 // Check to make sure that only first-class-values are operands to 4102 // instructions. 4103 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4104 Assert(false, "Instruction operands must be first-class values!", &I); 4105 } 4106 4107 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4108 // Check to make sure that the "address of" an intrinsic function is never 4109 // taken. 4110 Assert(!F->isIntrinsic() || 4111 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4112 "Cannot take the address of an intrinsic!", &I); 4113 Assert( 4114 !F->isIntrinsic() || isa<CallInst>(I) || 4115 F->getIntrinsicID() == Intrinsic::donothing || 4116 F->getIntrinsicID() == Intrinsic::coro_resume || 4117 F->getIntrinsicID() == Intrinsic::coro_destroy || 4118 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4119 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4120 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4121 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4122 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4123 "statepoint, coro_resume or coro_destroy", 4124 &I); 4125 Assert(F->getParent() == &M, "Referencing function in another module!", 4126 &I, &M, F, F->getParent()); 4127 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4128 Assert(OpBB->getParent() == BB->getParent(), 4129 "Referring to a basic block in another function!", &I); 4130 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4131 Assert(OpArg->getParent() == BB->getParent(), 4132 "Referring to an argument in another function!", &I); 4133 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4134 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4135 &M, GV, GV->getParent()); 4136 } else if (isa<Instruction>(I.getOperand(i))) { 4137 verifyDominatesUse(I, i); 4138 } else if (isa<InlineAsm>(I.getOperand(i))) { 4139 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4140 "Cannot take the address of an inline asm!", &I); 4141 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4142 if (CE->getType()->isPtrOrPtrVectorTy() || 4143 !DL.getNonIntegralAddressSpaces().empty()) { 4144 // If we have a ConstantExpr pointer, we need to see if it came from an 4145 // illegal bitcast. If the datalayout string specifies non-integral 4146 // address spaces then we also need to check for illegal ptrtoint and 4147 // inttoptr expressions. 4148 visitConstantExprsRecursively(CE); 4149 } 4150 } 4151 } 4152 4153 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4154 Assert(I.getType()->isFPOrFPVectorTy(), 4155 "fpmath requires a floating point result!", &I); 4156 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4157 if (ConstantFP *CFP0 = 4158 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4159 const APFloat &Accuracy = CFP0->getValueAPF(); 4160 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4161 "fpmath accuracy must have float type", &I); 4162 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4163 "fpmath accuracy not a positive number!", &I); 4164 } else { 4165 Assert(false, "invalid fpmath accuracy!", &I); 4166 } 4167 } 4168 4169 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4170 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4171 "Ranges are only for loads, calls and invokes!", &I); 4172 visitRangeMetadata(I, Range, I.getType()); 4173 } 4174 4175 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4176 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4177 &I); 4178 Assert(isa<LoadInst>(I), 4179 "nonnull applies only to load instructions, use attributes" 4180 " for calls or invokes", 4181 &I); 4182 } 4183 4184 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4185 visitDereferenceableMetadata(I, MD); 4186 4187 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4188 visitDereferenceableMetadata(I, MD); 4189 4190 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4191 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4192 4193 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4194 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4195 &I); 4196 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4197 "use attributes for calls or invokes", &I); 4198 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4199 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4200 Assert(CI && CI->getType()->isIntegerTy(64), 4201 "align metadata value must be an i64!", &I); 4202 uint64_t Align = CI->getZExtValue(); 4203 Assert(isPowerOf2_64(Align), 4204 "align metadata value must be a power of 2!", &I); 4205 Assert(Align <= Value::MaximumAlignment, 4206 "alignment is larger that implementation defined limit", &I); 4207 } 4208 4209 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4210 visitProfMetadata(I, MD); 4211 4212 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4213 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4214 visitMDNode(*N); 4215 } 4216 4217 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4218 verifyFragmentExpression(*DII); 4219 verifyNotEntryValue(*DII); 4220 } 4221 4222 InstsInThisBlock.insert(&I); 4223 } 4224 4225 /// Allow intrinsics to be verified in different ways. 4226 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4227 Function *IF = Call.getCalledFunction(); 4228 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4229 IF); 4230 4231 // Verify that the intrinsic prototype lines up with what the .td files 4232 // describe. 4233 FunctionType *IFTy = IF->getFunctionType(); 4234 bool IsVarArg = IFTy->isVarArg(); 4235 4236 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4237 getIntrinsicInfoTableEntries(ID, Table); 4238 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4239 4240 // Walk the descriptors to extract overloaded types. 4241 SmallVector<Type *, 4> ArgTys; 4242 Intrinsic::MatchIntrinsicTypesResult Res = 4243 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4244 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4245 "Intrinsic has incorrect return type!", IF); 4246 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4247 "Intrinsic has incorrect argument type!", IF); 4248 4249 // Verify if the intrinsic call matches the vararg property. 4250 if (IsVarArg) 4251 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4252 "Intrinsic was not defined with variable arguments!", IF); 4253 else 4254 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4255 "Callsite was not defined with variable arguments!", IF); 4256 4257 // All descriptors should be absorbed by now. 4258 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4259 4260 // Now that we have the intrinsic ID and the actual argument types (and we 4261 // know they are legal for the intrinsic!) get the intrinsic name through the 4262 // usual means. This allows us to verify the mangling of argument types into 4263 // the name. 4264 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4265 Assert(ExpectedName == IF->getName(), 4266 "Intrinsic name not mangled correctly for type arguments! " 4267 "Should be: " + 4268 ExpectedName, 4269 IF); 4270 4271 // If the intrinsic takes MDNode arguments, verify that they are either global 4272 // or are local to *this* function. 4273 for (Value *V : Call.args()) 4274 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4275 visitMetadataAsValue(*MD, Call.getCaller()); 4276 4277 switch (ID) { 4278 default: 4279 break; 4280 case Intrinsic::coro_id: { 4281 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4282 if (isa<ConstantPointerNull>(InfoArg)) 4283 break; 4284 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4285 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4286 "info argument of llvm.coro.begin must refer to an initialized " 4287 "constant"); 4288 Constant *Init = GV->getInitializer(); 4289 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4290 "info argument of llvm.coro.begin must refer to either a struct or " 4291 "an array"); 4292 break; 4293 } 4294 case Intrinsic::experimental_constrained_fadd: 4295 case Intrinsic::experimental_constrained_fsub: 4296 case Intrinsic::experimental_constrained_fmul: 4297 case Intrinsic::experimental_constrained_fdiv: 4298 case Intrinsic::experimental_constrained_frem: 4299 case Intrinsic::experimental_constrained_fma: 4300 case Intrinsic::experimental_constrained_fptosi: 4301 case Intrinsic::experimental_constrained_fptoui: 4302 case Intrinsic::experimental_constrained_fptrunc: 4303 case Intrinsic::experimental_constrained_fpext: 4304 case Intrinsic::experimental_constrained_sqrt: 4305 case Intrinsic::experimental_constrained_pow: 4306 case Intrinsic::experimental_constrained_powi: 4307 case Intrinsic::experimental_constrained_sin: 4308 case Intrinsic::experimental_constrained_cos: 4309 case Intrinsic::experimental_constrained_exp: 4310 case Intrinsic::experimental_constrained_exp2: 4311 case Intrinsic::experimental_constrained_log: 4312 case Intrinsic::experimental_constrained_log10: 4313 case Intrinsic::experimental_constrained_log2: 4314 case Intrinsic::experimental_constrained_lrint: 4315 case Intrinsic::experimental_constrained_llrint: 4316 case Intrinsic::experimental_constrained_rint: 4317 case Intrinsic::experimental_constrained_nearbyint: 4318 case Intrinsic::experimental_constrained_maxnum: 4319 case Intrinsic::experimental_constrained_minnum: 4320 case Intrinsic::experimental_constrained_ceil: 4321 case Intrinsic::experimental_constrained_floor: 4322 case Intrinsic::experimental_constrained_lround: 4323 case Intrinsic::experimental_constrained_llround: 4324 case Intrinsic::experimental_constrained_round: 4325 case Intrinsic::experimental_constrained_trunc: 4326 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4327 break; 4328 case Intrinsic::dbg_declare: // llvm.dbg.declare 4329 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4330 "invalid llvm.dbg.declare intrinsic call 1", Call); 4331 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4332 break; 4333 case Intrinsic::dbg_addr: // llvm.dbg.addr 4334 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4335 break; 4336 case Intrinsic::dbg_value: // llvm.dbg.value 4337 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4338 break; 4339 case Intrinsic::dbg_label: // llvm.dbg.label 4340 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4341 break; 4342 case Intrinsic::memcpy: 4343 case Intrinsic::memmove: 4344 case Intrinsic::memset: { 4345 const auto *MI = cast<MemIntrinsic>(&Call); 4346 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4347 return Alignment == 0 || isPowerOf2_32(Alignment); 4348 }; 4349 Assert(IsValidAlignment(MI->getDestAlignment()), 4350 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4351 Call); 4352 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4353 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4354 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4355 Call); 4356 } 4357 4358 break; 4359 } 4360 case Intrinsic::memcpy_element_unordered_atomic: 4361 case Intrinsic::memmove_element_unordered_atomic: 4362 case Intrinsic::memset_element_unordered_atomic: { 4363 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4364 4365 ConstantInt *ElementSizeCI = 4366 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4367 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4368 Assert(ElementSizeVal.isPowerOf2(), 4369 "element size of the element-wise atomic memory intrinsic " 4370 "must be a power of 2", 4371 Call); 4372 4373 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4374 uint64_t Length = LengthCI->getZExtValue(); 4375 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4376 Assert((Length % ElementSize) == 0, 4377 "constant length must be a multiple of the element size in the " 4378 "element-wise atomic memory intrinsic", 4379 Call); 4380 } 4381 4382 auto IsValidAlignment = [&](uint64_t Alignment) { 4383 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4384 }; 4385 uint64_t DstAlignment = AMI->getDestAlignment(); 4386 Assert(IsValidAlignment(DstAlignment), 4387 "incorrect alignment of the destination argument", Call); 4388 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4389 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4390 Assert(IsValidAlignment(SrcAlignment), 4391 "incorrect alignment of the source argument", Call); 4392 } 4393 break; 4394 } 4395 case Intrinsic::gcroot: 4396 case Intrinsic::gcwrite: 4397 case Intrinsic::gcread: 4398 if (ID == Intrinsic::gcroot) { 4399 AllocaInst *AI = 4400 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4401 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4402 Assert(isa<Constant>(Call.getArgOperand(1)), 4403 "llvm.gcroot parameter #2 must be a constant.", Call); 4404 if (!AI->getAllocatedType()->isPointerTy()) { 4405 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4406 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4407 "or argument #2 must be a non-null constant.", 4408 Call); 4409 } 4410 } 4411 4412 Assert(Call.getParent()->getParent()->hasGC(), 4413 "Enclosing function does not use GC.", Call); 4414 break; 4415 case Intrinsic::init_trampoline: 4416 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4417 "llvm.init_trampoline parameter #2 must resolve to a function.", 4418 Call); 4419 break; 4420 case Intrinsic::prefetch: 4421 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4422 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4423 "invalid arguments to llvm.prefetch", Call); 4424 break; 4425 case Intrinsic::stackprotector: 4426 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4427 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4428 break; 4429 case Intrinsic::localescape: { 4430 BasicBlock *BB = Call.getParent(); 4431 Assert(BB == &BB->getParent()->front(), 4432 "llvm.localescape used outside of entry block", Call); 4433 Assert(!SawFrameEscape, 4434 "multiple calls to llvm.localescape in one function", Call); 4435 for (Value *Arg : Call.args()) { 4436 if (isa<ConstantPointerNull>(Arg)) 4437 continue; // Null values are allowed as placeholders. 4438 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4439 Assert(AI && AI->isStaticAlloca(), 4440 "llvm.localescape only accepts static allocas", Call); 4441 } 4442 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4443 SawFrameEscape = true; 4444 break; 4445 } 4446 case Intrinsic::localrecover: { 4447 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4448 Function *Fn = dyn_cast<Function>(FnArg); 4449 Assert(Fn && !Fn->isDeclaration(), 4450 "llvm.localrecover first " 4451 "argument must be function defined in this module", 4452 Call); 4453 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4454 auto &Entry = FrameEscapeInfo[Fn]; 4455 Entry.second = unsigned( 4456 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4457 break; 4458 } 4459 4460 case Intrinsic::experimental_gc_statepoint: 4461 if (auto *CI = dyn_cast<CallInst>(&Call)) 4462 Assert(!CI->isInlineAsm(), 4463 "gc.statepoint support for inline assembly unimplemented", CI); 4464 Assert(Call.getParent()->getParent()->hasGC(), 4465 "Enclosing function does not use GC.", Call); 4466 4467 verifyStatepoint(Call); 4468 break; 4469 case Intrinsic::experimental_gc_result: { 4470 Assert(Call.getParent()->getParent()->hasGC(), 4471 "Enclosing function does not use GC.", Call); 4472 // Are we tied to a statepoint properly? 4473 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4474 const Function *StatepointFn = 4475 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4476 Assert(StatepointFn && StatepointFn->isDeclaration() && 4477 StatepointFn->getIntrinsicID() == 4478 Intrinsic::experimental_gc_statepoint, 4479 "gc.result operand #1 must be from a statepoint", Call, 4480 Call.getArgOperand(0)); 4481 4482 // Assert that result type matches wrapped callee. 4483 const Value *Target = StatepointCall->getArgOperand(2); 4484 auto *PT = cast<PointerType>(Target->getType()); 4485 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4486 Assert(Call.getType() == TargetFuncType->getReturnType(), 4487 "gc.result result type does not match wrapped callee", Call); 4488 break; 4489 } 4490 case Intrinsic::experimental_gc_relocate: { 4491 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4492 4493 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4494 "gc.relocate must return a pointer or a vector of pointers", Call); 4495 4496 // Check that this relocate is correctly tied to the statepoint 4497 4498 // This is case for relocate on the unwinding path of an invoke statepoint 4499 if (LandingPadInst *LandingPad = 4500 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4501 4502 const BasicBlock *InvokeBB = 4503 LandingPad->getParent()->getUniquePredecessor(); 4504 4505 // Landingpad relocates should have only one predecessor with invoke 4506 // statepoint terminator 4507 Assert(InvokeBB, "safepoints should have unique landingpads", 4508 LandingPad->getParent()); 4509 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4510 InvokeBB); 4511 Assert(isStatepoint(InvokeBB->getTerminator()), 4512 "gc relocate should be linked to a statepoint", InvokeBB); 4513 } else { 4514 // In all other cases relocate should be tied to the statepoint directly. 4515 // This covers relocates on a normal return path of invoke statepoint and 4516 // relocates of a call statepoint. 4517 auto Token = Call.getArgOperand(0); 4518 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4519 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4520 } 4521 4522 // Verify rest of the relocate arguments. 4523 const CallBase &StatepointCall = 4524 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4525 4526 // Both the base and derived must be piped through the safepoint. 4527 Value *Base = Call.getArgOperand(1); 4528 Assert(isa<ConstantInt>(Base), 4529 "gc.relocate operand #2 must be integer offset", Call); 4530 4531 Value *Derived = Call.getArgOperand(2); 4532 Assert(isa<ConstantInt>(Derived), 4533 "gc.relocate operand #3 must be integer offset", Call); 4534 4535 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4536 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4537 // Check the bounds 4538 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4539 "gc.relocate: statepoint base index out of bounds", Call); 4540 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4541 "gc.relocate: statepoint derived index out of bounds", Call); 4542 4543 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4544 // section of the statepoint's argument. 4545 Assert(StatepointCall.arg_size() > 0, 4546 "gc.statepoint: insufficient arguments"); 4547 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4548 "gc.statement: number of call arguments must be constant integer"); 4549 const unsigned NumCallArgs = 4550 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4551 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4552 "gc.statepoint: mismatch in number of call arguments"); 4553 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4554 "gc.statepoint: number of transition arguments must be " 4555 "a constant integer"); 4556 const int NumTransitionArgs = 4557 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4558 ->getZExtValue(); 4559 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4560 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4561 "gc.statepoint: number of deoptimization arguments must be " 4562 "a constant integer"); 4563 const int NumDeoptArgs = 4564 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4565 ->getZExtValue(); 4566 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4567 const int GCParamArgsEnd = StatepointCall.arg_size(); 4568 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4569 "gc.relocate: statepoint base index doesn't fall within the " 4570 "'gc parameters' section of the statepoint call", 4571 Call); 4572 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4573 "gc.relocate: statepoint derived index doesn't fall within the " 4574 "'gc parameters' section of the statepoint call", 4575 Call); 4576 4577 // Relocated value must be either a pointer type or vector-of-pointer type, 4578 // but gc_relocate does not need to return the same pointer type as the 4579 // relocated pointer. It can be casted to the correct type later if it's 4580 // desired. However, they must have the same address space and 'vectorness' 4581 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4582 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4583 "gc.relocate: relocated value must be a gc pointer", Call); 4584 4585 auto ResultType = Call.getType(); 4586 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4587 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4588 "gc.relocate: vector relocates to vector and pointer to pointer", 4589 Call); 4590 Assert( 4591 ResultType->getPointerAddressSpace() == 4592 DerivedType->getPointerAddressSpace(), 4593 "gc.relocate: relocating a pointer shouldn't change its address space", 4594 Call); 4595 break; 4596 } 4597 case Intrinsic::eh_exceptioncode: 4598 case Intrinsic::eh_exceptionpointer: { 4599 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4600 "eh.exceptionpointer argument must be a catchpad", Call); 4601 break; 4602 } 4603 case Intrinsic::masked_load: { 4604 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4605 Call); 4606 4607 Value *Ptr = Call.getArgOperand(0); 4608 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4609 Value *Mask = Call.getArgOperand(2); 4610 Value *PassThru = Call.getArgOperand(3); 4611 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4612 Call); 4613 Assert(Alignment->getValue().isPowerOf2(), 4614 "masked_load: alignment must be a power of 2", Call); 4615 4616 // DataTy is the overloaded type 4617 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4618 Assert(DataTy == Call.getType(), 4619 "masked_load: return must match pointer type", Call); 4620 Assert(PassThru->getType() == DataTy, 4621 "masked_load: pass through and data type must match", Call); 4622 Assert(Mask->getType()->getVectorNumElements() == 4623 DataTy->getVectorNumElements(), 4624 "masked_load: vector mask must be same length as data", Call); 4625 break; 4626 } 4627 case Intrinsic::masked_store: { 4628 Value *Val = Call.getArgOperand(0); 4629 Value *Ptr = Call.getArgOperand(1); 4630 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4631 Value *Mask = Call.getArgOperand(3); 4632 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4633 Call); 4634 Assert(Alignment->getValue().isPowerOf2(), 4635 "masked_store: alignment must be a power of 2", Call); 4636 4637 // DataTy is the overloaded type 4638 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4639 Assert(DataTy == Val->getType(), 4640 "masked_store: storee must match pointer type", Call); 4641 Assert(Mask->getType()->getVectorNumElements() == 4642 DataTy->getVectorNumElements(), 4643 "masked_store: vector mask must be same length as data", Call); 4644 break; 4645 } 4646 4647 case Intrinsic::experimental_guard: { 4648 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4649 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4650 "experimental_guard must have exactly one " 4651 "\"deopt\" operand bundle"); 4652 break; 4653 } 4654 4655 case Intrinsic::experimental_deoptimize: { 4656 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4657 Call); 4658 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4659 "experimental_deoptimize must have exactly one " 4660 "\"deopt\" operand bundle"); 4661 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4662 "experimental_deoptimize return type must match caller return type"); 4663 4664 if (isa<CallInst>(Call)) { 4665 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4666 Assert(RI, 4667 "calls to experimental_deoptimize must be followed by a return"); 4668 4669 if (!Call.getType()->isVoidTy() && RI) 4670 Assert(RI->getReturnValue() == &Call, 4671 "calls to experimental_deoptimize must be followed by a return " 4672 "of the value computed by experimental_deoptimize"); 4673 } 4674 4675 break; 4676 } 4677 case Intrinsic::sadd_sat: 4678 case Intrinsic::uadd_sat: 4679 case Intrinsic::ssub_sat: 4680 case Intrinsic::usub_sat: { 4681 Value *Op1 = Call.getArgOperand(0); 4682 Value *Op2 = Call.getArgOperand(1); 4683 Assert(Op1->getType()->isIntOrIntVectorTy(), 4684 "first operand of [us][add|sub]_sat must be an int type or vector " 4685 "of ints"); 4686 Assert(Op2->getType()->isIntOrIntVectorTy(), 4687 "second operand of [us][add|sub]_sat must be an int type or vector " 4688 "of ints"); 4689 break; 4690 } 4691 case Intrinsic::smul_fix: 4692 case Intrinsic::smul_fix_sat: 4693 case Intrinsic::umul_fix: 4694 case Intrinsic::umul_fix_sat: { 4695 Value *Op1 = Call.getArgOperand(0); 4696 Value *Op2 = Call.getArgOperand(1); 4697 Assert(Op1->getType()->isIntOrIntVectorTy(), 4698 "first operand of [us]mul_fix[_sat] must be an int type or vector " 4699 "of ints"); 4700 Assert(Op2->getType()->isIntOrIntVectorTy(), 4701 "second operand of [us]mul_fix_[sat] must be an int type or vector " 4702 "of ints"); 4703 4704 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4705 Assert(Op3->getType()->getBitWidth() <= 32, 4706 "third argument of [us]mul_fix[_sat] must fit within 32 bits"); 4707 4708 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) { 4709 Assert( 4710 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4711 "the scale of smul_fix[_sat] must be less than the width of the operands"); 4712 } else { 4713 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4714 "the scale of umul_fix[_sat] must be less than or equal to the width of " 4715 "the operands"); 4716 } 4717 break; 4718 } 4719 case Intrinsic::lround: 4720 case Intrinsic::llround: 4721 case Intrinsic::lrint: 4722 case Intrinsic::llrint: { 4723 Type *ValTy = Call.getArgOperand(0)->getType(); 4724 Type *ResultTy = Call.getType(); 4725 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4726 "Intrinsic does not support vectors", &Call); 4727 break; 4728 } 4729 }; 4730 } 4731 4732 /// Carefully grab the subprogram from a local scope. 4733 /// 4734 /// This carefully grabs the subprogram from a local scope, avoiding the 4735 /// built-in assertions that would typically fire. 4736 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4737 if (!LocalScope) 4738 return nullptr; 4739 4740 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4741 return SP; 4742 4743 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4744 return getSubprogram(LB->getRawScope()); 4745 4746 // Just return null; broken scope chains are checked elsewhere. 4747 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4748 return nullptr; 4749 } 4750 4751 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4752 unsigned NumOperands = FPI.getNumArgOperands(); 4753 bool HasExceptionMD = false; 4754 bool HasRoundingMD = false; 4755 switch (FPI.getIntrinsicID()) { 4756 case Intrinsic::experimental_constrained_sqrt: 4757 case Intrinsic::experimental_constrained_sin: 4758 case Intrinsic::experimental_constrained_cos: 4759 case Intrinsic::experimental_constrained_exp: 4760 case Intrinsic::experimental_constrained_exp2: 4761 case Intrinsic::experimental_constrained_log: 4762 case Intrinsic::experimental_constrained_log10: 4763 case Intrinsic::experimental_constrained_log2: 4764 case Intrinsic::experimental_constrained_rint: 4765 case Intrinsic::experimental_constrained_nearbyint: 4766 case Intrinsic::experimental_constrained_ceil: 4767 case Intrinsic::experimental_constrained_floor: 4768 case Intrinsic::experimental_constrained_round: 4769 case Intrinsic::experimental_constrained_trunc: 4770 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", 4771 &FPI); 4772 HasExceptionMD = true; 4773 HasRoundingMD = true; 4774 break; 4775 4776 case Intrinsic::experimental_constrained_lrint: 4777 case Intrinsic::experimental_constrained_llrint: { 4778 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", 4779 &FPI); 4780 Type *ValTy = FPI.getArgOperand(0)->getType(); 4781 Type *ResultTy = FPI.getType(); 4782 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4783 "Intrinsic does not support vectors", &FPI); 4784 HasExceptionMD = true; 4785 HasRoundingMD = true; 4786 } 4787 break; 4788 4789 case Intrinsic::experimental_constrained_lround: 4790 case Intrinsic::experimental_constrained_llround: { 4791 Assert((NumOperands == 2), "invalid arguments for constrained FP intrinsic", 4792 &FPI); 4793 Type *ValTy = FPI.getArgOperand(0)->getType(); 4794 Type *ResultTy = FPI.getType(); 4795 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4796 "Intrinsic does not support vectors", &FPI); 4797 HasExceptionMD = true; 4798 break; 4799 } 4800 4801 case Intrinsic::experimental_constrained_fma: 4802 Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic", 4803 &FPI); 4804 HasExceptionMD = true; 4805 HasRoundingMD = true; 4806 break; 4807 4808 case Intrinsic::experimental_constrained_fadd: 4809 case Intrinsic::experimental_constrained_fsub: 4810 case Intrinsic::experimental_constrained_fmul: 4811 case Intrinsic::experimental_constrained_fdiv: 4812 case Intrinsic::experimental_constrained_frem: 4813 case Intrinsic::experimental_constrained_pow: 4814 case Intrinsic::experimental_constrained_powi: 4815 case Intrinsic::experimental_constrained_maxnum: 4816 case Intrinsic::experimental_constrained_minnum: 4817 Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic", 4818 &FPI); 4819 HasExceptionMD = true; 4820 HasRoundingMD = true; 4821 break; 4822 4823 case Intrinsic::experimental_constrained_fptosi: 4824 case Intrinsic::experimental_constrained_fptoui: { 4825 Assert((NumOperands == 2), 4826 "invalid arguments for constrained FP intrinsic", &FPI); 4827 HasExceptionMD = true; 4828 4829 Value *Operand = FPI.getArgOperand(0); 4830 uint64_t NumSrcElem = 0; 4831 Assert(Operand->getType()->isFPOrFPVectorTy(), 4832 "Intrinsic first argument must be floating point", &FPI); 4833 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4834 NumSrcElem = OperandT->getNumElements(); 4835 } 4836 4837 Operand = &FPI; 4838 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 4839 "Intrinsic first argument and result disagree on vector use", &FPI); 4840 Assert(Operand->getType()->isIntOrIntVectorTy(), 4841 "Intrinsic result must be an integer", &FPI); 4842 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4843 Assert(NumSrcElem == OperandT->getNumElements(), 4844 "Intrinsic first argument and result vector lengths must be equal", 4845 &FPI); 4846 } 4847 } 4848 break; 4849 4850 case Intrinsic::experimental_constrained_fptrunc: 4851 case Intrinsic::experimental_constrained_fpext: { 4852 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4853 Assert((NumOperands == 3), 4854 "invalid arguments for constrained FP intrinsic", &FPI); 4855 HasRoundingMD = true; 4856 } else { 4857 Assert((NumOperands == 2), 4858 "invalid arguments for constrained FP intrinsic", &FPI); 4859 } 4860 HasExceptionMD = true; 4861 4862 Value *Operand = FPI.getArgOperand(0); 4863 Type *OperandTy = Operand->getType(); 4864 Value *Result = &FPI; 4865 Type *ResultTy = Result->getType(); 4866 Assert(OperandTy->isFPOrFPVectorTy(), 4867 "Intrinsic first argument must be FP or FP vector", &FPI); 4868 Assert(ResultTy->isFPOrFPVectorTy(), 4869 "Intrinsic result must be FP or FP vector", &FPI); 4870 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 4871 "Intrinsic first argument and result disagree on vector use", &FPI); 4872 if (OperandTy->isVectorTy()) { 4873 auto *OperandVecTy = cast<VectorType>(OperandTy); 4874 auto *ResultVecTy = cast<VectorType>(ResultTy); 4875 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 4876 "Intrinsic first argument and result vector lengths must be equal", 4877 &FPI); 4878 } 4879 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4880 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 4881 "Intrinsic first argument's type must be larger than result type", 4882 &FPI); 4883 } else { 4884 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 4885 "Intrinsic first argument's type must be smaller than result type", 4886 &FPI); 4887 } 4888 } 4889 break; 4890 4891 default: 4892 llvm_unreachable("Invalid constrained FP intrinsic!"); 4893 } 4894 4895 // If a non-metadata argument is passed in a metadata slot then the 4896 // error will be caught earlier when the incorrect argument doesn't 4897 // match the specification in the intrinsic call table. Thus, no 4898 // argument type check is needed here. 4899 4900 if (HasExceptionMD) { 4901 Assert(FPI.getExceptionBehavior().hasValue(), 4902 "invalid exception behavior argument", &FPI); 4903 } 4904 if (HasRoundingMD) { 4905 Assert(FPI.getRoundingMode().hasValue(), 4906 "invalid rounding mode argument", &FPI); 4907 } 4908 } 4909 4910 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4911 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4912 AssertDI(isa<ValueAsMetadata>(MD) || 4913 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4914 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4915 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4916 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4917 DII.getRawVariable()); 4918 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4919 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4920 DII.getRawExpression()); 4921 4922 // Ignore broken !dbg attachments; they're checked elsewhere. 4923 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4924 if (!isa<DILocation>(N)) 4925 return; 4926 4927 BasicBlock *BB = DII.getParent(); 4928 Function *F = BB ? BB->getParent() : nullptr; 4929 4930 // The scopes for variables and !dbg attachments must agree. 4931 DILocalVariable *Var = DII.getVariable(); 4932 DILocation *Loc = DII.getDebugLoc(); 4933 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4934 &DII, BB, F); 4935 4936 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4937 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4938 if (!VarSP || !LocSP) 4939 return; // Broken scope chains are checked elsewhere. 4940 4941 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4942 " variable and !dbg attachment", 4943 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4944 Loc->getScope()->getSubprogram()); 4945 4946 // This check is redundant with one in visitLocalVariable(). 4947 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4948 Var->getRawType()); 4949 verifyFnArgs(DII); 4950 } 4951 4952 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4953 AssertDI(isa<DILabel>(DLI.getRawLabel()), 4954 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4955 DLI.getRawLabel()); 4956 4957 // Ignore broken !dbg attachments; they're checked elsewhere. 4958 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4959 if (!isa<DILocation>(N)) 4960 return; 4961 4962 BasicBlock *BB = DLI.getParent(); 4963 Function *F = BB ? BB->getParent() : nullptr; 4964 4965 // The scopes for variables and !dbg attachments must agree. 4966 DILabel *Label = DLI.getLabel(); 4967 DILocation *Loc = DLI.getDebugLoc(); 4968 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4969 &DLI, BB, F); 4970 4971 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4972 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4973 if (!LabelSP || !LocSP) 4974 return; 4975 4976 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4977 " label and !dbg attachment", 4978 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4979 Loc->getScope()->getSubprogram()); 4980 } 4981 4982 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 4983 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4984 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4985 4986 // We don't know whether this intrinsic verified correctly. 4987 if (!V || !E || !E->isValid()) 4988 return; 4989 4990 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4991 auto Fragment = E->getFragmentInfo(); 4992 if (!Fragment) 4993 return; 4994 4995 // The frontend helps out GDB by emitting the members of local anonymous 4996 // unions as artificial local variables with shared storage. When SROA splits 4997 // the storage for artificial local variables that are smaller than the entire 4998 // union, the overhang piece will be outside of the allotted space for the 4999 // variable and this check fails. 5000 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5001 if (V->isArtificial()) 5002 return; 5003 5004 verifyFragmentExpression(*V, *Fragment, &I); 5005 } 5006 5007 template <typename ValueOrMetadata> 5008 void Verifier::verifyFragmentExpression(const DIVariable &V, 5009 DIExpression::FragmentInfo Fragment, 5010 ValueOrMetadata *Desc) { 5011 // If there's no size, the type is broken, but that should be checked 5012 // elsewhere. 5013 auto VarSize = V.getSizeInBits(); 5014 if (!VarSize) 5015 return; 5016 5017 unsigned FragSize = Fragment.SizeInBits; 5018 unsigned FragOffset = Fragment.OffsetInBits; 5019 AssertDI(FragSize + FragOffset <= *VarSize, 5020 "fragment is larger than or outside of variable", Desc, &V); 5021 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5022 } 5023 5024 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5025 // This function does not take the scope of noninlined function arguments into 5026 // account. Don't run it if current function is nodebug, because it may 5027 // contain inlined debug intrinsics. 5028 if (!HasDebugInfo) 5029 return; 5030 5031 // For performance reasons only check non-inlined ones. 5032 if (I.getDebugLoc()->getInlinedAt()) 5033 return; 5034 5035 DILocalVariable *Var = I.getVariable(); 5036 AssertDI(Var, "dbg intrinsic without variable"); 5037 5038 unsigned ArgNo = Var->getArg(); 5039 if (!ArgNo) 5040 return; 5041 5042 // Verify there are no duplicate function argument debug info entries. 5043 // These will cause hard-to-debug assertions in the DWARF backend. 5044 if (DebugFnArgs.size() < ArgNo) 5045 DebugFnArgs.resize(ArgNo, nullptr); 5046 5047 auto *Prev = DebugFnArgs[ArgNo - 1]; 5048 DebugFnArgs[ArgNo - 1] = Var; 5049 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5050 Prev, Var); 5051 } 5052 5053 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5054 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5055 5056 // We don't know whether this intrinsic verified correctly. 5057 if (!E || !E->isValid()) 5058 return; 5059 5060 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5061 } 5062 5063 void Verifier::verifyCompileUnits() { 5064 // When more than one Module is imported into the same context, such as during 5065 // an LTO build before linking the modules, ODR type uniquing may cause types 5066 // to point to a different CU. This check does not make sense in this case. 5067 if (M.getContext().isODRUniquingDebugTypes()) 5068 return; 5069 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5070 SmallPtrSet<const Metadata *, 2> Listed; 5071 if (CUs) 5072 Listed.insert(CUs->op_begin(), CUs->op_end()); 5073 for (auto *CU : CUVisited) 5074 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5075 CUVisited.clear(); 5076 } 5077 5078 void Verifier::verifyDeoptimizeCallingConvs() { 5079 if (DeoptimizeDeclarations.empty()) 5080 return; 5081 5082 const Function *First = DeoptimizeDeclarations[0]; 5083 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5084 Assert(First->getCallingConv() == F->getCallingConv(), 5085 "All llvm.experimental.deoptimize declarations must have the same " 5086 "calling convention", 5087 First, F); 5088 } 5089 } 5090 5091 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5092 bool HasSource = F.getSource().hasValue(); 5093 if (!HasSourceDebugInfo.count(&U)) 5094 HasSourceDebugInfo[&U] = HasSource; 5095 AssertDI(HasSource == HasSourceDebugInfo[&U], 5096 "inconsistent use of embedded source"); 5097 } 5098 5099 //===----------------------------------------------------------------------===// 5100 // Implement the public interfaces to this file... 5101 //===----------------------------------------------------------------------===// 5102 5103 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5104 Function &F = const_cast<Function &>(f); 5105 5106 // Don't use a raw_null_ostream. Printing IR is expensive. 5107 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5108 5109 // Note that this function's return value is inverted from what you would 5110 // expect of a function called "verify". 5111 return !V.verify(F); 5112 } 5113 5114 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5115 bool *BrokenDebugInfo) { 5116 // Don't use a raw_null_ostream. Printing IR is expensive. 5117 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5118 5119 bool Broken = false; 5120 for (const Function &F : M) 5121 Broken |= !V.verify(F); 5122 5123 Broken |= !V.verify(); 5124 if (BrokenDebugInfo) 5125 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5126 // Note that this function's return value is inverted from what you would 5127 // expect of a function called "verify". 5128 return Broken; 5129 } 5130 5131 namespace { 5132 5133 struct VerifierLegacyPass : public FunctionPass { 5134 static char ID; 5135 5136 std::unique_ptr<Verifier> V; 5137 bool FatalErrors = true; 5138 5139 VerifierLegacyPass() : FunctionPass(ID) { 5140 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5141 } 5142 explicit VerifierLegacyPass(bool FatalErrors) 5143 : FunctionPass(ID), 5144 FatalErrors(FatalErrors) { 5145 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5146 } 5147 5148 bool doInitialization(Module &M) override { 5149 V = std::make_unique<Verifier>( 5150 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5151 return false; 5152 } 5153 5154 bool runOnFunction(Function &F) override { 5155 if (!V->verify(F) && FatalErrors) { 5156 errs() << "in function " << F.getName() << '\n'; 5157 report_fatal_error("Broken function found, compilation aborted!"); 5158 } 5159 return false; 5160 } 5161 5162 bool doFinalization(Module &M) override { 5163 bool HasErrors = false; 5164 for (Function &F : M) 5165 if (F.isDeclaration()) 5166 HasErrors |= !V->verify(F); 5167 5168 HasErrors |= !V->verify(); 5169 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5170 report_fatal_error("Broken module found, compilation aborted!"); 5171 return false; 5172 } 5173 5174 void getAnalysisUsage(AnalysisUsage &AU) const override { 5175 AU.setPreservesAll(); 5176 } 5177 }; 5178 5179 } // end anonymous namespace 5180 5181 /// Helper to issue failure from the TBAA verification 5182 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5183 if (Diagnostic) 5184 return Diagnostic->CheckFailed(Args...); 5185 } 5186 5187 #define AssertTBAA(C, ...) \ 5188 do { \ 5189 if (!(C)) { \ 5190 CheckFailed(__VA_ARGS__); \ 5191 return false; \ 5192 } \ 5193 } while (false) 5194 5195 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5196 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5197 /// struct-type node describing an aggregate data structure (like a struct). 5198 TBAAVerifier::TBAABaseNodeSummary 5199 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5200 bool IsNewFormat) { 5201 if (BaseNode->getNumOperands() < 2) { 5202 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5203 return {true, ~0u}; 5204 } 5205 5206 auto Itr = TBAABaseNodes.find(BaseNode); 5207 if (Itr != TBAABaseNodes.end()) 5208 return Itr->second; 5209 5210 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5211 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5212 (void)InsertResult; 5213 assert(InsertResult.second && "We just checked!"); 5214 return Result; 5215 } 5216 5217 TBAAVerifier::TBAABaseNodeSummary 5218 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5219 bool IsNewFormat) { 5220 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5221 5222 if (BaseNode->getNumOperands() == 2) { 5223 // Scalar nodes can only be accessed at offset 0. 5224 return isValidScalarTBAANode(BaseNode) 5225 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5226 : InvalidNode; 5227 } 5228 5229 if (IsNewFormat) { 5230 if (BaseNode->getNumOperands() % 3 != 0) { 5231 CheckFailed("Access tag nodes must have the number of operands that is a " 5232 "multiple of 3!", BaseNode); 5233 return InvalidNode; 5234 } 5235 } else { 5236 if (BaseNode->getNumOperands() % 2 != 1) { 5237 CheckFailed("Struct tag nodes must have an odd number of operands!", 5238 BaseNode); 5239 return InvalidNode; 5240 } 5241 } 5242 5243 // Check the type size field. 5244 if (IsNewFormat) { 5245 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5246 BaseNode->getOperand(1)); 5247 if (!TypeSizeNode) { 5248 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5249 return InvalidNode; 5250 } 5251 } 5252 5253 // Check the type name field. In the new format it can be anything. 5254 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5255 CheckFailed("Struct tag nodes have a string as their first operand", 5256 BaseNode); 5257 return InvalidNode; 5258 } 5259 5260 bool Failed = false; 5261 5262 Optional<APInt> PrevOffset; 5263 unsigned BitWidth = ~0u; 5264 5265 // We've already checked that BaseNode is not a degenerate root node with one 5266 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5267 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5268 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5269 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5270 Idx += NumOpsPerField) { 5271 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5272 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5273 if (!isa<MDNode>(FieldTy)) { 5274 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5275 Failed = true; 5276 continue; 5277 } 5278 5279 auto *OffsetEntryCI = 5280 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5281 if (!OffsetEntryCI) { 5282 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5283 Failed = true; 5284 continue; 5285 } 5286 5287 if (BitWidth == ~0u) 5288 BitWidth = OffsetEntryCI->getBitWidth(); 5289 5290 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5291 CheckFailed( 5292 "Bitwidth between the offsets and struct type entries must match", &I, 5293 BaseNode); 5294 Failed = true; 5295 continue; 5296 } 5297 5298 // NB! As far as I can tell, we generate a non-strictly increasing offset 5299 // sequence only from structs that have zero size bit fields. When 5300 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5301 // pick the field lexically the latest in struct type metadata node. This 5302 // mirrors the actual behavior of the alias analysis implementation. 5303 bool IsAscending = 5304 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5305 5306 if (!IsAscending) { 5307 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5308 Failed = true; 5309 } 5310 5311 PrevOffset = OffsetEntryCI->getValue(); 5312 5313 if (IsNewFormat) { 5314 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5315 BaseNode->getOperand(Idx + 2)); 5316 if (!MemberSizeNode) { 5317 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5318 Failed = true; 5319 continue; 5320 } 5321 } 5322 } 5323 5324 return Failed ? InvalidNode 5325 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5326 } 5327 5328 static bool IsRootTBAANode(const MDNode *MD) { 5329 return MD->getNumOperands() < 2; 5330 } 5331 5332 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5333 SmallPtrSetImpl<const MDNode *> &Visited) { 5334 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5335 return false; 5336 5337 if (!isa<MDString>(MD->getOperand(0))) 5338 return false; 5339 5340 if (MD->getNumOperands() == 3) { 5341 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5342 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5343 return false; 5344 } 5345 5346 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5347 return Parent && Visited.insert(Parent).second && 5348 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5349 } 5350 5351 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5352 auto ResultIt = TBAAScalarNodes.find(MD); 5353 if (ResultIt != TBAAScalarNodes.end()) 5354 return ResultIt->second; 5355 5356 SmallPtrSet<const MDNode *, 4> Visited; 5357 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5358 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5359 (void)InsertResult; 5360 assert(InsertResult.second && "Just checked!"); 5361 5362 return Result; 5363 } 5364 5365 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5366 /// Offset in place to be the offset within the field node returned. 5367 /// 5368 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5369 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5370 const MDNode *BaseNode, 5371 APInt &Offset, 5372 bool IsNewFormat) { 5373 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5374 5375 // Scalar nodes have only one possible "field" -- their parent in the access 5376 // hierarchy. Offset must be zero at this point, but our caller is supposed 5377 // to Assert that. 5378 if (BaseNode->getNumOperands() == 2) 5379 return cast<MDNode>(BaseNode->getOperand(1)); 5380 5381 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5382 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5383 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5384 Idx += NumOpsPerField) { 5385 auto *OffsetEntryCI = 5386 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5387 if (OffsetEntryCI->getValue().ugt(Offset)) { 5388 if (Idx == FirstFieldOpNo) { 5389 CheckFailed("Could not find TBAA parent in struct type node", &I, 5390 BaseNode, &Offset); 5391 return nullptr; 5392 } 5393 5394 unsigned PrevIdx = Idx - NumOpsPerField; 5395 auto *PrevOffsetEntryCI = 5396 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5397 Offset -= PrevOffsetEntryCI->getValue(); 5398 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5399 } 5400 } 5401 5402 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5403 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5404 BaseNode->getOperand(LastIdx + 1)); 5405 Offset -= LastOffsetEntryCI->getValue(); 5406 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5407 } 5408 5409 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5410 if (!Type || Type->getNumOperands() < 3) 5411 return false; 5412 5413 // In the new format type nodes shall have a reference to the parent type as 5414 // its first operand. 5415 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5416 if (!Parent) 5417 return false; 5418 5419 return true; 5420 } 5421 5422 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5423 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5424 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5425 isa<AtomicCmpXchgInst>(I), 5426 "This instruction shall not have a TBAA access tag!", &I); 5427 5428 bool IsStructPathTBAA = 5429 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5430 5431 AssertTBAA( 5432 IsStructPathTBAA, 5433 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5434 5435 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5436 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5437 5438 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5439 5440 if (IsNewFormat) { 5441 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5442 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5443 } else { 5444 AssertTBAA(MD->getNumOperands() < 5, 5445 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5446 } 5447 5448 // Check the access size field. 5449 if (IsNewFormat) { 5450 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5451 MD->getOperand(3)); 5452 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5453 } 5454 5455 // Check the immutability flag. 5456 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5457 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5458 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5459 MD->getOperand(ImmutabilityFlagOpNo)); 5460 AssertTBAA(IsImmutableCI, 5461 "Immutability tag on struct tag metadata must be a constant", 5462 &I, MD); 5463 AssertTBAA( 5464 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5465 "Immutability part of the struct tag metadata must be either 0 or 1", 5466 &I, MD); 5467 } 5468 5469 AssertTBAA(BaseNode && AccessType, 5470 "Malformed struct tag metadata: base and access-type " 5471 "should be non-null and point to Metadata nodes", 5472 &I, MD, BaseNode, AccessType); 5473 5474 if (!IsNewFormat) { 5475 AssertTBAA(isValidScalarTBAANode(AccessType), 5476 "Access type node must be a valid scalar type", &I, MD, 5477 AccessType); 5478 } 5479 5480 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5481 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5482 5483 APInt Offset = OffsetCI->getValue(); 5484 bool SeenAccessTypeInPath = false; 5485 5486 SmallPtrSet<MDNode *, 4> StructPath; 5487 5488 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5489 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5490 IsNewFormat)) { 5491 if (!StructPath.insert(BaseNode).second) { 5492 CheckFailed("Cycle detected in struct path", &I, MD); 5493 return false; 5494 } 5495 5496 bool Invalid; 5497 unsigned BaseNodeBitWidth; 5498 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5499 IsNewFormat); 5500 5501 // If the base node is invalid in itself, then we've already printed all the 5502 // errors we wanted to print. 5503 if (Invalid) 5504 return false; 5505 5506 SeenAccessTypeInPath |= BaseNode == AccessType; 5507 5508 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5509 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5510 &I, MD, &Offset); 5511 5512 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5513 (BaseNodeBitWidth == 0 && Offset == 0) || 5514 (IsNewFormat && BaseNodeBitWidth == ~0u), 5515 "Access bit-width not the same as description bit-width", &I, MD, 5516 BaseNodeBitWidth, Offset.getBitWidth()); 5517 5518 if (IsNewFormat && SeenAccessTypeInPath) 5519 break; 5520 } 5521 5522 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5523 &I, MD); 5524 return true; 5525 } 5526 5527 char VerifierLegacyPass::ID = 0; 5528 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5529 5530 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5531 return new VerifierLegacyPass(FatalErrors); 5532 } 5533 5534 AnalysisKey VerifierAnalysis::Key; 5535 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5536 ModuleAnalysisManager &) { 5537 Result Res; 5538 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5539 return Res; 5540 } 5541 5542 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5543 FunctionAnalysisManager &) { 5544 return { llvm::verifyFunction(F, &dbgs()), false }; 5545 } 5546 5547 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5548 auto Res = AM.getResult<VerifierAnalysis>(M); 5549 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5550 report_fatal_error("Broken module found, compilation aborted!"); 5551 5552 return PreservedAnalyses::all(); 5553 } 5554 5555 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5556 auto res = AM.getResult<VerifierAnalysis>(F); 5557 if (res.IRBroken && FatalErrors) 5558 report_fatal_error("Broken function found, compilation aborted!"); 5559 5560 return PreservedAnalyses::all(); 5561 } 5562