1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyNoAliasScopeDomination( 119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121 "scopes are not dominating")); 122 123 namespace llvm { 124 125 struct VerifierSupport { 126 raw_ostream *OS; 127 const Module &M; 128 ModuleSlotTracker MST; 129 Triple TT; 130 const DataLayout &DL; 131 LLVMContext &Context; 132 133 /// Track the brokenness of the module while recursively visiting. 134 bool Broken = false; 135 /// Broken debug info can be "recovered" from by stripping the debug info. 136 bool BrokenDebugInfo = false; 137 /// Whether to treat broken debug info as an error. 138 bool TreatBrokenDebugInfoAsError = true; 139 140 explicit VerifierSupport(raw_ostream *OS, const Module &M) 141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 142 Context(M.getContext()) {} 143 144 private: 145 void Write(const Module *M) { 146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 147 } 148 149 void Write(const Value *V) { 150 if (V) 151 Write(*V); 152 } 153 154 void Write(const Value &V) { 155 if (isa<Instruction>(V)) { 156 V.print(*OS, MST); 157 *OS << '\n'; 158 } else { 159 V.printAsOperand(*OS, true, MST); 160 *OS << '\n'; 161 } 162 } 163 164 void Write(const Metadata *MD) { 165 if (!MD) 166 return; 167 MD->print(*OS, MST, &M); 168 *OS << '\n'; 169 } 170 171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 172 Write(MD.get()); 173 } 174 175 void Write(const NamedMDNode *NMD) { 176 if (!NMD) 177 return; 178 NMD->print(*OS, MST); 179 *OS << '\n'; 180 } 181 182 void Write(Type *T) { 183 if (!T) 184 return; 185 *OS << ' ' << *T; 186 } 187 188 void Write(const Comdat *C) { 189 if (!C) 190 return; 191 *OS << *C; 192 } 193 194 void Write(const APInt *AI) { 195 if (!AI) 196 return; 197 *OS << *AI << '\n'; 198 } 199 200 void Write(const unsigned i) { *OS << i << '\n'; } 201 202 // NOLINTNEXTLINE(readability-identifier-naming) 203 void Write(const Attribute *A) { 204 if (!A) 205 return; 206 *OS << A->getAsString() << '\n'; 207 } 208 209 // NOLINTNEXTLINE(readability-identifier-naming) 210 void Write(const AttributeSet *AS) { 211 if (!AS) 212 return; 213 *OS << AS->getAsString() << '\n'; 214 } 215 216 // NOLINTNEXTLINE(readability-identifier-naming) 217 void Write(const AttributeList *AL) { 218 if (!AL) 219 return; 220 AL->print(*OS); 221 } 222 223 template <typename T> void Write(ArrayRef<T> Vs) { 224 for (const T &V : Vs) 225 Write(V); 226 } 227 228 template <typename T1, typename... Ts> 229 void WriteTs(const T1 &V1, const Ts &... Vs) { 230 Write(V1); 231 WriteTs(Vs...); 232 } 233 234 template <typename... Ts> void WriteTs() {} 235 236 public: 237 /// A check failed, so printout out the condition and the message. 238 /// 239 /// This provides a nice place to put a breakpoint if you want to see why 240 /// something is not correct. 241 void CheckFailed(const Twine &Message) { 242 if (OS) 243 *OS << Message << '\n'; 244 Broken = true; 245 } 246 247 /// A check failed (with values to print). 248 /// 249 /// This calls the Message-only version so that the above is easier to set a 250 /// breakpoint on. 251 template <typename T1, typename... Ts> 252 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 253 CheckFailed(Message); 254 if (OS) 255 WriteTs(V1, Vs...); 256 } 257 258 /// A debug info check failed. 259 void DebugInfoCheckFailed(const Twine &Message) { 260 if (OS) 261 *OS << Message << '\n'; 262 Broken |= TreatBrokenDebugInfoAsError; 263 BrokenDebugInfo = true; 264 } 265 266 /// A debug info check failed (with values to print). 267 template <typename T1, typename... Ts> 268 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 269 const Ts &... Vs) { 270 DebugInfoCheckFailed(Message); 271 if (OS) 272 WriteTs(V1, Vs...); 273 } 274 }; 275 276 } // namespace llvm 277 278 namespace { 279 280 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 281 friend class InstVisitor<Verifier>; 282 283 DominatorTree DT; 284 285 /// When verifying a basic block, keep track of all of the 286 /// instructions we have seen so far. 287 /// 288 /// This allows us to do efficient dominance checks for the case when an 289 /// instruction has an operand that is an instruction in the same block. 290 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 291 292 /// Keep track of the metadata nodes that have been checked already. 293 SmallPtrSet<const Metadata *, 32> MDNodes; 294 295 /// Keep track which DISubprogram is attached to which function. 296 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 297 298 /// Track all DICompileUnits visited. 299 SmallPtrSet<const Metadata *, 2> CUVisited; 300 301 /// The result type for a landingpad. 302 Type *LandingPadResultTy; 303 304 /// Whether we've seen a call to @llvm.localescape in this function 305 /// already. 306 bool SawFrameEscape; 307 308 /// Whether the current function has a DISubprogram attached to it. 309 bool HasDebugInfo = false; 310 311 /// The current source language. 312 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 313 314 /// Whether source was present on the first DIFile encountered in each CU. 315 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 316 317 /// Stores the count of how many objects were passed to llvm.localescape for a 318 /// given function and the largest index passed to llvm.localrecover. 319 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 320 321 // Maps catchswitches and cleanuppads that unwind to siblings to the 322 // terminators that indicate the unwind, used to detect cycles therein. 323 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 324 325 /// Cache of constants visited in search of ConstantExprs. 326 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 327 328 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 329 SmallVector<const Function *, 4> DeoptimizeDeclarations; 330 331 /// Cache of attribute lists verified. 332 SmallPtrSet<const void *, 32> AttributeListsVisited; 333 334 // Verify that this GlobalValue is only used in this module. 335 // This map is used to avoid visiting uses twice. We can arrive at a user 336 // twice, if they have multiple operands. In particular for very large 337 // constant expressions, we can arrive at a particular user many times. 338 SmallPtrSet<const Value *, 32> GlobalValueVisited; 339 340 // Keeps track of duplicate function argument debug info. 341 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 342 343 TBAAVerifier TBAAVerifyHelper; 344 345 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 346 347 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 348 349 public: 350 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 351 const Module &M) 352 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 353 SawFrameEscape(false), TBAAVerifyHelper(this) { 354 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 355 } 356 357 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 358 359 bool verify(const Function &F) { 360 assert(F.getParent() == &M && 361 "An instance of this class only works with a specific module!"); 362 363 // First ensure the function is well-enough formed to compute dominance 364 // information, and directly compute a dominance tree. We don't rely on the 365 // pass manager to provide this as it isolates us from a potentially 366 // out-of-date dominator tree and makes it significantly more complex to run 367 // this code outside of a pass manager. 368 // FIXME: It's really gross that we have to cast away constness here. 369 if (!F.empty()) 370 DT.recalculate(const_cast<Function &>(F)); 371 372 for (const BasicBlock &BB : F) { 373 if (!BB.empty() && BB.back().isTerminator()) 374 continue; 375 376 if (OS) { 377 *OS << "Basic Block in function '" << F.getName() 378 << "' does not have terminator!\n"; 379 BB.printAsOperand(*OS, true, MST); 380 *OS << "\n"; 381 } 382 return false; 383 } 384 385 Broken = false; 386 // FIXME: We strip const here because the inst visitor strips const. 387 visit(const_cast<Function &>(F)); 388 verifySiblingFuncletUnwinds(); 389 InstsInThisBlock.clear(); 390 DebugFnArgs.clear(); 391 LandingPadResultTy = nullptr; 392 SawFrameEscape = false; 393 SiblingFuncletInfo.clear(); 394 verifyNoAliasScopeDecl(); 395 NoAliasScopeDecls.clear(); 396 397 return !Broken; 398 } 399 400 /// Verify the module that this instance of \c Verifier was initialized with. 401 bool verify() { 402 Broken = false; 403 404 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 405 for (const Function &F : M) 406 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 407 DeoptimizeDeclarations.push_back(&F); 408 409 // Now that we've visited every function, verify that we never asked to 410 // recover a frame index that wasn't escaped. 411 verifyFrameRecoverIndices(); 412 for (const GlobalVariable &GV : M.globals()) 413 visitGlobalVariable(GV); 414 415 for (const GlobalAlias &GA : M.aliases()) 416 visitGlobalAlias(GA); 417 418 for (const GlobalIFunc &GI : M.ifuncs()) 419 visitGlobalIFunc(GI); 420 421 for (const NamedMDNode &NMD : M.named_metadata()) 422 visitNamedMDNode(NMD); 423 424 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 425 visitComdat(SMEC.getValue()); 426 427 visitModuleFlags(); 428 visitModuleIdents(); 429 visitModuleCommandLines(); 430 431 verifyCompileUnits(); 432 433 verifyDeoptimizeCallingConvs(); 434 DISubprogramAttachments.clear(); 435 return !Broken; 436 } 437 438 private: 439 /// Whether a metadata node is allowed to be, or contain, a DILocation. 440 enum class AreDebugLocsAllowed { No, Yes }; 441 442 // Verification methods... 443 void visitGlobalValue(const GlobalValue &GV); 444 void visitGlobalVariable(const GlobalVariable &GV); 445 void visitGlobalAlias(const GlobalAlias &GA); 446 void visitGlobalIFunc(const GlobalIFunc &GI); 447 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 448 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 449 const GlobalAlias &A, const Constant &C); 450 void visitNamedMDNode(const NamedMDNode &NMD); 451 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 452 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 453 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 454 void visitComdat(const Comdat &C); 455 void visitModuleIdents(); 456 void visitModuleCommandLines(); 457 void visitModuleFlags(); 458 void visitModuleFlag(const MDNode *Op, 459 DenseMap<const MDString *, const MDNode *> &SeenIDs, 460 SmallVectorImpl<const MDNode *> &Requirements); 461 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 462 void visitFunction(const Function &F); 463 void visitBasicBlock(BasicBlock &BB); 464 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 465 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 466 void visitProfMetadata(Instruction &I, MDNode *MD); 467 void visitAnnotationMetadata(MDNode *Annotation); 468 void visitAliasScopeMetadata(const MDNode *MD); 469 void visitAliasScopeListMetadata(const MDNode *MD); 470 471 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 472 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 473 #include "llvm/IR/Metadata.def" 474 void visitDIScope(const DIScope &N); 475 void visitDIVariable(const DIVariable &N); 476 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 477 void visitDITemplateParameter(const DITemplateParameter &N); 478 479 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 480 481 // InstVisitor overrides... 482 using InstVisitor<Verifier>::visit; 483 void visit(Instruction &I); 484 485 void visitTruncInst(TruncInst &I); 486 void visitZExtInst(ZExtInst &I); 487 void visitSExtInst(SExtInst &I); 488 void visitFPTruncInst(FPTruncInst &I); 489 void visitFPExtInst(FPExtInst &I); 490 void visitFPToUIInst(FPToUIInst &I); 491 void visitFPToSIInst(FPToSIInst &I); 492 void visitUIToFPInst(UIToFPInst &I); 493 void visitSIToFPInst(SIToFPInst &I); 494 void visitIntToPtrInst(IntToPtrInst &I); 495 void visitPtrToIntInst(PtrToIntInst &I); 496 void visitBitCastInst(BitCastInst &I); 497 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 498 void visitPHINode(PHINode &PN); 499 void visitCallBase(CallBase &Call); 500 void visitUnaryOperator(UnaryOperator &U); 501 void visitBinaryOperator(BinaryOperator &B); 502 void visitICmpInst(ICmpInst &IC); 503 void visitFCmpInst(FCmpInst &FC); 504 void visitExtractElementInst(ExtractElementInst &EI); 505 void visitInsertElementInst(InsertElementInst &EI); 506 void visitShuffleVectorInst(ShuffleVectorInst &EI); 507 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 508 void visitCallInst(CallInst &CI); 509 void visitInvokeInst(InvokeInst &II); 510 void visitGetElementPtrInst(GetElementPtrInst &GEP); 511 void visitLoadInst(LoadInst &LI); 512 void visitStoreInst(StoreInst &SI); 513 void verifyDominatesUse(Instruction &I, unsigned i); 514 void visitInstruction(Instruction &I); 515 void visitTerminator(Instruction &I); 516 void visitBranchInst(BranchInst &BI); 517 void visitReturnInst(ReturnInst &RI); 518 void visitSwitchInst(SwitchInst &SI); 519 void visitIndirectBrInst(IndirectBrInst &BI); 520 void visitCallBrInst(CallBrInst &CBI); 521 void visitSelectInst(SelectInst &SI); 522 void visitUserOp1(Instruction &I); 523 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 524 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 525 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 526 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 527 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 528 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 529 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 530 void visitFenceInst(FenceInst &FI); 531 void visitAllocaInst(AllocaInst &AI); 532 void visitExtractValueInst(ExtractValueInst &EVI); 533 void visitInsertValueInst(InsertValueInst &IVI); 534 void visitEHPadPredecessors(Instruction &I); 535 void visitLandingPadInst(LandingPadInst &LPI); 536 void visitResumeInst(ResumeInst &RI); 537 void visitCatchPadInst(CatchPadInst &CPI); 538 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 539 void visitCleanupPadInst(CleanupPadInst &CPI); 540 void visitFuncletPadInst(FuncletPadInst &FPI); 541 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 542 void visitCleanupReturnInst(CleanupReturnInst &CRI); 543 544 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 545 void verifySwiftErrorValue(const Value *SwiftErrorVal); 546 void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context); 547 void verifyMustTailCall(CallInst &CI); 548 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 549 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 550 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 551 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 552 const Value *V); 553 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 554 const Value *V, bool IsIntrinsic); 555 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 556 template <typename T> 557 void verifyODRTypeAsScopeOperand(const MDNode &MD, T * = nullptr); 558 559 void visitConstantExprsRecursively(const Constant *EntryC); 560 void visitConstantExpr(const ConstantExpr *CE); 561 void verifyStatepoint(const CallBase &Call); 562 void verifyFrameRecoverIndices(); 563 void verifySiblingFuncletUnwinds(); 564 565 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 566 template <typename ValueOrMetadata> 567 void verifyFragmentExpression(const DIVariable &V, 568 DIExpression::FragmentInfo Fragment, 569 ValueOrMetadata *Desc); 570 void verifyFnArgs(const DbgVariableIntrinsic &I); 571 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 572 573 /// Module-level debug info verification... 574 void verifyCompileUnits(); 575 576 /// Module-level verification that all @llvm.experimental.deoptimize 577 /// declarations share the same calling convention. 578 void verifyDeoptimizeCallingConvs(); 579 580 void verifyAttachedCallBundle(const CallBase &Call, 581 const OperandBundleUse &BU); 582 583 /// Verify all-or-nothing property of DIFile source attribute within a CU. 584 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 585 586 /// Verify the llvm.experimental.noalias.scope.decl declarations 587 void verifyNoAliasScopeDecl(); 588 }; 589 590 } // end anonymous namespace 591 592 /// We know that cond should be true, if not print an error message. 593 #define Assert(C, ...) \ 594 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 595 596 /// We know that a debug info condition should be true, if not print 597 /// an error message. 598 #define AssertDI(C, ...) \ 599 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 600 601 void Verifier::visit(Instruction &I) { 602 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 603 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 604 InstVisitor<Verifier>::visit(I); 605 } 606 607 // Helper to recursively iterate over indirect users. By 608 // returning false, the callback can ask to stop recursing 609 // further. 610 static void forEachUser(const Value *User, 611 SmallPtrSet<const Value *, 32> &Visited, 612 llvm::function_ref<bool(const Value *)> Callback) { 613 if (!Visited.insert(User).second) 614 return; 615 for (const Value *TheNextUser : User->materialized_users()) 616 if (Callback(TheNextUser)) 617 forEachUser(TheNextUser, Visited, Callback); 618 } 619 620 void Verifier::visitGlobalValue(const GlobalValue &GV) { 621 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 622 "Global is external, but doesn't have external or weak linkage!", &GV); 623 624 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 625 Assert(GO->getAlignment() <= Value::MaximumAlignment, 626 "huge alignment values are unsupported", GO); 627 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 628 "Only global variables can have appending linkage!", &GV); 629 630 if (GV.hasAppendingLinkage()) { 631 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 632 Assert(GVar && GVar->getValueType()->isArrayTy(), 633 "Only global arrays can have appending linkage!", GVar); 634 } 635 636 if (GV.isDeclarationForLinker()) 637 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 638 639 if (GV.hasDLLImportStorageClass()) { 640 Assert(!GV.isDSOLocal(), 641 "GlobalValue with DLLImport Storage is dso_local!", &GV); 642 643 Assert((GV.isDeclaration() && 644 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 645 GV.hasAvailableExternallyLinkage(), 646 "Global is marked as dllimport, but not external", &GV); 647 } 648 649 if (GV.isImplicitDSOLocal()) 650 Assert(GV.isDSOLocal(), 651 "GlobalValue with local linkage or non-default " 652 "visibility must be dso_local!", 653 &GV); 654 655 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 656 if (const Instruction *I = dyn_cast<Instruction>(V)) { 657 if (!I->getParent() || !I->getParent()->getParent()) 658 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 659 I); 660 else if (I->getParent()->getParent()->getParent() != &M) 661 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 662 I->getParent()->getParent(), 663 I->getParent()->getParent()->getParent()); 664 return false; 665 } else if (const Function *F = dyn_cast<Function>(V)) { 666 if (F->getParent() != &M) 667 CheckFailed("Global is used by function in a different module", &GV, &M, 668 F, F->getParent()); 669 return false; 670 } 671 return true; 672 }); 673 } 674 675 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 676 if (GV.hasInitializer()) { 677 Assert(GV.getInitializer()->getType() == GV.getValueType(), 678 "Global variable initializer type does not match global " 679 "variable type!", 680 &GV); 681 // If the global has common linkage, it must have a zero initializer and 682 // cannot be constant. 683 if (GV.hasCommonLinkage()) { 684 Assert(GV.getInitializer()->isNullValue(), 685 "'common' global must have a zero initializer!", &GV); 686 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 687 &GV); 688 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 689 } 690 } 691 692 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 693 GV.getName() == "llvm.global_dtors")) { 694 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 695 "invalid linkage for intrinsic global variable", &GV); 696 // Don't worry about emitting an error for it not being an array, 697 // visitGlobalValue will complain on appending non-array. 698 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 699 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 700 PointerType *FuncPtrTy = 701 FunctionType::get(Type::getVoidTy(Context), false)-> 702 getPointerTo(DL.getProgramAddressSpace()); 703 Assert(STy && 704 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 705 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 706 STy->getTypeAtIndex(1) == FuncPtrTy, 707 "wrong type for intrinsic global variable", &GV); 708 Assert(STy->getNumElements() == 3, 709 "the third field of the element type is mandatory, " 710 "specify i8* null to migrate from the obsoleted 2-field form"); 711 Type *ETy = STy->getTypeAtIndex(2); 712 Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); 713 Assert(ETy->isPointerTy() && 714 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), 715 "wrong type for intrinsic global variable", &GV); 716 } 717 } 718 719 if (GV.hasName() && (GV.getName() == "llvm.used" || 720 GV.getName() == "llvm.compiler.used")) { 721 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 722 "invalid linkage for intrinsic global variable", &GV); 723 Type *GVType = GV.getValueType(); 724 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 725 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 726 Assert(PTy, "wrong type for intrinsic global variable", &GV); 727 if (GV.hasInitializer()) { 728 const Constant *Init = GV.getInitializer(); 729 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 730 Assert(InitArray, "wrong initalizer for intrinsic global variable", 731 Init); 732 for (Value *Op : InitArray->operands()) { 733 Value *V = Op->stripPointerCasts(); 734 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 735 isa<GlobalAlias>(V), 736 "invalid llvm.used member", V); 737 Assert(V->hasName(), "members of llvm.used must be named", V); 738 } 739 } 740 } 741 } 742 743 // Visit any debug info attachments. 744 SmallVector<MDNode *, 1> MDs; 745 GV.getMetadata(LLVMContext::MD_dbg, MDs); 746 for (auto *MD : MDs) { 747 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 748 visitDIGlobalVariableExpression(*GVE); 749 else 750 AssertDI(false, "!dbg attachment of global variable must be a " 751 "DIGlobalVariableExpression"); 752 } 753 754 // Scalable vectors cannot be global variables, since we don't know 755 // the runtime size. If the global is an array containing scalable vectors, 756 // that will be caught by the isValidElementType methods in StructType or 757 // ArrayType instead. 758 Assert(!isa<ScalableVectorType>(GV.getValueType()), 759 "Globals cannot contain scalable vectors", &GV); 760 761 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 762 Assert(!STy->containsScalableVectorType(), 763 "Globals cannot contain scalable vectors", &GV); 764 765 if (!GV.hasInitializer()) { 766 visitGlobalValue(GV); 767 return; 768 } 769 770 // Walk any aggregate initializers looking for bitcasts between address spaces 771 visitConstantExprsRecursively(GV.getInitializer()); 772 773 visitGlobalValue(GV); 774 } 775 776 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 777 SmallPtrSet<const GlobalAlias*, 4> Visited; 778 Visited.insert(&GA); 779 visitAliaseeSubExpr(Visited, GA, C); 780 } 781 782 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 783 const GlobalAlias &GA, const Constant &C) { 784 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 785 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 786 &GA); 787 788 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 789 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 790 791 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 792 &GA); 793 } else { 794 // Only continue verifying subexpressions of GlobalAliases. 795 // Do not recurse into global initializers. 796 return; 797 } 798 } 799 800 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 801 visitConstantExprsRecursively(CE); 802 803 for (const Use &U : C.operands()) { 804 Value *V = &*U; 805 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 806 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 807 else if (const auto *C2 = dyn_cast<Constant>(V)) 808 visitAliaseeSubExpr(Visited, GA, *C2); 809 } 810 } 811 812 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 813 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 814 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 815 "weak_odr, or external linkage!", 816 &GA); 817 const Constant *Aliasee = GA.getAliasee(); 818 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 819 Assert(GA.getType() == Aliasee->getType(), 820 "Alias and aliasee types should match!", &GA); 821 822 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 823 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 824 825 visitAliaseeSubExpr(GA, *Aliasee); 826 827 visitGlobalValue(GA); 828 } 829 830 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { 831 // Pierce through ConstantExprs and GlobalAliases and check that the resolver 832 // has a Function 833 const Function *Resolver = GI.getResolverFunction(); 834 Assert(Resolver, "IFunc must have a Function resolver", &GI); 835 836 // Check that the immediate resolver operand (prior to any bitcasts) has the 837 // correct type 838 const Type *ResolverTy = GI.getResolver()->getType(); 839 const Type *ResolverFuncTy = 840 GlobalIFunc::getResolverFunctionType(GI.getValueType()); 841 Assert(ResolverTy == ResolverFuncTy->getPointerTo(), 842 "IFunc resolver has incorrect type", &GI); 843 } 844 845 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 846 // There used to be various other llvm.dbg.* nodes, but we don't support 847 // upgrading them and we want to reserve the namespace for future uses. 848 if (NMD.getName().startswith("llvm.dbg.")) 849 AssertDI(NMD.getName() == "llvm.dbg.cu", 850 "unrecognized named metadata node in the llvm.dbg namespace", 851 &NMD); 852 for (const MDNode *MD : NMD.operands()) { 853 if (NMD.getName() == "llvm.dbg.cu") 854 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 855 856 if (!MD) 857 continue; 858 859 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 860 } 861 } 862 863 template <typename T> 864 void Verifier::verifyODRTypeAsScopeOperand(const MDNode &MD, T *) { 865 if (isa<T>(MD)) { 866 if (auto *N = dyn_cast_or_null<DICompositeType>(cast<T>(MD).getScope())) 867 // Of all the supported tags for DICompositeType(see visitDICompositeType) 868 // we know that enum type cannot be a scope. 869 AssertDI(N->getTag() != dwarf::DW_TAG_enumeration_type, 870 "enum type is not a scope; check enum type ODR " 871 "violation", 872 N, &MD); 873 } 874 } 875 876 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 877 // Only visit each node once. Metadata can be mutually recursive, so this 878 // avoids infinite recursion here, as well as being an optimization. 879 if (!MDNodes.insert(&MD).second) 880 return; 881 882 Assert(&MD.getContext() == &Context, 883 "MDNode context does not match Module context!", &MD); 884 885 // Makes sure when a scope operand is a ODR type, the ODR type uniquing does 886 // not create invalid debug metadata. 887 // TODO: check that the non-ODR-type scope operand is valid. 888 verifyODRTypeAsScopeOperand<DIType>(MD); 889 verifyODRTypeAsScopeOperand<DILocalScope>(MD); 890 891 switch (MD.getMetadataID()) { 892 default: 893 llvm_unreachable("Invalid MDNode subclass"); 894 case Metadata::MDTupleKind: 895 break; 896 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 897 case Metadata::CLASS##Kind: \ 898 visit##CLASS(cast<CLASS>(MD)); \ 899 break; 900 #include "llvm/IR/Metadata.def" 901 } 902 903 for (const Metadata *Op : MD.operands()) { 904 if (!Op) 905 continue; 906 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 907 &MD, Op); 908 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 909 "DILocation not allowed within this metadata node", &MD, Op); 910 if (auto *N = dyn_cast<MDNode>(Op)) { 911 visitMDNode(*N, AllowLocs); 912 continue; 913 } 914 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 915 visitValueAsMetadata(*V, nullptr); 916 continue; 917 } 918 } 919 920 // Check these last, so we diagnose problems in operands first. 921 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 922 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 923 } 924 925 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 926 Assert(MD.getValue(), "Expected valid value", &MD); 927 Assert(!MD.getValue()->getType()->isMetadataTy(), 928 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 929 930 auto *L = dyn_cast<LocalAsMetadata>(&MD); 931 if (!L) 932 return; 933 934 Assert(F, "function-local metadata used outside a function", L); 935 936 // If this was an instruction, bb, or argument, verify that it is in the 937 // function that we expect. 938 Function *ActualF = nullptr; 939 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 940 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 941 ActualF = I->getParent()->getParent(); 942 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 943 ActualF = BB->getParent(); 944 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 945 ActualF = A->getParent(); 946 assert(ActualF && "Unimplemented function local metadata case!"); 947 948 Assert(ActualF == F, "function-local metadata used in wrong function", L); 949 } 950 951 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 952 Metadata *MD = MDV.getMetadata(); 953 if (auto *N = dyn_cast<MDNode>(MD)) { 954 visitMDNode(*N, AreDebugLocsAllowed::No); 955 return; 956 } 957 958 // Only visit each node once. Metadata can be mutually recursive, so this 959 // avoids infinite recursion here, as well as being an optimization. 960 if (!MDNodes.insert(MD).second) 961 return; 962 963 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 964 visitValueAsMetadata(*V, F); 965 } 966 967 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 968 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 969 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 970 971 void Verifier::visitDILocation(const DILocation &N) { 972 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 973 "location requires a valid scope", &N, N.getRawScope()); 974 if (auto *IA = N.getRawInlinedAt()) 975 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 976 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 977 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 978 } 979 980 void Verifier::visitGenericDINode(const GenericDINode &N) { 981 AssertDI(N.getTag(), "invalid tag", &N); 982 } 983 984 void Verifier::visitDIScope(const DIScope &N) { 985 if (auto *F = N.getRawFile()) 986 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 987 } 988 989 void Verifier::visitDISubrange(const DISubrange &N) { 990 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 991 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 992 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 993 N.getRawUpperBound(), 994 "Subrange must contain count or upperBound", &N); 995 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 996 "Subrange can have any one of count or upperBound", &N); 997 auto *CBound = N.getRawCountNode(); 998 AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) || 999 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1000 "Count must be signed constant or DIVariable or DIExpression", &N); 1001 auto Count = N.getCount(); 1002 AssertDI(!Count || !Count.is<ConstantInt *>() || 1003 Count.get<ConstantInt *>()->getSExtValue() >= -1, 1004 "invalid subrange count", &N); 1005 auto *LBound = N.getRawLowerBound(); 1006 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 1007 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1008 "LowerBound must be signed constant or DIVariable or DIExpression", 1009 &N); 1010 auto *UBound = N.getRawUpperBound(); 1011 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 1012 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1013 "UpperBound must be signed constant or DIVariable or DIExpression", 1014 &N); 1015 auto *Stride = N.getRawStride(); 1016 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 1017 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1018 "Stride must be signed constant or DIVariable or DIExpression", &N); 1019 } 1020 1021 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 1022 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 1023 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 1024 "GenericSubrange must contain count or upperBound", &N); 1025 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1026 "GenericSubrange can have any one of count or upperBound", &N); 1027 auto *CBound = N.getRawCountNode(); 1028 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1029 "Count must be signed constant or DIVariable or DIExpression", &N); 1030 auto *LBound = N.getRawLowerBound(); 1031 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 1032 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1033 "LowerBound must be signed constant or DIVariable or DIExpression", 1034 &N); 1035 auto *UBound = N.getRawUpperBound(); 1036 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1037 "UpperBound must be signed constant or DIVariable or DIExpression", 1038 &N); 1039 auto *Stride = N.getRawStride(); 1040 AssertDI(Stride, "GenericSubrange must contain stride", &N); 1041 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1042 "Stride must be signed constant or DIVariable or DIExpression", &N); 1043 } 1044 1045 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1046 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1047 } 1048 1049 void Verifier::visitDIBasicType(const DIBasicType &N) { 1050 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 1051 N.getTag() == dwarf::DW_TAG_unspecified_type || 1052 N.getTag() == dwarf::DW_TAG_string_type, 1053 "invalid tag", &N); 1054 } 1055 1056 void Verifier::visitDIStringType(const DIStringType &N) { 1057 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1058 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 1059 "has conflicting flags", &N); 1060 } 1061 1062 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1063 // Common scope checks. 1064 visitDIScope(N); 1065 1066 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 1067 N.getTag() == dwarf::DW_TAG_pointer_type || 1068 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1069 N.getTag() == dwarf::DW_TAG_reference_type || 1070 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1071 N.getTag() == dwarf::DW_TAG_const_type || 1072 N.getTag() == dwarf::DW_TAG_volatile_type || 1073 N.getTag() == dwarf::DW_TAG_restrict_type || 1074 N.getTag() == dwarf::DW_TAG_atomic_type || 1075 N.getTag() == dwarf::DW_TAG_member || 1076 N.getTag() == dwarf::DW_TAG_inheritance || 1077 N.getTag() == dwarf::DW_TAG_friend || 1078 N.getTag() == dwarf::DW_TAG_set_type, 1079 "invalid tag", &N); 1080 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1081 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1082 N.getRawExtraData()); 1083 } 1084 1085 if (N.getTag() == dwarf::DW_TAG_set_type) { 1086 if (auto *T = N.getRawBaseType()) { 1087 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1088 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1089 AssertDI( 1090 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1091 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1092 Basic->getEncoding() == dwarf::DW_ATE_signed || 1093 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1094 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1095 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1096 "invalid set base type", &N, T); 1097 } 1098 } 1099 1100 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1101 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1102 N.getRawBaseType()); 1103 1104 if (N.getDWARFAddressSpace()) { 1105 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1106 N.getTag() == dwarf::DW_TAG_reference_type || 1107 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1108 "DWARF address space only applies to pointer or reference types", 1109 &N); 1110 } 1111 } 1112 1113 /// Detect mutually exclusive flags. 1114 static bool hasConflictingReferenceFlags(unsigned Flags) { 1115 return ((Flags & DINode::FlagLValueReference) && 1116 (Flags & DINode::FlagRValueReference)) || 1117 ((Flags & DINode::FlagTypePassByValue) && 1118 (Flags & DINode::FlagTypePassByReference)); 1119 } 1120 1121 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1122 auto *Params = dyn_cast<MDTuple>(&RawParams); 1123 AssertDI(Params, "invalid template params", &N, &RawParams); 1124 for (Metadata *Op : Params->operands()) { 1125 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1126 &N, Params, Op); 1127 } 1128 } 1129 1130 void Verifier::visitDICompositeType(const DICompositeType &N) { 1131 // Common scope checks. 1132 visitDIScope(N); 1133 1134 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1135 N.getTag() == dwarf::DW_TAG_structure_type || 1136 N.getTag() == dwarf::DW_TAG_union_type || 1137 N.getTag() == dwarf::DW_TAG_enumeration_type || 1138 N.getTag() == dwarf::DW_TAG_class_type || 1139 N.getTag() == dwarf::DW_TAG_variant_part || 1140 N.getTag() == dwarf::DW_TAG_namelist, 1141 "invalid tag", &N); 1142 1143 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1144 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1145 N.getRawBaseType()); 1146 1147 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1148 "invalid composite elements", &N, N.getRawElements()); 1149 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1150 N.getRawVTableHolder()); 1151 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1152 "invalid reference flags", &N); 1153 unsigned DIBlockByRefStruct = 1 << 4; 1154 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1155 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1156 1157 if (N.isVector()) { 1158 const DINodeArray Elements = N.getElements(); 1159 AssertDI(Elements.size() == 1 && 1160 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1161 "invalid vector, expected one element of type subrange", &N); 1162 } 1163 1164 if (auto *Params = N.getRawTemplateParams()) 1165 visitTemplateParams(N, *Params); 1166 1167 if (auto *D = N.getRawDiscriminator()) { 1168 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1169 "discriminator can only appear on variant part"); 1170 } 1171 1172 if (N.getRawDataLocation()) { 1173 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1174 "dataLocation can only appear in array type"); 1175 } 1176 1177 if (N.getRawAssociated()) { 1178 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1179 "associated can only appear in array type"); 1180 } 1181 1182 if (N.getRawAllocated()) { 1183 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1184 "allocated can only appear in array type"); 1185 } 1186 1187 if (N.getRawRank()) { 1188 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1189 "rank can only appear in array type"); 1190 } 1191 } 1192 1193 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1194 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1195 if (auto *Types = N.getRawTypeArray()) { 1196 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1197 for (Metadata *Ty : N.getTypeArray()->operands()) { 1198 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1199 } 1200 } 1201 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1202 "invalid reference flags", &N); 1203 } 1204 1205 void Verifier::visitDIFile(const DIFile &N) { 1206 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1207 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1208 if (Checksum) { 1209 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1210 "invalid checksum kind", &N); 1211 size_t Size; 1212 switch (Checksum->Kind) { 1213 case DIFile::CSK_MD5: 1214 Size = 32; 1215 break; 1216 case DIFile::CSK_SHA1: 1217 Size = 40; 1218 break; 1219 case DIFile::CSK_SHA256: 1220 Size = 64; 1221 break; 1222 } 1223 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1224 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1225 "invalid checksum", &N); 1226 } 1227 } 1228 1229 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1230 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1231 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1232 1233 // Don't bother verifying the compilation directory or producer string 1234 // as those could be empty. 1235 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1236 N.getRawFile()); 1237 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1238 N.getFile()); 1239 1240 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1241 1242 verifySourceDebugInfo(N, *N.getFile()); 1243 1244 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1245 "invalid emission kind", &N); 1246 1247 if (auto *Array = N.getRawEnumTypes()) { 1248 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1249 for (Metadata *Op : N.getEnumTypes()->operands()) { 1250 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1251 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1252 "invalid enum type", &N, N.getEnumTypes(), Op); 1253 } 1254 } 1255 if (auto *Array = N.getRawRetainedTypes()) { 1256 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1257 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1258 AssertDI(Op && (isa<DIType>(Op) || 1259 (isa<DISubprogram>(Op) && 1260 !cast<DISubprogram>(Op)->isDefinition())), 1261 "invalid retained type", &N, Op); 1262 } 1263 } 1264 if (auto *Array = N.getRawGlobalVariables()) { 1265 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1266 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1267 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1268 "invalid global variable ref", &N, Op); 1269 } 1270 } 1271 if (auto *Array = N.getRawImportedEntities()) { 1272 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1273 for (Metadata *Op : N.getImportedEntities()->operands()) { 1274 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1275 &N, Op); 1276 } 1277 } 1278 if (auto *Array = N.getRawMacros()) { 1279 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1280 for (Metadata *Op : N.getMacros()->operands()) { 1281 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1282 } 1283 } 1284 CUVisited.insert(&N); 1285 } 1286 1287 void Verifier::visitDISubprogram(const DISubprogram &N) { 1288 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1289 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1290 if (auto *F = N.getRawFile()) 1291 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1292 else 1293 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1294 if (auto *T = N.getRawType()) 1295 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1296 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1297 N.getRawContainingType()); 1298 if (auto *Params = N.getRawTemplateParams()) 1299 visitTemplateParams(N, *Params); 1300 if (auto *S = N.getRawDeclaration()) 1301 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1302 "invalid subprogram declaration", &N, S); 1303 if (auto *RawNode = N.getRawRetainedNodes()) { 1304 auto *Node = dyn_cast<MDTuple>(RawNode); 1305 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1306 for (Metadata *Op : Node->operands()) { 1307 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1308 "invalid retained nodes, expected DILocalVariable or DILabel", 1309 &N, Node, Op); 1310 } 1311 } 1312 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1313 "invalid reference flags", &N); 1314 1315 auto *Unit = N.getRawUnit(); 1316 if (N.isDefinition()) { 1317 // Subprogram definitions (not part of the type hierarchy). 1318 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1319 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1320 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1321 if (N.getFile()) 1322 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1323 } else { 1324 // Subprogram declarations (part of the type hierarchy). 1325 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1326 } 1327 1328 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1329 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1330 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1331 for (Metadata *Op : ThrownTypes->operands()) 1332 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1333 Op); 1334 } 1335 1336 if (N.areAllCallsDescribed()) 1337 AssertDI(N.isDefinition(), 1338 "DIFlagAllCallsDescribed must be attached to a definition"); 1339 } 1340 1341 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1342 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1343 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1344 "invalid local scope", &N, N.getRawScope()); 1345 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1346 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1347 } 1348 1349 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1350 visitDILexicalBlockBase(N); 1351 1352 AssertDI(N.getLine() || !N.getColumn(), 1353 "cannot have column info without line info", &N); 1354 } 1355 1356 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1357 visitDILexicalBlockBase(N); 1358 } 1359 1360 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1361 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1362 if (auto *S = N.getRawScope()) 1363 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1364 if (auto *S = N.getRawDecl()) 1365 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1366 } 1367 1368 void Verifier::visitDINamespace(const DINamespace &N) { 1369 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1370 if (auto *S = N.getRawScope()) 1371 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1372 } 1373 1374 void Verifier::visitDIMacro(const DIMacro &N) { 1375 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1376 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1377 "invalid macinfo type", &N); 1378 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1379 if (!N.getValue().empty()) { 1380 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1381 } 1382 } 1383 1384 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1385 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1386 "invalid macinfo type", &N); 1387 if (auto *F = N.getRawFile()) 1388 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1389 1390 if (auto *Array = N.getRawElements()) { 1391 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1392 for (Metadata *Op : N.getElements()->operands()) { 1393 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1394 } 1395 } 1396 } 1397 1398 void Verifier::visitDIArgList(const DIArgList &N) { 1399 AssertDI(!N.getNumOperands(), 1400 "DIArgList should have no operands other than a list of " 1401 "ValueAsMetadata", 1402 &N); 1403 } 1404 1405 void Verifier::visitDIModule(const DIModule &N) { 1406 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1407 AssertDI(!N.getName().empty(), "anonymous module", &N); 1408 } 1409 1410 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1411 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1412 } 1413 1414 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1415 visitDITemplateParameter(N); 1416 1417 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1418 &N); 1419 } 1420 1421 void Verifier::visitDITemplateValueParameter( 1422 const DITemplateValueParameter &N) { 1423 visitDITemplateParameter(N); 1424 1425 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1426 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1427 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1428 "invalid tag", &N); 1429 } 1430 1431 void Verifier::visitDIVariable(const DIVariable &N) { 1432 if (auto *S = N.getRawScope()) 1433 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1434 if (auto *F = N.getRawFile()) 1435 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1436 } 1437 1438 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1439 // Checks common to all variables. 1440 visitDIVariable(N); 1441 1442 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1443 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1444 // Assert only if the global variable is not an extern 1445 if (N.isDefinition()) 1446 AssertDI(N.getType(), "missing global variable type", &N); 1447 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1448 AssertDI(isa<DIDerivedType>(Member), 1449 "invalid static data member declaration", &N, Member); 1450 } 1451 } 1452 1453 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1454 // Checks common to all variables. 1455 visitDIVariable(N); 1456 1457 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1458 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1459 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1460 "local variable requires a valid scope", &N, N.getRawScope()); 1461 if (auto Ty = N.getType()) 1462 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1463 } 1464 1465 void Verifier::visitDILabel(const DILabel &N) { 1466 if (auto *S = N.getRawScope()) 1467 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1468 if (auto *F = N.getRawFile()) 1469 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1470 1471 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1472 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1473 "label requires a valid scope", &N, N.getRawScope()); 1474 } 1475 1476 void Verifier::visitDIExpression(const DIExpression &N) { 1477 AssertDI(N.isValid(), "invalid expression", &N); 1478 } 1479 1480 void Verifier::visitDIGlobalVariableExpression( 1481 const DIGlobalVariableExpression &GVE) { 1482 AssertDI(GVE.getVariable(), "missing variable"); 1483 if (auto *Var = GVE.getVariable()) 1484 visitDIGlobalVariable(*Var); 1485 if (auto *Expr = GVE.getExpression()) { 1486 visitDIExpression(*Expr); 1487 if (auto Fragment = Expr->getFragmentInfo()) 1488 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1489 } 1490 } 1491 1492 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1493 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1494 if (auto *T = N.getRawType()) 1495 AssertDI(isType(T), "invalid type ref", &N, T); 1496 if (auto *F = N.getRawFile()) 1497 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1498 } 1499 1500 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1501 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1502 N.getTag() == dwarf::DW_TAG_imported_declaration, 1503 "invalid tag", &N); 1504 if (auto *S = N.getRawScope()) 1505 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1506 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1507 N.getRawEntity()); 1508 } 1509 1510 void Verifier::visitComdat(const Comdat &C) { 1511 // In COFF the Module is invalid if the GlobalValue has private linkage. 1512 // Entities with private linkage don't have entries in the symbol table. 1513 if (TT.isOSBinFormatCOFF()) 1514 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1515 Assert(!GV->hasPrivateLinkage(), 1516 "comdat global value has private linkage", GV); 1517 } 1518 1519 void Verifier::visitModuleIdents() { 1520 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1521 if (!Idents) 1522 return; 1523 1524 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1525 // Scan each llvm.ident entry and make sure that this requirement is met. 1526 for (const MDNode *N : Idents->operands()) { 1527 Assert(N->getNumOperands() == 1, 1528 "incorrect number of operands in llvm.ident metadata", N); 1529 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1530 ("invalid value for llvm.ident metadata entry operand" 1531 "(the operand should be a string)"), 1532 N->getOperand(0)); 1533 } 1534 } 1535 1536 void Verifier::visitModuleCommandLines() { 1537 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1538 if (!CommandLines) 1539 return; 1540 1541 // llvm.commandline takes a list of metadata entry. Each entry has only one 1542 // string. Scan each llvm.commandline entry and make sure that this 1543 // requirement is met. 1544 for (const MDNode *N : CommandLines->operands()) { 1545 Assert(N->getNumOperands() == 1, 1546 "incorrect number of operands in llvm.commandline metadata", N); 1547 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1548 ("invalid value for llvm.commandline metadata entry operand" 1549 "(the operand should be a string)"), 1550 N->getOperand(0)); 1551 } 1552 } 1553 1554 void Verifier::visitModuleFlags() { 1555 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1556 if (!Flags) return; 1557 1558 // Scan each flag, and track the flags and requirements. 1559 DenseMap<const MDString*, const MDNode*> SeenIDs; 1560 SmallVector<const MDNode*, 16> Requirements; 1561 for (const MDNode *MDN : Flags->operands()) 1562 visitModuleFlag(MDN, SeenIDs, Requirements); 1563 1564 // Validate that the requirements in the module are valid. 1565 for (const MDNode *Requirement : Requirements) { 1566 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1567 const Metadata *ReqValue = Requirement->getOperand(1); 1568 1569 const MDNode *Op = SeenIDs.lookup(Flag); 1570 if (!Op) { 1571 CheckFailed("invalid requirement on flag, flag is not present in module", 1572 Flag); 1573 continue; 1574 } 1575 1576 if (Op->getOperand(2) != ReqValue) { 1577 CheckFailed(("invalid requirement on flag, " 1578 "flag does not have the required value"), 1579 Flag); 1580 continue; 1581 } 1582 } 1583 } 1584 1585 void 1586 Verifier::visitModuleFlag(const MDNode *Op, 1587 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1588 SmallVectorImpl<const MDNode *> &Requirements) { 1589 // Each module flag should have three arguments, the merge behavior (a 1590 // constant int), the flag ID (an MDString), and the value. 1591 Assert(Op->getNumOperands() == 3, 1592 "incorrect number of operands in module flag", Op); 1593 Module::ModFlagBehavior MFB; 1594 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1595 Assert( 1596 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1597 "invalid behavior operand in module flag (expected constant integer)", 1598 Op->getOperand(0)); 1599 Assert(false, 1600 "invalid behavior operand in module flag (unexpected constant)", 1601 Op->getOperand(0)); 1602 } 1603 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1604 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1605 Op->getOperand(1)); 1606 1607 // Sanity check the values for behaviors with additional requirements. 1608 switch (MFB) { 1609 case Module::Error: 1610 case Module::Warning: 1611 case Module::Override: 1612 // These behavior types accept any value. 1613 break; 1614 1615 case Module::Max: { 1616 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1617 "invalid value for 'max' module flag (expected constant integer)", 1618 Op->getOperand(2)); 1619 break; 1620 } 1621 1622 case Module::Require: { 1623 // The value should itself be an MDNode with two operands, a flag ID (an 1624 // MDString), and a value. 1625 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1626 Assert(Value && Value->getNumOperands() == 2, 1627 "invalid value for 'require' module flag (expected metadata pair)", 1628 Op->getOperand(2)); 1629 Assert(isa<MDString>(Value->getOperand(0)), 1630 ("invalid value for 'require' module flag " 1631 "(first value operand should be a string)"), 1632 Value->getOperand(0)); 1633 1634 // Append it to the list of requirements, to check once all module flags are 1635 // scanned. 1636 Requirements.push_back(Value); 1637 break; 1638 } 1639 1640 case Module::Append: 1641 case Module::AppendUnique: { 1642 // These behavior types require the operand be an MDNode. 1643 Assert(isa<MDNode>(Op->getOperand(2)), 1644 "invalid value for 'append'-type module flag " 1645 "(expected a metadata node)", 1646 Op->getOperand(2)); 1647 break; 1648 } 1649 } 1650 1651 // Unless this is a "requires" flag, check the ID is unique. 1652 if (MFB != Module::Require) { 1653 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1654 Assert(Inserted, 1655 "module flag identifiers must be unique (or of 'require' type)", ID); 1656 } 1657 1658 if (ID->getString() == "wchar_size") { 1659 ConstantInt *Value 1660 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1661 Assert(Value, "wchar_size metadata requires constant integer argument"); 1662 } 1663 1664 if (ID->getString() == "Linker Options") { 1665 // If the llvm.linker.options named metadata exists, we assume that the 1666 // bitcode reader has upgraded the module flag. Otherwise the flag might 1667 // have been created by a client directly. 1668 Assert(M.getNamedMetadata("llvm.linker.options"), 1669 "'Linker Options' named metadata no longer supported"); 1670 } 1671 1672 if (ID->getString() == "SemanticInterposition") { 1673 ConstantInt *Value = 1674 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1675 Assert(Value, 1676 "SemanticInterposition metadata requires constant integer argument"); 1677 } 1678 1679 if (ID->getString() == "CG Profile") { 1680 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1681 visitModuleFlagCGProfileEntry(MDO); 1682 } 1683 } 1684 1685 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1686 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1687 if (!FuncMDO) 1688 return; 1689 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1690 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1691 "expected a Function or null", FuncMDO); 1692 }; 1693 auto Node = dyn_cast_or_null<MDNode>(MDO); 1694 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1695 CheckFunction(Node->getOperand(0)); 1696 CheckFunction(Node->getOperand(1)); 1697 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1698 Assert(Count && Count->getType()->isIntegerTy(), 1699 "expected an integer constant", Node->getOperand(2)); 1700 } 1701 1702 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1703 for (Attribute A : Attrs) { 1704 1705 if (A.isStringAttribute()) { 1706 #define GET_ATTR_NAMES 1707 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1708 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1709 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1710 auto V = A.getValueAsString(); \ 1711 if (!(V.empty() || V == "true" || V == "false")) \ 1712 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1713 ""); \ 1714 } 1715 1716 #include "llvm/IR/Attributes.inc" 1717 continue; 1718 } 1719 1720 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1721 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1722 V); 1723 return; 1724 } 1725 } 1726 } 1727 1728 // VerifyParameterAttrs - Check the given attributes for an argument or return 1729 // value of the specified type. The value V is printed in error messages. 1730 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1731 const Value *V) { 1732 if (!Attrs.hasAttributes()) 1733 return; 1734 1735 verifyAttributeTypes(Attrs, V); 1736 1737 for (Attribute Attr : Attrs) 1738 Assert(Attr.isStringAttribute() || 1739 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1740 "Attribute '" + Attr.getAsString() + 1741 "' does not apply to parameters", 1742 V); 1743 1744 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1745 Assert(Attrs.getNumAttributes() == 1, 1746 "Attribute 'immarg' is incompatible with other attributes", V); 1747 } 1748 1749 // Check for mutually incompatible attributes. Only inreg is compatible with 1750 // sret. 1751 unsigned AttrCount = 0; 1752 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1753 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1754 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1755 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1756 Attrs.hasAttribute(Attribute::InReg); 1757 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1758 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1759 Assert(AttrCount <= 1, 1760 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1761 "'byref', and 'sret' are incompatible!", 1762 V); 1763 1764 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1765 Attrs.hasAttribute(Attribute::ReadOnly)), 1766 "Attributes " 1767 "'inalloca and readonly' are incompatible!", 1768 V); 1769 1770 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1771 Attrs.hasAttribute(Attribute::Returned)), 1772 "Attributes " 1773 "'sret and returned' are incompatible!", 1774 V); 1775 1776 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1777 Attrs.hasAttribute(Attribute::SExt)), 1778 "Attributes " 1779 "'zeroext and signext' are incompatible!", 1780 V); 1781 1782 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1783 Attrs.hasAttribute(Attribute::ReadOnly)), 1784 "Attributes " 1785 "'readnone and readonly' are incompatible!", 1786 V); 1787 1788 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1789 Attrs.hasAttribute(Attribute::WriteOnly)), 1790 "Attributes " 1791 "'readnone and writeonly' are incompatible!", 1792 V); 1793 1794 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1795 Attrs.hasAttribute(Attribute::WriteOnly)), 1796 "Attributes " 1797 "'readonly and writeonly' are incompatible!", 1798 V); 1799 1800 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1801 Attrs.hasAttribute(Attribute::AlwaysInline)), 1802 "Attributes " 1803 "'noinline and alwaysinline' are incompatible!", 1804 V); 1805 1806 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1807 for (Attribute Attr : Attrs) { 1808 if (!Attr.isStringAttribute() && 1809 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1810 CheckFailed("Attribute '" + Attr.getAsString() + 1811 "' applied to incompatible type!", V); 1812 return; 1813 } 1814 } 1815 1816 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1817 if (Attrs.hasAttribute(Attribute::ByVal)) { 1818 SmallPtrSet<Type *, 4> Visited; 1819 Assert(Attrs.getByValType()->isSized(&Visited), 1820 "Attribute 'byval' does not support unsized types!", V); 1821 } 1822 if (Attrs.hasAttribute(Attribute::ByRef)) { 1823 SmallPtrSet<Type *, 4> Visited; 1824 Assert(Attrs.getByRefType()->isSized(&Visited), 1825 "Attribute 'byref' does not support unsized types!", V); 1826 } 1827 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1828 SmallPtrSet<Type *, 4> Visited; 1829 Assert(Attrs.getInAllocaType()->isSized(&Visited), 1830 "Attribute 'inalloca' does not support unsized types!", V); 1831 } 1832 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1833 SmallPtrSet<Type *, 4> Visited; 1834 Assert(Attrs.getPreallocatedType()->isSized(&Visited), 1835 "Attribute 'preallocated' does not support unsized types!", V); 1836 } 1837 if (!PTy->isOpaque()) { 1838 if (!isa<PointerType>(PTy->getElementType())) 1839 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1840 "Attribute 'swifterror' only applies to parameters " 1841 "with pointer to pointer type!", 1842 V); 1843 if (Attrs.hasAttribute(Attribute::ByRef)) { 1844 Assert(Attrs.getByRefType() == PTy->getElementType(), 1845 "Attribute 'byref' type does not match parameter!", V); 1846 } 1847 1848 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1849 Assert(Attrs.getByValType() == PTy->getElementType(), 1850 "Attribute 'byval' type does not match parameter!", V); 1851 } 1852 1853 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1854 Assert(Attrs.getPreallocatedType() == PTy->getElementType(), 1855 "Attribute 'preallocated' type does not match parameter!", V); 1856 } 1857 1858 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1859 Assert(Attrs.getInAllocaType() == PTy->getElementType(), 1860 "Attribute 'inalloca' type does not match parameter!", V); 1861 } 1862 1863 if (Attrs.hasAttribute(Attribute::ElementType)) { 1864 Assert(Attrs.getElementType() == PTy->getElementType(), 1865 "Attribute 'elementtype' type does not match parameter!", V); 1866 } 1867 } 1868 } 1869 } 1870 1871 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1872 const Value *V) { 1873 if (Attrs.hasFnAttr(Attr)) { 1874 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 1875 unsigned N; 1876 if (S.getAsInteger(10, N)) 1877 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 1878 } 1879 } 1880 1881 // Check parameter attributes against a function type. 1882 // The value V is printed in error messages. 1883 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1884 const Value *V, bool IsIntrinsic) { 1885 if (Attrs.isEmpty()) 1886 return; 1887 1888 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1889 Assert(Attrs.hasParentContext(Context), 1890 "Attribute list does not match Module context!", &Attrs, V); 1891 for (const auto &AttrSet : Attrs) { 1892 Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1893 "Attribute set does not match Module context!", &AttrSet, V); 1894 for (const auto &A : AttrSet) { 1895 Assert(A.hasParentContext(Context), 1896 "Attribute does not match Module context!", &A, V); 1897 } 1898 } 1899 } 1900 1901 bool SawNest = false; 1902 bool SawReturned = false; 1903 bool SawSRet = false; 1904 bool SawSwiftSelf = false; 1905 bool SawSwiftAsync = false; 1906 bool SawSwiftError = false; 1907 1908 // Verify return value attributes. 1909 AttributeSet RetAttrs = Attrs.getRetAttrs(); 1910 for (Attribute RetAttr : RetAttrs) 1911 Assert(RetAttr.isStringAttribute() || 1912 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 1913 "Attribute '" + RetAttr.getAsString() + 1914 "' does not apply to function return values", 1915 V); 1916 1917 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1918 1919 // Verify parameter attributes. 1920 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1921 Type *Ty = FT->getParamType(i); 1922 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 1923 1924 if (!IsIntrinsic) { 1925 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1926 "immarg attribute only applies to intrinsics",V); 1927 Assert(!ArgAttrs.hasAttribute(Attribute::ElementType), 1928 "Attribute 'elementtype' can only be applied to intrinsics.", V); 1929 } 1930 1931 verifyParameterAttrs(ArgAttrs, Ty, V); 1932 1933 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1934 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1935 SawNest = true; 1936 } 1937 1938 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1939 Assert(!SawReturned, "More than one parameter has attribute returned!", 1940 V); 1941 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1942 "Incompatible argument and return types for 'returned' attribute", 1943 V); 1944 SawReturned = true; 1945 } 1946 1947 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1948 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1949 Assert(i == 0 || i == 1, 1950 "Attribute 'sret' is not on first or second parameter!", V); 1951 SawSRet = true; 1952 } 1953 1954 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1955 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1956 SawSwiftSelf = true; 1957 } 1958 1959 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 1960 Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 1961 SawSwiftAsync = true; 1962 } 1963 1964 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1965 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1966 V); 1967 SawSwiftError = true; 1968 } 1969 1970 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1971 Assert(i == FT->getNumParams() - 1, 1972 "inalloca isn't on the last parameter!", V); 1973 } 1974 } 1975 1976 if (!Attrs.hasFnAttrs()) 1977 return; 1978 1979 verifyAttributeTypes(Attrs.getFnAttrs(), V); 1980 for (Attribute FnAttr : Attrs.getFnAttrs()) 1981 Assert(FnAttr.isStringAttribute() || 1982 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 1983 "Attribute '" + FnAttr.getAsString() + 1984 "' does not apply to functions!", 1985 V); 1986 1987 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1988 Attrs.hasFnAttr(Attribute::ReadOnly)), 1989 "Attributes 'readnone and readonly' are incompatible!", V); 1990 1991 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1992 Attrs.hasFnAttr(Attribute::WriteOnly)), 1993 "Attributes 'readnone and writeonly' are incompatible!", V); 1994 1995 Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) && 1996 Attrs.hasFnAttr(Attribute::WriteOnly)), 1997 "Attributes 'readonly and writeonly' are incompatible!", V); 1998 1999 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2000 Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)), 2001 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 2002 "incompatible!", 2003 V); 2004 2005 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2006 Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)), 2007 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 2008 2009 Assert(!(Attrs.hasFnAttr(Attribute::NoInline) && 2010 Attrs.hasFnAttr(Attribute::AlwaysInline)), 2011 "Attributes 'noinline and alwaysinline' are incompatible!", V); 2012 2013 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 2014 Assert(Attrs.hasFnAttr(Attribute::NoInline), 2015 "Attribute 'optnone' requires 'noinline'!", V); 2016 2017 Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2018 "Attributes 'optsize and optnone' are incompatible!", V); 2019 2020 Assert(!Attrs.hasFnAttr(Attribute::MinSize), 2021 "Attributes 'minsize and optnone' are incompatible!", V); 2022 } 2023 2024 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 2025 const GlobalValue *GV = cast<GlobalValue>(V); 2026 Assert(GV->hasGlobalUnnamedAddr(), 2027 "Attribute 'jumptable' requires 'unnamed_addr'", V); 2028 } 2029 2030 if (Attrs.hasFnAttr(Attribute::AllocSize)) { 2031 std::pair<unsigned, Optional<unsigned>> Args = 2032 Attrs.getFnAttrs().getAllocSizeArgs(); 2033 2034 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 2035 if (ParamNo >= FT->getNumParams()) { 2036 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 2037 return false; 2038 } 2039 2040 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2041 CheckFailed("'allocsize' " + Name + 2042 " argument must refer to an integer parameter", 2043 V); 2044 return false; 2045 } 2046 2047 return true; 2048 }; 2049 2050 if (!CheckParam("element size", Args.first)) 2051 return; 2052 2053 if (Args.second && !CheckParam("number of elements", *Args.second)) 2054 return; 2055 } 2056 2057 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2058 std::pair<unsigned, unsigned> Args = 2059 Attrs.getFnAttrs().getVScaleRangeArgs(); 2060 2061 if (Args.first > Args.second && Args.second != 0) 2062 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2063 } 2064 2065 if (Attrs.hasFnAttr("frame-pointer")) { 2066 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2067 if (FP != "all" && FP != "non-leaf" && FP != "none") 2068 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2069 } 2070 2071 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2072 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2073 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2074 } 2075 2076 void Verifier::verifyFunctionMetadata( 2077 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2078 for (const auto &Pair : MDs) { 2079 if (Pair.first == LLVMContext::MD_prof) { 2080 MDNode *MD = Pair.second; 2081 Assert(MD->getNumOperands() >= 2, 2082 "!prof annotations should have no less than 2 operands", MD); 2083 2084 // Check first operand. 2085 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2086 MD); 2087 Assert(isa<MDString>(MD->getOperand(0)), 2088 "expected string with name of the !prof annotation", MD); 2089 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2090 StringRef ProfName = MDS->getString(); 2091 Assert(ProfName.equals("function_entry_count") || 2092 ProfName.equals("synthetic_function_entry_count"), 2093 "first operand should be 'function_entry_count'" 2094 " or 'synthetic_function_entry_count'", 2095 MD); 2096 2097 // Check second operand. 2098 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2099 MD); 2100 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2101 "expected integer argument to function_entry_count", MD); 2102 } 2103 } 2104 } 2105 2106 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2107 if (!ConstantExprVisited.insert(EntryC).second) 2108 return; 2109 2110 SmallVector<const Constant *, 16> Stack; 2111 Stack.push_back(EntryC); 2112 2113 while (!Stack.empty()) { 2114 const Constant *C = Stack.pop_back_val(); 2115 2116 // Check this constant expression. 2117 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2118 visitConstantExpr(CE); 2119 2120 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2121 // Global Values get visited separately, but we do need to make sure 2122 // that the global value is in the correct module 2123 Assert(GV->getParent() == &M, "Referencing global in another module!", 2124 EntryC, &M, GV, GV->getParent()); 2125 continue; 2126 } 2127 2128 // Visit all sub-expressions. 2129 for (const Use &U : C->operands()) { 2130 const auto *OpC = dyn_cast<Constant>(U); 2131 if (!OpC) 2132 continue; 2133 if (!ConstantExprVisited.insert(OpC).second) 2134 continue; 2135 Stack.push_back(OpC); 2136 } 2137 } 2138 } 2139 2140 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2141 if (CE->getOpcode() == Instruction::BitCast) 2142 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2143 CE->getType()), 2144 "Invalid bitcast", CE); 2145 } 2146 2147 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2148 // There shouldn't be more attribute sets than there are parameters plus the 2149 // function and return value. 2150 return Attrs.getNumAttrSets() <= Params + 2; 2151 } 2152 2153 /// Verify that statepoint intrinsic is well formed. 2154 void Verifier::verifyStatepoint(const CallBase &Call) { 2155 assert(Call.getCalledFunction() && 2156 Call.getCalledFunction()->getIntrinsicID() == 2157 Intrinsic::experimental_gc_statepoint); 2158 2159 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2160 !Call.onlyAccessesArgMemory(), 2161 "gc.statepoint must read and write all memory to preserve " 2162 "reordering restrictions required by safepoint semantics", 2163 Call); 2164 2165 const int64_t NumPatchBytes = 2166 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2167 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2168 Assert(NumPatchBytes >= 0, 2169 "gc.statepoint number of patchable bytes must be " 2170 "positive", 2171 Call); 2172 2173 const Value *Target = Call.getArgOperand(2); 2174 auto *PT = dyn_cast<PointerType>(Target->getType()); 2175 Assert(PT && PT->getElementType()->isFunctionTy(), 2176 "gc.statepoint callee must be of function pointer type", Call, Target); 2177 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2178 2179 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2180 Assert(NumCallArgs >= 0, 2181 "gc.statepoint number of arguments to underlying call " 2182 "must be positive", 2183 Call); 2184 const int NumParams = (int)TargetFuncType->getNumParams(); 2185 if (TargetFuncType->isVarArg()) { 2186 Assert(NumCallArgs >= NumParams, 2187 "gc.statepoint mismatch in number of vararg call args", Call); 2188 2189 // TODO: Remove this limitation 2190 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2191 "gc.statepoint doesn't support wrapping non-void " 2192 "vararg functions yet", 2193 Call); 2194 } else 2195 Assert(NumCallArgs == NumParams, 2196 "gc.statepoint mismatch in number of call args", Call); 2197 2198 const uint64_t Flags 2199 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2200 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2201 "unknown flag used in gc.statepoint flags argument", Call); 2202 2203 // Verify that the types of the call parameter arguments match 2204 // the type of the wrapped callee. 2205 AttributeList Attrs = Call.getAttributes(); 2206 for (int i = 0; i < NumParams; i++) { 2207 Type *ParamType = TargetFuncType->getParamType(i); 2208 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2209 Assert(ArgType == ParamType, 2210 "gc.statepoint call argument does not match wrapped " 2211 "function type", 2212 Call); 2213 2214 if (TargetFuncType->isVarArg()) { 2215 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2216 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2217 "Attribute 'sret' cannot be used for vararg call arguments!", 2218 Call); 2219 } 2220 } 2221 2222 const int EndCallArgsInx = 4 + NumCallArgs; 2223 2224 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2225 Assert(isa<ConstantInt>(NumTransitionArgsV), 2226 "gc.statepoint number of transition arguments " 2227 "must be constant integer", 2228 Call); 2229 const int NumTransitionArgs = 2230 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2231 Assert(NumTransitionArgs == 0, 2232 "gc.statepoint w/inline transition bundle is deprecated", Call); 2233 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2234 2235 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2236 Assert(isa<ConstantInt>(NumDeoptArgsV), 2237 "gc.statepoint number of deoptimization arguments " 2238 "must be constant integer", 2239 Call); 2240 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2241 Assert(NumDeoptArgs == 0, 2242 "gc.statepoint w/inline deopt operands is deprecated", Call); 2243 2244 const int ExpectedNumArgs = 7 + NumCallArgs; 2245 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2246 "gc.statepoint too many arguments", Call); 2247 2248 // Check that the only uses of this gc.statepoint are gc.result or 2249 // gc.relocate calls which are tied to this statepoint and thus part 2250 // of the same statepoint sequence 2251 for (const User *U : Call.users()) { 2252 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2253 Assert(UserCall, "illegal use of statepoint token", Call, U); 2254 if (!UserCall) 2255 continue; 2256 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2257 "gc.result or gc.relocate are the only value uses " 2258 "of a gc.statepoint", 2259 Call, U); 2260 if (isa<GCResultInst>(UserCall)) { 2261 Assert(UserCall->getArgOperand(0) == &Call, 2262 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2263 } else if (isa<GCRelocateInst>(Call)) { 2264 Assert(UserCall->getArgOperand(0) == &Call, 2265 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2266 } 2267 } 2268 2269 // Note: It is legal for a single derived pointer to be listed multiple 2270 // times. It's non-optimal, but it is legal. It can also happen after 2271 // insertion if we strip a bitcast away. 2272 // Note: It is really tempting to check that each base is relocated and 2273 // that a derived pointer is never reused as a base pointer. This turns 2274 // out to be problematic since optimizations run after safepoint insertion 2275 // can recognize equality properties that the insertion logic doesn't know 2276 // about. See example statepoint.ll in the verifier subdirectory 2277 } 2278 2279 void Verifier::verifyFrameRecoverIndices() { 2280 for (auto &Counts : FrameEscapeInfo) { 2281 Function *F = Counts.first; 2282 unsigned EscapedObjectCount = Counts.second.first; 2283 unsigned MaxRecoveredIndex = Counts.second.second; 2284 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2285 "all indices passed to llvm.localrecover must be less than the " 2286 "number of arguments passed to llvm.localescape in the parent " 2287 "function", 2288 F); 2289 } 2290 } 2291 2292 static Instruction *getSuccPad(Instruction *Terminator) { 2293 BasicBlock *UnwindDest; 2294 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2295 UnwindDest = II->getUnwindDest(); 2296 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2297 UnwindDest = CSI->getUnwindDest(); 2298 else 2299 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2300 return UnwindDest->getFirstNonPHI(); 2301 } 2302 2303 void Verifier::verifySiblingFuncletUnwinds() { 2304 SmallPtrSet<Instruction *, 8> Visited; 2305 SmallPtrSet<Instruction *, 8> Active; 2306 for (const auto &Pair : SiblingFuncletInfo) { 2307 Instruction *PredPad = Pair.first; 2308 if (Visited.count(PredPad)) 2309 continue; 2310 Active.insert(PredPad); 2311 Instruction *Terminator = Pair.second; 2312 do { 2313 Instruction *SuccPad = getSuccPad(Terminator); 2314 if (Active.count(SuccPad)) { 2315 // Found a cycle; report error 2316 Instruction *CyclePad = SuccPad; 2317 SmallVector<Instruction *, 8> CycleNodes; 2318 do { 2319 CycleNodes.push_back(CyclePad); 2320 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2321 if (CycleTerminator != CyclePad) 2322 CycleNodes.push_back(CycleTerminator); 2323 CyclePad = getSuccPad(CycleTerminator); 2324 } while (CyclePad != SuccPad); 2325 Assert(false, "EH pads can't handle each other's exceptions", 2326 ArrayRef<Instruction *>(CycleNodes)); 2327 } 2328 // Don't re-walk a node we've already checked 2329 if (!Visited.insert(SuccPad).second) 2330 break; 2331 // Walk to this successor if it has a map entry. 2332 PredPad = SuccPad; 2333 auto TermI = SiblingFuncletInfo.find(PredPad); 2334 if (TermI == SiblingFuncletInfo.end()) 2335 break; 2336 Terminator = TermI->second; 2337 Active.insert(PredPad); 2338 } while (true); 2339 // Each node only has one successor, so we've walked all the active 2340 // nodes' successors. 2341 Active.clear(); 2342 } 2343 } 2344 2345 // visitFunction - Verify that a function is ok. 2346 // 2347 void Verifier::visitFunction(const Function &F) { 2348 visitGlobalValue(F); 2349 2350 // Check function arguments. 2351 FunctionType *FT = F.getFunctionType(); 2352 unsigned NumArgs = F.arg_size(); 2353 2354 Assert(&Context == &F.getContext(), 2355 "Function context does not match Module context!", &F); 2356 2357 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2358 Assert(FT->getNumParams() == NumArgs, 2359 "# formal arguments must match # of arguments for function type!", &F, 2360 FT); 2361 Assert(F.getReturnType()->isFirstClassType() || 2362 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2363 "Functions cannot return aggregate values!", &F); 2364 2365 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2366 "Invalid struct return type!", &F); 2367 2368 AttributeList Attrs = F.getAttributes(); 2369 2370 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2371 "Attribute after last parameter!", &F); 2372 2373 bool IsIntrinsic = F.isIntrinsic(); 2374 2375 // Check function attributes. 2376 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic); 2377 2378 // On function declarations/definitions, we do not support the builtin 2379 // attribute. We do not check this in VerifyFunctionAttrs since that is 2380 // checking for Attributes that can/can not ever be on functions. 2381 Assert(!Attrs.hasFnAttr(Attribute::Builtin), 2382 "Attribute 'builtin' can only be applied to a callsite.", &F); 2383 2384 Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2385 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2386 2387 // Check that this function meets the restrictions on this calling convention. 2388 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2389 // restrictions can be lifted. 2390 switch (F.getCallingConv()) { 2391 default: 2392 case CallingConv::C: 2393 break; 2394 case CallingConv::X86_INTR: { 2395 Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2396 "Calling convention parameter requires byval", &F); 2397 break; 2398 } 2399 case CallingConv::AMDGPU_KERNEL: 2400 case CallingConv::SPIR_KERNEL: 2401 Assert(F.getReturnType()->isVoidTy(), 2402 "Calling convention requires void return type", &F); 2403 LLVM_FALLTHROUGH; 2404 case CallingConv::AMDGPU_VS: 2405 case CallingConv::AMDGPU_HS: 2406 case CallingConv::AMDGPU_GS: 2407 case CallingConv::AMDGPU_PS: 2408 case CallingConv::AMDGPU_CS: 2409 Assert(!F.hasStructRetAttr(), 2410 "Calling convention does not allow sret", &F); 2411 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2412 const unsigned StackAS = DL.getAllocaAddrSpace(); 2413 unsigned i = 0; 2414 for (const Argument &Arg : F.args()) { 2415 Assert(!Attrs.hasParamAttr(i, Attribute::ByVal), 2416 "Calling convention disallows byval", &F); 2417 Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2418 "Calling convention disallows preallocated", &F); 2419 Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2420 "Calling convention disallows inalloca", &F); 2421 2422 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2423 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2424 // value here. 2425 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2426 "Calling convention disallows stack byref", &F); 2427 } 2428 2429 ++i; 2430 } 2431 } 2432 2433 LLVM_FALLTHROUGH; 2434 case CallingConv::Fast: 2435 case CallingConv::Cold: 2436 case CallingConv::Intel_OCL_BI: 2437 case CallingConv::PTX_Kernel: 2438 case CallingConv::PTX_Device: 2439 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2440 "perfect forwarding!", 2441 &F); 2442 break; 2443 } 2444 2445 // Check that the argument values match the function type for this function... 2446 unsigned i = 0; 2447 for (const Argument &Arg : F.args()) { 2448 Assert(Arg.getType() == FT->getParamType(i), 2449 "Argument value does not match function argument type!", &Arg, 2450 FT->getParamType(i)); 2451 Assert(Arg.getType()->isFirstClassType(), 2452 "Function arguments must have first-class types!", &Arg); 2453 if (!IsIntrinsic) { 2454 Assert(!Arg.getType()->isMetadataTy(), 2455 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2456 Assert(!Arg.getType()->isTokenTy(), 2457 "Function takes token but isn't an intrinsic", &Arg, &F); 2458 Assert(!Arg.getType()->isX86_AMXTy(), 2459 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2460 } 2461 2462 // Check that swifterror argument is only used by loads and stores. 2463 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2464 verifySwiftErrorValue(&Arg); 2465 } 2466 ++i; 2467 } 2468 2469 if (!IsIntrinsic) { 2470 Assert(!F.getReturnType()->isTokenTy(), 2471 "Function returns a token but isn't an intrinsic", &F); 2472 Assert(!F.getReturnType()->isX86_AMXTy(), 2473 "Function returns a x86_amx but isn't an intrinsic", &F); 2474 } 2475 2476 // Get the function metadata attachments. 2477 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2478 F.getAllMetadata(MDs); 2479 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2480 verifyFunctionMetadata(MDs); 2481 2482 // Check validity of the personality function 2483 if (F.hasPersonalityFn()) { 2484 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2485 if (Per) 2486 Assert(Per->getParent() == F.getParent(), 2487 "Referencing personality function in another module!", 2488 &F, F.getParent(), Per, Per->getParent()); 2489 } 2490 2491 if (F.isMaterializable()) { 2492 // Function has a body somewhere we can't see. 2493 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2494 MDs.empty() ? nullptr : MDs.front().second); 2495 } else if (F.isDeclaration()) { 2496 for (const auto &I : MDs) { 2497 // This is used for call site debug information. 2498 AssertDI(I.first != LLVMContext::MD_dbg || 2499 !cast<DISubprogram>(I.second)->isDistinct(), 2500 "function declaration may only have a unique !dbg attachment", 2501 &F); 2502 Assert(I.first != LLVMContext::MD_prof, 2503 "function declaration may not have a !prof attachment", &F); 2504 2505 // Verify the metadata itself. 2506 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2507 } 2508 Assert(!F.hasPersonalityFn(), 2509 "Function declaration shouldn't have a personality routine", &F); 2510 } else { 2511 // Verify that this function (which has a body) is not named "llvm.*". It 2512 // is not legal to define intrinsics. 2513 Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2514 2515 // Check the entry node 2516 const BasicBlock *Entry = &F.getEntryBlock(); 2517 Assert(pred_empty(Entry), 2518 "Entry block to function must not have predecessors!", Entry); 2519 2520 // The address of the entry block cannot be taken, unless it is dead. 2521 if (Entry->hasAddressTaken()) { 2522 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2523 "blockaddress may not be used with the entry block!", Entry); 2524 } 2525 2526 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2527 // Visit metadata attachments. 2528 for (const auto &I : MDs) { 2529 // Verify that the attachment is legal. 2530 auto AllowLocs = AreDebugLocsAllowed::No; 2531 switch (I.first) { 2532 default: 2533 break; 2534 case LLVMContext::MD_dbg: { 2535 ++NumDebugAttachments; 2536 AssertDI(NumDebugAttachments == 1, 2537 "function must have a single !dbg attachment", &F, I.second); 2538 AssertDI(isa<DISubprogram>(I.second), 2539 "function !dbg attachment must be a subprogram", &F, I.second); 2540 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2541 "function definition may only have a distinct !dbg attachment", 2542 &F); 2543 2544 auto *SP = cast<DISubprogram>(I.second); 2545 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2546 AssertDI(!AttachedTo || AttachedTo == &F, 2547 "DISubprogram attached to more than one function", SP, &F); 2548 AttachedTo = &F; 2549 AllowLocs = AreDebugLocsAllowed::Yes; 2550 break; 2551 } 2552 case LLVMContext::MD_prof: 2553 ++NumProfAttachments; 2554 Assert(NumProfAttachments == 1, 2555 "function must have a single !prof attachment", &F, I.second); 2556 break; 2557 } 2558 2559 // Verify the metadata itself. 2560 visitMDNode(*I.second, AllowLocs); 2561 } 2562 } 2563 2564 // If this function is actually an intrinsic, verify that it is only used in 2565 // direct call/invokes, never having its "address taken". 2566 // Only do this if the module is materialized, otherwise we don't have all the 2567 // uses. 2568 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2569 const User *U; 2570 if (F.hasAddressTaken(&U, false, true, false, 2571 /*IgnoreARCAttachedCall=*/true)) 2572 Assert(false, "Invalid user of intrinsic instruction!", U); 2573 } 2574 2575 // Check intrinsics' signatures. 2576 switch (F.getIntrinsicID()) { 2577 case Intrinsic::experimental_gc_get_pointer_base: { 2578 FunctionType *FT = F.getFunctionType(); 2579 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2580 Assert(isa<PointerType>(F.getReturnType()), 2581 "gc.get.pointer.base must return a pointer", F); 2582 Assert(FT->getParamType(0) == F.getReturnType(), 2583 "gc.get.pointer.base operand and result must be of the same type", 2584 F); 2585 break; 2586 } 2587 case Intrinsic::experimental_gc_get_pointer_offset: { 2588 FunctionType *FT = F.getFunctionType(); 2589 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2590 Assert(isa<PointerType>(FT->getParamType(0)), 2591 "gc.get.pointer.offset operand must be a pointer", F); 2592 Assert(F.getReturnType()->isIntegerTy(), 2593 "gc.get.pointer.offset must return integer", F); 2594 break; 2595 } 2596 } 2597 2598 auto *N = F.getSubprogram(); 2599 HasDebugInfo = (N != nullptr); 2600 if (!HasDebugInfo) 2601 return; 2602 2603 // Check that all !dbg attachments lead to back to N. 2604 // 2605 // FIXME: Check this incrementally while visiting !dbg attachments. 2606 // FIXME: Only check when N is the canonical subprogram for F. 2607 SmallPtrSet<const MDNode *, 32> Seen; 2608 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2609 // Be careful about using DILocation here since we might be dealing with 2610 // broken code (this is the Verifier after all). 2611 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2612 if (!DL) 2613 return; 2614 if (!Seen.insert(DL).second) 2615 return; 2616 2617 Metadata *Parent = DL->getRawScope(); 2618 AssertDI(Parent && isa<DILocalScope>(Parent), 2619 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2620 Parent); 2621 2622 DILocalScope *Scope = DL->getInlinedAtScope(); 2623 Assert(Scope, "Failed to find DILocalScope", DL); 2624 2625 if (!Seen.insert(Scope).second) 2626 return; 2627 2628 DISubprogram *SP = Scope->getSubprogram(); 2629 2630 // Scope and SP could be the same MDNode and we don't want to skip 2631 // validation in that case 2632 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2633 return; 2634 2635 AssertDI(SP->describes(&F), 2636 "!dbg attachment points at wrong subprogram for function", N, &F, 2637 &I, DL, Scope, SP); 2638 }; 2639 for (auto &BB : F) 2640 for (auto &I : BB) { 2641 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2642 // The llvm.loop annotations also contain two DILocations. 2643 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2644 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2645 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2646 if (BrokenDebugInfo) 2647 return; 2648 } 2649 } 2650 2651 // verifyBasicBlock - Verify that a basic block is well formed... 2652 // 2653 void Verifier::visitBasicBlock(BasicBlock &BB) { 2654 InstsInThisBlock.clear(); 2655 2656 // Ensure that basic blocks have terminators! 2657 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2658 2659 // Check constraints that this basic block imposes on all of the PHI nodes in 2660 // it. 2661 if (isa<PHINode>(BB.front())) { 2662 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2663 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2664 llvm::sort(Preds); 2665 for (const PHINode &PN : BB.phis()) { 2666 Assert(PN.getNumIncomingValues() == Preds.size(), 2667 "PHINode should have one entry for each predecessor of its " 2668 "parent basic block!", 2669 &PN); 2670 2671 // Get and sort all incoming values in the PHI node... 2672 Values.clear(); 2673 Values.reserve(PN.getNumIncomingValues()); 2674 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2675 Values.push_back( 2676 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2677 llvm::sort(Values); 2678 2679 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2680 // Check to make sure that if there is more than one entry for a 2681 // particular basic block in this PHI node, that the incoming values are 2682 // all identical. 2683 // 2684 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2685 Values[i].second == Values[i - 1].second, 2686 "PHI node has multiple entries for the same basic block with " 2687 "different incoming values!", 2688 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2689 2690 // Check to make sure that the predecessors and PHI node entries are 2691 // matched up. 2692 Assert(Values[i].first == Preds[i], 2693 "PHI node entries do not match predecessors!", &PN, 2694 Values[i].first, Preds[i]); 2695 } 2696 } 2697 } 2698 2699 // Check that all instructions have their parent pointers set up correctly. 2700 for (auto &I : BB) 2701 { 2702 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2703 } 2704 } 2705 2706 void Verifier::visitTerminator(Instruction &I) { 2707 // Ensure that terminators only exist at the end of the basic block. 2708 Assert(&I == I.getParent()->getTerminator(), 2709 "Terminator found in the middle of a basic block!", I.getParent()); 2710 visitInstruction(I); 2711 } 2712 2713 void Verifier::visitBranchInst(BranchInst &BI) { 2714 if (BI.isConditional()) { 2715 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2716 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2717 } 2718 visitTerminator(BI); 2719 } 2720 2721 void Verifier::visitReturnInst(ReturnInst &RI) { 2722 Function *F = RI.getParent()->getParent(); 2723 unsigned N = RI.getNumOperands(); 2724 if (F->getReturnType()->isVoidTy()) 2725 Assert(N == 0, 2726 "Found return instr that returns non-void in Function of void " 2727 "return type!", 2728 &RI, F->getReturnType()); 2729 else 2730 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2731 "Function return type does not match operand " 2732 "type of return inst!", 2733 &RI, F->getReturnType()); 2734 2735 // Check to make sure that the return value has necessary properties for 2736 // terminators... 2737 visitTerminator(RI); 2738 } 2739 2740 void Verifier::visitSwitchInst(SwitchInst &SI) { 2741 Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 2742 // Check to make sure that all of the constants in the switch instruction 2743 // have the same type as the switched-on value. 2744 Type *SwitchTy = SI.getCondition()->getType(); 2745 SmallPtrSet<ConstantInt*, 32> Constants; 2746 for (auto &Case : SI.cases()) { 2747 Assert(Case.getCaseValue()->getType() == SwitchTy, 2748 "Switch constants must all be same type as switch value!", &SI); 2749 Assert(Constants.insert(Case.getCaseValue()).second, 2750 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2751 } 2752 2753 visitTerminator(SI); 2754 } 2755 2756 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2757 Assert(BI.getAddress()->getType()->isPointerTy(), 2758 "Indirectbr operand must have pointer type!", &BI); 2759 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2760 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2761 "Indirectbr destinations must all have pointer type!", &BI); 2762 2763 visitTerminator(BI); 2764 } 2765 2766 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2767 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2768 &CBI); 2769 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2770 Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 2771 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2772 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2773 "Callbr successors must all have pointer type!", &CBI); 2774 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2775 Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)), 2776 "Using an unescaped label as a callbr argument!", &CBI); 2777 if (isa<BasicBlock>(CBI.getOperand(i))) 2778 for (unsigned j = i + 1; j != e; ++j) 2779 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2780 "Duplicate callbr destination!", &CBI); 2781 } 2782 { 2783 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2784 for (Value *V : CBI.args()) 2785 if (auto *BA = dyn_cast<BlockAddress>(V)) 2786 ArgBBs.insert(BA->getBasicBlock()); 2787 for (BasicBlock *BB : CBI.getIndirectDests()) 2788 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2789 } 2790 2791 visitTerminator(CBI); 2792 } 2793 2794 void Verifier::visitSelectInst(SelectInst &SI) { 2795 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2796 SI.getOperand(2)), 2797 "Invalid operands for select instruction!", &SI); 2798 2799 Assert(SI.getTrueValue()->getType() == SI.getType(), 2800 "Select values must have same type as select instruction!", &SI); 2801 visitInstruction(SI); 2802 } 2803 2804 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2805 /// a pass, if any exist, it's an error. 2806 /// 2807 void Verifier::visitUserOp1(Instruction &I) { 2808 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2809 } 2810 2811 void Verifier::visitTruncInst(TruncInst &I) { 2812 // Get the source and destination types 2813 Type *SrcTy = I.getOperand(0)->getType(); 2814 Type *DestTy = I.getType(); 2815 2816 // Get the size of the types in bits, we'll need this later 2817 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2818 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2819 2820 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2821 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2822 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2823 "trunc source and destination must both be a vector or neither", &I); 2824 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2825 2826 visitInstruction(I); 2827 } 2828 2829 void Verifier::visitZExtInst(ZExtInst &I) { 2830 // Get the source and destination types 2831 Type *SrcTy = I.getOperand(0)->getType(); 2832 Type *DestTy = I.getType(); 2833 2834 // Get the size of the types in bits, we'll need this later 2835 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2836 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2837 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2838 "zext source and destination must both be a vector or neither", &I); 2839 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2840 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2841 2842 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2843 2844 visitInstruction(I); 2845 } 2846 2847 void Verifier::visitSExtInst(SExtInst &I) { 2848 // Get the source and destination types 2849 Type *SrcTy = I.getOperand(0)->getType(); 2850 Type *DestTy = I.getType(); 2851 2852 // Get the size of the types in bits, we'll need this later 2853 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2854 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2855 2856 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2857 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2858 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2859 "sext source and destination must both be a vector or neither", &I); 2860 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2861 2862 visitInstruction(I); 2863 } 2864 2865 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2866 // Get the source and destination types 2867 Type *SrcTy = I.getOperand(0)->getType(); 2868 Type *DestTy = I.getType(); 2869 // Get the size of the types in bits, we'll need this later 2870 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2871 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2872 2873 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2874 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2875 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2876 "fptrunc source and destination must both be a vector or neither", &I); 2877 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2878 2879 visitInstruction(I); 2880 } 2881 2882 void Verifier::visitFPExtInst(FPExtInst &I) { 2883 // Get the source and destination types 2884 Type *SrcTy = I.getOperand(0)->getType(); 2885 Type *DestTy = I.getType(); 2886 2887 // Get the size of the types in bits, we'll need this later 2888 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2889 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2890 2891 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2892 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2893 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2894 "fpext source and destination must both be a vector or neither", &I); 2895 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2896 2897 visitInstruction(I); 2898 } 2899 2900 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2901 // Get the source and destination types 2902 Type *SrcTy = I.getOperand(0)->getType(); 2903 Type *DestTy = I.getType(); 2904 2905 bool SrcVec = SrcTy->isVectorTy(); 2906 bool DstVec = DestTy->isVectorTy(); 2907 2908 Assert(SrcVec == DstVec, 2909 "UIToFP source and dest must both be vector or scalar", &I); 2910 Assert(SrcTy->isIntOrIntVectorTy(), 2911 "UIToFP source must be integer or integer vector", &I); 2912 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2913 &I); 2914 2915 if (SrcVec && DstVec) 2916 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2917 cast<VectorType>(DestTy)->getElementCount(), 2918 "UIToFP source and dest vector length mismatch", &I); 2919 2920 visitInstruction(I); 2921 } 2922 2923 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2924 // Get the source and destination types 2925 Type *SrcTy = I.getOperand(0)->getType(); 2926 Type *DestTy = I.getType(); 2927 2928 bool SrcVec = SrcTy->isVectorTy(); 2929 bool DstVec = DestTy->isVectorTy(); 2930 2931 Assert(SrcVec == DstVec, 2932 "SIToFP source and dest must both be vector or scalar", &I); 2933 Assert(SrcTy->isIntOrIntVectorTy(), 2934 "SIToFP source must be integer or integer vector", &I); 2935 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2936 &I); 2937 2938 if (SrcVec && DstVec) 2939 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2940 cast<VectorType>(DestTy)->getElementCount(), 2941 "SIToFP source and dest vector length mismatch", &I); 2942 2943 visitInstruction(I); 2944 } 2945 2946 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2947 // Get the source and destination types 2948 Type *SrcTy = I.getOperand(0)->getType(); 2949 Type *DestTy = I.getType(); 2950 2951 bool SrcVec = SrcTy->isVectorTy(); 2952 bool DstVec = DestTy->isVectorTy(); 2953 2954 Assert(SrcVec == DstVec, 2955 "FPToUI source and dest must both be vector or scalar", &I); 2956 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2957 &I); 2958 Assert(DestTy->isIntOrIntVectorTy(), 2959 "FPToUI result must be integer or integer vector", &I); 2960 2961 if (SrcVec && DstVec) 2962 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2963 cast<VectorType>(DestTy)->getElementCount(), 2964 "FPToUI source and dest vector length mismatch", &I); 2965 2966 visitInstruction(I); 2967 } 2968 2969 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2970 // Get the source and destination types 2971 Type *SrcTy = I.getOperand(0)->getType(); 2972 Type *DestTy = I.getType(); 2973 2974 bool SrcVec = SrcTy->isVectorTy(); 2975 bool DstVec = DestTy->isVectorTy(); 2976 2977 Assert(SrcVec == DstVec, 2978 "FPToSI source and dest must both be vector or scalar", &I); 2979 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2980 &I); 2981 Assert(DestTy->isIntOrIntVectorTy(), 2982 "FPToSI result must be integer or integer vector", &I); 2983 2984 if (SrcVec && DstVec) 2985 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2986 cast<VectorType>(DestTy)->getElementCount(), 2987 "FPToSI source and dest vector length mismatch", &I); 2988 2989 visitInstruction(I); 2990 } 2991 2992 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2993 // Get the source and destination types 2994 Type *SrcTy = I.getOperand(0)->getType(); 2995 Type *DestTy = I.getType(); 2996 2997 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2998 2999 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 3000 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 3001 &I); 3002 3003 if (SrcTy->isVectorTy()) { 3004 auto *VSrc = cast<VectorType>(SrcTy); 3005 auto *VDest = cast<VectorType>(DestTy); 3006 Assert(VSrc->getElementCount() == VDest->getElementCount(), 3007 "PtrToInt Vector width mismatch", &I); 3008 } 3009 3010 visitInstruction(I); 3011 } 3012 3013 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 3014 // Get the source and destination types 3015 Type *SrcTy = I.getOperand(0)->getType(); 3016 Type *DestTy = I.getType(); 3017 3018 Assert(SrcTy->isIntOrIntVectorTy(), 3019 "IntToPtr source must be an integral", &I); 3020 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 3021 3022 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 3023 &I); 3024 if (SrcTy->isVectorTy()) { 3025 auto *VSrc = cast<VectorType>(SrcTy); 3026 auto *VDest = cast<VectorType>(DestTy); 3027 Assert(VSrc->getElementCount() == VDest->getElementCount(), 3028 "IntToPtr Vector width mismatch", &I); 3029 } 3030 visitInstruction(I); 3031 } 3032 3033 void Verifier::visitBitCastInst(BitCastInst &I) { 3034 Assert( 3035 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3036 "Invalid bitcast", &I); 3037 visitInstruction(I); 3038 } 3039 3040 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3041 Type *SrcTy = I.getOperand(0)->getType(); 3042 Type *DestTy = I.getType(); 3043 3044 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3045 &I); 3046 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3047 &I); 3048 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3049 "AddrSpaceCast must be between different address spaces", &I); 3050 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3051 Assert(SrcVTy->getElementCount() == 3052 cast<VectorType>(DestTy)->getElementCount(), 3053 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3054 visitInstruction(I); 3055 } 3056 3057 /// visitPHINode - Ensure that a PHI node is well formed. 3058 /// 3059 void Verifier::visitPHINode(PHINode &PN) { 3060 // Ensure that the PHI nodes are all grouped together at the top of the block. 3061 // This can be tested by checking whether the instruction before this is 3062 // either nonexistent (because this is begin()) or is a PHI node. If not, 3063 // then there is some other instruction before a PHI. 3064 Assert(&PN == &PN.getParent()->front() || 3065 isa<PHINode>(--BasicBlock::iterator(&PN)), 3066 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3067 3068 // Check that a PHI doesn't yield a Token. 3069 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3070 3071 // Check that all of the values of the PHI node have the same type as the 3072 // result, and that the incoming blocks are really basic blocks. 3073 for (Value *IncValue : PN.incoming_values()) { 3074 Assert(PN.getType() == IncValue->getType(), 3075 "PHI node operands are not the same type as the result!", &PN); 3076 } 3077 3078 // All other PHI node constraints are checked in the visitBasicBlock method. 3079 3080 visitInstruction(PN); 3081 } 3082 3083 void Verifier::visitCallBase(CallBase &Call) { 3084 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 3085 "Called function must be a pointer!", Call); 3086 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3087 3088 Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), 3089 "Called function is not the same type as the call!", Call); 3090 3091 FunctionType *FTy = Call.getFunctionType(); 3092 3093 // Verify that the correct number of arguments are being passed 3094 if (FTy->isVarArg()) 3095 Assert(Call.arg_size() >= FTy->getNumParams(), 3096 "Called function requires more parameters than were provided!", 3097 Call); 3098 else 3099 Assert(Call.arg_size() == FTy->getNumParams(), 3100 "Incorrect number of arguments passed to called function!", Call); 3101 3102 // Verify that all arguments to the call match the function type. 3103 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3104 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3105 "Call parameter type does not match function signature!", 3106 Call.getArgOperand(i), FTy->getParamType(i), Call); 3107 3108 AttributeList Attrs = Call.getAttributes(); 3109 3110 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3111 "Attribute after last parameter!", Call); 3112 3113 Function *Callee = 3114 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3115 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3116 if (IsIntrinsic) 3117 Assert(Callee->getValueType() == FTy, 3118 "Intrinsic called with incompatible signature", Call); 3119 3120 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3121 // Don't allow speculatable on call sites, unless the underlying function 3122 // declaration is also speculatable. 3123 Assert(Callee && Callee->isSpeculatable(), 3124 "speculatable attribute may not apply to call sites", Call); 3125 } 3126 3127 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3128 Assert(Call.getCalledFunction()->getIntrinsicID() == 3129 Intrinsic::call_preallocated_arg, 3130 "preallocated as a call site attribute can only be on " 3131 "llvm.call.preallocated.arg"); 3132 } 3133 3134 // Verify call attributes. 3135 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3136 3137 // Conservatively check the inalloca argument. 3138 // We have a bug if we can find that there is an underlying alloca without 3139 // inalloca. 3140 if (Call.hasInAllocaArgument()) { 3141 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3142 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3143 Assert(AI->isUsedWithInAlloca(), 3144 "inalloca argument for call has mismatched alloca", AI, Call); 3145 } 3146 3147 // For each argument of the callsite, if it has the swifterror argument, 3148 // make sure the underlying alloca/parameter it comes from has a swifterror as 3149 // well. 3150 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3151 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3152 Value *SwiftErrorArg = Call.getArgOperand(i); 3153 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3154 Assert(AI->isSwiftError(), 3155 "swifterror argument for call has mismatched alloca", AI, Call); 3156 continue; 3157 } 3158 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3159 Assert(ArgI, 3160 "swifterror argument should come from an alloca or parameter", 3161 SwiftErrorArg, Call); 3162 Assert(ArgI->hasSwiftErrorAttr(), 3163 "swifterror argument for call has mismatched parameter", ArgI, 3164 Call); 3165 } 3166 3167 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3168 // Don't allow immarg on call sites, unless the underlying declaration 3169 // also has the matching immarg. 3170 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3171 "immarg may not apply only to call sites", 3172 Call.getArgOperand(i), Call); 3173 } 3174 3175 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3176 Value *ArgVal = Call.getArgOperand(i); 3177 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3178 "immarg operand has non-immediate parameter", ArgVal, Call); 3179 } 3180 3181 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3182 Value *ArgVal = Call.getArgOperand(i); 3183 bool hasOB = 3184 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3185 bool isMustTail = Call.isMustTailCall(); 3186 Assert(hasOB != isMustTail, 3187 "preallocated operand either requires a preallocated bundle or " 3188 "the call to be musttail (but not both)", 3189 ArgVal, Call); 3190 } 3191 } 3192 3193 if (FTy->isVarArg()) { 3194 // FIXME? is 'nest' even legal here? 3195 bool SawNest = false; 3196 bool SawReturned = false; 3197 3198 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3199 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3200 SawNest = true; 3201 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3202 SawReturned = true; 3203 } 3204 3205 // Check attributes on the varargs part. 3206 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3207 Type *Ty = Call.getArgOperand(Idx)->getType(); 3208 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3209 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3210 3211 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3212 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3213 SawNest = true; 3214 } 3215 3216 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3217 Assert(!SawReturned, "More than one parameter has attribute returned!", 3218 Call); 3219 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3220 "Incompatible argument and return types for 'returned' " 3221 "attribute", 3222 Call); 3223 SawReturned = true; 3224 } 3225 3226 // Statepoint intrinsic is vararg but the wrapped function may be not. 3227 // Allow sret here and check the wrapped function in verifyStatepoint. 3228 if (!Call.getCalledFunction() || 3229 Call.getCalledFunction()->getIntrinsicID() != 3230 Intrinsic::experimental_gc_statepoint) 3231 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3232 "Attribute 'sret' cannot be used for vararg call arguments!", 3233 Call); 3234 3235 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3236 Assert(Idx == Call.arg_size() - 1, 3237 "inalloca isn't on the last argument!", Call); 3238 } 3239 } 3240 3241 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3242 if (!IsIntrinsic) { 3243 for (Type *ParamTy : FTy->params()) { 3244 Assert(!ParamTy->isMetadataTy(), 3245 "Function has metadata parameter but isn't an intrinsic", Call); 3246 Assert(!ParamTy->isTokenTy(), 3247 "Function has token parameter but isn't an intrinsic", Call); 3248 } 3249 } 3250 3251 // Verify that indirect calls don't return tokens. 3252 if (!Call.getCalledFunction()) { 3253 Assert(!FTy->getReturnType()->isTokenTy(), 3254 "Return type cannot be token for indirect call!"); 3255 Assert(!FTy->getReturnType()->isX86_AMXTy(), 3256 "Return type cannot be x86_amx for indirect call!"); 3257 } 3258 3259 if (Function *F = Call.getCalledFunction()) 3260 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3261 visitIntrinsicCall(ID, Call); 3262 3263 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3264 // most one "gc-transition", at most one "cfguardtarget", 3265 // and at most one "preallocated" operand bundle. 3266 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3267 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3268 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3269 FoundAttachedCallBundle = false; 3270 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3271 OperandBundleUse BU = Call.getOperandBundleAt(i); 3272 uint32_t Tag = BU.getTagID(); 3273 if (Tag == LLVMContext::OB_deopt) { 3274 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3275 FoundDeoptBundle = true; 3276 } else if (Tag == LLVMContext::OB_gc_transition) { 3277 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3278 Call); 3279 FoundGCTransitionBundle = true; 3280 } else if (Tag == LLVMContext::OB_funclet) { 3281 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3282 FoundFuncletBundle = true; 3283 Assert(BU.Inputs.size() == 1, 3284 "Expected exactly one funclet bundle operand", Call); 3285 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3286 "Funclet bundle operands should correspond to a FuncletPadInst", 3287 Call); 3288 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3289 Assert(!FoundCFGuardTargetBundle, 3290 "Multiple CFGuardTarget operand bundles", Call); 3291 FoundCFGuardTargetBundle = true; 3292 Assert(BU.Inputs.size() == 1, 3293 "Expected exactly one cfguardtarget bundle operand", Call); 3294 } else if (Tag == LLVMContext::OB_preallocated) { 3295 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3296 Call); 3297 FoundPreallocatedBundle = true; 3298 Assert(BU.Inputs.size() == 1, 3299 "Expected exactly one preallocated bundle operand", Call); 3300 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3301 Assert(Input && 3302 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3303 "\"preallocated\" argument must be a token from " 3304 "llvm.call.preallocated.setup", 3305 Call); 3306 } else if (Tag == LLVMContext::OB_gc_live) { 3307 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3308 Call); 3309 FoundGCLiveBundle = true; 3310 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3311 Assert(!FoundAttachedCallBundle, 3312 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3313 FoundAttachedCallBundle = true; 3314 verifyAttachedCallBundle(Call, BU); 3315 } 3316 } 3317 3318 // Verify that each inlinable callsite of a debug-info-bearing function in a 3319 // debug-info-bearing function has a debug location attached to it. Failure to 3320 // do so causes assertion failures when the inliner sets up inline scope info. 3321 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3322 Call.getCalledFunction()->getSubprogram()) 3323 AssertDI(Call.getDebugLoc(), 3324 "inlinable function call in a function with " 3325 "debug info must have a !dbg location", 3326 Call); 3327 3328 visitInstruction(Call); 3329 } 3330 3331 void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs, 3332 StringRef Context) { 3333 Assert(!Attrs.contains(Attribute::InAlloca), 3334 Twine("inalloca attribute not allowed in ") + Context); 3335 Assert(!Attrs.contains(Attribute::InReg), 3336 Twine("inreg attribute not allowed in ") + Context); 3337 Assert(!Attrs.contains(Attribute::SwiftError), 3338 Twine("swifterror attribute not allowed in ") + Context); 3339 Assert(!Attrs.contains(Attribute::Preallocated), 3340 Twine("preallocated attribute not allowed in ") + Context); 3341 Assert(!Attrs.contains(Attribute::ByRef), 3342 Twine("byref attribute not allowed in ") + Context); 3343 } 3344 3345 /// Two types are "congruent" if they are identical, or if they are both pointer 3346 /// types with different pointee types and the same address space. 3347 static bool isTypeCongruent(Type *L, Type *R) { 3348 if (L == R) 3349 return true; 3350 PointerType *PL = dyn_cast<PointerType>(L); 3351 PointerType *PR = dyn_cast<PointerType>(R); 3352 if (!PL || !PR) 3353 return false; 3354 return PL->getAddressSpace() == PR->getAddressSpace(); 3355 } 3356 3357 static AttrBuilder getParameterABIAttributes(unsigned I, AttributeList Attrs) { 3358 static const Attribute::AttrKind ABIAttrs[] = { 3359 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3360 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3361 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3362 Attribute::ByRef}; 3363 AttrBuilder Copy; 3364 for (auto AK : ABIAttrs) { 3365 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3366 if (Attr.isValid()) 3367 Copy.addAttribute(Attr); 3368 } 3369 3370 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3371 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3372 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3373 Attrs.hasParamAttr(I, Attribute::ByRef))) 3374 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3375 return Copy; 3376 } 3377 3378 void Verifier::verifyMustTailCall(CallInst &CI) { 3379 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3380 3381 Function *F = CI.getParent()->getParent(); 3382 FunctionType *CallerTy = F->getFunctionType(); 3383 FunctionType *CalleeTy = CI.getFunctionType(); 3384 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3385 "cannot guarantee tail call due to mismatched varargs", &CI); 3386 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3387 "cannot guarantee tail call due to mismatched return types", &CI); 3388 3389 // - The calling conventions of the caller and callee must match. 3390 Assert(F->getCallingConv() == CI.getCallingConv(), 3391 "cannot guarantee tail call due to mismatched calling conv", &CI); 3392 3393 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3394 // or a pointer bitcast followed by a ret instruction. 3395 // - The ret instruction must return the (possibly bitcasted) value 3396 // produced by the call or void. 3397 Value *RetVal = &CI; 3398 Instruction *Next = CI.getNextNode(); 3399 3400 // Handle the optional bitcast. 3401 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3402 Assert(BI->getOperand(0) == RetVal, 3403 "bitcast following musttail call must use the call", BI); 3404 RetVal = BI; 3405 Next = BI->getNextNode(); 3406 } 3407 3408 // Check the return. 3409 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3410 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3411 &CI); 3412 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3413 isa<UndefValue>(Ret->getReturnValue()), 3414 "musttail call result must be returned", Ret); 3415 3416 AttributeList CallerAttrs = F->getAttributes(); 3417 AttributeList CalleeAttrs = CI.getAttributes(); 3418 if (CI.getCallingConv() == CallingConv::SwiftTail || 3419 CI.getCallingConv() == CallingConv::Tail) { 3420 StringRef CCName = 3421 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3422 3423 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3424 // are allowed in swifttailcc call 3425 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3426 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3427 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3428 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3429 } 3430 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3431 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3432 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3433 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3434 } 3435 // - Varargs functions are not allowed 3436 Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3437 " tail call for varargs function"); 3438 return; 3439 } 3440 3441 // - The caller and callee prototypes must match. Pointer types of 3442 // parameters or return types may differ in pointee type, but not 3443 // address space. 3444 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3445 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3446 "cannot guarantee tail call due to mismatched parameter counts", 3447 &CI); 3448 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3449 Assert( 3450 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3451 "cannot guarantee tail call due to mismatched parameter types", &CI); 3452 } 3453 } 3454 3455 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3456 // returned, preallocated, and inalloca, must match. 3457 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3458 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3459 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3460 Assert(CallerABIAttrs == CalleeABIAttrs, 3461 "cannot guarantee tail call due to mismatched ABI impacting " 3462 "function attributes", 3463 &CI, CI.getOperand(I)); 3464 } 3465 } 3466 3467 void Verifier::visitCallInst(CallInst &CI) { 3468 visitCallBase(CI); 3469 3470 if (CI.isMustTailCall()) 3471 verifyMustTailCall(CI); 3472 } 3473 3474 void Verifier::visitInvokeInst(InvokeInst &II) { 3475 visitCallBase(II); 3476 3477 // Verify that the first non-PHI instruction of the unwind destination is an 3478 // exception handling instruction. 3479 Assert( 3480 II.getUnwindDest()->isEHPad(), 3481 "The unwind destination does not have an exception handling instruction!", 3482 &II); 3483 3484 visitTerminator(II); 3485 } 3486 3487 /// visitUnaryOperator - Check the argument to the unary operator. 3488 /// 3489 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3490 Assert(U.getType() == U.getOperand(0)->getType(), 3491 "Unary operators must have same type for" 3492 "operands and result!", 3493 &U); 3494 3495 switch (U.getOpcode()) { 3496 // Check that floating-point arithmetic operators are only used with 3497 // floating-point operands. 3498 case Instruction::FNeg: 3499 Assert(U.getType()->isFPOrFPVectorTy(), 3500 "FNeg operator only works with float types!", &U); 3501 break; 3502 default: 3503 llvm_unreachable("Unknown UnaryOperator opcode!"); 3504 } 3505 3506 visitInstruction(U); 3507 } 3508 3509 /// visitBinaryOperator - Check that both arguments to the binary operator are 3510 /// of the same type! 3511 /// 3512 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3513 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3514 "Both operands to a binary operator are not of the same type!", &B); 3515 3516 switch (B.getOpcode()) { 3517 // Check that integer arithmetic operators are only used with 3518 // integral operands. 3519 case Instruction::Add: 3520 case Instruction::Sub: 3521 case Instruction::Mul: 3522 case Instruction::SDiv: 3523 case Instruction::UDiv: 3524 case Instruction::SRem: 3525 case Instruction::URem: 3526 Assert(B.getType()->isIntOrIntVectorTy(), 3527 "Integer arithmetic operators only work with integral types!", &B); 3528 Assert(B.getType() == B.getOperand(0)->getType(), 3529 "Integer arithmetic operators must have same type " 3530 "for operands and result!", 3531 &B); 3532 break; 3533 // Check that floating-point arithmetic operators are only used with 3534 // floating-point operands. 3535 case Instruction::FAdd: 3536 case Instruction::FSub: 3537 case Instruction::FMul: 3538 case Instruction::FDiv: 3539 case Instruction::FRem: 3540 Assert(B.getType()->isFPOrFPVectorTy(), 3541 "Floating-point arithmetic operators only work with " 3542 "floating-point types!", 3543 &B); 3544 Assert(B.getType() == B.getOperand(0)->getType(), 3545 "Floating-point arithmetic operators must have same type " 3546 "for operands and result!", 3547 &B); 3548 break; 3549 // Check that logical operators are only used with integral operands. 3550 case Instruction::And: 3551 case Instruction::Or: 3552 case Instruction::Xor: 3553 Assert(B.getType()->isIntOrIntVectorTy(), 3554 "Logical operators only work with integral types!", &B); 3555 Assert(B.getType() == B.getOperand(0)->getType(), 3556 "Logical operators must have same type for operands and result!", 3557 &B); 3558 break; 3559 case Instruction::Shl: 3560 case Instruction::LShr: 3561 case Instruction::AShr: 3562 Assert(B.getType()->isIntOrIntVectorTy(), 3563 "Shifts only work with integral types!", &B); 3564 Assert(B.getType() == B.getOperand(0)->getType(), 3565 "Shift return type must be same as operands!", &B); 3566 break; 3567 default: 3568 llvm_unreachable("Unknown BinaryOperator opcode!"); 3569 } 3570 3571 visitInstruction(B); 3572 } 3573 3574 void Verifier::visitICmpInst(ICmpInst &IC) { 3575 // Check that the operands are the same type 3576 Type *Op0Ty = IC.getOperand(0)->getType(); 3577 Type *Op1Ty = IC.getOperand(1)->getType(); 3578 Assert(Op0Ty == Op1Ty, 3579 "Both operands to ICmp instruction are not of the same type!", &IC); 3580 // Check that the operands are the right type 3581 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3582 "Invalid operand types for ICmp instruction", &IC); 3583 // Check that the predicate is valid. 3584 Assert(IC.isIntPredicate(), 3585 "Invalid predicate in ICmp instruction!", &IC); 3586 3587 visitInstruction(IC); 3588 } 3589 3590 void Verifier::visitFCmpInst(FCmpInst &FC) { 3591 // Check that the operands are the same type 3592 Type *Op0Ty = FC.getOperand(0)->getType(); 3593 Type *Op1Ty = FC.getOperand(1)->getType(); 3594 Assert(Op0Ty == Op1Ty, 3595 "Both operands to FCmp instruction are not of the same type!", &FC); 3596 // Check that the operands are the right type 3597 Assert(Op0Ty->isFPOrFPVectorTy(), 3598 "Invalid operand types for FCmp instruction", &FC); 3599 // Check that the predicate is valid. 3600 Assert(FC.isFPPredicate(), 3601 "Invalid predicate in FCmp instruction!", &FC); 3602 3603 visitInstruction(FC); 3604 } 3605 3606 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3607 Assert( 3608 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3609 "Invalid extractelement operands!", &EI); 3610 visitInstruction(EI); 3611 } 3612 3613 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3614 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3615 IE.getOperand(2)), 3616 "Invalid insertelement operands!", &IE); 3617 visitInstruction(IE); 3618 } 3619 3620 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3621 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3622 SV.getShuffleMask()), 3623 "Invalid shufflevector operands!", &SV); 3624 visitInstruction(SV); 3625 } 3626 3627 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3628 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3629 3630 Assert(isa<PointerType>(TargetTy), 3631 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3632 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3633 3634 SmallVector<Value *, 16> Idxs(GEP.indices()); 3635 Assert(all_of( 3636 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3637 "GEP indexes must be integers", &GEP); 3638 Type *ElTy = 3639 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3640 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3641 3642 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3643 GEP.getResultElementType() == ElTy, 3644 "GEP is not of right type for indices!", &GEP, ElTy); 3645 3646 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3647 // Additional checks for vector GEPs. 3648 ElementCount GEPWidth = GEPVTy->getElementCount(); 3649 if (GEP.getPointerOperandType()->isVectorTy()) 3650 Assert( 3651 GEPWidth == 3652 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3653 "Vector GEP result width doesn't match operand's", &GEP); 3654 for (Value *Idx : Idxs) { 3655 Type *IndexTy = Idx->getType(); 3656 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3657 ElementCount IndexWidth = IndexVTy->getElementCount(); 3658 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3659 } 3660 Assert(IndexTy->isIntOrIntVectorTy(), 3661 "All GEP indices should be of integer type"); 3662 } 3663 } 3664 3665 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3666 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3667 "GEP address space doesn't match type", &GEP); 3668 } 3669 3670 visitInstruction(GEP); 3671 } 3672 3673 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3674 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3675 } 3676 3677 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3678 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3679 "precondition violation"); 3680 3681 unsigned NumOperands = Range->getNumOperands(); 3682 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3683 unsigned NumRanges = NumOperands / 2; 3684 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3685 3686 ConstantRange LastRange(1, true); // Dummy initial value 3687 for (unsigned i = 0; i < NumRanges; ++i) { 3688 ConstantInt *Low = 3689 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3690 Assert(Low, "The lower limit must be an integer!", Low); 3691 ConstantInt *High = 3692 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3693 Assert(High, "The upper limit must be an integer!", High); 3694 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3695 "Range types must match instruction type!", &I); 3696 3697 APInt HighV = High->getValue(); 3698 APInt LowV = Low->getValue(); 3699 ConstantRange CurRange(LowV, HighV); 3700 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3701 "Range must not be empty!", Range); 3702 if (i != 0) { 3703 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3704 "Intervals are overlapping", Range); 3705 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3706 Range); 3707 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3708 Range); 3709 } 3710 LastRange = ConstantRange(LowV, HighV); 3711 } 3712 if (NumRanges > 2) { 3713 APInt FirstLow = 3714 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3715 APInt FirstHigh = 3716 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3717 ConstantRange FirstRange(FirstLow, FirstHigh); 3718 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3719 "Intervals are overlapping", Range); 3720 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3721 Range); 3722 } 3723 } 3724 3725 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3726 unsigned Size = DL.getTypeSizeInBits(Ty); 3727 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3728 Assert(!(Size & (Size - 1)), 3729 "atomic memory access' operand must have a power-of-two size", Ty, I); 3730 } 3731 3732 void Verifier::visitLoadInst(LoadInst &LI) { 3733 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3734 Assert(PTy, "Load operand must be a pointer.", &LI); 3735 Type *ElTy = LI.getType(); 3736 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3737 "huge alignment values are unsupported", &LI); 3738 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3739 if (LI.isAtomic()) { 3740 Assert(LI.getOrdering() != AtomicOrdering::Release && 3741 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3742 "Load cannot have Release ordering", &LI); 3743 Assert(LI.getAlignment() != 0, 3744 "Atomic load must specify explicit alignment", &LI); 3745 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3746 "atomic load operand must have integer, pointer, or floating point " 3747 "type!", 3748 ElTy, &LI); 3749 checkAtomicMemAccessSize(ElTy, &LI); 3750 } else { 3751 Assert(LI.getSyncScopeID() == SyncScope::System, 3752 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3753 } 3754 3755 visitInstruction(LI); 3756 } 3757 3758 void Verifier::visitStoreInst(StoreInst &SI) { 3759 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3760 Assert(PTy, "Store operand must be a pointer.", &SI); 3761 Type *ElTy = SI.getOperand(0)->getType(); 3762 Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 3763 "Stored value type does not match pointer operand type!", &SI, ElTy); 3764 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3765 "huge alignment values are unsupported", &SI); 3766 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3767 if (SI.isAtomic()) { 3768 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3769 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3770 "Store cannot have Acquire ordering", &SI); 3771 Assert(SI.getAlignment() != 0, 3772 "Atomic store must specify explicit alignment", &SI); 3773 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3774 "atomic store operand must have integer, pointer, or floating point " 3775 "type!", 3776 ElTy, &SI); 3777 checkAtomicMemAccessSize(ElTy, &SI); 3778 } else { 3779 Assert(SI.getSyncScopeID() == SyncScope::System, 3780 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3781 } 3782 visitInstruction(SI); 3783 } 3784 3785 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3786 void Verifier::verifySwiftErrorCall(CallBase &Call, 3787 const Value *SwiftErrorVal) { 3788 for (const auto &I : llvm::enumerate(Call.args())) { 3789 if (I.value() == SwiftErrorVal) { 3790 Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3791 "swifterror value when used in a callsite should be marked " 3792 "with swifterror attribute", 3793 SwiftErrorVal, Call); 3794 } 3795 } 3796 } 3797 3798 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3799 // Check that swifterror value is only used by loads, stores, or as 3800 // a swifterror argument. 3801 for (const User *U : SwiftErrorVal->users()) { 3802 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3803 isa<InvokeInst>(U), 3804 "swifterror value can only be loaded and stored from, or " 3805 "as a swifterror argument!", 3806 SwiftErrorVal, U); 3807 // If it is used by a store, check it is the second operand. 3808 if (auto StoreI = dyn_cast<StoreInst>(U)) 3809 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3810 "swifterror value should be the second operand when used " 3811 "by stores", SwiftErrorVal, U); 3812 if (auto *Call = dyn_cast<CallBase>(U)) 3813 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3814 } 3815 } 3816 3817 void Verifier::visitAllocaInst(AllocaInst &AI) { 3818 SmallPtrSet<Type*, 4> Visited; 3819 Assert(AI.getAllocatedType()->isSized(&Visited), 3820 "Cannot allocate unsized type", &AI); 3821 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3822 "Alloca array size must have integer type", &AI); 3823 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3824 "huge alignment values are unsupported", &AI); 3825 3826 if (AI.isSwiftError()) { 3827 verifySwiftErrorValue(&AI); 3828 } 3829 3830 visitInstruction(AI); 3831 } 3832 3833 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3834 Type *ElTy = CXI.getOperand(1)->getType(); 3835 Assert(ElTy->isIntOrPtrTy(), 3836 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3837 checkAtomicMemAccessSize(ElTy, &CXI); 3838 visitInstruction(CXI); 3839 } 3840 3841 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3842 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3843 "atomicrmw instructions cannot be unordered.", &RMWI); 3844 auto Op = RMWI.getOperation(); 3845 Type *ElTy = RMWI.getOperand(1)->getType(); 3846 if (Op == AtomicRMWInst::Xchg) { 3847 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3848 AtomicRMWInst::getOperationName(Op) + 3849 " operand must have integer or floating point type!", 3850 &RMWI, ElTy); 3851 } else if (AtomicRMWInst::isFPOperation(Op)) { 3852 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3853 AtomicRMWInst::getOperationName(Op) + 3854 " operand must have floating point type!", 3855 &RMWI, ElTy); 3856 } else { 3857 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3858 AtomicRMWInst::getOperationName(Op) + 3859 " operand must have integer type!", 3860 &RMWI, ElTy); 3861 } 3862 checkAtomicMemAccessSize(ElTy, &RMWI); 3863 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3864 "Invalid binary operation!", &RMWI); 3865 visitInstruction(RMWI); 3866 } 3867 3868 void Verifier::visitFenceInst(FenceInst &FI) { 3869 const AtomicOrdering Ordering = FI.getOrdering(); 3870 Assert(Ordering == AtomicOrdering::Acquire || 3871 Ordering == AtomicOrdering::Release || 3872 Ordering == AtomicOrdering::AcquireRelease || 3873 Ordering == AtomicOrdering::SequentiallyConsistent, 3874 "fence instructions may only have acquire, release, acq_rel, or " 3875 "seq_cst ordering.", 3876 &FI); 3877 visitInstruction(FI); 3878 } 3879 3880 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3881 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3882 EVI.getIndices()) == EVI.getType(), 3883 "Invalid ExtractValueInst operands!", &EVI); 3884 3885 visitInstruction(EVI); 3886 } 3887 3888 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3889 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3890 IVI.getIndices()) == 3891 IVI.getOperand(1)->getType(), 3892 "Invalid InsertValueInst operands!", &IVI); 3893 3894 visitInstruction(IVI); 3895 } 3896 3897 static Value *getParentPad(Value *EHPad) { 3898 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3899 return FPI->getParentPad(); 3900 3901 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3902 } 3903 3904 void Verifier::visitEHPadPredecessors(Instruction &I) { 3905 assert(I.isEHPad()); 3906 3907 BasicBlock *BB = I.getParent(); 3908 Function *F = BB->getParent(); 3909 3910 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3911 3912 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3913 // The landingpad instruction defines its parent as a landing pad block. The 3914 // landing pad block may be branched to only by the unwind edge of an 3915 // invoke. 3916 for (BasicBlock *PredBB : predecessors(BB)) { 3917 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3918 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3919 "Block containing LandingPadInst must be jumped to " 3920 "only by the unwind edge of an invoke.", 3921 LPI); 3922 } 3923 return; 3924 } 3925 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3926 if (!pred_empty(BB)) 3927 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3928 "Block containg CatchPadInst must be jumped to " 3929 "only by its catchswitch.", 3930 CPI); 3931 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3932 "Catchswitch cannot unwind to one of its catchpads", 3933 CPI->getCatchSwitch(), CPI); 3934 return; 3935 } 3936 3937 // Verify that each pred has a legal terminator with a legal to/from EH 3938 // pad relationship. 3939 Instruction *ToPad = &I; 3940 Value *ToPadParent = getParentPad(ToPad); 3941 for (BasicBlock *PredBB : predecessors(BB)) { 3942 Instruction *TI = PredBB->getTerminator(); 3943 Value *FromPad; 3944 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3945 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3946 "EH pad must be jumped to via an unwind edge", ToPad, II); 3947 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3948 FromPad = Bundle->Inputs[0]; 3949 else 3950 FromPad = ConstantTokenNone::get(II->getContext()); 3951 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3952 FromPad = CRI->getOperand(0); 3953 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3954 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3955 FromPad = CSI; 3956 } else { 3957 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3958 } 3959 3960 // The edge may exit from zero or more nested pads. 3961 SmallSet<Value *, 8> Seen; 3962 for (;; FromPad = getParentPad(FromPad)) { 3963 Assert(FromPad != ToPad, 3964 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3965 if (FromPad == ToPadParent) { 3966 // This is a legal unwind edge. 3967 break; 3968 } 3969 Assert(!isa<ConstantTokenNone>(FromPad), 3970 "A single unwind edge may only enter one EH pad", TI); 3971 Assert(Seen.insert(FromPad).second, 3972 "EH pad jumps through a cycle of pads", FromPad); 3973 } 3974 } 3975 } 3976 3977 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3978 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3979 // isn't a cleanup. 3980 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3981 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3982 3983 visitEHPadPredecessors(LPI); 3984 3985 if (!LandingPadResultTy) 3986 LandingPadResultTy = LPI.getType(); 3987 else 3988 Assert(LandingPadResultTy == LPI.getType(), 3989 "The landingpad instruction should have a consistent result type " 3990 "inside a function.", 3991 &LPI); 3992 3993 Function *F = LPI.getParent()->getParent(); 3994 Assert(F->hasPersonalityFn(), 3995 "LandingPadInst needs to be in a function with a personality.", &LPI); 3996 3997 // The landingpad instruction must be the first non-PHI instruction in the 3998 // block. 3999 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 4000 "LandingPadInst not the first non-PHI instruction in the block.", 4001 &LPI); 4002 4003 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 4004 Constant *Clause = LPI.getClause(i); 4005 if (LPI.isCatch(i)) { 4006 Assert(isa<PointerType>(Clause->getType()), 4007 "Catch operand does not have pointer type!", &LPI); 4008 } else { 4009 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 4010 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 4011 "Filter operand is not an array of constants!", &LPI); 4012 } 4013 } 4014 4015 visitInstruction(LPI); 4016 } 4017 4018 void Verifier::visitResumeInst(ResumeInst &RI) { 4019 Assert(RI.getFunction()->hasPersonalityFn(), 4020 "ResumeInst needs to be in a function with a personality.", &RI); 4021 4022 if (!LandingPadResultTy) 4023 LandingPadResultTy = RI.getValue()->getType(); 4024 else 4025 Assert(LandingPadResultTy == RI.getValue()->getType(), 4026 "The resume instruction should have a consistent result type " 4027 "inside a function.", 4028 &RI); 4029 4030 visitTerminator(RI); 4031 } 4032 4033 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 4034 BasicBlock *BB = CPI.getParent(); 4035 4036 Function *F = BB->getParent(); 4037 Assert(F->hasPersonalityFn(), 4038 "CatchPadInst needs to be in a function with a personality.", &CPI); 4039 4040 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 4041 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4042 CPI.getParentPad()); 4043 4044 // The catchpad instruction must be the first non-PHI instruction in the 4045 // block. 4046 Assert(BB->getFirstNonPHI() == &CPI, 4047 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4048 4049 visitEHPadPredecessors(CPI); 4050 visitFuncletPadInst(CPI); 4051 } 4052 4053 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4054 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4055 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4056 CatchReturn.getOperand(0)); 4057 4058 visitTerminator(CatchReturn); 4059 } 4060 4061 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4062 BasicBlock *BB = CPI.getParent(); 4063 4064 Function *F = BB->getParent(); 4065 Assert(F->hasPersonalityFn(), 4066 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4067 4068 // The cleanuppad instruction must be the first non-PHI instruction in the 4069 // block. 4070 Assert(BB->getFirstNonPHI() == &CPI, 4071 "CleanupPadInst not the first non-PHI instruction in the block.", 4072 &CPI); 4073 4074 auto *ParentPad = CPI.getParentPad(); 4075 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4076 "CleanupPadInst has an invalid parent.", &CPI); 4077 4078 visitEHPadPredecessors(CPI); 4079 visitFuncletPadInst(CPI); 4080 } 4081 4082 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4083 User *FirstUser = nullptr; 4084 Value *FirstUnwindPad = nullptr; 4085 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4086 SmallSet<FuncletPadInst *, 8> Seen; 4087 4088 while (!Worklist.empty()) { 4089 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4090 Assert(Seen.insert(CurrentPad).second, 4091 "FuncletPadInst must not be nested within itself", CurrentPad); 4092 Value *UnresolvedAncestorPad = nullptr; 4093 for (User *U : CurrentPad->users()) { 4094 BasicBlock *UnwindDest; 4095 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4096 UnwindDest = CRI->getUnwindDest(); 4097 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4098 // We allow catchswitch unwind to caller to nest 4099 // within an outer pad that unwinds somewhere else, 4100 // because catchswitch doesn't have a nounwind variant. 4101 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4102 if (CSI->unwindsToCaller()) 4103 continue; 4104 UnwindDest = CSI->getUnwindDest(); 4105 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4106 UnwindDest = II->getUnwindDest(); 4107 } else if (isa<CallInst>(U)) { 4108 // Calls which don't unwind may be found inside funclet 4109 // pads that unwind somewhere else. We don't *require* 4110 // such calls to be annotated nounwind. 4111 continue; 4112 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4113 // The unwind dest for a cleanup can only be found by 4114 // recursive search. Add it to the worklist, and we'll 4115 // search for its first use that determines where it unwinds. 4116 Worklist.push_back(CPI); 4117 continue; 4118 } else { 4119 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4120 continue; 4121 } 4122 4123 Value *UnwindPad; 4124 bool ExitsFPI; 4125 if (UnwindDest) { 4126 UnwindPad = UnwindDest->getFirstNonPHI(); 4127 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4128 continue; 4129 Value *UnwindParent = getParentPad(UnwindPad); 4130 // Ignore unwind edges that don't exit CurrentPad. 4131 if (UnwindParent == CurrentPad) 4132 continue; 4133 // Determine whether the original funclet pad is exited, 4134 // and if we are scanning nested pads determine how many 4135 // of them are exited so we can stop searching their 4136 // children. 4137 Value *ExitedPad = CurrentPad; 4138 ExitsFPI = false; 4139 do { 4140 if (ExitedPad == &FPI) { 4141 ExitsFPI = true; 4142 // Now we can resolve any ancestors of CurrentPad up to 4143 // FPI, but not including FPI since we need to make sure 4144 // to check all direct users of FPI for consistency. 4145 UnresolvedAncestorPad = &FPI; 4146 break; 4147 } 4148 Value *ExitedParent = getParentPad(ExitedPad); 4149 if (ExitedParent == UnwindParent) { 4150 // ExitedPad is the ancestor-most pad which this unwind 4151 // edge exits, so we can resolve up to it, meaning that 4152 // ExitedParent is the first ancestor still unresolved. 4153 UnresolvedAncestorPad = ExitedParent; 4154 break; 4155 } 4156 ExitedPad = ExitedParent; 4157 } while (!isa<ConstantTokenNone>(ExitedPad)); 4158 } else { 4159 // Unwinding to caller exits all pads. 4160 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4161 ExitsFPI = true; 4162 UnresolvedAncestorPad = &FPI; 4163 } 4164 4165 if (ExitsFPI) { 4166 // This unwind edge exits FPI. Make sure it agrees with other 4167 // such edges. 4168 if (FirstUser) { 4169 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4170 "pad must have the same unwind " 4171 "dest", 4172 &FPI, U, FirstUser); 4173 } else { 4174 FirstUser = U; 4175 FirstUnwindPad = UnwindPad; 4176 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4177 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4178 getParentPad(UnwindPad) == getParentPad(&FPI)) 4179 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4180 } 4181 } 4182 // Make sure we visit all uses of FPI, but for nested pads stop as 4183 // soon as we know where they unwind to. 4184 if (CurrentPad != &FPI) 4185 break; 4186 } 4187 if (UnresolvedAncestorPad) { 4188 if (CurrentPad == UnresolvedAncestorPad) { 4189 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4190 // we've found an unwind edge that exits it, because we need to verify 4191 // all direct uses of FPI. 4192 assert(CurrentPad == &FPI); 4193 continue; 4194 } 4195 // Pop off the worklist any nested pads that we've found an unwind 4196 // destination for. The pads on the worklist are the uncles, 4197 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4198 // for all ancestors of CurrentPad up to but not including 4199 // UnresolvedAncestorPad. 4200 Value *ResolvedPad = CurrentPad; 4201 while (!Worklist.empty()) { 4202 Value *UnclePad = Worklist.back(); 4203 Value *AncestorPad = getParentPad(UnclePad); 4204 // Walk ResolvedPad up the ancestor list until we either find the 4205 // uncle's parent or the last resolved ancestor. 4206 while (ResolvedPad != AncestorPad) { 4207 Value *ResolvedParent = getParentPad(ResolvedPad); 4208 if (ResolvedParent == UnresolvedAncestorPad) { 4209 break; 4210 } 4211 ResolvedPad = ResolvedParent; 4212 } 4213 // If the resolved ancestor search didn't find the uncle's parent, 4214 // then the uncle is not yet resolved. 4215 if (ResolvedPad != AncestorPad) 4216 break; 4217 // This uncle is resolved, so pop it from the worklist. 4218 Worklist.pop_back(); 4219 } 4220 } 4221 } 4222 4223 if (FirstUnwindPad) { 4224 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4225 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4226 Value *SwitchUnwindPad; 4227 if (SwitchUnwindDest) 4228 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4229 else 4230 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4231 Assert(SwitchUnwindPad == FirstUnwindPad, 4232 "Unwind edges out of a catch must have the same unwind dest as " 4233 "the parent catchswitch", 4234 &FPI, FirstUser, CatchSwitch); 4235 } 4236 } 4237 4238 visitInstruction(FPI); 4239 } 4240 4241 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4242 BasicBlock *BB = CatchSwitch.getParent(); 4243 4244 Function *F = BB->getParent(); 4245 Assert(F->hasPersonalityFn(), 4246 "CatchSwitchInst needs to be in a function with a personality.", 4247 &CatchSwitch); 4248 4249 // The catchswitch instruction must be the first non-PHI instruction in the 4250 // block. 4251 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4252 "CatchSwitchInst not the first non-PHI instruction in the block.", 4253 &CatchSwitch); 4254 4255 auto *ParentPad = CatchSwitch.getParentPad(); 4256 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4257 "CatchSwitchInst has an invalid parent.", ParentPad); 4258 4259 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4260 Instruction *I = UnwindDest->getFirstNonPHI(); 4261 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4262 "CatchSwitchInst must unwind to an EH block which is not a " 4263 "landingpad.", 4264 &CatchSwitch); 4265 4266 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4267 if (getParentPad(I) == ParentPad) 4268 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4269 } 4270 4271 Assert(CatchSwitch.getNumHandlers() != 0, 4272 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4273 4274 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4275 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4276 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4277 } 4278 4279 visitEHPadPredecessors(CatchSwitch); 4280 visitTerminator(CatchSwitch); 4281 } 4282 4283 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4284 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4285 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4286 CRI.getOperand(0)); 4287 4288 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4289 Instruction *I = UnwindDest->getFirstNonPHI(); 4290 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4291 "CleanupReturnInst must unwind to an EH block which is not a " 4292 "landingpad.", 4293 &CRI); 4294 } 4295 4296 visitTerminator(CRI); 4297 } 4298 4299 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4300 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4301 // If the we have an invalid invoke, don't try to compute the dominance. 4302 // We already reject it in the invoke specific checks and the dominance 4303 // computation doesn't handle multiple edges. 4304 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4305 if (II->getNormalDest() == II->getUnwindDest()) 4306 return; 4307 } 4308 4309 // Quick check whether the def has already been encountered in the same block. 4310 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4311 // uses are defined to happen on the incoming edge, not at the instruction. 4312 // 4313 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4314 // wrapping an SSA value, assert that we've already encountered it. See 4315 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4316 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4317 return; 4318 4319 const Use &U = I.getOperandUse(i); 4320 Assert(DT.dominates(Op, U), 4321 "Instruction does not dominate all uses!", Op, &I); 4322 } 4323 4324 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4325 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4326 "apply only to pointer types", &I); 4327 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4328 "dereferenceable, dereferenceable_or_null apply only to load" 4329 " and inttoptr instructions, use attributes for calls or invokes", &I); 4330 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4331 "take one operand!", &I); 4332 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4333 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4334 "dereferenceable_or_null metadata value must be an i64!", &I); 4335 } 4336 4337 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4338 Assert(MD->getNumOperands() >= 2, 4339 "!prof annotations should have no less than 2 operands", MD); 4340 4341 // Check first operand. 4342 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4343 Assert(isa<MDString>(MD->getOperand(0)), 4344 "expected string with name of the !prof annotation", MD); 4345 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4346 StringRef ProfName = MDS->getString(); 4347 4348 // Check consistency of !prof branch_weights metadata. 4349 if (ProfName.equals("branch_weights")) { 4350 if (isa<InvokeInst>(&I)) { 4351 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4352 "Wrong number of InvokeInst branch_weights operands", MD); 4353 } else { 4354 unsigned ExpectedNumOperands = 0; 4355 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4356 ExpectedNumOperands = BI->getNumSuccessors(); 4357 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4358 ExpectedNumOperands = SI->getNumSuccessors(); 4359 else if (isa<CallInst>(&I)) 4360 ExpectedNumOperands = 1; 4361 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4362 ExpectedNumOperands = IBI->getNumDestinations(); 4363 else if (isa<SelectInst>(&I)) 4364 ExpectedNumOperands = 2; 4365 else 4366 CheckFailed("!prof branch_weights are not allowed for this instruction", 4367 MD); 4368 4369 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4370 "Wrong number of operands", MD); 4371 } 4372 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4373 auto &MDO = MD->getOperand(i); 4374 Assert(MDO, "second operand should not be null", MD); 4375 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4376 "!prof brunch_weights operand is not a const int"); 4377 } 4378 } 4379 } 4380 4381 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4382 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4383 Assert(Annotation->getNumOperands() >= 1, 4384 "annotation must have at least one operand"); 4385 for (const MDOperand &Op : Annotation->operands()) 4386 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4387 } 4388 4389 void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 4390 unsigned NumOps = MD->getNumOperands(); 4391 Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 4392 MD); 4393 Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 4394 "first scope operand must be self-referential or string", MD); 4395 if (NumOps == 3) 4396 Assert(isa<MDString>(MD->getOperand(2)), 4397 "third scope operand must be string (if used)", MD); 4398 4399 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 4400 Assert(Domain != nullptr, "second scope operand must be MDNode", MD); 4401 4402 unsigned NumDomainOps = Domain->getNumOperands(); 4403 Assert(NumDomainOps >= 1 && NumDomainOps <= 2, 4404 "domain must have one or two operands", Domain); 4405 Assert(Domain->getOperand(0).get() == Domain || 4406 isa<MDString>(Domain->getOperand(0)), 4407 "first domain operand must be self-referential or string", Domain); 4408 if (NumDomainOps == 2) 4409 Assert(isa<MDString>(Domain->getOperand(1)), 4410 "second domain operand must be string (if used)", Domain); 4411 } 4412 4413 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 4414 for (const MDOperand &Op : MD->operands()) { 4415 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4416 Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD); 4417 visitAliasScopeMetadata(OpMD); 4418 } 4419 } 4420 4421 /// verifyInstruction - Verify that an instruction is well formed. 4422 /// 4423 void Verifier::visitInstruction(Instruction &I) { 4424 BasicBlock *BB = I.getParent(); 4425 Assert(BB, "Instruction not embedded in basic block!", &I); 4426 4427 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4428 for (User *U : I.users()) { 4429 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4430 "Only PHI nodes may reference their own value!", &I); 4431 } 4432 } 4433 4434 // Check that void typed values don't have names 4435 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4436 "Instruction has a name, but provides a void value!", &I); 4437 4438 // Check that the return value of the instruction is either void or a legal 4439 // value type. 4440 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4441 "Instruction returns a non-scalar type!", &I); 4442 4443 // Check that the instruction doesn't produce metadata. Calls are already 4444 // checked against the callee type. 4445 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4446 "Invalid use of metadata!", &I); 4447 4448 // Check that all uses of the instruction, if they are instructions 4449 // themselves, actually have parent basic blocks. If the use is not an 4450 // instruction, it is an error! 4451 for (Use &U : I.uses()) { 4452 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4453 Assert(Used->getParent() != nullptr, 4454 "Instruction referencing" 4455 " instruction not embedded in a basic block!", 4456 &I, Used); 4457 else { 4458 CheckFailed("Use of instruction is not an instruction!", U); 4459 return; 4460 } 4461 } 4462 4463 // Get a pointer to the call base of the instruction if it is some form of 4464 // call. 4465 const CallBase *CBI = dyn_cast<CallBase>(&I); 4466 4467 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4468 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4469 4470 // Check to make sure that only first-class-values are operands to 4471 // instructions. 4472 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4473 Assert(false, "Instruction operands must be first-class values!", &I); 4474 } 4475 4476 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4477 // This code checks whether the function is used as the operand of a 4478 // clang_arc_attachedcall operand bundle. 4479 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 4480 int Idx) { 4481 return CBI && CBI->isOperandBundleOfType( 4482 LLVMContext::OB_clang_arc_attachedcall, Idx); 4483 }; 4484 4485 // Check to make sure that the "address of" an intrinsic function is never 4486 // taken. Ignore cases where the address of the intrinsic function is used 4487 // as the argument of operand bundle "clang.arc.attachedcall" as those 4488 // cases are handled in verifyAttachedCallBundle. 4489 Assert((!F->isIntrinsic() || 4490 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 4491 IsAttachedCallOperand(F, CBI, i)), 4492 "Cannot take the address of an intrinsic!", &I); 4493 Assert( 4494 !F->isIntrinsic() || isa<CallInst>(I) || 4495 F->getIntrinsicID() == Intrinsic::donothing || 4496 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4497 F->getIntrinsicID() == Intrinsic::seh_try_end || 4498 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4499 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4500 F->getIntrinsicID() == Intrinsic::coro_resume || 4501 F->getIntrinsicID() == Intrinsic::coro_destroy || 4502 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4503 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4504 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4505 F->getIntrinsicID() == Intrinsic::wasm_rethrow || 4506 IsAttachedCallOperand(F, CBI, i), 4507 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4508 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 4509 &I); 4510 Assert(F->getParent() == &M, "Referencing function in another module!", 4511 &I, &M, F, F->getParent()); 4512 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4513 Assert(OpBB->getParent() == BB->getParent(), 4514 "Referring to a basic block in another function!", &I); 4515 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4516 Assert(OpArg->getParent() == BB->getParent(), 4517 "Referring to an argument in another function!", &I); 4518 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4519 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4520 &M, GV, GV->getParent()); 4521 } else if (isa<Instruction>(I.getOperand(i))) { 4522 verifyDominatesUse(I, i); 4523 } else if (isa<InlineAsm>(I.getOperand(i))) { 4524 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4525 "Cannot take the address of an inline asm!", &I); 4526 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4527 if (CE->getType()->isPtrOrPtrVectorTy()) { 4528 // If we have a ConstantExpr pointer, we need to see if it came from an 4529 // illegal bitcast. 4530 visitConstantExprsRecursively(CE); 4531 } 4532 } 4533 } 4534 4535 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4536 Assert(I.getType()->isFPOrFPVectorTy(), 4537 "fpmath requires a floating point result!", &I); 4538 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4539 if (ConstantFP *CFP0 = 4540 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4541 const APFloat &Accuracy = CFP0->getValueAPF(); 4542 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4543 "fpmath accuracy must have float type", &I); 4544 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4545 "fpmath accuracy not a positive number!", &I); 4546 } else { 4547 Assert(false, "invalid fpmath accuracy!", &I); 4548 } 4549 } 4550 4551 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4552 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4553 "Ranges are only for loads, calls and invokes!", &I); 4554 visitRangeMetadata(I, Range, I.getType()); 4555 } 4556 4557 if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 4558 Assert(isa<LoadInst>(I) || isa<StoreInst>(I), 4559 "invariant.group metadata is only for loads and stores", &I); 4560 } 4561 4562 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4563 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4564 &I); 4565 Assert(isa<LoadInst>(I), 4566 "nonnull applies only to load instructions, use attributes" 4567 " for calls or invokes", 4568 &I); 4569 } 4570 4571 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4572 visitDereferenceableMetadata(I, MD); 4573 4574 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4575 visitDereferenceableMetadata(I, MD); 4576 4577 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4578 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4579 4580 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 4581 visitAliasScopeListMetadata(MD); 4582 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 4583 visitAliasScopeListMetadata(MD); 4584 4585 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4586 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4587 &I); 4588 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4589 "use attributes for calls or invokes", &I); 4590 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4591 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4592 Assert(CI && CI->getType()->isIntegerTy(64), 4593 "align metadata value must be an i64!", &I); 4594 uint64_t Align = CI->getZExtValue(); 4595 Assert(isPowerOf2_64(Align), 4596 "align metadata value must be a power of 2!", &I); 4597 Assert(Align <= Value::MaximumAlignment, 4598 "alignment is larger that implementation defined limit", &I); 4599 } 4600 4601 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4602 visitProfMetadata(I, MD); 4603 4604 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4605 visitAnnotationMetadata(Annotation); 4606 4607 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4608 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4609 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4610 } 4611 4612 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4613 verifyFragmentExpression(*DII); 4614 verifyNotEntryValue(*DII); 4615 } 4616 4617 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4618 I.getAllMetadata(MDs); 4619 for (auto Attachment : MDs) { 4620 unsigned Kind = Attachment.first; 4621 auto AllowLocs = 4622 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4623 ? AreDebugLocsAllowed::Yes 4624 : AreDebugLocsAllowed::No; 4625 visitMDNode(*Attachment.second, AllowLocs); 4626 } 4627 4628 InstsInThisBlock.insert(&I); 4629 } 4630 4631 /// Allow intrinsics to be verified in different ways. 4632 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4633 Function *IF = Call.getCalledFunction(); 4634 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4635 IF); 4636 4637 // Verify that the intrinsic prototype lines up with what the .td files 4638 // describe. 4639 FunctionType *IFTy = IF->getFunctionType(); 4640 bool IsVarArg = IFTy->isVarArg(); 4641 4642 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4643 getIntrinsicInfoTableEntries(ID, Table); 4644 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4645 4646 // Walk the descriptors to extract overloaded types. 4647 SmallVector<Type *, 4> ArgTys; 4648 Intrinsic::MatchIntrinsicTypesResult Res = 4649 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4650 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4651 "Intrinsic has incorrect return type!", IF); 4652 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4653 "Intrinsic has incorrect argument type!", IF); 4654 4655 // Verify if the intrinsic call matches the vararg property. 4656 if (IsVarArg) 4657 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4658 "Intrinsic was not defined with variable arguments!", IF); 4659 else 4660 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4661 "Callsite was not defined with variable arguments!", IF); 4662 4663 // All descriptors should be absorbed by now. 4664 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4665 4666 // Now that we have the intrinsic ID and the actual argument types (and we 4667 // know they are legal for the intrinsic!) get the intrinsic name through the 4668 // usual means. This allows us to verify the mangling of argument types into 4669 // the name. 4670 const std::string ExpectedName = 4671 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4672 Assert(ExpectedName == IF->getName(), 4673 "Intrinsic name not mangled correctly for type arguments! " 4674 "Should be: " + 4675 ExpectedName, 4676 IF); 4677 4678 // If the intrinsic takes MDNode arguments, verify that they are either global 4679 // or are local to *this* function. 4680 for (Value *V : Call.args()) { 4681 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4682 visitMetadataAsValue(*MD, Call.getCaller()); 4683 if (auto *Const = dyn_cast<Constant>(V)) 4684 Assert(!Const->getType()->isX86_AMXTy(), 4685 "const x86_amx is not allowed in argument!"); 4686 } 4687 4688 switch (ID) { 4689 default: 4690 break; 4691 case Intrinsic::assume: { 4692 for (auto &Elem : Call.bundle_op_infos()) { 4693 Assert(Elem.Tag->getKey() == "ignore" || 4694 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4695 "tags must be valid attribute names", Call); 4696 Attribute::AttrKind Kind = 4697 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4698 unsigned ArgCount = Elem.End - Elem.Begin; 4699 if (Kind == Attribute::Alignment) { 4700 Assert(ArgCount <= 3 && ArgCount >= 2, 4701 "alignment assumptions should have 2 or 3 arguments", Call); 4702 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4703 "first argument should be a pointer", Call); 4704 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4705 "second argument should be an integer", Call); 4706 if (ArgCount == 3) 4707 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4708 "third argument should be an integer if present", Call); 4709 return; 4710 } 4711 Assert(ArgCount <= 2, "too many arguments", Call); 4712 if (Kind == Attribute::None) 4713 break; 4714 if (Attribute::isIntAttrKind(Kind)) { 4715 Assert(ArgCount == 2, "this attribute should have 2 arguments", Call); 4716 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4717 "the second argument should be a constant integral value", Call); 4718 } else if (Attribute::canUseAsParamAttr(Kind)) { 4719 Assert((ArgCount) == 1, "this attribute should have one argument", 4720 Call); 4721 } else if (Attribute::canUseAsFnAttr(Kind)) { 4722 Assert((ArgCount) == 0, "this attribute has no argument", Call); 4723 } 4724 } 4725 break; 4726 } 4727 case Intrinsic::coro_id: { 4728 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4729 if (isa<ConstantPointerNull>(InfoArg)) 4730 break; 4731 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4732 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4733 "info argument of llvm.coro.id must refer to an initialized " 4734 "constant"); 4735 Constant *Init = GV->getInitializer(); 4736 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4737 "info argument of llvm.coro.id must refer to either a struct or " 4738 "an array"); 4739 break; 4740 } 4741 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4742 case Intrinsic::INTRINSIC: 4743 #include "llvm/IR/ConstrainedOps.def" 4744 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4745 break; 4746 case Intrinsic::dbg_declare: // llvm.dbg.declare 4747 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4748 "invalid llvm.dbg.declare intrinsic call 1", Call); 4749 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4750 break; 4751 case Intrinsic::dbg_addr: // llvm.dbg.addr 4752 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4753 break; 4754 case Intrinsic::dbg_value: // llvm.dbg.value 4755 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4756 break; 4757 case Intrinsic::dbg_label: // llvm.dbg.label 4758 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4759 break; 4760 case Intrinsic::memcpy: 4761 case Intrinsic::memcpy_inline: 4762 case Intrinsic::memmove: 4763 case Intrinsic::memset: { 4764 const auto *MI = cast<MemIntrinsic>(&Call); 4765 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4766 return Alignment == 0 || isPowerOf2_32(Alignment); 4767 }; 4768 Assert(IsValidAlignment(MI->getDestAlignment()), 4769 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4770 Call); 4771 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4772 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4773 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4774 Call); 4775 } 4776 4777 break; 4778 } 4779 case Intrinsic::memcpy_element_unordered_atomic: 4780 case Intrinsic::memmove_element_unordered_atomic: 4781 case Intrinsic::memset_element_unordered_atomic: { 4782 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4783 4784 ConstantInt *ElementSizeCI = 4785 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4786 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4787 Assert(ElementSizeVal.isPowerOf2(), 4788 "element size of the element-wise atomic memory intrinsic " 4789 "must be a power of 2", 4790 Call); 4791 4792 auto IsValidAlignment = [&](uint64_t Alignment) { 4793 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4794 }; 4795 uint64_t DstAlignment = AMI->getDestAlignment(); 4796 Assert(IsValidAlignment(DstAlignment), 4797 "incorrect alignment of the destination argument", Call); 4798 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4799 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4800 Assert(IsValidAlignment(SrcAlignment), 4801 "incorrect alignment of the source argument", Call); 4802 } 4803 break; 4804 } 4805 case Intrinsic::call_preallocated_setup: { 4806 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4807 Assert(NumArgs != nullptr, 4808 "llvm.call.preallocated.setup argument must be a constant"); 4809 bool FoundCall = false; 4810 for (User *U : Call.users()) { 4811 auto *UseCall = dyn_cast<CallBase>(U); 4812 Assert(UseCall != nullptr, 4813 "Uses of llvm.call.preallocated.setup must be calls"); 4814 const Function *Fn = UseCall->getCalledFunction(); 4815 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4816 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4817 Assert(AllocArgIndex != nullptr, 4818 "llvm.call.preallocated.alloc arg index must be a constant"); 4819 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4820 Assert(AllocArgIndexInt.sge(0) && 4821 AllocArgIndexInt.slt(NumArgs->getValue()), 4822 "llvm.call.preallocated.alloc arg index must be between 0 and " 4823 "corresponding " 4824 "llvm.call.preallocated.setup's argument count"); 4825 } else if (Fn && Fn->getIntrinsicID() == 4826 Intrinsic::call_preallocated_teardown) { 4827 // nothing to do 4828 } else { 4829 Assert(!FoundCall, "Can have at most one call corresponding to a " 4830 "llvm.call.preallocated.setup"); 4831 FoundCall = true; 4832 size_t NumPreallocatedArgs = 0; 4833 for (unsigned i = 0; i < UseCall->arg_size(); i++) { 4834 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4835 ++NumPreallocatedArgs; 4836 } 4837 } 4838 Assert(NumPreallocatedArgs != 0, 4839 "cannot use preallocated intrinsics on a call without " 4840 "preallocated arguments"); 4841 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4842 "llvm.call.preallocated.setup arg size must be equal to number " 4843 "of preallocated arguments " 4844 "at call site", 4845 Call, *UseCall); 4846 // getOperandBundle() cannot be called if more than one of the operand 4847 // bundle exists. There is already a check elsewhere for this, so skip 4848 // here if we see more than one. 4849 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4850 1) { 4851 return; 4852 } 4853 auto PreallocatedBundle = 4854 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4855 Assert(PreallocatedBundle, 4856 "Use of llvm.call.preallocated.setup outside intrinsics " 4857 "must be in \"preallocated\" operand bundle"); 4858 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4859 "preallocated bundle must have token from corresponding " 4860 "llvm.call.preallocated.setup"); 4861 } 4862 } 4863 break; 4864 } 4865 case Intrinsic::call_preallocated_arg: { 4866 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4867 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4868 Intrinsic::call_preallocated_setup, 4869 "llvm.call.preallocated.arg token argument must be a " 4870 "llvm.call.preallocated.setup"); 4871 Assert(Call.hasFnAttr(Attribute::Preallocated), 4872 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4873 "call site attribute"); 4874 break; 4875 } 4876 case Intrinsic::call_preallocated_teardown: { 4877 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4878 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4879 Intrinsic::call_preallocated_setup, 4880 "llvm.call.preallocated.teardown token argument must be a " 4881 "llvm.call.preallocated.setup"); 4882 break; 4883 } 4884 case Intrinsic::gcroot: 4885 case Intrinsic::gcwrite: 4886 case Intrinsic::gcread: 4887 if (ID == Intrinsic::gcroot) { 4888 AllocaInst *AI = 4889 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4890 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4891 Assert(isa<Constant>(Call.getArgOperand(1)), 4892 "llvm.gcroot parameter #2 must be a constant.", Call); 4893 if (!AI->getAllocatedType()->isPointerTy()) { 4894 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4895 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4896 "or argument #2 must be a non-null constant.", 4897 Call); 4898 } 4899 } 4900 4901 Assert(Call.getParent()->getParent()->hasGC(), 4902 "Enclosing function does not use GC.", Call); 4903 break; 4904 case Intrinsic::init_trampoline: 4905 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4906 "llvm.init_trampoline parameter #2 must resolve to a function.", 4907 Call); 4908 break; 4909 case Intrinsic::prefetch: 4910 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4911 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4912 "invalid arguments to llvm.prefetch", Call); 4913 break; 4914 case Intrinsic::stackprotector: 4915 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4916 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4917 break; 4918 case Intrinsic::localescape: { 4919 BasicBlock *BB = Call.getParent(); 4920 Assert(BB == &BB->getParent()->front(), 4921 "llvm.localescape used outside of entry block", Call); 4922 Assert(!SawFrameEscape, 4923 "multiple calls to llvm.localescape in one function", Call); 4924 for (Value *Arg : Call.args()) { 4925 if (isa<ConstantPointerNull>(Arg)) 4926 continue; // Null values are allowed as placeholders. 4927 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4928 Assert(AI && AI->isStaticAlloca(), 4929 "llvm.localescape only accepts static allocas", Call); 4930 } 4931 FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 4932 SawFrameEscape = true; 4933 break; 4934 } 4935 case Intrinsic::localrecover: { 4936 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4937 Function *Fn = dyn_cast<Function>(FnArg); 4938 Assert(Fn && !Fn->isDeclaration(), 4939 "llvm.localrecover first " 4940 "argument must be function defined in this module", 4941 Call); 4942 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4943 auto &Entry = FrameEscapeInfo[Fn]; 4944 Entry.second = unsigned( 4945 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4946 break; 4947 } 4948 4949 case Intrinsic::experimental_gc_statepoint: 4950 if (auto *CI = dyn_cast<CallInst>(&Call)) 4951 Assert(!CI->isInlineAsm(), 4952 "gc.statepoint support for inline assembly unimplemented", CI); 4953 Assert(Call.getParent()->getParent()->hasGC(), 4954 "Enclosing function does not use GC.", Call); 4955 4956 verifyStatepoint(Call); 4957 break; 4958 case Intrinsic::experimental_gc_result: { 4959 Assert(Call.getParent()->getParent()->hasGC(), 4960 "Enclosing function does not use GC.", Call); 4961 // Are we tied to a statepoint properly? 4962 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4963 const Function *StatepointFn = 4964 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4965 Assert(StatepointFn && StatepointFn->isDeclaration() && 4966 StatepointFn->getIntrinsicID() == 4967 Intrinsic::experimental_gc_statepoint, 4968 "gc.result operand #1 must be from a statepoint", Call, 4969 Call.getArgOperand(0)); 4970 4971 // Assert that result type matches wrapped callee. 4972 const Value *Target = StatepointCall->getArgOperand(2); 4973 auto *PT = cast<PointerType>(Target->getType()); 4974 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4975 Assert(Call.getType() == TargetFuncType->getReturnType(), 4976 "gc.result result type does not match wrapped callee", Call); 4977 break; 4978 } 4979 case Intrinsic::experimental_gc_relocate: { 4980 Assert(Call.arg_size() == 3, "wrong number of arguments", Call); 4981 4982 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4983 "gc.relocate must return a pointer or a vector of pointers", Call); 4984 4985 // Check that this relocate is correctly tied to the statepoint 4986 4987 // This is case for relocate on the unwinding path of an invoke statepoint 4988 if (LandingPadInst *LandingPad = 4989 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4990 4991 const BasicBlock *InvokeBB = 4992 LandingPad->getParent()->getUniquePredecessor(); 4993 4994 // Landingpad relocates should have only one predecessor with invoke 4995 // statepoint terminator 4996 Assert(InvokeBB, "safepoints should have unique landingpads", 4997 LandingPad->getParent()); 4998 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4999 InvokeBB); 5000 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 5001 "gc relocate should be linked to a statepoint", InvokeBB); 5002 } else { 5003 // In all other cases relocate should be tied to the statepoint directly. 5004 // This covers relocates on a normal return path of invoke statepoint and 5005 // relocates of a call statepoint. 5006 auto Token = Call.getArgOperand(0); 5007 Assert(isa<GCStatepointInst>(Token), 5008 "gc relocate is incorrectly tied to the statepoint", Call, Token); 5009 } 5010 5011 // Verify rest of the relocate arguments. 5012 const CallBase &StatepointCall = 5013 *cast<GCRelocateInst>(Call).getStatepoint(); 5014 5015 // Both the base and derived must be piped through the safepoint. 5016 Value *Base = Call.getArgOperand(1); 5017 Assert(isa<ConstantInt>(Base), 5018 "gc.relocate operand #2 must be integer offset", Call); 5019 5020 Value *Derived = Call.getArgOperand(2); 5021 Assert(isa<ConstantInt>(Derived), 5022 "gc.relocate operand #3 must be integer offset", Call); 5023 5024 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 5025 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 5026 5027 // Check the bounds 5028 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 5029 Assert(BaseIndex < Opt->Inputs.size(), 5030 "gc.relocate: statepoint base index out of bounds", Call); 5031 Assert(DerivedIndex < Opt->Inputs.size(), 5032 "gc.relocate: statepoint derived index out of bounds", Call); 5033 } 5034 5035 // Relocated value must be either a pointer type or vector-of-pointer type, 5036 // but gc_relocate does not need to return the same pointer type as the 5037 // relocated pointer. It can be casted to the correct type later if it's 5038 // desired. However, they must have the same address space and 'vectorness' 5039 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 5040 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 5041 "gc.relocate: relocated value must be a gc pointer", Call); 5042 5043 auto ResultType = Call.getType(); 5044 auto DerivedType = Relocate.getDerivedPtr()->getType(); 5045 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5046 "gc.relocate: vector relocates to vector and pointer to pointer", 5047 Call); 5048 Assert( 5049 ResultType->getPointerAddressSpace() == 5050 DerivedType->getPointerAddressSpace(), 5051 "gc.relocate: relocating a pointer shouldn't change its address space", 5052 Call); 5053 break; 5054 } 5055 case Intrinsic::eh_exceptioncode: 5056 case Intrinsic::eh_exceptionpointer: { 5057 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 5058 "eh.exceptionpointer argument must be a catchpad", Call); 5059 break; 5060 } 5061 case Intrinsic::get_active_lane_mask: { 5062 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 5063 "vector", Call); 5064 auto *ElemTy = Call.getType()->getScalarType(); 5065 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 5066 "i1", Call); 5067 break; 5068 } 5069 case Intrinsic::masked_load: { 5070 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5071 Call); 5072 5073 Value *Ptr = Call.getArgOperand(0); 5074 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5075 Value *Mask = Call.getArgOperand(2); 5076 Value *PassThru = Call.getArgOperand(3); 5077 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5078 Call); 5079 Assert(Alignment->getValue().isPowerOf2(), 5080 "masked_load: alignment must be a power of 2", Call); 5081 5082 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5083 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), 5084 "masked_load: return must match pointer type", Call); 5085 Assert(PassThru->getType() == Call.getType(), 5086 "masked_load: pass through and return type must match", Call); 5087 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5088 cast<VectorType>(Call.getType())->getElementCount(), 5089 "masked_load: vector mask must be same length as return", Call); 5090 break; 5091 } 5092 case Intrinsic::masked_store: { 5093 Value *Val = Call.getArgOperand(0); 5094 Value *Ptr = Call.getArgOperand(1); 5095 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5096 Value *Mask = Call.getArgOperand(3); 5097 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5098 Call); 5099 Assert(Alignment->getValue().isPowerOf2(), 5100 "masked_store: alignment must be a power of 2", Call); 5101 5102 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5103 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), 5104 "masked_store: storee must match pointer type", Call); 5105 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5106 cast<VectorType>(Val->getType())->getElementCount(), 5107 "masked_store: vector mask must be same length as value", Call); 5108 break; 5109 } 5110 5111 case Intrinsic::masked_gather: { 5112 const APInt &Alignment = 5113 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5114 Assert(Alignment.isZero() || Alignment.isPowerOf2(), 5115 "masked_gather: alignment must be 0 or a power of 2", Call); 5116 break; 5117 } 5118 case Intrinsic::masked_scatter: { 5119 const APInt &Alignment = 5120 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5121 Assert(Alignment.isZero() || Alignment.isPowerOf2(), 5122 "masked_scatter: alignment must be 0 or a power of 2", Call); 5123 break; 5124 } 5125 5126 case Intrinsic::experimental_guard: { 5127 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5128 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5129 "experimental_guard must have exactly one " 5130 "\"deopt\" operand bundle"); 5131 break; 5132 } 5133 5134 case Intrinsic::experimental_deoptimize: { 5135 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5136 Call); 5137 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5138 "experimental_deoptimize must have exactly one " 5139 "\"deopt\" operand bundle"); 5140 Assert(Call.getType() == Call.getFunction()->getReturnType(), 5141 "experimental_deoptimize return type must match caller return type"); 5142 5143 if (isa<CallInst>(Call)) { 5144 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5145 Assert(RI, 5146 "calls to experimental_deoptimize must be followed by a return"); 5147 5148 if (!Call.getType()->isVoidTy() && RI) 5149 Assert(RI->getReturnValue() == &Call, 5150 "calls to experimental_deoptimize must be followed by a return " 5151 "of the value computed by experimental_deoptimize"); 5152 } 5153 5154 break; 5155 } 5156 case Intrinsic::vector_reduce_and: 5157 case Intrinsic::vector_reduce_or: 5158 case Intrinsic::vector_reduce_xor: 5159 case Intrinsic::vector_reduce_add: 5160 case Intrinsic::vector_reduce_mul: 5161 case Intrinsic::vector_reduce_smax: 5162 case Intrinsic::vector_reduce_smin: 5163 case Intrinsic::vector_reduce_umax: 5164 case Intrinsic::vector_reduce_umin: { 5165 Type *ArgTy = Call.getArgOperand(0)->getType(); 5166 Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5167 "Intrinsic has incorrect argument type!"); 5168 break; 5169 } 5170 case Intrinsic::vector_reduce_fmax: 5171 case Intrinsic::vector_reduce_fmin: { 5172 Type *ArgTy = Call.getArgOperand(0)->getType(); 5173 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5174 "Intrinsic has incorrect argument type!"); 5175 break; 5176 } 5177 case Intrinsic::vector_reduce_fadd: 5178 case Intrinsic::vector_reduce_fmul: { 5179 // Unlike the other reductions, the first argument is a start value. The 5180 // second argument is the vector to be reduced. 5181 Type *ArgTy = Call.getArgOperand(1)->getType(); 5182 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5183 "Intrinsic has incorrect argument type!"); 5184 break; 5185 } 5186 case Intrinsic::smul_fix: 5187 case Intrinsic::smul_fix_sat: 5188 case Intrinsic::umul_fix: 5189 case Intrinsic::umul_fix_sat: 5190 case Intrinsic::sdiv_fix: 5191 case Intrinsic::sdiv_fix_sat: 5192 case Intrinsic::udiv_fix: 5193 case Intrinsic::udiv_fix_sat: { 5194 Value *Op1 = Call.getArgOperand(0); 5195 Value *Op2 = Call.getArgOperand(1); 5196 Assert(Op1->getType()->isIntOrIntVectorTy(), 5197 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5198 "vector of ints"); 5199 Assert(Op2->getType()->isIntOrIntVectorTy(), 5200 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5201 "vector of ints"); 5202 5203 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5204 Assert(Op3->getType()->getBitWidth() <= 32, 5205 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5206 5207 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5208 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5209 Assert( 5210 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5211 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5212 "the operands"); 5213 } else { 5214 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5215 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5216 "to the width of the operands"); 5217 } 5218 break; 5219 } 5220 case Intrinsic::lround: 5221 case Intrinsic::llround: 5222 case Intrinsic::lrint: 5223 case Intrinsic::llrint: { 5224 Type *ValTy = Call.getArgOperand(0)->getType(); 5225 Type *ResultTy = Call.getType(); 5226 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5227 "Intrinsic does not support vectors", &Call); 5228 break; 5229 } 5230 case Intrinsic::bswap: { 5231 Type *Ty = Call.getType(); 5232 unsigned Size = Ty->getScalarSizeInBits(); 5233 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5234 break; 5235 } 5236 case Intrinsic::invariant_start: { 5237 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5238 Assert(InvariantSize && 5239 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5240 "invariant_start parameter must be -1, 0 or a positive number", 5241 &Call); 5242 break; 5243 } 5244 case Intrinsic::matrix_multiply: 5245 case Intrinsic::matrix_transpose: 5246 case Intrinsic::matrix_column_major_load: 5247 case Intrinsic::matrix_column_major_store: { 5248 Function *IF = Call.getCalledFunction(); 5249 ConstantInt *Stride = nullptr; 5250 ConstantInt *NumRows; 5251 ConstantInt *NumColumns; 5252 VectorType *ResultTy; 5253 Type *Op0ElemTy = nullptr; 5254 Type *Op1ElemTy = nullptr; 5255 switch (ID) { 5256 case Intrinsic::matrix_multiply: 5257 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5258 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5259 ResultTy = cast<VectorType>(Call.getType()); 5260 Op0ElemTy = 5261 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5262 Op1ElemTy = 5263 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5264 break; 5265 case Intrinsic::matrix_transpose: 5266 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5267 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5268 ResultTy = cast<VectorType>(Call.getType()); 5269 Op0ElemTy = 5270 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5271 break; 5272 case Intrinsic::matrix_column_major_load: 5273 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5274 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5275 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5276 ResultTy = cast<VectorType>(Call.getType()); 5277 Op0ElemTy = 5278 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5279 break; 5280 case Intrinsic::matrix_column_major_store: 5281 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5282 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5283 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5284 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5285 Op0ElemTy = 5286 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5287 Op1ElemTy = 5288 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5289 break; 5290 default: 5291 llvm_unreachable("unexpected intrinsic"); 5292 } 5293 5294 Assert(ResultTy->getElementType()->isIntegerTy() || 5295 ResultTy->getElementType()->isFloatingPointTy(), 5296 "Result type must be an integer or floating-point type!", IF); 5297 5298 Assert(ResultTy->getElementType() == Op0ElemTy, 5299 "Vector element type mismatch of the result and first operand " 5300 "vector!", IF); 5301 5302 if (Op1ElemTy) 5303 Assert(ResultTy->getElementType() == Op1ElemTy, 5304 "Vector element type mismatch of the result and second operand " 5305 "vector!", IF); 5306 5307 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5308 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5309 "Result of a matrix operation does not fit in the returned vector!"); 5310 5311 if (Stride) 5312 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5313 "Stride must be greater or equal than the number of rows!", IF); 5314 5315 break; 5316 } 5317 case Intrinsic::experimental_stepvector: { 5318 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5319 Assert(VecTy && VecTy->getScalarType()->isIntegerTy() && 5320 VecTy->getScalarSizeInBits() >= 8, 5321 "experimental_stepvector only supported for vectors of integers " 5322 "with a bitwidth of at least 8.", 5323 &Call); 5324 break; 5325 } 5326 case Intrinsic::experimental_vector_insert: { 5327 Value *Vec = Call.getArgOperand(0); 5328 Value *SubVec = Call.getArgOperand(1); 5329 Value *Idx = Call.getArgOperand(2); 5330 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5331 5332 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5333 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5334 5335 ElementCount VecEC = VecTy->getElementCount(); 5336 ElementCount SubVecEC = SubVecTy->getElementCount(); 5337 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5338 "experimental_vector_insert parameters must have the same element " 5339 "type.", 5340 &Call); 5341 Assert(IdxN % SubVecEC.getKnownMinValue() == 0, 5342 "experimental_vector_insert index must be a constant multiple of " 5343 "the subvector's known minimum vector length."); 5344 5345 // If this insertion is not the 'mixed' case where a fixed vector is 5346 // inserted into a scalable vector, ensure that the insertion of the 5347 // subvector does not overrun the parent vector. 5348 if (VecEC.isScalable() == SubVecEC.isScalable()) { 5349 Assert( 5350 IdxN < VecEC.getKnownMinValue() && 5351 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5352 "subvector operand of experimental_vector_insert would overrun the " 5353 "vector being inserted into."); 5354 } 5355 break; 5356 } 5357 case Intrinsic::experimental_vector_extract: { 5358 Value *Vec = Call.getArgOperand(0); 5359 Value *Idx = Call.getArgOperand(1); 5360 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5361 5362 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5363 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5364 5365 ElementCount VecEC = VecTy->getElementCount(); 5366 ElementCount ResultEC = ResultTy->getElementCount(); 5367 5368 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5369 "experimental_vector_extract result must have the same element " 5370 "type as the input vector.", 5371 &Call); 5372 Assert(IdxN % ResultEC.getKnownMinValue() == 0, 5373 "experimental_vector_extract index must be a constant multiple of " 5374 "the result type's known minimum vector length."); 5375 5376 // If this extraction is not the 'mixed' case where a fixed vector is is 5377 // extracted from a scalable vector, ensure that the extraction does not 5378 // overrun the parent vector. 5379 if (VecEC.isScalable() == ResultEC.isScalable()) { 5380 Assert(IdxN < VecEC.getKnownMinValue() && 5381 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5382 "experimental_vector_extract would overrun."); 5383 } 5384 break; 5385 } 5386 case Intrinsic::experimental_noalias_scope_decl: { 5387 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5388 break; 5389 } 5390 case Intrinsic::preserve_array_access_index: 5391 case Intrinsic::preserve_struct_access_index: { 5392 Type *ElemTy = Call.getAttributes().getParamElementType(0); 5393 Assert(ElemTy, 5394 "Intrinsic requires elementtype attribute on first argument.", 5395 &Call); 5396 break; 5397 } 5398 }; 5399 } 5400 5401 /// Carefully grab the subprogram from a local scope. 5402 /// 5403 /// This carefully grabs the subprogram from a local scope, avoiding the 5404 /// built-in assertions that would typically fire. 5405 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5406 if (!LocalScope) 5407 return nullptr; 5408 5409 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5410 return SP; 5411 5412 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5413 return getSubprogram(LB->getRawScope()); 5414 5415 // Just return null; broken scope chains are checked elsewhere. 5416 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5417 return nullptr; 5418 } 5419 5420 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5421 unsigned NumOperands; 5422 bool HasRoundingMD; 5423 switch (FPI.getIntrinsicID()) { 5424 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5425 case Intrinsic::INTRINSIC: \ 5426 NumOperands = NARG; \ 5427 HasRoundingMD = ROUND_MODE; \ 5428 break; 5429 #include "llvm/IR/ConstrainedOps.def" 5430 default: 5431 llvm_unreachable("Invalid constrained FP intrinsic!"); 5432 } 5433 NumOperands += (1 + HasRoundingMD); 5434 // Compare intrinsics carry an extra predicate metadata operand. 5435 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5436 NumOperands += 1; 5437 Assert((FPI.arg_size() == NumOperands), 5438 "invalid arguments for constrained FP intrinsic", &FPI); 5439 5440 switch (FPI.getIntrinsicID()) { 5441 case Intrinsic::experimental_constrained_lrint: 5442 case Intrinsic::experimental_constrained_llrint: { 5443 Type *ValTy = FPI.getArgOperand(0)->getType(); 5444 Type *ResultTy = FPI.getType(); 5445 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5446 "Intrinsic does not support vectors", &FPI); 5447 } 5448 break; 5449 5450 case Intrinsic::experimental_constrained_lround: 5451 case Intrinsic::experimental_constrained_llround: { 5452 Type *ValTy = FPI.getArgOperand(0)->getType(); 5453 Type *ResultTy = FPI.getType(); 5454 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5455 "Intrinsic does not support vectors", &FPI); 5456 break; 5457 } 5458 5459 case Intrinsic::experimental_constrained_fcmp: 5460 case Intrinsic::experimental_constrained_fcmps: { 5461 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5462 Assert(CmpInst::isFPPredicate(Pred), 5463 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5464 break; 5465 } 5466 5467 case Intrinsic::experimental_constrained_fptosi: 5468 case Intrinsic::experimental_constrained_fptoui: { 5469 Value *Operand = FPI.getArgOperand(0); 5470 uint64_t NumSrcElem = 0; 5471 Assert(Operand->getType()->isFPOrFPVectorTy(), 5472 "Intrinsic first argument must be floating point", &FPI); 5473 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5474 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5475 } 5476 5477 Operand = &FPI; 5478 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5479 "Intrinsic first argument and result disagree on vector use", &FPI); 5480 Assert(Operand->getType()->isIntOrIntVectorTy(), 5481 "Intrinsic result must be an integer", &FPI); 5482 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5483 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5484 "Intrinsic first argument and result vector lengths must be equal", 5485 &FPI); 5486 } 5487 } 5488 break; 5489 5490 case Intrinsic::experimental_constrained_sitofp: 5491 case Intrinsic::experimental_constrained_uitofp: { 5492 Value *Operand = FPI.getArgOperand(0); 5493 uint64_t NumSrcElem = 0; 5494 Assert(Operand->getType()->isIntOrIntVectorTy(), 5495 "Intrinsic first argument must be integer", &FPI); 5496 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5497 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5498 } 5499 5500 Operand = &FPI; 5501 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5502 "Intrinsic first argument and result disagree on vector use", &FPI); 5503 Assert(Operand->getType()->isFPOrFPVectorTy(), 5504 "Intrinsic result must be a floating point", &FPI); 5505 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5506 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5507 "Intrinsic first argument and result vector lengths must be equal", 5508 &FPI); 5509 } 5510 } break; 5511 5512 case Intrinsic::experimental_constrained_fptrunc: 5513 case Intrinsic::experimental_constrained_fpext: { 5514 Value *Operand = FPI.getArgOperand(0); 5515 Type *OperandTy = Operand->getType(); 5516 Value *Result = &FPI; 5517 Type *ResultTy = Result->getType(); 5518 Assert(OperandTy->isFPOrFPVectorTy(), 5519 "Intrinsic first argument must be FP or FP vector", &FPI); 5520 Assert(ResultTy->isFPOrFPVectorTy(), 5521 "Intrinsic result must be FP or FP vector", &FPI); 5522 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5523 "Intrinsic first argument and result disagree on vector use", &FPI); 5524 if (OperandTy->isVectorTy()) { 5525 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5526 cast<FixedVectorType>(ResultTy)->getNumElements(), 5527 "Intrinsic first argument and result vector lengths must be equal", 5528 &FPI); 5529 } 5530 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5531 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5532 "Intrinsic first argument's type must be larger than result type", 5533 &FPI); 5534 } else { 5535 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5536 "Intrinsic first argument's type must be smaller than result type", 5537 &FPI); 5538 } 5539 } 5540 break; 5541 5542 default: 5543 break; 5544 } 5545 5546 // If a non-metadata argument is passed in a metadata slot then the 5547 // error will be caught earlier when the incorrect argument doesn't 5548 // match the specification in the intrinsic call table. Thus, no 5549 // argument type check is needed here. 5550 5551 Assert(FPI.getExceptionBehavior().hasValue(), 5552 "invalid exception behavior argument", &FPI); 5553 if (HasRoundingMD) { 5554 Assert(FPI.getRoundingMode().hasValue(), 5555 "invalid rounding mode argument", &FPI); 5556 } 5557 } 5558 5559 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5560 auto *MD = DII.getRawLocation(); 5561 AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 5562 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5563 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5564 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5565 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5566 DII.getRawVariable()); 5567 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5568 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5569 DII.getRawExpression()); 5570 5571 // Ignore broken !dbg attachments; they're checked elsewhere. 5572 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5573 if (!isa<DILocation>(N)) 5574 return; 5575 5576 BasicBlock *BB = DII.getParent(); 5577 Function *F = BB ? BB->getParent() : nullptr; 5578 5579 // The scopes for variables and !dbg attachments must agree. 5580 DILocalVariable *Var = DII.getVariable(); 5581 DILocation *Loc = DII.getDebugLoc(); 5582 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5583 &DII, BB, F); 5584 5585 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5586 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5587 if (!VarSP || !LocSP) 5588 return; // Broken scope chains are checked elsewhere. 5589 5590 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5591 " variable and !dbg attachment", 5592 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5593 Loc->getScope()->getSubprogram()); 5594 5595 // This check is redundant with one in visitLocalVariable(). 5596 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5597 Var->getRawType()); 5598 verifyFnArgs(DII); 5599 } 5600 5601 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5602 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5603 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5604 DLI.getRawLabel()); 5605 5606 // Ignore broken !dbg attachments; they're checked elsewhere. 5607 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5608 if (!isa<DILocation>(N)) 5609 return; 5610 5611 BasicBlock *BB = DLI.getParent(); 5612 Function *F = BB ? BB->getParent() : nullptr; 5613 5614 // The scopes for variables and !dbg attachments must agree. 5615 DILabel *Label = DLI.getLabel(); 5616 DILocation *Loc = DLI.getDebugLoc(); 5617 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5618 &DLI, BB, F); 5619 5620 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5621 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5622 if (!LabelSP || !LocSP) 5623 return; 5624 5625 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5626 " label and !dbg attachment", 5627 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5628 Loc->getScope()->getSubprogram()); 5629 } 5630 5631 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5632 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5633 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5634 5635 // We don't know whether this intrinsic verified correctly. 5636 if (!V || !E || !E->isValid()) 5637 return; 5638 5639 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5640 auto Fragment = E->getFragmentInfo(); 5641 if (!Fragment) 5642 return; 5643 5644 // The frontend helps out GDB by emitting the members of local anonymous 5645 // unions as artificial local variables with shared storage. When SROA splits 5646 // the storage for artificial local variables that are smaller than the entire 5647 // union, the overhang piece will be outside of the allotted space for the 5648 // variable and this check fails. 5649 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5650 if (V->isArtificial()) 5651 return; 5652 5653 verifyFragmentExpression(*V, *Fragment, &I); 5654 } 5655 5656 template <typename ValueOrMetadata> 5657 void Verifier::verifyFragmentExpression(const DIVariable &V, 5658 DIExpression::FragmentInfo Fragment, 5659 ValueOrMetadata *Desc) { 5660 // If there's no size, the type is broken, but that should be checked 5661 // elsewhere. 5662 auto VarSize = V.getSizeInBits(); 5663 if (!VarSize) 5664 return; 5665 5666 unsigned FragSize = Fragment.SizeInBits; 5667 unsigned FragOffset = Fragment.OffsetInBits; 5668 AssertDI(FragSize + FragOffset <= *VarSize, 5669 "fragment is larger than or outside of variable", Desc, &V); 5670 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5671 } 5672 5673 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5674 // This function does not take the scope of noninlined function arguments into 5675 // account. Don't run it if current function is nodebug, because it may 5676 // contain inlined debug intrinsics. 5677 if (!HasDebugInfo) 5678 return; 5679 5680 // For performance reasons only check non-inlined ones. 5681 if (I.getDebugLoc()->getInlinedAt()) 5682 return; 5683 5684 DILocalVariable *Var = I.getVariable(); 5685 AssertDI(Var, "dbg intrinsic without variable"); 5686 5687 unsigned ArgNo = Var->getArg(); 5688 if (!ArgNo) 5689 return; 5690 5691 // Verify there are no duplicate function argument debug info entries. 5692 // These will cause hard-to-debug assertions in the DWARF backend. 5693 if (DebugFnArgs.size() < ArgNo) 5694 DebugFnArgs.resize(ArgNo, nullptr); 5695 5696 auto *Prev = DebugFnArgs[ArgNo - 1]; 5697 DebugFnArgs[ArgNo - 1] = Var; 5698 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5699 Prev, Var); 5700 } 5701 5702 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5703 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5704 5705 // We don't know whether this intrinsic verified correctly. 5706 if (!E || !E->isValid()) 5707 return; 5708 5709 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5710 } 5711 5712 void Verifier::verifyCompileUnits() { 5713 // When more than one Module is imported into the same context, such as during 5714 // an LTO build before linking the modules, ODR type uniquing may cause types 5715 // to point to a different CU. This check does not make sense in this case. 5716 if (M.getContext().isODRUniquingDebugTypes()) 5717 return; 5718 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5719 SmallPtrSet<const Metadata *, 2> Listed; 5720 if (CUs) 5721 Listed.insert(CUs->op_begin(), CUs->op_end()); 5722 for (auto *CU : CUVisited) 5723 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5724 CUVisited.clear(); 5725 } 5726 5727 void Verifier::verifyDeoptimizeCallingConvs() { 5728 if (DeoptimizeDeclarations.empty()) 5729 return; 5730 5731 const Function *First = DeoptimizeDeclarations[0]; 5732 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5733 Assert(First->getCallingConv() == F->getCallingConv(), 5734 "All llvm.experimental.deoptimize declarations must have the same " 5735 "calling convention", 5736 First, F); 5737 } 5738 } 5739 5740 void Verifier::verifyAttachedCallBundle(const CallBase &Call, 5741 const OperandBundleUse &BU) { 5742 FunctionType *FTy = Call.getFunctionType(); 5743 5744 Assert((FTy->getReturnType()->isPointerTy() || 5745 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 5746 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 5747 "function returning a pointer or a non-returning function that has a " 5748 "void return type", 5749 Call); 5750 5751 Assert((BU.Inputs.empty() || 5752 (BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()))), 5753 "operand bundle \"clang.arc.attachedcall\" can take either no " 5754 "arguments or one function as an argument", 5755 Call); 5756 5757 if (BU.Inputs.empty()) 5758 return; 5759 5760 auto *Fn = cast<Function>(BU.Inputs.front()); 5761 Intrinsic::ID IID = Fn->getIntrinsicID(); 5762 5763 if (IID) { 5764 Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 5765 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 5766 "invalid function argument", Call); 5767 } else { 5768 StringRef FnName = Fn->getName(); 5769 Assert((FnName == "objc_retainAutoreleasedReturnValue" || 5770 FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 5771 "invalid function argument", Call); 5772 } 5773 } 5774 5775 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5776 bool HasSource = F.getSource().hasValue(); 5777 if (!HasSourceDebugInfo.count(&U)) 5778 HasSourceDebugInfo[&U] = HasSource; 5779 AssertDI(HasSource == HasSourceDebugInfo[&U], 5780 "inconsistent use of embedded source"); 5781 } 5782 5783 void Verifier::verifyNoAliasScopeDecl() { 5784 if (NoAliasScopeDecls.empty()) 5785 return; 5786 5787 // only a single scope must be declared at a time. 5788 for (auto *II : NoAliasScopeDecls) { 5789 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5790 "Not a llvm.experimental.noalias.scope.decl ?"); 5791 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5792 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5793 Assert(ScopeListMV != nullptr, 5794 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5795 "argument", 5796 II); 5797 5798 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5799 Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5800 II); 5801 Assert(ScopeListMD->getNumOperands() == 1, 5802 "!id.scope.list must point to a list with a single scope", II); 5803 visitAliasScopeListMetadata(ScopeListMD); 5804 } 5805 5806 // Only check the domination rule when requested. Once all passes have been 5807 // adapted this option can go away. 5808 if (!VerifyNoAliasScopeDomination) 5809 return; 5810 5811 // Now sort the intrinsics based on the scope MDNode so that declarations of 5812 // the same scopes are next to each other. 5813 auto GetScope = [](IntrinsicInst *II) { 5814 const auto *ScopeListMV = cast<MetadataAsValue>( 5815 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5816 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5817 }; 5818 5819 // We are sorting on MDNode pointers here. For valid input IR this is ok. 5820 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5821 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5822 return GetScope(Lhs) < GetScope(Rhs); 5823 }; 5824 5825 llvm::sort(NoAliasScopeDecls, Compare); 5826 5827 // Go over the intrinsics and check that for the same scope, they are not 5828 // dominating each other. 5829 auto ItCurrent = NoAliasScopeDecls.begin(); 5830 while (ItCurrent != NoAliasScopeDecls.end()) { 5831 auto CurScope = GetScope(*ItCurrent); 5832 auto ItNext = ItCurrent; 5833 do { 5834 ++ItNext; 5835 } while (ItNext != NoAliasScopeDecls.end() && 5836 GetScope(*ItNext) == CurScope); 5837 5838 // [ItCurrent, ItNext) represents the declarations for the same scope. 5839 // Ensure they are not dominating each other.. but only if it is not too 5840 // expensive. 5841 if (ItNext - ItCurrent < 32) 5842 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5843 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5844 if (I != J) 5845 Assert(!DT.dominates(I, J), 5846 "llvm.experimental.noalias.scope.decl dominates another one " 5847 "with the same scope", 5848 I); 5849 ItCurrent = ItNext; 5850 } 5851 } 5852 5853 //===----------------------------------------------------------------------===// 5854 // Implement the public interfaces to this file... 5855 //===----------------------------------------------------------------------===// 5856 5857 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5858 Function &F = const_cast<Function &>(f); 5859 5860 // Don't use a raw_null_ostream. Printing IR is expensive. 5861 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5862 5863 // Note that this function's return value is inverted from what you would 5864 // expect of a function called "verify". 5865 return !V.verify(F); 5866 } 5867 5868 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5869 bool *BrokenDebugInfo) { 5870 // Don't use a raw_null_ostream. Printing IR is expensive. 5871 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5872 5873 bool Broken = false; 5874 for (const Function &F : M) 5875 Broken |= !V.verify(F); 5876 5877 Broken |= !V.verify(); 5878 if (BrokenDebugInfo) 5879 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5880 // Note that this function's return value is inverted from what you would 5881 // expect of a function called "verify". 5882 return Broken; 5883 } 5884 5885 namespace { 5886 5887 struct VerifierLegacyPass : public FunctionPass { 5888 static char ID; 5889 5890 std::unique_ptr<Verifier> V; 5891 bool FatalErrors = true; 5892 5893 VerifierLegacyPass() : FunctionPass(ID) { 5894 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5895 } 5896 explicit VerifierLegacyPass(bool FatalErrors) 5897 : FunctionPass(ID), 5898 FatalErrors(FatalErrors) { 5899 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5900 } 5901 5902 bool doInitialization(Module &M) override { 5903 V = std::make_unique<Verifier>( 5904 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5905 return false; 5906 } 5907 5908 bool runOnFunction(Function &F) override { 5909 if (!V->verify(F) && FatalErrors) { 5910 errs() << "in function " << F.getName() << '\n'; 5911 report_fatal_error("Broken function found, compilation aborted!"); 5912 } 5913 return false; 5914 } 5915 5916 bool doFinalization(Module &M) override { 5917 bool HasErrors = false; 5918 for (Function &F : M) 5919 if (F.isDeclaration()) 5920 HasErrors |= !V->verify(F); 5921 5922 HasErrors |= !V->verify(); 5923 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5924 report_fatal_error("Broken module found, compilation aborted!"); 5925 return false; 5926 } 5927 5928 void getAnalysisUsage(AnalysisUsage &AU) const override { 5929 AU.setPreservesAll(); 5930 } 5931 }; 5932 5933 } // end anonymous namespace 5934 5935 /// Helper to issue failure from the TBAA verification 5936 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5937 if (Diagnostic) 5938 return Diagnostic->CheckFailed(Args...); 5939 } 5940 5941 #define AssertTBAA(C, ...) \ 5942 do { \ 5943 if (!(C)) { \ 5944 CheckFailed(__VA_ARGS__); \ 5945 return false; \ 5946 } \ 5947 } while (false) 5948 5949 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5950 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5951 /// struct-type node describing an aggregate data structure (like a struct). 5952 TBAAVerifier::TBAABaseNodeSummary 5953 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5954 bool IsNewFormat) { 5955 if (BaseNode->getNumOperands() < 2) { 5956 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5957 return {true, ~0u}; 5958 } 5959 5960 auto Itr = TBAABaseNodes.find(BaseNode); 5961 if (Itr != TBAABaseNodes.end()) 5962 return Itr->second; 5963 5964 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5965 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5966 (void)InsertResult; 5967 assert(InsertResult.second && "We just checked!"); 5968 return Result; 5969 } 5970 5971 TBAAVerifier::TBAABaseNodeSummary 5972 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5973 bool IsNewFormat) { 5974 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5975 5976 if (BaseNode->getNumOperands() == 2) { 5977 // Scalar nodes can only be accessed at offset 0. 5978 return isValidScalarTBAANode(BaseNode) 5979 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5980 : InvalidNode; 5981 } 5982 5983 if (IsNewFormat) { 5984 if (BaseNode->getNumOperands() % 3 != 0) { 5985 CheckFailed("Access tag nodes must have the number of operands that is a " 5986 "multiple of 3!", BaseNode); 5987 return InvalidNode; 5988 } 5989 } else { 5990 if (BaseNode->getNumOperands() % 2 != 1) { 5991 CheckFailed("Struct tag nodes must have an odd number of operands!", 5992 BaseNode); 5993 return InvalidNode; 5994 } 5995 } 5996 5997 // Check the type size field. 5998 if (IsNewFormat) { 5999 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6000 BaseNode->getOperand(1)); 6001 if (!TypeSizeNode) { 6002 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 6003 return InvalidNode; 6004 } 6005 } 6006 6007 // Check the type name field. In the new format it can be anything. 6008 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 6009 CheckFailed("Struct tag nodes have a string as their first operand", 6010 BaseNode); 6011 return InvalidNode; 6012 } 6013 6014 bool Failed = false; 6015 6016 Optional<APInt> PrevOffset; 6017 unsigned BitWidth = ~0u; 6018 6019 // We've already checked that BaseNode is not a degenerate root node with one 6020 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 6021 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6022 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6023 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6024 Idx += NumOpsPerField) { 6025 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 6026 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 6027 if (!isa<MDNode>(FieldTy)) { 6028 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 6029 Failed = true; 6030 continue; 6031 } 6032 6033 auto *OffsetEntryCI = 6034 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 6035 if (!OffsetEntryCI) { 6036 CheckFailed("Offset entries must be constants!", &I, BaseNode); 6037 Failed = true; 6038 continue; 6039 } 6040 6041 if (BitWidth == ~0u) 6042 BitWidth = OffsetEntryCI->getBitWidth(); 6043 6044 if (OffsetEntryCI->getBitWidth() != BitWidth) { 6045 CheckFailed( 6046 "Bitwidth between the offsets and struct type entries must match", &I, 6047 BaseNode); 6048 Failed = true; 6049 continue; 6050 } 6051 6052 // NB! As far as I can tell, we generate a non-strictly increasing offset 6053 // sequence only from structs that have zero size bit fields. When 6054 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 6055 // pick the field lexically the latest in struct type metadata node. This 6056 // mirrors the actual behavior of the alias analysis implementation. 6057 bool IsAscending = 6058 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 6059 6060 if (!IsAscending) { 6061 CheckFailed("Offsets must be increasing!", &I, BaseNode); 6062 Failed = true; 6063 } 6064 6065 PrevOffset = OffsetEntryCI->getValue(); 6066 6067 if (IsNewFormat) { 6068 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6069 BaseNode->getOperand(Idx + 2)); 6070 if (!MemberSizeNode) { 6071 CheckFailed("Member size entries must be constants!", &I, BaseNode); 6072 Failed = true; 6073 continue; 6074 } 6075 } 6076 } 6077 6078 return Failed ? InvalidNode 6079 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 6080 } 6081 6082 static bool IsRootTBAANode(const MDNode *MD) { 6083 return MD->getNumOperands() < 2; 6084 } 6085 6086 static bool IsScalarTBAANodeImpl(const MDNode *MD, 6087 SmallPtrSetImpl<const MDNode *> &Visited) { 6088 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 6089 return false; 6090 6091 if (!isa<MDString>(MD->getOperand(0))) 6092 return false; 6093 6094 if (MD->getNumOperands() == 3) { 6095 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 6096 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 6097 return false; 6098 } 6099 6100 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6101 return Parent && Visited.insert(Parent).second && 6102 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 6103 } 6104 6105 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 6106 auto ResultIt = TBAAScalarNodes.find(MD); 6107 if (ResultIt != TBAAScalarNodes.end()) 6108 return ResultIt->second; 6109 6110 SmallPtrSet<const MDNode *, 4> Visited; 6111 bool Result = IsScalarTBAANodeImpl(MD, Visited); 6112 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 6113 (void)InsertResult; 6114 assert(InsertResult.second && "Just checked!"); 6115 6116 return Result; 6117 } 6118 6119 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 6120 /// Offset in place to be the offset within the field node returned. 6121 /// 6122 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 6123 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 6124 const MDNode *BaseNode, 6125 APInt &Offset, 6126 bool IsNewFormat) { 6127 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 6128 6129 // Scalar nodes have only one possible "field" -- their parent in the access 6130 // hierarchy. Offset must be zero at this point, but our caller is supposed 6131 // to Assert that. 6132 if (BaseNode->getNumOperands() == 2) 6133 return cast<MDNode>(BaseNode->getOperand(1)); 6134 6135 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6136 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6137 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6138 Idx += NumOpsPerField) { 6139 auto *OffsetEntryCI = 6140 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6141 if (OffsetEntryCI->getValue().ugt(Offset)) { 6142 if (Idx == FirstFieldOpNo) { 6143 CheckFailed("Could not find TBAA parent in struct type node", &I, 6144 BaseNode, &Offset); 6145 return nullptr; 6146 } 6147 6148 unsigned PrevIdx = Idx - NumOpsPerField; 6149 auto *PrevOffsetEntryCI = 6150 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 6151 Offset -= PrevOffsetEntryCI->getValue(); 6152 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 6153 } 6154 } 6155 6156 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 6157 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 6158 BaseNode->getOperand(LastIdx + 1)); 6159 Offset -= LastOffsetEntryCI->getValue(); 6160 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 6161 } 6162 6163 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 6164 if (!Type || Type->getNumOperands() < 3) 6165 return false; 6166 6167 // In the new format type nodes shall have a reference to the parent type as 6168 // its first operand. 6169 return isa_and_nonnull<MDNode>(Type->getOperand(0)); 6170 } 6171 6172 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6173 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6174 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6175 isa<AtomicCmpXchgInst>(I), 6176 "This instruction shall not have a TBAA access tag!", &I); 6177 6178 bool IsStructPathTBAA = 6179 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6180 6181 AssertTBAA( 6182 IsStructPathTBAA, 6183 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 6184 6185 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6186 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6187 6188 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6189 6190 if (IsNewFormat) { 6191 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6192 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6193 } else { 6194 AssertTBAA(MD->getNumOperands() < 5, 6195 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6196 } 6197 6198 // Check the access size field. 6199 if (IsNewFormat) { 6200 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6201 MD->getOperand(3)); 6202 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6203 } 6204 6205 // Check the immutability flag. 6206 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6207 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6208 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6209 MD->getOperand(ImmutabilityFlagOpNo)); 6210 AssertTBAA(IsImmutableCI, 6211 "Immutability tag on struct tag metadata must be a constant", 6212 &I, MD); 6213 AssertTBAA( 6214 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6215 "Immutability part of the struct tag metadata must be either 0 or 1", 6216 &I, MD); 6217 } 6218 6219 AssertTBAA(BaseNode && AccessType, 6220 "Malformed struct tag metadata: base and access-type " 6221 "should be non-null and point to Metadata nodes", 6222 &I, MD, BaseNode, AccessType); 6223 6224 if (!IsNewFormat) { 6225 AssertTBAA(isValidScalarTBAANode(AccessType), 6226 "Access type node must be a valid scalar type", &I, MD, 6227 AccessType); 6228 } 6229 6230 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6231 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6232 6233 APInt Offset = OffsetCI->getValue(); 6234 bool SeenAccessTypeInPath = false; 6235 6236 SmallPtrSet<MDNode *, 4> StructPath; 6237 6238 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6239 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6240 IsNewFormat)) { 6241 if (!StructPath.insert(BaseNode).second) { 6242 CheckFailed("Cycle detected in struct path", &I, MD); 6243 return false; 6244 } 6245 6246 bool Invalid; 6247 unsigned BaseNodeBitWidth; 6248 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6249 IsNewFormat); 6250 6251 // If the base node is invalid in itself, then we've already printed all the 6252 // errors we wanted to print. 6253 if (Invalid) 6254 return false; 6255 6256 SeenAccessTypeInPath |= BaseNode == AccessType; 6257 6258 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6259 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6260 &I, MD, &Offset); 6261 6262 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6263 (BaseNodeBitWidth == 0 && Offset == 0) || 6264 (IsNewFormat && BaseNodeBitWidth == ~0u), 6265 "Access bit-width not the same as description bit-width", &I, MD, 6266 BaseNodeBitWidth, Offset.getBitWidth()); 6267 6268 if (IsNewFormat && SeenAccessTypeInPath) 6269 break; 6270 } 6271 6272 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 6273 &I, MD); 6274 return true; 6275 } 6276 6277 char VerifierLegacyPass::ID = 0; 6278 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6279 6280 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6281 return new VerifierLegacyPass(FatalErrors); 6282 } 6283 6284 AnalysisKey VerifierAnalysis::Key; 6285 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6286 ModuleAnalysisManager &) { 6287 Result Res; 6288 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6289 return Res; 6290 } 6291 6292 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6293 FunctionAnalysisManager &) { 6294 return { llvm::verifyFunction(F, &dbgs()), false }; 6295 } 6296 6297 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6298 auto Res = AM.getResult<VerifierAnalysis>(M); 6299 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6300 report_fatal_error("Broken module found, compilation aborted!"); 6301 6302 return PreservedAnalyses::all(); 6303 } 6304 6305 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6306 auto res = AM.getResult<VerifierAnalysis>(F); 6307 if (res.IRBroken && FatalErrors) 6308 report_fatal_error("Broken function found, compilation aborted!"); 6309 6310 return PreservedAnalyses::all(); 6311 } 6312