1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // basic correctness checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * All basic blocks should only end with terminator insts, not contain them 27 // * The entry node to a function must not have predecessors 28 // * All Instructions must be embedded into a basic block 29 // * Functions cannot take a void-typed parameter 30 // * Verify that a function's argument list agrees with it's declared type. 31 // * It is illegal to specify a name for a void value. 32 // * It is illegal to have a internal global value with no initializer 33 // * It is illegal to have a ret instruction that returns a value that does not 34 // agree with the function return value type. 35 // * Function call argument types match the function prototype 36 // * A landing pad is defined by a landingpad instruction, and can be jumped to 37 // only by the unwind edge of an invoke instruction. 38 // * A landingpad instruction must be the first non-PHI instruction in the 39 // block. 40 // * Landingpad instructions must be in a function with a personality function. 41 // * All other things that are tested by asserts spread about the code... 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/IR/Verifier.h" 46 #include "llvm/ADT/APFloat.h" 47 #include "llvm/ADT/APInt.h" 48 #include "llvm/ADT/ArrayRef.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/MapVector.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/SmallPtrSet.h" 53 #include "llvm/ADT/SmallSet.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/ADT/StringMap.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/ADT/Twine.h" 59 #include "llvm/BinaryFormat/Dwarf.h" 60 #include "llvm/IR/Argument.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/CallingConv.h" 65 #include "llvm/IR/Comdat.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfo.h" 71 #include "llvm/IR/DebugInfoMetadata.h" 72 #include "llvm/IR/DebugLoc.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/GCStrategy.h" 77 #include "llvm/IR/GlobalAlias.h" 78 #include "llvm/IR/GlobalValue.h" 79 #include "llvm/IR/GlobalVariable.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstVisitor.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/IntrinsicsAArch64.h" 88 #include "llvm/IR/IntrinsicsARM.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include <algorithm> 109 #include <cassert> 110 #include <cstdint> 111 #include <memory> 112 #include <optional> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyNoAliasScopeDomination( 119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121 "scopes are not dominating")); 122 123 namespace llvm { 124 125 struct VerifierSupport { 126 raw_ostream *OS; 127 const Module &M; 128 ModuleSlotTracker MST; 129 Triple TT; 130 const DataLayout &DL; 131 LLVMContext &Context; 132 133 /// Track the brokenness of the module while recursively visiting. 134 bool Broken = false; 135 /// Broken debug info can be "recovered" from by stripping the debug info. 136 bool BrokenDebugInfo = false; 137 /// Whether to treat broken debug info as an error. 138 bool TreatBrokenDebugInfoAsError = true; 139 140 explicit VerifierSupport(raw_ostream *OS, const Module &M) 141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 142 Context(M.getContext()) {} 143 144 private: 145 void Write(const Module *M) { 146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 147 } 148 149 void Write(const Value *V) { 150 if (V) 151 Write(*V); 152 } 153 154 void Write(const Value &V) { 155 if (isa<Instruction>(V)) { 156 V.print(*OS, MST); 157 *OS << '\n'; 158 } else { 159 V.printAsOperand(*OS, true, MST); 160 *OS << '\n'; 161 } 162 } 163 164 void Write(const Metadata *MD) { 165 if (!MD) 166 return; 167 MD->print(*OS, MST, &M); 168 *OS << '\n'; 169 } 170 171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 172 Write(MD.get()); 173 } 174 175 void Write(const NamedMDNode *NMD) { 176 if (!NMD) 177 return; 178 NMD->print(*OS, MST); 179 *OS << '\n'; 180 } 181 182 void Write(Type *T) { 183 if (!T) 184 return; 185 *OS << ' ' << *T; 186 } 187 188 void Write(const Comdat *C) { 189 if (!C) 190 return; 191 *OS << *C; 192 } 193 194 void Write(const APInt *AI) { 195 if (!AI) 196 return; 197 *OS << *AI << '\n'; 198 } 199 200 void Write(const unsigned i) { *OS << i << '\n'; } 201 202 // NOLINTNEXTLINE(readability-identifier-naming) 203 void Write(const Attribute *A) { 204 if (!A) 205 return; 206 *OS << A->getAsString() << '\n'; 207 } 208 209 // NOLINTNEXTLINE(readability-identifier-naming) 210 void Write(const AttributeSet *AS) { 211 if (!AS) 212 return; 213 *OS << AS->getAsString() << '\n'; 214 } 215 216 // NOLINTNEXTLINE(readability-identifier-naming) 217 void Write(const AttributeList *AL) { 218 if (!AL) 219 return; 220 AL->print(*OS); 221 } 222 223 template <typename T> void Write(ArrayRef<T> Vs) { 224 for (const T &V : Vs) 225 Write(V); 226 } 227 228 template <typename T1, typename... Ts> 229 void WriteTs(const T1 &V1, const Ts &... Vs) { 230 Write(V1); 231 WriteTs(Vs...); 232 } 233 234 template <typename... Ts> void WriteTs() {} 235 236 public: 237 /// A check failed, so printout out the condition and the message. 238 /// 239 /// This provides a nice place to put a breakpoint if you want to see why 240 /// something is not correct. 241 void CheckFailed(const Twine &Message) { 242 if (OS) 243 *OS << Message << '\n'; 244 Broken = true; 245 } 246 247 /// A check failed (with values to print). 248 /// 249 /// This calls the Message-only version so that the above is easier to set a 250 /// breakpoint on. 251 template <typename T1, typename... Ts> 252 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 253 CheckFailed(Message); 254 if (OS) 255 WriteTs(V1, Vs...); 256 } 257 258 /// A debug info check failed. 259 void DebugInfoCheckFailed(const Twine &Message) { 260 if (OS) 261 *OS << Message << '\n'; 262 Broken |= TreatBrokenDebugInfoAsError; 263 BrokenDebugInfo = true; 264 } 265 266 /// A debug info check failed (with values to print). 267 template <typename T1, typename... Ts> 268 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 269 const Ts &... Vs) { 270 DebugInfoCheckFailed(Message); 271 if (OS) 272 WriteTs(V1, Vs...); 273 } 274 }; 275 276 } // namespace llvm 277 278 namespace { 279 280 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 281 friend class InstVisitor<Verifier>; 282 283 // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so 284 // the alignment size should not exceed 2^15. Since encode(Align) 285 // would plus the shift value by 1, the alignment size should 286 // not exceed 2^14, otherwise it can NOT be properly lowered 287 // in backend. 288 static constexpr unsigned ParamMaxAlignment = 1 << 14; 289 DominatorTree DT; 290 291 /// When verifying a basic block, keep track of all of the 292 /// instructions we have seen so far. 293 /// 294 /// This allows us to do efficient dominance checks for the case when an 295 /// instruction has an operand that is an instruction in the same block. 296 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 297 298 /// Keep track of the metadata nodes that have been checked already. 299 SmallPtrSet<const Metadata *, 32> MDNodes; 300 301 /// Keep track which DISubprogram is attached to which function. 302 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 303 304 /// Track all DICompileUnits visited. 305 SmallPtrSet<const Metadata *, 2> CUVisited; 306 307 /// The result type for a landingpad. 308 Type *LandingPadResultTy; 309 310 /// Whether we've seen a call to @llvm.localescape in this function 311 /// already. 312 bool SawFrameEscape; 313 314 /// Whether the current function has a DISubprogram attached to it. 315 bool HasDebugInfo = false; 316 317 /// The current source language. 318 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 319 320 /// Whether source was present on the first DIFile encountered in each CU. 321 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 322 323 /// Stores the count of how many objects were passed to llvm.localescape for a 324 /// given function and the largest index passed to llvm.localrecover. 325 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 326 327 // Maps catchswitches and cleanuppads that unwind to siblings to the 328 // terminators that indicate the unwind, used to detect cycles therein. 329 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 330 331 /// Cache of constants visited in search of ConstantExprs. 332 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 333 334 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 335 SmallVector<const Function *, 4> DeoptimizeDeclarations; 336 337 /// Cache of attribute lists verified. 338 SmallPtrSet<const void *, 32> AttributeListsVisited; 339 340 // Verify that this GlobalValue is only used in this module. 341 // This map is used to avoid visiting uses twice. We can arrive at a user 342 // twice, if they have multiple operands. In particular for very large 343 // constant expressions, we can arrive at a particular user many times. 344 SmallPtrSet<const Value *, 32> GlobalValueVisited; 345 346 // Keeps track of duplicate function argument debug info. 347 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 348 349 TBAAVerifier TBAAVerifyHelper; 350 351 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 352 353 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 354 355 public: 356 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 357 const Module &M) 358 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 359 SawFrameEscape(false), TBAAVerifyHelper(this) { 360 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 361 } 362 363 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 364 365 bool verify(const Function &F) { 366 assert(F.getParent() == &M && 367 "An instance of this class only works with a specific module!"); 368 369 // First ensure the function is well-enough formed to compute dominance 370 // information, and directly compute a dominance tree. We don't rely on the 371 // pass manager to provide this as it isolates us from a potentially 372 // out-of-date dominator tree and makes it significantly more complex to run 373 // this code outside of a pass manager. 374 // FIXME: It's really gross that we have to cast away constness here. 375 if (!F.empty()) 376 DT.recalculate(const_cast<Function &>(F)); 377 378 for (const BasicBlock &BB : F) { 379 if (!BB.empty() && BB.back().isTerminator()) 380 continue; 381 382 if (OS) { 383 *OS << "Basic Block in function '" << F.getName() 384 << "' does not have terminator!\n"; 385 BB.printAsOperand(*OS, true, MST); 386 *OS << "\n"; 387 } 388 return false; 389 } 390 391 Broken = false; 392 // FIXME: We strip const here because the inst visitor strips const. 393 visit(const_cast<Function &>(F)); 394 verifySiblingFuncletUnwinds(); 395 InstsInThisBlock.clear(); 396 DebugFnArgs.clear(); 397 LandingPadResultTy = nullptr; 398 SawFrameEscape = false; 399 SiblingFuncletInfo.clear(); 400 verifyNoAliasScopeDecl(); 401 NoAliasScopeDecls.clear(); 402 403 return !Broken; 404 } 405 406 /// Verify the module that this instance of \c Verifier was initialized with. 407 bool verify() { 408 Broken = false; 409 410 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 411 for (const Function &F : M) 412 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 413 DeoptimizeDeclarations.push_back(&F); 414 415 // Now that we've visited every function, verify that we never asked to 416 // recover a frame index that wasn't escaped. 417 verifyFrameRecoverIndices(); 418 for (const GlobalVariable &GV : M.globals()) 419 visitGlobalVariable(GV); 420 421 for (const GlobalAlias &GA : M.aliases()) 422 visitGlobalAlias(GA); 423 424 for (const GlobalIFunc &GI : M.ifuncs()) 425 visitGlobalIFunc(GI); 426 427 for (const NamedMDNode &NMD : M.named_metadata()) 428 visitNamedMDNode(NMD); 429 430 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 431 visitComdat(SMEC.getValue()); 432 433 visitModuleFlags(); 434 visitModuleIdents(); 435 visitModuleCommandLines(); 436 437 verifyCompileUnits(); 438 439 verifyDeoptimizeCallingConvs(); 440 DISubprogramAttachments.clear(); 441 return !Broken; 442 } 443 444 private: 445 /// Whether a metadata node is allowed to be, or contain, a DILocation. 446 enum class AreDebugLocsAllowed { No, Yes }; 447 448 // Verification methods... 449 void visitGlobalValue(const GlobalValue &GV); 450 void visitGlobalVariable(const GlobalVariable &GV); 451 void visitGlobalAlias(const GlobalAlias &GA); 452 void visitGlobalIFunc(const GlobalIFunc &GI); 453 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 454 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 455 const GlobalAlias &A, const Constant &C); 456 void visitNamedMDNode(const NamedMDNode &NMD); 457 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 458 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 459 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 460 void visitComdat(const Comdat &C); 461 void visitModuleIdents(); 462 void visitModuleCommandLines(); 463 void visitModuleFlags(); 464 void visitModuleFlag(const MDNode *Op, 465 DenseMap<const MDString *, const MDNode *> &SeenIDs, 466 SmallVectorImpl<const MDNode *> &Requirements); 467 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 468 void visitFunction(const Function &F); 469 void visitBasicBlock(BasicBlock &BB); 470 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 471 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 472 void visitProfMetadata(Instruction &I, MDNode *MD); 473 void visitCallStackMetadata(MDNode *MD); 474 void visitMemProfMetadata(Instruction &I, MDNode *MD); 475 void visitCallsiteMetadata(Instruction &I, MDNode *MD); 476 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD); 477 void visitAnnotationMetadata(MDNode *Annotation); 478 void visitAliasScopeMetadata(const MDNode *MD); 479 void visitAliasScopeListMetadata(const MDNode *MD); 480 void visitAccessGroupMetadata(const MDNode *MD); 481 482 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 483 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 484 #include "llvm/IR/Metadata.def" 485 void visitDIScope(const DIScope &N); 486 void visitDIVariable(const DIVariable &N); 487 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 488 void visitDITemplateParameter(const DITemplateParameter &N); 489 490 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 491 492 // InstVisitor overrides... 493 using InstVisitor<Verifier>::visit; 494 void visit(Instruction &I); 495 496 void visitTruncInst(TruncInst &I); 497 void visitZExtInst(ZExtInst &I); 498 void visitSExtInst(SExtInst &I); 499 void visitFPTruncInst(FPTruncInst &I); 500 void visitFPExtInst(FPExtInst &I); 501 void visitFPToUIInst(FPToUIInst &I); 502 void visitFPToSIInst(FPToSIInst &I); 503 void visitUIToFPInst(UIToFPInst &I); 504 void visitSIToFPInst(SIToFPInst &I); 505 void visitIntToPtrInst(IntToPtrInst &I); 506 void visitPtrToIntInst(PtrToIntInst &I); 507 void visitBitCastInst(BitCastInst &I); 508 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 509 void visitPHINode(PHINode &PN); 510 void visitCallBase(CallBase &Call); 511 void visitUnaryOperator(UnaryOperator &U); 512 void visitBinaryOperator(BinaryOperator &B); 513 void visitICmpInst(ICmpInst &IC); 514 void visitFCmpInst(FCmpInst &FC); 515 void visitExtractElementInst(ExtractElementInst &EI); 516 void visitInsertElementInst(InsertElementInst &EI); 517 void visitShuffleVectorInst(ShuffleVectorInst &EI); 518 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 519 void visitCallInst(CallInst &CI); 520 void visitInvokeInst(InvokeInst &II); 521 void visitGetElementPtrInst(GetElementPtrInst &GEP); 522 void visitLoadInst(LoadInst &LI); 523 void visitStoreInst(StoreInst &SI); 524 void verifyDominatesUse(Instruction &I, unsigned i); 525 void visitInstruction(Instruction &I); 526 void visitTerminator(Instruction &I); 527 void visitBranchInst(BranchInst &BI); 528 void visitReturnInst(ReturnInst &RI); 529 void visitSwitchInst(SwitchInst &SI); 530 void visitIndirectBrInst(IndirectBrInst &BI); 531 void visitCallBrInst(CallBrInst &CBI); 532 void visitSelectInst(SelectInst &SI); 533 void visitUserOp1(Instruction &I); 534 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 535 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 536 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 537 void visitVPIntrinsic(VPIntrinsic &VPI); 538 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 539 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 540 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 541 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 542 void visitFenceInst(FenceInst &FI); 543 void visitAllocaInst(AllocaInst &AI); 544 void visitExtractValueInst(ExtractValueInst &EVI); 545 void visitInsertValueInst(InsertValueInst &IVI); 546 void visitEHPadPredecessors(Instruction &I); 547 void visitLandingPadInst(LandingPadInst &LPI); 548 void visitResumeInst(ResumeInst &RI); 549 void visitCatchPadInst(CatchPadInst &CPI); 550 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 551 void visitCleanupPadInst(CleanupPadInst &CPI); 552 void visitFuncletPadInst(FuncletPadInst &FPI); 553 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 554 void visitCleanupReturnInst(CleanupReturnInst &CRI); 555 556 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 557 void verifySwiftErrorValue(const Value *SwiftErrorVal); 558 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context); 559 void verifyMustTailCall(CallInst &CI); 560 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 561 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 562 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 563 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 564 const Value *V); 565 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 566 const Value *V, bool IsIntrinsic, bool IsInlineAsm); 567 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 568 569 void visitConstantExprsRecursively(const Constant *EntryC); 570 void visitConstantExpr(const ConstantExpr *CE); 571 void verifyInlineAsmCall(const CallBase &Call); 572 void verifyStatepoint(const CallBase &Call); 573 void verifyFrameRecoverIndices(); 574 void verifySiblingFuncletUnwinds(); 575 576 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 577 template <typename ValueOrMetadata> 578 void verifyFragmentExpression(const DIVariable &V, 579 DIExpression::FragmentInfo Fragment, 580 ValueOrMetadata *Desc); 581 void verifyFnArgs(const DbgVariableIntrinsic &I); 582 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 583 584 /// Module-level debug info verification... 585 void verifyCompileUnits(); 586 587 /// Module-level verification that all @llvm.experimental.deoptimize 588 /// declarations share the same calling convention. 589 void verifyDeoptimizeCallingConvs(); 590 591 void verifyAttachedCallBundle(const CallBase &Call, 592 const OperandBundleUse &BU); 593 594 /// Verify all-or-nothing property of DIFile source attribute within a CU. 595 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 596 597 /// Verify the llvm.experimental.noalias.scope.decl declarations 598 void verifyNoAliasScopeDecl(); 599 }; 600 601 } // end anonymous namespace 602 603 /// We know that cond should be true, if not print an error message. 604 #define Check(C, ...) \ 605 do { \ 606 if (!(C)) { \ 607 CheckFailed(__VA_ARGS__); \ 608 return; \ 609 } \ 610 } while (false) 611 612 /// We know that a debug info condition should be true, if not print 613 /// an error message. 614 #define CheckDI(C, ...) \ 615 do { \ 616 if (!(C)) { \ 617 DebugInfoCheckFailed(__VA_ARGS__); \ 618 return; \ 619 } \ 620 } while (false) 621 622 void Verifier::visit(Instruction &I) { 623 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 624 Check(I.getOperand(i) != nullptr, "Operand is null", &I); 625 InstVisitor<Verifier>::visit(I); 626 } 627 628 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further. 629 static void forEachUser(const Value *User, 630 SmallPtrSet<const Value *, 32> &Visited, 631 llvm::function_ref<bool(const Value *)> Callback) { 632 if (!Visited.insert(User).second) 633 return; 634 635 SmallVector<const Value *> WorkList; 636 append_range(WorkList, User->materialized_users()); 637 while (!WorkList.empty()) { 638 const Value *Cur = WorkList.pop_back_val(); 639 if (!Visited.insert(Cur).second) 640 continue; 641 if (Callback(Cur)) 642 append_range(WorkList, Cur->materialized_users()); 643 } 644 } 645 646 void Verifier::visitGlobalValue(const GlobalValue &GV) { 647 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 648 "Global is external, but doesn't have external or weak linkage!", &GV); 649 650 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) { 651 652 if (MaybeAlign A = GO->getAlign()) { 653 Check(A->value() <= Value::MaximumAlignment, 654 "huge alignment values are unsupported", GO); 655 } 656 } 657 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 658 "Only global variables can have appending linkage!", &GV); 659 660 if (GV.hasAppendingLinkage()) { 661 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 662 Check(GVar && GVar->getValueType()->isArrayTy(), 663 "Only global arrays can have appending linkage!", GVar); 664 } 665 666 if (GV.isDeclarationForLinker()) 667 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 668 669 if (GV.hasDLLExportStorageClass()) { 670 Check(!GV.hasHiddenVisibility(), 671 "dllexport GlobalValue must have default or protected visibility", 672 &GV); 673 } 674 if (GV.hasDLLImportStorageClass()) { 675 Check(GV.hasDefaultVisibility(), 676 "dllimport GlobalValue must have default visibility", &GV); 677 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!", 678 &GV); 679 680 Check((GV.isDeclaration() && 681 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 682 GV.hasAvailableExternallyLinkage(), 683 "Global is marked as dllimport, but not external", &GV); 684 } 685 686 if (GV.isImplicitDSOLocal()) 687 Check(GV.isDSOLocal(), 688 "GlobalValue with local linkage or non-default " 689 "visibility must be dso_local!", 690 &GV); 691 692 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 693 if (const Instruction *I = dyn_cast<Instruction>(V)) { 694 if (!I->getParent() || !I->getParent()->getParent()) 695 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 696 I); 697 else if (I->getParent()->getParent()->getParent() != &M) 698 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 699 I->getParent()->getParent(), 700 I->getParent()->getParent()->getParent()); 701 return false; 702 } else if (const Function *F = dyn_cast<Function>(V)) { 703 if (F->getParent() != &M) 704 CheckFailed("Global is used by function in a different module", &GV, &M, 705 F, F->getParent()); 706 return false; 707 } 708 return true; 709 }); 710 } 711 712 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 713 if (GV.hasInitializer()) { 714 Check(GV.getInitializer()->getType() == GV.getValueType(), 715 "Global variable initializer type does not match global " 716 "variable type!", 717 &GV); 718 // If the global has common linkage, it must have a zero initializer and 719 // cannot be constant. 720 if (GV.hasCommonLinkage()) { 721 Check(GV.getInitializer()->isNullValue(), 722 "'common' global must have a zero initializer!", &GV); 723 Check(!GV.isConstant(), "'common' global may not be marked constant!", 724 &GV); 725 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 726 } 727 } 728 729 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 730 GV.getName() == "llvm.global_dtors")) { 731 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), 732 "invalid linkage for intrinsic global variable", &GV); 733 // Don't worry about emitting an error for it not being an array, 734 // visitGlobalValue will complain on appending non-array. 735 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 736 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 737 PointerType *FuncPtrTy = 738 FunctionType::get(Type::getVoidTy(Context), false)-> 739 getPointerTo(DL.getProgramAddressSpace()); 740 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 741 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 742 STy->getTypeAtIndex(1) == FuncPtrTy, 743 "wrong type for intrinsic global variable", &GV); 744 Check(STy->getNumElements() == 3, 745 "the third field of the element type is mandatory, " 746 "specify ptr null to migrate from the obsoleted 2-field form"); 747 Type *ETy = STy->getTypeAtIndex(2); 748 Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); 749 Check(ETy->isPointerTy() && 750 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), 751 "wrong type for intrinsic global variable", &GV); 752 } 753 } 754 755 if (GV.hasName() && (GV.getName() == "llvm.used" || 756 GV.getName() == "llvm.compiler.used")) { 757 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), 758 "invalid linkage for intrinsic global variable", &GV); 759 Type *GVType = GV.getValueType(); 760 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 761 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 762 Check(PTy, "wrong type for intrinsic global variable", &GV); 763 if (GV.hasInitializer()) { 764 const Constant *Init = GV.getInitializer(); 765 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 766 Check(InitArray, "wrong initalizer for intrinsic global variable", 767 Init); 768 for (Value *Op : InitArray->operands()) { 769 Value *V = Op->stripPointerCasts(); 770 Check(isa<GlobalVariable>(V) || isa<Function>(V) || 771 isa<GlobalAlias>(V), 772 Twine("invalid ") + GV.getName() + " member", V); 773 Check(V->hasName(), 774 Twine("members of ") + GV.getName() + " must be named", V); 775 } 776 } 777 } 778 } 779 780 // Visit any debug info attachments. 781 SmallVector<MDNode *, 1> MDs; 782 GV.getMetadata(LLVMContext::MD_dbg, MDs); 783 for (auto *MD : MDs) { 784 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 785 visitDIGlobalVariableExpression(*GVE); 786 else 787 CheckDI(false, "!dbg attachment of global variable must be a " 788 "DIGlobalVariableExpression"); 789 } 790 791 // Scalable vectors cannot be global variables, since we don't know 792 // the runtime size. If the global is an array containing scalable vectors, 793 // that will be caught by the isValidElementType methods in StructType or 794 // ArrayType instead. 795 Check(!isa<ScalableVectorType>(GV.getValueType()), 796 "Globals cannot contain scalable vectors", &GV); 797 798 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 799 Check(!STy->containsScalableVectorType(), 800 "Globals cannot contain scalable vectors", &GV); 801 802 // Check if it's a target extension type that disallows being used as a 803 // global. 804 if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType())) 805 Check(TTy->hasProperty(TargetExtType::CanBeGlobal), 806 "Global @" + GV.getName() + " has illegal target extension type", 807 TTy); 808 809 if (!GV.hasInitializer()) { 810 visitGlobalValue(GV); 811 return; 812 } 813 814 // Walk any aggregate initializers looking for bitcasts between address spaces 815 visitConstantExprsRecursively(GV.getInitializer()); 816 817 visitGlobalValue(GV); 818 } 819 820 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 821 SmallPtrSet<const GlobalAlias*, 4> Visited; 822 Visited.insert(&GA); 823 visitAliaseeSubExpr(Visited, GA, C); 824 } 825 826 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 827 const GlobalAlias &GA, const Constant &C) { 828 if (GA.hasAvailableExternallyLinkage()) { 829 Check(isa<GlobalValue>(C) && 830 cast<GlobalValue>(C).hasAvailableExternallyLinkage(), 831 "available_externally alias must point to available_externally " 832 "global value", 833 &GA); 834 } 835 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 836 if (!GA.hasAvailableExternallyLinkage()) { 837 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition", 838 &GA); 839 } 840 841 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 842 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 843 844 Check(!GA2->isInterposable(), 845 "Alias cannot point to an interposable alias", &GA); 846 } else { 847 // Only continue verifying subexpressions of GlobalAliases. 848 // Do not recurse into global initializers. 849 return; 850 } 851 } 852 853 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 854 visitConstantExprsRecursively(CE); 855 856 for (const Use &U : C.operands()) { 857 Value *V = &*U; 858 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 859 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 860 else if (const auto *C2 = dyn_cast<Constant>(V)) 861 visitAliaseeSubExpr(Visited, GA, *C2); 862 } 863 } 864 865 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 866 Check(GlobalAlias::isValidLinkage(GA.getLinkage()), 867 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 868 "weak_odr, external, or available_externally linkage!", 869 &GA); 870 const Constant *Aliasee = GA.getAliasee(); 871 Check(Aliasee, "Aliasee cannot be NULL!", &GA); 872 Check(GA.getType() == Aliasee->getType(), 873 "Alias and aliasee types should match!", &GA); 874 875 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 876 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 877 878 visitAliaseeSubExpr(GA, *Aliasee); 879 880 visitGlobalValue(GA); 881 } 882 883 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { 884 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()), 885 "IFunc should have private, internal, linkonce, weak, linkonce_odr, " 886 "weak_odr, or external linkage!", 887 &GI); 888 // Pierce through ConstantExprs and GlobalAliases and check that the resolver 889 // is a Function definition. 890 const Function *Resolver = GI.getResolverFunction(); 891 Check(Resolver, "IFunc must have a Function resolver", &GI); 892 Check(!Resolver->isDeclarationForLinker(), 893 "IFunc resolver must be a definition", &GI); 894 895 // Check that the immediate resolver operand (prior to any bitcasts) has the 896 // correct type. 897 const Type *ResolverTy = GI.getResolver()->getType(); 898 899 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()), 900 "IFunc resolver must return a pointer", &GI); 901 902 const Type *ResolverFuncTy = 903 GlobalIFunc::getResolverFunctionType(GI.getValueType()); 904 Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()), 905 "IFunc resolver has incorrect type", &GI); 906 } 907 908 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 909 // There used to be various other llvm.dbg.* nodes, but we don't support 910 // upgrading them and we want to reserve the namespace for future uses. 911 if (NMD.getName().startswith("llvm.dbg.")) 912 CheckDI(NMD.getName() == "llvm.dbg.cu", 913 "unrecognized named metadata node in the llvm.dbg namespace", &NMD); 914 for (const MDNode *MD : NMD.operands()) { 915 if (NMD.getName() == "llvm.dbg.cu") 916 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 917 918 if (!MD) 919 continue; 920 921 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 922 } 923 } 924 925 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 926 // Only visit each node once. Metadata can be mutually recursive, so this 927 // avoids infinite recursion here, as well as being an optimization. 928 if (!MDNodes.insert(&MD).second) 929 return; 930 931 Check(&MD.getContext() == &Context, 932 "MDNode context does not match Module context!", &MD); 933 934 switch (MD.getMetadataID()) { 935 default: 936 llvm_unreachable("Invalid MDNode subclass"); 937 case Metadata::MDTupleKind: 938 break; 939 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 940 case Metadata::CLASS##Kind: \ 941 visit##CLASS(cast<CLASS>(MD)); \ 942 break; 943 #include "llvm/IR/Metadata.def" 944 } 945 946 for (const Metadata *Op : MD.operands()) { 947 if (!Op) 948 continue; 949 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 950 &MD, Op); 951 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 952 "DILocation not allowed within this metadata node", &MD, Op); 953 if (auto *N = dyn_cast<MDNode>(Op)) { 954 visitMDNode(*N, AllowLocs); 955 continue; 956 } 957 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 958 visitValueAsMetadata(*V, nullptr); 959 continue; 960 } 961 } 962 963 // Check these last, so we diagnose problems in operands first. 964 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD); 965 Check(MD.isResolved(), "All nodes should be resolved!", &MD); 966 } 967 968 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 969 Check(MD.getValue(), "Expected valid value", &MD); 970 Check(!MD.getValue()->getType()->isMetadataTy(), 971 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 972 973 auto *L = dyn_cast<LocalAsMetadata>(&MD); 974 if (!L) 975 return; 976 977 Check(F, "function-local metadata used outside a function", L); 978 979 // If this was an instruction, bb, or argument, verify that it is in the 980 // function that we expect. 981 Function *ActualF = nullptr; 982 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 983 Check(I->getParent(), "function-local metadata not in basic block", L, I); 984 ActualF = I->getParent()->getParent(); 985 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 986 ActualF = BB->getParent(); 987 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 988 ActualF = A->getParent(); 989 assert(ActualF && "Unimplemented function local metadata case!"); 990 991 Check(ActualF == F, "function-local metadata used in wrong function", L); 992 } 993 994 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 995 Metadata *MD = MDV.getMetadata(); 996 if (auto *N = dyn_cast<MDNode>(MD)) { 997 visitMDNode(*N, AreDebugLocsAllowed::No); 998 return; 999 } 1000 1001 // Only visit each node once. Metadata can be mutually recursive, so this 1002 // avoids infinite recursion here, as well as being an optimization. 1003 if (!MDNodes.insert(MD).second) 1004 return; 1005 1006 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 1007 visitValueAsMetadata(*V, F); 1008 } 1009 1010 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 1011 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 1012 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 1013 1014 void Verifier::visitDILocation(const DILocation &N) { 1015 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1016 "location requires a valid scope", &N, N.getRawScope()); 1017 if (auto *IA = N.getRawInlinedAt()) 1018 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 1019 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1020 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1021 } 1022 1023 void Verifier::visitGenericDINode(const GenericDINode &N) { 1024 CheckDI(N.getTag(), "invalid tag", &N); 1025 } 1026 1027 void Verifier::visitDIScope(const DIScope &N) { 1028 if (auto *F = N.getRawFile()) 1029 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1030 } 1031 1032 void Verifier::visitDISubrange(const DISubrange &N) { 1033 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 1034 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 1035 CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 1036 N.getRawUpperBound(), 1037 "Subrange must contain count or upperBound", &N); 1038 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1039 "Subrange can have any one of count or upperBound", &N); 1040 auto *CBound = N.getRawCountNode(); 1041 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) || 1042 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1043 "Count must be signed constant or DIVariable or DIExpression", &N); 1044 auto Count = N.getCount(); 1045 CheckDI(!Count || !Count.is<ConstantInt *>() || 1046 Count.get<ConstantInt *>()->getSExtValue() >= -1, 1047 "invalid subrange count", &N); 1048 auto *LBound = N.getRawLowerBound(); 1049 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) || 1050 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1051 "LowerBound must be signed constant or DIVariable or DIExpression", 1052 &N); 1053 auto *UBound = N.getRawUpperBound(); 1054 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) || 1055 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1056 "UpperBound must be signed constant or DIVariable or DIExpression", 1057 &N); 1058 auto *Stride = N.getRawStride(); 1059 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) || 1060 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1061 "Stride must be signed constant or DIVariable or DIExpression", &N); 1062 } 1063 1064 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 1065 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 1066 CheckDI(N.getRawCountNode() || N.getRawUpperBound(), 1067 "GenericSubrange must contain count or upperBound", &N); 1068 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1069 "GenericSubrange can have any one of count or upperBound", &N); 1070 auto *CBound = N.getRawCountNode(); 1071 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1072 "Count must be signed constant or DIVariable or DIExpression", &N); 1073 auto *LBound = N.getRawLowerBound(); 1074 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N); 1075 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1076 "LowerBound must be signed constant or DIVariable or DIExpression", 1077 &N); 1078 auto *UBound = N.getRawUpperBound(); 1079 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1080 "UpperBound must be signed constant or DIVariable or DIExpression", 1081 &N); 1082 auto *Stride = N.getRawStride(); 1083 CheckDI(Stride, "GenericSubrange must contain stride", &N); 1084 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1085 "Stride must be signed constant or DIVariable or DIExpression", &N); 1086 } 1087 1088 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1089 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1090 } 1091 1092 void Verifier::visitDIBasicType(const DIBasicType &N) { 1093 CheckDI(N.getTag() == dwarf::DW_TAG_base_type || 1094 N.getTag() == dwarf::DW_TAG_unspecified_type || 1095 N.getTag() == dwarf::DW_TAG_string_type, 1096 "invalid tag", &N); 1097 } 1098 1099 void Verifier::visitDIStringType(const DIStringType &N) { 1100 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1101 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags", 1102 &N); 1103 } 1104 1105 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1106 // Common scope checks. 1107 visitDIScope(N); 1108 1109 CheckDI(N.getTag() == dwarf::DW_TAG_typedef || 1110 N.getTag() == dwarf::DW_TAG_pointer_type || 1111 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1112 N.getTag() == dwarf::DW_TAG_reference_type || 1113 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1114 N.getTag() == dwarf::DW_TAG_const_type || 1115 N.getTag() == dwarf::DW_TAG_immutable_type || 1116 N.getTag() == dwarf::DW_TAG_volatile_type || 1117 N.getTag() == dwarf::DW_TAG_restrict_type || 1118 N.getTag() == dwarf::DW_TAG_atomic_type || 1119 N.getTag() == dwarf::DW_TAG_member || 1120 N.getTag() == dwarf::DW_TAG_inheritance || 1121 N.getTag() == dwarf::DW_TAG_friend || 1122 N.getTag() == dwarf::DW_TAG_set_type, 1123 "invalid tag", &N); 1124 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1125 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1126 N.getRawExtraData()); 1127 } 1128 1129 if (N.getTag() == dwarf::DW_TAG_set_type) { 1130 if (auto *T = N.getRawBaseType()) { 1131 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1132 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1133 CheckDI( 1134 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1135 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1136 Basic->getEncoding() == dwarf::DW_ATE_signed || 1137 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1138 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1139 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1140 "invalid set base type", &N, T); 1141 } 1142 } 1143 1144 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1145 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, 1146 N.getRawBaseType()); 1147 1148 if (N.getDWARFAddressSpace()) { 1149 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1150 N.getTag() == dwarf::DW_TAG_reference_type || 1151 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1152 "DWARF address space only applies to pointer or reference types", 1153 &N); 1154 } 1155 } 1156 1157 /// Detect mutually exclusive flags. 1158 static bool hasConflictingReferenceFlags(unsigned Flags) { 1159 return ((Flags & DINode::FlagLValueReference) && 1160 (Flags & DINode::FlagRValueReference)) || 1161 ((Flags & DINode::FlagTypePassByValue) && 1162 (Flags & DINode::FlagTypePassByReference)); 1163 } 1164 1165 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1166 auto *Params = dyn_cast<MDTuple>(&RawParams); 1167 CheckDI(Params, "invalid template params", &N, &RawParams); 1168 for (Metadata *Op : Params->operands()) { 1169 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1170 &N, Params, Op); 1171 } 1172 } 1173 1174 void Verifier::visitDICompositeType(const DICompositeType &N) { 1175 // Common scope checks. 1176 visitDIScope(N); 1177 1178 CheckDI(N.getTag() == dwarf::DW_TAG_array_type || 1179 N.getTag() == dwarf::DW_TAG_structure_type || 1180 N.getTag() == dwarf::DW_TAG_union_type || 1181 N.getTag() == dwarf::DW_TAG_enumeration_type || 1182 N.getTag() == dwarf::DW_TAG_class_type || 1183 N.getTag() == dwarf::DW_TAG_variant_part || 1184 N.getTag() == dwarf::DW_TAG_namelist, 1185 "invalid tag", &N); 1186 1187 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1188 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, 1189 N.getRawBaseType()); 1190 1191 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1192 "invalid composite elements", &N, N.getRawElements()); 1193 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1194 N.getRawVTableHolder()); 1195 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1196 "invalid reference flags", &N); 1197 unsigned DIBlockByRefStruct = 1 << 4; 1198 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0, 1199 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1200 1201 if (N.isVector()) { 1202 const DINodeArray Elements = N.getElements(); 1203 CheckDI(Elements.size() == 1 && 1204 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1205 "invalid vector, expected one element of type subrange", &N); 1206 } 1207 1208 if (auto *Params = N.getRawTemplateParams()) 1209 visitTemplateParams(N, *Params); 1210 1211 if (auto *D = N.getRawDiscriminator()) { 1212 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1213 "discriminator can only appear on variant part"); 1214 } 1215 1216 if (N.getRawDataLocation()) { 1217 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1218 "dataLocation can only appear in array type"); 1219 } 1220 1221 if (N.getRawAssociated()) { 1222 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1223 "associated can only appear in array type"); 1224 } 1225 1226 if (N.getRawAllocated()) { 1227 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1228 "allocated can only appear in array type"); 1229 } 1230 1231 if (N.getRawRank()) { 1232 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1233 "rank can only appear in array type"); 1234 } 1235 } 1236 1237 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1238 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1239 if (auto *Types = N.getRawTypeArray()) { 1240 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1241 for (Metadata *Ty : N.getTypeArray()->operands()) { 1242 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1243 } 1244 } 1245 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1246 "invalid reference flags", &N); 1247 } 1248 1249 void Verifier::visitDIFile(const DIFile &N) { 1250 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1251 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1252 if (Checksum) { 1253 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1254 "invalid checksum kind", &N); 1255 size_t Size; 1256 switch (Checksum->Kind) { 1257 case DIFile::CSK_MD5: 1258 Size = 32; 1259 break; 1260 case DIFile::CSK_SHA1: 1261 Size = 40; 1262 break; 1263 case DIFile::CSK_SHA256: 1264 Size = 64; 1265 break; 1266 } 1267 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1268 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1269 "invalid checksum", &N); 1270 } 1271 } 1272 1273 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1274 CheckDI(N.isDistinct(), "compile units must be distinct", &N); 1275 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1276 1277 // Don't bother verifying the compilation directory or producer string 1278 // as those could be empty. 1279 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1280 N.getRawFile()); 1281 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1282 N.getFile()); 1283 1284 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1285 1286 verifySourceDebugInfo(N, *N.getFile()); 1287 1288 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1289 "invalid emission kind", &N); 1290 1291 if (auto *Array = N.getRawEnumTypes()) { 1292 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1293 for (Metadata *Op : N.getEnumTypes()->operands()) { 1294 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1295 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1296 "invalid enum type", &N, N.getEnumTypes(), Op); 1297 } 1298 } 1299 if (auto *Array = N.getRawRetainedTypes()) { 1300 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1301 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1302 CheckDI( 1303 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) && 1304 !cast<DISubprogram>(Op)->isDefinition())), 1305 "invalid retained type", &N, Op); 1306 } 1307 } 1308 if (auto *Array = N.getRawGlobalVariables()) { 1309 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1310 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1311 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1312 "invalid global variable ref", &N, Op); 1313 } 1314 } 1315 if (auto *Array = N.getRawImportedEntities()) { 1316 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1317 for (Metadata *Op : N.getImportedEntities()->operands()) { 1318 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1319 &N, Op); 1320 } 1321 } 1322 if (auto *Array = N.getRawMacros()) { 1323 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1324 for (Metadata *Op : N.getMacros()->operands()) { 1325 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1326 } 1327 } 1328 CUVisited.insert(&N); 1329 } 1330 1331 void Verifier::visitDISubprogram(const DISubprogram &N) { 1332 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1333 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1334 if (auto *F = N.getRawFile()) 1335 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1336 else 1337 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1338 if (auto *T = N.getRawType()) 1339 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1340 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1341 N.getRawContainingType()); 1342 if (auto *Params = N.getRawTemplateParams()) 1343 visitTemplateParams(N, *Params); 1344 if (auto *S = N.getRawDeclaration()) 1345 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1346 "invalid subprogram declaration", &N, S); 1347 if (auto *RawNode = N.getRawRetainedNodes()) { 1348 auto *Node = dyn_cast<MDTuple>(RawNode); 1349 CheckDI(Node, "invalid retained nodes list", &N, RawNode); 1350 for (Metadata *Op : Node->operands()) { 1351 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1352 "invalid retained nodes, expected DILocalVariable or DILabel", &N, 1353 Node, Op); 1354 } 1355 } 1356 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1357 "invalid reference flags", &N); 1358 1359 auto *Unit = N.getRawUnit(); 1360 if (N.isDefinition()) { 1361 // Subprogram definitions (not part of the type hierarchy). 1362 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1363 CheckDI(Unit, "subprogram definitions must have a compile unit", &N); 1364 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1365 if (N.getFile()) 1366 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1367 } else { 1368 // Subprogram declarations (part of the type hierarchy). 1369 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1370 } 1371 1372 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1373 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1374 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1375 for (Metadata *Op : ThrownTypes->operands()) 1376 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1377 Op); 1378 } 1379 1380 if (N.areAllCallsDescribed()) 1381 CheckDI(N.isDefinition(), 1382 "DIFlagAllCallsDescribed must be attached to a definition"); 1383 } 1384 1385 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1386 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1387 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1388 "invalid local scope", &N, N.getRawScope()); 1389 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1390 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1391 } 1392 1393 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1394 visitDILexicalBlockBase(N); 1395 1396 CheckDI(N.getLine() || !N.getColumn(), 1397 "cannot have column info without line info", &N); 1398 } 1399 1400 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1401 visitDILexicalBlockBase(N); 1402 } 1403 1404 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1405 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1406 if (auto *S = N.getRawScope()) 1407 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1408 if (auto *S = N.getRawDecl()) 1409 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1410 } 1411 1412 void Verifier::visitDINamespace(const DINamespace &N) { 1413 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1414 if (auto *S = N.getRawScope()) 1415 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1416 } 1417 1418 void Verifier::visitDIMacro(const DIMacro &N) { 1419 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1420 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1421 "invalid macinfo type", &N); 1422 CheckDI(!N.getName().empty(), "anonymous macro", &N); 1423 if (!N.getValue().empty()) { 1424 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1425 } 1426 } 1427 1428 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1429 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1430 "invalid macinfo type", &N); 1431 if (auto *F = N.getRawFile()) 1432 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1433 1434 if (auto *Array = N.getRawElements()) { 1435 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1436 for (Metadata *Op : N.getElements()->operands()) { 1437 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1438 } 1439 } 1440 } 1441 1442 void Verifier::visitDIArgList(const DIArgList &N) { 1443 CheckDI(!N.getNumOperands(), 1444 "DIArgList should have no operands other than a list of " 1445 "ValueAsMetadata", 1446 &N); 1447 } 1448 1449 void Verifier::visitDIModule(const DIModule &N) { 1450 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1451 CheckDI(!N.getName().empty(), "anonymous module", &N); 1452 } 1453 1454 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1455 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1456 } 1457 1458 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1459 visitDITemplateParameter(N); 1460 1461 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1462 &N); 1463 } 1464 1465 void Verifier::visitDITemplateValueParameter( 1466 const DITemplateValueParameter &N) { 1467 visitDITemplateParameter(N); 1468 1469 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1470 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1471 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1472 "invalid tag", &N); 1473 } 1474 1475 void Verifier::visitDIVariable(const DIVariable &N) { 1476 if (auto *S = N.getRawScope()) 1477 CheckDI(isa<DIScope>(S), "invalid scope", &N, S); 1478 if (auto *F = N.getRawFile()) 1479 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1480 } 1481 1482 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1483 // Checks common to all variables. 1484 visitDIVariable(N); 1485 1486 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1487 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1488 // Check only if the global variable is not an extern 1489 if (N.isDefinition()) 1490 CheckDI(N.getType(), "missing global variable type", &N); 1491 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1492 CheckDI(isa<DIDerivedType>(Member), 1493 "invalid static data member declaration", &N, Member); 1494 } 1495 } 1496 1497 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1498 // Checks common to all variables. 1499 visitDIVariable(N); 1500 1501 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1502 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1503 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1504 "local variable requires a valid scope", &N, N.getRawScope()); 1505 if (auto Ty = N.getType()) 1506 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1507 } 1508 1509 void Verifier::visitDIAssignID(const DIAssignID &N) { 1510 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N); 1511 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N); 1512 } 1513 1514 void Verifier::visitDILabel(const DILabel &N) { 1515 if (auto *S = N.getRawScope()) 1516 CheckDI(isa<DIScope>(S), "invalid scope", &N, S); 1517 if (auto *F = N.getRawFile()) 1518 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1519 1520 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1521 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1522 "label requires a valid scope", &N, N.getRawScope()); 1523 } 1524 1525 void Verifier::visitDIExpression(const DIExpression &N) { 1526 CheckDI(N.isValid(), "invalid expression", &N); 1527 } 1528 1529 void Verifier::visitDIGlobalVariableExpression( 1530 const DIGlobalVariableExpression &GVE) { 1531 CheckDI(GVE.getVariable(), "missing variable"); 1532 if (auto *Var = GVE.getVariable()) 1533 visitDIGlobalVariable(*Var); 1534 if (auto *Expr = GVE.getExpression()) { 1535 visitDIExpression(*Expr); 1536 if (auto Fragment = Expr->getFragmentInfo()) 1537 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1538 } 1539 } 1540 1541 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1542 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1543 if (auto *T = N.getRawType()) 1544 CheckDI(isType(T), "invalid type ref", &N, T); 1545 if (auto *F = N.getRawFile()) 1546 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1547 } 1548 1549 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1550 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module || 1551 N.getTag() == dwarf::DW_TAG_imported_declaration, 1552 "invalid tag", &N); 1553 if (auto *S = N.getRawScope()) 1554 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1555 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1556 N.getRawEntity()); 1557 } 1558 1559 void Verifier::visitComdat(const Comdat &C) { 1560 // In COFF the Module is invalid if the GlobalValue has private linkage. 1561 // Entities with private linkage don't have entries in the symbol table. 1562 if (TT.isOSBinFormatCOFF()) 1563 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1564 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1565 GV); 1566 } 1567 1568 void Verifier::visitModuleIdents() { 1569 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1570 if (!Idents) 1571 return; 1572 1573 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1574 // Scan each llvm.ident entry and make sure that this requirement is met. 1575 for (const MDNode *N : Idents->operands()) { 1576 Check(N->getNumOperands() == 1, 1577 "incorrect number of operands in llvm.ident metadata", N); 1578 Check(dyn_cast_or_null<MDString>(N->getOperand(0)), 1579 ("invalid value for llvm.ident metadata entry operand" 1580 "(the operand should be a string)"), 1581 N->getOperand(0)); 1582 } 1583 } 1584 1585 void Verifier::visitModuleCommandLines() { 1586 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1587 if (!CommandLines) 1588 return; 1589 1590 // llvm.commandline takes a list of metadata entry. Each entry has only one 1591 // string. Scan each llvm.commandline entry and make sure that this 1592 // requirement is met. 1593 for (const MDNode *N : CommandLines->operands()) { 1594 Check(N->getNumOperands() == 1, 1595 "incorrect number of operands in llvm.commandline metadata", N); 1596 Check(dyn_cast_or_null<MDString>(N->getOperand(0)), 1597 ("invalid value for llvm.commandline metadata entry operand" 1598 "(the operand should be a string)"), 1599 N->getOperand(0)); 1600 } 1601 } 1602 1603 void Verifier::visitModuleFlags() { 1604 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1605 if (!Flags) return; 1606 1607 // Scan each flag, and track the flags and requirements. 1608 DenseMap<const MDString*, const MDNode*> SeenIDs; 1609 SmallVector<const MDNode*, 16> Requirements; 1610 for (const MDNode *MDN : Flags->operands()) 1611 visitModuleFlag(MDN, SeenIDs, Requirements); 1612 1613 // Validate that the requirements in the module are valid. 1614 for (const MDNode *Requirement : Requirements) { 1615 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1616 const Metadata *ReqValue = Requirement->getOperand(1); 1617 1618 const MDNode *Op = SeenIDs.lookup(Flag); 1619 if (!Op) { 1620 CheckFailed("invalid requirement on flag, flag is not present in module", 1621 Flag); 1622 continue; 1623 } 1624 1625 if (Op->getOperand(2) != ReqValue) { 1626 CheckFailed(("invalid requirement on flag, " 1627 "flag does not have the required value"), 1628 Flag); 1629 continue; 1630 } 1631 } 1632 } 1633 1634 void 1635 Verifier::visitModuleFlag(const MDNode *Op, 1636 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1637 SmallVectorImpl<const MDNode *> &Requirements) { 1638 // Each module flag should have three arguments, the merge behavior (a 1639 // constant int), the flag ID (an MDString), and the value. 1640 Check(Op->getNumOperands() == 3, 1641 "incorrect number of operands in module flag", Op); 1642 Module::ModFlagBehavior MFB; 1643 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1644 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1645 "invalid behavior operand in module flag (expected constant integer)", 1646 Op->getOperand(0)); 1647 Check(false, 1648 "invalid behavior operand in module flag (unexpected constant)", 1649 Op->getOperand(0)); 1650 } 1651 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1652 Check(ID, "invalid ID operand in module flag (expected metadata string)", 1653 Op->getOperand(1)); 1654 1655 // Check the values for behaviors with additional requirements. 1656 switch (MFB) { 1657 case Module::Error: 1658 case Module::Warning: 1659 case Module::Override: 1660 // These behavior types accept any value. 1661 break; 1662 1663 case Module::Min: { 1664 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1665 Check(V && V->getValue().isNonNegative(), 1666 "invalid value for 'min' module flag (expected constant non-negative " 1667 "integer)", 1668 Op->getOperand(2)); 1669 break; 1670 } 1671 1672 case Module::Max: { 1673 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1674 "invalid value for 'max' module flag (expected constant integer)", 1675 Op->getOperand(2)); 1676 break; 1677 } 1678 1679 case Module::Require: { 1680 // The value should itself be an MDNode with two operands, a flag ID (an 1681 // MDString), and a value. 1682 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1683 Check(Value && Value->getNumOperands() == 2, 1684 "invalid value for 'require' module flag (expected metadata pair)", 1685 Op->getOperand(2)); 1686 Check(isa<MDString>(Value->getOperand(0)), 1687 ("invalid value for 'require' module flag " 1688 "(first value operand should be a string)"), 1689 Value->getOperand(0)); 1690 1691 // Append it to the list of requirements, to check once all module flags are 1692 // scanned. 1693 Requirements.push_back(Value); 1694 break; 1695 } 1696 1697 case Module::Append: 1698 case Module::AppendUnique: { 1699 // These behavior types require the operand be an MDNode. 1700 Check(isa<MDNode>(Op->getOperand(2)), 1701 "invalid value for 'append'-type module flag " 1702 "(expected a metadata node)", 1703 Op->getOperand(2)); 1704 break; 1705 } 1706 } 1707 1708 // Unless this is a "requires" flag, check the ID is unique. 1709 if (MFB != Module::Require) { 1710 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1711 Check(Inserted, 1712 "module flag identifiers must be unique (or of 'require' type)", ID); 1713 } 1714 1715 if (ID->getString() == "wchar_size") { 1716 ConstantInt *Value 1717 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1718 Check(Value, "wchar_size metadata requires constant integer argument"); 1719 } 1720 1721 if (ID->getString() == "Linker Options") { 1722 // If the llvm.linker.options named metadata exists, we assume that the 1723 // bitcode reader has upgraded the module flag. Otherwise the flag might 1724 // have been created by a client directly. 1725 Check(M.getNamedMetadata("llvm.linker.options"), 1726 "'Linker Options' named metadata no longer supported"); 1727 } 1728 1729 if (ID->getString() == "SemanticInterposition") { 1730 ConstantInt *Value = 1731 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1732 Check(Value, 1733 "SemanticInterposition metadata requires constant integer argument"); 1734 } 1735 1736 if (ID->getString() == "CG Profile") { 1737 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1738 visitModuleFlagCGProfileEntry(MDO); 1739 } 1740 } 1741 1742 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1743 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1744 if (!FuncMDO) 1745 return; 1746 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1747 Check(F && isa<Function>(F->getValue()->stripPointerCasts()), 1748 "expected a Function or null", FuncMDO); 1749 }; 1750 auto Node = dyn_cast_or_null<MDNode>(MDO); 1751 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1752 CheckFunction(Node->getOperand(0)); 1753 CheckFunction(Node->getOperand(1)); 1754 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1755 Check(Count && Count->getType()->isIntegerTy(), 1756 "expected an integer constant", Node->getOperand(2)); 1757 } 1758 1759 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1760 for (Attribute A : Attrs) { 1761 1762 if (A.isStringAttribute()) { 1763 #define GET_ATTR_NAMES 1764 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1765 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1766 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1767 auto V = A.getValueAsString(); \ 1768 if (!(V.empty() || V == "true" || V == "false")) \ 1769 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1770 ""); \ 1771 } 1772 1773 #include "llvm/IR/Attributes.inc" 1774 continue; 1775 } 1776 1777 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1778 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1779 V); 1780 return; 1781 } 1782 } 1783 } 1784 1785 // VerifyParameterAttrs - Check the given attributes for an argument or return 1786 // value of the specified type. The value V is printed in error messages. 1787 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1788 const Value *V) { 1789 if (!Attrs.hasAttributes()) 1790 return; 1791 1792 verifyAttributeTypes(Attrs, V); 1793 1794 for (Attribute Attr : Attrs) 1795 Check(Attr.isStringAttribute() || 1796 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1797 "Attribute '" + Attr.getAsString() + "' does not apply to parameters", 1798 V); 1799 1800 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1801 Check(Attrs.getNumAttributes() == 1, 1802 "Attribute 'immarg' is incompatible with other attributes", V); 1803 } 1804 1805 // Check for mutually incompatible attributes. Only inreg is compatible with 1806 // sret. 1807 unsigned AttrCount = 0; 1808 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1809 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1810 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1811 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1812 Attrs.hasAttribute(Attribute::InReg); 1813 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1814 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1815 Check(AttrCount <= 1, 1816 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1817 "'byref', and 'sret' are incompatible!", 1818 V); 1819 1820 Check(!(Attrs.hasAttribute(Attribute::InAlloca) && 1821 Attrs.hasAttribute(Attribute::ReadOnly)), 1822 "Attributes " 1823 "'inalloca and readonly' are incompatible!", 1824 V); 1825 1826 Check(!(Attrs.hasAttribute(Attribute::StructRet) && 1827 Attrs.hasAttribute(Attribute::Returned)), 1828 "Attributes " 1829 "'sret and returned' are incompatible!", 1830 V); 1831 1832 Check(!(Attrs.hasAttribute(Attribute::ZExt) && 1833 Attrs.hasAttribute(Attribute::SExt)), 1834 "Attributes " 1835 "'zeroext and signext' are incompatible!", 1836 V); 1837 1838 Check(!(Attrs.hasAttribute(Attribute::ReadNone) && 1839 Attrs.hasAttribute(Attribute::ReadOnly)), 1840 "Attributes " 1841 "'readnone and readonly' are incompatible!", 1842 V); 1843 1844 Check(!(Attrs.hasAttribute(Attribute::ReadNone) && 1845 Attrs.hasAttribute(Attribute::WriteOnly)), 1846 "Attributes " 1847 "'readnone and writeonly' are incompatible!", 1848 V); 1849 1850 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1851 Attrs.hasAttribute(Attribute::WriteOnly)), 1852 "Attributes " 1853 "'readonly and writeonly' are incompatible!", 1854 V); 1855 1856 Check(!(Attrs.hasAttribute(Attribute::NoInline) && 1857 Attrs.hasAttribute(Attribute::AlwaysInline)), 1858 "Attributes " 1859 "'noinline and alwaysinline' are incompatible!", 1860 V); 1861 1862 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1863 for (Attribute Attr : Attrs) { 1864 if (!Attr.isStringAttribute() && 1865 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1866 CheckFailed("Attribute '" + Attr.getAsString() + 1867 "' applied to incompatible type!", V); 1868 return; 1869 } 1870 } 1871 1872 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1873 if (Attrs.hasAttribute(Attribute::ByVal)) { 1874 if (Attrs.hasAttribute(Attribute::Alignment)) { 1875 Align AttrAlign = Attrs.getAlignment().valueOrOne(); 1876 Align MaxAlign(ParamMaxAlignment); 1877 Check(AttrAlign <= MaxAlign, 1878 "Attribute 'align' exceed the max size 2^14", V); 1879 } 1880 SmallPtrSet<Type *, 4> Visited; 1881 Check(Attrs.getByValType()->isSized(&Visited), 1882 "Attribute 'byval' does not support unsized types!", V); 1883 } 1884 if (Attrs.hasAttribute(Attribute::ByRef)) { 1885 SmallPtrSet<Type *, 4> Visited; 1886 Check(Attrs.getByRefType()->isSized(&Visited), 1887 "Attribute 'byref' does not support unsized types!", V); 1888 } 1889 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1890 SmallPtrSet<Type *, 4> Visited; 1891 Check(Attrs.getInAllocaType()->isSized(&Visited), 1892 "Attribute 'inalloca' does not support unsized types!", V); 1893 } 1894 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1895 SmallPtrSet<Type *, 4> Visited; 1896 Check(Attrs.getPreallocatedType()->isSized(&Visited), 1897 "Attribute 'preallocated' does not support unsized types!", V); 1898 } 1899 if (!PTy->isOpaque()) { 1900 if (!isa<PointerType>(PTy->getNonOpaquePointerElementType())) 1901 Check(!Attrs.hasAttribute(Attribute::SwiftError), 1902 "Attribute 'swifterror' only applies to parameters " 1903 "with pointer to pointer type!", 1904 V); 1905 if (Attrs.hasAttribute(Attribute::ByRef)) { 1906 Check(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(), 1907 "Attribute 'byref' type does not match parameter!", V); 1908 } 1909 1910 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1911 Check(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(), 1912 "Attribute 'byval' type does not match parameter!", V); 1913 } 1914 1915 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1916 Check(Attrs.getPreallocatedType() == 1917 PTy->getNonOpaquePointerElementType(), 1918 "Attribute 'preallocated' type does not match parameter!", V); 1919 } 1920 1921 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1922 Check(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(), 1923 "Attribute 'inalloca' type does not match parameter!", V); 1924 } 1925 1926 if (Attrs.hasAttribute(Attribute::ElementType)) { 1927 Check(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(), 1928 "Attribute 'elementtype' type does not match parameter!", V); 1929 } 1930 } 1931 } 1932 } 1933 1934 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1935 const Value *V) { 1936 if (Attrs.hasFnAttr(Attr)) { 1937 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 1938 unsigned N; 1939 if (S.getAsInteger(10, N)) 1940 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 1941 } 1942 } 1943 1944 // Check parameter attributes against a function type. 1945 // The value V is printed in error messages. 1946 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1947 const Value *V, bool IsIntrinsic, 1948 bool IsInlineAsm) { 1949 if (Attrs.isEmpty()) 1950 return; 1951 1952 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1953 Check(Attrs.hasParentContext(Context), 1954 "Attribute list does not match Module context!", &Attrs, V); 1955 for (const auto &AttrSet : Attrs) { 1956 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1957 "Attribute set does not match Module context!", &AttrSet, V); 1958 for (const auto &A : AttrSet) { 1959 Check(A.hasParentContext(Context), 1960 "Attribute does not match Module context!", &A, V); 1961 } 1962 } 1963 } 1964 1965 bool SawNest = false; 1966 bool SawReturned = false; 1967 bool SawSRet = false; 1968 bool SawSwiftSelf = false; 1969 bool SawSwiftAsync = false; 1970 bool SawSwiftError = false; 1971 1972 // Verify return value attributes. 1973 AttributeSet RetAttrs = Attrs.getRetAttrs(); 1974 for (Attribute RetAttr : RetAttrs) 1975 Check(RetAttr.isStringAttribute() || 1976 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 1977 "Attribute '" + RetAttr.getAsString() + 1978 "' does not apply to function return values", 1979 V); 1980 1981 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1982 1983 // Verify parameter attributes. 1984 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1985 Type *Ty = FT->getParamType(i); 1986 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 1987 1988 if (!IsIntrinsic) { 1989 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1990 "immarg attribute only applies to intrinsics", V); 1991 if (!IsInlineAsm) 1992 Check(!ArgAttrs.hasAttribute(Attribute::ElementType), 1993 "Attribute 'elementtype' can only be applied to intrinsics" 1994 " and inline asm.", 1995 V); 1996 } 1997 1998 verifyParameterAttrs(ArgAttrs, Ty, V); 1999 2000 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2001 Check(!SawNest, "More than one parameter has attribute nest!", V); 2002 SawNest = true; 2003 } 2004 2005 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2006 Check(!SawReturned, "More than one parameter has attribute returned!", V); 2007 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 2008 "Incompatible argument and return types for 'returned' attribute", 2009 V); 2010 SawReturned = true; 2011 } 2012 2013 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 2014 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 2015 Check(i == 0 || i == 1, 2016 "Attribute 'sret' is not on first or second parameter!", V); 2017 SawSRet = true; 2018 } 2019 2020 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 2021 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 2022 SawSwiftSelf = true; 2023 } 2024 2025 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 2026 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 2027 SawSwiftAsync = true; 2028 } 2029 2030 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 2031 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V); 2032 SawSwiftError = true; 2033 } 2034 2035 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 2036 Check(i == FT->getNumParams() - 1, 2037 "inalloca isn't on the last parameter!", V); 2038 } 2039 } 2040 2041 if (!Attrs.hasFnAttrs()) 2042 return; 2043 2044 verifyAttributeTypes(Attrs.getFnAttrs(), V); 2045 for (Attribute FnAttr : Attrs.getFnAttrs()) 2046 Check(FnAttr.isStringAttribute() || 2047 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 2048 "Attribute '" + FnAttr.getAsString() + 2049 "' does not apply to functions!", 2050 V); 2051 2052 Check(!(Attrs.hasFnAttr(Attribute::NoInline) && 2053 Attrs.hasFnAttr(Attribute::AlwaysInline)), 2054 "Attributes 'noinline and alwaysinline' are incompatible!", V); 2055 2056 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 2057 Check(Attrs.hasFnAttr(Attribute::NoInline), 2058 "Attribute 'optnone' requires 'noinline'!", V); 2059 2060 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2061 "Attributes 'optsize and optnone' are incompatible!", V); 2062 2063 Check(!Attrs.hasFnAttr(Attribute::MinSize), 2064 "Attributes 'minsize and optnone' are incompatible!", V); 2065 } 2066 2067 if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) { 2068 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"), 2069 "Attributes 'aarch64_pstate_sm_enabled and " 2070 "aarch64_pstate_sm_compatible' are incompatible!", 2071 V); 2072 } 2073 2074 if (Attrs.hasFnAttr("aarch64_pstate_za_new")) { 2075 Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"), 2076 "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' " 2077 "are incompatible!", 2078 V); 2079 2080 Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"), 2081 "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' " 2082 "are incompatible!", 2083 V); 2084 } 2085 2086 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 2087 const GlobalValue *GV = cast<GlobalValue>(V); 2088 Check(GV->hasGlobalUnnamedAddr(), 2089 "Attribute 'jumptable' requires 'unnamed_addr'", V); 2090 } 2091 2092 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) { 2093 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 2094 if (ParamNo >= FT->getNumParams()) { 2095 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 2096 return false; 2097 } 2098 2099 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2100 CheckFailed("'allocsize' " + Name + 2101 " argument must refer to an integer parameter", 2102 V); 2103 return false; 2104 } 2105 2106 return true; 2107 }; 2108 2109 if (!CheckParam("element size", Args->first)) 2110 return; 2111 2112 if (Args->second && !CheckParam("number of elements", *Args->second)) 2113 return; 2114 } 2115 2116 if (Attrs.hasFnAttr(Attribute::AllocKind)) { 2117 AllocFnKind K = Attrs.getAllocKind(); 2118 AllocFnKind Type = 2119 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free); 2120 if (!is_contained( 2121 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free}, 2122 Type)) 2123 CheckFailed( 2124 "'allockind()' requires exactly one of alloc, realloc, and free"); 2125 if ((Type == AllocFnKind::Free) && 2126 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed | 2127 AllocFnKind::Aligned)) != AllocFnKind::Unknown)) 2128 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, " 2129 "or aligned modifiers."); 2130 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed; 2131 if ((K & ZeroedUninit) == ZeroedUninit) 2132 CheckFailed("'allockind()' can't be both zeroed and uninitialized"); 2133 } 2134 2135 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2136 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin(); 2137 if (VScaleMin == 0) 2138 CheckFailed("'vscale_range' minimum must be greater than 0", V); 2139 2140 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax(); 2141 if (VScaleMax && VScaleMin > VScaleMax) 2142 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2143 } 2144 2145 if (Attrs.hasFnAttr("frame-pointer")) { 2146 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2147 if (FP != "all" && FP != "non-leaf" && FP != "none") 2148 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2149 } 2150 2151 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2152 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2153 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2154 } 2155 2156 void Verifier::verifyFunctionMetadata( 2157 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2158 for (const auto &Pair : MDs) { 2159 if (Pair.first == LLVMContext::MD_prof) { 2160 MDNode *MD = Pair.second; 2161 Check(MD->getNumOperands() >= 2, 2162 "!prof annotations should have no less than 2 operands", MD); 2163 2164 // Check first operand. 2165 Check(MD->getOperand(0) != nullptr, "first operand should not be null", 2166 MD); 2167 Check(isa<MDString>(MD->getOperand(0)), 2168 "expected string with name of the !prof annotation", MD); 2169 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2170 StringRef ProfName = MDS->getString(); 2171 Check(ProfName.equals("function_entry_count") || 2172 ProfName.equals("synthetic_function_entry_count"), 2173 "first operand should be 'function_entry_count'" 2174 " or 'synthetic_function_entry_count'", 2175 MD); 2176 2177 // Check second operand. 2178 Check(MD->getOperand(1) != nullptr, "second operand should not be null", 2179 MD); 2180 Check(isa<ConstantAsMetadata>(MD->getOperand(1)), 2181 "expected integer argument to function_entry_count", MD); 2182 } else if (Pair.first == LLVMContext::MD_kcfi_type) { 2183 MDNode *MD = Pair.second; 2184 Check(MD->getNumOperands() == 1, 2185 "!kcfi_type must have exactly one operand", MD); 2186 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null", 2187 MD); 2188 Check(isa<ConstantAsMetadata>(MD->getOperand(0)), 2189 "expected a constant operand for !kcfi_type", MD); 2190 Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue(); 2191 Check(isa<ConstantInt>(C), 2192 "expected a constant integer operand for !kcfi_type", MD); 2193 IntegerType *Type = cast<ConstantInt>(C)->getType(); 2194 Check(Type->getBitWidth() == 32, 2195 "expected a 32-bit integer constant operand for !kcfi_type", MD); 2196 } 2197 } 2198 } 2199 2200 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2201 if (!ConstantExprVisited.insert(EntryC).second) 2202 return; 2203 2204 SmallVector<const Constant *, 16> Stack; 2205 Stack.push_back(EntryC); 2206 2207 while (!Stack.empty()) { 2208 const Constant *C = Stack.pop_back_val(); 2209 2210 // Check this constant expression. 2211 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2212 visitConstantExpr(CE); 2213 2214 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2215 // Global Values get visited separately, but we do need to make sure 2216 // that the global value is in the correct module 2217 Check(GV->getParent() == &M, "Referencing global in another module!", 2218 EntryC, &M, GV, GV->getParent()); 2219 continue; 2220 } 2221 2222 // Visit all sub-expressions. 2223 for (const Use &U : C->operands()) { 2224 const auto *OpC = dyn_cast<Constant>(U); 2225 if (!OpC) 2226 continue; 2227 if (!ConstantExprVisited.insert(OpC).second) 2228 continue; 2229 Stack.push_back(OpC); 2230 } 2231 } 2232 } 2233 2234 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2235 if (CE->getOpcode() == Instruction::BitCast) 2236 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2237 CE->getType()), 2238 "Invalid bitcast", CE); 2239 } 2240 2241 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2242 // There shouldn't be more attribute sets than there are parameters plus the 2243 // function and return value. 2244 return Attrs.getNumAttrSets() <= Params + 2; 2245 } 2246 2247 void Verifier::verifyInlineAsmCall(const CallBase &Call) { 2248 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 2249 unsigned ArgNo = 0; 2250 unsigned LabelNo = 0; 2251 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2252 if (CI.Type == InlineAsm::isLabel) { 2253 ++LabelNo; 2254 continue; 2255 } 2256 2257 // Only deal with constraints that correspond to call arguments. 2258 if (!CI.hasArg()) 2259 continue; 2260 2261 if (CI.isIndirect) { 2262 const Value *Arg = Call.getArgOperand(ArgNo); 2263 Check(Arg->getType()->isPointerTy(), 2264 "Operand for indirect constraint must have pointer type", &Call); 2265 2266 Check(Call.getParamElementType(ArgNo), 2267 "Operand for indirect constraint must have elementtype attribute", 2268 &Call); 2269 } else { 2270 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType), 2271 "Elementtype attribute can only be applied for indirect " 2272 "constraints", 2273 &Call); 2274 } 2275 2276 ArgNo++; 2277 } 2278 2279 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) { 2280 Check(LabelNo == CallBr->getNumIndirectDests(), 2281 "Number of label constraints does not match number of callbr dests", 2282 &Call); 2283 } else { 2284 Check(LabelNo == 0, "Label constraints can only be used with callbr", 2285 &Call); 2286 } 2287 } 2288 2289 /// Verify that statepoint intrinsic is well formed. 2290 void Verifier::verifyStatepoint(const CallBase &Call) { 2291 assert(Call.getCalledFunction() && 2292 Call.getCalledFunction()->getIntrinsicID() == 2293 Intrinsic::experimental_gc_statepoint); 2294 2295 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2296 !Call.onlyAccessesArgMemory(), 2297 "gc.statepoint must read and write all memory to preserve " 2298 "reordering restrictions required by safepoint semantics", 2299 Call); 2300 2301 const int64_t NumPatchBytes = 2302 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2303 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2304 Check(NumPatchBytes >= 0, 2305 "gc.statepoint number of patchable bytes must be " 2306 "positive", 2307 Call); 2308 2309 Type *TargetElemType = Call.getParamElementType(2); 2310 Check(TargetElemType, 2311 "gc.statepoint callee argument must have elementtype attribute", Call); 2312 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType); 2313 Check(TargetFuncType, 2314 "gc.statepoint callee elementtype must be function type", Call); 2315 2316 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2317 Check(NumCallArgs >= 0, 2318 "gc.statepoint number of arguments to underlying call " 2319 "must be positive", 2320 Call); 2321 const int NumParams = (int)TargetFuncType->getNumParams(); 2322 if (TargetFuncType->isVarArg()) { 2323 Check(NumCallArgs >= NumParams, 2324 "gc.statepoint mismatch in number of vararg call args", Call); 2325 2326 // TODO: Remove this limitation 2327 Check(TargetFuncType->getReturnType()->isVoidTy(), 2328 "gc.statepoint doesn't support wrapping non-void " 2329 "vararg functions yet", 2330 Call); 2331 } else 2332 Check(NumCallArgs == NumParams, 2333 "gc.statepoint mismatch in number of call args", Call); 2334 2335 const uint64_t Flags 2336 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2337 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2338 "unknown flag used in gc.statepoint flags argument", Call); 2339 2340 // Verify that the types of the call parameter arguments match 2341 // the type of the wrapped callee. 2342 AttributeList Attrs = Call.getAttributes(); 2343 for (int i = 0; i < NumParams; i++) { 2344 Type *ParamType = TargetFuncType->getParamType(i); 2345 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2346 Check(ArgType == ParamType, 2347 "gc.statepoint call argument does not match wrapped " 2348 "function type", 2349 Call); 2350 2351 if (TargetFuncType->isVarArg()) { 2352 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2353 Check(!ArgAttrs.hasAttribute(Attribute::StructRet), 2354 "Attribute 'sret' cannot be used for vararg call arguments!", Call); 2355 } 2356 } 2357 2358 const int EndCallArgsInx = 4 + NumCallArgs; 2359 2360 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2361 Check(isa<ConstantInt>(NumTransitionArgsV), 2362 "gc.statepoint number of transition arguments " 2363 "must be constant integer", 2364 Call); 2365 const int NumTransitionArgs = 2366 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2367 Check(NumTransitionArgs == 0, 2368 "gc.statepoint w/inline transition bundle is deprecated", Call); 2369 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2370 2371 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2372 Check(isa<ConstantInt>(NumDeoptArgsV), 2373 "gc.statepoint number of deoptimization arguments " 2374 "must be constant integer", 2375 Call); 2376 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2377 Check(NumDeoptArgs == 0, 2378 "gc.statepoint w/inline deopt operands is deprecated", Call); 2379 2380 const int ExpectedNumArgs = 7 + NumCallArgs; 2381 Check(ExpectedNumArgs == (int)Call.arg_size(), 2382 "gc.statepoint too many arguments", Call); 2383 2384 // Check that the only uses of this gc.statepoint are gc.result or 2385 // gc.relocate calls which are tied to this statepoint and thus part 2386 // of the same statepoint sequence 2387 for (const User *U : Call.users()) { 2388 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2389 Check(UserCall, "illegal use of statepoint token", Call, U); 2390 if (!UserCall) 2391 continue; 2392 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2393 "gc.result or gc.relocate are the only value uses " 2394 "of a gc.statepoint", 2395 Call, U); 2396 if (isa<GCResultInst>(UserCall)) { 2397 Check(UserCall->getArgOperand(0) == &Call, 2398 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2399 } else if (isa<GCRelocateInst>(Call)) { 2400 Check(UserCall->getArgOperand(0) == &Call, 2401 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2402 } 2403 } 2404 2405 // Note: It is legal for a single derived pointer to be listed multiple 2406 // times. It's non-optimal, but it is legal. It can also happen after 2407 // insertion if we strip a bitcast away. 2408 // Note: It is really tempting to check that each base is relocated and 2409 // that a derived pointer is never reused as a base pointer. This turns 2410 // out to be problematic since optimizations run after safepoint insertion 2411 // can recognize equality properties that the insertion logic doesn't know 2412 // about. See example statepoint.ll in the verifier subdirectory 2413 } 2414 2415 void Verifier::verifyFrameRecoverIndices() { 2416 for (auto &Counts : FrameEscapeInfo) { 2417 Function *F = Counts.first; 2418 unsigned EscapedObjectCount = Counts.second.first; 2419 unsigned MaxRecoveredIndex = Counts.second.second; 2420 Check(MaxRecoveredIndex <= EscapedObjectCount, 2421 "all indices passed to llvm.localrecover must be less than the " 2422 "number of arguments passed to llvm.localescape in the parent " 2423 "function", 2424 F); 2425 } 2426 } 2427 2428 static Instruction *getSuccPad(Instruction *Terminator) { 2429 BasicBlock *UnwindDest; 2430 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2431 UnwindDest = II->getUnwindDest(); 2432 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2433 UnwindDest = CSI->getUnwindDest(); 2434 else 2435 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2436 return UnwindDest->getFirstNonPHI(); 2437 } 2438 2439 void Verifier::verifySiblingFuncletUnwinds() { 2440 SmallPtrSet<Instruction *, 8> Visited; 2441 SmallPtrSet<Instruction *, 8> Active; 2442 for (const auto &Pair : SiblingFuncletInfo) { 2443 Instruction *PredPad = Pair.first; 2444 if (Visited.count(PredPad)) 2445 continue; 2446 Active.insert(PredPad); 2447 Instruction *Terminator = Pair.second; 2448 do { 2449 Instruction *SuccPad = getSuccPad(Terminator); 2450 if (Active.count(SuccPad)) { 2451 // Found a cycle; report error 2452 Instruction *CyclePad = SuccPad; 2453 SmallVector<Instruction *, 8> CycleNodes; 2454 do { 2455 CycleNodes.push_back(CyclePad); 2456 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2457 if (CycleTerminator != CyclePad) 2458 CycleNodes.push_back(CycleTerminator); 2459 CyclePad = getSuccPad(CycleTerminator); 2460 } while (CyclePad != SuccPad); 2461 Check(false, "EH pads can't handle each other's exceptions", 2462 ArrayRef<Instruction *>(CycleNodes)); 2463 } 2464 // Don't re-walk a node we've already checked 2465 if (!Visited.insert(SuccPad).second) 2466 break; 2467 // Walk to this successor if it has a map entry. 2468 PredPad = SuccPad; 2469 auto TermI = SiblingFuncletInfo.find(PredPad); 2470 if (TermI == SiblingFuncletInfo.end()) 2471 break; 2472 Terminator = TermI->second; 2473 Active.insert(PredPad); 2474 } while (true); 2475 // Each node only has one successor, so we've walked all the active 2476 // nodes' successors. 2477 Active.clear(); 2478 } 2479 } 2480 2481 // visitFunction - Verify that a function is ok. 2482 // 2483 void Verifier::visitFunction(const Function &F) { 2484 visitGlobalValue(F); 2485 2486 // Check function arguments. 2487 FunctionType *FT = F.getFunctionType(); 2488 unsigned NumArgs = F.arg_size(); 2489 2490 Check(&Context == &F.getContext(), 2491 "Function context does not match Module context!", &F); 2492 2493 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2494 Check(FT->getNumParams() == NumArgs, 2495 "# formal arguments must match # of arguments for function type!", &F, 2496 FT); 2497 Check(F.getReturnType()->isFirstClassType() || 2498 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2499 "Functions cannot return aggregate values!", &F); 2500 2501 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2502 "Invalid struct return type!", &F); 2503 2504 AttributeList Attrs = F.getAttributes(); 2505 2506 Check(verifyAttributeCount(Attrs, FT->getNumParams()), 2507 "Attribute after last parameter!", &F); 2508 2509 bool IsIntrinsic = F.isIntrinsic(); 2510 2511 // Check function attributes. 2512 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false); 2513 2514 // On function declarations/definitions, we do not support the builtin 2515 // attribute. We do not check this in VerifyFunctionAttrs since that is 2516 // checking for Attributes that can/can not ever be on functions. 2517 Check(!Attrs.hasFnAttr(Attribute::Builtin), 2518 "Attribute 'builtin' can only be applied to a callsite.", &F); 2519 2520 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2521 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2522 2523 // Check that this function meets the restrictions on this calling convention. 2524 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2525 // restrictions can be lifted. 2526 switch (F.getCallingConv()) { 2527 default: 2528 case CallingConv::C: 2529 break; 2530 case CallingConv::X86_INTR: { 2531 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2532 "Calling convention parameter requires byval", &F); 2533 break; 2534 } 2535 case CallingConv::AMDGPU_KERNEL: 2536 case CallingConv::SPIR_KERNEL: 2537 Check(F.getReturnType()->isVoidTy(), 2538 "Calling convention requires void return type", &F); 2539 [[fallthrough]]; 2540 case CallingConv::AMDGPU_VS: 2541 case CallingConv::AMDGPU_HS: 2542 case CallingConv::AMDGPU_GS: 2543 case CallingConv::AMDGPU_PS: 2544 case CallingConv::AMDGPU_CS: 2545 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F); 2546 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2547 const unsigned StackAS = DL.getAllocaAddrSpace(); 2548 unsigned i = 0; 2549 for (const Argument &Arg : F.args()) { 2550 Check(!Attrs.hasParamAttr(i, Attribute::ByVal), 2551 "Calling convention disallows byval", &F); 2552 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2553 "Calling convention disallows preallocated", &F); 2554 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2555 "Calling convention disallows inalloca", &F); 2556 2557 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2558 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2559 // value here. 2560 Check(Arg.getType()->getPointerAddressSpace() != StackAS, 2561 "Calling convention disallows stack byref", &F); 2562 } 2563 2564 ++i; 2565 } 2566 } 2567 2568 [[fallthrough]]; 2569 case CallingConv::Fast: 2570 case CallingConv::Cold: 2571 case CallingConv::Intel_OCL_BI: 2572 case CallingConv::PTX_Kernel: 2573 case CallingConv::PTX_Device: 2574 Check(!F.isVarArg(), 2575 "Calling convention does not support varargs or " 2576 "perfect forwarding!", 2577 &F); 2578 break; 2579 } 2580 2581 // Check that the argument values match the function type for this function... 2582 unsigned i = 0; 2583 for (const Argument &Arg : F.args()) { 2584 Check(Arg.getType() == FT->getParamType(i), 2585 "Argument value does not match function argument type!", &Arg, 2586 FT->getParamType(i)); 2587 Check(Arg.getType()->isFirstClassType(), 2588 "Function arguments must have first-class types!", &Arg); 2589 if (!IsIntrinsic) { 2590 Check(!Arg.getType()->isMetadataTy(), 2591 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2592 Check(!Arg.getType()->isTokenTy(), 2593 "Function takes token but isn't an intrinsic", &Arg, &F); 2594 Check(!Arg.getType()->isX86_AMXTy(), 2595 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2596 } 2597 2598 // Check that swifterror argument is only used by loads and stores. 2599 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2600 verifySwiftErrorValue(&Arg); 2601 } 2602 ++i; 2603 } 2604 2605 if (!IsIntrinsic) { 2606 Check(!F.getReturnType()->isTokenTy(), 2607 "Function returns a token but isn't an intrinsic", &F); 2608 Check(!F.getReturnType()->isX86_AMXTy(), 2609 "Function returns a x86_amx but isn't an intrinsic", &F); 2610 } 2611 2612 // Get the function metadata attachments. 2613 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2614 F.getAllMetadata(MDs); 2615 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2616 verifyFunctionMetadata(MDs); 2617 2618 // Check validity of the personality function 2619 if (F.hasPersonalityFn()) { 2620 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2621 if (Per) 2622 Check(Per->getParent() == F.getParent(), 2623 "Referencing personality function in another module!", &F, 2624 F.getParent(), Per, Per->getParent()); 2625 } 2626 2627 if (F.isMaterializable()) { 2628 // Function has a body somewhere we can't see. 2629 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2630 MDs.empty() ? nullptr : MDs.front().second); 2631 } else if (F.isDeclaration()) { 2632 for (const auto &I : MDs) { 2633 // This is used for call site debug information. 2634 CheckDI(I.first != LLVMContext::MD_dbg || 2635 !cast<DISubprogram>(I.second)->isDistinct(), 2636 "function declaration may only have a unique !dbg attachment", 2637 &F); 2638 Check(I.first != LLVMContext::MD_prof, 2639 "function declaration may not have a !prof attachment", &F); 2640 2641 // Verify the metadata itself. 2642 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2643 } 2644 Check(!F.hasPersonalityFn(), 2645 "Function declaration shouldn't have a personality routine", &F); 2646 } else { 2647 // Verify that this function (which has a body) is not named "llvm.*". It 2648 // is not legal to define intrinsics. 2649 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2650 2651 // Check the entry node 2652 const BasicBlock *Entry = &F.getEntryBlock(); 2653 Check(pred_empty(Entry), 2654 "Entry block to function must not have predecessors!", Entry); 2655 2656 // The address of the entry block cannot be taken, unless it is dead. 2657 if (Entry->hasAddressTaken()) { 2658 Check(!BlockAddress::lookup(Entry)->isConstantUsed(), 2659 "blockaddress may not be used with the entry block!", Entry); 2660 } 2661 2662 unsigned NumDebugAttachments = 0, NumProfAttachments = 0, 2663 NumKCFIAttachments = 0; 2664 // Visit metadata attachments. 2665 for (const auto &I : MDs) { 2666 // Verify that the attachment is legal. 2667 auto AllowLocs = AreDebugLocsAllowed::No; 2668 switch (I.first) { 2669 default: 2670 break; 2671 case LLVMContext::MD_dbg: { 2672 ++NumDebugAttachments; 2673 CheckDI(NumDebugAttachments == 1, 2674 "function must have a single !dbg attachment", &F, I.second); 2675 CheckDI(isa<DISubprogram>(I.second), 2676 "function !dbg attachment must be a subprogram", &F, I.second); 2677 CheckDI(cast<DISubprogram>(I.second)->isDistinct(), 2678 "function definition may only have a distinct !dbg attachment", 2679 &F); 2680 2681 auto *SP = cast<DISubprogram>(I.second); 2682 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2683 CheckDI(!AttachedTo || AttachedTo == &F, 2684 "DISubprogram attached to more than one function", SP, &F); 2685 AttachedTo = &F; 2686 AllowLocs = AreDebugLocsAllowed::Yes; 2687 break; 2688 } 2689 case LLVMContext::MD_prof: 2690 ++NumProfAttachments; 2691 Check(NumProfAttachments == 1, 2692 "function must have a single !prof attachment", &F, I.second); 2693 break; 2694 case LLVMContext::MD_kcfi_type: 2695 ++NumKCFIAttachments; 2696 Check(NumKCFIAttachments == 1, 2697 "function must have a single !kcfi_type attachment", &F, 2698 I.second); 2699 break; 2700 } 2701 2702 // Verify the metadata itself. 2703 visitMDNode(*I.second, AllowLocs); 2704 } 2705 } 2706 2707 // If this function is actually an intrinsic, verify that it is only used in 2708 // direct call/invokes, never having its "address taken". 2709 // Only do this if the module is materialized, otherwise we don't have all the 2710 // uses. 2711 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2712 const User *U; 2713 if (F.hasAddressTaken(&U, false, true, false, 2714 /*IgnoreARCAttachedCall=*/true)) 2715 Check(false, "Invalid user of intrinsic instruction!", U); 2716 } 2717 2718 // Check intrinsics' signatures. 2719 switch (F.getIntrinsicID()) { 2720 case Intrinsic::experimental_gc_get_pointer_base: { 2721 FunctionType *FT = F.getFunctionType(); 2722 Check(FT->getNumParams() == 1, "wrong number of parameters", F); 2723 Check(isa<PointerType>(F.getReturnType()), 2724 "gc.get.pointer.base must return a pointer", F); 2725 Check(FT->getParamType(0) == F.getReturnType(), 2726 "gc.get.pointer.base operand and result must be of the same type", F); 2727 break; 2728 } 2729 case Intrinsic::experimental_gc_get_pointer_offset: { 2730 FunctionType *FT = F.getFunctionType(); 2731 Check(FT->getNumParams() == 1, "wrong number of parameters", F); 2732 Check(isa<PointerType>(FT->getParamType(0)), 2733 "gc.get.pointer.offset operand must be a pointer", F); 2734 Check(F.getReturnType()->isIntegerTy(), 2735 "gc.get.pointer.offset must return integer", F); 2736 break; 2737 } 2738 } 2739 2740 auto *N = F.getSubprogram(); 2741 HasDebugInfo = (N != nullptr); 2742 if (!HasDebugInfo) 2743 return; 2744 2745 // Check that all !dbg attachments lead to back to N. 2746 // 2747 // FIXME: Check this incrementally while visiting !dbg attachments. 2748 // FIXME: Only check when N is the canonical subprogram for F. 2749 SmallPtrSet<const MDNode *, 32> Seen; 2750 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2751 // Be careful about using DILocation here since we might be dealing with 2752 // broken code (this is the Verifier after all). 2753 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2754 if (!DL) 2755 return; 2756 if (!Seen.insert(DL).second) 2757 return; 2758 2759 Metadata *Parent = DL->getRawScope(); 2760 CheckDI(Parent && isa<DILocalScope>(Parent), 2761 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent); 2762 2763 DILocalScope *Scope = DL->getInlinedAtScope(); 2764 Check(Scope, "Failed to find DILocalScope", DL); 2765 2766 if (!Seen.insert(Scope).second) 2767 return; 2768 2769 DISubprogram *SP = Scope->getSubprogram(); 2770 2771 // Scope and SP could be the same MDNode and we don't want to skip 2772 // validation in that case 2773 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2774 return; 2775 2776 CheckDI(SP->describes(&F), 2777 "!dbg attachment points at wrong subprogram for function", N, &F, 2778 &I, DL, Scope, SP); 2779 }; 2780 for (auto &BB : F) 2781 for (auto &I : BB) { 2782 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2783 // The llvm.loop annotations also contain two DILocations. 2784 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2785 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2786 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2787 if (BrokenDebugInfo) 2788 return; 2789 } 2790 } 2791 2792 // verifyBasicBlock - Verify that a basic block is well formed... 2793 // 2794 void Verifier::visitBasicBlock(BasicBlock &BB) { 2795 InstsInThisBlock.clear(); 2796 2797 // Ensure that basic blocks have terminators! 2798 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2799 2800 // Check constraints that this basic block imposes on all of the PHI nodes in 2801 // it. 2802 if (isa<PHINode>(BB.front())) { 2803 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2804 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2805 llvm::sort(Preds); 2806 for (const PHINode &PN : BB.phis()) { 2807 Check(PN.getNumIncomingValues() == Preds.size(), 2808 "PHINode should have one entry for each predecessor of its " 2809 "parent basic block!", 2810 &PN); 2811 2812 // Get and sort all incoming values in the PHI node... 2813 Values.clear(); 2814 Values.reserve(PN.getNumIncomingValues()); 2815 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2816 Values.push_back( 2817 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2818 llvm::sort(Values); 2819 2820 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2821 // Check to make sure that if there is more than one entry for a 2822 // particular basic block in this PHI node, that the incoming values are 2823 // all identical. 2824 // 2825 Check(i == 0 || Values[i].first != Values[i - 1].first || 2826 Values[i].second == Values[i - 1].second, 2827 "PHI node has multiple entries for the same basic block with " 2828 "different incoming values!", 2829 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2830 2831 // Check to make sure that the predecessors and PHI node entries are 2832 // matched up. 2833 Check(Values[i].first == Preds[i], 2834 "PHI node entries do not match predecessors!", &PN, 2835 Values[i].first, Preds[i]); 2836 } 2837 } 2838 } 2839 2840 // Check that all instructions have their parent pointers set up correctly. 2841 for (auto &I : BB) 2842 { 2843 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2844 } 2845 } 2846 2847 void Verifier::visitTerminator(Instruction &I) { 2848 // Ensure that terminators only exist at the end of the basic block. 2849 Check(&I == I.getParent()->getTerminator(), 2850 "Terminator found in the middle of a basic block!", I.getParent()); 2851 visitInstruction(I); 2852 } 2853 2854 void Verifier::visitBranchInst(BranchInst &BI) { 2855 if (BI.isConditional()) { 2856 Check(BI.getCondition()->getType()->isIntegerTy(1), 2857 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2858 } 2859 visitTerminator(BI); 2860 } 2861 2862 void Verifier::visitReturnInst(ReturnInst &RI) { 2863 Function *F = RI.getParent()->getParent(); 2864 unsigned N = RI.getNumOperands(); 2865 if (F->getReturnType()->isVoidTy()) 2866 Check(N == 0, 2867 "Found return instr that returns non-void in Function of void " 2868 "return type!", 2869 &RI, F->getReturnType()); 2870 else 2871 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2872 "Function return type does not match operand " 2873 "type of return inst!", 2874 &RI, F->getReturnType()); 2875 2876 // Check to make sure that the return value has necessary properties for 2877 // terminators... 2878 visitTerminator(RI); 2879 } 2880 2881 void Verifier::visitSwitchInst(SwitchInst &SI) { 2882 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 2883 // Check to make sure that all of the constants in the switch instruction 2884 // have the same type as the switched-on value. 2885 Type *SwitchTy = SI.getCondition()->getType(); 2886 SmallPtrSet<ConstantInt*, 32> Constants; 2887 for (auto &Case : SI.cases()) { 2888 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)), 2889 "Case value is not a constant integer.", &SI); 2890 Check(Case.getCaseValue()->getType() == SwitchTy, 2891 "Switch constants must all be same type as switch value!", &SI); 2892 Check(Constants.insert(Case.getCaseValue()).second, 2893 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2894 } 2895 2896 visitTerminator(SI); 2897 } 2898 2899 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2900 Check(BI.getAddress()->getType()->isPointerTy(), 2901 "Indirectbr operand must have pointer type!", &BI); 2902 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2903 Check(BI.getDestination(i)->getType()->isLabelTy(), 2904 "Indirectbr destinations must all have pointer type!", &BI); 2905 2906 visitTerminator(BI); 2907 } 2908 2909 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2910 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI); 2911 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2912 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 2913 2914 verifyInlineAsmCall(CBI); 2915 visitTerminator(CBI); 2916 } 2917 2918 void Verifier::visitSelectInst(SelectInst &SI) { 2919 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2920 SI.getOperand(2)), 2921 "Invalid operands for select instruction!", &SI); 2922 2923 Check(SI.getTrueValue()->getType() == SI.getType(), 2924 "Select values must have same type as select instruction!", &SI); 2925 visitInstruction(SI); 2926 } 2927 2928 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2929 /// a pass, if any exist, it's an error. 2930 /// 2931 void Verifier::visitUserOp1(Instruction &I) { 2932 Check(false, "User-defined operators should not live outside of a pass!", &I); 2933 } 2934 2935 void Verifier::visitTruncInst(TruncInst &I) { 2936 // Get the source and destination types 2937 Type *SrcTy = I.getOperand(0)->getType(); 2938 Type *DestTy = I.getType(); 2939 2940 // Get the size of the types in bits, we'll need this later 2941 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2942 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2943 2944 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2945 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2946 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2947 "trunc source and destination must both be a vector or neither", &I); 2948 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2949 2950 visitInstruction(I); 2951 } 2952 2953 void Verifier::visitZExtInst(ZExtInst &I) { 2954 // Get the source and destination types 2955 Type *SrcTy = I.getOperand(0)->getType(); 2956 Type *DestTy = I.getType(); 2957 2958 // Get the size of the types in bits, we'll need this later 2959 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2960 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2961 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2962 "zext source and destination must both be a vector or neither", &I); 2963 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2964 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2965 2966 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2967 2968 visitInstruction(I); 2969 } 2970 2971 void Verifier::visitSExtInst(SExtInst &I) { 2972 // Get the source and destination types 2973 Type *SrcTy = I.getOperand(0)->getType(); 2974 Type *DestTy = I.getType(); 2975 2976 // Get the size of the types in bits, we'll need this later 2977 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2978 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2979 2980 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2981 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2982 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2983 "sext source and destination must both be a vector or neither", &I); 2984 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2985 2986 visitInstruction(I); 2987 } 2988 2989 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2990 // Get the source and destination types 2991 Type *SrcTy = I.getOperand(0)->getType(); 2992 Type *DestTy = I.getType(); 2993 // Get the size of the types in bits, we'll need this later 2994 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2995 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2996 2997 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2998 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2999 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3000 "fptrunc source and destination must both be a vector or neither", &I); 3001 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 3002 3003 visitInstruction(I); 3004 } 3005 3006 void Verifier::visitFPExtInst(FPExtInst &I) { 3007 // Get the source and destination types 3008 Type *SrcTy = I.getOperand(0)->getType(); 3009 Type *DestTy = I.getType(); 3010 3011 // Get the size of the types in bits, we'll need this later 3012 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3013 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3014 3015 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 3016 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 3017 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3018 "fpext source and destination must both be a vector or neither", &I); 3019 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 3020 3021 visitInstruction(I); 3022 } 3023 3024 void Verifier::visitUIToFPInst(UIToFPInst &I) { 3025 // Get the source and destination types 3026 Type *SrcTy = I.getOperand(0)->getType(); 3027 Type *DestTy = I.getType(); 3028 3029 bool SrcVec = SrcTy->isVectorTy(); 3030 bool DstVec = DestTy->isVectorTy(); 3031 3032 Check(SrcVec == DstVec, 3033 "UIToFP source and dest must both be vector or scalar", &I); 3034 Check(SrcTy->isIntOrIntVectorTy(), 3035 "UIToFP source must be integer or integer vector", &I); 3036 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 3037 &I); 3038 3039 if (SrcVec && DstVec) 3040 Check(cast<VectorType>(SrcTy)->getElementCount() == 3041 cast<VectorType>(DestTy)->getElementCount(), 3042 "UIToFP source and dest vector length mismatch", &I); 3043 3044 visitInstruction(I); 3045 } 3046 3047 void Verifier::visitSIToFPInst(SIToFPInst &I) { 3048 // Get the source and destination types 3049 Type *SrcTy = I.getOperand(0)->getType(); 3050 Type *DestTy = I.getType(); 3051 3052 bool SrcVec = SrcTy->isVectorTy(); 3053 bool DstVec = DestTy->isVectorTy(); 3054 3055 Check(SrcVec == DstVec, 3056 "SIToFP source and dest must both be vector or scalar", &I); 3057 Check(SrcTy->isIntOrIntVectorTy(), 3058 "SIToFP source must be integer or integer vector", &I); 3059 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 3060 &I); 3061 3062 if (SrcVec && DstVec) 3063 Check(cast<VectorType>(SrcTy)->getElementCount() == 3064 cast<VectorType>(DestTy)->getElementCount(), 3065 "SIToFP source and dest vector length mismatch", &I); 3066 3067 visitInstruction(I); 3068 } 3069 3070 void Verifier::visitFPToUIInst(FPToUIInst &I) { 3071 // Get the source and destination types 3072 Type *SrcTy = I.getOperand(0)->getType(); 3073 Type *DestTy = I.getType(); 3074 3075 bool SrcVec = SrcTy->isVectorTy(); 3076 bool DstVec = DestTy->isVectorTy(); 3077 3078 Check(SrcVec == DstVec, 3079 "FPToUI source and dest must both be vector or scalar", &I); 3080 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I); 3081 Check(DestTy->isIntOrIntVectorTy(), 3082 "FPToUI result must be integer or integer vector", &I); 3083 3084 if (SrcVec && DstVec) 3085 Check(cast<VectorType>(SrcTy)->getElementCount() == 3086 cast<VectorType>(DestTy)->getElementCount(), 3087 "FPToUI source and dest vector length mismatch", &I); 3088 3089 visitInstruction(I); 3090 } 3091 3092 void Verifier::visitFPToSIInst(FPToSIInst &I) { 3093 // Get the source and destination types 3094 Type *SrcTy = I.getOperand(0)->getType(); 3095 Type *DestTy = I.getType(); 3096 3097 bool SrcVec = SrcTy->isVectorTy(); 3098 bool DstVec = DestTy->isVectorTy(); 3099 3100 Check(SrcVec == DstVec, 3101 "FPToSI source and dest must both be vector or scalar", &I); 3102 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I); 3103 Check(DestTy->isIntOrIntVectorTy(), 3104 "FPToSI result must be integer or integer vector", &I); 3105 3106 if (SrcVec && DstVec) 3107 Check(cast<VectorType>(SrcTy)->getElementCount() == 3108 cast<VectorType>(DestTy)->getElementCount(), 3109 "FPToSI source and dest vector length mismatch", &I); 3110 3111 visitInstruction(I); 3112 } 3113 3114 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 3115 // Get the source and destination types 3116 Type *SrcTy = I.getOperand(0)->getType(); 3117 Type *DestTy = I.getType(); 3118 3119 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 3120 3121 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 3122 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 3123 &I); 3124 3125 if (SrcTy->isVectorTy()) { 3126 auto *VSrc = cast<VectorType>(SrcTy); 3127 auto *VDest = cast<VectorType>(DestTy); 3128 Check(VSrc->getElementCount() == VDest->getElementCount(), 3129 "PtrToInt Vector width mismatch", &I); 3130 } 3131 3132 visitInstruction(I); 3133 } 3134 3135 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 3136 // Get the source and destination types 3137 Type *SrcTy = I.getOperand(0)->getType(); 3138 Type *DestTy = I.getType(); 3139 3140 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I); 3141 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 3142 3143 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 3144 &I); 3145 if (SrcTy->isVectorTy()) { 3146 auto *VSrc = cast<VectorType>(SrcTy); 3147 auto *VDest = cast<VectorType>(DestTy); 3148 Check(VSrc->getElementCount() == VDest->getElementCount(), 3149 "IntToPtr Vector width mismatch", &I); 3150 } 3151 visitInstruction(I); 3152 } 3153 3154 void Verifier::visitBitCastInst(BitCastInst &I) { 3155 Check( 3156 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3157 "Invalid bitcast", &I); 3158 visitInstruction(I); 3159 } 3160 3161 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3162 Type *SrcTy = I.getOperand(0)->getType(); 3163 Type *DestTy = I.getType(); 3164 3165 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3166 &I); 3167 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3168 &I); 3169 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3170 "AddrSpaceCast must be between different address spaces", &I); 3171 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3172 Check(SrcVTy->getElementCount() == 3173 cast<VectorType>(DestTy)->getElementCount(), 3174 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3175 visitInstruction(I); 3176 } 3177 3178 /// visitPHINode - Ensure that a PHI node is well formed. 3179 /// 3180 void Verifier::visitPHINode(PHINode &PN) { 3181 // Ensure that the PHI nodes are all grouped together at the top of the block. 3182 // This can be tested by checking whether the instruction before this is 3183 // either nonexistent (because this is begin()) or is a PHI node. If not, 3184 // then there is some other instruction before a PHI. 3185 Check(&PN == &PN.getParent()->front() || 3186 isa<PHINode>(--BasicBlock::iterator(&PN)), 3187 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3188 3189 // Check that a PHI doesn't yield a Token. 3190 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3191 3192 // Check that all of the values of the PHI node have the same type as the 3193 // result, and that the incoming blocks are really basic blocks. 3194 for (Value *IncValue : PN.incoming_values()) { 3195 Check(PN.getType() == IncValue->getType(), 3196 "PHI node operands are not the same type as the result!", &PN); 3197 } 3198 3199 // All other PHI node constraints are checked in the visitBasicBlock method. 3200 3201 visitInstruction(PN); 3202 } 3203 3204 void Verifier::visitCallBase(CallBase &Call) { 3205 Check(Call.getCalledOperand()->getType()->isPointerTy(), 3206 "Called function must be a pointer!", Call); 3207 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3208 3209 Check(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), 3210 "Called function is not the same type as the call!", Call); 3211 3212 FunctionType *FTy = Call.getFunctionType(); 3213 3214 // Verify that the correct number of arguments are being passed 3215 if (FTy->isVarArg()) 3216 Check(Call.arg_size() >= FTy->getNumParams(), 3217 "Called function requires more parameters than were provided!", Call); 3218 else 3219 Check(Call.arg_size() == FTy->getNumParams(), 3220 "Incorrect number of arguments passed to called function!", Call); 3221 3222 // Verify that all arguments to the call match the function type. 3223 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3224 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3225 "Call parameter type does not match function signature!", 3226 Call.getArgOperand(i), FTy->getParamType(i), Call); 3227 3228 AttributeList Attrs = Call.getAttributes(); 3229 3230 Check(verifyAttributeCount(Attrs, Call.arg_size()), 3231 "Attribute after last parameter!", Call); 3232 3233 Function *Callee = 3234 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3235 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3236 if (IsIntrinsic) 3237 Check(Callee->getValueType() == FTy, 3238 "Intrinsic called with incompatible signature", Call); 3239 3240 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) { 3241 if (!Ty->isSized()) 3242 return; 3243 Align ABIAlign = DL.getABITypeAlign(Ty); 3244 Align MaxAlign(ParamMaxAlignment); 3245 Check(ABIAlign <= MaxAlign, 3246 "Incorrect alignment of " + Message + " to called function!", Call); 3247 }; 3248 3249 if (!IsIntrinsic) { 3250 VerifyTypeAlign(FTy->getReturnType(), "return type"); 3251 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3252 Type *Ty = FTy->getParamType(i); 3253 VerifyTypeAlign(Ty, "argument passed"); 3254 } 3255 } 3256 3257 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3258 // Don't allow speculatable on call sites, unless the underlying function 3259 // declaration is also speculatable. 3260 Check(Callee && Callee->isSpeculatable(), 3261 "speculatable attribute may not apply to call sites", Call); 3262 } 3263 3264 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3265 Check(Call.getCalledFunction()->getIntrinsicID() == 3266 Intrinsic::call_preallocated_arg, 3267 "preallocated as a call site attribute can only be on " 3268 "llvm.call.preallocated.arg"); 3269 } 3270 3271 // Verify call attributes. 3272 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm()); 3273 3274 // Conservatively check the inalloca argument. 3275 // We have a bug if we can find that there is an underlying alloca without 3276 // inalloca. 3277 if (Call.hasInAllocaArgument()) { 3278 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3279 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3280 Check(AI->isUsedWithInAlloca(), 3281 "inalloca argument for call has mismatched alloca", AI, Call); 3282 } 3283 3284 // For each argument of the callsite, if it has the swifterror argument, 3285 // make sure the underlying alloca/parameter it comes from has a swifterror as 3286 // well. 3287 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3288 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3289 Value *SwiftErrorArg = Call.getArgOperand(i); 3290 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3291 Check(AI->isSwiftError(), 3292 "swifterror argument for call has mismatched alloca", AI, Call); 3293 continue; 3294 } 3295 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3296 Check(ArgI, "swifterror argument should come from an alloca or parameter", 3297 SwiftErrorArg, Call); 3298 Check(ArgI->hasSwiftErrorAttr(), 3299 "swifterror argument for call has mismatched parameter", ArgI, 3300 Call); 3301 } 3302 3303 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3304 // Don't allow immarg on call sites, unless the underlying declaration 3305 // also has the matching immarg. 3306 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3307 "immarg may not apply only to call sites", Call.getArgOperand(i), 3308 Call); 3309 } 3310 3311 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3312 Value *ArgVal = Call.getArgOperand(i); 3313 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3314 "immarg operand has non-immediate parameter", ArgVal, Call); 3315 } 3316 3317 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3318 Value *ArgVal = Call.getArgOperand(i); 3319 bool hasOB = 3320 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3321 bool isMustTail = Call.isMustTailCall(); 3322 Check(hasOB != isMustTail, 3323 "preallocated operand either requires a preallocated bundle or " 3324 "the call to be musttail (but not both)", 3325 ArgVal, Call); 3326 } 3327 } 3328 3329 if (FTy->isVarArg()) { 3330 // FIXME? is 'nest' even legal here? 3331 bool SawNest = false; 3332 bool SawReturned = false; 3333 3334 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3335 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3336 SawNest = true; 3337 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3338 SawReturned = true; 3339 } 3340 3341 // Check attributes on the varargs part. 3342 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3343 Type *Ty = Call.getArgOperand(Idx)->getType(); 3344 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3345 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3346 3347 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3348 Check(!SawNest, "More than one parameter has attribute nest!", Call); 3349 SawNest = true; 3350 } 3351 3352 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3353 Check(!SawReturned, "More than one parameter has attribute returned!", 3354 Call); 3355 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3356 "Incompatible argument and return types for 'returned' " 3357 "attribute", 3358 Call); 3359 SawReturned = true; 3360 } 3361 3362 // Statepoint intrinsic is vararg but the wrapped function may be not. 3363 // Allow sret here and check the wrapped function in verifyStatepoint. 3364 if (!Call.getCalledFunction() || 3365 Call.getCalledFunction()->getIntrinsicID() != 3366 Intrinsic::experimental_gc_statepoint) 3367 Check(!ArgAttrs.hasAttribute(Attribute::StructRet), 3368 "Attribute 'sret' cannot be used for vararg call arguments!", 3369 Call); 3370 3371 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3372 Check(Idx == Call.arg_size() - 1, 3373 "inalloca isn't on the last argument!", Call); 3374 } 3375 } 3376 3377 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3378 if (!IsIntrinsic) { 3379 for (Type *ParamTy : FTy->params()) { 3380 Check(!ParamTy->isMetadataTy(), 3381 "Function has metadata parameter but isn't an intrinsic", Call); 3382 Check(!ParamTy->isTokenTy(), 3383 "Function has token parameter but isn't an intrinsic", Call); 3384 } 3385 } 3386 3387 // Verify that indirect calls don't return tokens. 3388 if (!Call.getCalledFunction()) { 3389 Check(!FTy->getReturnType()->isTokenTy(), 3390 "Return type cannot be token for indirect call!"); 3391 Check(!FTy->getReturnType()->isX86_AMXTy(), 3392 "Return type cannot be x86_amx for indirect call!"); 3393 } 3394 3395 if (Function *F = Call.getCalledFunction()) 3396 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3397 visitIntrinsicCall(ID, Call); 3398 3399 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3400 // most one "gc-transition", at most one "cfguardtarget", at most one 3401 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle. 3402 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3403 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3404 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3405 FoundPtrauthBundle = false, FoundKCFIBundle = false, 3406 FoundAttachedCallBundle = false; 3407 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3408 OperandBundleUse BU = Call.getOperandBundleAt(i); 3409 uint32_t Tag = BU.getTagID(); 3410 if (Tag == LLVMContext::OB_deopt) { 3411 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3412 FoundDeoptBundle = true; 3413 } else if (Tag == LLVMContext::OB_gc_transition) { 3414 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3415 Call); 3416 FoundGCTransitionBundle = true; 3417 } else if (Tag == LLVMContext::OB_funclet) { 3418 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3419 FoundFuncletBundle = true; 3420 Check(BU.Inputs.size() == 1, 3421 "Expected exactly one funclet bundle operand", Call); 3422 Check(isa<FuncletPadInst>(BU.Inputs.front()), 3423 "Funclet bundle operands should correspond to a FuncletPadInst", 3424 Call); 3425 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3426 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles", 3427 Call); 3428 FoundCFGuardTargetBundle = true; 3429 Check(BU.Inputs.size() == 1, 3430 "Expected exactly one cfguardtarget bundle operand", Call); 3431 } else if (Tag == LLVMContext::OB_ptrauth) { 3432 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call); 3433 FoundPtrauthBundle = true; 3434 Check(BU.Inputs.size() == 2, 3435 "Expected exactly two ptrauth bundle operands", Call); 3436 Check(isa<ConstantInt>(BU.Inputs[0]) && 3437 BU.Inputs[0]->getType()->isIntegerTy(32), 3438 "Ptrauth bundle key operand must be an i32 constant", Call); 3439 Check(BU.Inputs[1]->getType()->isIntegerTy(64), 3440 "Ptrauth bundle discriminator operand must be an i64", Call); 3441 } else if (Tag == LLVMContext::OB_kcfi) { 3442 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call); 3443 FoundKCFIBundle = true; 3444 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand", 3445 Call); 3446 Check(isa<ConstantInt>(BU.Inputs[0]) && 3447 BU.Inputs[0]->getType()->isIntegerTy(32), 3448 "Kcfi bundle operand must be an i32 constant", Call); 3449 } else if (Tag == LLVMContext::OB_preallocated) { 3450 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3451 Call); 3452 FoundPreallocatedBundle = true; 3453 Check(BU.Inputs.size() == 1, 3454 "Expected exactly one preallocated bundle operand", Call); 3455 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3456 Check(Input && 3457 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3458 "\"preallocated\" argument must be a token from " 3459 "llvm.call.preallocated.setup", 3460 Call); 3461 } else if (Tag == LLVMContext::OB_gc_live) { 3462 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call); 3463 FoundGCLiveBundle = true; 3464 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3465 Check(!FoundAttachedCallBundle, 3466 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3467 FoundAttachedCallBundle = true; 3468 verifyAttachedCallBundle(Call, BU); 3469 } 3470 } 3471 3472 // Verify that callee and callsite agree on whether to use pointer auth. 3473 Check(!(Call.getCalledFunction() && FoundPtrauthBundle), 3474 "Direct call cannot have a ptrauth bundle", Call); 3475 3476 // Verify that each inlinable callsite of a debug-info-bearing function in a 3477 // debug-info-bearing function has a debug location attached to it. Failure to 3478 // do so causes assertion failures when the inliner sets up inline scope info 3479 // (Interposable functions are not inlinable, neither are functions without 3480 // definitions.) 3481 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3482 !Call.getCalledFunction()->isInterposable() && 3483 !Call.getCalledFunction()->isDeclaration() && 3484 Call.getCalledFunction()->getSubprogram()) 3485 CheckDI(Call.getDebugLoc(), 3486 "inlinable function call in a function with " 3487 "debug info must have a !dbg location", 3488 Call); 3489 3490 if (Call.isInlineAsm()) 3491 verifyInlineAsmCall(Call); 3492 3493 visitInstruction(Call); 3494 } 3495 3496 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, 3497 StringRef Context) { 3498 Check(!Attrs.contains(Attribute::InAlloca), 3499 Twine("inalloca attribute not allowed in ") + Context); 3500 Check(!Attrs.contains(Attribute::InReg), 3501 Twine("inreg attribute not allowed in ") + Context); 3502 Check(!Attrs.contains(Attribute::SwiftError), 3503 Twine("swifterror attribute not allowed in ") + Context); 3504 Check(!Attrs.contains(Attribute::Preallocated), 3505 Twine("preallocated attribute not allowed in ") + Context); 3506 Check(!Attrs.contains(Attribute::ByRef), 3507 Twine("byref attribute not allowed in ") + Context); 3508 } 3509 3510 /// Two types are "congruent" if they are identical, or if they are both pointer 3511 /// types with different pointee types and the same address space. 3512 static bool isTypeCongruent(Type *L, Type *R) { 3513 if (L == R) 3514 return true; 3515 PointerType *PL = dyn_cast<PointerType>(L); 3516 PointerType *PR = dyn_cast<PointerType>(R); 3517 if (!PL || !PR) 3518 return false; 3519 return PL->getAddressSpace() == PR->getAddressSpace(); 3520 } 3521 3522 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) { 3523 static const Attribute::AttrKind ABIAttrs[] = { 3524 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3525 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3526 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3527 Attribute::ByRef}; 3528 AttrBuilder Copy(C); 3529 for (auto AK : ABIAttrs) { 3530 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3531 if (Attr.isValid()) 3532 Copy.addAttribute(Attr); 3533 } 3534 3535 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3536 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3537 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3538 Attrs.hasParamAttr(I, Attribute::ByRef))) 3539 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3540 return Copy; 3541 } 3542 3543 void Verifier::verifyMustTailCall(CallInst &CI) { 3544 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3545 3546 Function *F = CI.getParent()->getParent(); 3547 FunctionType *CallerTy = F->getFunctionType(); 3548 FunctionType *CalleeTy = CI.getFunctionType(); 3549 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3550 "cannot guarantee tail call due to mismatched varargs", &CI); 3551 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3552 "cannot guarantee tail call due to mismatched return types", &CI); 3553 3554 // - The calling conventions of the caller and callee must match. 3555 Check(F->getCallingConv() == CI.getCallingConv(), 3556 "cannot guarantee tail call due to mismatched calling conv", &CI); 3557 3558 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3559 // or a pointer bitcast followed by a ret instruction. 3560 // - The ret instruction must return the (possibly bitcasted) value 3561 // produced by the call or void. 3562 Value *RetVal = &CI; 3563 Instruction *Next = CI.getNextNode(); 3564 3565 // Handle the optional bitcast. 3566 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3567 Check(BI->getOperand(0) == RetVal, 3568 "bitcast following musttail call must use the call", BI); 3569 RetVal = BI; 3570 Next = BI->getNextNode(); 3571 } 3572 3573 // Check the return. 3574 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3575 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI); 3576 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3577 isa<UndefValue>(Ret->getReturnValue()), 3578 "musttail call result must be returned", Ret); 3579 3580 AttributeList CallerAttrs = F->getAttributes(); 3581 AttributeList CalleeAttrs = CI.getAttributes(); 3582 if (CI.getCallingConv() == CallingConv::SwiftTail || 3583 CI.getCallingConv() == CallingConv::Tail) { 3584 StringRef CCName = 3585 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3586 3587 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3588 // are allowed in swifttailcc call 3589 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3590 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3591 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3592 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3593 } 3594 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3595 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3596 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3597 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3598 } 3599 // - Varargs functions are not allowed 3600 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3601 " tail call for varargs function"); 3602 return; 3603 } 3604 3605 // - The caller and callee prototypes must match. Pointer types of 3606 // parameters or return types may differ in pointee type, but not 3607 // address space. 3608 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3609 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3610 "cannot guarantee tail call due to mismatched parameter counts", &CI); 3611 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3612 Check( 3613 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3614 "cannot guarantee tail call due to mismatched parameter types", &CI); 3615 } 3616 } 3617 3618 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3619 // returned, preallocated, and inalloca, must match. 3620 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3621 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3622 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3623 Check(CallerABIAttrs == CalleeABIAttrs, 3624 "cannot guarantee tail call due to mismatched ABI impacting " 3625 "function attributes", 3626 &CI, CI.getOperand(I)); 3627 } 3628 } 3629 3630 void Verifier::visitCallInst(CallInst &CI) { 3631 visitCallBase(CI); 3632 3633 if (CI.isMustTailCall()) 3634 verifyMustTailCall(CI); 3635 } 3636 3637 void Verifier::visitInvokeInst(InvokeInst &II) { 3638 visitCallBase(II); 3639 3640 // Verify that the first non-PHI instruction of the unwind destination is an 3641 // exception handling instruction. 3642 Check( 3643 II.getUnwindDest()->isEHPad(), 3644 "The unwind destination does not have an exception handling instruction!", 3645 &II); 3646 3647 visitTerminator(II); 3648 } 3649 3650 /// visitUnaryOperator - Check the argument to the unary operator. 3651 /// 3652 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3653 Check(U.getType() == U.getOperand(0)->getType(), 3654 "Unary operators must have same type for" 3655 "operands and result!", 3656 &U); 3657 3658 switch (U.getOpcode()) { 3659 // Check that floating-point arithmetic operators are only used with 3660 // floating-point operands. 3661 case Instruction::FNeg: 3662 Check(U.getType()->isFPOrFPVectorTy(), 3663 "FNeg operator only works with float types!", &U); 3664 break; 3665 default: 3666 llvm_unreachable("Unknown UnaryOperator opcode!"); 3667 } 3668 3669 visitInstruction(U); 3670 } 3671 3672 /// visitBinaryOperator - Check that both arguments to the binary operator are 3673 /// of the same type! 3674 /// 3675 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3676 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3677 "Both operands to a binary operator are not of the same type!", &B); 3678 3679 switch (B.getOpcode()) { 3680 // Check that integer arithmetic operators are only used with 3681 // integral operands. 3682 case Instruction::Add: 3683 case Instruction::Sub: 3684 case Instruction::Mul: 3685 case Instruction::SDiv: 3686 case Instruction::UDiv: 3687 case Instruction::SRem: 3688 case Instruction::URem: 3689 Check(B.getType()->isIntOrIntVectorTy(), 3690 "Integer arithmetic operators only work with integral types!", &B); 3691 Check(B.getType() == B.getOperand(0)->getType(), 3692 "Integer arithmetic operators must have same type " 3693 "for operands and result!", 3694 &B); 3695 break; 3696 // Check that floating-point arithmetic operators are only used with 3697 // floating-point operands. 3698 case Instruction::FAdd: 3699 case Instruction::FSub: 3700 case Instruction::FMul: 3701 case Instruction::FDiv: 3702 case Instruction::FRem: 3703 Check(B.getType()->isFPOrFPVectorTy(), 3704 "Floating-point arithmetic operators only work with " 3705 "floating-point types!", 3706 &B); 3707 Check(B.getType() == B.getOperand(0)->getType(), 3708 "Floating-point arithmetic operators must have same type " 3709 "for operands and result!", 3710 &B); 3711 break; 3712 // Check that logical operators are only used with integral operands. 3713 case Instruction::And: 3714 case Instruction::Or: 3715 case Instruction::Xor: 3716 Check(B.getType()->isIntOrIntVectorTy(), 3717 "Logical operators only work with integral types!", &B); 3718 Check(B.getType() == B.getOperand(0)->getType(), 3719 "Logical operators must have same type for operands and result!", &B); 3720 break; 3721 case Instruction::Shl: 3722 case Instruction::LShr: 3723 case Instruction::AShr: 3724 Check(B.getType()->isIntOrIntVectorTy(), 3725 "Shifts only work with integral types!", &B); 3726 Check(B.getType() == B.getOperand(0)->getType(), 3727 "Shift return type must be same as operands!", &B); 3728 break; 3729 default: 3730 llvm_unreachable("Unknown BinaryOperator opcode!"); 3731 } 3732 3733 visitInstruction(B); 3734 } 3735 3736 void Verifier::visitICmpInst(ICmpInst &IC) { 3737 // Check that the operands are the same type 3738 Type *Op0Ty = IC.getOperand(0)->getType(); 3739 Type *Op1Ty = IC.getOperand(1)->getType(); 3740 Check(Op0Ty == Op1Ty, 3741 "Both operands to ICmp instruction are not of the same type!", &IC); 3742 // Check that the operands are the right type 3743 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3744 "Invalid operand types for ICmp instruction", &IC); 3745 // Check that the predicate is valid. 3746 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC); 3747 3748 visitInstruction(IC); 3749 } 3750 3751 void Verifier::visitFCmpInst(FCmpInst &FC) { 3752 // Check that the operands are the same type 3753 Type *Op0Ty = FC.getOperand(0)->getType(); 3754 Type *Op1Ty = FC.getOperand(1)->getType(); 3755 Check(Op0Ty == Op1Ty, 3756 "Both operands to FCmp instruction are not of the same type!", &FC); 3757 // Check that the operands are the right type 3758 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", 3759 &FC); 3760 // Check that the predicate is valid. 3761 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC); 3762 3763 visitInstruction(FC); 3764 } 3765 3766 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3767 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3768 "Invalid extractelement operands!", &EI); 3769 visitInstruction(EI); 3770 } 3771 3772 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3773 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3774 IE.getOperand(2)), 3775 "Invalid insertelement operands!", &IE); 3776 visitInstruction(IE); 3777 } 3778 3779 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3780 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3781 SV.getShuffleMask()), 3782 "Invalid shufflevector operands!", &SV); 3783 visitInstruction(SV); 3784 } 3785 3786 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3787 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3788 3789 Check(isa<PointerType>(TargetTy), 3790 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3791 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3792 3793 SmallVector<Value *, 16> Idxs(GEP.indices()); 3794 Check( 3795 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }), 3796 "GEP indexes must be integers", &GEP); 3797 Type *ElTy = 3798 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3799 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3800 3801 Check(GEP.getType()->isPtrOrPtrVectorTy() && 3802 GEP.getResultElementType() == ElTy, 3803 "GEP is not of right type for indices!", &GEP, ElTy); 3804 3805 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3806 // Additional checks for vector GEPs. 3807 ElementCount GEPWidth = GEPVTy->getElementCount(); 3808 if (GEP.getPointerOperandType()->isVectorTy()) 3809 Check( 3810 GEPWidth == 3811 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3812 "Vector GEP result width doesn't match operand's", &GEP); 3813 for (Value *Idx : Idxs) { 3814 Type *IndexTy = Idx->getType(); 3815 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3816 ElementCount IndexWidth = IndexVTy->getElementCount(); 3817 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3818 } 3819 Check(IndexTy->isIntOrIntVectorTy(), 3820 "All GEP indices should be of integer type"); 3821 } 3822 } 3823 3824 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3825 Check(GEP.getAddressSpace() == PTy->getAddressSpace(), 3826 "GEP address space doesn't match type", &GEP); 3827 } 3828 3829 visitInstruction(GEP); 3830 } 3831 3832 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3833 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3834 } 3835 3836 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3837 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3838 "precondition violation"); 3839 3840 unsigned NumOperands = Range->getNumOperands(); 3841 Check(NumOperands % 2 == 0, "Unfinished range!", Range); 3842 unsigned NumRanges = NumOperands / 2; 3843 Check(NumRanges >= 1, "It should have at least one range!", Range); 3844 3845 ConstantRange LastRange(1, true); // Dummy initial value 3846 for (unsigned i = 0; i < NumRanges; ++i) { 3847 ConstantInt *Low = 3848 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3849 Check(Low, "The lower limit must be an integer!", Low); 3850 ConstantInt *High = 3851 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3852 Check(High, "The upper limit must be an integer!", High); 3853 Check(High->getType() == Low->getType() && High->getType() == Ty, 3854 "Range types must match instruction type!", &I); 3855 3856 APInt HighV = High->getValue(); 3857 APInt LowV = Low->getValue(); 3858 ConstantRange CurRange(LowV, HighV); 3859 Check(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3860 "Range must not be empty!", Range); 3861 if (i != 0) { 3862 Check(CurRange.intersectWith(LastRange).isEmptySet(), 3863 "Intervals are overlapping", Range); 3864 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3865 Range); 3866 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3867 Range); 3868 } 3869 LastRange = ConstantRange(LowV, HighV); 3870 } 3871 if (NumRanges > 2) { 3872 APInt FirstLow = 3873 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3874 APInt FirstHigh = 3875 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3876 ConstantRange FirstRange(FirstLow, FirstHigh); 3877 Check(FirstRange.intersectWith(LastRange).isEmptySet(), 3878 "Intervals are overlapping", Range); 3879 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3880 Range); 3881 } 3882 } 3883 3884 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3885 unsigned Size = DL.getTypeSizeInBits(Ty); 3886 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3887 Check(!(Size & (Size - 1)), 3888 "atomic memory access' operand must have a power-of-two size", Ty, I); 3889 } 3890 3891 void Verifier::visitLoadInst(LoadInst &LI) { 3892 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3893 Check(PTy, "Load operand must be a pointer.", &LI); 3894 Type *ElTy = LI.getType(); 3895 if (MaybeAlign A = LI.getAlign()) { 3896 Check(A->value() <= Value::MaximumAlignment, 3897 "huge alignment values are unsupported", &LI); 3898 } 3899 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3900 if (LI.isAtomic()) { 3901 Check(LI.getOrdering() != AtomicOrdering::Release && 3902 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3903 "Load cannot have Release ordering", &LI); 3904 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3905 "atomic load operand must have integer, pointer, or floating point " 3906 "type!", 3907 ElTy, &LI); 3908 checkAtomicMemAccessSize(ElTy, &LI); 3909 } else { 3910 Check(LI.getSyncScopeID() == SyncScope::System, 3911 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3912 } 3913 3914 visitInstruction(LI); 3915 } 3916 3917 void Verifier::visitStoreInst(StoreInst &SI) { 3918 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3919 Check(PTy, "Store operand must be a pointer.", &SI); 3920 Type *ElTy = SI.getOperand(0)->getType(); 3921 Check(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 3922 "Stored value type does not match pointer operand type!", &SI, ElTy); 3923 if (MaybeAlign A = SI.getAlign()) { 3924 Check(A->value() <= Value::MaximumAlignment, 3925 "huge alignment values are unsupported", &SI); 3926 } 3927 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3928 if (SI.isAtomic()) { 3929 Check(SI.getOrdering() != AtomicOrdering::Acquire && 3930 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3931 "Store cannot have Acquire ordering", &SI); 3932 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3933 "atomic store operand must have integer, pointer, or floating point " 3934 "type!", 3935 ElTy, &SI); 3936 checkAtomicMemAccessSize(ElTy, &SI); 3937 } else { 3938 Check(SI.getSyncScopeID() == SyncScope::System, 3939 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3940 } 3941 visitInstruction(SI); 3942 } 3943 3944 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3945 void Verifier::verifySwiftErrorCall(CallBase &Call, 3946 const Value *SwiftErrorVal) { 3947 for (const auto &I : llvm::enumerate(Call.args())) { 3948 if (I.value() == SwiftErrorVal) { 3949 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3950 "swifterror value when used in a callsite should be marked " 3951 "with swifterror attribute", 3952 SwiftErrorVal, Call); 3953 } 3954 } 3955 } 3956 3957 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3958 // Check that swifterror value is only used by loads, stores, or as 3959 // a swifterror argument. 3960 for (const User *U : SwiftErrorVal->users()) { 3961 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3962 isa<InvokeInst>(U), 3963 "swifterror value can only be loaded and stored from, or " 3964 "as a swifterror argument!", 3965 SwiftErrorVal, U); 3966 // If it is used by a store, check it is the second operand. 3967 if (auto StoreI = dyn_cast<StoreInst>(U)) 3968 Check(StoreI->getOperand(1) == SwiftErrorVal, 3969 "swifterror value should be the second operand when used " 3970 "by stores", 3971 SwiftErrorVal, U); 3972 if (auto *Call = dyn_cast<CallBase>(U)) 3973 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3974 } 3975 } 3976 3977 void Verifier::visitAllocaInst(AllocaInst &AI) { 3978 SmallPtrSet<Type*, 4> Visited; 3979 Check(AI.getAllocatedType()->isSized(&Visited), 3980 "Cannot allocate unsized type", &AI); 3981 Check(AI.getArraySize()->getType()->isIntegerTy(), 3982 "Alloca array size must have integer type", &AI); 3983 if (MaybeAlign A = AI.getAlign()) { 3984 Check(A->value() <= Value::MaximumAlignment, 3985 "huge alignment values are unsupported", &AI); 3986 } 3987 3988 if (AI.isSwiftError()) { 3989 Check(AI.getAllocatedType()->isPointerTy(), 3990 "swifterror alloca must have pointer type", &AI); 3991 Check(!AI.isArrayAllocation(), 3992 "swifterror alloca must not be array allocation", &AI); 3993 verifySwiftErrorValue(&AI); 3994 } 3995 3996 visitInstruction(AI); 3997 } 3998 3999 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 4000 Type *ElTy = CXI.getOperand(1)->getType(); 4001 Check(ElTy->isIntOrPtrTy(), 4002 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 4003 checkAtomicMemAccessSize(ElTy, &CXI); 4004 visitInstruction(CXI); 4005 } 4006 4007 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 4008 Check(RMWI.getOrdering() != AtomicOrdering::Unordered, 4009 "atomicrmw instructions cannot be unordered.", &RMWI); 4010 auto Op = RMWI.getOperation(); 4011 Type *ElTy = RMWI.getOperand(1)->getType(); 4012 if (Op == AtomicRMWInst::Xchg) { 4013 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() || 4014 ElTy->isPointerTy(), 4015 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4016 " operand must have integer or floating point type!", 4017 &RMWI, ElTy); 4018 } else if (AtomicRMWInst::isFPOperation(Op)) { 4019 Check(ElTy->isFloatingPointTy(), 4020 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4021 " operand must have floating point type!", 4022 &RMWI, ElTy); 4023 } else { 4024 Check(ElTy->isIntegerTy(), 4025 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4026 " operand must have integer type!", 4027 &RMWI, ElTy); 4028 } 4029 checkAtomicMemAccessSize(ElTy, &RMWI); 4030 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 4031 "Invalid binary operation!", &RMWI); 4032 visitInstruction(RMWI); 4033 } 4034 4035 void Verifier::visitFenceInst(FenceInst &FI) { 4036 const AtomicOrdering Ordering = FI.getOrdering(); 4037 Check(Ordering == AtomicOrdering::Acquire || 4038 Ordering == AtomicOrdering::Release || 4039 Ordering == AtomicOrdering::AcquireRelease || 4040 Ordering == AtomicOrdering::SequentiallyConsistent, 4041 "fence instructions may only have acquire, release, acq_rel, or " 4042 "seq_cst ordering.", 4043 &FI); 4044 visitInstruction(FI); 4045 } 4046 4047 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 4048 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 4049 EVI.getIndices()) == EVI.getType(), 4050 "Invalid ExtractValueInst operands!", &EVI); 4051 4052 visitInstruction(EVI); 4053 } 4054 4055 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 4056 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 4057 IVI.getIndices()) == 4058 IVI.getOperand(1)->getType(), 4059 "Invalid InsertValueInst operands!", &IVI); 4060 4061 visitInstruction(IVI); 4062 } 4063 4064 static Value *getParentPad(Value *EHPad) { 4065 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 4066 return FPI->getParentPad(); 4067 4068 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 4069 } 4070 4071 void Verifier::visitEHPadPredecessors(Instruction &I) { 4072 assert(I.isEHPad()); 4073 4074 BasicBlock *BB = I.getParent(); 4075 Function *F = BB->getParent(); 4076 4077 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 4078 4079 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 4080 // The landingpad instruction defines its parent as a landing pad block. The 4081 // landing pad block may be branched to only by the unwind edge of an 4082 // invoke. 4083 for (BasicBlock *PredBB : predecessors(BB)) { 4084 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 4085 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 4086 "Block containing LandingPadInst must be jumped to " 4087 "only by the unwind edge of an invoke.", 4088 LPI); 4089 } 4090 return; 4091 } 4092 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 4093 if (!pred_empty(BB)) 4094 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 4095 "Block containg CatchPadInst must be jumped to " 4096 "only by its catchswitch.", 4097 CPI); 4098 Check(BB != CPI->getCatchSwitch()->getUnwindDest(), 4099 "Catchswitch cannot unwind to one of its catchpads", 4100 CPI->getCatchSwitch(), CPI); 4101 return; 4102 } 4103 4104 // Verify that each pred has a legal terminator with a legal to/from EH 4105 // pad relationship. 4106 Instruction *ToPad = &I; 4107 Value *ToPadParent = getParentPad(ToPad); 4108 for (BasicBlock *PredBB : predecessors(BB)) { 4109 Instruction *TI = PredBB->getTerminator(); 4110 Value *FromPad; 4111 if (auto *II = dyn_cast<InvokeInst>(TI)) { 4112 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB, 4113 "EH pad must be jumped to via an unwind edge", ToPad, II); 4114 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 4115 FromPad = Bundle->Inputs[0]; 4116 else 4117 FromPad = ConstantTokenNone::get(II->getContext()); 4118 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4119 FromPad = CRI->getOperand(0); 4120 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 4121 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4122 FromPad = CSI; 4123 } else { 4124 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 4125 } 4126 4127 // The edge may exit from zero or more nested pads. 4128 SmallSet<Value *, 8> Seen; 4129 for (;; FromPad = getParentPad(FromPad)) { 4130 Check(FromPad != ToPad, 4131 "EH pad cannot handle exceptions raised within it", FromPad, TI); 4132 if (FromPad == ToPadParent) { 4133 // This is a legal unwind edge. 4134 break; 4135 } 4136 Check(!isa<ConstantTokenNone>(FromPad), 4137 "A single unwind edge may only enter one EH pad", TI); 4138 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads", 4139 FromPad); 4140 4141 // This will be diagnosed on the corresponding instruction already. We 4142 // need the extra check here to make sure getParentPad() works. 4143 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad), 4144 "Parent pad must be catchpad/cleanuppad/catchswitch", TI); 4145 } 4146 } 4147 } 4148 4149 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 4150 // The landingpad instruction is ill-formed if it doesn't have any clauses and 4151 // isn't a cleanup. 4152 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(), 4153 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 4154 4155 visitEHPadPredecessors(LPI); 4156 4157 if (!LandingPadResultTy) 4158 LandingPadResultTy = LPI.getType(); 4159 else 4160 Check(LandingPadResultTy == LPI.getType(), 4161 "The landingpad instruction should have a consistent result type " 4162 "inside a function.", 4163 &LPI); 4164 4165 Function *F = LPI.getParent()->getParent(); 4166 Check(F->hasPersonalityFn(), 4167 "LandingPadInst needs to be in a function with a personality.", &LPI); 4168 4169 // The landingpad instruction must be the first non-PHI instruction in the 4170 // block. 4171 Check(LPI.getParent()->getLandingPadInst() == &LPI, 4172 "LandingPadInst not the first non-PHI instruction in the block.", &LPI); 4173 4174 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 4175 Constant *Clause = LPI.getClause(i); 4176 if (LPI.isCatch(i)) { 4177 Check(isa<PointerType>(Clause->getType()), 4178 "Catch operand does not have pointer type!", &LPI); 4179 } else { 4180 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 4181 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 4182 "Filter operand is not an array of constants!", &LPI); 4183 } 4184 } 4185 4186 visitInstruction(LPI); 4187 } 4188 4189 void Verifier::visitResumeInst(ResumeInst &RI) { 4190 Check(RI.getFunction()->hasPersonalityFn(), 4191 "ResumeInst needs to be in a function with a personality.", &RI); 4192 4193 if (!LandingPadResultTy) 4194 LandingPadResultTy = RI.getValue()->getType(); 4195 else 4196 Check(LandingPadResultTy == RI.getValue()->getType(), 4197 "The resume instruction should have a consistent result type " 4198 "inside a function.", 4199 &RI); 4200 4201 visitTerminator(RI); 4202 } 4203 4204 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 4205 BasicBlock *BB = CPI.getParent(); 4206 4207 Function *F = BB->getParent(); 4208 Check(F->hasPersonalityFn(), 4209 "CatchPadInst needs to be in a function with a personality.", &CPI); 4210 4211 Check(isa<CatchSwitchInst>(CPI.getParentPad()), 4212 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4213 CPI.getParentPad()); 4214 4215 // The catchpad instruction must be the first non-PHI instruction in the 4216 // block. 4217 Check(BB->getFirstNonPHI() == &CPI, 4218 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4219 4220 visitEHPadPredecessors(CPI); 4221 visitFuncletPadInst(CPI); 4222 } 4223 4224 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4225 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4226 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4227 CatchReturn.getOperand(0)); 4228 4229 visitTerminator(CatchReturn); 4230 } 4231 4232 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4233 BasicBlock *BB = CPI.getParent(); 4234 4235 Function *F = BB->getParent(); 4236 Check(F->hasPersonalityFn(), 4237 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4238 4239 // The cleanuppad instruction must be the first non-PHI instruction in the 4240 // block. 4241 Check(BB->getFirstNonPHI() == &CPI, 4242 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI); 4243 4244 auto *ParentPad = CPI.getParentPad(); 4245 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4246 "CleanupPadInst has an invalid parent.", &CPI); 4247 4248 visitEHPadPredecessors(CPI); 4249 visitFuncletPadInst(CPI); 4250 } 4251 4252 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4253 User *FirstUser = nullptr; 4254 Value *FirstUnwindPad = nullptr; 4255 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4256 SmallSet<FuncletPadInst *, 8> Seen; 4257 4258 while (!Worklist.empty()) { 4259 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4260 Check(Seen.insert(CurrentPad).second, 4261 "FuncletPadInst must not be nested within itself", CurrentPad); 4262 Value *UnresolvedAncestorPad = nullptr; 4263 for (User *U : CurrentPad->users()) { 4264 BasicBlock *UnwindDest; 4265 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4266 UnwindDest = CRI->getUnwindDest(); 4267 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4268 // We allow catchswitch unwind to caller to nest 4269 // within an outer pad that unwinds somewhere else, 4270 // because catchswitch doesn't have a nounwind variant. 4271 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4272 if (CSI->unwindsToCaller()) 4273 continue; 4274 UnwindDest = CSI->getUnwindDest(); 4275 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4276 UnwindDest = II->getUnwindDest(); 4277 } else if (isa<CallInst>(U)) { 4278 // Calls which don't unwind may be found inside funclet 4279 // pads that unwind somewhere else. We don't *require* 4280 // such calls to be annotated nounwind. 4281 continue; 4282 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4283 // The unwind dest for a cleanup can only be found by 4284 // recursive search. Add it to the worklist, and we'll 4285 // search for its first use that determines where it unwinds. 4286 Worklist.push_back(CPI); 4287 continue; 4288 } else { 4289 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4290 continue; 4291 } 4292 4293 Value *UnwindPad; 4294 bool ExitsFPI; 4295 if (UnwindDest) { 4296 UnwindPad = UnwindDest->getFirstNonPHI(); 4297 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4298 continue; 4299 Value *UnwindParent = getParentPad(UnwindPad); 4300 // Ignore unwind edges that don't exit CurrentPad. 4301 if (UnwindParent == CurrentPad) 4302 continue; 4303 // Determine whether the original funclet pad is exited, 4304 // and if we are scanning nested pads determine how many 4305 // of them are exited so we can stop searching their 4306 // children. 4307 Value *ExitedPad = CurrentPad; 4308 ExitsFPI = false; 4309 do { 4310 if (ExitedPad == &FPI) { 4311 ExitsFPI = true; 4312 // Now we can resolve any ancestors of CurrentPad up to 4313 // FPI, but not including FPI since we need to make sure 4314 // to check all direct users of FPI for consistency. 4315 UnresolvedAncestorPad = &FPI; 4316 break; 4317 } 4318 Value *ExitedParent = getParentPad(ExitedPad); 4319 if (ExitedParent == UnwindParent) { 4320 // ExitedPad is the ancestor-most pad which this unwind 4321 // edge exits, so we can resolve up to it, meaning that 4322 // ExitedParent is the first ancestor still unresolved. 4323 UnresolvedAncestorPad = ExitedParent; 4324 break; 4325 } 4326 ExitedPad = ExitedParent; 4327 } while (!isa<ConstantTokenNone>(ExitedPad)); 4328 } else { 4329 // Unwinding to caller exits all pads. 4330 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4331 ExitsFPI = true; 4332 UnresolvedAncestorPad = &FPI; 4333 } 4334 4335 if (ExitsFPI) { 4336 // This unwind edge exits FPI. Make sure it agrees with other 4337 // such edges. 4338 if (FirstUser) { 4339 Check(UnwindPad == FirstUnwindPad, 4340 "Unwind edges out of a funclet " 4341 "pad must have the same unwind " 4342 "dest", 4343 &FPI, U, FirstUser); 4344 } else { 4345 FirstUser = U; 4346 FirstUnwindPad = UnwindPad; 4347 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4348 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4349 getParentPad(UnwindPad) == getParentPad(&FPI)) 4350 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4351 } 4352 } 4353 // Make sure we visit all uses of FPI, but for nested pads stop as 4354 // soon as we know where they unwind to. 4355 if (CurrentPad != &FPI) 4356 break; 4357 } 4358 if (UnresolvedAncestorPad) { 4359 if (CurrentPad == UnresolvedAncestorPad) { 4360 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4361 // we've found an unwind edge that exits it, because we need to verify 4362 // all direct uses of FPI. 4363 assert(CurrentPad == &FPI); 4364 continue; 4365 } 4366 // Pop off the worklist any nested pads that we've found an unwind 4367 // destination for. The pads on the worklist are the uncles, 4368 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4369 // for all ancestors of CurrentPad up to but not including 4370 // UnresolvedAncestorPad. 4371 Value *ResolvedPad = CurrentPad; 4372 while (!Worklist.empty()) { 4373 Value *UnclePad = Worklist.back(); 4374 Value *AncestorPad = getParentPad(UnclePad); 4375 // Walk ResolvedPad up the ancestor list until we either find the 4376 // uncle's parent or the last resolved ancestor. 4377 while (ResolvedPad != AncestorPad) { 4378 Value *ResolvedParent = getParentPad(ResolvedPad); 4379 if (ResolvedParent == UnresolvedAncestorPad) { 4380 break; 4381 } 4382 ResolvedPad = ResolvedParent; 4383 } 4384 // If the resolved ancestor search didn't find the uncle's parent, 4385 // then the uncle is not yet resolved. 4386 if (ResolvedPad != AncestorPad) 4387 break; 4388 // This uncle is resolved, so pop it from the worklist. 4389 Worklist.pop_back(); 4390 } 4391 } 4392 } 4393 4394 if (FirstUnwindPad) { 4395 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4396 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4397 Value *SwitchUnwindPad; 4398 if (SwitchUnwindDest) 4399 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4400 else 4401 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4402 Check(SwitchUnwindPad == FirstUnwindPad, 4403 "Unwind edges out of a catch must have the same unwind dest as " 4404 "the parent catchswitch", 4405 &FPI, FirstUser, CatchSwitch); 4406 } 4407 } 4408 4409 visitInstruction(FPI); 4410 } 4411 4412 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4413 BasicBlock *BB = CatchSwitch.getParent(); 4414 4415 Function *F = BB->getParent(); 4416 Check(F->hasPersonalityFn(), 4417 "CatchSwitchInst needs to be in a function with a personality.", 4418 &CatchSwitch); 4419 4420 // The catchswitch instruction must be the first non-PHI instruction in the 4421 // block. 4422 Check(BB->getFirstNonPHI() == &CatchSwitch, 4423 "CatchSwitchInst not the first non-PHI instruction in the block.", 4424 &CatchSwitch); 4425 4426 auto *ParentPad = CatchSwitch.getParentPad(); 4427 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4428 "CatchSwitchInst has an invalid parent.", ParentPad); 4429 4430 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4431 Instruction *I = UnwindDest->getFirstNonPHI(); 4432 Check(I->isEHPad() && !isa<LandingPadInst>(I), 4433 "CatchSwitchInst must unwind to an EH block which is not a " 4434 "landingpad.", 4435 &CatchSwitch); 4436 4437 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4438 if (getParentPad(I) == ParentPad) 4439 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4440 } 4441 4442 Check(CatchSwitch.getNumHandlers() != 0, 4443 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4444 4445 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4446 Check(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4447 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4448 } 4449 4450 visitEHPadPredecessors(CatchSwitch); 4451 visitTerminator(CatchSwitch); 4452 } 4453 4454 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4455 Check(isa<CleanupPadInst>(CRI.getOperand(0)), 4456 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4457 CRI.getOperand(0)); 4458 4459 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4460 Instruction *I = UnwindDest->getFirstNonPHI(); 4461 Check(I->isEHPad() && !isa<LandingPadInst>(I), 4462 "CleanupReturnInst must unwind to an EH block which is not a " 4463 "landingpad.", 4464 &CRI); 4465 } 4466 4467 visitTerminator(CRI); 4468 } 4469 4470 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4471 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4472 // If the we have an invalid invoke, don't try to compute the dominance. 4473 // We already reject it in the invoke specific checks and the dominance 4474 // computation doesn't handle multiple edges. 4475 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4476 if (II->getNormalDest() == II->getUnwindDest()) 4477 return; 4478 } 4479 4480 // Quick check whether the def has already been encountered in the same block. 4481 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4482 // uses are defined to happen on the incoming edge, not at the instruction. 4483 // 4484 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4485 // wrapping an SSA value, assert that we've already encountered it. See 4486 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4487 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4488 return; 4489 4490 const Use &U = I.getOperandUse(i); 4491 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I); 4492 } 4493 4494 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4495 Check(I.getType()->isPointerTy(), 4496 "dereferenceable, dereferenceable_or_null " 4497 "apply only to pointer types", 4498 &I); 4499 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4500 "dereferenceable, dereferenceable_or_null apply only to load" 4501 " and inttoptr instructions, use attributes for calls or invokes", 4502 &I); 4503 Check(MD->getNumOperands() == 1, 4504 "dereferenceable, dereferenceable_or_null " 4505 "take one operand!", 4506 &I); 4507 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4508 Check(CI && CI->getType()->isIntegerTy(64), 4509 "dereferenceable, " 4510 "dereferenceable_or_null metadata value must be an i64!", 4511 &I); 4512 } 4513 4514 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4515 Check(MD->getNumOperands() >= 2, 4516 "!prof annotations should have no less than 2 operands", MD); 4517 4518 // Check first operand. 4519 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4520 Check(isa<MDString>(MD->getOperand(0)), 4521 "expected string with name of the !prof annotation", MD); 4522 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4523 StringRef ProfName = MDS->getString(); 4524 4525 // Check consistency of !prof branch_weights metadata. 4526 if (ProfName.equals("branch_weights")) { 4527 if (isa<InvokeInst>(&I)) { 4528 Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4529 "Wrong number of InvokeInst branch_weights operands", MD); 4530 } else { 4531 unsigned ExpectedNumOperands = 0; 4532 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4533 ExpectedNumOperands = BI->getNumSuccessors(); 4534 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4535 ExpectedNumOperands = SI->getNumSuccessors(); 4536 else if (isa<CallInst>(&I)) 4537 ExpectedNumOperands = 1; 4538 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4539 ExpectedNumOperands = IBI->getNumDestinations(); 4540 else if (isa<SelectInst>(&I)) 4541 ExpectedNumOperands = 2; 4542 else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I)) 4543 ExpectedNumOperands = CI->getNumSuccessors(); 4544 else 4545 CheckFailed("!prof branch_weights are not allowed for this instruction", 4546 MD); 4547 4548 Check(MD->getNumOperands() == 1 + ExpectedNumOperands, 4549 "Wrong number of operands", MD); 4550 } 4551 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4552 auto &MDO = MD->getOperand(i); 4553 Check(MDO, "second operand should not be null", MD); 4554 Check(mdconst::dyn_extract<ConstantInt>(MDO), 4555 "!prof brunch_weights operand is not a const int"); 4556 } 4557 } 4558 } 4559 4560 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) { 4561 assert(I.hasMetadata(LLVMContext::MD_DIAssignID)); 4562 bool ExpectedInstTy = 4563 isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I); 4564 CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind", 4565 I, MD); 4566 // Iterate over the MetadataAsValue uses of the DIAssignID - these should 4567 // only be found as DbgAssignIntrinsic operands. 4568 if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) { 4569 for (auto *User : AsValue->users()) { 4570 CheckDI(isa<DbgAssignIntrinsic>(User), 4571 "!DIAssignID should only be used by llvm.dbg.assign intrinsics", 4572 MD, User); 4573 // All of the dbg.assign intrinsics should be in the same function as I. 4574 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User)) 4575 CheckDI(DAI->getFunction() == I.getFunction(), 4576 "dbg.assign not in same function as inst", DAI, &I); 4577 } 4578 } 4579 } 4580 4581 void Verifier::visitCallStackMetadata(MDNode *MD) { 4582 // Call stack metadata should consist of a list of at least 1 constant int 4583 // (representing a hash of the location). 4584 Check(MD->getNumOperands() >= 1, 4585 "call stack metadata should have at least 1 operand", MD); 4586 4587 for (const auto &Op : MD->operands()) 4588 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op), 4589 "call stack metadata operand should be constant integer", Op); 4590 } 4591 4592 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) { 4593 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I); 4594 Check(MD->getNumOperands() >= 1, 4595 "!memprof annotations should have at least 1 metadata operand " 4596 "(MemInfoBlock)", 4597 MD); 4598 4599 // Check each MIB 4600 for (auto &MIBOp : MD->operands()) { 4601 MDNode *MIB = dyn_cast<MDNode>(MIBOp); 4602 // The first operand of an MIB should be the call stack metadata. 4603 // There rest of the operands should be MDString tags, and there should be 4604 // at least one. 4605 Check(MIB->getNumOperands() >= 2, 4606 "Each !memprof MemInfoBlock should have at least 2 operands", MIB); 4607 4608 // Check call stack metadata (first operand). 4609 Check(MIB->getOperand(0) != nullptr, 4610 "!memprof MemInfoBlock first operand should not be null", MIB); 4611 Check(isa<MDNode>(MIB->getOperand(0)), 4612 "!memprof MemInfoBlock first operand should be an MDNode", MIB); 4613 MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0)); 4614 visitCallStackMetadata(StackMD); 4615 4616 // Check that remaining operands are MDString. 4617 Check(llvm::all_of(llvm::drop_begin(MIB->operands()), 4618 [](const MDOperand &Op) { return isa<MDString>(Op); }), 4619 "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB); 4620 } 4621 } 4622 4623 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) { 4624 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I); 4625 // Verify the partial callstack annotated from memprof profiles. This callsite 4626 // is a part of a profiled allocation callstack. 4627 visitCallStackMetadata(MD); 4628 } 4629 4630 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4631 Check(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4632 Check(Annotation->getNumOperands() >= 1, 4633 "annotation must have at least one operand"); 4634 for (const MDOperand &Op : Annotation->operands()) 4635 Check(isa<MDString>(Op.get()), "operands must be strings"); 4636 } 4637 4638 void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 4639 unsigned NumOps = MD->getNumOperands(); 4640 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 4641 MD); 4642 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 4643 "first scope operand must be self-referential or string", MD); 4644 if (NumOps == 3) 4645 Check(isa<MDString>(MD->getOperand(2)), 4646 "third scope operand must be string (if used)", MD); 4647 4648 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 4649 Check(Domain != nullptr, "second scope operand must be MDNode", MD); 4650 4651 unsigned NumDomainOps = Domain->getNumOperands(); 4652 Check(NumDomainOps >= 1 && NumDomainOps <= 2, 4653 "domain must have one or two operands", Domain); 4654 Check(Domain->getOperand(0).get() == Domain || 4655 isa<MDString>(Domain->getOperand(0)), 4656 "first domain operand must be self-referential or string", Domain); 4657 if (NumDomainOps == 2) 4658 Check(isa<MDString>(Domain->getOperand(1)), 4659 "second domain operand must be string (if used)", Domain); 4660 } 4661 4662 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 4663 for (const MDOperand &Op : MD->operands()) { 4664 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4665 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD); 4666 visitAliasScopeMetadata(OpMD); 4667 } 4668 } 4669 4670 void Verifier::visitAccessGroupMetadata(const MDNode *MD) { 4671 auto IsValidAccessScope = [](const MDNode *MD) { 4672 return MD->getNumOperands() == 0 && MD->isDistinct(); 4673 }; 4674 4675 // It must be either an access scope itself... 4676 if (IsValidAccessScope(MD)) 4677 return; 4678 4679 // ...or a list of access scopes. 4680 for (const MDOperand &Op : MD->operands()) { 4681 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4682 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD); 4683 Check(IsValidAccessScope(OpMD), 4684 "Access scope list contains invalid access scope", MD); 4685 } 4686 } 4687 4688 /// verifyInstruction - Verify that an instruction is well formed. 4689 /// 4690 void Verifier::visitInstruction(Instruction &I) { 4691 BasicBlock *BB = I.getParent(); 4692 Check(BB, "Instruction not embedded in basic block!", &I); 4693 4694 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4695 for (User *U : I.users()) { 4696 Check(U != (User *)&I || !DT.isReachableFromEntry(BB), 4697 "Only PHI nodes may reference their own value!", &I); 4698 } 4699 } 4700 4701 // Check that void typed values don't have names 4702 Check(!I.getType()->isVoidTy() || !I.hasName(), 4703 "Instruction has a name, but provides a void value!", &I); 4704 4705 // Check that the return value of the instruction is either void or a legal 4706 // value type. 4707 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4708 "Instruction returns a non-scalar type!", &I); 4709 4710 // Check that the instruction doesn't produce metadata. Calls are already 4711 // checked against the callee type. 4712 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4713 "Invalid use of metadata!", &I); 4714 4715 // Check that all uses of the instruction, if they are instructions 4716 // themselves, actually have parent basic blocks. If the use is not an 4717 // instruction, it is an error! 4718 for (Use &U : I.uses()) { 4719 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4720 Check(Used->getParent() != nullptr, 4721 "Instruction referencing" 4722 " instruction not embedded in a basic block!", 4723 &I, Used); 4724 else { 4725 CheckFailed("Use of instruction is not an instruction!", U); 4726 return; 4727 } 4728 } 4729 4730 // Get a pointer to the call base of the instruction if it is some form of 4731 // call. 4732 const CallBase *CBI = dyn_cast<CallBase>(&I); 4733 4734 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4735 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4736 4737 // Check to make sure that only first-class-values are operands to 4738 // instructions. 4739 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4740 Check(false, "Instruction operands must be first-class values!", &I); 4741 } 4742 4743 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4744 // This code checks whether the function is used as the operand of a 4745 // clang_arc_attachedcall operand bundle. 4746 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 4747 int Idx) { 4748 return CBI && CBI->isOperandBundleOfType( 4749 LLVMContext::OB_clang_arc_attachedcall, Idx); 4750 }; 4751 4752 // Check to make sure that the "address of" an intrinsic function is never 4753 // taken. Ignore cases where the address of the intrinsic function is used 4754 // as the argument of operand bundle "clang.arc.attachedcall" as those 4755 // cases are handled in verifyAttachedCallBundle. 4756 Check((!F->isIntrinsic() || 4757 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 4758 IsAttachedCallOperand(F, CBI, i)), 4759 "Cannot take the address of an intrinsic!", &I); 4760 Check(!F->isIntrinsic() || isa<CallInst>(I) || 4761 F->getIntrinsicID() == Intrinsic::donothing || 4762 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4763 F->getIntrinsicID() == Intrinsic::seh_try_end || 4764 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4765 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4766 F->getIntrinsicID() == Intrinsic::coro_resume || 4767 F->getIntrinsicID() == Intrinsic::coro_destroy || 4768 F->getIntrinsicID() == 4769 Intrinsic::experimental_patchpoint_void || 4770 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4771 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4772 F->getIntrinsicID() == Intrinsic::wasm_rethrow || 4773 IsAttachedCallOperand(F, CBI, i), 4774 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4775 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 4776 &I); 4777 Check(F->getParent() == &M, "Referencing function in another module!", &I, 4778 &M, F, F->getParent()); 4779 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4780 Check(OpBB->getParent() == BB->getParent(), 4781 "Referring to a basic block in another function!", &I); 4782 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4783 Check(OpArg->getParent() == BB->getParent(), 4784 "Referring to an argument in another function!", &I); 4785 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4786 Check(GV->getParent() == &M, "Referencing global in another module!", &I, 4787 &M, GV, GV->getParent()); 4788 } else if (isa<Instruction>(I.getOperand(i))) { 4789 verifyDominatesUse(I, i); 4790 } else if (isa<InlineAsm>(I.getOperand(i))) { 4791 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4792 "Cannot take the address of an inline asm!", &I); 4793 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4794 if (CE->getType()->isPtrOrPtrVectorTy()) { 4795 // If we have a ConstantExpr pointer, we need to see if it came from an 4796 // illegal bitcast. 4797 visitConstantExprsRecursively(CE); 4798 } 4799 } 4800 } 4801 4802 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4803 Check(I.getType()->isFPOrFPVectorTy(), 4804 "fpmath requires a floating point result!", &I); 4805 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4806 if (ConstantFP *CFP0 = 4807 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4808 const APFloat &Accuracy = CFP0->getValueAPF(); 4809 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4810 "fpmath accuracy must have float type", &I); 4811 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4812 "fpmath accuracy not a positive number!", &I); 4813 } else { 4814 Check(false, "invalid fpmath accuracy!", &I); 4815 } 4816 } 4817 4818 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4819 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4820 "Ranges are only for loads, calls and invokes!", &I); 4821 visitRangeMetadata(I, Range, I.getType()); 4822 } 4823 4824 if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 4825 Check(isa<LoadInst>(I) || isa<StoreInst>(I), 4826 "invariant.group metadata is only for loads and stores", &I); 4827 } 4828 4829 if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) { 4830 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4831 &I); 4832 Check(isa<LoadInst>(I), 4833 "nonnull applies only to load instructions, use attributes" 4834 " for calls or invokes", 4835 &I); 4836 Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I); 4837 } 4838 4839 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4840 visitDereferenceableMetadata(I, MD); 4841 4842 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4843 visitDereferenceableMetadata(I, MD); 4844 4845 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4846 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4847 4848 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 4849 visitAliasScopeListMetadata(MD); 4850 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 4851 visitAliasScopeListMetadata(MD); 4852 4853 if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group)) 4854 visitAccessGroupMetadata(MD); 4855 4856 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4857 Check(I.getType()->isPointerTy(), "align applies only to pointer types", 4858 &I); 4859 Check(isa<LoadInst>(I), 4860 "align applies only to load instructions, " 4861 "use attributes for calls or invokes", 4862 &I); 4863 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4864 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4865 Check(CI && CI->getType()->isIntegerTy(64), 4866 "align metadata value must be an i64!", &I); 4867 uint64_t Align = CI->getZExtValue(); 4868 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!", 4869 &I); 4870 Check(Align <= Value::MaximumAlignment, 4871 "alignment is larger that implementation defined limit", &I); 4872 } 4873 4874 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4875 visitProfMetadata(I, MD); 4876 4877 if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof)) 4878 visitMemProfMetadata(I, MD); 4879 4880 if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite)) 4881 visitCallsiteMetadata(I, MD); 4882 4883 if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID)) 4884 visitDIAssignIDMetadata(I, MD); 4885 4886 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4887 visitAnnotationMetadata(Annotation); 4888 4889 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4890 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4891 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4892 } 4893 4894 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4895 verifyFragmentExpression(*DII); 4896 verifyNotEntryValue(*DII); 4897 } 4898 4899 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4900 I.getAllMetadata(MDs); 4901 for (auto Attachment : MDs) { 4902 unsigned Kind = Attachment.first; 4903 auto AllowLocs = 4904 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4905 ? AreDebugLocsAllowed::Yes 4906 : AreDebugLocsAllowed::No; 4907 visitMDNode(*Attachment.second, AllowLocs); 4908 } 4909 4910 InstsInThisBlock.insert(&I); 4911 } 4912 4913 /// Allow intrinsics to be verified in different ways. 4914 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4915 Function *IF = Call.getCalledFunction(); 4916 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4917 IF); 4918 4919 // Verify that the intrinsic prototype lines up with what the .td files 4920 // describe. 4921 FunctionType *IFTy = IF->getFunctionType(); 4922 bool IsVarArg = IFTy->isVarArg(); 4923 4924 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4925 getIntrinsicInfoTableEntries(ID, Table); 4926 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4927 4928 // Walk the descriptors to extract overloaded types. 4929 SmallVector<Type *, 4> ArgTys; 4930 Intrinsic::MatchIntrinsicTypesResult Res = 4931 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4932 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4933 "Intrinsic has incorrect return type!", IF); 4934 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4935 "Intrinsic has incorrect argument type!", IF); 4936 4937 // Verify if the intrinsic call matches the vararg property. 4938 if (IsVarArg) 4939 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4940 "Intrinsic was not defined with variable arguments!", IF); 4941 else 4942 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4943 "Callsite was not defined with variable arguments!", IF); 4944 4945 // All descriptors should be absorbed by now. 4946 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4947 4948 // Now that we have the intrinsic ID and the actual argument types (and we 4949 // know they are legal for the intrinsic!) get the intrinsic name through the 4950 // usual means. This allows us to verify the mangling of argument types into 4951 // the name. 4952 const std::string ExpectedName = 4953 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4954 Check(ExpectedName == IF->getName(), 4955 "Intrinsic name not mangled correctly for type arguments! " 4956 "Should be: " + 4957 ExpectedName, 4958 IF); 4959 4960 // If the intrinsic takes MDNode arguments, verify that they are either global 4961 // or are local to *this* function. 4962 for (Value *V : Call.args()) { 4963 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4964 visitMetadataAsValue(*MD, Call.getCaller()); 4965 if (auto *Const = dyn_cast<Constant>(V)) 4966 Check(!Const->getType()->isX86_AMXTy(), 4967 "const x86_amx is not allowed in argument!"); 4968 } 4969 4970 switch (ID) { 4971 default: 4972 break; 4973 case Intrinsic::assume: { 4974 for (auto &Elem : Call.bundle_op_infos()) { 4975 unsigned ArgCount = Elem.End - Elem.Begin; 4976 // Separate storage assumptions are special insofar as they're the only 4977 // operand bundles allowed on assumes that aren't parameter attributes. 4978 if (Elem.Tag->getKey() == "separate_storage") { 4979 Check(ArgCount == 2, 4980 "separate_storage assumptions should have 2 arguments", Call); 4981 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() && 4982 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(), 4983 "arguments to separate_storage assumptions should be pointers", 4984 Call); 4985 return; 4986 } 4987 Check(Elem.Tag->getKey() == "ignore" || 4988 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4989 "tags must be valid attribute names", Call); 4990 Attribute::AttrKind Kind = 4991 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4992 if (Kind == Attribute::Alignment) { 4993 Check(ArgCount <= 3 && ArgCount >= 2, 4994 "alignment assumptions should have 2 or 3 arguments", Call); 4995 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4996 "first argument should be a pointer", Call); 4997 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4998 "second argument should be an integer", Call); 4999 if (ArgCount == 3) 5000 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 5001 "third argument should be an integer if present", Call); 5002 return; 5003 } 5004 Check(ArgCount <= 2, "too many arguments", Call); 5005 if (Kind == Attribute::None) 5006 break; 5007 if (Attribute::isIntAttrKind(Kind)) { 5008 Check(ArgCount == 2, "this attribute should have 2 arguments", Call); 5009 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 5010 "the second argument should be a constant integral value", Call); 5011 } else if (Attribute::canUseAsParamAttr(Kind)) { 5012 Check((ArgCount) == 1, "this attribute should have one argument", Call); 5013 } else if (Attribute::canUseAsFnAttr(Kind)) { 5014 Check((ArgCount) == 0, "this attribute has no argument", Call); 5015 } 5016 } 5017 break; 5018 } 5019 case Intrinsic::coro_id: { 5020 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 5021 if (isa<ConstantPointerNull>(InfoArg)) 5022 break; 5023 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 5024 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 5025 "info argument of llvm.coro.id must refer to an initialized " 5026 "constant"); 5027 Constant *Init = GV->getInitializer(); 5028 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 5029 "info argument of llvm.coro.id must refer to either a struct or " 5030 "an array"); 5031 break; 5032 } 5033 case Intrinsic::is_fpclass: { 5034 const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1)); 5035 Check((TestMask->getZExtValue() & ~fcAllFlags) == 0, 5036 "unsupported bits for llvm.is.fpclass test mask"); 5037 break; 5038 } 5039 case Intrinsic::fptrunc_round: { 5040 // Check the rounding mode 5041 Metadata *MD = nullptr; 5042 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1)); 5043 if (MAV) 5044 MD = MAV->getMetadata(); 5045 5046 Check(MD != nullptr, "missing rounding mode argument", Call); 5047 5048 Check(isa<MDString>(MD), 5049 ("invalid value for llvm.fptrunc.round metadata operand" 5050 " (the operand should be a string)"), 5051 MD); 5052 5053 std::optional<RoundingMode> RoundMode = 5054 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 5055 Check(RoundMode && *RoundMode != RoundingMode::Dynamic, 5056 "unsupported rounding mode argument", Call); 5057 break; 5058 } 5059 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 5060 #include "llvm/IR/VPIntrinsics.def" 5061 visitVPIntrinsic(cast<VPIntrinsic>(Call)); 5062 break; 5063 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 5064 case Intrinsic::INTRINSIC: 5065 #include "llvm/IR/ConstrainedOps.def" 5066 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 5067 break; 5068 case Intrinsic::dbg_declare: // llvm.dbg.declare 5069 Check(isa<MetadataAsValue>(Call.getArgOperand(0)), 5070 "invalid llvm.dbg.declare intrinsic call 1", Call); 5071 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 5072 break; 5073 case Intrinsic::dbg_addr: // llvm.dbg.addr 5074 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 5075 break; 5076 case Intrinsic::dbg_value: // llvm.dbg.value 5077 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 5078 break; 5079 case Intrinsic::dbg_assign: // llvm.dbg.assign 5080 visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call)); 5081 break; 5082 case Intrinsic::dbg_label: // llvm.dbg.label 5083 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 5084 break; 5085 case Intrinsic::memcpy: 5086 case Intrinsic::memcpy_inline: 5087 case Intrinsic::memmove: 5088 case Intrinsic::memset: 5089 case Intrinsic::memset_inline: { 5090 break; 5091 } 5092 case Intrinsic::memcpy_element_unordered_atomic: 5093 case Intrinsic::memmove_element_unordered_atomic: 5094 case Intrinsic::memset_element_unordered_atomic: { 5095 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 5096 5097 ConstantInt *ElementSizeCI = 5098 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 5099 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 5100 Check(ElementSizeVal.isPowerOf2(), 5101 "element size of the element-wise atomic memory intrinsic " 5102 "must be a power of 2", 5103 Call); 5104 5105 auto IsValidAlignment = [&](MaybeAlign Alignment) { 5106 return Alignment && ElementSizeVal.ule(Alignment->value()); 5107 }; 5108 Check(IsValidAlignment(AMI->getDestAlign()), 5109 "incorrect alignment of the destination argument", Call); 5110 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 5111 Check(IsValidAlignment(AMT->getSourceAlign()), 5112 "incorrect alignment of the source argument", Call); 5113 } 5114 break; 5115 } 5116 case Intrinsic::call_preallocated_setup: { 5117 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5118 Check(NumArgs != nullptr, 5119 "llvm.call.preallocated.setup argument must be a constant"); 5120 bool FoundCall = false; 5121 for (User *U : Call.users()) { 5122 auto *UseCall = dyn_cast<CallBase>(U); 5123 Check(UseCall != nullptr, 5124 "Uses of llvm.call.preallocated.setup must be calls"); 5125 const Function *Fn = UseCall->getCalledFunction(); 5126 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 5127 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 5128 Check(AllocArgIndex != nullptr, 5129 "llvm.call.preallocated.alloc arg index must be a constant"); 5130 auto AllocArgIndexInt = AllocArgIndex->getValue(); 5131 Check(AllocArgIndexInt.sge(0) && 5132 AllocArgIndexInt.slt(NumArgs->getValue()), 5133 "llvm.call.preallocated.alloc arg index must be between 0 and " 5134 "corresponding " 5135 "llvm.call.preallocated.setup's argument count"); 5136 } else if (Fn && Fn->getIntrinsicID() == 5137 Intrinsic::call_preallocated_teardown) { 5138 // nothing to do 5139 } else { 5140 Check(!FoundCall, "Can have at most one call corresponding to a " 5141 "llvm.call.preallocated.setup"); 5142 FoundCall = true; 5143 size_t NumPreallocatedArgs = 0; 5144 for (unsigned i = 0; i < UseCall->arg_size(); i++) { 5145 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 5146 ++NumPreallocatedArgs; 5147 } 5148 } 5149 Check(NumPreallocatedArgs != 0, 5150 "cannot use preallocated intrinsics on a call without " 5151 "preallocated arguments"); 5152 Check(NumArgs->equalsInt(NumPreallocatedArgs), 5153 "llvm.call.preallocated.setup arg size must be equal to number " 5154 "of preallocated arguments " 5155 "at call site", 5156 Call, *UseCall); 5157 // getOperandBundle() cannot be called if more than one of the operand 5158 // bundle exists. There is already a check elsewhere for this, so skip 5159 // here if we see more than one. 5160 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 5161 1) { 5162 return; 5163 } 5164 auto PreallocatedBundle = 5165 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 5166 Check(PreallocatedBundle, 5167 "Use of llvm.call.preallocated.setup outside intrinsics " 5168 "must be in \"preallocated\" operand bundle"); 5169 Check(PreallocatedBundle->Inputs.front().get() == &Call, 5170 "preallocated bundle must have token from corresponding " 5171 "llvm.call.preallocated.setup"); 5172 } 5173 } 5174 break; 5175 } 5176 case Intrinsic::call_preallocated_arg: { 5177 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 5178 Check(Token && Token->getCalledFunction()->getIntrinsicID() == 5179 Intrinsic::call_preallocated_setup, 5180 "llvm.call.preallocated.arg token argument must be a " 5181 "llvm.call.preallocated.setup"); 5182 Check(Call.hasFnAttr(Attribute::Preallocated), 5183 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 5184 "call site attribute"); 5185 break; 5186 } 5187 case Intrinsic::call_preallocated_teardown: { 5188 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 5189 Check(Token && Token->getCalledFunction()->getIntrinsicID() == 5190 Intrinsic::call_preallocated_setup, 5191 "llvm.call.preallocated.teardown token argument must be a " 5192 "llvm.call.preallocated.setup"); 5193 break; 5194 } 5195 case Intrinsic::gcroot: 5196 case Intrinsic::gcwrite: 5197 case Intrinsic::gcread: 5198 if (ID == Intrinsic::gcroot) { 5199 AllocaInst *AI = 5200 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 5201 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 5202 Check(isa<Constant>(Call.getArgOperand(1)), 5203 "llvm.gcroot parameter #2 must be a constant.", Call); 5204 if (!AI->getAllocatedType()->isPointerTy()) { 5205 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 5206 "llvm.gcroot parameter #1 must either be a pointer alloca, " 5207 "or argument #2 must be a non-null constant.", 5208 Call); 5209 } 5210 } 5211 5212 Check(Call.getParent()->getParent()->hasGC(), 5213 "Enclosing function does not use GC.", Call); 5214 break; 5215 case Intrinsic::init_trampoline: 5216 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 5217 "llvm.init_trampoline parameter #2 must resolve to a function.", 5218 Call); 5219 break; 5220 case Intrinsic::prefetch: 5221 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2, 5222 "rw argument to llvm.prefetch must be 0-1", Call); 5223 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 5224 "locality argument to llvm.prefetch must be 0-4", Call); 5225 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2, 5226 "cache type argument to llvm.prefetch must be 0-1", Call); 5227 break; 5228 case Intrinsic::stackprotector: 5229 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 5230 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 5231 break; 5232 case Intrinsic::localescape: { 5233 BasicBlock *BB = Call.getParent(); 5234 Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block", 5235 Call); 5236 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function", 5237 Call); 5238 for (Value *Arg : Call.args()) { 5239 if (isa<ConstantPointerNull>(Arg)) 5240 continue; // Null values are allowed as placeholders. 5241 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 5242 Check(AI && AI->isStaticAlloca(), 5243 "llvm.localescape only accepts static allocas", Call); 5244 } 5245 FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 5246 SawFrameEscape = true; 5247 break; 5248 } 5249 case Intrinsic::localrecover: { 5250 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 5251 Function *Fn = dyn_cast<Function>(FnArg); 5252 Check(Fn && !Fn->isDeclaration(), 5253 "llvm.localrecover first " 5254 "argument must be function defined in this module", 5255 Call); 5256 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 5257 auto &Entry = FrameEscapeInfo[Fn]; 5258 Entry.second = unsigned( 5259 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 5260 break; 5261 } 5262 5263 case Intrinsic::experimental_gc_statepoint: 5264 if (auto *CI = dyn_cast<CallInst>(&Call)) 5265 Check(!CI->isInlineAsm(), 5266 "gc.statepoint support for inline assembly unimplemented", CI); 5267 Check(Call.getParent()->getParent()->hasGC(), 5268 "Enclosing function does not use GC.", Call); 5269 5270 verifyStatepoint(Call); 5271 break; 5272 case Intrinsic::experimental_gc_result: { 5273 Check(Call.getParent()->getParent()->hasGC(), 5274 "Enclosing function does not use GC.", Call); 5275 5276 auto *Statepoint = Call.getArgOperand(0); 5277 if (isa<UndefValue>(Statepoint)) 5278 break; 5279 5280 // Are we tied to a statepoint properly? 5281 const auto *StatepointCall = dyn_cast<CallBase>(Statepoint); 5282 const Function *StatepointFn = 5283 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 5284 Check(StatepointFn && StatepointFn->isDeclaration() && 5285 StatepointFn->getIntrinsicID() == 5286 Intrinsic::experimental_gc_statepoint, 5287 "gc.result operand #1 must be from a statepoint", Call, 5288 Call.getArgOperand(0)); 5289 5290 // Check that result type matches wrapped callee. 5291 auto *TargetFuncType = 5292 cast<FunctionType>(StatepointCall->getParamElementType(2)); 5293 Check(Call.getType() == TargetFuncType->getReturnType(), 5294 "gc.result result type does not match wrapped callee", Call); 5295 break; 5296 } 5297 case Intrinsic::experimental_gc_relocate: { 5298 Check(Call.arg_size() == 3, "wrong number of arguments", Call); 5299 5300 Check(isa<PointerType>(Call.getType()->getScalarType()), 5301 "gc.relocate must return a pointer or a vector of pointers", Call); 5302 5303 // Check that this relocate is correctly tied to the statepoint 5304 5305 // This is case for relocate on the unwinding path of an invoke statepoint 5306 if (LandingPadInst *LandingPad = 5307 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 5308 5309 const BasicBlock *InvokeBB = 5310 LandingPad->getParent()->getUniquePredecessor(); 5311 5312 // Landingpad relocates should have only one predecessor with invoke 5313 // statepoint terminator 5314 Check(InvokeBB, "safepoints should have unique landingpads", 5315 LandingPad->getParent()); 5316 Check(InvokeBB->getTerminator(), "safepoint block should be well formed", 5317 InvokeBB); 5318 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()), 5319 "gc relocate should be linked to a statepoint", InvokeBB); 5320 } else { 5321 // In all other cases relocate should be tied to the statepoint directly. 5322 // This covers relocates on a normal return path of invoke statepoint and 5323 // relocates of a call statepoint. 5324 auto *Token = Call.getArgOperand(0); 5325 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token), 5326 "gc relocate is incorrectly tied to the statepoint", Call, Token); 5327 } 5328 5329 // Verify rest of the relocate arguments. 5330 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint(); 5331 5332 // Both the base and derived must be piped through the safepoint. 5333 Value *Base = Call.getArgOperand(1); 5334 Check(isa<ConstantInt>(Base), 5335 "gc.relocate operand #2 must be integer offset", Call); 5336 5337 Value *Derived = Call.getArgOperand(2); 5338 Check(isa<ConstantInt>(Derived), 5339 "gc.relocate operand #3 must be integer offset", Call); 5340 5341 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 5342 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 5343 5344 // Check the bounds 5345 if (isa<UndefValue>(StatepointCall)) 5346 break; 5347 if (auto Opt = cast<GCStatepointInst>(StatepointCall) 5348 .getOperandBundle(LLVMContext::OB_gc_live)) { 5349 Check(BaseIndex < Opt->Inputs.size(), 5350 "gc.relocate: statepoint base index out of bounds", Call); 5351 Check(DerivedIndex < Opt->Inputs.size(), 5352 "gc.relocate: statepoint derived index out of bounds", Call); 5353 } 5354 5355 // Relocated value must be either a pointer type or vector-of-pointer type, 5356 // but gc_relocate does not need to return the same pointer type as the 5357 // relocated pointer. It can be casted to the correct type later if it's 5358 // desired. However, they must have the same address space and 'vectorness' 5359 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 5360 auto *ResultType = Call.getType(); 5361 auto *DerivedType = Relocate.getDerivedPtr()->getType(); 5362 auto *BaseType = Relocate.getBasePtr()->getType(); 5363 5364 Check(BaseType->isPtrOrPtrVectorTy(), 5365 "gc.relocate: relocated value must be a pointer", Call); 5366 Check(DerivedType->isPtrOrPtrVectorTy(), 5367 "gc.relocate: relocated value must be a pointer", Call); 5368 5369 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5370 "gc.relocate: vector relocates to vector and pointer to pointer", 5371 Call); 5372 Check( 5373 ResultType->getPointerAddressSpace() == 5374 DerivedType->getPointerAddressSpace(), 5375 "gc.relocate: relocating a pointer shouldn't change its address space", 5376 Call); 5377 5378 auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC()); 5379 Check(GC, "gc.relocate: calling function must have GCStrategy", 5380 Call.getFunction()); 5381 if (GC) { 5382 auto isGCPtr = [&GC](Type *PTy) { 5383 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true); 5384 }; 5385 Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call); 5386 Check(isGCPtr(BaseType), 5387 "gc.relocate: relocated value must be a gc pointer", Call); 5388 Check(isGCPtr(DerivedType), 5389 "gc.relocate: relocated value must be a gc pointer", Call); 5390 } 5391 break; 5392 } 5393 case Intrinsic::eh_exceptioncode: 5394 case Intrinsic::eh_exceptionpointer: { 5395 Check(isa<CatchPadInst>(Call.getArgOperand(0)), 5396 "eh.exceptionpointer argument must be a catchpad", Call); 5397 break; 5398 } 5399 case Intrinsic::get_active_lane_mask: { 5400 Check(Call.getType()->isVectorTy(), 5401 "get_active_lane_mask: must return a " 5402 "vector", 5403 Call); 5404 auto *ElemTy = Call.getType()->getScalarType(); 5405 Check(ElemTy->isIntegerTy(1), 5406 "get_active_lane_mask: element type is not " 5407 "i1", 5408 Call); 5409 break; 5410 } 5411 case Intrinsic::masked_load: { 5412 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5413 Call); 5414 5415 Value *Ptr = Call.getArgOperand(0); 5416 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5417 Value *Mask = Call.getArgOperand(2); 5418 Value *PassThru = Call.getArgOperand(3); 5419 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5420 Call); 5421 Check(Alignment->getValue().isPowerOf2(), 5422 "masked_load: alignment must be a power of 2", Call); 5423 5424 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5425 Check(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), 5426 "masked_load: return must match pointer type", Call); 5427 Check(PassThru->getType() == Call.getType(), 5428 "masked_load: pass through and return type must match", Call); 5429 Check(cast<VectorType>(Mask->getType())->getElementCount() == 5430 cast<VectorType>(Call.getType())->getElementCount(), 5431 "masked_load: vector mask must be same length as return", Call); 5432 break; 5433 } 5434 case Intrinsic::masked_store: { 5435 Value *Val = Call.getArgOperand(0); 5436 Value *Ptr = Call.getArgOperand(1); 5437 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5438 Value *Mask = Call.getArgOperand(3); 5439 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5440 Call); 5441 Check(Alignment->getValue().isPowerOf2(), 5442 "masked_store: alignment must be a power of 2", Call); 5443 5444 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5445 Check(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), 5446 "masked_store: storee must match pointer type", Call); 5447 Check(cast<VectorType>(Mask->getType())->getElementCount() == 5448 cast<VectorType>(Val->getType())->getElementCount(), 5449 "masked_store: vector mask must be same length as value", Call); 5450 break; 5451 } 5452 5453 case Intrinsic::masked_gather: { 5454 const APInt &Alignment = 5455 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5456 Check(Alignment.isZero() || Alignment.isPowerOf2(), 5457 "masked_gather: alignment must be 0 or a power of 2", Call); 5458 break; 5459 } 5460 case Intrinsic::masked_scatter: { 5461 const APInt &Alignment = 5462 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5463 Check(Alignment.isZero() || Alignment.isPowerOf2(), 5464 "masked_scatter: alignment must be 0 or a power of 2", Call); 5465 break; 5466 } 5467 5468 case Intrinsic::experimental_guard: { 5469 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5470 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5471 "experimental_guard must have exactly one " 5472 "\"deopt\" operand bundle"); 5473 break; 5474 } 5475 5476 case Intrinsic::experimental_deoptimize: { 5477 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5478 Call); 5479 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5480 "experimental_deoptimize must have exactly one " 5481 "\"deopt\" operand bundle"); 5482 Check(Call.getType() == Call.getFunction()->getReturnType(), 5483 "experimental_deoptimize return type must match caller return type"); 5484 5485 if (isa<CallInst>(Call)) { 5486 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5487 Check(RI, 5488 "calls to experimental_deoptimize must be followed by a return"); 5489 5490 if (!Call.getType()->isVoidTy() && RI) 5491 Check(RI->getReturnValue() == &Call, 5492 "calls to experimental_deoptimize must be followed by a return " 5493 "of the value computed by experimental_deoptimize"); 5494 } 5495 5496 break; 5497 } 5498 case Intrinsic::vector_reduce_and: 5499 case Intrinsic::vector_reduce_or: 5500 case Intrinsic::vector_reduce_xor: 5501 case Intrinsic::vector_reduce_add: 5502 case Intrinsic::vector_reduce_mul: 5503 case Intrinsic::vector_reduce_smax: 5504 case Intrinsic::vector_reduce_smin: 5505 case Intrinsic::vector_reduce_umax: 5506 case Intrinsic::vector_reduce_umin: { 5507 Type *ArgTy = Call.getArgOperand(0)->getType(); 5508 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5509 "Intrinsic has incorrect argument type!"); 5510 break; 5511 } 5512 case Intrinsic::vector_reduce_fmax: 5513 case Intrinsic::vector_reduce_fmin: { 5514 Type *ArgTy = Call.getArgOperand(0)->getType(); 5515 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5516 "Intrinsic has incorrect argument type!"); 5517 break; 5518 } 5519 case Intrinsic::vector_reduce_fadd: 5520 case Intrinsic::vector_reduce_fmul: { 5521 // Unlike the other reductions, the first argument is a start value. The 5522 // second argument is the vector to be reduced. 5523 Type *ArgTy = Call.getArgOperand(1)->getType(); 5524 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5525 "Intrinsic has incorrect argument type!"); 5526 break; 5527 } 5528 case Intrinsic::smul_fix: 5529 case Intrinsic::smul_fix_sat: 5530 case Intrinsic::umul_fix: 5531 case Intrinsic::umul_fix_sat: 5532 case Intrinsic::sdiv_fix: 5533 case Intrinsic::sdiv_fix_sat: 5534 case Intrinsic::udiv_fix: 5535 case Intrinsic::udiv_fix_sat: { 5536 Value *Op1 = Call.getArgOperand(0); 5537 Value *Op2 = Call.getArgOperand(1); 5538 Check(Op1->getType()->isIntOrIntVectorTy(), 5539 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5540 "vector of ints"); 5541 Check(Op2->getType()->isIntOrIntVectorTy(), 5542 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5543 "vector of ints"); 5544 5545 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5546 Check(Op3->getType()->getBitWidth() <= 32, 5547 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5548 5549 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5550 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5551 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5552 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5553 "the operands"); 5554 } else { 5555 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5556 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5557 "to the width of the operands"); 5558 } 5559 break; 5560 } 5561 case Intrinsic::lround: 5562 case Intrinsic::llround: 5563 case Intrinsic::lrint: 5564 case Intrinsic::llrint: { 5565 Type *ValTy = Call.getArgOperand(0)->getType(); 5566 Type *ResultTy = Call.getType(); 5567 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5568 "Intrinsic does not support vectors", &Call); 5569 break; 5570 } 5571 case Intrinsic::bswap: { 5572 Type *Ty = Call.getType(); 5573 unsigned Size = Ty->getScalarSizeInBits(); 5574 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5575 break; 5576 } 5577 case Intrinsic::invariant_start: { 5578 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5579 Check(InvariantSize && 5580 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5581 "invariant_start parameter must be -1, 0 or a positive number", 5582 &Call); 5583 break; 5584 } 5585 case Intrinsic::matrix_multiply: 5586 case Intrinsic::matrix_transpose: 5587 case Intrinsic::matrix_column_major_load: 5588 case Intrinsic::matrix_column_major_store: { 5589 Function *IF = Call.getCalledFunction(); 5590 ConstantInt *Stride = nullptr; 5591 ConstantInt *NumRows; 5592 ConstantInt *NumColumns; 5593 VectorType *ResultTy; 5594 Type *Op0ElemTy = nullptr; 5595 Type *Op1ElemTy = nullptr; 5596 switch (ID) { 5597 case Intrinsic::matrix_multiply: 5598 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5599 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5600 ResultTy = cast<VectorType>(Call.getType()); 5601 Op0ElemTy = 5602 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5603 Op1ElemTy = 5604 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5605 break; 5606 case Intrinsic::matrix_transpose: 5607 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5608 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5609 ResultTy = cast<VectorType>(Call.getType()); 5610 Op0ElemTy = 5611 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5612 break; 5613 case Intrinsic::matrix_column_major_load: { 5614 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5615 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5616 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5617 ResultTy = cast<VectorType>(Call.getType()); 5618 5619 PointerType *Op0PtrTy = 5620 cast<PointerType>(Call.getArgOperand(0)->getType()); 5621 if (!Op0PtrTy->isOpaque()) 5622 Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType(); 5623 break; 5624 } 5625 case Intrinsic::matrix_column_major_store: { 5626 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5627 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5628 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5629 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5630 Op0ElemTy = 5631 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5632 5633 PointerType *Op1PtrTy = 5634 cast<PointerType>(Call.getArgOperand(1)->getType()); 5635 if (!Op1PtrTy->isOpaque()) 5636 Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType(); 5637 break; 5638 } 5639 default: 5640 llvm_unreachable("unexpected intrinsic"); 5641 } 5642 5643 Check(ResultTy->getElementType()->isIntegerTy() || 5644 ResultTy->getElementType()->isFloatingPointTy(), 5645 "Result type must be an integer or floating-point type!", IF); 5646 5647 if (Op0ElemTy) 5648 Check(ResultTy->getElementType() == Op0ElemTy, 5649 "Vector element type mismatch of the result and first operand " 5650 "vector!", 5651 IF); 5652 5653 if (Op1ElemTy) 5654 Check(ResultTy->getElementType() == Op1ElemTy, 5655 "Vector element type mismatch of the result and second operand " 5656 "vector!", 5657 IF); 5658 5659 Check(cast<FixedVectorType>(ResultTy)->getNumElements() == 5660 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5661 "Result of a matrix operation does not fit in the returned vector!"); 5662 5663 if (Stride) 5664 Check(Stride->getZExtValue() >= NumRows->getZExtValue(), 5665 "Stride must be greater or equal than the number of rows!", IF); 5666 5667 break; 5668 } 5669 case Intrinsic::experimental_vector_splice: { 5670 VectorType *VecTy = cast<VectorType>(Call.getType()); 5671 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue(); 5672 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue(); 5673 if (Call.getParent() && Call.getParent()->getParent()) { 5674 AttributeList Attrs = Call.getParent()->getParent()->getAttributes(); 5675 if (Attrs.hasFnAttr(Attribute::VScaleRange)) 5676 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin(); 5677 } 5678 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) || 5679 (Idx >= 0 && Idx < KnownMinNumElements), 5680 "The splice index exceeds the range [-VL, VL-1] where VL is the " 5681 "known minimum number of elements in the vector. For scalable " 5682 "vectors the minimum number of elements is determined from " 5683 "vscale_range.", 5684 &Call); 5685 break; 5686 } 5687 case Intrinsic::experimental_stepvector: { 5688 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5689 Check(VecTy && VecTy->getScalarType()->isIntegerTy() && 5690 VecTy->getScalarSizeInBits() >= 8, 5691 "experimental_stepvector only supported for vectors of integers " 5692 "with a bitwidth of at least 8.", 5693 &Call); 5694 break; 5695 } 5696 case Intrinsic::vector_insert: { 5697 Value *Vec = Call.getArgOperand(0); 5698 Value *SubVec = Call.getArgOperand(1); 5699 Value *Idx = Call.getArgOperand(2); 5700 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5701 5702 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5703 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5704 5705 ElementCount VecEC = VecTy->getElementCount(); 5706 ElementCount SubVecEC = SubVecTy->getElementCount(); 5707 Check(VecTy->getElementType() == SubVecTy->getElementType(), 5708 "vector_insert parameters must have the same element " 5709 "type.", 5710 &Call); 5711 Check(IdxN % SubVecEC.getKnownMinValue() == 0, 5712 "vector_insert index must be a constant multiple of " 5713 "the subvector's known minimum vector length."); 5714 5715 // If this insertion is not the 'mixed' case where a fixed vector is 5716 // inserted into a scalable vector, ensure that the insertion of the 5717 // subvector does not overrun the parent vector. 5718 if (VecEC.isScalable() == SubVecEC.isScalable()) { 5719 Check(IdxN < VecEC.getKnownMinValue() && 5720 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5721 "subvector operand of vector_insert would overrun the " 5722 "vector being inserted into."); 5723 } 5724 break; 5725 } 5726 case Intrinsic::vector_extract: { 5727 Value *Vec = Call.getArgOperand(0); 5728 Value *Idx = Call.getArgOperand(1); 5729 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5730 5731 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5732 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5733 5734 ElementCount VecEC = VecTy->getElementCount(); 5735 ElementCount ResultEC = ResultTy->getElementCount(); 5736 5737 Check(ResultTy->getElementType() == VecTy->getElementType(), 5738 "vector_extract result must have the same element " 5739 "type as the input vector.", 5740 &Call); 5741 Check(IdxN % ResultEC.getKnownMinValue() == 0, 5742 "vector_extract index must be a constant multiple of " 5743 "the result type's known minimum vector length."); 5744 5745 // If this extraction is not the 'mixed' case where a fixed vector is is 5746 // extracted from a scalable vector, ensure that the extraction does not 5747 // overrun the parent vector. 5748 if (VecEC.isScalable() == ResultEC.isScalable()) { 5749 Check(IdxN < VecEC.getKnownMinValue() && 5750 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5751 "vector_extract would overrun."); 5752 } 5753 break; 5754 } 5755 case Intrinsic::experimental_noalias_scope_decl: { 5756 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5757 break; 5758 } 5759 case Intrinsic::preserve_array_access_index: 5760 case Intrinsic::preserve_struct_access_index: 5761 case Intrinsic::aarch64_ldaxr: 5762 case Intrinsic::aarch64_ldxr: 5763 case Intrinsic::arm_ldaex: 5764 case Intrinsic::arm_ldrex: { 5765 Type *ElemTy = Call.getParamElementType(0); 5766 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.", 5767 &Call); 5768 break; 5769 } 5770 case Intrinsic::aarch64_stlxr: 5771 case Intrinsic::aarch64_stxr: 5772 case Intrinsic::arm_stlex: 5773 case Intrinsic::arm_strex: { 5774 Type *ElemTy = Call.getAttributes().getParamElementType(1); 5775 Check(ElemTy, 5776 "Intrinsic requires elementtype attribute on second argument.", 5777 &Call); 5778 break; 5779 } 5780 case Intrinsic::aarch64_prefetch: { 5781 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2, 5782 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call); 5783 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 5784 "target argument to llvm.aarch64.prefetch must be 0-3", Call); 5785 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2, 5786 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call); 5787 Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2, 5788 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call); 5789 break; 5790 } 5791 }; 5792 } 5793 5794 /// Carefully grab the subprogram from a local scope. 5795 /// 5796 /// This carefully grabs the subprogram from a local scope, avoiding the 5797 /// built-in assertions that would typically fire. 5798 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5799 if (!LocalScope) 5800 return nullptr; 5801 5802 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5803 return SP; 5804 5805 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5806 return getSubprogram(LB->getRawScope()); 5807 5808 // Just return null; broken scope chains are checked elsewhere. 5809 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5810 return nullptr; 5811 } 5812 5813 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) { 5814 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) { 5815 auto *RetTy = cast<VectorType>(VPCast->getType()); 5816 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType()); 5817 Check(RetTy->getElementCount() == ValTy->getElementCount(), 5818 "VP cast intrinsic first argument and result vector lengths must be " 5819 "equal", 5820 *VPCast); 5821 5822 switch (VPCast->getIntrinsicID()) { 5823 default: 5824 llvm_unreachable("Unknown VP cast intrinsic"); 5825 case Intrinsic::vp_trunc: 5826 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), 5827 "llvm.vp.trunc intrinsic first argument and result element type " 5828 "must be integer", 5829 *VPCast); 5830 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), 5831 "llvm.vp.trunc intrinsic the bit size of first argument must be " 5832 "larger than the bit size of the return type", 5833 *VPCast); 5834 break; 5835 case Intrinsic::vp_zext: 5836 case Intrinsic::vp_sext: 5837 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), 5838 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result " 5839 "element type must be integer", 5840 *VPCast); 5841 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), 5842 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first " 5843 "argument must be smaller than the bit size of the return type", 5844 *VPCast); 5845 break; 5846 case Intrinsic::vp_fptoui: 5847 case Intrinsic::vp_fptosi: 5848 Check( 5849 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(), 5850 "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element " 5851 "type must be floating-point and result element type must be integer", 5852 *VPCast); 5853 break; 5854 case Intrinsic::vp_uitofp: 5855 case Intrinsic::vp_sitofp: 5856 Check( 5857 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(), 5858 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element " 5859 "type must be integer and result element type must be floating-point", 5860 *VPCast); 5861 break; 5862 case Intrinsic::vp_fptrunc: 5863 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), 5864 "llvm.vp.fptrunc intrinsic first argument and result element type " 5865 "must be floating-point", 5866 *VPCast); 5867 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), 5868 "llvm.vp.fptrunc intrinsic the bit size of first argument must be " 5869 "larger than the bit size of the return type", 5870 *VPCast); 5871 break; 5872 case Intrinsic::vp_fpext: 5873 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), 5874 "llvm.vp.fpext intrinsic first argument and result element type " 5875 "must be floating-point", 5876 *VPCast); 5877 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), 5878 "llvm.vp.fpext intrinsic the bit size of first argument must be " 5879 "smaller than the bit size of the return type", 5880 *VPCast); 5881 break; 5882 case Intrinsic::vp_ptrtoint: 5883 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(), 5884 "llvm.vp.ptrtoint intrinsic first argument element type must be " 5885 "pointer and result element type must be integer", 5886 *VPCast); 5887 break; 5888 case Intrinsic::vp_inttoptr: 5889 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(), 5890 "llvm.vp.inttoptr intrinsic first argument element type must be " 5891 "integer and result element type must be pointer", 5892 *VPCast); 5893 break; 5894 } 5895 } 5896 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) { 5897 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); 5898 Check(CmpInst::isFPPredicate(Pred), 5899 "invalid predicate for VP FP comparison intrinsic", &VPI); 5900 } 5901 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) { 5902 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); 5903 Check(CmpInst::isIntPredicate(Pred), 5904 "invalid predicate for VP integer comparison intrinsic", &VPI); 5905 } 5906 } 5907 5908 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5909 unsigned NumOperands; 5910 bool HasRoundingMD; 5911 switch (FPI.getIntrinsicID()) { 5912 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5913 case Intrinsic::INTRINSIC: \ 5914 NumOperands = NARG; \ 5915 HasRoundingMD = ROUND_MODE; \ 5916 break; 5917 #include "llvm/IR/ConstrainedOps.def" 5918 default: 5919 llvm_unreachable("Invalid constrained FP intrinsic!"); 5920 } 5921 NumOperands += (1 + HasRoundingMD); 5922 // Compare intrinsics carry an extra predicate metadata operand. 5923 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5924 NumOperands += 1; 5925 Check((FPI.arg_size() == NumOperands), 5926 "invalid arguments for constrained FP intrinsic", &FPI); 5927 5928 switch (FPI.getIntrinsicID()) { 5929 case Intrinsic::experimental_constrained_lrint: 5930 case Intrinsic::experimental_constrained_llrint: { 5931 Type *ValTy = FPI.getArgOperand(0)->getType(); 5932 Type *ResultTy = FPI.getType(); 5933 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5934 "Intrinsic does not support vectors", &FPI); 5935 } 5936 break; 5937 5938 case Intrinsic::experimental_constrained_lround: 5939 case Intrinsic::experimental_constrained_llround: { 5940 Type *ValTy = FPI.getArgOperand(0)->getType(); 5941 Type *ResultTy = FPI.getType(); 5942 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5943 "Intrinsic does not support vectors", &FPI); 5944 break; 5945 } 5946 5947 case Intrinsic::experimental_constrained_fcmp: 5948 case Intrinsic::experimental_constrained_fcmps: { 5949 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5950 Check(CmpInst::isFPPredicate(Pred), 5951 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5952 break; 5953 } 5954 5955 case Intrinsic::experimental_constrained_fptosi: 5956 case Intrinsic::experimental_constrained_fptoui: { 5957 Value *Operand = FPI.getArgOperand(0); 5958 uint64_t NumSrcElem = 0; 5959 Check(Operand->getType()->isFPOrFPVectorTy(), 5960 "Intrinsic first argument must be floating point", &FPI); 5961 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5962 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5963 } 5964 5965 Operand = &FPI; 5966 Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5967 "Intrinsic first argument and result disagree on vector use", &FPI); 5968 Check(Operand->getType()->isIntOrIntVectorTy(), 5969 "Intrinsic result must be an integer", &FPI); 5970 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5971 Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5972 "Intrinsic first argument and result vector lengths must be equal", 5973 &FPI); 5974 } 5975 } 5976 break; 5977 5978 case Intrinsic::experimental_constrained_sitofp: 5979 case Intrinsic::experimental_constrained_uitofp: { 5980 Value *Operand = FPI.getArgOperand(0); 5981 uint64_t NumSrcElem = 0; 5982 Check(Operand->getType()->isIntOrIntVectorTy(), 5983 "Intrinsic first argument must be integer", &FPI); 5984 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5985 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5986 } 5987 5988 Operand = &FPI; 5989 Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5990 "Intrinsic first argument and result disagree on vector use", &FPI); 5991 Check(Operand->getType()->isFPOrFPVectorTy(), 5992 "Intrinsic result must be a floating point", &FPI); 5993 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5994 Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5995 "Intrinsic first argument and result vector lengths must be equal", 5996 &FPI); 5997 } 5998 } break; 5999 6000 case Intrinsic::experimental_constrained_fptrunc: 6001 case Intrinsic::experimental_constrained_fpext: { 6002 Value *Operand = FPI.getArgOperand(0); 6003 Type *OperandTy = Operand->getType(); 6004 Value *Result = &FPI; 6005 Type *ResultTy = Result->getType(); 6006 Check(OperandTy->isFPOrFPVectorTy(), 6007 "Intrinsic first argument must be FP or FP vector", &FPI); 6008 Check(ResultTy->isFPOrFPVectorTy(), 6009 "Intrinsic result must be FP or FP vector", &FPI); 6010 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 6011 "Intrinsic first argument and result disagree on vector use", &FPI); 6012 if (OperandTy->isVectorTy()) { 6013 Check(cast<FixedVectorType>(OperandTy)->getNumElements() == 6014 cast<FixedVectorType>(ResultTy)->getNumElements(), 6015 "Intrinsic first argument and result vector lengths must be equal", 6016 &FPI); 6017 } 6018 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 6019 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 6020 "Intrinsic first argument's type must be larger than result type", 6021 &FPI); 6022 } else { 6023 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 6024 "Intrinsic first argument's type must be smaller than result type", 6025 &FPI); 6026 } 6027 } 6028 break; 6029 6030 default: 6031 break; 6032 } 6033 6034 // If a non-metadata argument is passed in a metadata slot then the 6035 // error will be caught earlier when the incorrect argument doesn't 6036 // match the specification in the intrinsic call table. Thus, no 6037 // argument type check is needed here. 6038 6039 Check(FPI.getExceptionBehavior().has_value(), 6040 "invalid exception behavior argument", &FPI); 6041 if (HasRoundingMD) { 6042 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument", 6043 &FPI); 6044 } 6045 } 6046 6047 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 6048 auto *MD = DII.getRawLocation(); 6049 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 6050 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 6051 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 6052 CheckDI(isa<DILocalVariable>(DII.getRawVariable()), 6053 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 6054 DII.getRawVariable()); 6055 CheckDI(isa<DIExpression>(DII.getRawExpression()), 6056 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 6057 DII.getRawExpression()); 6058 6059 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) { 6060 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()), 6061 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII, 6062 DAI->getRawAssignID()); 6063 const auto *RawAddr = DAI->getRawAddress(); 6064 CheckDI( 6065 isa<ValueAsMetadata>(RawAddr) || 6066 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()), 6067 "invalid llvm.dbg.assign intrinsic address", &DII, 6068 DAI->getRawAddress()); 6069 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()), 6070 "invalid llvm.dbg.assign intrinsic address expression", &DII, 6071 DAI->getRawAddressExpression()); 6072 // All of the linked instructions should be in the same function as DII. 6073 for (Instruction *I : at::getAssignmentInsts(DAI)) 6074 CheckDI(DAI->getFunction() == I->getFunction(), 6075 "inst not in same function as dbg.assign", I, DAI); 6076 } 6077 6078 // Ignore broken !dbg attachments; they're checked elsewhere. 6079 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 6080 if (!isa<DILocation>(N)) 6081 return; 6082 6083 BasicBlock *BB = DII.getParent(); 6084 Function *F = BB ? BB->getParent() : nullptr; 6085 6086 // The scopes for variables and !dbg attachments must agree. 6087 DILocalVariable *Var = DII.getVariable(); 6088 DILocation *Loc = DII.getDebugLoc(); 6089 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 6090 &DII, BB, F); 6091 6092 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 6093 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6094 if (!VarSP || !LocSP) 6095 return; // Broken scope chains are checked elsewhere. 6096 6097 CheckDI(VarSP == LocSP, 6098 "mismatched subprogram between llvm.dbg." + Kind + 6099 " variable and !dbg attachment", 6100 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 6101 Loc->getScope()->getSubprogram()); 6102 6103 // This check is redundant with one in visitLocalVariable(). 6104 CheckDI(isType(Var->getRawType()), "invalid type ref", Var, 6105 Var->getRawType()); 6106 verifyFnArgs(DII); 6107 } 6108 6109 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 6110 CheckDI(isa<DILabel>(DLI.getRawLabel()), 6111 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 6112 DLI.getRawLabel()); 6113 6114 // Ignore broken !dbg attachments; they're checked elsewhere. 6115 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 6116 if (!isa<DILocation>(N)) 6117 return; 6118 6119 BasicBlock *BB = DLI.getParent(); 6120 Function *F = BB ? BB->getParent() : nullptr; 6121 6122 // The scopes for variables and !dbg attachments must agree. 6123 DILabel *Label = DLI.getLabel(); 6124 DILocation *Loc = DLI.getDebugLoc(); 6125 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI, 6126 BB, F); 6127 6128 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 6129 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6130 if (!LabelSP || !LocSP) 6131 return; 6132 6133 CheckDI(LabelSP == LocSP, 6134 "mismatched subprogram between llvm.dbg." + Kind + 6135 " label and !dbg attachment", 6136 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 6137 Loc->getScope()->getSubprogram()); 6138 } 6139 6140 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 6141 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 6142 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 6143 6144 // We don't know whether this intrinsic verified correctly. 6145 if (!V || !E || !E->isValid()) 6146 return; 6147 6148 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 6149 auto Fragment = E->getFragmentInfo(); 6150 if (!Fragment) 6151 return; 6152 6153 // The frontend helps out GDB by emitting the members of local anonymous 6154 // unions as artificial local variables with shared storage. When SROA splits 6155 // the storage for artificial local variables that are smaller than the entire 6156 // union, the overhang piece will be outside of the allotted space for the 6157 // variable and this check fails. 6158 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 6159 if (V->isArtificial()) 6160 return; 6161 6162 verifyFragmentExpression(*V, *Fragment, &I); 6163 } 6164 6165 template <typename ValueOrMetadata> 6166 void Verifier::verifyFragmentExpression(const DIVariable &V, 6167 DIExpression::FragmentInfo Fragment, 6168 ValueOrMetadata *Desc) { 6169 // If there's no size, the type is broken, but that should be checked 6170 // elsewhere. 6171 auto VarSize = V.getSizeInBits(); 6172 if (!VarSize) 6173 return; 6174 6175 unsigned FragSize = Fragment.SizeInBits; 6176 unsigned FragOffset = Fragment.OffsetInBits; 6177 CheckDI(FragSize + FragOffset <= *VarSize, 6178 "fragment is larger than or outside of variable", Desc, &V); 6179 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 6180 } 6181 6182 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 6183 // This function does not take the scope of noninlined function arguments into 6184 // account. Don't run it if current function is nodebug, because it may 6185 // contain inlined debug intrinsics. 6186 if (!HasDebugInfo) 6187 return; 6188 6189 // For performance reasons only check non-inlined ones. 6190 if (I.getDebugLoc()->getInlinedAt()) 6191 return; 6192 6193 DILocalVariable *Var = I.getVariable(); 6194 CheckDI(Var, "dbg intrinsic without variable"); 6195 6196 unsigned ArgNo = Var->getArg(); 6197 if (!ArgNo) 6198 return; 6199 6200 // Verify there are no duplicate function argument debug info entries. 6201 // These will cause hard-to-debug assertions in the DWARF backend. 6202 if (DebugFnArgs.size() < ArgNo) 6203 DebugFnArgs.resize(ArgNo, nullptr); 6204 6205 auto *Prev = DebugFnArgs[ArgNo - 1]; 6206 DebugFnArgs[ArgNo - 1] = Var; 6207 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 6208 Prev, Var); 6209 } 6210 6211 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 6212 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 6213 6214 // We don't know whether this intrinsic verified correctly. 6215 if (!E || !E->isValid()) 6216 return; 6217 6218 CheckDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 6219 } 6220 6221 void Verifier::verifyCompileUnits() { 6222 // When more than one Module is imported into the same context, such as during 6223 // an LTO build before linking the modules, ODR type uniquing may cause types 6224 // to point to a different CU. This check does not make sense in this case. 6225 if (M.getContext().isODRUniquingDebugTypes()) 6226 return; 6227 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 6228 SmallPtrSet<const Metadata *, 2> Listed; 6229 if (CUs) 6230 Listed.insert(CUs->op_begin(), CUs->op_end()); 6231 for (const auto *CU : CUVisited) 6232 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 6233 CUVisited.clear(); 6234 } 6235 6236 void Verifier::verifyDeoptimizeCallingConvs() { 6237 if (DeoptimizeDeclarations.empty()) 6238 return; 6239 6240 const Function *First = DeoptimizeDeclarations[0]; 6241 for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) { 6242 Check(First->getCallingConv() == F->getCallingConv(), 6243 "All llvm.experimental.deoptimize declarations must have the same " 6244 "calling convention", 6245 First, F); 6246 } 6247 } 6248 6249 void Verifier::verifyAttachedCallBundle(const CallBase &Call, 6250 const OperandBundleUse &BU) { 6251 FunctionType *FTy = Call.getFunctionType(); 6252 6253 Check((FTy->getReturnType()->isPointerTy() || 6254 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 6255 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 6256 "function returning a pointer or a non-returning function that has a " 6257 "void return type", 6258 Call); 6259 6260 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()), 6261 "operand bundle \"clang.arc.attachedcall\" requires one function as " 6262 "an argument", 6263 Call); 6264 6265 auto *Fn = cast<Function>(BU.Inputs.front()); 6266 Intrinsic::ID IID = Fn->getIntrinsicID(); 6267 6268 if (IID) { 6269 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 6270 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 6271 "invalid function argument", Call); 6272 } else { 6273 StringRef FnName = Fn->getName(); 6274 Check((FnName == "objc_retainAutoreleasedReturnValue" || 6275 FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 6276 "invalid function argument", Call); 6277 } 6278 } 6279 6280 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 6281 bool HasSource = F.getSource().has_value(); 6282 if (!HasSourceDebugInfo.count(&U)) 6283 HasSourceDebugInfo[&U] = HasSource; 6284 CheckDI(HasSource == HasSourceDebugInfo[&U], 6285 "inconsistent use of embedded source"); 6286 } 6287 6288 void Verifier::verifyNoAliasScopeDecl() { 6289 if (NoAliasScopeDecls.empty()) 6290 return; 6291 6292 // only a single scope must be declared at a time. 6293 for (auto *II : NoAliasScopeDecls) { 6294 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 6295 "Not a llvm.experimental.noalias.scope.decl ?"); 6296 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 6297 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 6298 Check(ScopeListMV != nullptr, 6299 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 6300 "argument", 6301 II); 6302 6303 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 6304 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II); 6305 Check(ScopeListMD->getNumOperands() == 1, 6306 "!id.scope.list must point to a list with a single scope", II); 6307 visitAliasScopeListMetadata(ScopeListMD); 6308 } 6309 6310 // Only check the domination rule when requested. Once all passes have been 6311 // adapted this option can go away. 6312 if (!VerifyNoAliasScopeDomination) 6313 return; 6314 6315 // Now sort the intrinsics based on the scope MDNode so that declarations of 6316 // the same scopes are next to each other. 6317 auto GetScope = [](IntrinsicInst *II) { 6318 const auto *ScopeListMV = cast<MetadataAsValue>( 6319 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 6320 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 6321 }; 6322 6323 // We are sorting on MDNode pointers here. For valid input IR this is ok. 6324 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 6325 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 6326 return GetScope(Lhs) < GetScope(Rhs); 6327 }; 6328 6329 llvm::sort(NoAliasScopeDecls, Compare); 6330 6331 // Go over the intrinsics and check that for the same scope, they are not 6332 // dominating each other. 6333 auto ItCurrent = NoAliasScopeDecls.begin(); 6334 while (ItCurrent != NoAliasScopeDecls.end()) { 6335 auto CurScope = GetScope(*ItCurrent); 6336 auto ItNext = ItCurrent; 6337 do { 6338 ++ItNext; 6339 } while (ItNext != NoAliasScopeDecls.end() && 6340 GetScope(*ItNext) == CurScope); 6341 6342 // [ItCurrent, ItNext) represents the declarations for the same scope. 6343 // Ensure they are not dominating each other.. but only if it is not too 6344 // expensive. 6345 if (ItNext - ItCurrent < 32) 6346 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 6347 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 6348 if (I != J) 6349 Check(!DT.dominates(I, J), 6350 "llvm.experimental.noalias.scope.decl dominates another one " 6351 "with the same scope", 6352 I); 6353 ItCurrent = ItNext; 6354 } 6355 } 6356 6357 //===----------------------------------------------------------------------===// 6358 // Implement the public interfaces to this file... 6359 //===----------------------------------------------------------------------===// 6360 6361 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 6362 Function &F = const_cast<Function &>(f); 6363 6364 // Don't use a raw_null_ostream. Printing IR is expensive. 6365 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 6366 6367 // Note that this function's return value is inverted from what you would 6368 // expect of a function called "verify". 6369 return !V.verify(F); 6370 } 6371 6372 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 6373 bool *BrokenDebugInfo) { 6374 // Don't use a raw_null_ostream. Printing IR is expensive. 6375 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 6376 6377 bool Broken = false; 6378 for (const Function &F : M) 6379 Broken |= !V.verify(F); 6380 6381 Broken |= !V.verify(); 6382 if (BrokenDebugInfo) 6383 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 6384 // Note that this function's return value is inverted from what you would 6385 // expect of a function called "verify". 6386 return Broken; 6387 } 6388 6389 namespace { 6390 6391 struct VerifierLegacyPass : public FunctionPass { 6392 static char ID; 6393 6394 std::unique_ptr<Verifier> V; 6395 bool FatalErrors = true; 6396 6397 VerifierLegacyPass() : FunctionPass(ID) { 6398 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 6399 } 6400 explicit VerifierLegacyPass(bool FatalErrors) 6401 : FunctionPass(ID), 6402 FatalErrors(FatalErrors) { 6403 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 6404 } 6405 6406 bool doInitialization(Module &M) override { 6407 V = std::make_unique<Verifier>( 6408 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 6409 return false; 6410 } 6411 6412 bool runOnFunction(Function &F) override { 6413 if (!V->verify(F) && FatalErrors) { 6414 errs() << "in function " << F.getName() << '\n'; 6415 report_fatal_error("Broken function found, compilation aborted!"); 6416 } 6417 return false; 6418 } 6419 6420 bool doFinalization(Module &M) override { 6421 bool HasErrors = false; 6422 for (Function &F : M) 6423 if (F.isDeclaration()) 6424 HasErrors |= !V->verify(F); 6425 6426 HasErrors |= !V->verify(); 6427 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 6428 report_fatal_error("Broken module found, compilation aborted!"); 6429 return false; 6430 } 6431 6432 void getAnalysisUsage(AnalysisUsage &AU) const override { 6433 AU.setPreservesAll(); 6434 } 6435 }; 6436 6437 } // end anonymous namespace 6438 6439 /// Helper to issue failure from the TBAA verification 6440 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 6441 if (Diagnostic) 6442 return Diagnostic->CheckFailed(Args...); 6443 } 6444 6445 #define CheckTBAA(C, ...) \ 6446 do { \ 6447 if (!(C)) { \ 6448 CheckFailed(__VA_ARGS__); \ 6449 return false; \ 6450 } \ 6451 } while (false) 6452 6453 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 6454 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 6455 /// struct-type node describing an aggregate data structure (like a struct). 6456 TBAAVerifier::TBAABaseNodeSummary 6457 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 6458 bool IsNewFormat) { 6459 if (BaseNode->getNumOperands() < 2) { 6460 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 6461 return {true, ~0u}; 6462 } 6463 6464 auto Itr = TBAABaseNodes.find(BaseNode); 6465 if (Itr != TBAABaseNodes.end()) 6466 return Itr->second; 6467 6468 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 6469 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 6470 (void)InsertResult; 6471 assert(InsertResult.second && "We just checked!"); 6472 return Result; 6473 } 6474 6475 TBAAVerifier::TBAABaseNodeSummary 6476 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 6477 bool IsNewFormat) { 6478 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 6479 6480 if (BaseNode->getNumOperands() == 2) { 6481 // Scalar nodes can only be accessed at offset 0. 6482 return isValidScalarTBAANode(BaseNode) 6483 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 6484 : InvalidNode; 6485 } 6486 6487 if (IsNewFormat) { 6488 if (BaseNode->getNumOperands() % 3 != 0) { 6489 CheckFailed("Access tag nodes must have the number of operands that is a " 6490 "multiple of 3!", BaseNode); 6491 return InvalidNode; 6492 } 6493 } else { 6494 if (BaseNode->getNumOperands() % 2 != 1) { 6495 CheckFailed("Struct tag nodes must have an odd number of operands!", 6496 BaseNode); 6497 return InvalidNode; 6498 } 6499 } 6500 6501 // Check the type size field. 6502 if (IsNewFormat) { 6503 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6504 BaseNode->getOperand(1)); 6505 if (!TypeSizeNode) { 6506 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 6507 return InvalidNode; 6508 } 6509 } 6510 6511 // Check the type name field. In the new format it can be anything. 6512 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 6513 CheckFailed("Struct tag nodes have a string as their first operand", 6514 BaseNode); 6515 return InvalidNode; 6516 } 6517 6518 bool Failed = false; 6519 6520 std::optional<APInt> PrevOffset; 6521 unsigned BitWidth = ~0u; 6522 6523 // We've already checked that BaseNode is not a degenerate root node with one 6524 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 6525 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6526 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6527 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6528 Idx += NumOpsPerField) { 6529 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 6530 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 6531 if (!isa<MDNode>(FieldTy)) { 6532 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 6533 Failed = true; 6534 continue; 6535 } 6536 6537 auto *OffsetEntryCI = 6538 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 6539 if (!OffsetEntryCI) { 6540 CheckFailed("Offset entries must be constants!", &I, BaseNode); 6541 Failed = true; 6542 continue; 6543 } 6544 6545 if (BitWidth == ~0u) 6546 BitWidth = OffsetEntryCI->getBitWidth(); 6547 6548 if (OffsetEntryCI->getBitWidth() != BitWidth) { 6549 CheckFailed( 6550 "Bitwidth between the offsets and struct type entries must match", &I, 6551 BaseNode); 6552 Failed = true; 6553 continue; 6554 } 6555 6556 // NB! As far as I can tell, we generate a non-strictly increasing offset 6557 // sequence only from structs that have zero size bit fields. When 6558 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 6559 // pick the field lexically the latest in struct type metadata node. This 6560 // mirrors the actual behavior of the alias analysis implementation. 6561 bool IsAscending = 6562 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 6563 6564 if (!IsAscending) { 6565 CheckFailed("Offsets must be increasing!", &I, BaseNode); 6566 Failed = true; 6567 } 6568 6569 PrevOffset = OffsetEntryCI->getValue(); 6570 6571 if (IsNewFormat) { 6572 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6573 BaseNode->getOperand(Idx + 2)); 6574 if (!MemberSizeNode) { 6575 CheckFailed("Member size entries must be constants!", &I, BaseNode); 6576 Failed = true; 6577 continue; 6578 } 6579 } 6580 } 6581 6582 return Failed ? InvalidNode 6583 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 6584 } 6585 6586 static bool IsRootTBAANode(const MDNode *MD) { 6587 return MD->getNumOperands() < 2; 6588 } 6589 6590 static bool IsScalarTBAANodeImpl(const MDNode *MD, 6591 SmallPtrSetImpl<const MDNode *> &Visited) { 6592 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 6593 return false; 6594 6595 if (!isa<MDString>(MD->getOperand(0))) 6596 return false; 6597 6598 if (MD->getNumOperands() == 3) { 6599 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 6600 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 6601 return false; 6602 } 6603 6604 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6605 return Parent && Visited.insert(Parent).second && 6606 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 6607 } 6608 6609 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 6610 auto ResultIt = TBAAScalarNodes.find(MD); 6611 if (ResultIt != TBAAScalarNodes.end()) 6612 return ResultIt->second; 6613 6614 SmallPtrSet<const MDNode *, 4> Visited; 6615 bool Result = IsScalarTBAANodeImpl(MD, Visited); 6616 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 6617 (void)InsertResult; 6618 assert(InsertResult.second && "Just checked!"); 6619 6620 return Result; 6621 } 6622 6623 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 6624 /// Offset in place to be the offset within the field node returned. 6625 /// 6626 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 6627 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 6628 const MDNode *BaseNode, 6629 APInt &Offset, 6630 bool IsNewFormat) { 6631 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 6632 6633 // Scalar nodes have only one possible "field" -- their parent in the access 6634 // hierarchy. Offset must be zero at this point, but our caller is supposed 6635 // to check that. 6636 if (BaseNode->getNumOperands() == 2) 6637 return cast<MDNode>(BaseNode->getOperand(1)); 6638 6639 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6640 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6641 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6642 Idx += NumOpsPerField) { 6643 auto *OffsetEntryCI = 6644 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6645 if (OffsetEntryCI->getValue().ugt(Offset)) { 6646 if (Idx == FirstFieldOpNo) { 6647 CheckFailed("Could not find TBAA parent in struct type node", &I, 6648 BaseNode, &Offset); 6649 return nullptr; 6650 } 6651 6652 unsigned PrevIdx = Idx - NumOpsPerField; 6653 auto *PrevOffsetEntryCI = 6654 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 6655 Offset -= PrevOffsetEntryCI->getValue(); 6656 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 6657 } 6658 } 6659 6660 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 6661 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 6662 BaseNode->getOperand(LastIdx + 1)); 6663 Offset -= LastOffsetEntryCI->getValue(); 6664 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 6665 } 6666 6667 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 6668 if (!Type || Type->getNumOperands() < 3) 6669 return false; 6670 6671 // In the new format type nodes shall have a reference to the parent type as 6672 // its first operand. 6673 return isa_and_nonnull<MDNode>(Type->getOperand(0)); 6674 } 6675 6676 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6677 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6678 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6679 isa<AtomicCmpXchgInst>(I), 6680 "This instruction shall not have a TBAA access tag!", &I); 6681 6682 bool IsStructPathTBAA = 6683 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6684 6685 CheckTBAA(IsStructPathTBAA, 6686 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", 6687 &I); 6688 6689 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6690 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6691 6692 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6693 6694 if (IsNewFormat) { 6695 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6696 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6697 } else { 6698 CheckTBAA(MD->getNumOperands() < 5, 6699 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6700 } 6701 6702 // Check the access size field. 6703 if (IsNewFormat) { 6704 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6705 MD->getOperand(3)); 6706 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6707 } 6708 6709 // Check the immutability flag. 6710 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6711 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6712 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6713 MD->getOperand(ImmutabilityFlagOpNo)); 6714 CheckTBAA(IsImmutableCI, 6715 "Immutability tag on struct tag metadata must be a constant", &I, 6716 MD); 6717 CheckTBAA( 6718 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6719 "Immutability part of the struct tag metadata must be either 0 or 1", 6720 &I, MD); 6721 } 6722 6723 CheckTBAA(BaseNode && AccessType, 6724 "Malformed struct tag metadata: base and access-type " 6725 "should be non-null and point to Metadata nodes", 6726 &I, MD, BaseNode, AccessType); 6727 6728 if (!IsNewFormat) { 6729 CheckTBAA(isValidScalarTBAANode(AccessType), 6730 "Access type node must be a valid scalar type", &I, MD, 6731 AccessType); 6732 } 6733 6734 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6735 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6736 6737 APInt Offset = OffsetCI->getValue(); 6738 bool SeenAccessTypeInPath = false; 6739 6740 SmallPtrSet<MDNode *, 4> StructPath; 6741 6742 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6743 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6744 IsNewFormat)) { 6745 if (!StructPath.insert(BaseNode).second) { 6746 CheckFailed("Cycle detected in struct path", &I, MD); 6747 return false; 6748 } 6749 6750 bool Invalid; 6751 unsigned BaseNodeBitWidth; 6752 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6753 IsNewFormat); 6754 6755 // If the base node is invalid in itself, then we've already printed all the 6756 // errors we wanted to print. 6757 if (Invalid) 6758 return false; 6759 6760 SeenAccessTypeInPath |= BaseNode == AccessType; 6761 6762 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6763 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6764 &I, MD, &Offset); 6765 6766 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6767 (BaseNodeBitWidth == 0 && Offset == 0) || 6768 (IsNewFormat && BaseNodeBitWidth == ~0u), 6769 "Access bit-width not the same as description bit-width", &I, MD, 6770 BaseNodeBitWidth, Offset.getBitWidth()); 6771 6772 if (IsNewFormat && SeenAccessTypeInPath) 6773 break; 6774 } 6775 6776 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I, 6777 MD); 6778 return true; 6779 } 6780 6781 char VerifierLegacyPass::ID = 0; 6782 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6783 6784 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6785 return new VerifierLegacyPass(FatalErrors); 6786 } 6787 6788 AnalysisKey VerifierAnalysis::Key; 6789 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6790 ModuleAnalysisManager &) { 6791 Result Res; 6792 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6793 return Res; 6794 } 6795 6796 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6797 FunctionAnalysisManager &) { 6798 return { llvm::verifyFunction(F, &dbgs()), false }; 6799 } 6800 6801 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6802 auto Res = AM.getResult<VerifierAnalysis>(M); 6803 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6804 report_fatal_error("Broken module found, compilation aborted!"); 6805 6806 return PreservedAnalyses::all(); 6807 } 6808 6809 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6810 auto res = AM.getResult<VerifierAnalysis>(F); 6811 if (res.IRBroken && FatalErrors) 6812 report_fatal_error("Broken function found, compilation aborted!"); 6813 6814 return PreservedAnalyses::all(); 6815 } 6816