1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // basic correctness checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * All basic blocks should only end with terminator insts, not contain them 27 // * The entry node to a function must not have predecessors 28 // * All Instructions must be embedded into a basic block 29 // * Functions cannot take a void-typed parameter 30 // * Verify that a function's argument list agrees with it's declared type. 31 // * It is illegal to specify a name for a void value. 32 // * It is illegal to have a internal global value with no initializer 33 // * It is illegal to have a ret instruction that returns a value that does not 34 // agree with the function return value type. 35 // * Function call argument types match the function prototype 36 // * A landing pad is defined by a landingpad instruction, and can be jumped to 37 // only by the unwind edge of an invoke instruction. 38 // * A landingpad instruction must be the first non-PHI instruction in the 39 // block. 40 // * Landingpad instructions must be in a function with a personality function. 41 // * Convergence control intrinsics are introduced in ConvergentOperations.rst. 42 // The applied restrictions are too numerous to list here. 43 // * The convergence entry intrinsic and the loop heart must be the first 44 // non-PHI instruction in their respective block. This does not conflict with 45 // the landing pads, since these two kinds cannot occur in the same block. 46 // * All other things that are tested by asserts spread about the code... 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/IR/Verifier.h" 51 #include "llvm/ADT/APFloat.h" 52 #include "llvm/ADT/APInt.h" 53 #include "llvm/ADT/ArrayRef.h" 54 #include "llvm/ADT/DenseMap.h" 55 #include "llvm/ADT/MapVector.h" 56 #include "llvm/ADT/PostOrderIterator.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallPtrSet.h" 59 #include "llvm/ADT/SmallSet.h" 60 #include "llvm/ADT/SmallVector.h" 61 #include "llvm/ADT/StringExtras.h" 62 #include "llvm/ADT/StringMap.h" 63 #include "llvm/ADT/StringRef.h" 64 #include "llvm/ADT/Twine.h" 65 #include "llvm/BinaryFormat/Dwarf.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/AttributeMask.h" 68 #include "llvm/IR/Attributes.h" 69 #include "llvm/IR/BasicBlock.h" 70 #include "llvm/IR/CFG.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Comdat.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/ConstantRangeList.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/ConvergenceVerifier.h" 78 #include "llvm/IR/DataLayout.h" 79 #include "llvm/IR/DebugInfo.h" 80 #include "llvm/IR/DebugInfoMetadata.h" 81 #include "llvm/IR/DebugLoc.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/EHPersonalities.h" 85 #include "llvm/IR/Function.h" 86 #include "llvm/IR/GCStrategy.h" 87 #include "llvm/IR/GlobalAlias.h" 88 #include "llvm/IR/GlobalValue.h" 89 #include "llvm/IR/GlobalVariable.h" 90 #include "llvm/IR/InlineAsm.h" 91 #include "llvm/IR/InstVisitor.h" 92 #include "llvm/IR/InstrTypes.h" 93 #include "llvm/IR/Instruction.h" 94 #include "llvm/IR/Instructions.h" 95 #include "llvm/IR/IntrinsicInst.h" 96 #include "llvm/IR/Intrinsics.h" 97 #include "llvm/IR/IntrinsicsAArch64.h" 98 #include "llvm/IR/IntrinsicsAMDGPU.h" 99 #include "llvm/IR/IntrinsicsARM.h" 100 #include "llvm/IR/IntrinsicsNVPTX.h" 101 #include "llvm/IR/IntrinsicsWebAssembly.h" 102 #include "llvm/IR/LLVMContext.h" 103 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 104 #include "llvm/IR/Metadata.h" 105 #include "llvm/IR/Module.h" 106 #include "llvm/IR/ModuleSlotTracker.h" 107 #include "llvm/IR/PassManager.h" 108 #include "llvm/IR/ProfDataUtils.h" 109 #include "llvm/IR/Statepoint.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/VFABIDemangler.h" 114 #include "llvm/IR/Value.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/AtomicOrdering.h" 118 #include "llvm/Support/Casting.h" 119 #include "llvm/Support/CommandLine.h" 120 #include "llvm/Support/ErrorHandling.h" 121 #include "llvm/Support/MathExtras.h" 122 #include "llvm/Support/ModRef.h" 123 #include "llvm/Support/raw_ostream.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <cstdint> 127 #include <memory> 128 #include <optional> 129 #include <string> 130 #include <utility> 131 132 using namespace llvm; 133 134 static cl::opt<bool> VerifyNoAliasScopeDomination( 135 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 136 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 137 "scopes are not dominating")); 138 139 namespace llvm { 140 141 struct VerifierSupport { 142 raw_ostream *OS; 143 const Module &M; 144 ModuleSlotTracker MST; 145 Triple TT; 146 const DataLayout &DL; 147 LLVMContext &Context; 148 149 /// Track the brokenness of the module while recursively visiting. 150 bool Broken = false; 151 /// Broken debug info can be "recovered" from by stripping the debug info. 152 bool BrokenDebugInfo = false; 153 /// Whether to treat broken debug info as an error. 154 bool TreatBrokenDebugInfoAsError = true; 155 156 explicit VerifierSupport(raw_ostream *OS, const Module &M) 157 : OS(OS), M(M), MST(&M), TT(Triple::normalize(M.getTargetTriple())), 158 DL(M.getDataLayout()), Context(M.getContext()) {} 159 160 private: 161 void Write(const Module *M) { 162 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 163 } 164 165 void Write(const Value *V) { 166 if (V) 167 Write(*V); 168 } 169 170 void Write(const Value &V) { 171 if (isa<Instruction>(V)) { 172 V.print(*OS, MST); 173 *OS << '\n'; 174 } else { 175 V.printAsOperand(*OS, true, MST); 176 *OS << '\n'; 177 } 178 } 179 180 void Write(const DbgRecord *DR) { 181 if (DR) { 182 DR->print(*OS, MST, false); 183 *OS << '\n'; 184 } 185 } 186 187 void Write(DbgVariableRecord::LocationType Type) { 188 switch (Type) { 189 case DbgVariableRecord::LocationType::Value: 190 *OS << "value"; 191 break; 192 case DbgVariableRecord::LocationType::Declare: 193 *OS << "declare"; 194 break; 195 case DbgVariableRecord::LocationType::Assign: 196 *OS << "assign"; 197 break; 198 case DbgVariableRecord::LocationType::End: 199 *OS << "end"; 200 break; 201 case DbgVariableRecord::LocationType::Any: 202 *OS << "any"; 203 break; 204 }; 205 } 206 207 void Write(const Metadata *MD) { 208 if (!MD) 209 return; 210 MD->print(*OS, MST, &M); 211 *OS << '\n'; 212 } 213 214 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 215 Write(MD.get()); 216 } 217 218 void Write(const NamedMDNode *NMD) { 219 if (!NMD) 220 return; 221 NMD->print(*OS, MST); 222 *OS << '\n'; 223 } 224 225 void Write(Type *T) { 226 if (!T) 227 return; 228 *OS << ' ' << *T; 229 } 230 231 void Write(const Comdat *C) { 232 if (!C) 233 return; 234 *OS << *C; 235 } 236 237 void Write(const APInt *AI) { 238 if (!AI) 239 return; 240 *OS << *AI << '\n'; 241 } 242 243 void Write(const unsigned i) { *OS << i << '\n'; } 244 245 // NOLINTNEXTLINE(readability-identifier-naming) 246 void Write(const Attribute *A) { 247 if (!A) 248 return; 249 *OS << A->getAsString() << '\n'; 250 } 251 252 // NOLINTNEXTLINE(readability-identifier-naming) 253 void Write(const AttributeSet *AS) { 254 if (!AS) 255 return; 256 *OS << AS->getAsString() << '\n'; 257 } 258 259 // NOLINTNEXTLINE(readability-identifier-naming) 260 void Write(const AttributeList *AL) { 261 if (!AL) 262 return; 263 AL->print(*OS); 264 } 265 266 void Write(Printable P) { *OS << P << '\n'; } 267 268 template <typename T> void Write(ArrayRef<T> Vs) { 269 for (const T &V : Vs) 270 Write(V); 271 } 272 273 template <typename T1, typename... Ts> 274 void WriteTs(const T1 &V1, const Ts &... Vs) { 275 Write(V1); 276 WriteTs(Vs...); 277 } 278 279 template <typename... Ts> void WriteTs() {} 280 281 public: 282 /// A check failed, so printout out the condition and the message. 283 /// 284 /// This provides a nice place to put a breakpoint if you want to see why 285 /// something is not correct. 286 void CheckFailed(const Twine &Message) { 287 if (OS) 288 *OS << Message << '\n'; 289 Broken = true; 290 } 291 292 /// A check failed (with values to print). 293 /// 294 /// This calls the Message-only version so that the above is easier to set a 295 /// breakpoint on. 296 template <typename T1, typename... Ts> 297 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 298 CheckFailed(Message); 299 if (OS) 300 WriteTs(V1, Vs...); 301 } 302 303 /// A debug info check failed. 304 void DebugInfoCheckFailed(const Twine &Message) { 305 if (OS) 306 *OS << Message << '\n'; 307 Broken |= TreatBrokenDebugInfoAsError; 308 BrokenDebugInfo = true; 309 } 310 311 /// A debug info check failed (with values to print). 312 template <typename T1, typename... Ts> 313 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 314 const Ts &... Vs) { 315 DebugInfoCheckFailed(Message); 316 if (OS) 317 WriteTs(V1, Vs...); 318 } 319 }; 320 321 } // namespace llvm 322 323 namespace { 324 325 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 326 friend class InstVisitor<Verifier>; 327 DominatorTree DT; 328 329 /// When verifying a basic block, keep track of all of the 330 /// instructions we have seen so far. 331 /// 332 /// This allows us to do efficient dominance checks for the case when an 333 /// instruction has an operand that is an instruction in the same block. 334 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 335 336 /// Keep track of the metadata nodes that have been checked already. 337 SmallPtrSet<const Metadata *, 32> MDNodes; 338 339 /// Keep track which DISubprogram is attached to which function. 340 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 341 342 /// Track all DICompileUnits visited. 343 SmallPtrSet<const Metadata *, 2> CUVisited; 344 345 /// The result type for a landingpad. 346 Type *LandingPadResultTy; 347 348 /// Whether we've seen a call to @llvm.localescape in this function 349 /// already. 350 bool SawFrameEscape; 351 352 /// Whether the current function has a DISubprogram attached to it. 353 bool HasDebugInfo = false; 354 355 /// Stores the count of how many objects were passed to llvm.localescape for a 356 /// given function and the largest index passed to llvm.localrecover. 357 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 358 359 // Maps catchswitches and cleanuppads that unwind to siblings to the 360 // terminators that indicate the unwind, used to detect cycles therein. 361 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 362 363 /// Cache which blocks are in which funclet, if an EH funclet personality is 364 /// in use. Otherwise empty. 365 DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors; 366 367 /// Cache of constants visited in search of ConstantExprs. 368 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 369 370 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 371 SmallVector<const Function *, 4> DeoptimizeDeclarations; 372 373 /// Cache of attribute lists verified. 374 SmallPtrSet<const void *, 32> AttributeListsVisited; 375 376 // Verify that this GlobalValue is only used in this module. 377 // This map is used to avoid visiting uses twice. We can arrive at a user 378 // twice, if they have multiple operands. In particular for very large 379 // constant expressions, we can arrive at a particular user many times. 380 SmallPtrSet<const Value *, 32> GlobalValueVisited; 381 382 // Keeps track of duplicate function argument debug info. 383 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 384 385 TBAAVerifier TBAAVerifyHelper; 386 ConvergenceVerifier ConvergenceVerifyHelper; 387 388 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 389 390 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 391 392 public: 393 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 394 const Module &M) 395 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 396 SawFrameEscape(false), TBAAVerifyHelper(this) { 397 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 398 } 399 400 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 401 402 bool verify(const Function &F) { 403 assert(F.getParent() == &M && 404 "An instance of this class only works with a specific module!"); 405 406 // First ensure the function is well-enough formed to compute dominance 407 // information, and directly compute a dominance tree. We don't rely on the 408 // pass manager to provide this as it isolates us from a potentially 409 // out-of-date dominator tree and makes it significantly more complex to run 410 // this code outside of a pass manager. 411 // FIXME: It's really gross that we have to cast away constness here. 412 if (!F.empty()) 413 DT.recalculate(const_cast<Function &>(F)); 414 415 for (const BasicBlock &BB : F) { 416 if (!BB.empty() && BB.back().isTerminator()) 417 continue; 418 419 if (OS) { 420 *OS << "Basic Block in function '" << F.getName() 421 << "' does not have terminator!\n"; 422 BB.printAsOperand(*OS, true, MST); 423 *OS << "\n"; 424 } 425 return false; 426 } 427 428 auto FailureCB = [this](const Twine &Message) { 429 this->CheckFailed(Message); 430 }; 431 ConvergenceVerifyHelper.initialize(OS, FailureCB, F); 432 433 Broken = false; 434 // FIXME: We strip const here because the inst visitor strips const. 435 visit(const_cast<Function &>(F)); 436 verifySiblingFuncletUnwinds(); 437 438 if (ConvergenceVerifyHelper.sawTokens()) 439 ConvergenceVerifyHelper.verify(DT); 440 441 InstsInThisBlock.clear(); 442 DebugFnArgs.clear(); 443 LandingPadResultTy = nullptr; 444 SawFrameEscape = false; 445 SiblingFuncletInfo.clear(); 446 verifyNoAliasScopeDecl(); 447 NoAliasScopeDecls.clear(); 448 449 return !Broken; 450 } 451 452 /// Verify the module that this instance of \c Verifier was initialized with. 453 bool verify() { 454 Broken = false; 455 456 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 457 for (const Function &F : M) 458 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 459 DeoptimizeDeclarations.push_back(&F); 460 461 // Now that we've visited every function, verify that we never asked to 462 // recover a frame index that wasn't escaped. 463 verifyFrameRecoverIndices(); 464 for (const GlobalVariable &GV : M.globals()) 465 visitGlobalVariable(GV); 466 467 for (const GlobalAlias &GA : M.aliases()) 468 visitGlobalAlias(GA); 469 470 for (const GlobalIFunc &GI : M.ifuncs()) 471 visitGlobalIFunc(GI); 472 473 for (const NamedMDNode &NMD : M.named_metadata()) 474 visitNamedMDNode(NMD); 475 476 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 477 visitComdat(SMEC.getValue()); 478 479 visitModuleFlags(); 480 visitModuleIdents(); 481 visitModuleCommandLines(); 482 483 verifyCompileUnits(); 484 485 verifyDeoptimizeCallingConvs(); 486 DISubprogramAttachments.clear(); 487 return !Broken; 488 } 489 490 private: 491 /// Whether a metadata node is allowed to be, or contain, a DILocation. 492 enum class AreDebugLocsAllowed { No, Yes }; 493 494 // Verification methods... 495 void visitGlobalValue(const GlobalValue &GV); 496 void visitGlobalVariable(const GlobalVariable &GV); 497 void visitGlobalAlias(const GlobalAlias &GA); 498 void visitGlobalIFunc(const GlobalIFunc &GI); 499 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 500 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 501 const GlobalAlias &A, const Constant &C); 502 void visitNamedMDNode(const NamedMDNode &NMD); 503 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 504 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 505 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 506 void visitDIArgList(const DIArgList &AL, Function *F); 507 void visitComdat(const Comdat &C); 508 void visitModuleIdents(); 509 void visitModuleCommandLines(); 510 void visitModuleFlags(); 511 void visitModuleFlag(const MDNode *Op, 512 DenseMap<const MDString *, const MDNode *> &SeenIDs, 513 SmallVectorImpl<const MDNode *> &Requirements); 514 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 515 void visitFunction(const Function &F); 516 void visitBasicBlock(BasicBlock &BB); 517 void verifyRangeMetadata(const Value &V, const MDNode *Range, Type *Ty, 518 bool IsAbsoluteSymbol); 519 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 520 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 521 void visitProfMetadata(Instruction &I, MDNode *MD); 522 void visitCallStackMetadata(MDNode *MD); 523 void visitMemProfMetadata(Instruction &I, MDNode *MD); 524 void visitCallsiteMetadata(Instruction &I, MDNode *MD); 525 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD); 526 void visitMMRAMetadata(Instruction &I, MDNode *MD); 527 void visitAnnotationMetadata(MDNode *Annotation); 528 void visitAliasScopeMetadata(const MDNode *MD); 529 void visitAliasScopeListMetadata(const MDNode *MD); 530 void visitAccessGroupMetadata(const MDNode *MD); 531 532 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 533 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 534 #include "llvm/IR/Metadata.def" 535 void visitDIScope(const DIScope &N); 536 void visitDIVariable(const DIVariable &N); 537 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 538 void visitDITemplateParameter(const DITemplateParameter &N); 539 540 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 541 542 void visit(DbgLabelRecord &DLR); 543 void visit(DbgVariableRecord &DVR); 544 // InstVisitor overrides... 545 using InstVisitor<Verifier>::visit; 546 void visitDbgRecords(Instruction &I); 547 void visit(Instruction &I); 548 549 void visitTruncInst(TruncInst &I); 550 void visitZExtInst(ZExtInst &I); 551 void visitSExtInst(SExtInst &I); 552 void visitFPTruncInst(FPTruncInst &I); 553 void visitFPExtInst(FPExtInst &I); 554 void visitFPToUIInst(FPToUIInst &I); 555 void visitFPToSIInst(FPToSIInst &I); 556 void visitUIToFPInst(UIToFPInst &I); 557 void visitSIToFPInst(SIToFPInst &I); 558 void visitIntToPtrInst(IntToPtrInst &I); 559 void visitPtrToIntInst(PtrToIntInst &I); 560 void visitBitCastInst(BitCastInst &I); 561 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 562 void visitPHINode(PHINode &PN); 563 void visitCallBase(CallBase &Call); 564 void visitUnaryOperator(UnaryOperator &U); 565 void visitBinaryOperator(BinaryOperator &B); 566 void visitICmpInst(ICmpInst &IC); 567 void visitFCmpInst(FCmpInst &FC); 568 void visitExtractElementInst(ExtractElementInst &EI); 569 void visitInsertElementInst(InsertElementInst &EI); 570 void visitShuffleVectorInst(ShuffleVectorInst &EI); 571 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 572 void visitCallInst(CallInst &CI); 573 void visitInvokeInst(InvokeInst &II); 574 void visitGetElementPtrInst(GetElementPtrInst &GEP); 575 void visitLoadInst(LoadInst &LI); 576 void visitStoreInst(StoreInst &SI); 577 void verifyDominatesUse(Instruction &I, unsigned i); 578 void visitInstruction(Instruction &I); 579 void visitTerminator(Instruction &I); 580 void visitBranchInst(BranchInst &BI); 581 void visitReturnInst(ReturnInst &RI); 582 void visitSwitchInst(SwitchInst &SI); 583 void visitIndirectBrInst(IndirectBrInst &BI); 584 void visitCallBrInst(CallBrInst &CBI); 585 void visitSelectInst(SelectInst &SI); 586 void visitUserOp1(Instruction &I); 587 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 588 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 589 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 590 void visitVPIntrinsic(VPIntrinsic &VPI); 591 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 592 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 593 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 594 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 595 void visitFenceInst(FenceInst &FI); 596 void visitAllocaInst(AllocaInst &AI); 597 void visitExtractValueInst(ExtractValueInst &EVI); 598 void visitInsertValueInst(InsertValueInst &IVI); 599 void visitEHPadPredecessors(Instruction &I); 600 void visitLandingPadInst(LandingPadInst &LPI); 601 void visitResumeInst(ResumeInst &RI); 602 void visitCatchPadInst(CatchPadInst &CPI); 603 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 604 void visitCleanupPadInst(CleanupPadInst &CPI); 605 void visitFuncletPadInst(FuncletPadInst &FPI); 606 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 607 void visitCleanupReturnInst(CleanupReturnInst &CRI); 608 609 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 610 void verifySwiftErrorValue(const Value *SwiftErrorVal); 611 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context); 612 void verifyMustTailCall(CallInst &CI); 613 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 614 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 615 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 616 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 617 const Value *V); 618 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 619 const Value *V, bool IsIntrinsic, bool IsInlineAsm); 620 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 621 622 void visitConstantExprsRecursively(const Constant *EntryC); 623 void visitConstantExpr(const ConstantExpr *CE); 624 void visitConstantPtrAuth(const ConstantPtrAuth *CPA); 625 void verifyInlineAsmCall(const CallBase &Call); 626 void verifyStatepoint(const CallBase &Call); 627 void verifyFrameRecoverIndices(); 628 void verifySiblingFuncletUnwinds(); 629 630 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 631 void verifyFragmentExpression(const DbgVariableRecord &I); 632 template <typename ValueOrMetadata> 633 void verifyFragmentExpression(const DIVariable &V, 634 DIExpression::FragmentInfo Fragment, 635 ValueOrMetadata *Desc); 636 void verifyFnArgs(const DbgVariableIntrinsic &I); 637 void verifyFnArgs(const DbgVariableRecord &DVR); 638 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 639 void verifyNotEntryValue(const DbgVariableRecord &I); 640 641 /// Module-level debug info verification... 642 void verifyCompileUnits(); 643 644 /// Module-level verification that all @llvm.experimental.deoptimize 645 /// declarations share the same calling convention. 646 void verifyDeoptimizeCallingConvs(); 647 648 void verifyAttachedCallBundle(const CallBase &Call, 649 const OperandBundleUse &BU); 650 651 /// Verify the llvm.experimental.noalias.scope.decl declarations 652 void verifyNoAliasScopeDecl(); 653 }; 654 655 } // end anonymous namespace 656 657 /// We know that cond should be true, if not print an error message. 658 #define Check(C, ...) \ 659 do { \ 660 if (!(C)) { \ 661 CheckFailed(__VA_ARGS__); \ 662 return; \ 663 } \ 664 } while (false) 665 666 /// We know that a debug info condition should be true, if not print 667 /// an error message. 668 #define CheckDI(C, ...) \ 669 do { \ 670 if (!(C)) { \ 671 DebugInfoCheckFailed(__VA_ARGS__); \ 672 return; \ 673 } \ 674 } while (false) 675 676 void Verifier::visitDbgRecords(Instruction &I) { 677 if (!I.DebugMarker) 678 return; 679 CheckDI(I.DebugMarker->MarkedInstr == &I, 680 "Instruction has invalid DebugMarker", &I); 681 CheckDI(!isa<PHINode>(&I) || !I.hasDbgRecords(), 682 "PHI Node must not have any attached DbgRecords", &I); 683 for (DbgRecord &DR : I.getDbgRecordRange()) { 684 CheckDI(DR.getMarker() == I.DebugMarker, 685 "DbgRecord had invalid DebugMarker", &I, &DR); 686 if (auto *Loc = 687 dyn_cast_or_null<DILocation>(DR.getDebugLoc().getAsMDNode())) 688 visitMDNode(*Loc, AreDebugLocsAllowed::Yes); 689 if (auto *DVR = dyn_cast<DbgVariableRecord>(&DR)) { 690 visit(*DVR); 691 // These have to appear after `visit` for consistency with existing 692 // intrinsic behaviour. 693 verifyFragmentExpression(*DVR); 694 verifyNotEntryValue(*DVR); 695 } else if (auto *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 696 visit(*DLR); 697 } 698 } 699 } 700 701 void Verifier::visit(Instruction &I) { 702 visitDbgRecords(I); 703 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 704 Check(I.getOperand(i) != nullptr, "Operand is null", &I); 705 InstVisitor<Verifier>::visit(I); 706 } 707 708 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further. 709 static void forEachUser(const Value *User, 710 SmallPtrSet<const Value *, 32> &Visited, 711 llvm::function_ref<bool(const Value *)> Callback) { 712 if (!Visited.insert(User).second) 713 return; 714 715 SmallVector<const Value *> WorkList; 716 append_range(WorkList, User->materialized_users()); 717 while (!WorkList.empty()) { 718 const Value *Cur = WorkList.pop_back_val(); 719 if (!Visited.insert(Cur).second) 720 continue; 721 if (Callback(Cur)) 722 append_range(WorkList, Cur->materialized_users()); 723 } 724 } 725 726 void Verifier::visitGlobalValue(const GlobalValue &GV) { 727 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 728 "Global is external, but doesn't have external or weak linkage!", &GV); 729 730 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) { 731 732 if (MaybeAlign A = GO->getAlign()) { 733 Check(A->value() <= Value::MaximumAlignment, 734 "huge alignment values are unsupported", GO); 735 } 736 737 if (const MDNode *Associated = 738 GO->getMetadata(LLVMContext::MD_associated)) { 739 Check(Associated->getNumOperands() == 1, 740 "associated metadata must have one operand", &GV, Associated); 741 const Metadata *Op = Associated->getOperand(0).get(); 742 Check(Op, "associated metadata must have a global value", GO, Associated); 743 744 const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op); 745 Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated); 746 if (VM) { 747 Check(isa<PointerType>(VM->getValue()->getType()), 748 "associated value must be pointer typed", GV, Associated); 749 750 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases(); 751 Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped), 752 "associated metadata must point to a GlobalObject", GO, Stripped); 753 Check(Stripped != GO, 754 "global values should not associate to themselves", GO, 755 Associated); 756 } 757 } 758 759 // FIXME: Why is getMetadata on GlobalValue protected? 760 if (const MDNode *AbsoluteSymbol = 761 GO->getMetadata(LLVMContext::MD_absolute_symbol)) { 762 verifyRangeMetadata(*GO, AbsoluteSymbol, DL.getIntPtrType(GO->getType()), 763 true); 764 } 765 } 766 767 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 768 "Only global variables can have appending linkage!", &GV); 769 770 if (GV.hasAppendingLinkage()) { 771 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 772 Check(GVar && GVar->getValueType()->isArrayTy(), 773 "Only global arrays can have appending linkage!", GVar); 774 } 775 776 if (GV.isDeclarationForLinker()) 777 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 778 779 if (GV.hasDLLExportStorageClass()) { 780 Check(!GV.hasHiddenVisibility(), 781 "dllexport GlobalValue must have default or protected visibility", 782 &GV); 783 } 784 if (GV.hasDLLImportStorageClass()) { 785 Check(GV.hasDefaultVisibility(), 786 "dllimport GlobalValue must have default visibility", &GV); 787 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!", 788 &GV); 789 790 Check((GV.isDeclaration() && 791 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 792 GV.hasAvailableExternallyLinkage(), 793 "Global is marked as dllimport, but not external", &GV); 794 } 795 796 if (GV.isImplicitDSOLocal()) 797 Check(GV.isDSOLocal(), 798 "GlobalValue with local linkage or non-default " 799 "visibility must be dso_local!", 800 &GV); 801 802 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 803 if (const Instruction *I = dyn_cast<Instruction>(V)) { 804 if (!I->getParent() || !I->getParent()->getParent()) 805 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 806 I); 807 else if (I->getParent()->getParent()->getParent() != &M) 808 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 809 I->getParent()->getParent(), 810 I->getParent()->getParent()->getParent()); 811 return false; 812 } else if (const Function *F = dyn_cast<Function>(V)) { 813 if (F->getParent() != &M) 814 CheckFailed("Global is used by function in a different module", &GV, &M, 815 F, F->getParent()); 816 return false; 817 } 818 return true; 819 }); 820 } 821 822 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 823 if (GV.hasInitializer()) { 824 Check(GV.getInitializer()->getType() == GV.getValueType(), 825 "Global variable initializer type does not match global " 826 "variable type!", 827 &GV); 828 // If the global has common linkage, it must have a zero initializer and 829 // cannot be constant. 830 if (GV.hasCommonLinkage()) { 831 Check(GV.getInitializer()->isNullValue(), 832 "'common' global must have a zero initializer!", &GV); 833 Check(!GV.isConstant(), "'common' global may not be marked constant!", 834 &GV); 835 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 836 } 837 } 838 839 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 840 GV.getName() == "llvm.global_dtors")) { 841 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), 842 "invalid linkage for intrinsic global variable", &GV); 843 Check(GV.materialized_use_empty(), 844 "invalid uses of intrinsic global variable", &GV); 845 846 // Don't worry about emitting an error for it not being an array, 847 // visitGlobalValue will complain on appending non-array. 848 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 849 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 850 PointerType *FuncPtrTy = 851 PointerType::get(Context, DL.getProgramAddressSpace()); 852 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 853 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 854 STy->getTypeAtIndex(1) == FuncPtrTy, 855 "wrong type for intrinsic global variable", &GV); 856 Check(STy->getNumElements() == 3, 857 "the third field of the element type is mandatory, " 858 "specify ptr null to migrate from the obsoleted 2-field form"); 859 Type *ETy = STy->getTypeAtIndex(2); 860 Check(ETy->isPointerTy(), "wrong type for intrinsic global variable", 861 &GV); 862 } 863 } 864 865 if (GV.hasName() && (GV.getName() == "llvm.used" || 866 GV.getName() == "llvm.compiler.used")) { 867 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), 868 "invalid linkage for intrinsic global variable", &GV); 869 Check(GV.materialized_use_empty(), 870 "invalid uses of intrinsic global variable", &GV); 871 872 Type *GVType = GV.getValueType(); 873 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 874 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 875 Check(PTy, "wrong type for intrinsic global variable", &GV); 876 if (GV.hasInitializer()) { 877 const Constant *Init = GV.getInitializer(); 878 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 879 Check(InitArray, "wrong initalizer for intrinsic global variable", 880 Init); 881 for (Value *Op : InitArray->operands()) { 882 Value *V = Op->stripPointerCasts(); 883 Check(isa<GlobalVariable>(V) || isa<Function>(V) || 884 isa<GlobalAlias>(V), 885 Twine("invalid ") + GV.getName() + " member", V); 886 Check(V->hasName(), 887 Twine("members of ") + GV.getName() + " must be named", V); 888 } 889 } 890 } 891 } 892 893 // Visit any debug info attachments. 894 SmallVector<MDNode *, 1> MDs; 895 GV.getMetadata(LLVMContext::MD_dbg, MDs); 896 for (auto *MD : MDs) { 897 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 898 visitDIGlobalVariableExpression(*GVE); 899 else 900 CheckDI(false, "!dbg attachment of global variable must be a " 901 "DIGlobalVariableExpression"); 902 } 903 904 // Scalable vectors cannot be global variables, since we don't know 905 // the runtime size. 906 Check(!GV.getValueType()->isScalableTy(), 907 "Globals cannot contain scalable types", &GV); 908 909 // Check if it's a target extension type that disallows being used as a 910 // global. 911 if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType())) 912 Check(TTy->hasProperty(TargetExtType::CanBeGlobal), 913 "Global @" + GV.getName() + " has illegal target extension type", 914 TTy); 915 916 if (!GV.hasInitializer()) { 917 visitGlobalValue(GV); 918 return; 919 } 920 921 // Walk any aggregate initializers looking for bitcasts between address spaces 922 visitConstantExprsRecursively(GV.getInitializer()); 923 924 visitGlobalValue(GV); 925 } 926 927 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 928 SmallPtrSet<const GlobalAlias*, 4> Visited; 929 Visited.insert(&GA); 930 visitAliaseeSubExpr(Visited, GA, C); 931 } 932 933 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 934 const GlobalAlias &GA, const Constant &C) { 935 if (GA.hasAvailableExternallyLinkage()) { 936 Check(isa<GlobalValue>(C) && 937 cast<GlobalValue>(C).hasAvailableExternallyLinkage(), 938 "available_externally alias must point to available_externally " 939 "global value", 940 &GA); 941 } 942 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 943 if (!GA.hasAvailableExternallyLinkage()) { 944 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition", 945 &GA); 946 } 947 948 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 949 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 950 951 Check(!GA2->isInterposable(), 952 "Alias cannot point to an interposable alias", &GA); 953 } else { 954 // Only continue verifying subexpressions of GlobalAliases. 955 // Do not recurse into global initializers. 956 return; 957 } 958 } 959 960 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 961 visitConstantExprsRecursively(CE); 962 963 for (const Use &U : C.operands()) { 964 Value *V = &*U; 965 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 966 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 967 else if (const auto *C2 = dyn_cast<Constant>(V)) 968 visitAliaseeSubExpr(Visited, GA, *C2); 969 } 970 } 971 972 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 973 Check(GlobalAlias::isValidLinkage(GA.getLinkage()), 974 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 975 "weak_odr, external, or available_externally linkage!", 976 &GA); 977 const Constant *Aliasee = GA.getAliasee(); 978 Check(Aliasee, "Aliasee cannot be NULL!", &GA); 979 Check(GA.getType() == Aliasee->getType(), 980 "Alias and aliasee types should match!", &GA); 981 982 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 983 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 984 985 visitAliaseeSubExpr(GA, *Aliasee); 986 987 visitGlobalValue(GA); 988 } 989 990 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { 991 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()), 992 "IFunc should have private, internal, linkonce, weak, linkonce_odr, " 993 "weak_odr, or external linkage!", 994 &GI); 995 // Pierce through ConstantExprs and GlobalAliases and check that the resolver 996 // is a Function definition. 997 const Function *Resolver = GI.getResolverFunction(); 998 Check(Resolver, "IFunc must have a Function resolver", &GI); 999 Check(!Resolver->isDeclarationForLinker(), 1000 "IFunc resolver must be a definition", &GI); 1001 1002 // Check that the immediate resolver operand (prior to any bitcasts) has the 1003 // correct type. 1004 const Type *ResolverTy = GI.getResolver()->getType(); 1005 1006 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()), 1007 "IFunc resolver must return a pointer", &GI); 1008 1009 const Type *ResolverFuncTy = 1010 GlobalIFunc::getResolverFunctionType(GI.getValueType()); 1011 Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()), 1012 "IFunc resolver has incorrect type", &GI); 1013 } 1014 1015 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 1016 // There used to be various other llvm.dbg.* nodes, but we don't support 1017 // upgrading them and we want to reserve the namespace for future uses. 1018 if (NMD.getName().starts_with("llvm.dbg.")) 1019 CheckDI(NMD.getName() == "llvm.dbg.cu", 1020 "unrecognized named metadata node in the llvm.dbg namespace", &NMD); 1021 for (const MDNode *MD : NMD.operands()) { 1022 if (NMD.getName() == "llvm.dbg.cu") 1023 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 1024 1025 if (!MD) 1026 continue; 1027 1028 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 1029 } 1030 } 1031 1032 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 1033 // Only visit each node once. Metadata can be mutually recursive, so this 1034 // avoids infinite recursion here, as well as being an optimization. 1035 if (!MDNodes.insert(&MD).second) 1036 return; 1037 1038 Check(&MD.getContext() == &Context, 1039 "MDNode context does not match Module context!", &MD); 1040 1041 switch (MD.getMetadataID()) { 1042 default: 1043 llvm_unreachable("Invalid MDNode subclass"); 1044 case Metadata::MDTupleKind: 1045 break; 1046 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 1047 case Metadata::CLASS##Kind: \ 1048 visit##CLASS(cast<CLASS>(MD)); \ 1049 break; 1050 #include "llvm/IR/Metadata.def" 1051 } 1052 1053 for (const Metadata *Op : MD.operands()) { 1054 if (!Op) 1055 continue; 1056 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 1057 &MD, Op); 1058 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 1059 "DILocation not allowed within this metadata node", &MD, Op); 1060 if (auto *N = dyn_cast<MDNode>(Op)) { 1061 visitMDNode(*N, AllowLocs); 1062 continue; 1063 } 1064 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 1065 visitValueAsMetadata(*V, nullptr); 1066 continue; 1067 } 1068 } 1069 1070 // Check these last, so we diagnose problems in operands first. 1071 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD); 1072 Check(MD.isResolved(), "All nodes should be resolved!", &MD); 1073 } 1074 1075 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 1076 Check(MD.getValue(), "Expected valid value", &MD); 1077 Check(!MD.getValue()->getType()->isMetadataTy(), 1078 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 1079 1080 auto *L = dyn_cast<LocalAsMetadata>(&MD); 1081 if (!L) 1082 return; 1083 1084 Check(F, "function-local metadata used outside a function", L); 1085 1086 // If this was an instruction, bb, or argument, verify that it is in the 1087 // function that we expect. 1088 Function *ActualF = nullptr; 1089 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 1090 Check(I->getParent(), "function-local metadata not in basic block", L, I); 1091 ActualF = I->getParent()->getParent(); 1092 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 1093 ActualF = BB->getParent(); 1094 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 1095 ActualF = A->getParent(); 1096 assert(ActualF && "Unimplemented function local metadata case!"); 1097 1098 Check(ActualF == F, "function-local metadata used in wrong function", L); 1099 } 1100 1101 void Verifier::visitDIArgList(const DIArgList &AL, Function *F) { 1102 for (const ValueAsMetadata *VAM : AL.getArgs()) 1103 visitValueAsMetadata(*VAM, F); 1104 } 1105 1106 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 1107 Metadata *MD = MDV.getMetadata(); 1108 if (auto *N = dyn_cast<MDNode>(MD)) { 1109 visitMDNode(*N, AreDebugLocsAllowed::No); 1110 return; 1111 } 1112 1113 // Only visit each node once. Metadata can be mutually recursive, so this 1114 // avoids infinite recursion here, as well as being an optimization. 1115 if (!MDNodes.insert(MD).second) 1116 return; 1117 1118 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 1119 visitValueAsMetadata(*V, F); 1120 1121 if (auto *AL = dyn_cast<DIArgList>(MD)) 1122 visitDIArgList(*AL, F); 1123 } 1124 1125 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 1126 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 1127 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 1128 1129 void Verifier::visitDILocation(const DILocation &N) { 1130 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1131 "location requires a valid scope", &N, N.getRawScope()); 1132 if (auto *IA = N.getRawInlinedAt()) 1133 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 1134 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1135 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1136 } 1137 1138 void Verifier::visitGenericDINode(const GenericDINode &N) { 1139 CheckDI(N.getTag(), "invalid tag", &N); 1140 } 1141 1142 void Verifier::visitDIScope(const DIScope &N) { 1143 if (auto *F = N.getRawFile()) 1144 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1145 } 1146 1147 void Verifier::visitDISubrange(const DISubrange &N) { 1148 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 1149 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1150 "Subrange can have any one of count or upperBound", &N); 1151 auto *CBound = N.getRawCountNode(); 1152 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) || 1153 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1154 "Count must be signed constant or DIVariable or DIExpression", &N); 1155 auto Count = N.getCount(); 1156 CheckDI(!Count || !isa<ConstantInt *>(Count) || 1157 cast<ConstantInt *>(Count)->getSExtValue() >= -1, 1158 "invalid subrange count", &N); 1159 auto *LBound = N.getRawLowerBound(); 1160 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) || 1161 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1162 "LowerBound must be signed constant or DIVariable or DIExpression", 1163 &N); 1164 auto *UBound = N.getRawUpperBound(); 1165 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) || 1166 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1167 "UpperBound must be signed constant or DIVariable or DIExpression", 1168 &N); 1169 auto *Stride = N.getRawStride(); 1170 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) || 1171 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1172 "Stride must be signed constant or DIVariable or DIExpression", &N); 1173 } 1174 1175 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 1176 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 1177 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1178 "GenericSubrange can have any one of count or upperBound", &N); 1179 auto *CBound = N.getRawCountNode(); 1180 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1181 "Count must be signed constant or DIVariable or DIExpression", &N); 1182 auto *LBound = N.getRawLowerBound(); 1183 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N); 1184 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1185 "LowerBound must be signed constant or DIVariable or DIExpression", 1186 &N); 1187 auto *UBound = N.getRawUpperBound(); 1188 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1189 "UpperBound must be signed constant or DIVariable or DIExpression", 1190 &N); 1191 auto *Stride = N.getRawStride(); 1192 CheckDI(Stride, "GenericSubrange must contain stride", &N); 1193 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1194 "Stride must be signed constant or DIVariable or DIExpression", &N); 1195 } 1196 1197 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1198 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1199 } 1200 1201 void Verifier::visitDIBasicType(const DIBasicType &N) { 1202 CheckDI(N.getTag() == dwarf::DW_TAG_base_type || 1203 N.getTag() == dwarf::DW_TAG_unspecified_type || 1204 N.getTag() == dwarf::DW_TAG_string_type, 1205 "invalid tag", &N); 1206 } 1207 1208 void Verifier::visitDIStringType(const DIStringType &N) { 1209 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1210 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags", 1211 &N); 1212 } 1213 1214 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1215 // Common scope checks. 1216 visitDIScope(N); 1217 1218 CheckDI(N.getTag() == dwarf::DW_TAG_typedef || 1219 N.getTag() == dwarf::DW_TAG_pointer_type || 1220 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1221 N.getTag() == dwarf::DW_TAG_reference_type || 1222 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1223 N.getTag() == dwarf::DW_TAG_const_type || 1224 N.getTag() == dwarf::DW_TAG_immutable_type || 1225 N.getTag() == dwarf::DW_TAG_volatile_type || 1226 N.getTag() == dwarf::DW_TAG_restrict_type || 1227 N.getTag() == dwarf::DW_TAG_atomic_type || 1228 N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type || 1229 N.getTag() == dwarf::DW_TAG_member || 1230 (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) || 1231 N.getTag() == dwarf::DW_TAG_inheritance || 1232 N.getTag() == dwarf::DW_TAG_friend || 1233 N.getTag() == dwarf::DW_TAG_set_type || 1234 N.getTag() == dwarf::DW_TAG_template_alias, 1235 "invalid tag", &N); 1236 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1237 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1238 N.getRawExtraData()); 1239 } 1240 1241 if (N.getTag() == dwarf::DW_TAG_set_type) { 1242 if (auto *T = N.getRawBaseType()) { 1243 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1244 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1245 CheckDI( 1246 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1247 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1248 Basic->getEncoding() == dwarf::DW_ATE_signed || 1249 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1250 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1251 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1252 "invalid set base type", &N, T); 1253 } 1254 } 1255 1256 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1257 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, 1258 N.getRawBaseType()); 1259 1260 if (N.getDWARFAddressSpace()) { 1261 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1262 N.getTag() == dwarf::DW_TAG_reference_type || 1263 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1264 "DWARF address space only applies to pointer or reference types", 1265 &N); 1266 } 1267 } 1268 1269 /// Detect mutually exclusive flags. 1270 static bool hasConflictingReferenceFlags(unsigned Flags) { 1271 return ((Flags & DINode::FlagLValueReference) && 1272 (Flags & DINode::FlagRValueReference)) || 1273 ((Flags & DINode::FlagTypePassByValue) && 1274 (Flags & DINode::FlagTypePassByReference)); 1275 } 1276 1277 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1278 auto *Params = dyn_cast<MDTuple>(&RawParams); 1279 CheckDI(Params, "invalid template params", &N, &RawParams); 1280 for (Metadata *Op : Params->operands()) { 1281 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1282 &N, Params, Op); 1283 } 1284 } 1285 1286 void Verifier::visitDICompositeType(const DICompositeType &N) { 1287 // Common scope checks. 1288 visitDIScope(N); 1289 1290 CheckDI(N.getTag() == dwarf::DW_TAG_array_type || 1291 N.getTag() == dwarf::DW_TAG_structure_type || 1292 N.getTag() == dwarf::DW_TAG_union_type || 1293 N.getTag() == dwarf::DW_TAG_enumeration_type || 1294 N.getTag() == dwarf::DW_TAG_class_type || 1295 N.getTag() == dwarf::DW_TAG_variant_part || 1296 N.getTag() == dwarf::DW_TAG_namelist, 1297 "invalid tag", &N); 1298 1299 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1300 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, 1301 N.getRawBaseType()); 1302 1303 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1304 "invalid composite elements", &N, N.getRawElements()); 1305 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1306 N.getRawVTableHolder()); 1307 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1308 "invalid reference flags", &N); 1309 unsigned DIBlockByRefStruct = 1 << 4; 1310 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0, 1311 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1312 1313 if (N.isVector()) { 1314 const DINodeArray Elements = N.getElements(); 1315 CheckDI(Elements.size() == 1 && 1316 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1317 "invalid vector, expected one element of type subrange", &N); 1318 } 1319 1320 if (auto *Params = N.getRawTemplateParams()) 1321 visitTemplateParams(N, *Params); 1322 1323 if (auto *D = N.getRawDiscriminator()) { 1324 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1325 "discriminator can only appear on variant part"); 1326 } 1327 1328 if (N.getRawDataLocation()) { 1329 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1330 "dataLocation can only appear in array type"); 1331 } 1332 1333 if (N.getRawAssociated()) { 1334 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1335 "associated can only appear in array type"); 1336 } 1337 1338 if (N.getRawAllocated()) { 1339 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1340 "allocated can only appear in array type"); 1341 } 1342 1343 if (N.getRawRank()) { 1344 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1345 "rank can only appear in array type"); 1346 } 1347 1348 if (N.getTag() == dwarf::DW_TAG_array_type) { 1349 CheckDI(N.getRawBaseType(), "array types must have a base type", &N); 1350 } 1351 } 1352 1353 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1354 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1355 if (auto *Types = N.getRawTypeArray()) { 1356 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1357 for (Metadata *Ty : N.getTypeArray()->operands()) { 1358 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1359 } 1360 } 1361 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1362 "invalid reference flags", &N); 1363 } 1364 1365 void Verifier::visitDIFile(const DIFile &N) { 1366 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1367 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1368 if (Checksum) { 1369 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1370 "invalid checksum kind", &N); 1371 size_t Size; 1372 switch (Checksum->Kind) { 1373 case DIFile::CSK_MD5: 1374 Size = 32; 1375 break; 1376 case DIFile::CSK_SHA1: 1377 Size = 40; 1378 break; 1379 case DIFile::CSK_SHA256: 1380 Size = 64; 1381 break; 1382 } 1383 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1384 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1385 "invalid checksum", &N); 1386 } 1387 } 1388 1389 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1390 CheckDI(N.isDistinct(), "compile units must be distinct", &N); 1391 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1392 1393 // Don't bother verifying the compilation directory or producer string 1394 // as those could be empty. 1395 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1396 N.getRawFile()); 1397 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1398 N.getFile()); 1399 1400 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1401 "invalid emission kind", &N); 1402 1403 if (auto *Array = N.getRawEnumTypes()) { 1404 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1405 for (Metadata *Op : N.getEnumTypes()->operands()) { 1406 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1407 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1408 "invalid enum type", &N, N.getEnumTypes(), Op); 1409 } 1410 } 1411 if (auto *Array = N.getRawRetainedTypes()) { 1412 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1413 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1414 CheckDI( 1415 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) && 1416 !cast<DISubprogram>(Op)->isDefinition())), 1417 "invalid retained type", &N, Op); 1418 } 1419 } 1420 if (auto *Array = N.getRawGlobalVariables()) { 1421 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1422 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1423 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1424 "invalid global variable ref", &N, Op); 1425 } 1426 } 1427 if (auto *Array = N.getRawImportedEntities()) { 1428 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1429 for (Metadata *Op : N.getImportedEntities()->operands()) { 1430 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1431 &N, Op); 1432 } 1433 } 1434 if (auto *Array = N.getRawMacros()) { 1435 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1436 for (Metadata *Op : N.getMacros()->operands()) { 1437 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1438 } 1439 } 1440 CUVisited.insert(&N); 1441 } 1442 1443 void Verifier::visitDISubprogram(const DISubprogram &N) { 1444 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1445 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1446 if (auto *F = N.getRawFile()) 1447 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1448 else 1449 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1450 if (auto *T = N.getRawType()) 1451 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1452 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1453 N.getRawContainingType()); 1454 if (auto *Params = N.getRawTemplateParams()) 1455 visitTemplateParams(N, *Params); 1456 if (auto *S = N.getRawDeclaration()) 1457 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1458 "invalid subprogram declaration", &N, S); 1459 if (auto *RawNode = N.getRawRetainedNodes()) { 1460 auto *Node = dyn_cast<MDTuple>(RawNode); 1461 CheckDI(Node, "invalid retained nodes list", &N, RawNode); 1462 for (Metadata *Op : Node->operands()) { 1463 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) || 1464 isa<DIImportedEntity>(Op)), 1465 "invalid retained nodes, expected DILocalVariable, DILabel or " 1466 "DIImportedEntity", 1467 &N, Node, Op); 1468 } 1469 } 1470 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1471 "invalid reference flags", &N); 1472 1473 auto *Unit = N.getRawUnit(); 1474 if (N.isDefinition()) { 1475 // Subprogram definitions (not part of the type hierarchy). 1476 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1477 CheckDI(Unit, "subprogram definitions must have a compile unit", &N); 1478 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1479 // There's no good way to cross the CU boundary to insert a nested 1480 // DISubprogram definition in one CU into a type defined in another CU. 1481 auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope()); 1482 if (CT && CT->getRawIdentifier() && 1483 M.getContext().isODRUniquingDebugTypes()) 1484 CheckDI(N.getDeclaration(), 1485 "definition subprograms cannot be nested within DICompositeType " 1486 "when enabling ODR", 1487 &N); 1488 } else { 1489 // Subprogram declarations (part of the type hierarchy). 1490 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1491 CheckDI(!N.getRawDeclaration(), 1492 "subprogram declaration must not have a declaration field"); 1493 } 1494 1495 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1496 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1497 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1498 for (Metadata *Op : ThrownTypes->operands()) 1499 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1500 Op); 1501 } 1502 1503 if (N.areAllCallsDescribed()) 1504 CheckDI(N.isDefinition(), 1505 "DIFlagAllCallsDescribed must be attached to a definition"); 1506 } 1507 1508 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1509 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1510 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1511 "invalid local scope", &N, N.getRawScope()); 1512 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1513 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1514 } 1515 1516 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1517 visitDILexicalBlockBase(N); 1518 1519 CheckDI(N.getLine() || !N.getColumn(), 1520 "cannot have column info without line info", &N); 1521 } 1522 1523 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1524 visitDILexicalBlockBase(N); 1525 } 1526 1527 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1528 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1529 if (auto *S = N.getRawScope()) 1530 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1531 if (auto *S = N.getRawDecl()) 1532 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1533 } 1534 1535 void Verifier::visitDINamespace(const DINamespace &N) { 1536 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1537 if (auto *S = N.getRawScope()) 1538 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1539 } 1540 1541 void Verifier::visitDIMacro(const DIMacro &N) { 1542 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1543 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1544 "invalid macinfo type", &N); 1545 CheckDI(!N.getName().empty(), "anonymous macro", &N); 1546 if (!N.getValue().empty()) { 1547 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1548 } 1549 } 1550 1551 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1552 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1553 "invalid macinfo type", &N); 1554 if (auto *F = N.getRawFile()) 1555 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1556 1557 if (auto *Array = N.getRawElements()) { 1558 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1559 for (Metadata *Op : N.getElements()->operands()) { 1560 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1561 } 1562 } 1563 } 1564 1565 void Verifier::visitDIModule(const DIModule &N) { 1566 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1567 CheckDI(!N.getName().empty(), "anonymous module", &N); 1568 } 1569 1570 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1571 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1572 } 1573 1574 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1575 visitDITemplateParameter(N); 1576 1577 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1578 &N); 1579 } 1580 1581 void Verifier::visitDITemplateValueParameter( 1582 const DITemplateValueParameter &N) { 1583 visitDITemplateParameter(N); 1584 1585 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1586 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1587 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1588 "invalid tag", &N); 1589 } 1590 1591 void Verifier::visitDIVariable(const DIVariable &N) { 1592 if (auto *S = N.getRawScope()) 1593 CheckDI(isa<DIScope>(S), "invalid scope", &N, S); 1594 if (auto *F = N.getRawFile()) 1595 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1596 } 1597 1598 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1599 // Checks common to all variables. 1600 visitDIVariable(N); 1601 1602 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1603 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1604 // Check only if the global variable is not an extern 1605 if (N.isDefinition()) 1606 CheckDI(N.getType(), "missing global variable type", &N); 1607 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1608 CheckDI(isa<DIDerivedType>(Member), 1609 "invalid static data member declaration", &N, Member); 1610 } 1611 } 1612 1613 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1614 // Checks common to all variables. 1615 visitDIVariable(N); 1616 1617 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1618 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1619 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1620 "local variable requires a valid scope", &N, N.getRawScope()); 1621 if (auto Ty = N.getType()) 1622 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1623 } 1624 1625 void Verifier::visitDIAssignID(const DIAssignID &N) { 1626 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N); 1627 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N); 1628 } 1629 1630 void Verifier::visitDILabel(const DILabel &N) { 1631 if (auto *S = N.getRawScope()) 1632 CheckDI(isa<DIScope>(S), "invalid scope", &N, S); 1633 if (auto *F = N.getRawFile()) 1634 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1635 1636 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1637 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1638 "label requires a valid scope", &N, N.getRawScope()); 1639 } 1640 1641 void Verifier::visitDIExpression(const DIExpression &N) { 1642 CheckDI(N.isValid(), "invalid expression", &N); 1643 } 1644 1645 void Verifier::visitDIGlobalVariableExpression( 1646 const DIGlobalVariableExpression &GVE) { 1647 CheckDI(GVE.getVariable(), "missing variable"); 1648 if (auto *Var = GVE.getVariable()) 1649 visitDIGlobalVariable(*Var); 1650 if (auto *Expr = GVE.getExpression()) { 1651 visitDIExpression(*Expr); 1652 if (auto Fragment = Expr->getFragmentInfo()) 1653 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1654 } 1655 } 1656 1657 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1658 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1659 if (auto *T = N.getRawType()) 1660 CheckDI(isType(T), "invalid type ref", &N, T); 1661 if (auto *F = N.getRawFile()) 1662 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1663 } 1664 1665 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1666 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module || 1667 N.getTag() == dwarf::DW_TAG_imported_declaration, 1668 "invalid tag", &N); 1669 if (auto *S = N.getRawScope()) 1670 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1671 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1672 N.getRawEntity()); 1673 } 1674 1675 void Verifier::visitComdat(const Comdat &C) { 1676 // In COFF the Module is invalid if the GlobalValue has private linkage. 1677 // Entities with private linkage don't have entries in the symbol table. 1678 if (TT.isOSBinFormatCOFF()) 1679 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1680 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1681 GV); 1682 } 1683 1684 void Verifier::visitModuleIdents() { 1685 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1686 if (!Idents) 1687 return; 1688 1689 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1690 // Scan each llvm.ident entry and make sure that this requirement is met. 1691 for (const MDNode *N : Idents->operands()) { 1692 Check(N->getNumOperands() == 1, 1693 "incorrect number of operands in llvm.ident metadata", N); 1694 Check(dyn_cast_or_null<MDString>(N->getOperand(0)), 1695 ("invalid value for llvm.ident metadata entry operand" 1696 "(the operand should be a string)"), 1697 N->getOperand(0)); 1698 } 1699 } 1700 1701 void Verifier::visitModuleCommandLines() { 1702 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1703 if (!CommandLines) 1704 return; 1705 1706 // llvm.commandline takes a list of metadata entry. Each entry has only one 1707 // string. Scan each llvm.commandline entry and make sure that this 1708 // requirement is met. 1709 for (const MDNode *N : CommandLines->operands()) { 1710 Check(N->getNumOperands() == 1, 1711 "incorrect number of operands in llvm.commandline metadata", N); 1712 Check(dyn_cast_or_null<MDString>(N->getOperand(0)), 1713 ("invalid value for llvm.commandline metadata entry operand" 1714 "(the operand should be a string)"), 1715 N->getOperand(0)); 1716 } 1717 } 1718 1719 void Verifier::visitModuleFlags() { 1720 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1721 if (!Flags) return; 1722 1723 // Scan each flag, and track the flags and requirements. 1724 DenseMap<const MDString*, const MDNode*> SeenIDs; 1725 SmallVector<const MDNode*, 16> Requirements; 1726 uint64_t PAuthABIPlatform = -1; 1727 uint64_t PAuthABIVersion = -1; 1728 for (const MDNode *MDN : Flags->operands()) { 1729 visitModuleFlag(MDN, SeenIDs, Requirements); 1730 if (MDN->getNumOperands() != 3) 1731 continue; 1732 if (const auto *FlagName = dyn_cast_or_null<MDString>(MDN->getOperand(1))) { 1733 if (FlagName->getString() == "aarch64-elf-pauthabi-platform") { 1734 if (const auto *PAP = 1735 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2))) 1736 PAuthABIPlatform = PAP->getZExtValue(); 1737 } else if (FlagName->getString() == "aarch64-elf-pauthabi-version") { 1738 if (const auto *PAV = 1739 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2))) 1740 PAuthABIVersion = PAV->getZExtValue(); 1741 } 1742 } 1743 } 1744 1745 if ((PAuthABIPlatform == uint64_t(-1)) != (PAuthABIVersion == uint64_t(-1))) 1746 CheckFailed("either both or no 'aarch64-elf-pauthabi-platform' and " 1747 "'aarch64-elf-pauthabi-version' module flags must be present"); 1748 1749 // Validate that the requirements in the module are valid. 1750 for (const MDNode *Requirement : Requirements) { 1751 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1752 const Metadata *ReqValue = Requirement->getOperand(1); 1753 1754 const MDNode *Op = SeenIDs.lookup(Flag); 1755 if (!Op) { 1756 CheckFailed("invalid requirement on flag, flag is not present in module", 1757 Flag); 1758 continue; 1759 } 1760 1761 if (Op->getOperand(2) != ReqValue) { 1762 CheckFailed(("invalid requirement on flag, " 1763 "flag does not have the required value"), 1764 Flag); 1765 continue; 1766 } 1767 } 1768 } 1769 1770 void 1771 Verifier::visitModuleFlag(const MDNode *Op, 1772 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1773 SmallVectorImpl<const MDNode *> &Requirements) { 1774 // Each module flag should have three arguments, the merge behavior (a 1775 // constant int), the flag ID (an MDString), and the value. 1776 Check(Op->getNumOperands() == 3, 1777 "incorrect number of operands in module flag", Op); 1778 Module::ModFlagBehavior MFB; 1779 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1780 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1781 "invalid behavior operand in module flag (expected constant integer)", 1782 Op->getOperand(0)); 1783 Check(false, 1784 "invalid behavior operand in module flag (unexpected constant)", 1785 Op->getOperand(0)); 1786 } 1787 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1788 Check(ID, "invalid ID operand in module flag (expected metadata string)", 1789 Op->getOperand(1)); 1790 1791 // Check the values for behaviors with additional requirements. 1792 switch (MFB) { 1793 case Module::Error: 1794 case Module::Warning: 1795 case Module::Override: 1796 // These behavior types accept any value. 1797 break; 1798 1799 case Module::Min: { 1800 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1801 Check(V && V->getValue().isNonNegative(), 1802 "invalid value for 'min' module flag (expected constant non-negative " 1803 "integer)", 1804 Op->getOperand(2)); 1805 break; 1806 } 1807 1808 case Module::Max: { 1809 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1810 "invalid value for 'max' module flag (expected constant integer)", 1811 Op->getOperand(2)); 1812 break; 1813 } 1814 1815 case Module::Require: { 1816 // The value should itself be an MDNode with two operands, a flag ID (an 1817 // MDString), and a value. 1818 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1819 Check(Value && Value->getNumOperands() == 2, 1820 "invalid value for 'require' module flag (expected metadata pair)", 1821 Op->getOperand(2)); 1822 Check(isa<MDString>(Value->getOperand(0)), 1823 ("invalid value for 'require' module flag " 1824 "(first value operand should be a string)"), 1825 Value->getOperand(0)); 1826 1827 // Append it to the list of requirements, to check once all module flags are 1828 // scanned. 1829 Requirements.push_back(Value); 1830 break; 1831 } 1832 1833 case Module::Append: 1834 case Module::AppendUnique: { 1835 // These behavior types require the operand be an MDNode. 1836 Check(isa<MDNode>(Op->getOperand(2)), 1837 "invalid value for 'append'-type module flag " 1838 "(expected a metadata node)", 1839 Op->getOperand(2)); 1840 break; 1841 } 1842 } 1843 1844 // Unless this is a "requires" flag, check the ID is unique. 1845 if (MFB != Module::Require) { 1846 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1847 Check(Inserted, 1848 "module flag identifiers must be unique (or of 'require' type)", ID); 1849 } 1850 1851 if (ID->getString() == "wchar_size") { 1852 ConstantInt *Value 1853 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1854 Check(Value, "wchar_size metadata requires constant integer argument"); 1855 } 1856 1857 if (ID->getString() == "Linker Options") { 1858 // If the llvm.linker.options named metadata exists, we assume that the 1859 // bitcode reader has upgraded the module flag. Otherwise the flag might 1860 // have been created by a client directly. 1861 Check(M.getNamedMetadata("llvm.linker.options"), 1862 "'Linker Options' named metadata no longer supported"); 1863 } 1864 1865 if (ID->getString() == "SemanticInterposition") { 1866 ConstantInt *Value = 1867 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1868 Check(Value, 1869 "SemanticInterposition metadata requires constant integer argument"); 1870 } 1871 1872 if (ID->getString() == "CG Profile") { 1873 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1874 visitModuleFlagCGProfileEntry(MDO); 1875 } 1876 } 1877 1878 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1879 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1880 if (!FuncMDO) 1881 return; 1882 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1883 Check(F && isa<Function>(F->getValue()->stripPointerCasts()), 1884 "expected a Function or null", FuncMDO); 1885 }; 1886 auto Node = dyn_cast_or_null<MDNode>(MDO); 1887 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1888 CheckFunction(Node->getOperand(0)); 1889 CheckFunction(Node->getOperand(1)); 1890 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1891 Check(Count && Count->getType()->isIntegerTy(), 1892 "expected an integer constant", Node->getOperand(2)); 1893 } 1894 1895 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1896 for (Attribute A : Attrs) { 1897 1898 if (A.isStringAttribute()) { 1899 #define GET_ATTR_NAMES 1900 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1901 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1902 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1903 auto V = A.getValueAsString(); \ 1904 if (!(V.empty() || V == "true" || V == "false")) \ 1905 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1906 ""); \ 1907 } 1908 1909 #include "llvm/IR/Attributes.inc" 1910 continue; 1911 } 1912 1913 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1914 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1915 V); 1916 return; 1917 } 1918 } 1919 } 1920 1921 // VerifyParameterAttrs - Check the given attributes for an argument or return 1922 // value of the specified type. The value V is printed in error messages. 1923 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1924 const Value *V) { 1925 if (!Attrs.hasAttributes()) 1926 return; 1927 1928 verifyAttributeTypes(Attrs, V); 1929 1930 for (Attribute Attr : Attrs) 1931 Check(Attr.isStringAttribute() || 1932 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1933 "Attribute '" + Attr.getAsString() + "' does not apply to parameters", 1934 V); 1935 1936 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1937 Check(Attrs.getNumAttributes() == 1, 1938 "Attribute 'immarg' is incompatible with other attributes", V); 1939 } 1940 1941 // Check for mutually incompatible attributes. Only inreg is compatible with 1942 // sret. 1943 unsigned AttrCount = 0; 1944 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1945 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1946 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1947 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1948 Attrs.hasAttribute(Attribute::InReg); 1949 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1950 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1951 Check(AttrCount <= 1, 1952 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1953 "'byref', and 'sret' are incompatible!", 1954 V); 1955 1956 Check(!(Attrs.hasAttribute(Attribute::InAlloca) && 1957 Attrs.hasAttribute(Attribute::ReadOnly)), 1958 "Attributes " 1959 "'inalloca and readonly' are incompatible!", 1960 V); 1961 1962 Check(!(Attrs.hasAttribute(Attribute::StructRet) && 1963 Attrs.hasAttribute(Attribute::Returned)), 1964 "Attributes " 1965 "'sret and returned' are incompatible!", 1966 V); 1967 1968 Check(!(Attrs.hasAttribute(Attribute::ZExt) && 1969 Attrs.hasAttribute(Attribute::SExt)), 1970 "Attributes " 1971 "'zeroext and signext' are incompatible!", 1972 V); 1973 1974 Check(!(Attrs.hasAttribute(Attribute::ReadNone) && 1975 Attrs.hasAttribute(Attribute::ReadOnly)), 1976 "Attributes " 1977 "'readnone and readonly' are incompatible!", 1978 V); 1979 1980 Check(!(Attrs.hasAttribute(Attribute::ReadNone) && 1981 Attrs.hasAttribute(Attribute::WriteOnly)), 1982 "Attributes " 1983 "'readnone and writeonly' are incompatible!", 1984 V); 1985 1986 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1987 Attrs.hasAttribute(Attribute::WriteOnly)), 1988 "Attributes " 1989 "'readonly and writeonly' are incompatible!", 1990 V); 1991 1992 Check(!(Attrs.hasAttribute(Attribute::NoInline) && 1993 Attrs.hasAttribute(Attribute::AlwaysInline)), 1994 "Attributes " 1995 "'noinline and alwaysinline' are incompatible!", 1996 V); 1997 1998 Check(!(Attrs.hasAttribute(Attribute::Writable) && 1999 Attrs.hasAttribute(Attribute::ReadNone)), 2000 "Attributes writable and readnone are incompatible!", V); 2001 2002 Check(!(Attrs.hasAttribute(Attribute::Writable) && 2003 Attrs.hasAttribute(Attribute::ReadOnly)), 2004 "Attributes writable and readonly are incompatible!", V); 2005 2006 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 2007 for (Attribute Attr : Attrs) { 2008 if (!Attr.isStringAttribute() && 2009 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 2010 CheckFailed("Attribute '" + Attr.getAsString() + 2011 "' applied to incompatible type!", V); 2012 return; 2013 } 2014 } 2015 2016 if (isa<PointerType>(Ty)) { 2017 if (Attrs.hasAttribute(Attribute::Alignment)) { 2018 Align AttrAlign = Attrs.getAlignment().valueOrOne(); 2019 Check(AttrAlign.value() <= Value::MaximumAlignment, 2020 "huge alignment values are unsupported", V); 2021 } 2022 if (Attrs.hasAttribute(Attribute::ByVal)) { 2023 SmallPtrSet<Type *, 4> Visited; 2024 Check(Attrs.getByValType()->isSized(&Visited), 2025 "Attribute 'byval' does not support unsized types!", V); 2026 Check(DL.getTypeAllocSize(Attrs.getByValType()).getKnownMinValue() < 2027 (1ULL << 32), 2028 "huge 'byval' arguments are unsupported", V); 2029 } 2030 if (Attrs.hasAttribute(Attribute::ByRef)) { 2031 SmallPtrSet<Type *, 4> Visited; 2032 Check(Attrs.getByRefType()->isSized(&Visited), 2033 "Attribute 'byref' does not support unsized types!", V); 2034 Check(DL.getTypeAllocSize(Attrs.getByRefType()).getKnownMinValue() < 2035 (1ULL << 32), 2036 "huge 'byref' arguments are unsupported", V); 2037 } 2038 if (Attrs.hasAttribute(Attribute::InAlloca)) { 2039 SmallPtrSet<Type *, 4> Visited; 2040 Check(Attrs.getInAllocaType()->isSized(&Visited), 2041 "Attribute 'inalloca' does not support unsized types!", V); 2042 Check(DL.getTypeAllocSize(Attrs.getInAllocaType()).getKnownMinValue() < 2043 (1ULL << 32), 2044 "huge 'inalloca' arguments are unsupported", V); 2045 } 2046 if (Attrs.hasAttribute(Attribute::Preallocated)) { 2047 SmallPtrSet<Type *, 4> Visited; 2048 Check(Attrs.getPreallocatedType()->isSized(&Visited), 2049 "Attribute 'preallocated' does not support unsized types!", V); 2050 Check( 2051 DL.getTypeAllocSize(Attrs.getPreallocatedType()).getKnownMinValue() < 2052 (1ULL << 32), 2053 "huge 'preallocated' arguments are unsupported", V); 2054 } 2055 } 2056 2057 if (Attrs.hasAttribute(Attribute::Initializes)) { 2058 auto Inits = Attrs.getAttribute(Attribute::Initializes).getInitializes(); 2059 Check(!Inits.empty(), "Attribute 'initializes' does not support empty list", 2060 V); 2061 Check(ConstantRangeList::isOrderedRanges(Inits), 2062 "Attribute 'initializes' does not support unordered ranges", V); 2063 } 2064 2065 if (Attrs.hasAttribute(Attribute::NoFPClass)) { 2066 uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt(); 2067 Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set", 2068 V); 2069 Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0, 2070 "Invalid value for 'nofpclass' test mask", V); 2071 } 2072 if (Attrs.hasAttribute(Attribute::Range)) { 2073 const ConstantRange &CR = 2074 Attrs.getAttribute(Attribute::Range).getValueAsConstantRange(); 2075 Check(Ty->isIntOrIntVectorTy(CR.getBitWidth()), 2076 "Range bit width must match type bit width!", V); 2077 } 2078 } 2079 2080 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 2081 const Value *V) { 2082 if (Attrs.hasFnAttr(Attr)) { 2083 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 2084 unsigned N; 2085 if (S.getAsInteger(10, N)) 2086 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 2087 } 2088 } 2089 2090 // Check parameter attributes against a function type. 2091 // The value V is printed in error messages. 2092 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 2093 const Value *V, bool IsIntrinsic, 2094 bool IsInlineAsm) { 2095 if (Attrs.isEmpty()) 2096 return; 2097 2098 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 2099 Check(Attrs.hasParentContext(Context), 2100 "Attribute list does not match Module context!", &Attrs, V); 2101 for (const auto &AttrSet : Attrs) { 2102 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 2103 "Attribute set does not match Module context!", &AttrSet, V); 2104 for (const auto &A : AttrSet) { 2105 Check(A.hasParentContext(Context), 2106 "Attribute does not match Module context!", &A, V); 2107 } 2108 } 2109 } 2110 2111 bool SawNest = false; 2112 bool SawReturned = false; 2113 bool SawSRet = false; 2114 bool SawSwiftSelf = false; 2115 bool SawSwiftAsync = false; 2116 bool SawSwiftError = false; 2117 2118 // Verify return value attributes. 2119 AttributeSet RetAttrs = Attrs.getRetAttrs(); 2120 for (Attribute RetAttr : RetAttrs) 2121 Check(RetAttr.isStringAttribute() || 2122 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 2123 "Attribute '" + RetAttr.getAsString() + 2124 "' does not apply to function return values", 2125 V); 2126 2127 unsigned MaxParameterWidth = 0; 2128 auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) { 2129 if (Ty->isVectorTy()) { 2130 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 2131 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue(); 2132 if (Size > MaxParameterWidth) 2133 MaxParameterWidth = Size; 2134 } 2135 } 2136 }; 2137 GetMaxParameterWidth(FT->getReturnType()); 2138 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 2139 2140 // Verify parameter attributes. 2141 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 2142 Type *Ty = FT->getParamType(i); 2143 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 2144 2145 if (!IsIntrinsic) { 2146 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg), 2147 "immarg attribute only applies to intrinsics", V); 2148 if (!IsInlineAsm) 2149 Check(!ArgAttrs.hasAttribute(Attribute::ElementType), 2150 "Attribute 'elementtype' can only be applied to intrinsics" 2151 " and inline asm.", 2152 V); 2153 } 2154 2155 verifyParameterAttrs(ArgAttrs, Ty, V); 2156 GetMaxParameterWidth(Ty); 2157 2158 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2159 Check(!SawNest, "More than one parameter has attribute nest!", V); 2160 SawNest = true; 2161 } 2162 2163 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2164 Check(!SawReturned, "More than one parameter has attribute returned!", V); 2165 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 2166 "Incompatible argument and return types for 'returned' attribute", 2167 V); 2168 SawReturned = true; 2169 } 2170 2171 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 2172 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 2173 Check(i == 0 || i == 1, 2174 "Attribute 'sret' is not on first or second parameter!", V); 2175 SawSRet = true; 2176 } 2177 2178 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 2179 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 2180 SawSwiftSelf = true; 2181 } 2182 2183 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 2184 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 2185 SawSwiftAsync = true; 2186 } 2187 2188 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 2189 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V); 2190 SawSwiftError = true; 2191 } 2192 2193 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 2194 Check(i == FT->getNumParams() - 1, 2195 "inalloca isn't on the last parameter!", V); 2196 } 2197 } 2198 2199 if (!Attrs.hasFnAttrs()) 2200 return; 2201 2202 verifyAttributeTypes(Attrs.getFnAttrs(), V); 2203 for (Attribute FnAttr : Attrs.getFnAttrs()) 2204 Check(FnAttr.isStringAttribute() || 2205 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 2206 "Attribute '" + FnAttr.getAsString() + 2207 "' does not apply to functions!", 2208 V); 2209 2210 Check(!(Attrs.hasFnAttr(Attribute::NoInline) && 2211 Attrs.hasFnAttr(Attribute::AlwaysInline)), 2212 "Attributes 'noinline and alwaysinline' are incompatible!", V); 2213 2214 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 2215 Check(Attrs.hasFnAttr(Attribute::NoInline), 2216 "Attribute 'optnone' requires 'noinline'!", V); 2217 2218 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2219 "Attributes 'optsize and optnone' are incompatible!", V); 2220 2221 Check(!Attrs.hasFnAttr(Attribute::MinSize), 2222 "Attributes 'minsize and optnone' are incompatible!", V); 2223 2224 Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging), 2225 "Attributes 'optdebug and optnone' are incompatible!", V); 2226 } 2227 2228 if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) { 2229 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2230 "Attributes 'optsize and optdebug' are incompatible!", V); 2231 2232 Check(!Attrs.hasFnAttr(Attribute::MinSize), 2233 "Attributes 'minsize and optdebug' are incompatible!", V); 2234 } 2235 2236 Check(!Attrs.hasAttrSomewhere(Attribute::Writable) || 2237 isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)), 2238 "Attribute writable and memory without argmem: write are incompatible!", 2239 V); 2240 2241 if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) { 2242 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"), 2243 "Attributes 'aarch64_pstate_sm_enabled and " 2244 "aarch64_pstate_sm_compatible' are incompatible!", 2245 V); 2246 } 2247 2248 Check((Attrs.hasFnAttr("aarch64_new_za") + Attrs.hasFnAttr("aarch64_in_za") + 2249 Attrs.hasFnAttr("aarch64_inout_za") + 2250 Attrs.hasFnAttr("aarch64_out_za") + 2251 Attrs.hasFnAttr("aarch64_preserves_za")) <= 1, 2252 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', " 2253 "'aarch64_inout_za' and 'aarch64_preserves_za' are mutually exclusive", 2254 V); 2255 2256 Check( 2257 (Attrs.hasFnAttr("aarch64_new_zt0") + Attrs.hasFnAttr("aarch64_in_zt0") + 2258 Attrs.hasFnAttr("aarch64_inout_zt0") + 2259 Attrs.hasFnAttr("aarch64_out_zt0") + 2260 Attrs.hasFnAttr("aarch64_preserves_zt0")) <= 1, 2261 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', " 2262 "'aarch64_inout_zt0' and 'aarch64_preserves_zt0' are mutually exclusive", 2263 V); 2264 2265 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 2266 const GlobalValue *GV = cast<GlobalValue>(V); 2267 Check(GV->hasGlobalUnnamedAddr(), 2268 "Attribute 'jumptable' requires 'unnamed_addr'", V); 2269 } 2270 2271 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) { 2272 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 2273 if (ParamNo >= FT->getNumParams()) { 2274 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 2275 return false; 2276 } 2277 2278 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2279 CheckFailed("'allocsize' " + Name + 2280 " argument must refer to an integer parameter", 2281 V); 2282 return false; 2283 } 2284 2285 return true; 2286 }; 2287 2288 if (!CheckParam("element size", Args->first)) 2289 return; 2290 2291 if (Args->second && !CheckParam("number of elements", *Args->second)) 2292 return; 2293 } 2294 2295 if (Attrs.hasFnAttr(Attribute::AllocKind)) { 2296 AllocFnKind K = Attrs.getAllocKind(); 2297 AllocFnKind Type = 2298 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free); 2299 if (!is_contained( 2300 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free}, 2301 Type)) 2302 CheckFailed( 2303 "'allockind()' requires exactly one of alloc, realloc, and free"); 2304 if ((Type == AllocFnKind::Free) && 2305 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed | 2306 AllocFnKind::Aligned)) != AllocFnKind::Unknown)) 2307 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, " 2308 "or aligned modifiers."); 2309 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed; 2310 if ((K & ZeroedUninit) == ZeroedUninit) 2311 CheckFailed("'allockind()' can't be both zeroed and uninitialized"); 2312 } 2313 2314 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2315 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin(); 2316 if (VScaleMin == 0) 2317 CheckFailed("'vscale_range' minimum must be greater than 0", V); 2318 else if (!isPowerOf2_32(VScaleMin)) 2319 CheckFailed("'vscale_range' minimum must be power-of-two value", V); 2320 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax(); 2321 if (VScaleMax && VScaleMin > VScaleMax) 2322 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2323 else if (VScaleMax && !isPowerOf2_32(*VScaleMax)) 2324 CheckFailed("'vscale_range' maximum must be power-of-two value", V); 2325 } 2326 2327 if (Attrs.hasFnAttr("frame-pointer")) { 2328 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2329 if (FP != "all" && FP != "non-leaf" && FP != "none" && FP != "reserved") 2330 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2331 } 2332 2333 // Check EVEX512 feature. 2334 if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") && 2335 TT.isX86()) { 2336 StringRef TF = Attrs.getFnAttr("target-features").getValueAsString(); 2337 Check(!TF.contains("+avx512f") || !TF.contains("-evex512"), 2338 "512-bit vector arguments require 'evex512' for AVX512", V); 2339 } 2340 2341 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2342 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2343 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2344 2345 if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) { 2346 StringRef S = A.getValueAsString(); 2347 if (S != "none" && S != "all" && S != "non-leaf") 2348 CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V); 2349 } 2350 2351 if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) { 2352 StringRef S = A.getValueAsString(); 2353 if (S != "a_key" && S != "b_key") 2354 CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S, 2355 V); 2356 if (auto AA = Attrs.getFnAttr("sign-return-address"); !AA.isValid()) { 2357 CheckFailed( 2358 "'sign-return-address-key' present without `sign-return-address`"); 2359 } 2360 } 2361 2362 if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) { 2363 StringRef S = A.getValueAsString(); 2364 if (S != "" && S != "true" && S != "false") 2365 CheckFailed( 2366 "invalid value for 'branch-target-enforcement' attribute: " + S, V); 2367 } 2368 2369 if (auto A = Attrs.getFnAttr("branch-protection-pauth-lr"); A.isValid()) { 2370 StringRef S = A.getValueAsString(); 2371 if (S != "" && S != "true" && S != "false") 2372 CheckFailed( 2373 "invalid value for 'branch-protection-pauth-lr' attribute: " + S, V); 2374 } 2375 2376 if (auto A = Attrs.getFnAttr("guarded-control-stack"); A.isValid()) { 2377 StringRef S = A.getValueAsString(); 2378 if (S != "" && S != "true" && S != "false") 2379 CheckFailed("invalid value for 'guarded-control-stack' attribute: " + S, 2380 V); 2381 } 2382 2383 if (auto A = Attrs.getFnAttr("vector-function-abi-variant"); A.isValid()) { 2384 StringRef S = A.getValueAsString(); 2385 const std::optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, FT); 2386 if (!Info) 2387 CheckFailed("invalid name for a VFABI variant: " + S, V); 2388 } 2389 } 2390 2391 void Verifier::verifyFunctionMetadata( 2392 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2393 for (const auto &Pair : MDs) { 2394 if (Pair.first == LLVMContext::MD_prof) { 2395 MDNode *MD = Pair.second; 2396 Check(MD->getNumOperands() >= 2, 2397 "!prof annotations should have no less than 2 operands", MD); 2398 2399 // Check first operand. 2400 Check(MD->getOperand(0) != nullptr, "first operand should not be null", 2401 MD); 2402 Check(isa<MDString>(MD->getOperand(0)), 2403 "expected string with name of the !prof annotation", MD); 2404 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2405 StringRef ProfName = MDS->getString(); 2406 Check(ProfName == "function_entry_count" || 2407 ProfName == "synthetic_function_entry_count", 2408 "first operand should be 'function_entry_count'" 2409 " or 'synthetic_function_entry_count'", 2410 MD); 2411 2412 // Check second operand. 2413 Check(MD->getOperand(1) != nullptr, "second operand should not be null", 2414 MD); 2415 Check(isa<ConstantAsMetadata>(MD->getOperand(1)), 2416 "expected integer argument to function_entry_count", MD); 2417 } else if (Pair.first == LLVMContext::MD_kcfi_type) { 2418 MDNode *MD = Pair.second; 2419 Check(MD->getNumOperands() == 1, 2420 "!kcfi_type must have exactly one operand", MD); 2421 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null", 2422 MD); 2423 Check(isa<ConstantAsMetadata>(MD->getOperand(0)), 2424 "expected a constant operand for !kcfi_type", MD); 2425 Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue(); 2426 Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()), 2427 "expected a constant integer operand for !kcfi_type", MD); 2428 Check(cast<ConstantInt>(C)->getBitWidth() == 32, 2429 "expected a 32-bit integer constant operand for !kcfi_type", MD); 2430 } 2431 } 2432 } 2433 2434 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2435 if (!ConstantExprVisited.insert(EntryC).second) 2436 return; 2437 2438 SmallVector<const Constant *, 16> Stack; 2439 Stack.push_back(EntryC); 2440 2441 while (!Stack.empty()) { 2442 const Constant *C = Stack.pop_back_val(); 2443 2444 // Check this constant expression. 2445 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2446 visitConstantExpr(CE); 2447 2448 if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) 2449 visitConstantPtrAuth(CPA); 2450 2451 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2452 // Global Values get visited separately, but we do need to make sure 2453 // that the global value is in the correct module 2454 Check(GV->getParent() == &M, "Referencing global in another module!", 2455 EntryC, &M, GV, GV->getParent()); 2456 continue; 2457 } 2458 2459 // Visit all sub-expressions. 2460 for (const Use &U : C->operands()) { 2461 const auto *OpC = dyn_cast<Constant>(U); 2462 if (!OpC) 2463 continue; 2464 if (!ConstantExprVisited.insert(OpC).second) 2465 continue; 2466 Stack.push_back(OpC); 2467 } 2468 } 2469 } 2470 2471 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2472 if (CE->getOpcode() == Instruction::BitCast) 2473 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2474 CE->getType()), 2475 "Invalid bitcast", CE); 2476 } 2477 2478 void Verifier::visitConstantPtrAuth(const ConstantPtrAuth *CPA) { 2479 Check(CPA->getPointer()->getType()->isPointerTy(), 2480 "signed ptrauth constant base pointer must have pointer type"); 2481 2482 Check(CPA->getType() == CPA->getPointer()->getType(), 2483 "signed ptrauth constant must have same type as its base pointer"); 2484 2485 Check(CPA->getKey()->getBitWidth() == 32, 2486 "signed ptrauth constant key must be i32 constant integer"); 2487 2488 Check(CPA->getAddrDiscriminator()->getType()->isPointerTy(), 2489 "signed ptrauth constant address discriminator must be a pointer"); 2490 2491 Check(CPA->getDiscriminator()->getBitWidth() == 64, 2492 "signed ptrauth constant discriminator must be i64 constant integer"); 2493 } 2494 2495 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2496 // There shouldn't be more attribute sets than there are parameters plus the 2497 // function and return value. 2498 return Attrs.getNumAttrSets() <= Params + 2; 2499 } 2500 2501 void Verifier::verifyInlineAsmCall(const CallBase &Call) { 2502 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 2503 unsigned ArgNo = 0; 2504 unsigned LabelNo = 0; 2505 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2506 if (CI.Type == InlineAsm::isLabel) { 2507 ++LabelNo; 2508 continue; 2509 } 2510 2511 // Only deal with constraints that correspond to call arguments. 2512 if (!CI.hasArg()) 2513 continue; 2514 2515 if (CI.isIndirect) { 2516 const Value *Arg = Call.getArgOperand(ArgNo); 2517 Check(Arg->getType()->isPointerTy(), 2518 "Operand for indirect constraint must have pointer type", &Call); 2519 2520 Check(Call.getParamElementType(ArgNo), 2521 "Operand for indirect constraint must have elementtype attribute", 2522 &Call); 2523 } else { 2524 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType), 2525 "Elementtype attribute can only be applied for indirect " 2526 "constraints", 2527 &Call); 2528 } 2529 2530 ArgNo++; 2531 } 2532 2533 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) { 2534 Check(LabelNo == CallBr->getNumIndirectDests(), 2535 "Number of label constraints does not match number of callbr dests", 2536 &Call); 2537 } else { 2538 Check(LabelNo == 0, "Label constraints can only be used with callbr", 2539 &Call); 2540 } 2541 } 2542 2543 /// Verify that statepoint intrinsic is well formed. 2544 void Verifier::verifyStatepoint(const CallBase &Call) { 2545 assert(Call.getCalledFunction() && 2546 Call.getCalledFunction()->getIntrinsicID() == 2547 Intrinsic::experimental_gc_statepoint); 2548 2549 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2550 !Call.onlyAccessesArgMemory(), 2551 "gc.statepoint must read and write all memory to preserve " 2552 "reordering restrictions required by safepoint semantics", 2553 Call); 2554 2555 const int64_t NumPatchBytes = 2556 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2557 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2558 Check(NumPatchBytes >= 0, 2559 "gc.statepoint number of patchable bytes must be " 2560 "positive", 2561 Call); 2562 2563 Type *TargetElemType = Call.getParamElementType(2); 2564 Check(TargetElemType, 2565 "gc.statepoint callee argument must have elementtype attribute", Call); 2566 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType); 2567 Check(TargetFuncType, 2568 "gc.statepoint callee elementtype must be function type", Call); 2569 2570 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2571 Check(NumCallArgs >= 0, 2572 "gc.statepoint number of arguments to underlying call " 2573 "must be positive", 2574 Call); 2575 const int NumParams = (int)TargetFuncType->getNumParams(); 2576 if (TargetFuncType->isVarArg()) { 2577 Check(NumCallArgs >= NumParams, 2578 "gc.statepoint mismatch in number of vararg call args", Call); 2579 2580 // TODO: Remove this limitation 2581 Check(TargetFuncType->getReturnType()->isVoidTy(), 2582 "gc.statepoint doesn't support wrapping non-void " 2583 "vararg functions yet", 2584 Call); 2585 } else 2586 Check(NumCallArgs == NumParams, 2587 "gc.statepoint mismatch in number of call args", Call); 2588 2589 const uint64_t Flags 2590 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2591 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2592 "unknown flag used in gc.statepoint flags argument", Call); 2593 2594 // Verify that the types of the call parameter arguments match 2595 // the type of the wrapped callee. 2596 AttributeList Attrs = Call.getAttributes(); 2597 for (int i = 0; i < NumParams; i++) { 2598 Type *ParamType = TargetFuncType->getParamType(i); 2599 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2600 Check(ArgType == ParamType, 2601 "gc.statepoint call argument does not match wrapped " 2602 "function type", 2603 Call); 2604 2605 if (TargetFuncType->isVarArg()) { 2606 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2607 Check(!ArgAttrs.hasAttribute(Attribute::StructRet), 2608 "Attribute 'sret' cannot be used for vararg call arguments!", Call); 2609 } 2610 } 2611 2612 const int EndCallArgsInx = 4 + NumCallArgs; 2613 2614 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2615 Check(isa<ConstantInt>(NumTransitionArgsV), 2616 "gc.statepoint number of transition arguments " 2617 "must be constant integer", 2618 Call); 2619 const int NumTransitionArgs = 2620 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2621 Check(NumTransitionArgs == 0, 2622 "gc.statepoint w/inline transition bundle is deprecated", Call); 2623 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2624 2625 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2626 Check(isa<ConstantInt>(NumDeoptArgsV), 2627 "gc.statepoint number of deoptimization arguments " 2628 "must be constant integer", 2629 Call); 2630 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2631 Check(NumDeoptArgs == 0, 2632 "gc.statepoint w/inline deopt operands is deprecated", Call); 2633 2634 const int ExpectedNumArgs = 7 + NumCallArgs; 2635 Check(ExpectedNumArgs == (int)Call.arg_size(), 2636 "gc.statepoint too many arguments", Call); 2637 2638 // Check that the only uses of this gc.statepoint are gc.result or 2639 // gc.relocate calls which are tied to this statepoint and thus part 2640 // of the same statepoint sequence 2641 for (const User *U : Call.users()) { 2642 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2643 Check(UserCall, "illegal use of statepoint token", Call, U); 2644 if (!UserCall) 2645 continue; 2646 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2647 "gc.result or gc.relocate are the only value uses " 2648 "of a gc.statepoint", 2649 Call, U); 2650 if (isa<GCResultInst>(UserCall)) { 2651 Check(UserCall->getArgOperand(0) == &Call, 2652 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2653 } else if (isa<GCRelocateInst>(Call)) { 2654 Check(UserCall->getArgOperand(0) == &Call, 2655 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2656 } 2657 } 2658 2659 // Note: It is legal for a single derived pointer to be listed multiple 2660 // times. It's non-optimal, but it is legal. It can also happen after 2661 // insertion if we strip a bitcast away. 2662 // Note: It is really tempting to check that each base is relocated and 2663 // that a derived pointer is never reused as a base pointer. This turns 2664 // out to be problematic since optimizations run after safepoint insertion 2665 // can recognize equality properties that the insertion logic doesn't know 2666 // about. See example statepoint.ll in the verifier subdirectory 2667 } 2668 2669 void Verifier::verifyFrameRecoverIndices() { 2670 for (auto &Counts : FrameEscapeInfo) { 2671 Function *F = Counts.first; 2672 unsigned EscapedObjectCount = Counts.second.first; 2673 unsigned MaxRecoveredIndex = Counts.second.second; 2674 Check(MaxRecoveredIndex <= EscapedObjectCount, 2675 "all indices passed to llvm.localrecover must be less than the " 2676 "number of arguments passed to llvm.localescape in the parent " 2677 "function", 2678 F); 2679 } 2680 } 2681 2682 static Instruction *getSuccPad(Instruction *Terminator) { 2683 BasicBlock *UnwindDest; 2684 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2685 UnwindDest = II->getUnwindDest(); 2686 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2687 UnwindDest = CSI->getUnwindDest(); 2688 else 2689 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2690 return UnwindDest->getFirstNonPHI(); 2691 } 2692 2693 void Verifier::verifySiblingFuncletUnwinds() { 2694 SmallPtrSet<Instruction *, 8> Visited; 2695 SmallPtrSet<Instruction *, 8> Active; 2696 for (const auto &Pair : SiblingFuncletInfo) { 2697 Instruction *PredPad = Pair.first; 2698 if (Visited.count(PredPad)) 2699 continue; 2700 Active.insert(PredPad); 2701 Instruction *Terminator = Pair.second; 2702 do { 2703 Instruction *SuccPad = getSuccPad(Terminator); 2704 if (Active.count(SuccPad)) { 2705 // Found a cycle; report error 2706 Instruction *CyclePad = SuccPad; 2707 SmallVector<Instruction *, 8> CycleNodes; 2708 do { 2709 CycleNodes.push_back(CyclePad); 2710 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2711 if (CycleTerminator != CyclePad) 2712 CycleNodes.push_back(CycleTerminator); 2713 CyclePad = getSuccPad(CycleTerminator); 2714 } while (CyclePad != SuccPad); 2715 Check(false, "EH pads can't handle each other's exceptions", 2716 ArrayRef<Instruction *>(CycleNodes)); 2717 } 2718 // Don't re-walk a node we've already checked 2719 if (!Visited.insert(SuccPad).second) 2720 break; 2721 // Walk to this successor if it has a map entry. 2722 PredPad = SuccPad; 2723 auto TermI = SiblingFuncletInfo.find(PredPad); 2724 if (TermI == SiblingFuncletInfo.end()) 2725 break; 2726 Terminator = TermI->second; 2727 Active.insert(PredPad); 2728 } while (true); 2729 // Each node only has one successor, so we've walked all the active 2730 // nodes' successors. 2731 Active.clear(); 2732 } 2733 } 2734 2735 // visitFunction - Verify that a function is ok. 2736 // 2737 void Verifier::visitFunction(const Function &F) { 2738 visitGlobalValue(F); 2739 2740 // Check function arguments. 2741 FunctionType *FT = F.getFunctionType(); 2742 unsigned NumArgs = F.arg_size(); 2743 2744 Check(&Context == &F.getContext(), 2745 "Function context does not match Module context!", &F); 2746 2747 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2748 Check(FT->getNumParams() == NumArgs, 2749 "# formal arguments must match # of arguments for function type!", &F, 2750 FT); 2751 Check(F.getReturnType()->isFirstClassType() || 2752 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2753 "Functions cannot return aggregate values!", &F); 2754 2755 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2756 "Invalid struct return type!", &F); 2757 2758 AttributeList Attrs = F.getAttributes(); 2759 2760 Check(verifyAttributeCount(Attrs, FT->getNumParams()), 2761 "Attribute after last parameter!", &F); 2762 2763 CheckDI(F.IsNewDbgInfoFormat == F.getParent()->IsNewDbgInfoFormat, 2764 "Function debug format should match parent module", &F, 2765 F.IsNewDbgInfoFormat, F.getParent(), 2766 F.getParent()->IsNewDbgInfoFormat); 2767 2768 bool IsIntrinsic = F.isIntrinsic(); 2769 2770 // Check function attributes. 2771 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false); 2772 2773 // On function declarations/definitions, we do not support the builtin 2774 // attribute. We do not check this in VerifyFunctionAttrs since that is 2775 // checking for Attributes that can/can not ever be on functions. 2776 Check(!Attrs.hasFnAttr(Attribute::Builtin), 2777 "Attribute 'builtin' can only be applied to a callsite.", &F); 2778 2779 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2780 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2781 2782 // Check that this function meets the restrictions on this calling convention. 2783 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2784 // restrictions can be lifted. 2785 switch (F.getCallingConv()) { 2786 default: 2787 case CallingConv::C: 2788 break; 2789 case CallingConv::X86_INTR: { 2790 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2791 "Calling convention parameter requires byval", &F); 2792 break; 2793 } 2794 case CallingConv::AMDGPU_KERNEL: 2795 case CallingConv::SPIR_KERNEL: 2796 case CallingConv::AMDGPU_CS_Chain: 2797 case CallingConv::AMDGPU_CS_ChainPreserve: 2798 Check(F.getReturnType()->isVoidTy(), 2799 "Calling convention requires void return type", &F); 2800 [[fallthrough]]; 2801 case CallingConv::AMDGPU_VS: 2802 case CallingConv::AMDGPU_HS: 2803 case CallingConv::AMDGPU_GS: 2804 case CallingConv::AMDGPU_PS: 2805 case CallingConv::AMDGPU_CS: 2806 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F); 2807 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2808 const unsigned StackAS = DL.getAllocaAddrSpace(); 2809 unsigned i = 0; 2810 for (const Argument &Arg : F.args()) { 2811 Check(!Attrs.hasParamAttr(i, Attribute::ByVal), 2812 "Calling convention disallows byval", &F); 2813 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2814 "Calling convention disallows preallocated", &F); 2815 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2816 "Calling convention disallows inalloca", &F); 2817 2818 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2819 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2820 // value here. 2821 Check(Arg.getType()->getPointerAddressSpace() != StackAS, 2822 "Calling convention disallows stack byref", &F); 2823 } 2824 2825 ++i; 2826 } 2827 } 2828 2829 [[fallthrough]]; 2830 case CallingConv::Fast: 2831 case CallingConv::Cold: 2832 case CallingConv::Intel_OCL_BI: 2833 case CallingConv::PTX_Kernel: 2834 case CallingConv::PTX_Device: 2835 Check(!F.isVarArg(), 2836 "Calling convention does not support varargs or " 2837 "perfect forwarding!", 2838 &F); 2839 break; 2840 } 2841 2842 // Check that the argument values match the function type for this function... 2843 unsigned i = 0; 2844 for (const Argument &Arg : F.args()) { 2845 Check(Arg.getType() == FT->getParamType(i), 2846 "Argument value does not match function argument type!", &Arg, 2847 FT->getParamType(i)); 2848 Check(Arg.getType()->isFirstClassType(), 2849 "Function arguments must have first-class types!", &Arg); 2850 if (!IsIntrinsic) { 2851 Check(!Arg.getType()->isMetadataTy(), 2852 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2853 Check(!Arg.getType()->isTokenTy(), 2854 "Function takes token but isn't an intrinsic", &Arg, &F); 2855 Check(!Arg.getType()->isX86_AMXTy(), 2856 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2857 } 2858 2859 // Check that swifterror argument is only used by loads and stores. 2860 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2861 verifySwiftErrorValue(&Arg); 2862 } 2863 ++i; 2864 } 2865 2866 if (!IsIntrinsic) { 2867 Check(!F.getReturnType()->isTokenTy(), 2868 "Function returns a token but isn't an intrinsic", &F); 2869 Check(!F.getReturnType()->isX86_AMXTy(), 2870 "Function returns a x86_amx but isn't an intrinsic", &F); 2871 } 2872 2873 // Get the function metadata attachments. 2874 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2875 F.getAllMetadata(MDs); 2876 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2877 verifyFunctionMetadata(MDs); 2878 2879 // Check validity of the personality function 2880 if (F.hasPersonalityFn()) { 2881 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2882 if (Per) 2883 Check(Per->getParent() == F.getParent(), 2884 "Referencing personality function in another module!", &F, 2885 F.getParent(), Per, Per->getParent()); 2886 } 2887 2888 // EH funclet coloring can be expensive, recompute on-demand 2889 BlockEHFuncletColors.clear(); 2890 2891 if (F.isMaterializable()) { 2892 // Function has a body somewhere we can't see. 2893 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2894 MDs.empty() ? nullptr : MDs.front().second); 2895 } else if (F.isDeclaration()) { 2896 for (const auto &I : MDs) { 2897 // This is used for call site debug information. 2898 CheckDI(I.first != LLVMContext::MD_dbg || 2899 !cast<DISubprogram>(I.second)->isDistinct(), 2900 "function declaration may only have a unique !dbg attachment", 2901 &F); 2902 Check(I.first != LLVMContext::MD_prof, 2903 "function declaration may not have a !prof attachment", &F); 2904 2905 // Verify the metadata itself. 2906 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2907 } 2908 Check(!F.hasPersonalityFn(), 2909 "Function declaration shouldn't have a personality routine", &F); 2910 } else { 2911 // Verify that this function (which has a body) is not named "llvm.*". It 2912 // is not legal to define intrinsics. 2913 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2914 2915 // Check the entry node 2916 const BasicBlock *Entry = &F.getEntryBlock(); 2917 Check(pred_empty(Entry), 2918 "Entry block to function must not have predecessors!", Entry); 2919 2920 // The address of the entry block cannot be taken, unless it is dead. 2921 if (Entry->hasAddressTaken()) { 2922 Check(!BlockAddress::lookup(Entry)->isConstantUsed(), 2923 "blockaddress may not be used with the entry block!", Entry); 2924 } 2925 2926 unsigned NumDebugAttachments = 0, NumProfAttachments = 0, 2927 NumKCFIAttachments = 0; 2928 // Visit metadata attachments. 2929 for (const auto &I : MDs) { 2930 // Verify that the attachment is legal. 2931 auto AllowLocs = AreDebugLocsAllowed::No; 2932 switch (I.first) { 2933 default: 2934 break; 2935 case LLVMContext::MD_dbg: { 2936 ++NumDebugAttachments; 2937 CheckDI(NumDebugAttachments == 1, 2938 "function must have a single !dbg attachment", &F, I.second); 2939 CheckDI(isa<DISubprogram>(I.second), 2940 "function !dbg attachment must be a subprogram", &F, I.second); 2941 CheckDI(cast<DISubprogram>(I.second)->isDistinct(), 2942 "function definition may only have a distinct !dbg attachment", 2943 &F); 2944 2945 auto *SP = cast<DISubprogram>(I.second); 2946 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2947 CheckDI(!AttachedTo || AttachedTo == &F, 2948 "DISubprogram attached to more than one function", SP, &F); 2949 AttachedTo = &F; 2950 AllowLocs = AreDebugLocsAllowed::Yes; 2951 break; 2952 } 2953 case LLVMContext::MD_prof: 2954 ++NumProfAttachments; 2955 Check(NumProfAttachments == 1, 2956 "function must have a single !prof attachment", &F, I.second); 2957 break; 2958 case LLVMContext::MD_kcfi_type: 2959 ++NumKCFIAttachments; 2960 Check(NumKCFIAttachments == 1, 2961 "function must have a single !kcfi_type attachment", &F, 2962 I.second); 2963 break; 2964 } 2965 2966 // Verify the metadata itself. 2967 visitMDNode(*I.second, AllowLocs); 2968 } 2969 } 2970 2971 // If this function is actually an intrinsic, verify that it is only used in 2972 // direct call/invokes, never having its "address taken". 2973 // Only do this if the module is materialized, otherwise we don't have all the 2974 // uses. 2975 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2976 const User *U; 2977 if (F.hasAddressTaken(&U, false, true, false, 2978 /*IgnoreARCAttachedCall=*/true)) 2979 Check(false, "Invalid user of intrinsic instruction!", U); 2980 } 2981 2982 // Check intrinsics' signatures. 2983 switch (F.getIntrinsicID()) { 2984 case Intrinsic::experimental_gc_get_pointer_base: { 2985 FunctionType *FT = F.getFunctionType(); 2986 Check(FT->getNumParams() == 1, "wrong number of parameters", F); 2987 Check(isa<PointerType>(F.getReturnType()), 2988 "gc.get.pointer.base must return a pointer", F); 2989 Check(FT->getParamType(0) == F.getReturnType(), 2990 "gc.get.pointer.base operand and result must be of the same type", F); 2991 break; 2992 } 2993 case Intrinsic::experimental_gc_get_pointer_offset: { 2994 FunctionType *FT = F.getFunctionType(); 2995 Check(FT->getNumParams() == 1, "wrong number of parameters", F); 2996 Check(isa<PointerType>(FT->getParamType(0)), 2997 "gc.get.pointer.offset operand must be a pointer", F); 2998 Check(F.getReturnType()->isIntegerTy(), 2999 "gc.get.pointer.offset must return integer", F); 3000 break; 3001 } 3002 } 3003 3004 auto *N = F.getSubprogram(); 3005 HasDebugInfo = (N != nullptr); 3006 if (!HasDebugInfo) 3007 return; 3008 3009 // Check that all !dbg attachments lead to back to N. 3010 // 3011 // FIXME: Check this incrementally while visiting !dbg attachments. 3012 // FIXME: Only check when N is the canonical subprogram for F. 3013 SmallPtrSet<const MDNode *, 32> Seen; 3014 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 3015 // Be careful about using DILocation here since we might be dealing with 3016 // broken code (this is the Verifier after all). 3017 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 3018 if (!DL) 3019 return; 3020 if (!Seen.insert(DL).second) 3021 return; 3022 3023 Metadata *Parent = DL->getRawScope(); 3024 CheckDI(Parent && isa<DILocalScope>(Parent), 3025 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent); 3026 3027 DILocalScope *Scope = DL->getInlinedAtScope(); 3028 Check(Scope, "Failed to find DILocalScope", DL); 3029 3030 if (!Seen.insert(Scope).second) 3031 return; 3032 3033 DISubprogram *SP = Scope->getSubprogram(); 3034 3035 // Scope and SP could be the same MDNode and we don't want to skip 3036 // validation in that case 3037 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 3038 return; 3039 3040 CheckDI(SP->describes(&F), 3041 "!dbg attachment points at wrong subprogram for function", N, &F, 3042 &I, DL, Scope, SP); 3043 }; 3044 for (auto &BB : F) 3045 for (auto &I : BB) { 3046 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 3047 // The llvm.loop annotations also contain two DILocations. 3048 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 3049 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 3050 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 3051 if (BrokenDebugInfo) 3052 return; 3053 } 3054 } 3055 3056 // verifyBasicBlock - Verify that a basic block is well formed... 3057 // 3058 void Verifier::visitBasicBlock(BasicBlock &BB) { 3059 InstsInThisBlock.clear(); 3060 ConvergenceVerifyHelper.visit(BB); 3061 3062 // Ensure that basic blocks have terminators! 3063 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 3064 3065 // Check constraints that this basic block imposes on all of the PHI nodes in 3066 // it. 3067 if (isa<PHINode>(BB.front())) { 3068 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 3069 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 3070 llvm::sort(Preds); 3071 for (const PHINode &PN : BB.phis()) { 3072 Check(PN.getNumIncomingValues() == Preds.size(), 3073 "PHINode should have one entry for each predecessor of its " 3074 "parent basic block!", 3075 &PN); 3076 3077 // Get and sort all incoming values in the PHI node... 3078 Values.clear(); 3079 Values.reserve(PN.getNumIncomingValues()); 3080 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 3081 Values.push_back( 3082 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 3083 llvm::sort(Values); 3084 3085 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 3086 // Check to make sure that if there is more than one entry for a 3087 // particular basic block in this PHI node, that the incoming values are 3088 // all identical. 3089 // 3090 Check(i == 0 || Values[i].first != Values[i - 1].first || 3091 Values[i].second == Values[i - 1].second, 3092 "PHI node has multiple entries for the same basic block with " 3093 "different incoming values!", 3094 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 3095 3096 // Check to make sure that the predecessors and PHI node entries are 3097 // matched up. 3098 Check(Values[i].first == Preds[i], 3099 "PHI node entries do not match predecessors!", &PN, 3100 Values[i].first, Preds[i]); 3101 } 3102 } 3103 } 3104 3105 // Check that all instructions have their parent pointers set up correctly. 3106 for (auto &I : BB) 3107 { 3108 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 3109 } 3110 3111 CheckDI(BB.IsNewDbgInfoFormat == BB.getParent()->IsNewDbgInfoFormat, 3112 "BB debug format should match parent function", &BB, 3113 BB.IsNewDbgInfoFormat, BB.getParent(), 3114 BB.getParent()->IsNewDbgInfoFormat); 3115 3116 // Confirm that no issues arise from the debug program. 3117 if (BB.IsNewDbgInfoFormat) 3118 CheckDI(!BB.getTrailingDbgRecords(), "Basic Block has trailing DbgRecords!", 3119 &BB); 3120 } 3121 3122 void Verifier::visitTerminator(Instruction &I) { 3123 // Ensure that terminators only exist at the end of the basic block. 3124 Check(&I == I.getParent()->getTerminator(), 3125 "Terminator found in the middle of a basic block!", I.getParent()); 3126 visitInstruction(I); 3127 } 3128 3129 void Verifier::visitBranchInst(BranchInst &BI) { 3130 if (BI.isConditional()) { 3131 Check(BI.getCondition()->getType()->isIntegerTy(1), 3132 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 3133 } 3134 visitTerminator(BI); 3135 } 3136 3137 void Verifier::visitReturnInst(ReturnInst &RI) { 3138 Function *F = RI.getParent()->getParent(); 3139 unsigned N = RI.getNumOperands(); 3140 if (F->getReturnType()->isVoidTy()) 3141 Check(N == 0, 3142 "Found return instr that returns non-void in Function of void " 3143 "return type!", 3144 &RI, F->getReturnType()); 3145 else 3146 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 3147 "Function return type does not match operand " 3148 "type of return inst!", 3149 &RI, F->getReturnType()); 3150 3151 // Check to make sure that the return value has necessary properties for 3152 // terminators... 3153 visitTerminator(RI); 3154 } 3155 3156 void Verifier::visitSwitchInst(SwitchInst &SI) { 3157 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 3158 // Check to make sure that all of the constants in the switch instruction 3159 // have the same type as the switched-on value. 3160 Type *SwitchTy = SI.getCondition()->getType(); 3161 SmallPtrSet<ConstantInt*, 32> Constants; 3162 for (auto &Case : SI.cases()) { 3163 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)), 3164 "Case value is not a constant integer.", &SI); 3165 Check(Case.getCaseValue()->getType() == SwitchTy, 3166 "Switch constants must all be same type as switch value!", &SI); 3167 Check(Constants.insert(Case.getCaseValue()).second, 3168 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 3169 } 3170 3171 visitTerminator(SI); 3172 } 3173 3174 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 3175 Check(BI.getAddress()->getType()->isPointerTy(), 3176 "Indirectbr operand must have pointer type!", &BI); 3177 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 3178 Check(BI.getDestination(i)->getType()->isLabelTy(), 3179 "Indirectbr destinations must all have pointer type!", &BI); 3180 3181 visitTerminator(BI); 3182 } 3183 3184 void Verifier::visitCallBrInst(CallBrInst &CBI) { 3185 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI); 3186 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 3187 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 3188 3189 verifyInlineAsmCall(CBI); 3190 visitTerminator(CBI); 3191 } 3192 3193 void Verifier::visitSelectInst(SelectInst &SI) { 3194 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 3195 SI.getOperand(2)), 3196 "Invalid operands for select instruction!", &SI); 3197 3198 Check(SI.getTrueValue()->getType() == SI.getType(), 3199 "Select values must have same type as select instruction!", &SI); 3200 visitInstruction(SI); 3201 } 3202 3203 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 3204 /// a pass, if any exist, it's an error. 3205 /// 3206 void Verifier::visitUserOp1(Instruction &I) { 3207 Check(false, "User-defined operators should not live outside of a pass!", &I); 3208 } 3209 3210 void Verifier::visitTruncInst(TruncInst &I) { 3211 // Get the source and destination types 3212 Type *SrcTy = I.getOperand(0)->getType(); 3213 Type *DestTy = I.getType(); 3214 3215 // Get the size of the types in bits, we'll need this later 3216 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3217 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3218 3219 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 3220 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 3221 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3222 "trunc source and destination must both be a vector or neither", &I); 3223 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 3224 3225 visitInstruction(I); 3226 } 3227 3228 void Verifier::visitZExtInst(ZExtInst &I) { 3229 // Get the source and destination types 3230 Type *SrcTy = I.getOperand(0)->getType(); 3231 Type *DestTy = I.getType(); 3232 3233 // Get the size of the types in bits, we'll need this later 3234 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 3235 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 3236 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3237 "zext source and destination must both be a vector or neither", &I); 3238 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3239 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3240 3241 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 3242 3243 visitInstruction(I); 3244 } 3245 3246 void Verifier::visitSExtInst(SExtInst &I) { 3247 // Get the source and destination types 3248 Type *SrcTy = I.getOperand(0)->getType(); 3249 Type *DestTy = I.getType(); 3250 3251 // Get the size of the types in bits, we'll need this later 3252 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3253 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3254 3255 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 3256 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 3257 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3258 "sext source and destination must both be a vector or neither", &I); 3259 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 3260 3261 visitInstruction(I); 3262 } 3263 3264 void Verifier::visitFPTruncInst(FPTruncInst &I) { 3265 // Get the source and destination types 3266 Type *SrcTy = I.getOperand(0)->getType(); 3267 Type *DestTy = I.getType(); 3268 // Get the size of the types in bits, we'll need this later 3269 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3270 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3271 3272 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 3273 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 3274 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3275 "fptrunc source and destination must both be a vector or neither", &I); 3276 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 3277 3278 visitInstruction(I); 3279 } 3280 3281 void Verifier::visitFPExtInst(FPExtInst &I) { 3282 // Get the source and destination types 3283 Type *SrcTy = I.getOperand(0)->getType(); 3284 Type *DestTy = I.getType(); 3285 3286 // Get the size of the types in bits, we'll need this later 3287 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3288 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3289 3290 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 3291 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 3292 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3293 "fpext source and destination must both be a vector or neither", &I); 3294 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 3295 3296 visitInstruction(I); 3297 } 3298 3299 void Verifier::visitUIToFPInst(UIToFPInst &I) { 3300 // Get the source and destination types 3301 Type *SrcTy = I.getOperand(0)->getType(); 3302 Type *DestTy = I.getType(); 3303 3304 bool SrcVec = SrcTy->isVectorTy(); 3305 bool DstVec = DestTy->isVectorTy(); 3306 3307 Check(SrcVec == DstVec, 3308 "UIToFP source and dest must both be vector or scalar", &I); 3309 Check(SrcTy->isIntOrIntVectorTy(), 3310 "UIToFP source must be integer or integer vector", &I); 3311 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 3312 &I); 3313 3314 if (SrcVec && DstVec) 3315 Check(cast<VectorType>(SrcTy)->getElementCount() == 3316 cast<VectorType>(DestTy)->getElementCount(), 3317 "UIToFP source and dest vector length mismatch", &I); 3318 3319 visitInstruction(I); 3320 } 3321 3322 void Verifier::visitSIToFPInst(SIToFPInst &I) { 3323 // Get the source and destination types 3324 Type *SrcTy = I.getOperand(0)->getType(); 3325 Type *DestTy = I.getType(); 3326 3327 bool SrcVec = SrcTy->isVectorTy(); 3328 bool DstVec = DestTy->isVectorTy(); 3329 3330 Check(SrcVec == DstVec, 3331 "SIToFP source and dest must both be vector or scalar", &I); 3332 Check(SrcTy->isIntOrIntVectorTy(), 3333 "SIToFP source must be integer or integer vector", &I); 3334 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 3335 &I); 3336 3337 if (SrcVec && DstVec) 3338 Check(cast<VectorType>(SrcTy)->getElementCount() == 3339 cast<VectorType>(DestTy)->getElementCount(), 3340 "SIToFP source and dest vector length mismatch", &I); 3341 3342 visitInstruction(I); 3343 } 3344 3345 void Verifier::visitFPToUIInst(FPToUIInst &I) { 3346 // Get the source and destination types 3347 Type *SrcTy = I.getOperand(0)->getType(); 3348 Type *DestTy = I.getType(); 3349 3350 bool SrcVec = SrcTy->isVectorTy(); 3351 bool DstVec = DestTy->isVectorTy(); 3352 3353 Check(SrcVec == DstVec, 3354 "FPToUI source and dest must both be vector or scalar", &I); 3355 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I); 3356 Check(DestTy->isIntOrIntVectorTy(), 3357 "FPToUI result must be integer or integer vector", &I); 3358 3359 if (SrcVec && DstVec) 3360 Check(cast<VectorType>(SrcTy)->getElementCount() == 3361 cast<VectorType>(DestTy)->getElementCount(), 3362 "FPToUI source and dest vector length mismatch", &I); 3363 3364 visitInstruction(I); 3365 } 3366 3367 void Verifier::visitFPToSIInst(FPToSIInst &I) { 3368 // Get the source and destination types 3369 Type *SrcTy = I.getOperand(0)->getType(); 3370 Type *DestTy = I.getType(); 3371 3372 bool SrcVec = SrcTy->isVectorTy(); 3373 bool DstVec = DestTy->isVectorTy(); 3374 3375 Check(SrcVec == DstVec, 3376 "FPToSI source and dest must both be vector or scalar", &I); 3377 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I); 3378 Check(DestTy->isIntOrIntVectorTy(), 3379 "FPToSI result must be integer or integer vector", &I); 3380 3381 if (SrcVec && DstVec) 3382 Check(cast<VectorType>(SrcTy)->getElementCount() == 3383 cast<VectorType>(DestTy)->getElementCount(), 3384 "FPToSI source and dest vector length mismatch", &I); 3385 3386 visitInstruction(I); 3387 } 3388 3389 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 3390 // Get the source and destination types 3391 Type *SrcTy = I.getOperand(0)->getType(); 3392 Type *DestTy = I.getType(); 3393 3394 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 3395 3396 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 3397 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 3398 &I); 3399 3400 if (SrcTy->isVectorTy()) { 3401 auto *VSrc = cast<VectorType>(SrcTy); 3402 auto *VDest = cast<VectorType>(DestTy); 3403 Check(VSrc->getElementCount() == VDest->getElementCount(), 3404 "PtrToInt Vector width mismatch", &I); 3405 } 3406 3407 visitInstruction(I); 3408 } 3409 3410 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 3411 // Get the source and destination types 3412 Type *SrcTy = I.getOperand(0)->getType(); 3413 Type *DestTy = I.getType(); 3414 3415 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I); 3416 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 3417 3418 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 3419 &I); 3420 if (SrcTy->isVectorTy()) { 3421 auto *VSrc = cast<VectorType>(SrcTy); 3422 auto *VDest = cast<VectorType>(DestTy); 3423 Check(VSrc->getElementCount() == VDest->getElementCount(), 3424 "IntToPtr Vector width mismatch", &I); 3425 } 3426 visitInstruction(I); 3427 } 3428 3429 void Verifier::visitBitCastInst(BitCastInst &I) { 3430 Check( 3431 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3432 "Invalid bitcast", &I); 3433 visitInstruction(I); 3434 } 3435 3436 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3437 Type *SrcTy = I.getOperand(0)->getType(); 3438 Type *DestTy = I.getType(); 3439 3440 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3441 &I); 3442 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3443 &I); 3444 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3445 "AddrSpaceCast must be between different address spaces", &I); 3446 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3447 Check(SrcVTy->getElementCount() == 3448 cast<VectorType>(DestTy)->getElementCount(), 3449 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3450 visitInstruction(I); 3451 } 3452 3453 /// visitPHINode - Ensure that a PHI node is well formed. 3454 /// 3455 void Verifier::visitPHINode(PHINode &PN) { 3456 // Ensure that the PHI nodes are all grouped together at the top of the block. 3457 // This can be tested by checking whether the instruction before this is 3458 // either nonexistent (because this is begin()) or is a PHI node. If not, 3459 // then there is some other instruction before a PHI. 3460 Check(&PN == &PN.getParent()->front() || 3461 isa<PHINode>(--BasicBlock::iterator(&PN)), 3462 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3463 3464 // Check that a PHI doesn't yield a Token. 3465 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3466 3467 // Check that all of the values of the PHI node have the same type as the 3468 // result. 3469 for (Value *IncValue : PN.incoming_values()) { 3470 Check(PN.getType() == IncValue->getType(), 3471 "PHI node operands are not the same type as the result!", &PN); 3472 } 3473 3474 // All other PHI node constraints are checked in the visitBasicBlock method. 3475 3476 visitInstruction(PN); 3477 } 3478 3479 void Verifier::visitCallBase(CallBase &Call) { 3480 Check(Call.getCalledOperand()->getType()->isPointerTy(), 3481 "Called function must be a pointer!", Call); 3482 FunctionType *FTy = Call.getFunctionType(); 3483 3484 // Verify that the correct number of arguments are being passed 3485 if (FTy->isVarArg()) 3486 Check(Call.arg_size() >= FTy->getNumParams(), 3487 "Called function requires more parameters than were provided!", Call); 3488 else 3489 Check(Call.arg_size() == FTy->getNumParams(), 3490 "Incorrect number of arguments passed to called function!", Call); 3491 3492 // Verify that all arguments to the call match the function type. 3493 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3494 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3495 "Call parameter type does not match function signature!", 3496 Call.getArgOperand(i), FTy->getParamType(i), Call); 3497 3498 AttributeList Attrs = Call.getAttributes(); 3499 3500 Check(verifyAttributeCount(Attrs, Call.arg_size()), 3501 "Attribute after last parameter!", Call); 3502 3503 Function *Callee = 3504 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3505 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3506 if (IsIntrinsic) 3507 Check(Callee->getValueType() == FTy, 3508 "Intrinsic called with incompatible signature", Call); 3509 3510 // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling 3511 // convention. 3512 auto CC = Call.getCallingConv(); 3513 Check(CC != CallingConv::AMDGPU_CS_Chain && 3514 CC != CallingConv::AMDGPU_CS_ChainPreserve, 3515 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions " 3516 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.", 3517 Call); 3518 3519 // Disallow passing/returning values with alignment higher than we can 3520 // represent. 3521 // FIXME: Consider making DataLayout cap the alignment, so this isn't 3522 // necessary. 3523 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) { 3524 if (!Ty->isSized()) 3525 return; 3526 Align ABIAlign = DL.getABITypeAlign(Ty); 3527 Check(ABIAlign.value() <= Value::MaximumAlignment, 3528 "Incorrect alignment of " + Message + " to called function!", Call); 3529 }; 3530 3531 if (!IsIntrinsic) { 3532 VerifyTypeAlign(FTy->getReturnType(), "return type"); 3533 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3534 Type *Ty = FTy->getParamType(i); 3535 VerifyTypeAlign(Ty, "argument passed"); 3536 } 3537 } 3538 3539 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3540 // Don't allow speculatable on call sites, unless the underlying function 3541 // declaration is also speculatable. 3542 Check(Callee && Callee->isSpeculatable(), 3543 "speculatable attribute may not apply to call sites", Call); 3544 } 3545 3546 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3547 Check(Call.getCalledFunction()->getIntrinsicID() == 3548 Intrinsic::call_preallocated_arg, 3549 "preallocated as a call site attribute can only be on " 3550 "llvm.call.preallocated.arg"); 3551 } 3552 3553 // Verify call attributes. 3554 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm()); 3555 3556 // Conservatively check the inalloca argument. 3557 // We have a bug if we can find that there is an underlying alloca without 3558 // inalloca. 3559 if (Call.hasInAllocaArgument()) { 3560 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3561 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3562 Check(AI->isUsedWithInAlloca(), 3563 "inalloca argument for call has mismatched alloca", AI, Call); 3564 } 3565 3566 // For each argument of the callsite, if it has the swifterror argument, 3567 // make sure the underlying alloca/parameter it comes from has a swifterror as 3568 // well. 3569 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3570 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3571 Value *SwiftErrorArg = Call.getArgOperand(i); 3572 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3573 Check(AI->isSwiftError(), 3574 "swifterror argument for call has mismatched alloca", AI, Call); 3575 continue; 3576 } 3577 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3578 Check(ArgI, "swifterror argument should come from an alloca or parameter", 3579 SwiftErrorArg, Call); 3580 Check(ArgI->hasSwiftErrorAttr(), 3581 "swifterror argument for call has mismatched parameter", ArgI, 3582 Call); 3583 } 3584 3585 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3586 // Don't allow immarg on call sites, unless the underlying declaration 3587 // also has the matching immarg. 3588 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3589 "immarg may not apply only to call sites", Call.getArgOperand(i), 3590 Call); 3591 } 3592 3593 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3594 Value *ArgVal = Call.getArgOperand(i); 3595 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3596 "immarg operand has non-immediate parameter", ArgVal, Call); 3597 } 3598 3599 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3600 Value *ArgVal = Call.getArgOperand(i); 3601 bool hasOB = 3602 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3603 bool isMustTail = Call.isMustTailCall(); 3604 Check(hasOB != isMustTail, 3605 "preallocated operand either requires a preallocated bundle or " 3606 "the call to be musttail (but not both)", 3607 ArgVal, Call); 3608 } 3609 } 3610 3611 if (FTy->isVarArg()) { 3612 // FIXME? is 'nest' even legal here? 3613 bool SawNest = false; 3614 bool SawReturned = false; 3615 3616 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3617 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3618 SawNest = true; 3619 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3620 SawReturned = true; 3621 } 3622 3623 // Check attributes on the varargs part. 3624 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3625 Type *Ty = Call.getArgOperand(Idx)->getType(); 3626 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3627 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3628 3629 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3630 Check(!SawNest, "More than one parameter has attribute nest!", Call); 3631 SawNest = true; 3632 } 3633 3634 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3635 Check(!SawReturned, "More than one parameter has attribute returned!", 3636 Call); 3637 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3638 "Incompatible argument and return types for 'returned' " 3639 "attribute", 3640 Call); 3641 SawReturned = true; 3642 } 3643 3644 // Statepoint intrinsic is vararg but the wrapped function may be not. 3645 // Allow sret here and check the wrapped function in verifyStatepoint. 3646 if (!Call.getCalledFunction() || 3647 Call.getCalledFunction()->getIntrinsicID() != 3648 Intrinsic::experimental_gc_statepoint) 3649 Check(!ArgAttrs.hasAttribute(Attribute::StructRet), 3650 "Attribute 'sret' cannot be used for vararg call arguments!", 3651 Call); 3652 3653 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3654 Check(Idx == Call.arg_size() - 1, 3655 "inalloca isn't on the last argument!", Call); 3656 } 3657 } 3658 3659 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3660 if (!IsIntrinsic) { 3661 for (Type *ParamTy : FTy->params()) { 3662 Check(!ParamTy->isMetadataTy(), 3663 "Function has metadata parameter but isn't an intrinsic", Call); 3664 Check(!ParamTy->isTokenTy(), 3665 "Function has token parameter but isn't an intrinsic", Call); 3666 } 3667 } 3668 3669 // Verify that indirect calls don't return tokens. 3670 if (!Call.getCalledFunction()) { 3671 Check(!FTy->getReturnType()->isTokenTy(), 3672 "Return type cannot be token for indirect call!"); 3673 Check(!FTy->getReturnType()->isX86_AMXTy(), 3674 "Return type cannot be x86_amx for indirect call!"); 3675 } 3676 3677 if (Function *F = Call.getCalledFunction()) 3678 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3679 visitIntrinsicCall(ID, Call); 3680 3681 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3682 // most one "gc-transition", at most one "cfguardtarget", at most one 3683 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle. 3684 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3685 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3686 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3687 FoundPtrauthBundle = false, FoundKCFIBundle = false, 3688 FoundAttachedCallBundle = false; 3689 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3690 OperandBundleUse BU = Call.getOperandBundleAt(i); 3691 uint32_t Tag = BU.getTagID(); 3692 if (Tag == LLVMContext::OB_deopt) { 3693 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3694 FoundDeoptBundle = true; 3695 } else if (Tag == LLVMContext::OB_gc_transition) { 3696 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3697 Call); 3698 FoundGCTransitionBundle = true; 3699 } else if (Tag == LLVMContext::OB_funclet) { 3700 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3701 FoundFuncletBundle = true; 3702 Check(BU.Inputs.size() == 1, 3703 "Expected exactly one funclet bundle operand", Call); 3704 Check(isa<FuncletPadInst>(BU.Inputs.front()), 3705 "Funclet bundle operands should correspond to a FuncletPadInst", 3706 Call); 3707 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3708 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles", 3709 Call); 3710 FoundCFGuardTargetBundle = true; 3711 Check(BU.Inputs.size() == 1, 3712 "Expected exactly one cfguardtarget bundle operand", Call); 3713 } else if (Tag == LLVMContext::OB_ptrauth) { 3714 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call); 3715 FoundPtrauthBundle = true; 3716 Check(BU.Inputs.size() == 2, 3717 "Expected exactly two ptrauth bundle operands", Call); 3718 Check(isa<ConstantInt>(BU.Inputs[0]) && 3719 BU.Inputs[0]->getType()->isIntegerTy(32), 3720 "Ptrauth bundle key operand must be an i32 constant", Call); 3721 Check(BU.Inputs[1]->getType()->isIntegerTy(64), 3722 "Ptrauth bundle discriminator operand must be an i64", Call); 3723 } else if (Tag == LLVMContext::OB_kcfi) { 3724 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call); 3725 FoundKCFIBundle = true; 3726 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand", 3727 Call); 3728 Check(isa<ConstantInt>(BU.Inputs[0]) && 3729 BU.Inputs[0]->getType()->isIntegerTy(32), 3730 "Kcfi bundle operand must be an i32 constant", Call); 3731 } else if (Tag == LLVMContext::OB_preallocated) { 3732 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3733 Call); 3734 FoundPreallocatedBundle = true; 3735 Check(BU.Inputs.size() == 1, 3736 "Expected exactly one preallocated bundle operand", Call); 3737 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3738 Check(Input && 3739 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3740 "\"preallocated\" argument must be a token from " 3741 "llvm.call.preallocated.setup", 3742 Call); 3743 } else if (Tag == LLVMContext::OB_gc_live) { 3744 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call); 3745 FoundGCLiveBundle = true; 3746 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3747 Check(!FoundAttachedCallBundle, 3748 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3749 FoundAttachedCallBundle = true; 3750 verifyAttachedCallBundle(Call, BU); 3751 } 3752 } 3753 3754 // Verify that callee and callsite agree on whether to use pointer auth. 3755 Check(!(Call.getCalledFunction() && FoundPtrauthBundle), 3756 "Direct call cannot have a ptrauth bundle", Call); 3757 3758 // Verify that each inlinable callsite of a debug-info-bearing function in a 3759 // debug-info-bearing function has a debug location attached to it. Failure to 3760 // do so causes assertion failures when the inliner sets up inline scope info 3761 // (Interposable functions are not inlinable, neither are functions without 3762 // definitions.) 3763 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3764 !Call.getCalledFunction()->isInterposable() && 3765 !Call.getCalledFunction()->isDeclaration() && 3766 Call.getCalledFunction()->getSubprogram()) 3767 CheckDI(Call.getDebugLoc(), 3768 "inlinable function call in a function with " 3769 "debug info must have a !dbg location", 3770 Call); 3771 3772 if (Call.isInlineAsm()) 3773 verifyInlineAsmCall(Call); 3774 3775 ConvergenceVerifyHelper.visit(Call); 3776 3777 visitInstruction(Call); 3778 } 3779 3780 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, 3781 StringRef Context) { 3782 Check(!Attrs.contains(Attribute::InAlloca), 3783 Twine("inalloca attribute not allowed in ") + Context); 3784 Check(!Attrs.contains(Attribute::InReg), 3785 Twine("inreg attribute not allowed in ") + Context); 3786 Check(!Attrs.contains(Attribute::SwiftError), 3787 Twine("swifterror attribute not allowed in ") + Context); 3788 Check(!Attrs.contains(Attribute::Preallocated), 3789 Twine("preallocated attribute not allowed in ") + Context); 3790 Check(!Attrs.contains(Attribute::ByRef), 3791 Twine("byref attribute not allowed in ") + Context); 3792 } 3793 3794 /// Two types are "congruent" if they are identical, or if they are both pointer 3795 /// types with different pointee types and the same address space. 3796 static bool isTypeCongruent(Type *L, Type *R) { 3797 if (L == R) 3798 return true; 3799 PointerType *PL = dyn_cast<PointerType>(L); 3800 PointerType *PR = dyn_cast<PointerType>(R); 3801 if (!PL || !PR) 3802 return false; 3803 return PL->getAddressSpace() == PR->getAddressSpace(); 3804 } 3805 3806 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) { 3807 static const Attribute::AttrKind ABIAttrs[] = { 3808 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3809 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3810 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3811 Attribute::ByRef}; 3812 AttrBuilder Copy(C); 3813 for (auto AK : ABIAttrs) { 3814 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3815 if (Attr.isValid()) 3816 Copy.addAttribute(Attr); 3817 } 3818 3819 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3820 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3821 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3822 Attrs.hasParamAttr(I, Attribute::ByRef))) 3823 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3824 return Copy; 3825 } 3826 3827 void Verifier::verifyMustTailCall(CallInst &CI) { 3828 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3829 3830 Function *F = CI.getParent()->getParent(); 3831 FunctionType *CallerTy = F->getFunctionType(); 3832 FunctionType *CalleeTy = CI.getFunctionType(); 3833 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3834 "cannot guarantee tail call due to mismatched varargs", &CI); 3835 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3836 "cannot guarantee tail call due to mismatched return types", &CI); 3837 3838 // - The calling conventions of the caller and callee must match. 3839 Check(F->getCallingConv() == CI.getCallingConv(), 3840 "cannot guarantee tail call due to mismatched calling conv", &CI); 3841 3842 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3843 // or a pointer bitcast followed by a ret instruction. 3844 // - The ret instruction must return the (possibly bitcasted) value 3845 // produced by the call or void. 3846 Value *RetVal = &CI; 3847 Instruction *Next = CI.getNextNode(); 3848 3849 // Handle the optional bitcast. 3850 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3851 Check(BI->getOperand(0) == RetVal, 3852 "bitcast following musttail call must use the call", BI); 3853 RetVal = BI; 3854 Next = BI->getNextNode(); 3855 } 3856 3857 // Check the return. 3858 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3859 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI); 3860 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3861 isa<UndefValue>(Ret->getReturnValue()), 3862 "musttail call result must be returned", Ret); 3863 3864 AttributeList CallerAttrs = F->getAttributes(); 3865 AttributeList CalleeAttrs = CI.getAttributes(); 3866 if (CI.getCallingConv() == CallingConv::SwiftTail || 3867 CI.getCallingConv() == CallingConv::Tail) { 3868 StringRef CCName = 3869 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3870 3871 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3872 // are allowed in swifttailcc call 3873 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3874 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3875 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3876 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3877 } 3878 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3879 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3880 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3881 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3882 } 3883 // - Varargs functions are not allowed 3884 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3885 " tail call for varargs function"); 3886 return; 3887 } 3888 3889 // - The caller and callee prototypes must match. Pointer types of 3890 // parameters or return types may differ in pointee type, but not 3891 // address space. 3892 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3893 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3894 "cannot guarantee tail call due to mismatched parameter counts", &CI); 3895 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3896 Check( 3897 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3898 "cannot guarantee tail call due to mismatched parameter types", &CI); 3899 } 3900 } 3901 3902 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3903 // returned, preallocated, and inalloca, must match. 3904 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3905 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3906 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3907 Check(CallerABIAttrs == CalleeABIAttrs, 3908 "cannot guarantee tail call due to mismatched ABI impacting " 3909 "function attributes", 3910 &CI, CI.getOperand(I)); 3911 } 3912 } 3913 3914 void Verifier::visitCallInst(CallInst &CI) { 3915 visitCallBase(CI); 3916 3917 if (CI.isMustTailCall()) 3918 verifyMustTailCall(CI); 3919 } 3920 3921 void Verifier::visitInvokeInst(InvokeInst &II) { 3922 visitCallBase(II); 3923 3924 // Verify that the first non-PHI instruction of the unwind destination is an 3925 // exception handling instruction. 3926 Check( 3927 II.getUnwindDest()->isEHPad(), 3928 "The unwind destination does not have an exception handling instruction!", 3929 &II); 3930 3931 visitTerminator(II); 3932 } 3933 3934 /// visitUnaryOperator - Check the argument to the unary operator. 3935 /// 3936 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3937 Check(U.getType() == U.getOperand(0)->getType(), 3938 "Unary operators must have same type for" 3939 "operands and result!", 3940 &U); 3941 3942 switch (U.getOpcode()) { 3943 // Check that floating-point arithmetic operators are only used with 3944 // floating-point operands. 3945 case Instruction::FNeg: 3946 Check(U.getType()->isFPOrFPVectorTy(), 3947 "FNeg operator only works with float types!", &U); 3948 break; 3949 default: 3950 llvm_unreachable("Unknown UnaryOperator opcode!"); 3951 } 3952 3953 visitInstruction(U); 3954 } 3955 3956 /// visitBinaryOperator - Check that both arguments to the binary operator are 3957 /// of the same type! 3958 /// 3959 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3960 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3961 "Both operands to a binary operator are not of the same type!", &B); 3962 3963 switch (B.getOpcode()) { 3964 // Check that integer arithmetic operators are only used with 3965 // integral operands. 3966 case Instruction::Add: 3967 case Instruction::Sub: 3968 case Instruction::Mul: 3969 case Instruction::SDiv: 3970 case Instruction::UDiv: 3971 case Instruction::SRem: 3972 case Instruction::URem: 3973 Check(B.getType()->isIntOrIntVectorTy(), 3974 "Integer arithmetic operators only work with integral types!", &B); 3975 Check(B.getType() == B.getOperand(0)->getType(), 3976 "Integer arithmetic operators must have same type " 3977 "for operands and result!", 3978 &B); 3979 break; 3980 // Check that floating-point arithmetic operators are only used with 3981 // floating-point operands. 3982 case Instruction::FAdd: 3983 case Instruction::FSub: 3984 case Instruction::FMul: 3985 case Instruction::FDiv: 3986 case Instruction::FRem: 3987 Check(B.getType()->isFPOrFPVectorTy(), 3988 "Floating-point arithmetic operators only work with " 3989 "floating-point types!", 3990 &B); 3991 Check(B.getType() == B.getOperand(0)->getType(), 3992 "Floating-point arithmetic operators must have same type " 3993 "for operands and result!", 3994 &B); 3995 break; 3996 // Check that logical operators are only used with integral operands. 3997 case Instruction::And: 3998 case Instruction::Or: 3999 case Instruction::Xor: 4000 Check(B.getType()->isIntOrIntVectorTy(), 4001 "Logical operators only work with integral types!", &B); 4002 Check(B.getType() == B.getOperand(0)->getType(), 4003 "Logical operators must have same type for operands and result!", &B); 4004 break; 4005 case Instruction::Shl: 4006 case Instruction::LShr: 4007 case Instruction::AShr: 4008 Check(B.getType()->isIntOrIntVectorTy(), 4009 "Shifts only work with integral types!", &B); 4010 Check(B.getType() == B.getOperand(0)->getType(), 4011 "Shift return type must be same as operands!", &B); 4012 break; 4013 default: 4014 llvm_unreachable("Unknown BinaryOperator opcode!"); 4015 } 4016 4017 visitInstruction(B); 4018 } 4019 4020 void Verifier::visitICmpInst(ICmpInst &IC) { 4021 // Check that the operands are the same type 4022 Type *Op0Ty = IC.getOperand(0)->getType(); 4023 Type *Op1Ty = IC.getOperand(1)->getType(); 4024 Check(Op0Ty == Op1Ty, 4025 "Both operands to ICmp instruction are not of the same type!", &IC); 4026 // Check that the operands are the right type 4027 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 4028 "Invalid operand types for ICmp instruction", &IC); 4029 // Check that the predicate is valid. 4030 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC); 4031 4032 visitInstruction(IC); 4033 } 4034 4035 void Verifier::visitFCmpInst(FCmpInst &FC) { 4036 // Check that the operands are the same type 4037 Type *Op0Ty = FC.getOperand(0)->getType(); 4038 Type *Op1Ty = FC.getOperand(1)->getType(); 4039 Check(Op0Ty == Op1Ty, 4040 "Both operands to FCmp instruction are not of the same type!", &FC); 4041 // Check that the operands are the right type 4042 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", 4043 &FC); 4044 // Check that the predicate is valid. 4045 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC); 4046 4047 visitInstruction(FC); 4048 } 4049 4050 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 4051 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 4052 "Invalid extractelement operands!", &EI); 4053 visitInstruction(EI); 4054 } 4055 4056 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 4057 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 4058 IE.getOperand(2)), 4059 "Invalid insertelement operands!", &IE); 4060 visitInstruction(IE); 4061 } 4062 4063 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 4064 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 4065 SV.getShuffleMask()), 4066 "Invalid shufflevector operands!", &SV); 4067 visitInstruction(SV); 4068 } 4069 4070 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 4071 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 4072 4073 Check(isa<PointerType>(TargetTy), 4074 "GEP base pointer is not a vector or a vector of pointers", &GEP); 4075 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 4076 4077 if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) { 4078 SmallPtrSet<Type *, 4> Visited; 4079 Check(!STy->containsScalableVectorType(&Visited), 4080 "getelementptr cannot target structure that contains scalable vector" 4081 "type", 4082 &GEP); 4083 } 4084 4085 SmallVector<Value *, 16> Idxs(GEP.indices()); 4086 Check( 4087 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }), 4088 "GEP indexes must be integers", &GEP); 4089 Type *ElTy = 4090 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 4091 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP); 4092 4093 Check(GEP.getType()->isPtrOrPtrVectorTy() && 4094 GEP.getResultElementType() == ElTy, 4095 "GEP is not of right type for indices!", &GEP, ElTy); 4096 4097 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 4098 // Additional checks for vector GEPs. 4099 ElementCount GEPWidth = GEPVTy->getElementCount(); 4100 if (GEP.getPointerOperandType()->isVectorTy()) 4101 Check( 4102 GEPWidth == 4103 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 4104 "Vector GEP result width doesn't match operand's", &GEP); 4105 for (Value *Idx : Idxs) { 4106 Type *IndexTy = Idx->getType(); 4107 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 4108 ElementCount IndexWidth = IndexVTy->getElementCount(); 4109 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 4110 } 4111 Check(IndexTy->isIntOrIntVectorTy(), 4112 "All GEP indices should be of integer type"); 4113 } 4114 } 4115 4116 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 4117 Check(GEP.getAddressSpace() == PTy->getAddressSpace(), 4118 "GEP address space doesn't match type", &GEP); 4119 } 4120 4121 visitInstruction(GEP); 4122 } 4123 4124 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 4125 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 4126 } 4127 4128 /// Verify !range and !absolute_symbol metadata. These have the same 4129 /// restrictions, except !absolute_symbol allows the full set. 4130 void Verifier::verifyRangeMetadata(const Value &I, const MDNode *Range, 4131 Type *Ty, bool IsAbsoluteSymbol) { 4132 unsigned NumOperands = Range->getNumOperands(); 4133 Check(NumOperands % 2 == 0, "Unfinished range!", Range); 4134 unsigned NumRanges = NumOperands / 2; 4135 Check(NumRanges >= 1, "It should have at least one range!", Range); 4136 4137 ConstantRange LastRange(1, true); // Dummy initial value 4138 for (unsigned i = 0; i < NumRanges; ++i) { 4139 ConstantInt *Low = 4140 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 4141 Check(Low, "The lower limit must be an integer!", Low); 4142 ConstantInt *High = 4143 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 4144 Check(High, "The upper limit must be an integer!", High); 4145 Check(High->getType() == Low->getType() && 4146 High->getType() == Ty->getScalarType(), 4147 "Range types must match instruction type!", &I); 4148 4149 APInt HighV = High->getValue(); 4150 APInt LowV = Low->getValue(); 4151 4152 // ConstantRange asserts if the ranges are the same except for the min/max 4153 // value. Leave the cases it tolerates for the empty range error below. 4154 Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(), 4155 "The upper and lower limits cannot be the same value", &I); 4156 4157 ConstantRange CurRange(LowV, HighV); 4158 Check(!CurRange.isEmptySet() && (IsAbsoluteSymbol || !CurRange.isFullSet()), 4159 "Range must not be empty!", Range); 4160 if (i != 0) { 4161 Check(CurRange.intersectWith(LastRange).isEmptySet(), 4162 "Intervals are overlapping", Range); 4163 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 4164 Range); 4165 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 4166 Range); 4167 } 4168 LastRange = ConstantRange(LowV, HighV); 4169 } 4170 if (NumRanges > 2) { 4171 APInt FirstLow = 4172 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 4173 APInt FirstHigh = 4174 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 4175 ConstantRange FirstRange(FirstLow, FirstHigh); 4176 Check(FirstRange.intersectWith(LastRange).isEmptySet(), 4177 "Intervals are overlapping", Range); 4178 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 4179 Range); 4180 } 4181 } 4182 4183 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 4184 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 4185 "precondition violation"); 4186 verifyRangeMetadata(I, Range, Ty, false); 4187 } 4188 4189 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 4190 unsigned Size = DL.getTypeSizeInBits(Ty); 4191 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 4192 Check(!(Size & (Size - 1)), 4193 "atomic memory access' operand must have a power-of-two size", Ty, I); 4194 } 4195 4196 void Verifier::visitLoadInst(LoadInst &LI) { 4197 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 4198 Check(PTy, "Load operand must be a pointer.", &LI); 4199 Type *ElTy = LI.getType(); 4200 if (MaybeAlign A = LI.getAlign()) { 4201 Check(A->value() <= Value::MaximumAlignment, 4202 "huge alignment values are unsupported", &LI); 4203 } 4204 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI); 4205 if (LI.isAtomic()) { 4206 Check(LI.getOrdering() != AtomicOrdering::Release && 4207 LI.getOrdering() != AtomicOrdering::AcquireRelease, 4208 "Load cannot have Release ordering", &LI); 4209 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 4210 "atomic load operand must have integer, pointer, or floating point " 4211 "type!", 4212 ElTy, &LI); 4213 checkAtomicMemAccessSize(ElTy, &LI); 4214 } else { 4215 Check(LI.getSyncScopeID() == SyncScope::System, 4216 "Non-atomic load cannot have SynchronizationScope specified", &LI); 4217 } 4218 4219 visitInstruction(LI); 4220 } 4221 4222 void Verifier::visitStoreInst(StoreInst &SI) { 4223 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 4224 Check(PTy, "Store operand must be a pointer.", &SI); 4225 Type *ElTy = SI.getOperand(0)->getType(); 4226 if (MaybeAlign A = SI.getAlign()) { 4227 Check(A->value() <= Value::MaximumAlignment, 4228 "huge alignment values are unsupported", &SI); 4229 } 4230 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI); 4231 if (SI.isAtomic()) { 4232 Check(SI.getOrdering() != AtomicOrdering::Acquire && 4233 SI.getOrdering() != AtomicOrdering::AcquireRelease, 4234 "Store cannot have Acquire ordering", &SI); 4235 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 4236 "atomic store operand must have integer, pointer, or floating point " 4237 "type!", 4238 ElTy, &SI); 4239 checkAtomicMemAccessSize(ElTy, &SI); 4240 } else { 4241 Check(SI.getSyncScopeID() == SyncScope::System, 4242 "Non-atomic store cannot have SynchronizationScope specified", &SI); 4243 } 4244 visitInstruction(SI); 4245 } 4246 4247 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 4248 void Verifier::verifySwiftErrorCall(CallBase &Call, 4249 const Value *SwiftErrorVal) { 4250 for (const auto &I : llvm::enumerate(Call.args())) { 4251 if (I.value() == SwiftErrorVal) { 4252 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError), 4253 "swifterror value when used in a callsite should be marked " 4254 "with swifterror attribute", 4255 SwiftErrorVal, Call); 4256 } 4257 } 4258 } 4259 4260 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 4261 // Check that swifterror value is only used by loads, stores, or as 4262 // a swifterror argument. 4263 for (const User *U : SwiftErrorVal->users()) { 4264 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 4265 isa<InvokeInst>(U), 4266 "swifterror value can only be loaded and stored from, or " 4267 "as a swifterror argument!", 4268 SwiftErrorVal, U); 4269 // If it is used by a store, check it is the second operand. 4270 if (auto StoreI = dyn_cast<StoreInst>(U)) 4271 Check(StoreI->getOperand(1) == SwiftErrorVal, 4272 "swifterror value should be the second operand when used " 4273 "by stores", 4274 SwiftErrorVal, U); 4275 if (auto *Call = dyn_cast<CallBase>(U)) 4276 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 4277 } 4278 } 4279 4280 void Verifier::visitAllocaInst(AllocaInst &AI) { 4281 SmallPtrSet<Type*, 4> Visited; 4282 Check(AI.getAllocatedType()->isSized(&Visited), 4283 "Cannot allocate unsized type", &AI); 4284 Check(AI.getArraySize()->getType()->isIntegerTy(), 4285 "Alloca array size must have integer type", &AI); 4286 if (MaybeAlign A = AI.getAlign()) { 4287 Check(A->value() <= Value::MaximumAlignment, 4288 "huge alignment values are unsupported", &AI); 4289 } 4290 4291 if (AI.isSwiftError()) { 4292 Check(AI.getAllocatedType()->isPointerTy(), 4293 "swifterror alloca must have pointer type", &AI); 4294 Check(!AI.isArrayAllocation(), 4295 "swifterror alloca must not be array allocation", &AI); 4296 verifySwiftErrorValue(&AI); 4297 } 4298 4299 visitInstruction(AI); 4300 } 4301 4302 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 4303 Type *ElTy = CXI.getOperand(1)->getType(); 4304 Check(ElTy->isIntOrPtrTy(), 4305 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 4306 checkAtomicMemAccessSize(ElTy, &CXI); 4307 visitInstruction(CXI); 4308 } 4309 4310 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 4311 Check(RMWI.getOrdering() != AtomicOrdering::Unordered, 4312 "atomicrmw instructions cannot be unordered.", &RMWI); 4313 auto Op = RMWI.getOperation(); 4314 Type *ElTy = RMWI.getOperand(1)->getType(); 4315 if (Op == AtomicRMWInst::Xchg) { 4316 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() || 4317 ElTy->isPointerTy(), 4318 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4319 " operand must have integer or floating point type!", 4320 &RMWI, ElTy); 4321 } else if (AtomicRMWInst::isFPOperation(Op)) { 4322 Check(ElTy->isFPOrFPVectorTy() && !isa<ScalableVectorType>(ElTy), 4323 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4324 " operand must have floating-point or fixed vector of floating-point " 4325 "type!", 4326 &RMWI, ElTy); 4327 } else { 4328 Check(ElTy->isIntegerTy(), 4329 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4330 " operand must have integer type!", 4331 &RMWI, ElTy); 4332 } 4333 checkAtomicMemAccessSize(ElTy, &RMWI); 4334 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 4335 "Invalid binary operation!", &RMWI); 4336 visitInstruction(RMWI); 4337 } 4338 4339 void Verifier::visitFenceInst(FenceInst &FI) { 4340 const AtomicOrdering Ordering = FI.getOrdering(); 4341 Check(Ordering == AtomicOrdering::Acquire || 4342 Ordering == AtomicOrdering::Release || 4343 Ordering == AtomicOrdering::AcquireRelease || 4344 Ordering == AtomicOrdering::SequentiallyConsistent, 4345 "fence instructions may only have acquire, release, acq_rel, or " 4346 "seq_cst ordering.", 4347 &FI); 4348 visitInstruction(FI); 4349 } 4350 4351 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 4352 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 4353 EVI.getIndices()) == EVI.getType(), 4354 "Invalid ExtractValueInst operands!", &EVI); 4355 4356 visitInstruction(EVI); 4357 } 4358 4359 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 4360 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 4361 IVI.getIndices()) == 4362 IVI.getOperand(1)->getType(), 4363 "Invalid InsertValueInst operands!", &IVI); 4364 4365 visitInstruction(IVI); 4366 } 4367 4368 static Value *getParentPad(Value *EHPad) { 4369 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 4370 return FPI->getParentPad(); 4371 4372 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 4373 } 4374 4375 void Verifier::visitEHPadPredecessors(Instruction &I) { 4376 assert(I.isEHPad()); 4377 4378 BasicBlock *BB = I.getParent(); 4379 Function *F = BB->getParent(); 4380 4381 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 4382 4383 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 4384 // The landingpad instruction defines its parent as a landing pad block. The 4385 // landing pad block may be branched to only by the unwind edge of an 4386 // invoke. 4387 for (BasicBlock *PredBB : predecessors(BB)) { 4388 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 4389 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 4390 "Block containing LandingPadInst must be jumped to " 4391 "only by the unwind edge of an invoke.", 4392 LPI); 4393 } 4394 return; 4395 } 4396 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 4397 if (!pred_empty(BB)) 4398 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 4399 "Block containg CatchPadInst must be jumped to " 4400 "only by its catchswitch.", 4401 CPI); 4402 Check(BB != CPI->getCatchSwitch()->getUnwindDest(), 4403 "Catchswitch cannot unwind to one of its catchpads", 4404 CPI->getCatchSwitch(), CPI); 4405 return; 4406 } 4407 4408 // Verify that each pred has a legal terminator with a legal to/from EH 4409 // pad relationship. 4410 Instruction *ToPad = &I; 4411 Value *ToPadParent = getParentPad(ToPad); 4412 for (BasicBlock *PredBB : predecessors(BB)) { 4413 Instruction *TI = PredBB->getTerminator(); 4414 Value *FromPad; 4415 if (auto *II = dyn_cast<InvokeInst>(TI)) { 4416 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB, 4417 "EH pad must be jumped to via an unwind edge", ToPad, II); 4418 auto *CalledFn = 4419 dyn_cast<Function>(II->getCalledOperand()->stripPointerCasts()); 4420 if (CalledFn && CalledFn->isIntrinsic() && II->doesNotThrow() && 4421 !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID())) 4422 continue; 4423 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 4424 FromPad = Bundle->Inputs[0]; 4425 else 4426 FromPad = ConstantTokenNone::get(II->getContext()); 4427 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4428 FromPad = CRI->getOperand(0); 4429 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 4430 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4431 FromPad = CSI; 4432 } else { 4433 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 4434 } 4435 4436 // The edge may exit from zero or more nested pads. 4437 SmallSet<Value *, 8> Seen; 4438 for (;; FromPad = getParentPad(FromPad)) { 4439 Check(FromPad != ToPad, 4440 "EH pad cannot handle exceptions raised within it", FromPad, TI); 4441 if (FromPad == ToPadParent) { 4442 // This is a legal unwind edge. 4443 break; 4444 } 4445 Check(!isa<ConstantTokenNone>(FromPad), 4446 "A single unwind edge may only enter one EH pad", TI); 4447 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads", 4448 FromPad); 4449 4450 // This will be diagnosed on the corresponding instruction already. We 4451 // need the extra check here to make sure getParentPad() works. 4452 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad), 4453 "Parent pad must be catchpad/cleanuppad/catchswitch", TI); 4454 } 4455 } 4456 } 4457 4458 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 4459 // The landingpad instruction is ill-formed if it doesn't have any clauses and 4460 // isn't a cleanup. 4461 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(), 4462 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 4463 4464 visitEHPadPredecessors(LPI); 4465 4466 if (!LandingPadResultTy) 4467 LandingPadResultTy = LPI.getType(); 4468 else 4469 Check(LandingPadResultTy == LPI.getType(), 4470 "The landingpad instruction should have a consistent result type " 4471 "inside a function.", 4472 &LPI); 4473 4474 Function *F = LPI.getParent()->getParent(); 4475 Check(F->hasPersonalityFn(), 4476 "LandingPadInst needs to be in a function with a personality.", &LPI); 4477 4478 // The landingpad instruction must be the first non-PHI instruction in the 4479 // block. 4480 Check(LPI.getParent()->getLandingPadInst() == &LPI, 4481 "LandingPadInst not the first non-PHI instruction in the block.", &LPI); 4482 4483 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 4484 Constant *Clause = LPI.getClause(i); 4485 if (LPI.isCatch(i)) { 4486 Check(isa<PointerType>(Clause->getType()), 4487 "Catch operand does not have pointer type!", &LPI); 4488 } else { 4489 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 4490 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 4491 "Filter operand is not an array of constants!", &LPI); 4492 } 4493 } 4494 4495 visitInstruction(LPI); 4496 } 4497 4498 void Verifier::visitResumeInst(ResumeInst &RI) { 4499 Check(RI.getFunction()->hasPersonalityFn(), 4500 "ResumeInst needs to be in a function with a personality.", &RI); 4501 4502 if (!LandingPadResultTy) 4503 LandingPadResultTy = RI.getValue()->getType(); 4504 else 4505 Check(LandingPadResultTy == RI.getValue()->getType(), 4506 "The resume instruction should have a consistent result type " 4507 "inside a function.", 4508 &RI); 4509 4510 visitTerminator(RI); 4511 } 4512 4513 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 4514 BasicBlock *BB = CPI.getParent(); 4515 4516 Function *F = BB->getParent(); 4517 Check(F->hasPersonalityFn(), 4518 "CatchPadInst needs to be in a function with a personality.", &CPI); 4519 4520 Check(isa<CatchSwitchInst>(CPI.getParentPad()), 4521 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4522 CPI.getParentPad()); 4523 4524 // The catchpad instruction must be the first non-PHI instruction in the 4525 // block. 4526 Check(BB->getFirstNonPHI() == &CPI, 4527 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4528 4529 visitEHPadPredecessors(CPI); 4530 visitFuncletPadInst(CPI); 4531 } 4532 4533 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4534 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4535 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4536 CatchReturn.getOperand(0)); 4537 4538 visitTerminator(CatchReturn); 4539 } 4540 4541 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4542 BasicBlock *BB = CPI.getParent(); 4543 4544 Function *F = BB->getParent(); 4545 Check(F->hasPersonalityFn(), 4546 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4547 4548 // The cleanuppad instruction must be the first non-PHI instruction in the 4549 // block. 4550 Check(BB->getFirstNonPHI() == &CPI, 4551 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI); 4552 4553 auto *ParentPad = CPI.getParentPad(); 4554 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4555 "CleanupPadInst has an invalid parent.", &CPI); 4556 4557 visitEHPadPredecessors(CPI); 4558 visitFuncletPadInst(CPI); 4559 } 4560 4561 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4562 User *FirstUser = nullptr; 4563 Value *FirstUnwindPad = nullptr; 4564 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4565 SmallSet<FuncletPadInst *, 8> Seen; 4566 4567 while (!Worklist.empty()) { 4568 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4569 Check(Seen.insert(CurrentPad).second, 4570 "FuncletPadInst must not be nested within itself", CurrentPad); 4571 Value *UnresolvedAncestorPad = nullptr; 4572 for (User *U : CurrentPad->users()) { 4573 BasicBlock *UnwindDest; 4574 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4575 UnwindDest = CRI->getUnwindDest(); 4576 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4577 // We allow catchswitch unwind to caller to nest 4578 // within an outer pad that unwinds somewhere else, 4579 // because catchswitch doesn't have a nounwind variant. 4580 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4581 if (CSI->unwindsToCaller()) 4582 continue; 4583 UnwindDest = CSI->getUnwindDest(); 4584 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4585 UnwindDest = II->getUnwindDest(); 4586 } else if (isa<CallInst>(U)) { 4587 // Calls which don't unwind may be found inside funclet 4588 // pads that unwind somewhere else. We don't *require* 4589 // such calls to be annotated nounwind. 4590 continue; 4591 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4592 // The unwind dest for a cleanup can only be found by 4593 // recursive search. Add it to the worklist, and we'll 4594 // search for its first use that determines where it unwinds. 4595 Worklist.push_back(CPI); 4596 continue; 4597 } else { 4598 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4599 continue; 4600 } 4601 4602 Value *UnwindPad; 4603 bool ExitsFPI; 4604 if (UnwindDest) { 4605 UnwindPad = UnwindDest->getFirstNonPHI(); 4606 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4607 continue; 4608 Value *UnwindParent = getParentPad(UnwindPad); 4609 // Ignore unwind edges that don't exit CurrentPad. 4610 if (UnwindParent == CurrentPad) 4611 continue; 4612 // Determine whether the original funclet pad is exited, 4613 // and if we are scanning nested pads determine how many 4614 // of them are exited so we can stop searching their 4615 // children. 4616 Value *ExitedPad = CurrentPad; 4617 ExitsFPI = false; 4618 do { 4619 if (ExitedPad == &FPI) { 4620 ExitsFPI = true; 4621 // Now we can resolve any ancestors of CurrentPad up to 4622 // FPI, but not including FPI since we need to make sure 4623 // to check all direct users of FPI for consistency. 4624 UnresolvedAncestorPad = &FPI; 4625 break; 4626 } 4627 Value *ExitedParent = getParentPad(ExitedPad); 4628 if (ExitedParent == UnwindParent) { 4629 // ExitedPad is the ancestor-most pad which this unwind 4630 // edge exits, so we can resolve up to it, meaning that 4631 // ExitedParent is the first ancestor still unresolved. 4632 UnresolvedAncestorPad = ExitedParent; 4633 break; 4634 } 4635 ExitedPad = ExitedParent; 4636 } while (!isa<ConstantTokenNone>(ExitedPad)); 4637 } else { 4638 // Unwinding to caller exits all pads. 4639 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4640 ExitsFPI = true; 4641 UnresolvedAncestorPad = &FPI; 4642 } 4643 4644 if (ExitsFPI) { 4645 // This unwind edge exits FPI. Make sure it agrees with other 4646 // such edges. 4647 if (FirstUser) { 4648 Check(UnwindPad == FirstUnwindPad, 4649 "Unwind edges out of a funclet " 4650 "pad must have the same unwind " 4651 "dest", 4652 &FPI, U, FirstUser); 4653 } else { 4654 FirstUser = U; 4655 FirstUnwindPad = UnwindPad; 4656 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4657 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4658 getParentPad(UnwindPad) == getParentPad(&FPI)) 4659 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4660 } 4661 } 4662 // Make sure we visit all uses of FPI, but for nested pads stop as 4663 // soon as we know where they unwind to. 4664 if (CurrentPad != &FPI) 4665 break; 4666 } 4667 if (UnresolvedAncestorPad) { 4668 if (CurrentPad == UnresolvedAncestorPad) { 4669 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4670 // we've found an unwind edge that exits it, because we need to verify 4671 // all direct uses of FPI. 4672 assert(CurrentPad == &FPI); 4673 continue; 4674 } 4675 // Pop off the worklist any nested pads that we've found an unwind 4676 // destination for. The pads on the worklist are the uncles, 4677 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4678 // for all ancestors of CurrentPad up to but not including 4679 // UnresolvedAncestorPad. 4680 Value *ResolvedPad = CurrentPad; 4681 while (!Worklist.empty()) { 4682 Value *UnclePad = Worklist.back(); 4683 Value *AncestorPad = getParentPad(UnclePad); 4684 // Walk ResolvedPad up the ancestor list until we either find the 4685 // uncle's parent or the last resolved ancestor. 4686 while (ResolvedPad != AncestorPad) { 4687 Value *ResolvedParent = getParentPad(ResolvedPad); 4688 if (ResolvedParent == UnresolvedAncestorPad) { 4689 break; 4690 } 4691 ResolvedPad = ResolvedParent; 4692 } 4693 // If the resolved ancestor search didn't find the uncle's parent, 4694 // then the uncle is not yet resolved. 4695 if (ResolvedPad != AncestorPad) 4696 break; 4697 // This uncle is resolved, so pop it from the worklist. 4698 Worklist.pop_back(); 4699 } 4700 } 4701 } 4702 4703 if (FirstUnwindPad) { 4704 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4705 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4706 Value *SwitchUnwindPad; 4707 if (SwitchUnwindDest) 4708 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4709 else 4710 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4711 Check(SwitchUnwindPad == FirstUnwindPad, 4712 "Unwind edges out of a catch must have the same unwind dest as " 4713 "the parent catchswitch", 4714 &FPI, FirstUser, CatchSwitch); 4715 } 4716 } 4717 4718 visitInstruction(FPI); 4719 } 4720 4721 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4722 BasicBlock *BB = CatchSwitch.getParent(); 4723 4724 Function *F = BB->getParent(); 4725 Check(F->hasPersonalityFn(), 4726 "CatchSwitchInst needs to be in a function with a personality.", 4727 &CatchSwitch); 4728 4729 // The catchswitch instruction must be the first non-PHI instruction in the 4730 // block. 4731 Check(BB->getFirstNonPHI() == &CatchSwitch, 4732 "CatchSwitchInst not the first non-PHI instruction in the block.", 4733 &CatchSwitch); 4734 4735 auto *ParentPad = CatchSwitch.getParentPad(); 4736 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4737 "CatchSwitchInst has an invalid parent.", ParentPad); 4738 4739 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4740 Instruction *I = UnwindDest->getFirstNonPHI(); 4741 Check(I->isEHPad() && !isa<LandingPadInst>(I), 4742 "CatchSwitchInst must unwind to an EH block which is not a " 4743 "landingpad.", 4744 &CatchSwitch); 4745 4746 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4747 if (getParentPad(I) == ParentPad) 4748 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4749 } 4750 4751 Check(CatchSwitch.getNumHandlers() != 0, 4752 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4753 4754 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4755 Check(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4756 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4757 } 4758 4759 visitEHPadPredecessors(CatchSwitch); 4760 visitTerminator(CatchSwitch); 4761 } 4762 4763 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4764 Check(isa<CleanupPadInst>(CRI.getOperand(0)), 4765 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4766 CRI.getOperand(0)); 4767 4768 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4769 Instruction *I = UnwindDest->getFirstNonPHI(); 4770 Check(I->isEHPad() && !isa<LandingPadInst>(I), 4771 "CleanupReturnInst must unwind to an EH block which is not a " 4772 "landingpad.", 4773 &CRI); 4774 } 4775 4776 visitTerminator(CRI); 4777 } 4778 4779 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4780 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4781 // If the we have an invalid invoke, don't try to compute the dominance. 4782 // We already reject it in the invoke specific checks and the dominance 4783 // computation doesn't handle multiple edges. 4784 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4785 if (II->getNormalDest() == II->getUnwindDest()) 4786 return; 4787 } 4788 4789 // Quick check whether the def has already been encountered in the same block. 4790 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4791 // uses are defined to happen on the incoming edge, not at the instruction. 4792 // 4793 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4794 // wrapping an SSA value, assert that we've already encountered it. See 4795 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4796 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4797 return; 4798 4799 const Use &U = I.getOperandUse(i); 4800 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I); 4801 } 4802 4803 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4804 Check(I.getType()->isPointerTy(), 4805 "dereferenceable, dereferenceable_or_null " 4806 "apply only to pointer types", 4807 &I); 4808 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4809 "dereferenceable, dereferenceable_or_null apply only to load" 4810 " and inttoptr instructions, use attributes for calls or invokes", 4811 &I); 4812 Check(MD->getNumOperands() == 1, 4813 "dereferenceable, dereferenceable_or_null " 4814 "take one operand!", 4815 &I); 4816 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4817 Check(CI && CI->getType()->isIntegerTy(64), 4818 "dereferenceable, " 4819 "dereferenceable_or_null metadata value must be an i64!", 4820 &I); 4821 } 4822 4823 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4824 Check(MD->getNumOperands() >= 2, 4825 "!prof annotations should have no less than 2 operands", MD); 4826 4827 // Check first operand. 4828 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4829 Check(isa<MDString>(MD->getOperand(0)), 4830 "expected string with name of the !prof annotation", MD); 4831 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4832 StringRef ProfName = MDS->getString(); 4833 4834 // Check consistency of !prof branch_weights metadata. 4835 if (ProfName == "branch_weights") { 4836 unsigned NumBranchWeights = getNumBranchWeights(*MD); 4837 if (isa<InvokeInst>(&I)) { 4838 Check(NumBranchWeights == 1 || NumBranchWeights == 2, 4839 "Wrong number of InvokeInst branch_weights operands", MD); 4840 } else { 4841 unsigned ExpectedNumOperands = 0; 4842 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4843 ExpectedNumOperands = BI->getNumSuccessors(); 4844 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4845 ExpectedNumOperands = SI->getNumSuccessors(); 4846 else if (isa<CallInst>(&I)) 4847 ExpectedNumOperands = 1; 4848 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4849 ExpectedNumOperands = IBI->getNumDestinations(); 4850 else if (isa<SelectInst>(&I)) 4851 ExpectedNumOperands = 2; 4852 else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I)) 4853 ExpectedNumOperands = CI->getNumSuccessors(); 4854 else 4855 CheckFailed("!prof branch_weights are not allowed for this instruction", 4856 MD); 4857 4858 Check(NumBranchWeights == ExpectedNumOperands, "Wrong number of operands", 4859 MD); 4860 } 4861 for (unsigned i = getBranchWeightOffset(MD); i < MD->getNumOperands(); 4862 ++i) { 4863 auto &MDO = MD->getOperand(i); 4864 Check(MDO, "second operand should not be null", MD); 4865 Check(mdconst::dyn_extract<ConstantInt>(MDO), 4866 "!prof brunch_weights operand is not a const int"); 4867 } 4868 } 4869 } 4870 4871 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) { 4872 assert(I.hasMetadata(LLVMContext::MD_DIAssignID)); 4873 bool ExpectedInstTy = 4874 isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I); 4875 CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind", 4876 I, MD); 4877 // Iterate over the MetadataAsValue uses of the DIAssignID - these should 4878 // only be found as DbgAssignIntrinsic operands. 4879 if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) { 4880 for (auto *User : AsValue->users()) { 4881 CheckDI(isa<DbgAssignIntrinsic>(User), 4882 "!DIAssignID should only be used by llvm.dbg.assign intrinsics", 4883 MD, User); 4884 // All of the dbg.assign intrinsics should be in the same function as I. 4885 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User)) 4886 CheckDI(DAI->getFunction() == I.getFunction(), 4887 "dbg.assign not in same function as inst", DAI, &I); 4888 } 4889 } 4890 for (DbgVariableRecord *DVR : 4891 cast<DIAssignID>(MD)->getAllDbgVariableRecordUsers()) { 4892 CheckDI(DVR->isDbgAssign(), 4893 "!DIAssignID should only be used by Assign DVRs.", MD, DVR); 4894 CheckDI(DVR->getFunction() == I.getFunction(), 4895 "DVRAssign not in same function as inst", DVR, &I); 4896 } 4897 } 4898 4899 void Verifier::visitMMRAMetadata(Instruction &I, MDNode *MD) { 4900 Check(canInstructionHaveMMRAs(I), 4901 "!mmra metadata attached to unexpected instruction kind", I, MD); 4902 4903 // MMRA Metadata should either be a tag, e.g. !{!"foo", !"bar"}, or a 4904 // list of tags such as !2 in the following example: 4905 // !0 = !{!"a", !"b"} 4906 // !1 = !{!"c", !"d"} 4907 // !2 = !{!0, !1} 4908 if (MMRAMetadata::isTagMD(MD)) 4909 return; 4910 4911 Check(isa<MDTuple>(MD), "!mmra expected to be a metadata tuple", I, MD); 4912 for (const MDOperand &MDOp : MD->operands()) 4913 Check(MMRAMetadata::isTagMD(MDOp.get()), 4914 "!mmra metadata tuple operand is not an MMRA tag", I, MDOp.get()); 4915 } 4916 4917 void Verifier::visitCallStackMetadata(MDNode *MD) { 4918 // Call stack metadata should consist of a list of at least 1 constant int 4919 // (representing a hash of the location). 4920 Check(MD->getNumOperands() >= 1, 4921 "call stack metadata should have at least 1 operand", MD); 4922 4923 for (const auto &Op : MD->operands()) 4924 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op), 4925 "call stack metadata operand should be constant integer", Op); 4926 } 4927 4928 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) { 4929 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I); 4930 Check(MD->getNumOperands() >= 1, 4931 "!memprof annotations should have at least 1 metadata operand " 4932 "(MemInfoBlock)", 4933 MD); 4934 4935 // Check each MIB 4936 for (auto &MIBOp : MD->operands()) { 4937 MDNode *MIB = dyn_cast<MDNode>(MIBOp); 4938 // The first operand of an MIB should be the call stack metadata. 4939 // There rest of the operands should be MDString tags, and there should be 4940 // at least one. 4941 Check(MIB->getNumOperands() >= 2, 4942 "Each !memprof MemInfoBlock should have at least 2 operands", MIB); 4943 4944 // Check call stack metadata (first operand). 4945 Check(MIB->getOperand(0) != nullptr, 4946 "!memprof MemInfoBlock first operand should not be null", MIB); 4947 Check(isa<MDNode>(MIB->getOperand(0)), 4948 "!memprof MemInfoBlock first operand should be an MDNode", MIB); 4949 MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0)); 4950 visitCallStackMetadata(StackMD); 4951 4952 // Check that remaining operands, except possibly the last, are MDString. 4953 Check(llvm::all_of(MIB->operands().drop_front().drop_back(), 4954 [](const MDOperand &Op) { return isa<MDString>(Op); }), 4955 "Not all !memprof MemInfoBlock operands 1 to N-1 are MDString", MIB); 4956 // The last operand might be the total profiled size so can be an integer. 4957 auto &LastOperand = MIB->operands().back(); 4958 Check(isa<MDString>(LastOperand) || mdconst::hasa<ConstantInt>(LastOperand), 4959 "Last !memprof MemInfoBlock operand not MDString or int", MIB); 4960 } 4961 } 4962 4963 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) { 4964 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I); 4965 // Verify the partial callstack annotated from memprof profiles. This callsite 4966 // is a part of a profiled allocation callstack. 4967 visitCallStackMetadata(MD); 4968 } 4969 4970 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4971 Check(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4972 Check(Annotation->getNumOperands() >= 1, 4973 "annotation must have at least one operand"); 4974 for (const MDOperand &Op : Annotation->operands()) { 4975 bool TupleOfStrings = 4976 isa<MDTuple>(Op.get()) && 4977 all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) { 4978 return isa<MDString>(Annotation.get()); 4979 }); 4980 Check(isa<MDString>(Op.get()) || TupleOfStrings, 4981 "operands must be a string or a tuple of strings"); 4982 } 4983 } 4984 4985 void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 4986 unsigned NumOps = MD->getNumOperands(); 4987 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 4988 MD); 4989 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 4990 "first scope operand must be self-referential or string", MD); 4991 if (NumOps == 3) 4992 Check(isa<MDString>(MD->getOperand(2)), 4993 "third scope operand must be string (if used)", MD); 4994 4995 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 4996 Check(Domain != nullptr, "second scope operand must be MDNode", MD); 4997 4998 unsigned NumDomainOps = Domain->getNumOperands(); 4999 Check(NumDomainOps >= 1 && NumDomainOps <= 2, 5000 "domain must have one or two operands", Domain); 5001 Check(Domain->getOperand(0).get() == Domain || 5002 isa<MDString>(Domain->getOperand(0)), 5003 "first domain operand must be self-referential or string", Domain); 5004 if (NumDomainOps == 2) 5005 Check(isa<MDString>(Domain->getOperand(1)), 5006 "second domain operand must be string (if used)", Domain); 5007 } 5008 5009 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 5010 for (const MDOperand &Op : MD->operands()) { 5011 const MDNode *OpMD = dyn_cast<MDNode>(Op); 5012 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD); 5013 visitAliasScopeMetadata(OpMD); 5014 } 5015 } 5016 5017 void Verifier::visitAccessGroupMetadata(const MDNode *MD) { 5018 auto IsValidAccessScope = [](const MDNode *MD) { 5019 return MD->getNumOperands() == 0 && MD->isDistinct(); 5020 }; 5021 5022 // It must be either an access scope itself... 5023 if (IsValidAccessScope(MD)) 5024 return; 5025 5026 // ...or a list of access scopes. 5027 for (const MDOperand &Op : MD->operands()) { 5028 const MDNode *OpMD = dyn_cast<MDNode>(Op); 5029 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD); 5030 Check(IsValidAccessScope(OpMD), 5031 "Access scope list contains invalid access scope", MD); 5032 } 5033 } 5034 5035 /// verifyInstruction - Verify that an instruction is well formed. 5036 /// 5037 void Verifier::visitInstruction(Instruction &I) { 5038 BasicBlock *BB = I.getParent(); 5039 Check(BB, "Instruction not embedded in basic block!", &I); 5040 5041 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 5042 for (User *U : I.users()) { 5043 Check(U != (User *)&I || !DT.isReachableFromEntry(BB), 5044 "Only PHI nodes may reference their own value!", &I); 5045 } 5046 } 5047 5048 // Check that void typed values don't have names 5049 Check(!I.getType()->isVoidTy() || !I.hasName(), 5050 "Instruction has a name, but provides a void value!", &I); 5051 5052 // Check that the return value of the instruction is either void or a legal 5053 // value type. 5054 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 5055 "Instruction returns a non-scalar type!", &I); 5056 5057 // Check that the instruction doesn't produce metadata. Calls are already 5058 // checked against the callee type. 5059 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 5060 "Invalid use of metadata!", &I); 5061 5062 // Check that all uses of the instruction, if they are instructions 5063 // themselves, actually have parent basic blocks. If the use is not an 5064 // instruction, it is an error! 5065 for (Use &U : I.uses()) { 5066 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 5067 Check(Used->getParent() != nullptr, 5068 "Instruction referencing" 5069 " instruction not embedded in a basic block!", 5070 &I, Used); 5071 else { 5072 CheckFailed("Use of instruction is not an instruction!", U); 5073 return; 5074 } 5075 } 5076 5077 // Get a pointer to the call base of the instruction if it is some form of 5078 // call. 5079 const CallBase *CBI = dyn_cast<CallBase>(&I); 5080 5081 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 5082 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 5083 5084 // Check to make sure that only first-class-values are operands to 5085 // instructions. 5086 if (!I.getOperand(i)->getType()->isFirstClassType()) { 5087 Check(false, "Instruction operands must be first-class values!", &I); 5088 } 5089 5090 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 5091 // This code checks whether the function is used as the operand of a 5092 // clang_arc_attachedcall operand bundle. 5093 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 5094 int Idx) { 5095 return CBI && CBI->isOperandBundleOfType( 5096 LLVMContext::OB_clang_arc_attachedcall, Idx); 5097 }; 5098 5099 // Check to make sure that the "address of" an intrinsic function is never 5100 // taken. Ignore cases where the address of the intrinsic function is used 5101 // as the argument of operand bundle "clang.arc.attachedcall" as those 5102 // cases are handled in verifyAttachedCallBundle. 5103 Check((!F->isIntrinsic() || 5104 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 5105 IsAttachedCallOperand(F, CBI, i)), 5106 "Cannot take the address of an intrinsic!", &I); 5107 Check(!F->isIntrinsic() || isa<CallInst>(I) || 5108 F->getIntrinsicID() == Intrinsic::donothing || 5109 F->getIntrinsicID() == Intrinsic::seh_try_begin || 5110 F->getIntrinsicID() == Intrinsic::seh_try_end || 5111 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 5112 F->getIntrinsicID() == Intrinsic::seh_scope_end || 5113 F->getIntrinsicID() == Intrinsic::coro_resume || 5114 F->getIntrinsicID() == Intrinsic::coro_destroy || 5115 F->getIntrinsicID() == Intrinsic::coro_await_suspend_void || 5116 F->getIntrinsicID() == Intrinsic::coro_await_suspend_bool || 5117 F->getIntrinsicID() == Intrinsic::coro_await_suspend_handle || 5118 F->getIntrinsicID() == 5119 Intrinsic::experimental_patchpoint_void || 5120 F->getIntrinsicID() == Intrinsic::experimental_patchpoint || 5121 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 5122 F->getIntrinsicID() == Intrinsic::wasm_rethrow || 5123 IsAttachedCallOperand(F, CBI, i), 5124 "Cannot invoke an intrinsic other than donothing, patchpoint, " 5125 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 5126 &I); 5127 Check(F->getParent() == &M, "Referencing function in another module!", &I, 5128 &M, F, F->getParent()); 5129 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 5130 Check(OpBB->getParent() == BB->getParent(), 5131 "Referring to a basic block in another function!", &I); 5132 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 5133 Check(OpArg->getParent() == BB->getParent(), 5134 "Referring to an argument in another function!", &I); 5135 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 5136 Check(GV->getParent() == &M, "Referencing global in another module!", &I, 5137 &M, GV, GV->getParent()); 5138 } else if (Instruction *OpInst = dyn_cast<Instruction>(I.getOperand(i))) { 5139 Check(OpInst->getFunction() == BB->getParent(), 5140 "Referring to an instruction in another function!", &I); 5141 verifyDominatesUse(I, i); 5142 } else if (isa<InlineAsm>(I.getOperand(i))) { 5143 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 5144 "Cannot take the address of an inline asm!", &I); 5145 } else if (auto *CPA = dyn_cast<ConstantPtrAuth>(I.getOperand(i))) { 5146 visitConstantExprsRecursively(CPA); 5147 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 5148 if (CE->getType()->isPtrOrPtrVectorTy()) { 5149 // If we have a ConstantExpr pointer, we need to see if it came from an 5150 // illegal bitcast. 5151 visitConstantExprsRecursively(CE); 5152 } 5153 } 5154 } 5155 5156 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 5157 Check(I.getType()->isFPOrFPVectorTy(), 5158 "fpmath requires a floating point result!", &I); 5159 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 5160 if (ConstantFP *CFP0 = 5161 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 5162 const APFloat &Accuracy = CFP0->getValueAPF(); 5163 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 5164 "fpmath accuracy must have float type", &I); 5165 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 5166 "fpmath accuracy not a positive number!", &I); 5167 } else { 5168 Check(false, "invalid fpmath accuracy!", &I); 5169 } 5170 } 5171 5172 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 5173 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 5174 "Ranges are only for loads, calls and invokes!", &I); 5175 visitRangeMetadata(I, Range, I.getType()); 5176 } 5177 5178 if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 5179 Check(isa<LoadInst>(I) || isa<StoreInst>(I), 5180 "invariant.group metadata is only for loads and stores", &I); 5181 } 5182 5183 if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) { 5184 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 5185 &I); 5186 Check(isa<LoadInst>(I), 5187 "nonnull applies only to load instructions, use attributes" 5188 " for calls or invokes", 5189 &I); 5190 Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I); 5191 } 5192 5193 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 5194 visitDereferenceableMetadata(I, MD); 5195 5196 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 5197 visitDereferenceableMetadata(I, MD); 5198 5199 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 5200 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 5201 5202 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 5203 visitAliasScopeListMetadata(MD); 5204 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 5205 visitAliasScopeListMetadata(MD); 5206 5207 if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group)) 5208 visitAccessGroupMetadata(MD); 5209 5210 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 5211 Check(I.getType()->isPointerTy(), "align applies only to pointer types", 5212 &I); 5213 Check(isa<LoadInst>(I), 5214 "align applies only to load instructions, " 5215 "use attributes for calls or invokes", 5216 &I); 5217 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 5218 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 5219 Check(CI && CI->getType()->isIntegerTy(64), 5220 "align metadata value must be an i64!", &I); 5221 uint64_t Align = CI->getZExtValue(); 5222 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!", 5223 &I); 5224 Check(Align <= Value::MaximumAlignment, 5225 "alignment is larger that implementation defined limit", &I); 5226 } 5227 5228 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 5229 visitProfMetadata(I, MD); 5230 5231 if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof)) 5232 visitMemProfMetadata(I, MD); 5233 5234 if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite)) 5235 visitCallsiteMetadata(I, MD); 5236 5237 if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID)) 5238 visitDIAssignIDMetadata(I, MD); 5239 5240 if (MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra)) 5241 visitMMRAMetadata(I, MMRA); 5242 5243 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 5244 visitAnnotationMetadata(Annotation); 5245 5246 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 5247 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 5248 visitMDNode(*N, AreDebugLocsAllowed::Yes); 5249 } 5250 5251 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 5252 verifyFragmentExpression(*DII); 5253 verifyNotEntryValue(*DII); 5254 } 5255 5256 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 5257 I.getAllMetadata(MDs); 5258 for (auto Attachment : MDs) { 5259 unsigned Kind = Attachment.first; 5260 auto AllowLocs = 5261 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 5262 ? AreDebugLocsAllowed::Yes 5263 : AreDebugLocsAllowed::No; 5264 visitMDNode(*Attachment.second, AllowLocs); 5265 } 5266 5267 InstsInThisBlock.insert(&I); 5268 } 5269 5270 /// Allow intrinsics to be verified in different ways. 5271 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 5272 Function *IF = Call.getCalledFunction(); 5273 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!", 5274 IF); 5275 5276 // Verify that the intrinsic prototype lines up with what the .td files 5277 // describe. 5278 FunctionType *IFTy = IF->getFunctionType(); 5279 bool IsVarArg = IFTy->isVarArg(); 5280 5281 SmallVector<Intrinsic::IITDescriptor, 8> Table; 5282 getIntrinsicInfoTableEntries(ID, Table); 5283 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 5284 5285 // Walk the descriptors to extract overloaded types. 5286 SmallVector<Type *, 4> ArgTys; 5287 Intrinsic::MatchIntrinsicTypesResult Res = 5288 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 5289 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 5290 "Intrinsic has incorrect return type!", IF); 5291 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 5292 "Intrinsic has incorrect argument type!", IF); 5293 5294 // Verify if the intrinsic call matches the vararg property. 5295 if (IsVarArg) 5296 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 5297 "Intrinsic was not defined with variable arguments!", IF); 5298 else 5299 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 5300 "Callsite was not defined with variable arguments!", IF); 5301 5302 // All descriptors should be absorbed by now. 5303 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF); 5304 5305 // Now that we have the intrinsic ID and the actual argument types (and we 5306 // know they are legal for the intrinsic!) get the intrinsic name through the 5307 // usual means. This allows us to verify the mangling of argument types into 5308 // the name. 5309 const std::string ExpectedName = 5310 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 5311 Check(ExpectedName == IF->getName(), 5312 "Intrinsic name not mangled correctly for type arguments! " 5313 "Should be: " + 5314 ExpectedName, 5315 IF); 5316 5317 // If the intrinsic takes MDNode arguments, verify that they are either global 5318 // or are local to *this* function. 5319 for (Value *V : Call.args()) { 5320 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 5321 visitMetadataAsValue(*MD, Call.getCaller()); 5322 if (auto *Const = dyn_cast<Constant>(V)) 5323 Check(!Const->getType()->isX86_AMXTy(), 5324 "const x86_amx is not allowed in argument!"); 5325 } 5326 5327 switch (ID) { 5328 default: 5329 break; 5330 case Intrinsic::assume: { 5331 for (auto &Elem : Call.bundle_op_infos()) { 5332 unsigned ArgCount = Elem.End - Elem.Begin; 5333 // Separate storage assumptions are special insofar as they're the only 5334 // operand bundles allowed on assumes that aren't parameter attributes. 5335 if (Elem.Tag->getKey() == "separate_storage") { 5336 Check(ArgCount == 2, 5337 "separate_storage assumptions should have 2 arguments", Call); 5338 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() && 5339 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(), 5340 "arguments to separate_storage assumptions should be pointers", 5341 Call); 5342 return; 5343 } 5344 Check(Elem.Tag->getKey() == "ignore" || 5345 Attribute::isExistingAttribute(Elem.Tag->getKey()), 5346 "tags must be valid attribute names", Call); 5347 Attribute::AttrKind Kind = 5348 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 5349 if (Kind == Attribute::Alignment) { 5350 Check(ArgCount <= 3 && ArgCount >= 2, 5351 "alignment assumptions should have 2 or 3 arguments", Call); 5352 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 5353 "first argument should be a pointer", Call); 5354 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 5355 "second argument should be an integer", Call); 5356 if (ArgCount == 3) 5357 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 5358 "third argument should be an integer if present", Call); 5359 return; 5360 } 5361 Check(ArgCount <= 2, "too many arguments", Call); 5362 if (Kind == Attribute::None) 5363 break; 5364 if (Attribute::isIntAttrKind(Kind)) { 5365 Check(ArgCount == 2, "this attribute should have 2 arguments", Call); 5366 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 5367 "the second argument should be a constant integral value", Call); 5368 } else if (Attribute::canUseAsParamAttr(Kind)) { 5369 Check((ArgCount) == 1, "this attribute should have one argument", Call); 5370 } else if (Attribute::canUseAsFnAttr(Kind)) { 5371 Check((ArgCount) == 0, "this attribute has no argument", Call); 5372 } 5373 } 5374 break; 5375 } 5376 case Intrinsic::ucmp: 5377 case Intrinsic::scmp: { 5378 Type *SrcTy = Call.getOperand(0)->getType(); 5379 Type *DestTy = Call.getType(); 5380 5381 Check(DestTy->getScalarSizeInBits() >= 2, 5382 "result type must be at least 2 bits wide", Call); 5383 5384 bool IsDestTypeVector = DestTy->isVectorTy(); 5385 Check(SrcTy->isVectorTy() == IsDestTypeVector, 5386 "ucmp/scmp argument and result types must both be either vector or " 5387 "scalar types", 5388 Call); 5389 if (IsDestTypeVector) { 5390 auto SrcVecLen = cast<VectorType>(SrcTy)->getElementCount(); 5391 auto DestVecLen = cast<VectorType>(DestTy)->getElementCount(); 5392 Check(SrcVecLen == DestVecLen, 5393 "return type and arguments must have the same number of " 5394 "elements", 5395 Call); 5396 } 5397 break; 5398 } 5399 case Intrinsic::coro_id: { 5400 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 5401 if (isa<ConstantPointerNull>(InfoArg)) 5402 break; 5403 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 5404 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 5405 "info argument of llvm.coro.id must refer to an initialized " 5406 "constant"); 5407 Constant *Init = GV->getInitializer(); 5408 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 5409 "info argument of llvm.coro.id must refer to either a struct or " 5410 "an array"); 5411 break; 5412 } 5413 case Intrinsic::is_fpclass: { 5414 const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1)); 5415 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0, 5416 "unsupported bits for llvm.is.fpclass test mask"); 5417 break; 5418 } 5419 case Intrinsic::fptrunc_round: { 5420 // Check the rounding mode 5421 Metadata *MD = nullptr; 5422 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1)); 5423 if (MAV) 5424 MD = MAV->getMetadata(); 5425 5426 Check(MD != nullptr, "missing rounding mode argument", Call); 5427 5428 Check(isa<MDString>(MD), 5429 ("invalid value for llvm.fptrunc.round metadata operand" 5430 " (the operand should be a string)"), 5431 MD); 5432 5433 std::optional<RoundingMode> RoundMode = 5434 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 5435 Check(RoundMode && *RoundMode != RoundingMode::Dynamic, 5436 "unsupported rounding mode argument", Call); 5437 break; 5438 } 5439 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 5440 #include "llvm/IR/VPIntrinsics.def" 5441 #undef BEGIN_REGISTER_VP_INTRINSIC 5442 visitVPIntrinsic(cast<VPIntrinsic>(Call)); 5443 break; 5444 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 5445 case Intrinsic::INTRINSIC: 5446 #include "llvm/IR/ConstrainedOps.def" 5447 #undef INSTRUCTION 5448 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 5449 break; 5450 case Intrinsic::dbg_declare: // llvm.dbg.declare 5451 Check(isa<MetadataAsValue>(Call.getArgOperand(0)), 5452 "invalid llvm.dbg.declare intrinsic call 1", Call); 5453 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 5454 break; 5455 case Intrinsic::dbg_value: // llvm.dbg.value 5456 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 5457 break; 5458 case Intrinsic::dbg_assign: // llvm.dbg.assign 5459 visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call)); 5460 break; 5461 case Intrinsic::dbg_label: // llvm.dbg.label 5462 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 5463 break; 5464 case Intrinsic::memcpy: 5465 case Intrinsic::memcpy_inline: 5466 case Intrinsic::memmove: 5467 case Intrinsic::memset: 5468 case Intrinsic::memset_inline: { 5469 break; 5470 } 5471 case Intrinsic::memcpy_element_unordered_atomic: 5472 case Intrinsic::memmove_element_unordered_atomic: 5473 case Intrinsic::memset_element_unordered_atomic: { 5474 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 5475 5476 ConstantInt *ElementSizeCI = 5477 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 5478 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 5479 Check(ElementSizeVal.isPowerOf2(), 5480 "element size of the element-wise atomic memory intrinsic " 5481 "must be a power of 2", 5482 Call); 5483 5484 auto IsValidAlignment = [&](MaybeAlign Alignment) { 5485 return Alignment && ElementSizeVal.ule(Alignment->value()); 5486 }; 5487 Check(IsValidAlignment(AMI->getDestAlign()), 5488 "incorrect alignment of the destination argument", Call); 5489 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 5490 Check(IsValidAlignment(AMT->getSourceAlign()), 5491 "incorrect alignment of the source argument", Call); 5492 } 5493 break; 5494 } 5495 case Intrinsic::call_preallocated_setup: { 5496 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5497 Check(NumArgs != nullptr, 5498 "llvm.call.preallocated.setup argument must be a constant"); 5499 bool FoundCall = false; 5500 for (User *U : Call.users()) { 5501 auto *UseCall = dyn_cast<CallBase>(U); 5502 Check(UseCall != nullptr, 5503 "Uses of llvm.call.preallocated.setup must be calls"); 5504 const Function *Fn = UseCall->getCalledFunction(); 5505 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 5506 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 5507 Check(AllocArgIndex != nullptr, 5508 "llvm.call.preallocated.alloc arg index must be a constant"); 5509 auto AllocArgIndexInt = AllocArgIndex->getValue(); 5510 Check(AllocArgIndexInt.sge(0) && 5511 AllocArgIndexInt.slt(NumArgs->getValue()), 5512 "llvm.call.preallocated.alloc arg index must be between 0 and " 5513 "corresponding " 5514 "llvm.call.preallocated.setup's argument count"); 5515 } else if (Fn && Fn->getIntrinsicID() == 5516 Intrinsic::call_preallocated_teardown) { 5517 // nothing to do 5518 } else { 5519 Check(!FoundCall, "Can have at most one call corresponding to a " 5520 "llvm.call.preallocated.setup"); 5521 FoundCall = true; 5522 size_t NumPreallocatedArgs = 0; 5523 for (unsigned i = 0; i < UseCall->arg_size(); i++) { 5524 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 5525 ++NumPreallocatedArgs; 5526 } 5527 } 5528 Check(NumPreallocatedArgs != 0, 5529 "cannot use preallocated intrinsics on a call without " 5530 "preallocated arguments"); 5531 Check(NumArgs->equalsInt(NumPreallocatedArgs), 5532 "llvm.call.preallocated.setup arg size must be equal to number " 5533 "of preallocated arguments " 5534 "at call site", 5535 Call, *UseCall); 5536 // getOperandBundle() cannot be called if more than one of the operand 5537 // bundle exists. There is already a check elsewhere for this, so skip 5538 // here if we see more than one. 5539 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 5540 1) { 5541 return; 5542 } 5543 auto PreallocatedBundle = 5544 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 5545 Check(PreallocatedBundle, 5546 "Use of llvm.call.preallocated.setup outside intrinsics " 5547 "must be in \"preallocated\" operand bundle"); 5548 Check(PreallocatedBundle->Inputs.front().get() == &Call, 5549 "preallocated bundle must have token from corresponding " 5550 "llvm.call.preallocated.setup"); 5551 } 5552 } 5553 break; 5554 } 5555 case Intrinsic::call_preallocated_arg: { 5556 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 5557 Check(Token && Token->getCalledFunction()->getIntrinsicID() == 5558 Intrinsic::call_preallocated_setup, 5559 "llvm.call.preallocated.arg token argument must be a " 5560 "llvm.call.preallocated.setup"); 5561 Check(Call.hasFnAttr(Attribute::Preallocated), 5562 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 5563 "call site attribute"); 5564 break; 5565 } 5566 case Intrinsic::call_preallocated_teardown: { 5567 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 5568 Check(Token && Token->getCalledFunction()->getIntrinsicID() == 5569 Intrinsic::call_preallocated_setup, 5570 "llvm.call.preallocated.teardown token argument must be a " 5571 "llvm.call.preallocated.setup"); 5572 break; 5573 } 5574 case Intrinsic::gcroot: 5575 case Intrinsic::gcwrite: 5576 case Intrinsic::gcread: 5577 if (ID == Intrinsic::gcroot) { 5578 AllocaInst *AI = 5579 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 5580 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 5581 Check(isa<Constant>(Call.getArgOperand(1)), 5582 "llvm.gcroot parameter #2 must be a constant.", Call); 5583 if (!AI->getAllocatedType()->isPointerTy()) { 5584 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 5585 "llvm.gcroot parameter #1 must either be a pointer alloca, " 5586 "or argument #2 must be a non-null constant.", 5587 Call); 5588 } 5589 } 5590 5591 Check(Call.getParent()->getParent()->hasGC(), 5592 "Enclosing function does not use GC.", Call); 5593 break; 5594 case Intrinsic::init_trampoline: 5595 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 5596 "llvm.init_trampoline parameter #2 must resolve to a function.", 5597 Call); 5598 break; 5599 case Intrinsic::prefetch: 5600 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2, 5601 "rw argument to llvm.prefetch must be 0-1", Call); 5602 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 5603 "locality argument to llvm.prefetch must be 0-3", Call); 5604 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2, 5605 "cache type argument to llvm.prefetch must be 0-1", Call); 5606 break; 5607 case Intrinsic::stackprotector: 5608 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 5609 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 5610 break; 5611 case Intrinsic::localescape: { 5612 BasicBlock *BB = Call.getParent(); 5613 Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block", 5614 Call); 5615 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function", 5616 Call); 5617 for (Value *Arg : Call.args()) { 5618 if (isa<ConstantPointerNull>(Arg)) 5619 continue; // Null values are allowed as placeholders. 5620 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 5621 Check(AI && AI->isStaticAlloca(), 5622 "llvm.localescape only accepts static allocas", Call); 5623 } 5624 FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 5625 SawFrameEscape = true; 5626 break; 5627 } 5628 case Intrinsic::localrecover: { 5629 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 5630 Function *Fn = dyn_cast<Function>(FnArg); 5631 Check(Fn && !Fn->isDeclaration(), 5632 "llvm.localrecover first " 5633 "argument must be function defined in this module", 5634 Call); 5635 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 5636 auto &Entry = FrameEscapeInfo[Fn]; 5637 Entry.second = unsigned( 5638 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 5639 break; 5640 } 5641 5642 case Intrinsic::experimental_gc_statepoint: 5643 if (auto *CI = dyn_cast<CallInst>(&Call)) 5644 Check(!CI->isInlineAsm(), 5645 "gc.statepoint support for inline assembly unimplemented", CI); 5646 Check(Call.getParent()->getParent()->hasGC(), 5647 "Enclosing function does not use GC.", Call); 5648 5649 verifyStatepoint(Call); 5650 break; 5651 case Intrinsic::experimental_gc_result: { 5652 Check(Call.getParent()->getParent()->hasGC(), 5653 "Enclosing function does not use GC.", Call); 5654 5655 auto *Statepoint = Call.getArgOperand(0); 5656 if (isa<UndefValue>(Statepoint)) 5657 break; 5658 5659 // Are we tied to a statepoint properly? 5660 const auto *StatepointCall = dyn_cast<CallBase>(Statepoint); 5661 const Function *StatepointFn = 5662 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 5663 Check(StatepointFn && StatepointFn->isDeclaration() && 5664 StatepointFn->getIntrinsicID() == 5665 Intrinsic::experimental_gc_statepoint, 5666 "gc.result operand #1 must be from a statepoint", Call, 5667 Call.getArgOperand(0)); 5668 5669 // Check that result type matches wrapped callee. 5670 auto *TargetFuncType = 5671 cast<FunctionType>(StatepointCall->getParamElementType(2)); 5672 Check(Call.getType() == TargetFuncType->getReturnType(), 5673 "gc.result result type does not match wrapped callee", Call); 5674 break; 5675 } 5676 case Intrinsic::experimental_gc_relocate: { 5677 Check(Call.arg_size() == 3, "wrong number of arguments", Call); 5678 5679 Check(isa<PointerType>(Call.getType()->getScalarType()), 5680 "gc.relocate must return a pointer or a vector of pointers", Call); 5681 5682 // Check that this relocate is correctly tied to the statepoint 5683 5684 // This is case for relocate on the unwinding path of an invoke statepoint 5685 if (LandingPadInst *LandingPad = 5686 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 5687 5688 const BasicBlock *InvokeBB = 5689 LandingPad->getParent()->getUniquePredecessor(); 5690 5691 // Landingpad relocates should have only one predecessor with invoke 5692 // statepoint terminator 5693 Check(InvokeBB, "safepoints should have unique landingpads", 5694 LandingPad->getParent()); 5695 Check(InvokeBB->getTerminator(), "safepoint block should be well formed", 5696 InvokeBB); 5697 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()), 5698 "gc relocate should be linked to a statepoint", InvokeBB); 5699 } else { 5700 // In all other cases relocate should be tied to the statepoint directly. 5701 // This covers relocates on a normal return path of invoke statepoint and 5702 // relocates of a call statepoint. 5703 auto *Token = Call.getArgOperand(0); 5704 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token), 5705 "gc relocate is incorrectly tied to the statepoint", Call, Token); 5706 } 5707 5708 // Verify rest of the relocate arguments. 5709 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint(); 5710 5711 // Both the base and derived must be piped through the safepoint. 5712 Value *Base = Call.getArgOperand(1); 5713 Check(isa<ConstantInt>(Base), 5714 "gc.relocate operand #2 must be integer offset", Call); 5715 5716 Value *Derived = Call.getArgOperand(2); 5717 Check(isa<ConstantInt>(Derived), 5718 "gc.relocate operand #3 must be integer offset", Call); 5719 5720 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 5721 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 5722 5723 // Check the bounds 5724 if (isa<UndefValue>(StatepointCall)) 5725 break; 5726 if (auto Opt = cast<GCStatepointInst>(StatepointCall) 5727 .getOperandBundle(LLVMContext::OB_gc_live)) { 5728 Check(BaseIndex < Opt->Inputs.size(), 5729 "gc.relocate: statepoint base index out of bounds", Call); 5730 Check(DerivedIndex < Opt->Inputs.size(), 5731 "gc.relocate: statepoint derived index out of bounds", Call); 5732 } 5733 5734 // Relocated value must be either a pointer type or vector-of-pointer type, 5735 // but gc_relocate does not need to return the same pointer type as the 5736 // relocated pointer. It can be casted to the correct type later if it's 5737 // desired. However, they must have the same address space and 'vectorness' 5738 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 5739 auto *ResultType = Call.getType(); 5740 auto *DerivedType = Relocate.getDerivedPtr()->getType(); 5741 auto *BaseType = Relocate.getBasePtr()->getType(); 5742 5743 Check(BaseType->isPtrOrPtrVectorTy(), 5744 "gc.relocate: relocated value must be a pointer", Call); 5745 Check(DerivedType->isPtrOrPtrVectorTy(), 5746 "gc.relocate: relocated value must be a pointer", Call); 5747 5748 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5749 "gc.relocate: vector relocates to vector and pointer to pointer", 5750 Call); 5751 Check( 5752 ResultType->getPointerAddressSpace() == 5753 DerivedType->getPointerAddressSpace(), 5754 "gc.relocate: relocating a pointer shouldn't change its address space", 5755 Call); 5756 5757 auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC()); 5758 Check(GC, "gc.relocate: calling function must have GCStrategy", 5759 Call.getFunction()); 5760 if (GC) { 5761 auto isGCPtr = [&GC](Type *PTy) { 5762 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true); 5763 }; 5764 Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call); 5765 Check(isGCPtr(BaseType), 5766 "gc.relocate: relocated value must be a gc pointer", Call); 5767 Check(isGCPtr(DerivedType), 5768 "gc.relocate: relocated value must be a gc pointer", Call); 5769 } 5770 break; 5771 } 5772 case Intrinsic::experimental_patchpoint: { 5773 if (Call.getCallingConv() == CallingConv::AnyReg) { 5774 Check(Call.getType()->isSingleValueType(), 5775 "patchpoint: invalid return type used with anyregcc", Call); 5776 } 5777 break; 5778 } 5779 case Intrinsic::eh_exceptioncode: 5780 case Intrinsic::eh_exceptionpointer: { 5781 Check(isa<CatchPadInst>(Call.getArgOperand(0)), 5782 "eh.exceptionpointer argument must be a catchpad", Call); 5783 break; 5784 } 5785 case Intrinsic::get_active_lane_mask: { 5786 Check(Call.getType()->isVectorTy(), 5787 "get_active_lane_mask: must return a " 5788 "vector", 5789 Call); 5790 auto *ElemTy = Call.getType()->getScalarType(); 5791 Check(ElemTy->isIntegerTy(1), 5792 "get_active_lane_mask: element type is not " 5793 "i1", 5794 Call); 5795 break; 5796 } 5797 case Intrinsic::experimental_get_vector_length: { 5798 ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1)); 5799 Check(!VF->isNegative() && !VF->isZero(), 5800 "get_vector_length: VF must be positive", Call); 5801 break; 5802 } 5803 case Intrinsic::masked_load: { 5804 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5805 Call); 5806 5807 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5808 Value *Mask = Call.getArgOperand(2); 5809 Value *PassThru = Call.getArgOperand(3); 5810 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5811 Call); 5812 Check(Alignment->getValue().isPowerOf2(), 5813 "masked_load: alignment must be a power of 2", Call); 5814 Check(PassThru->getType() == Call.getType(), 5815 "masked_load: pass through and return type must match", Call); 5816 Check(cast<VectorType>(Mask->getType())->getElementCount() == 5817 cast<VectorType>(Call.getType())->getElementCount(), 5818 "masked_load: vector mask must be same length as return", Call); 5819 break; 5820 } 5821 case Intrinsic::masked_store: { 5822 Value *Val = Call.getArgOperand(0); 5823 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5824 Value *Mask = Call.getArgOperand(3); 5825 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5826 Call); 5827 Check(Alignment->getValue().isPowerOf2(), 5828 "masked_store: alignment must be a power of 2", Call); 5829 Check(cast<VectorType>(Mask->getType())->getElementCount() == 5830 cast<VectorType>(Val->getType())->getElementCount(), 5831 "masked_store: vector mask must be same length as value", Call); 5832 break; 5833 } 5834 5835 case Intrinsic::masked_gather: { 5836 const APInt &Alignment = 5837 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5838 Check(Alignment.isZero() || Alignment.isPowerOf2(), 5839 "masked_gather: alignment must be 0 or a power of 2", Call); 5840 break; 5841 } 5842 case Intrinsic::masked_scatter: { 5843 const APInt &Alignment = 5844 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5845 Check(Alignment.isZero() || Alignment.isPowerOf2(), 5846 "masked_scatter: alignment must be 0 or a power of 2", Call); 5847 break; 5848 } 5849 5850 case Intrinsic::experimental_guard: { 5851 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5852 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5853 "experimental_guard must have exactly one " 5854 "\"deopt\" operand bundle"); 5855 break; 5856 } 5857 5858 case Intrinsic::experimental_deoptimize: { 5859 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5860 Call); 5861 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5862 "experimental_deoptimize must have exactly one " 5863 "\"deopt\" operand bundle"); 5864 Check(Call.getType() == Call.getFunction()->getReturnType(), 5865 "experimental_deoptimize return type must match caller return type"); 5866 5867 if (isa<CallInst>(Call)) { 5868 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5869 Check(RI, 5870 "calls to experimental_deoptimize must be followed by a return"); 5871 5872 if (!Call.getType()->isVoidTy() && RI) 5873 Check(RI->getReturnValue() == &Call, 5874 "calls to experimental_deoptimize must be followed by a return " 5875 "of the value computed by experimental_deoptimize"); 5876 } 5877 5878 break; 5879 } 5880 case Intrinsic::vastart: { 5881 Check(Call.getFunction()->isVarArg(), 5882 "va_start called in a non-varargs function"); 5883 break; 5884 } 5885 case Intrinsic::vector_reduce_and: 5886 case Intrinsic::vector_reduce_or: 5887 case Intrinsic::vector_reduce_xor: 5888 case Intrinsic::vector_reduce_add: 5889 case Intrinsic::vector_reduce_mul: 5890 case Intrinsic::vector_reduce_smax: 5891 case Intrinsic::vector_reduce_smin: 5892 case Intrinsic::vector_reduce_umax: 5893 case Intrinsic::vector_reduce_umin: { 5894 Type *ArgTy = Call.getArgOperand(0)->getType(); 5895 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5896 "Intrinsic has incorrect argument type!"); 5897 break; 5898 } 5899 case Intrinsic::vector_reduce_fmax: 5900 case Intrinsic::vector_reduce_fmin: { 5901 Type *ArgTy = Call.getArgOperand(0)->getType(); 5902 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5903 "Intrinsic has incorrect argument type!"); 5904 break; 5905 } 5906 case Intrinsic::vector_reduce_fadd: 5907 case Intrinsic::vector_reduce_fmul: { 5908 // Unlike the other reductions, the first argument is a start value. The 5909 // second argument is the vector to be reduced. 5910 Type *ArgTy = Call.getArgOperand(1)->getType(); 5911 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5912 "Intrinsic has incorrect argument type!"); 5913 break; 5914 } 5915 case Intrinsic::smul_fix: 5916 case Intrinsic::smul_fix_sat: 5917 case Intrinsic::umul_fix: 5918 case Intrinsic::umul_fix_sat: 5919 case Intrinsic::sdiv_fix: 5920 case Intrinsic::sdiv_fix_sat: 5921 case Intrinsic::udiv_fix: 5922 case Intrinsic::udiv_fix_sat: { 5923 Value *Op1 = Call.getArgOperand(0); 5924 Value *Op2 = Call.getArgOperand(1); 5925 Check(Op1->getType()->isIntOrIntVectorTy(), 5926 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5927 "vector of ints"); 5928 Check(Op2->getType()->isIntOrIntVectorTy(), 5929 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5930 "vector of ints"); 5931 5932 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5933 Check(Op3->getType()->isIntegerTy(), 5934 "third operand of [us][mul|div]_fix[_sat] must be an int type"); 5935 Check(Op3->getBitWidth() <= 32, 5936 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5937 5938 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5939 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5940 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5941 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5942 "the operands"); 5943 } else { 5944 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5945 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5946 "to the width of the operands"); 5947 } 5948 break; 5949 } 5950 case Intrinsic::lrint: 5951 case Intrinsic::llrint: { 5952 Type *ValTy = Call.getArgOperand(0)->getType(); 5953 Type *ResultTy = Call.getType(); 5954 Check( 5955 ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(), 5956 "llvm.lrint, llvm.llrint: argument must be floating-point or vector " 5957 "of floating-points, and result must be integer or vector of integers", 5958 &Call); 5959 Check(ValTy->isVectorTy() == ResultTy->isVectorTy(), 5960 "llvm.lrint, llvm.llrint: argument and result disagree on vector use", 5961 &Call); 5962 if (ValTy->isVectorTy()) { 5963 Check(cast<VectorType>(ValTy)->getElementCount() == 5964 cast<VectorType>(ResultTy)->getElementCount(), 5965 "llvm.lrint, llvm.llrint: argument must be same length as result", 5966 &Call); 5967 } 5968 break; 5969 } 5970 case Intrinsic::lround: 5971 case Intrinsic::llround: { 5972 Type *ValTy = Call.getArgOperand(0)->getType(); 5973 Type *ResultTy = Call.getType(); 5974 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5975 "Intrinsic does not support vectors", &Call); 5976 break; 5977 } 5978 case Intrinsic::bswap: { 5979 Type *Ty = Call.getType(); 5980 unsigned Size = Ty->getScalarSizeInBits(); 5981 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5982 break; 5983 } 5984 case Intrinsic::invariant_start: { 5985 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5986 Check(InvariantSize && 5987 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5988 "invariant_start parameter must be -1, 0 or a positive number", 5989 &Call); 5990 break; 5991 } 5992 case Intrinsic::matrix_multiply: 5993 case Intrinsic::matrix_transpose: 5994 case Intrinsic::matrix_column_major_load: 5995 case Intrinsic::matrix_column_major_store: { 5996 Function *IF = Call.getCalledFunction(); 5997 ConstantInt *Stride = nullptr; 5998 ConstantInt *NumRows; 5999 ConstantInt *NumColumns; 6000 VectorType *ResultTy; 6001 Type *Op0ElemTy = nullptr; 6002 Type *Op1ElemTy = nullptr; 6003 switch (ID) { 6004 case Intrinsic::matrix_multiply: { 6005 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 6006 ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3)); 6007 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 6008 Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType()) 6009 ->getNumElements() == 6010 NumRows->getZExtValue() * N->getZExtValue(), 6011 "First argument of a matrix operation does not match specified " 6012 "shape!"); 6013 Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType()) 6014 ->getNumElements() == 6015 N->getZExtValue() * NumColumns->getZExtValue(), 6016 "Second argument of a matrix operation does not match specified " 6017 "shape!"); 6018 6019 ResultTy = cast<VectorType>(Call.getType()); 6020 Op0ElemTy = 6021 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 6022 Op1ElemTy = 6023 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 6024 break; 6025 } 6026 case Intrinsic::matrix_transpose: 6027 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 6028 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 6029 ResultTy = cast<VectorType>(Call.getType()); 6030 Op0ElemTy = 6031 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 6032 break; 6033 case Intrinsic::matrix_column_major_load: { 6034 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 6035 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 6036 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 6037 ResultTy = cast<VectorType>(Call.getType()); 6038 break; 6039 } 6040 case Intrinsic::matrix_column_major_store: { 6041 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 6042 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 6043 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 6044 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 6045 Op0ElemTy = 6046 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 6047 break; 6048 } 6049 default: 6050 llvm_unreachable("unexpected intrinsic"); 6051 } 6052 6053 Check(ResultTy->getElementType()->isIntegerTy() || 6054 ResultTy->getElementType()->isFloatingPointTy(), 6055 "Result type must be an integer or floating-point type!", IF); 6056 6057 if (Op0ElemTy) 6058 Check(ResultTy->getElementType() == Op0ElemTy, 6059 "Vector element type mismatch of the result and first operand " 6060 "vector!", 6061 IF); 6062 6063 if (Op1ElemTy) 6064 Check(ResultTy->getElementType() == Op1ElemTy, 6065 "Vector element type mismatch of the result and second operand " 6066 "vector!", 6067 IF); 6068 6069 Check(cast<FixedVectorType>(ResultTy)->getNumElements() == 6070 NumRows->getZExtValue() * NumColumns->getZExtValue(), 6071 "Result of a matrix operation does not fit in the returned vector!"); 6072 6073 if (Stride) 6074 Check(Stride->getZExtValue() >= NumRows->getZExtValue(), 6075 "Stride must be greater or equal than the number of rows!", IF); 6076 6077 break; 6078 } 6079 case Intrinsic::vector_splice: { 6080 VectorType *VecTy = cast<VectorType>(Call.getType()); 6081 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue(); 6082 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue(); 6083 if (Call.getParent() && Call.getParent()->getParent()) { 6084 AttributeList Attrs = Call.getParent()->getParent()->getAttributes(); 6085 if (Attrs.hasFnAttr(Attribute::VScaleRange)) 6086 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin(); 6087 } 6088 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) || 6089 (Idx >= 0 && Idx < KnownMinNumElements), 6090 "The splice index exceeds the range [-VL, VL-1] where VL is the " 6091 "known minimum number of elements in the vector. For scalable " 6092 "vectors the minimum number of elements is determined from " 6093 "vscale_range.", 6094 &Call); 6095 break; 6096 } 6097 case Intrinsic::experimental_stepvector: { 6098 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 6099 Check(VecTy && VecTy->getScalarType()->isIntegerTy() && 6100 VecTy->getScalarSizeInBits() >= 8, 6101 "experimental_stepvector only supported for vectors of integers " 6102 "with a bitwidth of at least 8.", 6103 &Call); 6104 break; 6105 } 6106 case Intrinsic::vector_insert: { 6107 Value *Vec = Call.getArgOperand(0); 6108 Value *SubVec = Call.getArgOperand(1); 6109 Value *Idx = Call.getArgOperand(2); 6110 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6111 6112 VectorType *VecTy = cast<VectorType>(Vec->getType()); 6113 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 6114 6115 ElementCount VecEC = VecTy->getElementCount(); 6116 ElementCount SubVecEC = SubVecTy->getElementCount(); 6117 Check(VecTy->getElementType() == SubVecTy->getElementType(), 6118 "vector_insert parameters must have the same element " 6119 "type.", 6120 &Call); 6121 Check(IdxN % SubVecEC.getKnownMinValue() == 0, 6122 "vector_insert index must be a constant multiple of " 6123 "the subvector's known minimum vector length."); 6124 6125 // If this insertion is not the 'mixed' case where a fixed vector is 6126 // inserted into a scalable vector, ensure that the insertion of the 6127 // subvector does not overrun the parent vector. 6128 if (VecEC.isScalable() == SubVecEC.isScalable()) { 6129 Check(IdxN < VecEC.getKnownMinValue() && 6130 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 6131 "subvector operand of vector_insert would overrun the " 6132 "vector being inserted into."); 6133 } 6134 break; 6135 } 6136 case Intrinsic::vector_extract: { 6137 Value *Vec = Call.getArgOperand(0); 6138 Value *Idx = Call.getArgOperand(1); 6139 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6140 6141 VectorType *ResultTy = cast<VectorType>(Call.getType()); 6142 VectorType *VecTy = cast<VectorType>(Vec->getType()); 6143 6144 ElementCount VecEC = VecTy->getElementCount(); 6145 ElementCount ResultEC = ResultTy->getElementCount(); 6146 6147 Check(ResultTy->getElementType() == VecTy->getElementType(), 6148 "vector_extract result must have the same element " 6149 "type as the input vector.", 6150 &Call); 6151 Check(IdxN % ResultEC.getKnownMinValue() == 0, 6152 "vector_extract index must be a constant multiple of " 6153 "the result type's known minimum vector length."); 6154 6155 // If this extraction is not the 'mixed' case where a fixed vector is 6156 // extracted from a scalable vector, ensure that the extraction does not 6157 // overrun the parent vector. 6158 if (VecEC.isScalable() == ResultEC.isScalable()) { 6159 Check(IdxN < VecEC.getKnownMinValue() && 6160 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 6161 "vector_extract would overrun."); 6162 } 6163 break; 6164 } 6165 case Intrinsic::experimental_vector_partial_reduce_add: { 6166 VectorType *AccTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 6167 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(1)->getType()); 6168 6169 unsigned VecWidth = VecTy->getElementCount().getKnownMinValue(); 6170 unsigned AccWidth = AccTy->getElementCount().getKnownMinValue(); 6171 6172 Check((VecWidth % AccWidth) == 0, 6173 "Invalid vector widths for partial " 6174 "reduction. The width of the input vector " 6175 "must be a positive integer multiple of " 6176 "the width of the accumulator vector."); 6177 break; 6178 } 6179 case Intrinsic::experimental_noalias_scope_decl: { 6180 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 6181 break; 6182 } 6183 case Intrinsic::preserve_array_access_index: 6184 case Intrinsic::preserve_struct_access_index: 6185 case Intrinsic::aarch64_ldaxr: 6186 case Intrinsic::aarch64_ldxr: 6187 case Intrinsic::arm_ldaex: 6188 case Intrinsic::arm_ldrex: { 6189 Type *ElemTy = Call.getParamElementType(0); 6190 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.", 6191 &Call); 6192 break; 6193 } 6194 case Intrinsic::aarch64_stlxr: 6195 case Intrinsic::aarch64_stxr: 6196 case Intrinsic::arm_stlex: 6197 case Intrinsic::arm_strex: { 6198 Type *ElemTy = Call.getAttributes().getParamElementType(1); 6199 Check(ElemTy, 6200 "Intrinsic requires elementtype attribute on second argument.", 6201 &Call); 6202 break; 6203 } 6204 case Intrinsic::aarch64_prefetch: { 6205 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2, 6206 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call); 6207 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 6208 "target argument to llvm.aarch64.prefetch must be 0-3", Call); 6209 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2, 6210 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call); 6211 Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2, 6212 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call); 6213 break; 6214 } 6215 case Intrinsic::callbr_landingpad: { 6216 const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0)); 6217 Check(CBR, "intrinstic requires callbr operand", &Call); 6218 if (!CBR) 6219 break; 6220 6221 const BasicBlock *LandingPadBB = Call.getParent(); 6222 const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor(); 6223 if (!PredBB) { 6224 CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call); 6225 break; 6226 } 6227 if (!isa<CallBrInst>(PredBB->getTerminator())) { 6228 CheckFailed("Intrinsic must have corresponding callbr in predecessor", 6229 &Call); 6230 break; 6231 } 6232 Check(llvm::any_of(CBR->getIndirectDests(), 6233 [LandingPadBB](const BasicBlock *IndDest) { 6234 return IndDest == LandingPadBB; 6235 }), 6236 "Intrinsic's corresponding callbr must have intrinsic's parent basic " 6237 "block in indirect destination list", 6238 &Call); 6239 const Instruction &First = *LandingPadBB->begin(); 6240 Check(&First == &Call, "No other instructions may proceed intrinsic", 6241 &Call); 6242 break; 6243 } 6244 case Intrinsic::amdgcn_cs_chain: { 6245 auto CallerCC = Call.getCaller()->getCallingConv(); 6246 switch (CallerCC) { 6247 case CallingConv::AMDGPU_CS: 6248 case CallingConv::AMDGPU_CS_Chain: 6249 case CallingConv::AMDGPU_CS_ChainPreserve: 6250 break; 6251 default: 6252 CheckFailed("Intrinsic can only be used from functions with the " 6253 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve " 6254 "calling conventions", 6255 &Call); 6256 break; 6257 } 6258 6259 Check(Call.paramHasAttr(2, Attribute::InReg), 6260 "SGPR arguments must have the `inreg` attribute", &Call); 6261 Check(!Call.paramHasAttr(3, Attribute::InReg), 6262 "VGPR arguments must not have the `inreg` attribute", &Call); 6263 break; 6264 } 6265 case Intrinsic::amdgcn_set_inactive_chain_arg: { 6266 auto CallerCC = Call.getCaller()->getCallingConv(); 6267 switch (CallerCC) { 6268 case CallingConv::AMDGPU_CS_Chain: 6269 case CallingConv::AMDGPU_CS_ChainPreserve: 6270 break; 6271 default: 6272 CheckFailed("Intrinsic can only be used from functions with the " 6273 "amdgpu_cs_chain or amdgpu_cs_chain_preserve " 6274 "calling conventions", 6275 &Call); 6276 break; 6277 } 6278 6279 unsigned InactiveIdx = 1; 6280 Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg), 6281 "Value for inactive lanes must not have the `inreg` attribute", 6282 &Call); 6283 Check(isa<Argument>(Call.getArgOperand(InactiveIdx)), 6284 "Value for inactive lanes must be a function argument", &Call); 6285 Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(), 6286 "Value for inactive lanes must be a VGPR function argument", &Call); 6287 break; 6288 } 6289 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32: 6290 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: { 6291 Value *V = Call.getArgOperand(0); 6292 unsigned RegCount = cast<ConstantInt>(V)->getZExtValue(); 6293 Check(RegCount % 8 == 0, 6294 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8"); 6295 Check((RegCount >= 24 && RegCount <= 256), 6296 "reg_count argument to nvvm.setmaxnreg must be within [24, 256]"); 6297 break; 6298 } 6299 case Intrinsic::experimental_convergence_entry: 6300 case Intrinsic::experimental_convergence_anchor: 6301 break; 6302 case Intrinsic::experimental_convergence_loop: 6303 break; 6304 case Intrinsic::ptrmask: { 6305 Type *Ty0 = Call.getArgOperand(0)->getType(); 6306 Type *Ty1 = Call.getArgOperand(1)->getType(); 6307 Check(Ty0->isPtrOrPtrVectorTy(), 6308 "llvm.ptrmask intrinsic first argument must be pointer or vector " 6309 "of pointers", 6310 &Call); 6311 Check( 6312 Ty0->isVectorTy() == Ty1->isVectorTy(), 6313 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors", 6314 &Call); 6315 if (Ty0->isVectorTy()) 6316 Check(cast<VectorType>(Ty0)->getElementCount() == 6317 cast<VectorType>(Ty1)->getElementCount(), 6318 "llvm.ptrmask intrinsic arguments must have the same number of " 6319 "elements", 6320 &Call); 6321 Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(), 6322 "llvm.ptrmask intrinsic second argument bitwidth must match " 6323 "pointer index type size of first argument", 6324 &Call); 6325 break; 6326 } 6327 case Intrinsic::threadlocal_address: { 6328 const Value &Arg0 = *Call.getArgOperand(0); 6329 Check(isa<GlobalValue>(Arg0), 6330 "llvm.threadlocal.address first argument must be a GlobalValue"); 6331 Check(cast<GlobalValue>(Arg0).isThreadLocal(), 6332 "llvm.threadlocal.address operand isThreadLocal() must be true"); 6333 break; 6334 } 6335 }; 6336 6337 // Verify that there aren't any unmediated control transfers between funclets. 6338 if (IntrinsicInst::mayLowerToFunctionCall(ID)) { 6339 Function *F = Call.getParent()->getParent(); 6340 if (F->hasPersonalityFn() && 6341 isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) { 6342 // Run EH funclet coloring on-demand and cache results for other intrinsic 6343 // calls in this function 6344 if (BlockEHFuncletColors.empty()) 6345 BlockEHFuncletColors = colorEHFunclets(*F); 6346 6347 // Check for catch-/cleanup-pad in first funclet block 6348 bool InEHFunclet = false; 6349 BasicBlock *CallBB = Call.getParent(); 6350 const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second; 6351 assert(CV.size() > 0 && "Uncolored block"); 6352 for (BasicBlock *ColorFirstBB : CV) 6353 if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI())) 6354 InEHFunclet = true; 6355 6356 // Check for funclet operand bundle 6357 bool HasToken = false; 6358 for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I) 6359 if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet) 6360 HasToken = true; 6361 6362 // This would cause silent code truncation in WinEHPrepare 6363 if (InEHFunclet) 6364 Check(HasToken, "Missing funclet token on intrinsic call", &Call); 6365 } 6366 } 6367 } 6368 6369 /// Carefully grab the subprogram from a local scope. 6370 /// 6371 /// This carefully grabs the subprogram from a local scope, avoiding the 6372 /// built-in assertions that would typically fire. 6373 static DISubprogram *getSubprogram(Metadata *LocalScope) { 6374 if (!LocalScope) 6375 return nullptr; 6376 6377 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 6378 return SP; 6379 6380 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 6381 return getSubprogram(LB->getRawScope()); 6382 6383 // Just return null; broken scope chains are checked elsewhere. 6384 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 6385 return nullptr; 6386 } 6387 6388 void Verifier::visit(DbgLabelRecord &DLR) { 6389 CheckDI(isa<DILabel>(DLR.getRawLabel()), 6390 "invalid #dbg_label intrinsic variable", &DLR, DLR.getRawLabel()); 6391 6392 // Ignore broken !dbg attachments; they're checked elsewhere. 6393 if (MDNode *N = DLR.getDebugLoc().getAsMDNode()) 6394 if (!isa<DILocation>(N)) 6395 return; 6396 6397 BasicBlock *BB = DLR.getParent(); 6398 Function *F = BB ? BB->getParent() : nullptr; 6399 6400 // The scopes for variables and !dbg attachments must agree. 6401 DILabel *Label = DLR.getLabel(); 6402 DILocation *Loc = DLR.getDebugLoc(); 6403 CheckDI(Loc, "#dbg_label record requires a !dbg attachment", &DLR, BB, F); 6404 6405 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 6406 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6407 if (!LabelSP || !LocSP) 6408 return; 6409 6410 CheckDI(LabelSP == LocSP, 6411 "mismatched subprogram between #dbg_label label and !dbg attachment", 6412 &DLR, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 6413 Loc->getScope()->getSubprogram()); 6414 } 6415 6416 void Verifier::visit(DbgVariableRecord &DVR) { 6417 BasicBlock *BB = DVR.getParent(); 6418 Function *F = BB->getParent(); 6419 6420 CheckDI(DVR.getType() == DbgVariableRecord::LocationType::Value || 6421 DVR.getType() == DbgVariableRecord::LocationType::Declare || 6422 DVR.getType() == DbgVariableRecord::LocationType::Assign, 6423 "invalid #dbg record type", &DVR, DVR.getType()); 6424 6425 // The location for a DbgVariableRecord must be either a ValueAsMetadata, 6426 // DIArgList, or an empty MDNode (which is a legacy representation for an 6427 // "undef" location). 6428 auto *MD = DVR.getRawLocation(); 6429 CheckDI(MD && (isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 6430 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands())), 6431 "invalid #dbg record address/value", &DVR, MD); 6432 if (auto *VAM = dyn_cast<ValueAsMetadata>(MD)) 6433 visitValueAsMetadata(*VAM, F); 6434 else if (auto *AL = dyn_cast<DIArgList>(MD)) 6435 visitDIArgList(*AL, F); 6436 6437 CheckDI(isa_and_nonnull<DILocalVariable>(DVR.getRawVariable()), 6438 "invalid #dbg record variable", &DVR, DVR.getRawVariable()); 6439 visitMDNode(*DVR.getRawVariable(), AreDebugLocsAllowed::No); 6440 6441 CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawExpression()), 6442 "invalid #dbg record expression", &DVR, DVR.getRawExpression()); 6443 visitMDNode(*DVR.getExpression(), AreDebugLocsAllowed::No); 6444 6445 if (DVR.isDbgAssign()) { 6446 CheckDI(isa_and_nonnull<DIAssignID>(DVR.getRawAssignID()), 6447 "invalid #dbg_assign DIAssignID", &DVR, DVR.getRawAssignID()); 6448 visitMDNode(*cast<DIAssignID>(DVR.getRawAssignID()), 6449 AreDebugLocsAllowed::No); 6450 6451 const auto *RawAddr = DVR.getRawAddress(); 6452 // Similarly to the location above, the address for an assign 6453 // DbgVariableRecord must be a ValueAsMetadata or an empty MDNode, which 6454 // represents an undef address. 6455 CheckDI( 6456 isa<ValueAsMetadata>(RawAddr) || 6457 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()), 6458 "invalid #dbg_assign address", &DVR, DVR.getRawAddress()); 6459 if (auto *VAM = dyn_cast<ValueAsMetadata>(RawAddr)) 6460 visitValueAsMetadata(*VAM, F); 6461 6462 CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawAddressExpression()), 6463 "invalid #dbg_assign address expression", &DVR, 6464 DVR.getRawAddressExpression()); 6465 visitMDNode(*DVR.getAddressExpression(), AreDebugLocsAllowed::No); 6466 6467 // All of the linked instructions should be in the same function as DVR. 6468 for (Instruction *I : at::getAssignmentInsts(&DVR)) 6469 CheckDI(DVR.getFunction() == I->getFunction(), 6470 "inst not in same function as #dbg_assign", I, &DVR); 6471 } 6472 6473 // This check is redundant with one in visitLocalVariable(). 6474 DILocalVariable *Var = DVR.getVariable(); 6475 CheckDI(isType(Var->getRawType()), "invalid type ref", Var, 6476 Var->getRawType()); 6477 6478 auto *DLNode = DVR.getDebugLoc().getAsMDNode(); 6479 CheckDI(isa_and_nonnull<DILocation>(DLNode), "invalid #dbg record DILocation", 6480 &DVR, DLNode); 6481 DILocation *Loc = DVR.getDebugLoc(); 6482 6483 // The scopes for variables and !dbg attachments must agree. 6484 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 6485 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6486 if (!VarSP || !LocSP) 6487 return; // Broken scope chains are checked elsewhere. 6488 6489 CheckDI(VarSP == LocSP, 6490 "mismatched subprogram between #dbg record variable and DILocation", 6491 &DVR, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 6492 Loc->getScope()->getSubprogram()); 6493 6494 verifyFnArgs(DVR); 6495 } 6496 6497 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) { 6498 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) { 6499 auto *RetTy = cast<VectorType>(VPCast->getType()); 6500 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType()); 6501 Check(RetTy->getElementCount() == ValTy->getElementCount(), 6502 "VP cast intrinsic first argument and result vector lengths must be " 6503 "equal", 6504 *VPCast); 6505 6506 switch (VPCast->getIntrinsicID()) { 6507 default: 6508 llvm_unreachable("Unknown VP cast intrinsic"); 6509 case Intrinsic::vp_trunc: 6510 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), 6511 "llvm.vp.trunc intrinsic first argument and result element type " 6512 "must be integer", 6513 *VPCast); 6514 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), 6515 "llvm.vp.trunc intrinsic the bit size of first argument must be " 6516 "larger than the bit size of the return type", 6517 *VPCast); 6518 break; 6519 case Intrinsic::vp_zext: 6520 case Intrinsic::vp_sext: 6521 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), 6522 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result " 6523 "element type must be integer", 6524 *VPCast); 6525 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), 6526 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first " 6527 "argument must be smaller than the bit size of the return type", 6528 *VPCast); 6529 break; 6530 case Intrinsic::vp_fptoui: 6531 case Intrinsic::vp_fptosi: 6532 case Intrinsic::vp_lrint: 6533 case Intrinsic::vp_llrint: 6534 Check( 6535 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(), 6536 "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element " 6537 "type must be floating-point and result element type must be integer", 6538 *VPCast); 6539 break; 6540 case Intrinsic::vp_uitofp: 6541 case Intrinsic::vp_sitofp: 6542 Check( 6543 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(), 6544 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element " 6545 "type must be integer and result element type must be floating-point", 6546 *VPCast); 6547 break; 6548 case Intrinsic::vp_fptrunc: 6549 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), 6550 "llvm.vp.fptrunc intrinsic first argument and result element type " 6551 "must be floating-point", 6552 *VPCast); 6553 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), 6554 "llvm.vp.fptrunc intrinsic the bit size of first argument must be " 6555 "larger than the bit size of the return type", 6556 *VPCast); 6557 break; 6558 case Intrinsic::vp_fpext: 6559 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), 6560 "llvm.vp.fpext intrinsic first argument and result element type " 6561 "must be floating-point", 6562 *VPCast); 6563 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), 6564 "llvm.vp.fpext intrinsic the bit size of first argument must be " 6565 "smaller than the bit size of the return type", 6566 *VPCast); 6567 break; 6568 case Intrinsic::vp_ptrtoint: 6569 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(), 6570 "llvm.vp.ptrtoint intrinsic first argument element type must be " 6571 "pointer and result element type must be integer", 6572 *VPCast); 6573 break; 6574 case Intrinsic::vp_inttoptr: 6575 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(), 6576 "llvm.vp.inttoptr intrinsic first argument element type must be " 6577 "integer and result element type must be pointer", 6578 *VPCast); 6579 break; 6580 } 6581 } 6582 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) { 6583 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); 6584 Check(CmpInst::isFPPredicate(Pred), 6585 "invalid predicate for VP FP comparison intrinsic", &VPI); 6586 } 6587 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) { 6588 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); 6589 Check(CmpInst::isIntPredicate(Pred), 6590 "invalid predicate for VP integer comparison intrinsic", &VPI); 6591 } 6592 if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) { 6593 auto TestMask = cast<ConstantInt>(VPI.getOperand(1)); 6594 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0, 6595 "unsupported bits for llvm.vp.is.fpclass test mask"); 6596 } 6597 } 6598 6599 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 6600 unsigned NumOperands = FPI.getNonMetadataArgCount(); 6601 bool HasRoundingMD = 6602 Intrinsic::hasConstrainedFPRoundingModeOperand(FPI.getIntrinsicID()); 6603 6604 // Add the expected number of metadata operands. 6605 NumOperands += (1 + HasRoundingMD); 6606 6607 // Compare intrinsics carry an extra predicate metadata operand. 6608 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 6609 NumOperands += 1; 6610 Check((FPI.arg_size() == NumOperands), 6611 "invalid arguments for constrained FP intrinsic", &FPI); 6612 6613 switch (FPI.getIntrinsicID()) { 6614 case Intrinsic::experimental_constrained_lrint: 6615 case Intrinsic::experimental_constrained_llrint: { 6616 Type *ValTy = FPI.getArgOperand(0)->getType(); 6617 Type *ResultTy = FPI.getType(); 6618 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 6619 "Intrinsic does not support vectors", &FPI); 6620 break; 6621 } 6622 6623 case Intrinsic::experimental_constrained_lround: 6624 case Intrinsic::experimental_constrained_llround: { 6625 Type *ValTy = FPI.getArgOperand(0)->getType(); 6626 Type *ResultTy = FPI.getType(); 6627 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 6628 "Intrinsic does not support vectors", &FPI); 6629 break; 6630 } 6631 6632 case Intrinsic::experimental_constrained_fcmp: 6633 case Intrinsic::experimental_constrained_fcmps: { 6634 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 6635 Check(CmpInst::isFPPredicate(Pred), 6636 "invalid predicate for constrained FP comparison intrinsic", &FPI); 6637 break; 6638 } 6639 6640 case Intrinsic::experimental_constrained_fptosi: 6641 case Intrinsic::experimental_constrained_fptoui: { 6642 Value *Operand = FPI.getArgOperand(0); 6643 ElementCount SrcEC; 6644 Check(Operand->getType()->isFPOrFPVectorTy(), 6645 "Intrinsic first argument must be floating point", &FPI); 6646 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6647 SrcEC = cast<VectorType>(OperandT)->getElementCount(); 6648 } 6649 6650 Operand = &FPI; 6651 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(), 6652 "Intrinsic first argument and result disagree on vector use", &FPI); 6653 Check(Operand->getType()->isIntOrIntVectorTy(), 6654 "Intrinsic result must be an integer", &FPI); 6655 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6656 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(), 6657 "Intrinsic first argument and result vector lengths must be equal", 6658 &FPI); 6659 } 6660 break; 6661 } 6662 6663 case Intrinsic::experimental_constrained_sitofp: 6664 case Intrinsic::experimental_constrained_uitofp: { 6665 Value *Operand = FPI.getArgOperand(0); 6666 ElementCount SrcEC; 6667 Check(Operand->getType()->isIntOrIntVectorTy(), 6668 "Intrinsic first argument must be integer", &FPI); 6669 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6670 SrcEC = cast<VectorType>(OperandT)->getElementCount(); 6671 } 6672 6673 Operand = &FPI; 6674 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(), 6675 "Intrinsic first argument and result disagree on vector use", &FPI); 6676 Check(Operand->getType()->isFPOrFPVectorTy(), 6677 "Intrinsic result must be a floating point", &FPI); 6678 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6679 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(), 6680 "Intrinsic first argument and result vector lengths must be equal", 6681 &FPI); 6682 } 6683 break; 6684 } 6685 6686 case Intrinsic::experimental_constrained_fptrunc: 6687 case Intrinsic::experimental_constrained_fpext: { 6688 Value *Operand = FPI.getArgOperand(0); 6689 Type *OperandTy = Operand->getType(); 6690 Value *Result = &FPI; 6691 Type *ResultTy = Result->getType(); 6692 Check(OperandTy->isFPOrFPVectorTy(), 6693 "Intrinsic first argument must be FP or FP vector", &FPI); 6694 Check(ResultTy->isFPOrFPVectorTy(), 6695 "Intrinsic result must be FP or FP vector", &FPI); 6696 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 6697 "Intrinsic first argument and result disagree on vector use", &FPI); 6698 if (OperandTy->isVectorTy()) { 6699 Check(cast<VectorType>(OperandTy)->getElementCount() == 6700 cast<VectorType>(ResultTy)->getElementCount(), 6701 "Intrinsic first argument and result vector lengths must be equal", 6702 &FPI); 6703 } 6704 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 6705 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 6706 "Intrinsic first argument's type must be larger than result type", 6707 &FPI); 6708 } else { 6709 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 6710 "Intrinsic first argument's type must be smaller than result type", 6711 &FPI); 6712 } 6713 break; 6714 } 6715 6716 default: 6717 break; 6718 } 6719 6720 // If a non-metadata argument is passed in a metadata slot then the 6721 // error will be caught earlier when the incorrect argument doesn't 6722 // match the specification in the intrinsic call table. Thus, no 6723 // argument type check is needed here. 6724 6725 Check(FPI.getExceptionBehavior().has_value(), 6726 "invalid exception behavior argument", &FPI); 6727 if (HasRoundingMD) { 6728 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument", 6729 &FPI); 6730 } 6731 } 6732 6733 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 6734 auto *MD = DII.getRawLocation(); 6735 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 6736 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 6737 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 6738 CheckDI(isa<DILocalVariable>(DII.getRawVariable()), 6739 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 6740 DII.getRawVariable()); 6741 CheckDI(isa<DIExpression>(DII.getRawExpression()), 6742 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 6743 DII.getRawExpression()); 6744 6745 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) { 6746 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()), 6747 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII, 6748 DAI->getRawAssignID()); 6749 const auto *RawAddr = DAI->getRawAddress(); 6750 CheckDI( 6751 isa<ValueAsMetadata>(RawAddr) || 6752 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()), 6753 "invalid llvm.dbg.assign intrinsic address", &DII, 6754 DAI->getRawAddress()); 6755 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()), 6756 "invalid llvm.dbg.assign intrinsic address expression", &DII, 6757 DAI->getRawAddressExpression()); 6758 // All of the linked instructions should be in the same function as DII. 6759 for (Instruction *I : at::getAssignmentInsts(DAI)) 6760 CheckDI(DAI->getFunction() == I->getFunction(), 6761 "inst not in same function as dbg.assign", I, DAI); 6762 } 6763 6764 // Ignore broken !dbg attachments; they're checked elsewhere. 6765 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 6766 if (!isa<DILocation>(N)) 6767 return; 6768 6769 BasicBlock *BB = DII.getParent(); 6770 Function *F = BB ? BB->getParent() : nullptr; 6771 6772 // The scopes for variables and !dbg attachments must agree. 6773 DILocalVariable *Var = DII.getVariable(); 6774 DILocation *Loc = DII.getDebugLoc(); 6775 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 6776 &DII, BB, F); 6777 6778 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 6779 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6780 if (!VarSP || !LocSP) 6781 return; // Broken scope chains are checked elsewhere. 6782 6783 CheckDI(VarSP == LocSP, 6784 "mismatched subprogram between llvm.dbg." + Kind + 6785 " variable and !dbg attachment", 6786 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 6787 Loc->getScope()->getSubprogram()); 6788 6789 // This check is redundant with one in visitLocalVariable(). 6790 CheckDI(isType(Var->getRawType()), "invalid type ref", Var, 6791 Var->getRawType()); 6792 verifyFnArgs(DII); 6793 } 6794 6795 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 6796 CheckDI(isa<DILabel>(DLI.getRawLabel()), 6797 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 6798 DLI.getRawLabel()); 6799 6800 // Ignore broken !dbg attachments; they're checked elsewhere. 6801 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 6802 if (!isa<DILocation>(N)) 6803 return; 6804 6805 BasicBlock *BB = DLI.getParent(); 6806 Function *F = BB ? BB->getParent() : nullptr; 6807 6808 // The scopes for variables and !dbg attachments must agree. 6809 DILabel *Label = DLI.getLabel(); 6810 DILocation *Loc = DLI.getDebugLoc(); 6811 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI, 6812 BB, F); 6813 6814 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 6815 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6816 if (!LabelSP || !LocSP) 6817 return; 6818 6819 CheckDI(LabelSP == LocSP, 6820 "mismatched subprogram between llvm.dbg." + Kind + 6821 " label and !dbg attachment", 6822 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 6823 Loc->getScope()->getSubprogram()); 6824 } 6825 6826 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 6827 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 6828 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 6829 6830 // We don't know whether this intrinsic verified correctly. 6831 if (!V || !E || !E->isValid()) 6832 return; 6833 6834 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 6835 auto Fragment = E->getFragmentInfo(); 6836 if (!Fragment) 6837 return; 6838 6839 // The frontend helps out GDB by emitting the members of local anonymous 6840 // unions as artificial local variables with shared storage. When SROA splits 6841 // the storage for artificial local variables that are smaller than the entire 6842 // union, the overhang piece will be outside of the allotted space for the 6843 // variable and this check fails. 6844 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 6845 if (V->isArtificial()) 6846 return; 6847 6848 verifyFragmentExpression(*V, *Fragment, &I); 6849 } 6850 void Verifier::verifyFragmentExpression(const DbgVariableRecord &DVR) { 6851 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(DVR.getRawVariable()); 6852 DIExpression *E = dyn_cast_or_null<DIExpression>(DVR.getRawExpression()); 6853 6854 // We don't know whether this intrinsic verified correctly. 6855 if (!V || !E || !E->isValid()) 6856 return; 6857 6858 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 6859 auto Fragment = E->getFragmentInfo(); 6860 if (!Fragment) 6861 return; 6862 6863 // The frontend helps out GDB by emitting the members of local anonymous 6864 // unions as artificial local variables with shared storage. When SROA splits 6865 // the storage for artificial local variables that are smaller than the entire 6866 // union, the overhang piece will be outside of the allotted space for the 6867 // variable and this check fails. 6868 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 6869 if (V->isArtificial()) 6870 return; 6871 6872 verifyFragmentExpression(*V, *Fragment, &DVR); 6873 } 6874 6875 template <typename ValueOrMetadata> 6876 void Verifier::verifyFragmentExpression(const DIVariable &V, 6877 DIExpression::FragmentInfo Fragment, 6878 ValueOrMetadata *Desc) { 6879 // If there's no size, the type is broken, but that should be checked 6880 // elsewhere. 6881 auto VarSize = V.getSizeInBits(); 6882 if (!VarSize) 6883 return; 6884 6885 unsigned FragSize = Fragment.SizeInBits; 6886 unsigned FragOffset = Fragment.OffsetInBits; 6887 CheckDI(FragSize + FragOffset <= *VarSize, 6888 "fragment is larger than or outside of variable", Desc, &V); 6889 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 6890 } 6891 6892 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 6893 // This function does not take the scope of noninlined function arguments into 6894 // account. Don't run it if current function is nodebug, because it may 6895 // contain inlined debug intrinsics. 6896 if (!HasDebugInfo) 6897 return; 6898 6899 // For performance reasons only check non-inlined ones. 6900 if (I.getDebugLoc()->getInlinedAt()) 6901 return; 6902 6903 DILocalVariable *Var = I.getVariable(); 6904 CheckDI(Var, "dbg intrinsic without variable"); 6905 6906 unsigned ArgNo = Var->getArg(); 6907 if (!ArgNo) 6908 return; 6909 6910 // Verify there are no duplicate function argument debug info entries. 6911 // These will cause hard-to-debug assertions in the DWARF backend. 6912 if (DebugFnArgs.size() < ArgNo) 6913 DebugFnArgs.resize(ArgNo, nullptr); 6914 6915 auto *Prev = DebugFnArgs[ArgNo - 1]; 6916 DebugFnArgs[ArgNo - 1] = Var; 6917 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 6918 Prev, Var); 6919 } 6920 void Verifier::verifyFnArgs(const DbgVariableRecord &DVR) { 6921 // This function does not take the scope of noninlined function arguments into 6922 // account. Don't run it if current function is nodebug, because it may 6923 // contain inlined debug intrinsics. 6924 if (!HasDebugInfo) 6925 return; 6926 6927 // For performance reasons only check non-inlined ones. 6928 if (DVR.getDebugLoc()->getInlinedAt()) 6929 return; 6930 6931 DILocalVariable *Var = DVR.getVariable(); 6932 CheckDI(Var, "#dbg record without variable"); 6933 6934 unsigned ArgNo = Var->getArg(); 6935 if (!ArgNo) 6936 return; 6937 6938 // Verify there are no duplicate function argument debug info entries. 6939 // These will cause hard-to-debug assertions in the DWARF backend. 6940 if (DebugFnArgs.size() < ArgNo) 6941 DebugFnArgs.resize(ArgNo, nullptr); 6942 6943 auto *Prev = DebugFnArgs[ArgNo - 1]; 6944 DebugFnArgs[ArgNo - 1] = Var; 6945 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &DVR, 6946 Prev, Var); 6947 } 6948 6949 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 6950 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 6951 6952 // We don't know whether this intrinsic verified correctly. 6953 if (!E || !E->isValid()) 6954 return; 6955 6956 if (isa<ValueAsMetadata>(I.getRawLocation())) { 6957 Value *VarValue = I.getVariableLocationOp(0); 6958 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue)) 6959 return; 6960 // We allow EntryValues for swift async arguments, as they have an 6961 // ABI-guarantee to be turned into a specific register. 6962 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue); 6963 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync)) 6964 return; 6965 } 6966 6967 CheckDI(!E->isEntryValue(), 6968 "Entry values are only allowed in MIR unless they target a " 6969 "swiftasync Argument", 6970 &I); 6971 } 6972 void Verifier::verifyNotEntryValue(const DbgVariableRecord &DVR) { 6973 DIExpression *E = dyn_cast_or_null<DIExpression>(DVR.getRawExpression()); 6974 6975 // We don't know whether this intrinsic verified correctly. 6976 if (!E || !E->isValid()) 6977 return; 6978 6979 if (isa<ValueAsMetadata>(DVR.getRawLocation())) { 6980 Value *VarValue = DVR.getVariableLocationOp(0); 6981 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue)) 6982 return; 6983 // We allow EntryValues for swift async arguments, as they have an 6984 // ABI-guarantee to be turned into a specific register. 6985 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue); 6986 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync)) 6987 return; 6988 } 6989 6990 CheckDI(!E->isEntryValue(), 6991 "Entry values are only allowed in MIR unless they target a " 6992 "swiftasync Argument", 6993 &DVR); 6994 } 6995 6996 void Verifier::verifyCompileUnits() { 6997 // When more than one Module is imported into the same context, such as during 6998 // an LTO build before linking the modules, ODR type uniquing may cause types 6999 // to point to a different CU. This check does not make sense in this case. 7000 if (M.getContext().isODRUniquingDebugTypes()) 7001 return; 7002 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 7003 SmallPtrSet<const Metadata *, 2> Listed; 7004 if (CUs) 7005 Listed.insert(CUs->op_begin(), CUs->op_end()); 7006 for (const auto *CU : CUVisited) 7007 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 7008 CUVisited.clear(); 7009 } 7010 7011 void Verifier::verifyDeoptimizeCallingConvs() { 7012 if (DeoptimizeDeclarations.empty()) 7013 return; 7014 7015 const Function *First = DeoptimizeDeclarations[0]; 7016 for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) { 7017 Check(First->getCallingConv() == F->getCallingConv(), 7018 "All llvm.experimental.deoptimize declarations must have the same " 7019 "calling convention", 7020 First, F); 7021 } 7022 } 7023 7024 void Verifier::verifyAttachedCallBundle(const CallBase &Call, 7025 const OperandBundleUse &BU) { 7026 FunctionType *FTy = Call.getFunctionType(); 7027 7028 Check((FTy->getReturnType()->isPointerTy() || 7029 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 7030 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 7031 "function returning a pointer or a non-returning function that has a " 7032 "void return type", 7033 Call); 7034 7035 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()), 7036 "operand bundle \"clang.arc.attachedcall\" requires one function as " 7037 "an argument", 7038 Call); 7039 7040 auto *Fn = cast<Function>(BU.Inputs.front()); 7041 Intrinsic::ID IID = Fn->getIntrinsicID(); 7042 7043 if (IID) { 7044 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 7045 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 7046 "invalid function argument", Call); 7047 } else { 7048 StringRef FnName = Fn->getName(); 7049 Check((FnName == "objc_retainAutoreleasedReturnValue" || 7050 FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 7051 "invalid function argument", Call); 7052 } 7053 } 7054 7055 void Verifier::verifyNoAliasScopeDecl() { 7056 if (NoAliasScopeDecls.empty()) 7057 return; 7058 7059 // only a single scope must be declared at a time. 7060 for (auto *II : NoAliasScopeDecls) { 7061 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 7062 "Not a llvm.experimental.noalias.scope.decl ?"); 7063 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 7064 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 7065 Check(ScopeListMV != nullptr, 7066 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 7067 "argument", 7068 II); 7069 7070 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 7071 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II); 7072 Check(ScopeListMD->getNumOperands() == 1, 7073 "!id.scope.list must point to a list with a single scope", II); 7074 visitAliasScopeListMetadata(ScopeListMD); 7075 } 7076 7077 // Only check the domination rule when requested. Once all passes have been 7078 // adapted this option can go away. 7079 if (!VerifyNoAliasScopeDomination) 7080 return; 7081 7082 // Now sort the intrinsics based on the scope MDNode so that declarations of 7083 // the same scopes are next to each other. 7084 auto GetScope = [](IntrinsicInst *II) { 7085 const auto *ScopeListMV = cast<MetadataAsValue>( 7086 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 7087 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 7088 }; 7089 7090 // We are sorting on MDNode pointers here. For valid input IR this is ok. 7091 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 7092 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 7093 return GetScope(Lhs) < GetScope(Rhs); 7094 }; 7095 7096 llvm::sort(NoAliasScopeDecls, Compare); 7097 7098 // Go over the intrinsics and check that for the same scope, they are not 7099 // dominating each other. 7100 auto ItCurrent = NoAliasScopeDecls.begin(); 7101 while (ItCurrent != NoAliasScopeDecls.end()) { 7102 auto CurScope = GetScope(*ItCurrent); 7103 auto ItNext = ItCurrent; 7104 do { 7105 ++ItNext; 7106 } while (ItNext != NoAliasScopeDecls.end() && 7107 GetScope(*ItNext) == CurScope); 7108 7109 // [ItCurrent, ItNext) represents the declarations for the same scope. 7110 // Ensure they are not dominating each other.. but only if it is not too 7111 // expensive. 7112 if (ItNext - ItCurrent < 32) 7113 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 7114 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 7115 if (I != J) 7116 Check(!DT.dominates(I, J), 7117 "llvm.experimental.noalias.scope.decl dominates another one " 7118 "with the same scope", 7119 I); 7120 ItCurrent = ItNext; 7121 } 7122 } 7123 7124 //===----------------------------------------------------------------------===// 7125 // Implement the public interfaces to this file... 7126 //===----------------------------------------------------------------------===// 7127 7128 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 7129 Function &F = const_cast<Function &>(f); 7130 7131 // Don't use a raw_null_ostream. Printing IR is expensive. 7132 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 7133 7134 // Note that this function's return value is inverted from what you would 7135 // expect of a function called "verify". 7136 return !V.verify(F); 7137 } 7138 7139 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 7140 bool *BrokenDebugInfo) { 7141 // Don't use a raw_null_ostream. Printing IR is expensive. 7142 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 7143 7144 bool Broken = false; 7145 for (const Function &F : M) 7146 Broken |= !V.verify(F); 7147 7148 Broken |= !V.verify(); 7149 if (BrokenDebugInfo) 7150 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 7151 // Note that this function's return value is inverted from what you would 7152 // expect of a function called "verify". 7153 return Broken; 7154 } 7155 7156 namespace { 7157 7158 struct VerifierLegacyPass : public FunctionPass { 7159 static char ID; 7160 7161 std::unique_ptr<Verifier> V; 7162 bool FatalErrors = true; 7163 7164 VerifierLegacyPass() : FunctionPass(ID) { 7165 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 7166 } 7167 explicit VerifierLegacyPass(bool FatalErrors) 7168 : FunctionPass(ID), 7169 FatalErrors(FatalErrors) { 7170 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 7171 } 7172 7173 bool doInitialization(Module &M) override { 7174 V = std::make_unique<Verifier>( 7175 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 7176 return false; 7177 } 7178 7179 bool runOnFunction(Function &F) override { 7180 if (!V->verify(F) && FatalErrors) { 7181 errs() << "in function " << F.getName() << '\n'; 7182 report_fatal_error("Broken function found, compilation aborted!"); 7183 } 7184 return false; 7185 } 7186 7187 bool doFinalization(Module &M) override { 7188 bool HasErrors = false; 7189 for (Function &F : M) 7190 if (F.isDeclaration()) 7191 HasErrors |= !V->verify(F); 7192 7193 HasErrors |= !V->verify(); 7194 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 7195 report_fatal_error("Broken module found, compilation aborted!"); 7196 return false; 7197 } 7198 7199 void getAnalysisUsage(AnalysisUsage &AU) const override { 7200 AU.setPreservesAll(); 7201 } 7202 }; 7203 7204 } // end anonymous namespace 7205 7206 /// Helper to issue failure from the TBAA verification 7207 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 7208 if (Diagnostic) 7209 return Diagnostic->CheckFailed(Args...); 7210 } 7211 7212 #define CheckTBAA(C, ...) \ 7213 do { \ 7214 if (!(C)) { \ 7215 CheckFailed(__VA_ARGS__); \ 7216 return false; \ 7217 } \ 7218 } while (false) 7219 7220 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 7221 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 7222 /// struct-type node describing an aggregate data structure (like a struct). 7223 TBAAVerifier::TBAABaseNodeSummary 7224 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 7225 bool IsNewFormat) { 7226 if (BaseNode->getNumOperands() < 2) { 7227 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 7228 return {true, ~0u}; 7229 } 7230 7231 auto Itr = TBAABaseNodes.find(BaseNode); 7232 if (Itr != TBAABaseNodes.end()) 7233 return Itr->second; 7234 7235 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 7236 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 7237 (void)InsertResult; 7238 assert(InsertResult.second && "We just checked!"); 7239 return Result; 7240 } 7241 7242 TBAAVerifier::TBAABaseNodeSummary 7243 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 7244 bool IsNewFormat) { 7245 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 7246 7247 if (BaseNode->getNumOperands() == 2) { 7248 // Scalar nodes can only be accessed at offset 0. 7249 return isValidScalarTBAANode(BaseNode) 7250 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 7251 : InvalidNode; 7252 } 7253 7254 if (IsNewFormat) { 7255 if (BaseNode->getNumOperands() % 3 != 0) { 7256 CheckFailed("Access tag nodes must have the number of operands that is a " 7257 "multiple of 3!", BaseNode); 7258 return InvalidNode; 7259 } 7260 } else { 7261 if (BaseNode->getNumOperands() % 2 != 1) { 7262 CheckFailed("Struct tag nodes must have an odd number of operands!", 7263 BaseNode); 7264 return InvalidNode; 7265 } 7266 } 7267 7268 // Check the type size field. 7269 if (IsNewFormat) { 7270 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 7271 BaseNode->getOperand(1)); 7272 if (!TypeSizeNode) { 7273 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 7274 return InvalidNode; 7275 } 7276 } 7277 7278 // Check the type name field. In the new format it can be anything. 7279 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 7280 CheckFailed("Struct tag nodes have a string as their first operand", 7281 BaseNode); 7282 return InvalidNode; 7283 } 7284 7285 bool Failed = false; 7286 7287 std::optional<APInt> PrevOffset; 7288 unsigned BitWidth = ~0u; 7289 7290 // We've already checked that BaseNode is not a degenerate root node with one 7291 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 7292 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 7293 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 7294 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 7295 Idx += NumOpsPerField) { 7296 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 7297 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 7298 if (!isa<MDNode>(FieldTy)) { 7299 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 7300 Failed = true; 7301 continue; 7302 } 7303 7304 auto *OffsetEntryCI = 7305 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 7306 if (!OffsetEntryCI) { 7307 CheckFailed("Offset entries must be constants!", &I, BaseNode); 7308 Failed = true; 7309 continue; 7310 } 7311 7312 if (BitWidth == ~0u) 7313 BitWidth = OffsetEntryCI->getBitWidth(); 7314 7315 if (OffsetEntryCI->getBitWidth() != BitWidth) { 7316 CheckFailed( 7317 "Bitwidth between the offsets and struct type entries must match", &I, 7318 BaseNode); 7319 Failed = true; 7320 continue; 7321 } 7322 7323 // NB! As far as I can tell, we generate a non-strictly increasing offset 7324 // sequence only from structs that have zero size bit fields. When 7325 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 7326 // pick the field lexically the latest in struct type metadata node. This 7327 // mirrors the actual behavior of the alias analysis implementation. 7328 bool IsAscending = 7329 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 7330 7331 if (!IsAscending) { 7332 CheckFailed("Offsets must be increasing!", &I, BaseNode); 7333 Failed = true; 7334 } 7335 7336 PrevOffset = OffsetEntryCI->getValue(); 7337 7338 if (IsNewFormat) { 7339 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 7340 BaseNode->getOperand(Idx + 2)); 7341 if (!MemberSizeNode) { 7342 CheckFailed("Member size entries must be constants!", &I, BaseNode); 7343 Failed = true; 7344 continue; 7345 } 7346 } 7347 } 7348 7349 return Failed ? InvalidNode 7350 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 7351 } 7352 7353 static bool IsRootTBAANode(const MDNode *MD) { 7354 return MD->getNumOperands() < 2; 7355 } 7356 7357 static bool IsScalarTBAANodeImpl(const MDNode *MD, 7358 SmallPtrSetImpl<const MDNode *> &Visited) { 7359 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 7360 return false; 7361 7362 if (!isa<MDString>(MD->getOperand(0))) 7363 return false; 7364 7365 if (MD->getNumOperands() == 3) { 7366 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 7367 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 7368 return false; 7369 } 7370 7371 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 7372 return Parent && Visited.insert(Parent).second && 7373 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 7374 } 7375 7376 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 7377 auto ResultIt = TBAAScalarNodes.find(MD); 7378 if (ResultIt != TBAAScalarNodes.end()) 7379 return ResultIt->second; 7380 7381 SmallPtrSet<const MDNode *, 4> Visited; 7382 bool Result = IsScalarTBAANodeImpl(MD, Visited); 7383 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 7384 (void)InsertResult; 7385 assert(InsertResult.second && "Just checked!"); 7386 7387 return Result; 7388 } 7389 7390 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 7391 /// Offset in place to be the offset within the field node returned. 7392 /// 7393 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 7394 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 7395 const MDNode *BaseNode, 7396 APInt &Offset, 7397 bool IsNewFormat) { 7398 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 7399 7400 // Scalar nodes have only one possible "field" -- their parent in the access 7401 // hierarchy. Offset must be zero at this point, but our caller is supposed 7402 // to check that. 7403 if (BaseNode->getNumOperands() == 2) 7404 return cast<MDNode>(BaseNode->getOperand(1)); 7405 7406 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 7407 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 7408 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 7409 Idx += NumOpsPerField) { 7410 auto *OffsetEntryCI = 7411 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 7412 if (OffsetEntryCI->getValue().ugt(Offset)) { 7413 if (Idx == FirstFieldOpNo) { 7414 CheckFailed("Could not find TBAA parent in struct type node", &I, 7415 BaseNode, &Offset); 7416 return nullptr; 7417 } 7418 7419 unsigned PrevIdx = Idx - NumOpsPerField; 7420 auto *PrevOffsetEntryCI = 7421 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 7422 Offset -= PrevOffsetEntryCI->getValue(); 7423 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 7424 } 7425 } 7426 7427 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 7428 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 7429 BaseNode->getOperand(LastIdx + 1)); 7430 Offset -= LastOffsetEntryCI->getValue(); 7431 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 7432 } 7433 7434 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 7435 if (!Type || Type->getNumOperands() < 3) 7436 return false; 7437 7438 // In the new format type nodes shall have a reference to the parent type as 7439 // its first operand. 7440 return isa_and_nonnull<MDNode>(Type->getOperand(0)); 7441 } 7442 7443 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 7444 CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands", 7445 &I, MD); 7446 7447 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 7448 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 7449 isa<AtomicCmpXchgInst>(I), 7450 "This instruction shall not have a TBAA access tag!", &I); 7451 7452 bool IsStructPathTBAA = 7453 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 7454 7455 CheckTBAA(IsStructPathTBAA, 7456 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", 7457 &I); 7458 7459 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 7460 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 7461 7462 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 7463 7464 if (IsNewFormat) { 7465 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 7466 "Access tag metadata must have either 4 or 5 operands", &I, MD); 7467 } else { 7468 CheckTBAA(MD->getNumOperands() < 5, 7469 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 7470 } 7471 7472 // Check the access size field. 7473 if (IsNewFormat) { 7474 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 7475 MD->getOperand(3)); 7476 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 7477 } 7478 7479 // Check the immutability flag. 7480 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 7481 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 7482 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 7483 MD->getOperand(ImmutabilityFlagOpNo)); 7484 CheckTBAA(IsImmutableCI, 7485 "Immutability tag on struct tag metadata must be a constant", &I, 7486 MD); 7487 CheckTBAA( 7488 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 7489 "Immutability part of the struct tag metadata must be either 0 or 1", 7490 &I, MD); 7491 } 7492 7493 CheckTBAA(BaseNode && AccessType, 7494 "Malformed struct tag metadata: base and access-type " 7495 "should be non-null and point to Metadata nodes", 7496 &I, MD, BaseNode, AccessType); 7497 7498 if (!IsNewFormat) { 7499 CheckTBAA(isValidScalarTBAANode(AccessType), 7500 "Access type node must be a valid scalar type", &I, MD, 7501 AccessType); 7502 } 7503 7504 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 7505 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 7506 7507 APInt Offset = OffsetCI->getValue(); 7508 bool SeenAccessTypeInPath = false; 7509 7510 SmallPtrSet<MDNode *, 4> StructPath; 7511 7512 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 7513 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 7514 IsNewFormat)) { 7515 if (!StructPath.insert(BaseNode).second) { 7516 CheckFailed("Cycle detected in struct path", &I, MD); 7517 return false; 7518 } 7519 7520 bool Invalid; 7521 unsigned BaseNodeBitWidth; 7522 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 7523 IsNewFormat); 7524 7525 // If the base node is invalid in itself, then we've already printed all the 7526 // errors we wanted to print. 7527 if (Invalid) 7528 return false; 7529 7530 SeenAccessTypeInPath |= BaseNode == AccessType; 7531 7532 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 7533 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access", 7534 &I, MD, &Offset); 7535 7536 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 7537 (BaseNodeBitWidth == 0 && Offset == 0) || 7538 (IsNewFormat && BaseNodeBitWidth == ~0u), 7539 "Access bit-width not the same as description bit-width", &I, MD, 7540 BaseNodeBitWidth, Offset.getBitWidth()); 7541 7542 if (IsNewFormat && SeenAccessTypeInPath) 7543 break; 7544 } 7545 7546 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I, 7547 MD); 7548 return true; 7549 } 7550 7551 char VerifierLegacyPass::ID = 0; 7552 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 7553 7554 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 7555 return new VerifierLegacyPass(FatalErrors); 7556 } 7557 7558 AnalysisKey VerifierAnalysis::Key; 7559 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 7560 ModuleAnalysisManager &) { 7561 Result Res; 7562 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 7563 return Res; 7564 } 7565 7566 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 7567 FunctionAnalysisManager &) { 7568 return { llvm::verifyFunction(F, &dbgs()), false }; 7569 } 7570 7571 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 7572 auto Res = AM.getResult<VerifierAnalysis>(M); 7573 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 7574 report_fatal_error("Broken module found, compilation aborted!"); 7575 7576 return PreservedAnalyses::all(); 7577 } 7578 7579 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 7580 auto res = AM.getResult<VerifierAnalysis>(F); 7581 if (res.IRBroken && FatalErrors) 7582 report_fatal_error("Broken function found, compilation aborted!"); 7583 7584 return PreservedAnalyses::all(); 7585 } 7586