xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Verifier.cpp (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * All basic blocks should only end with terminator insts, not contain them
27 //  * The entry node to a function must not have predecessors
28 //  * All Instructions must be embedded into a basic block
29 //  * Functions cannot take a void-typed parameter
30 //  * Verify that a function's argument list agrees with it's declared type.
31 //  * It is illegal to specify a name for a void value.
32 //  * It is illegal to have a internal global value with no initializer
33 //  * It is illegal to have a ret instruction that returns a value that does not
34 //    agree with the function return value type.
35 //  * Function call argument types match the function prototype
36 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
37 //    only by the unwind edge of an invoke instruction.
38 //  * A landingpad instruction must be the first non-PHI instruction in the
39 //    block.
40 //  * Landingpad instructions must be in a function with a personality function.
41 //  * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42 //    The applied restrictions are too numerous to list here.
43 //  * The convergence entry intrinsic and the loop heart must be the first
44 //    non-PHI instruction in their respective block. This does not conflict with
45 //    the landing pads, since these two kinds cannot occur in the same block.
46 //  * All other things that are tested by asserts spread about the code...
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/ADT/APFloat.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/MapVector.h"
56 #include "llvm/ADT/PostOrderIterator.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallPtrSet.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/StringMap.h"
63 #include "llvm/ADT/StringRef.h"
64 #include "llvm/ADT/Twine.h"
65 #include "llvm/BinaryFormat/Dwarf.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/AttributeMask.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/BasicBlock.h"
70 #include "llvm/IR/CFG.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Comdat.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/ConstantRangeList.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/ConvergenceVerifier.h"
78 #include "llvm/IR/DataLayout.h"
79 #include "llvm/IR/DebugInfo.h"
80 #include "llvm/IR/DebugInfoMetadata.h"
81 #include "llvm/IR/DebugLoc.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/EHPersonalities.h"
85 #include "llvm/IR/Function.h"
86 #include "llvm/IR/GCStrategy.h"
87 #include "llvm/IR/GlobalAlias.h"
88 #include "llvm/IR/GlobalValue.h"
89 #include "llvm/IR/GlobalVariable.h"
90 #include "llvm/IR/InlineAsm.h"
91 #include "llvm/IR/InstVisitor.h"
92 #include "llvm/IR/InstrTypes.h"
93 #include "llvm/IR/Instruction.h"
94 #include "llvm/IR/Instructions.h"
95 #include "llvm/IR/IntrinsicInst.h"
96 #include "llvm/IR/Intrinsics.h"
97 #include "llvm/IR/IntrinsicsAArch64.h"
98 #include "llvm/IR/IntrinsicsAMDGPU.h"
99 #include "llvm/IR/IntrinsicsARM.h"
100 #include "llvm/IR/IntrinsicsNVPTX.h"
101 #include "llvm/IR/IntrinsicsWebAssembly.h"
102 #include "llvm/IR/LLVMContext.h"
103 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
104 #include "llvm/IR/Metadata.h"
105 #include "llvm/IR/Module.h"
106 #include "llvm/IR/ModuleSlotTracker.h"
107 #include "llvm/IR/PassManager.h"
108 #include "llvm/IR/ProfDataUtils.h"
109 #include "llvm/IR/Statepoint.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/VFABIDemangler.h"
114 #include "llvm/IR/Value.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/AtomicOrdering.h"
118 #include "llvm/Support/Casting.h"
119 #include "llvm/Support/CommandLine.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/MathExtras.h"
122 #include "llvm/Support/ModRef.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <cstdint>
127 #include <memory>
128 #include <optional>
129 #include <string>
130 #include <utility>
131 
132 using namespace llvm;
133 
134 static cl::opt<bool> VerifyNoAliasScopeDomination(
135     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
136     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
137              "scopes are not dominating"));
138 
139 namespace llvm {
140 
141 struct VerifierSupport {
142   raw_ostream *OS;
143   const Module &M;
144   ModuleSlotTracker MST;
145   Triple TT;
146   const DataLayout &DL;
147   LLVMContext &Context;
148 
149   /// Track the brokenness of the module while recursively visiting.
150   bool Broken = false;
151   /// Broken debug info can be "recovered" from by stripping the debug info.
152   bool BrokenDebugInfo = false;
153   /// Whether to treat broken debug info as an error.
154   bool TreatBrokenDebugInfoAsError = true;
155 
156   explicit VerifierSupport(raw_ostream *OS, const Module &M)
157       : OS(OS), M(M), MST(&M), TT(Triple::normalize(M.getTargetTriple())),
158         DL(M.getDataLayout()), Context(M.getContext()) {}
159 
160 private:
161   void Write(const Module *M) {
162     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
163   }
164 
165   void Write(const Value *V) {
166     if (V)
167       Write(*V);
168   }
169 
170   void Write(const Value &V) {
171     if (isa<Instruction>(V)) {
172       V.print(*OS, MST);
173       *OS << '\n';
174     } else {
175       V.printAsOperand(*OS, true, MST);
176       *OS << '\n';
177     }
178   }
179 
180   void Write(const DbgRecord *DR) {
181     if (DR) {
182       DR->print(*OS, MST, false);
183       *OS << '\n';
184     }
185   }
186 
187   void Write(DbgVariableRecord::LocationType Type) {
188     switch (Type) {
189     case DbgVariableRecord::LocationType::Value:
190       *OS << "value";
191       break;
192     case DbgVariableRecord::LocationType::Declare:
193       *OS << "declare";
194       break;
195     case DbgVariableRecord::LocationType::Assign:
196       *OS << "assign";
197       break;
198     case DbgVariableRecord::LocationType::End:
199       *OS << "end";
200       break;
201     case DbgVariableRecord::LocationType::Any:
202       *OS << "any";
203       break;
204     };
205   }
206 
207   void Write(const Metadata *MD) {
208     if (!MD)
209       return;
210     MD->print(*OS, MST, &M);
211     *OS << '\n';
212   }
213 
214   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
215     Write(MD.get());
216   }
217 
218   void Write(const NamedMDNode *NMD) {
219     if (!NMD)
220       return;
221     NMD->print(*OS, MST);
222     *OS << '\n';
223   }
224 
225   void Write(Type *T) {
226     if (!T)
227       return;
228     *OS << ' ' << *T;
229   }
230 
231   void Write(const Comdat *C) {
232     if (!C)
233       return;
234     *OS << *C;
235   }
236 
237   void Write(const APInt *AI) {
238     if (!AI)
239       return;
240     *OS << *AI << '\n';
241   }
242 
243   void Write(const unsigned i) { *OS << i << '\n'; }
244 
245   // NOLINTNEXTLINE(readability-identifier-naming)
246   void Write(const Attribute *A) {
247     if (!A)
248       return;
249     *OS << A->getAsString() << '\n';
250   }
251 
252   // NOLINTNEXTLINE(readability-identifier-naming)
253   void Write(const AttributeSet *AS) {
254     if (!AS)
255       return;
256     *OS << AS->getAsString() << '\n';
257   }
258 
259   // NOLINTNEXTLINE(readability-identifier-naming)
260   void Write(const AttributeList *AL) {
261     if (!AL)
262       return;
263     AL->print(*OS);
264   }
265 
266   void Write(Printable P) { *OS << P << '\n'; }
267 
268   template <typename T> void Write(ArrayRef<T> Vs) {
269     for (const T &V : Vs)
270       Write(V);
271   }
272 
273   template <typename T1, typename... Ts>
274   void WriteTs(const T1 &V1, const Ts &... Vs) {
275     Write(V1);
276     WriteTs(Vs...);
277   }
278 
279   template <typename... Ts> void WriteTs() {}
280 
281 public:
282   /// A check failed, so printout out the condition and the message.
283   ///
284   /// This provides a nice place to put a breakpoint if you want to see why
285   /// something is not correct.
286   void CheckFailed(const Twine &Message) {
287     if (OS)
288       *OS << Message << '\n';
289     Broken = true;
290   }
291 
292   /// A check failed (with values to print).
293   ///
294   /// This calls the Message-only version so that the above is easier to set a
295   /// breakpoint on.
296   template <typename T1, typename... Ts>
297   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
298     CheckFailed(Message);
299     if (OS)
300       WriteTs(V1, Vs...);
301   }
302 
303   /// A debug info check failed.
304   void DebugInfoCheckFailed(const Twine &Message) {
305     if (OS)
306       *OS << Message << '\n';
307     Broken |= TreatBrokenDebugInfoAsError;
308     BrokenDebugInfo = true;
309   }
310 
311   /// A debug info check failed (with values to print).
312   template <typename T1, typename... Ts>
313   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
314                             const Ts &... Vs) {
315     DebugInfoCheckFailed(Message);
316     if (OS)
317       WriteTs(V1, Vs...);
318   }
319 };
320 
321 } // namespace llvm
322 
323 namespace {
324 
325 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
326   friend class InstVisitor<Verifier>;
327   DominatorTree DT;
328 
329   /// When verifying a basic block, keep track of all of the
330   /// instructions we have seen so far.
331   ///
332   /// This allows us to do efficient dominance checks for the case when an
333   /// instruction has an operand that is an instruction in the same block.
334   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
335 
336   /// Keep track of the metadata nodes that have been checked already.
337   SmallPtrSet<const Metadata *, 32> MDNodes;
338 
339   /// Keep track which DISubprogram is attached to which function.
340   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
341 
342   /// Track all DICompileUnits visited.
343   SmallPtrSet<const Metadata *, 2> CUVisited;
344 
345   /// The result type for a landingpad.
346   Type *LandingPadResultTy;
347 
348   /// Whether we've seen a call to @llvm.localescape in this function
349   /// already.
350   bool SawFrameEscape;
351 
352   /// Whether the current function has a DISubprogram attached to it.
353   bool HasDebugInfo = false;
354 
355   /// Stores the count of how many objects were passed to llvm.localescape for a
356   /// given function and the largest index passed to llvm.localrecover.
357   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
358 
359   // Maps catchswitches and cleanuppads that unwind to siblings to the
360   // terminators that indicate the unwind, used to detect cycles therein.
361   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
362 
363   /// Cache which blocks are in which funclet, if an EH funclet personality is
364   /// in use. Otherwise empty.
365   DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
366 
367   /// Cache of constants visited in search of ConstantExprs.
368   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
369 
370   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
371   SmallVector<const Function *, 4> DeoptimizeDeclarations;
372 
373   /// Cache of attribute lists verified.
374   SmallPtrSet<const void *, 32> AttributeListsVisited;
375 
376   // Verify that this GlobalValue is only used in this module.
377   // This map is used to avoid visiting uses twice. We can arrive at a user
378   // twice, if they have multiple operands. In particular for very large
379   // constant expressions, we can arrive at a particular user many times.
380   SmallPtrSet<const Value *, 32> GlobalValueVisited;
381 
382   // Keeps track of duplicate function argument debug info.
383   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
384 
385   TBAAVerifier TBAAVerifyHelper;
386   ConvergenceVerifier ConvergenceVerifyHelper;
387 
388   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
389 
390   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
391 
392 public:
393   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
394                     const Module &M)
395       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
396         SawFrameEscape(false), TBAAVerifyHelper(this) {
397     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
398   }
399 
400   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
401 
402   bool verify(const Function &F) {
403     assert(F.getParent() == &M &&
404            "An instance of this class only works with a specific module!");
405 
406     // First ensure the function is well-enough formed to compute dominance
407     // information, and directly compute a dominance tree. We don't rely on the
408     // pass manager to provide this as it isolates us from a potentially
409     // out-of-date dominator tree and makes it significantly more complex to run
410     // this code outside of a pass manager.
411     // FIXME: It's really gross that we have to cast away constness here.
412     if (!F.empty())
413       DT.recalculate(const_cast<Function &>(F));
414 
415     for (const BasicBlock &BB : F) {
416       if (!BB.empty() && BB.back().isTerminator())
417         continue;
418 
419       if (OS) {
420         *OS << "Basic Block in function '" << F.getName()
421             << "' does not have terminator!\n";
422         BB.printAsOperand(*OS, true, MST);
423         *OS << "\n";
424       }
425       return false;
426     }
427 
428     auto FailureCB = [this](const Twine &Message) {
429       this->CheckFailed(Message);
430     };
431     ConvergenceVerifyHelper.initialize(OS, FailureCB, F);
432 
433     Broken = false;
434     // FIXME: We strip const here because the inst visitor strips const.
435     visit(const_cast<Function &>(F));
436     verifySiblingFuncletUnwinds();
437 
438     if (ConvergenceVerifyHelper.sawTokens())
439       ConvergenceVerifyHelper.verify(DT);
440 
441     InstsInThisBlock.clear();
442     DebugFnArgs.clear();
443     LandingPadResultTy = nullptr;
444     SawFrameEscape = false;
445     SiblingFuncletInfo.clear();
446     verifyNoAliasScopeDecl();
447     NoAliasScopeDecls.clear();
448 
449     return !Broken;
450   }
451 
452   /// Verify the module that this instance of \c Verifier was initialized with.
453   bool verify() {
454     Broken = false;
455 
456     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
457     for (const Function &F : M)
458       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
459         DeoptimizeDeclarations.push_back(&F);
460 
461     // Now that we've visited every function, verify that we never asked to
462     // recover a frame index that wasn't escaped.
463     verifyFrameRecoverIndices();
464     for (const GlobalVariable &GV : M.globals())
465       visitGlobalVariable(GV);
466 
467     for (const GlobalAlias &GA : M.aliases())
468       visitGlobalAlias(GA);
469 
470     for (const GlobalIFunc &GI : M.ifuncs())
471       visitGlobalIFunc(GI);
472 
473     for (const NamedMDNode &NMD : M.named_metadata())
474       visitNamedMDNode(NMD);
475 
476     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
477       visitComdat(SMEC.getValue());
478 
479     visitModuleFlags();
480     visitModuleIdents();
481     visitModuleCommandLines();
482 
483     verifyCompileUnits();
484 
485     verifyDeoptimizeCallingConvs();
486     DISubprogramAttachments.clear();
487     return !Broken;
488   }
489 
490 private:
491   /// Whether a metadata node is allowed to be, or contain, a DILocation.
492   enum class AreDebugLocsAllowed { No, Yes };
493 
494   // Verification methods...
495   void visitGlobalValue(const GlobalValue &GV);
496   void visitGlobalVariable(const GlobalVariable &GV);
497   void visitGlobalAlias(const GlobalAlias &GA);
498   void visitGlobalIFunc(const GlobalIFunc &GI);
499   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
500   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
501                            const GlobalAlias &A, const Constant &C);
502   void visitNamedMDNode(const NamedMDNode &NMD);
503   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
504   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
505   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
506   void visitDIArgList(const DIArgList &AL, Function *F);
507   void visitComdat(const Comdat &C);
508   void visitModuleIdents();
509   void visitModuleCommandLines();
510   void visitModuleFlags();
511   void visitModuleFlag(const MDNode *Op,
512                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
513                        SmallVectorImpl<const MDNode *> &Requirements);
514   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
515   void visitFunction(const Function &F);
516   void visitBasicBlock(BasicBlock &BB);
517   void verifyRangeMetadata(const Value &V, const MDNode *Range, Type *Ty,
518                            bool IsAbsoluteSymbol);
519   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
520   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
521   void visitProfMetadata(Instruction &I, MDNode *MD);
522   void visitCallStackMetadata(MDNode *MD);
523   void visitMemProfMetadata(Instruction &I, MDNode *MD);
524   void visitCallsiteMetadata(Instruction &I, MDNode *MD);
525   void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
526   void visitMMRAMetadata(Instruction &I, MDNode *MD);
527   void visitAnnotationMetadata(MDNode *Annotation);
528   void visitAliasScopeMetadata(const MDNode *MD);
529   void visitAliasScopeListMetadata(const MDNode *MD);
530   void visitAccessGroupMetadata(const MDNode *MD);
531 
532   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
533 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
534 #include "llvm/IR/Metadata.def"
535   void visitDIScope(const DIScope &N);
536   void visitDIVariable(const DIVariable &N);
537   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
538   void visitDITemplateParameter(const DITemplateParameter &N);
539 
540   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
541 
542   void visit(DbgLabelRecord &DLR);
543   void visit(DbgVariableRecord &DVR);
544   // InstVisitor overrides...
545   using InstVisitor<Verifier>::visit;
546   void visitDbgRecords(Instruction &I);
547   void visit(Instruction &I);
548 
549   void visitTruncInst(TruncInst &I);
550   void visitZExtInst(ZExtInst &I);
551   void visitSExtInst(SExtInst &I);
552   void visitFPTruncInst(FPTruncInst &I);
553   void visitFPExtInst(FPExtInst &I);
554   void visitFPToUIInst(FPToUIInst &I);
555   void visitFPToSIInst(FPToSIInst &I);
556   void visitUIToFPInst(UIToFPInst &I);
557   void visitSIToFPInst(SIToFPInst &I);
558   void visitIntToPtrInst(IntToPtrInst &I);
559   void visitPtrToIntInst(PtrToIntInst &I);
560   void visitBitCastInst(BitCastInst &I);
561   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
562   void visitPHINode(PHINode &PN);
563   void visitCallBase(CallBase &Call);
564   void visitUnaryOperator(UnaryOperator &U);
565   void visitBinaryOperator(BinaryOperator &B);
566   void visitICmpInst(ICmpInst &IC);
567   void visitFCmpInst(FCmpInst &FC);
568   void visitExtractElementInst(ExtractElementInst &EI);
569   void visitInsertElementInst(InsertElementInst &EI);
570   void visitShuffleVectorInst(ShuffleVectorInst &EI);
571   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
572   void visitCallInst(CallInst &CI);
573   void visitInvokeInst(InvokeInst &II);
574   void visitGetElementPtrInst(GetElementPtrInst &GEP);
575   void visitLoadInst(LoadInst &LI);
576   void visitStoreInst(StoreInst &SI);
577   void verifyDominatesUse(Instruction &I, unsigned i);
578   void visitInstruction(Instruction &I);
579   void visitTerminator(Instruction &I);
580   void visitBranchInst(BranchInst &BI);
581   void visitReturnInst(ReturnInst &RI);
582   void visitSwitchInst(SwitchInst &SI);
583   void visitIndirectBrInst(IndirectBrInst &BI);
584   void visitCallBrInst(CallBrInst &CBI);
585   void visitSelectInst(SelectInst &SI);
586   void visitUserOp1(Instruction &I);
587   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
588   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
589   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
590   void visitVPIntrinsic(VPIntrinsic &VPI);
591   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
592   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
593   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
594   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
595   void visitFenceInst(FenceInst &FI);
596   void visitAllocaInst(AllocaInst &AI);
597   void visitExtractValueInst(ExtractValueInst &EVI);
598   void visitInsertValueInst(InsertValueInst &IVI);
599   void visitEHPadPredecessors(Instruction &I);
600   void visitLandingPadInst(LandingPadInst &LPI);
601   void visitResumeInst(ResumeInst &RI);
602   void visitCatchPadInst(CatchPadInst &CPI);
603   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
604   void visitCleanupPadInst(CleanupPadInst &CPI);
605   void visitFuncletPadInst(FuncletPadInst &FPI);
606   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
607   void visitCleanupReturnInst(CleanupReturnInst &CRI);
608 
609   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
610   void verifySwiftErrorValue(const Value *SwiftErrorVal);
611   void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
612   void verifyMustTailCall(CallInst &CI);
613   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
614   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
615   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
616   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
617                                     const Value *V);
618   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
619                            const Value *V, bool IsIntrinsic, bool IsInlineAsm);
620   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
621 
622   void visitConstantExprsRecursively(const Constant *EntryC);
623   void visitConstantExpr(const ConstantExpr *CE);
624   void visitConstantPtrAuth(const ConstantPtrAuth *CPA);
625   void verifyInlineAsmCall(const CallBase &Call);
626   void verifyStatepoint(const CallBase &Call);
627   void verifyFrameRecoverIndices();
628   void verifySiblingFuncletUnwinds();
629 
630   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
631   void verifyFragmentExpression(const DbgVariableRecord &I);
632   template <typename ValueOrMetadata>
633   void verifyFragmentExpression(const DIVariable &V,
634                                 DIExpression::FragmentInfo Fragment,
635                                 ValueOrMetadata *Desc);
636   void verifyFnArgs(const DbgVariableIntrinsic &I);
637   void verifyFnArgs(const DbgVariableRecord &DVR);
638   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
639   void verifyNotEntryValue(const DbgVariableRecord &I);
640 
641   /// Module-level debug info verification...
642   void verifyCompileUnits();
643 
644   /// Module-level verification that all @llvm.experimental.deoptimize
645   /// declarations share the same calling convention.
646   void verifyDeoptimizeCallingConvs();
647 
648   void verifyAttachedCallBundle(const CallBase &Call,
649                                 const OperandBundleUse &BU);
650 
651   /// Verify the llvm.experimental.noalias.scope.decl declarations
652   void verifyNoAliasScopeDecl();
653 };
654 
655 } // end anonymous namespace
656 
657 /// We know that cond should be true, if not print an error message.
658 #define Check(C, ...)                                                          \
659   do {                                                                         \
660     if (!(C)) {                                                                \
661       CheckFailed(__VA_ARGS__);                                                \
662       return;                                                                  \
663     }                                                                          \
664   } while (false)
665 
666 /// We know that a debug info condition should be true, if not print
667 /// an error message.
668 #define CheckDI(C, ...)                                                        \
669   do {                                                                         \
670     if (!(C)) {                                                                \
671       DebugInfoCheckFailed(__VA_ARGS__);                                       \
672       return;                                                                  \
673     }                                                                          \
674   } while (false)
675 
676 void Verifier::visitDbgRecords(Instruction &I) {
677   if (!I.DebugMarker)
678     return;
679   CheckDI(I.DebugMarker->MarkedInstr == &I,
680           "Instruction has invalid DebugMarker", &I);
681   CheckDI(!isa<PHINode>(&I) || !I.hasDbgRecords(),
682           "PHI Node must not have any attached DbgRecords", &I);
683   for (DbgRecord &DR : I.getDbgRecordRange()) {
684     CheckDI(DR.getMarker() == I.DebugMarker,
685             "DbgRecord had invalid DebugMarker", &I, &DR);
686     if (auto *Loc =
687             dyn_cast_or_null<DILocation>(DR.getDebugLoc().getAsMDNode()))
688       visitMDNode(*Loc, AreDebugLocsAllowed::Yes);
689     if (auto *DVR = dyn_cast<DbgVariableRecord>(&DR)) {
690       visit(*DVR);
691       // These have to appear after `visit` for consistency with existing
692       // intrinsic behaviour.
693       verifyFragmentExpression(*DVR);
694       verifyNotEntryValue(*DVR);
695     } else if (auto *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
696       visit(*DLR);
697     }
698   }
699 }
700 
701 void Verifier::visit(Instruction &I) {
702   visitDbgRecords(I);
703   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
704     Check(I.getOperand(i) != nullptr, "Operand is null", &I);
705   InstVisitor<Verifier>::visit(I);
706 }
707 
708 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
709 static void forEachUser(const Value *User,
710                         SmallPtrSet<const Value *, 32> &Visited,
711                         llvm::function_ref<bool(const Value *)> Callback) {
712   if (!Visited.insert(User).second)
713     return;
714 
715   SmallVector<const Value *> WorkList;
716   append_range(WorkList, User->materialized_users());
717   while (!WorkList.empty()) {
718    const Value *Cur = WorkList.pop_back_val();
719     if (!Visited.insert(Cur).second)
720       continue;
721     if (Callback(Cur))
722       append_range(WorkList, Cur->materialized_users());
723   }
724 }
725 
726 void Verifier::visitGlobalValue(const GlobalValue &GV) {
727   Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
728         "Global is external, but doesn't have external or weak linkage!", &GV);
729 
730   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
731 
732     if (MaybeAlign A = GO->getAlign()) {
733       Check(A->value() <= Value::MaximumAlignment,
734             "huge alignment values are unsupported", GO);
735     }
736 
737     if (const MDNode *Associated =
738             GO->getMetadata(LLVMContext::MD_associated)) {
739       Check(Associated->getNumOperands() == 1,
740             "associated metadata must have one operand", &GV, Associated);
741       const Metadata *Op = Associated->getOperand(0).get();
742       Check(Op, "associated metadata must have a global value", GO, Associated);
743 
744       const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op);
745       Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
746       if (VM) {
747         Check(isa<PointerType>(VM->getValue()->getType()),
748               "associated value must be pointer typed", GV, Associated);
749 
750         const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
751         Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
752               "associated metadata must point to a GlobalObject", GO, Stripped);
753         Check(Stripped != GO,
754               "global values should not associate to themselves", GO,
755               Associated);
756       }
757     }
758 
759     // FIXME: Why is getMetadata on GlobalValue protected?
760     if (const MDNode *AbsoluteSymbol =
761             GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
762       verifyRangeMetadata(*GO, AbsoluteSymbol, DL.getIntPtrType(GO->getType()),
763                           true);
764     }
765   }
766 
767   Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
768         "Only global variables can have appending linkage!", &GV);
769 
770   if (GV.hasAppendingLinkage()) {
771     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
772     Check(GVar && GVar->getValueType()->isArrayTy(),
773           "Only global arrays can have appending linkage!", GVar);
774   }
775 
776   if (GV.isDeclarationForLinker())
777     Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
778 
779   if (GV.hasDLLExportStorageClass()) {
780     Check(!GV.hasHiddenVisibility(),
781           "dllexport GlobalValue must have default or protected visibility",
782           &GV);
783   }
784   if (GV.hasDLLImportStorageClass()) {
785     Check(GV.hasDefaultVisibility(),
786           "dllimport GlobalValue must have default visibility", &GV);
787     Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
788           &GV);
789 
790     Check((GV.isDeclaration() &&
791            (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
792               GV.hasAvailableExternallyLinkage(),
793           "Global is marked as dllimport, but not external", &GV);
794   }
795 
796   if (GV.isImplicitDSOLocal())
797     Check(GV.isDSOLocal(),
798           "GlobalValue with local linkage or non-default "
799           "visibility must be dso_local!",
800           &GV);
801 
802   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
803     if (const Instruction *I = dyn_cast<Instruction>(V)) {
804       if (!I->getParent() || !I->getParent()->getParent())
805         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
806                     I);
807       else if (I->getParent()->getParent()->getParent() != &M)
808         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
809                     I->getParent()->getParent(),
810                     I->getParent()->getParent()->getParent());
811       return false;
812     } else if (const Function *F = dyn_cast<Function>(V)) {
813       if (F->getParent() != &M)
814         CheckFailed("Global is used by function in a different module", &GV, &M,
815                     F, F->getParent());
816       return false;
817     }
818     return true;
819   });
820 }
821 
822 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
823   if (GV.hasInitializer()) {
824     Check(GV.getInitializer()->getType() == GV.getValueType(),
825           "Global variable initializer type does not match global "
826           "variable type!",
827           &GV);
828     // If the global has common linkage, it must have a zero initializer and
829     // cannot be constant.
830     if (GV.hasCommonLinkage()) {
831       Check(GV.getInitializer()->isNullValue(),
832             "'common' global must have a zero initializer!", &GV);
833       Check(!GV.isConstant(), "'common' global may not be marked constant!",
834             &GV);
835       Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
836     }
837   }
838 
839   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
840                        GV.getName() == "llvm.global_dtors")) {
841     Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
842           "invalid linkage for intrinsic global variable", &GV);
843     Check(GV.materialized_use_empty(),
844           "invalid uses of intrinsic global variable", &GV);
845 
846     // Don't worry about emitting an error for it not being an array,
847     // visitGlobalValue will complain on appending non-array.
848     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
849       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
850       PointerType *FuncPtrTy =
851           PointerType::get(Context, DL.getProgramAddressSpace());
852       Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
853                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
854                 STy->getTypeAtIndex(1) == FuncPtrTy,
855             "wrong type for intrinsic global variable", &GV);
856       Check(STy->getNumElements() == 3,
857             "the third field of the element type is mandatory, "
858             "specify ptr null to migrate from the obsoleted 2-field form");
859       Type *ETy = STy->getTypeAtIndex(2);
860       Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
861             &GV);
862     }
863   }
864 
865   if (GV.hasName() && (GV.getName() == "llvm.used" ||
866                        GV.getName() == "llvm.compiler.used")) {
867     Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
868           "invalid linkage for intrinsic global variable", &GV);
869     Check(GV.materialized_use_empty(),
870           "invalid uses of intrinsic global variable", &GV);
871 
872     Type *GVType = GV.getValueType();
873     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
874       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
875       Check(PTy, "wrong type for intrinsic global variable", &GV);
876       if (GV.hasInitializer()) {
877         const Constant *Init = GV.getInitializer();
878         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
879         Check(InitArray, "wrong initalizer for intrinsic global variable",
880               Init);
881         for (Value *Op : InitArray->operands()) {
882           Value *V = Op->stripPointerCasts();
883           Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
884                     isa<GlobalAlias>(V),
885                 Twine("invalid ") + GV.getName() + " member", V);
886           Check(V->hasName(),
887                 Twine("members of ") + GV.getName() + " must be named", V);
888         }
889       }
890     }
891   }
892 
893   // Visit any debug info attachments.
894   SmallVector<MDNode *, 1> MDs;
895   GV.getMetadata(LLVMContext::MD_dbg, MDs);
896   for (auto *MD : MDs) {
897     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
898       visitDIGlobalVariableExpression(*GVE);
899     else
900       CheckDI(false, "!dbg attachment of global variable must be a "
901                      "DIGlobalVariableExpression");
902   }
903 
904   // Scalable vectors cannot be global variables, since we don't know
905   // the runtime size.
906   Check(!GV.getValueType()->isScalableTy(),
907         "Globals cannot contain scalable types", &GV);
908 
909   // Check if it's a target extension type that disallows being used as a
910   // global.
911   if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType()))
912     Check(TTy->hasProperty(TargetExtType::CanBeGlobal),
913           "Global @" + GV.getName() + " has illegal target extension type",
914           TTy);
915 
916   if (!GV.hasInitializer()) {
917     visitGlobalValue(GV);
918     return;
919   }
920 
921   // Walk any aggregate initializers looking for bitcasts between address spaces
922   visitConstantExprsRecursively(GV.getInitializer());
923 
924   visitGlobalValue(GV);
925 }
926 
927 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
928   SmallPtrSet<const GlobalAlias*, 4> Visited;
929   Visited.insert(&GA);
930   visitAliaseeSubExpr(Visited, GA, C);
931 }
932 
933 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
934                                    const GlobalAlias &GA, const Constant &C) {
935   if (GA.hasAvailableExternallyLinkage()) {
936     Check(isa<GlobalValue>(C) &&
937               cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
938           "available_externally alias must point to available_externally "
939           "global value",
940           &GA);
941   }
942   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
943     if (!GA.hasAvailableExternallyLinkage()) {
944       Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
945             &GA);
946     }
947 
948     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
949       Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
950 
951       Check(!GA2->isInterposable(),
952             "Alias cannot point to an interposable alias", &GA);
953     } else {
954       // Only continue verifying subexpressions of GlobalAliases.
955       // Do not recurse into global initializers.
956       return;
957     }
958   }
959 
960   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
961     visitConstantExprsRecursively(CE);
962 
963   for (const Use &U : C.operands()) {
964     Value *V = &*U;
965     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
966       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
967     else if (const auto *C2 = dyn_cast<Constant>(V))
968       visitAliaseeSubExpr(Visited, GA, *C2);
969   }
970 }
971 
972 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
973   Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
974         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
975         "weak_odr, external, or available_externally linkage!",
976         &GA);
977   const Constant *Aliasee = GA.getAliasee();
978   Check(Aliasee, "Aliasee cannot be NULL!", &GA);
979   Check(GA.getType() == Aliasee->getType(),
980         "Alias and aliasee types should match!", &GA);
981 
982   Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
983         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
984 
985   visitAliaseeSubExpr(GA, *Aliasee);
986 
987   visitGlobalValue(GA);
988 }
989 
990 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
991   Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
992         "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
993         "weak_odr, or external linkage!",
994         &GI);
995   // Pierce through ConstantExprs and GlobalAliases and check that the resolver
996   // is a Function definition.
997   const Function *Resolver = GI.getResolverFunction();
998   Check(Resolver, "IFunc must have a Function resolver", &GI);
999   Check(!Resolver->isDeclarationForLinker(),
1000         "IFunc resolver must be a definition", &GI);
1001 
1002   // Check that the immediate resolver operand (prior to any bitcasts) has the
1003   // correct type.
1004   const Type *ResolverTy = GI.getResolver()->getType();
1005 
1006   Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
1007         "IFunc resolver must return a pointer", &GI);
1008 
1009   const Type *ResolverFuncTy =
1010       GlobalIFunc::getResolverFunctionType(GI.getValueType());
1011   Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()),
1012         "IFunc resolver has incorrect type", &GI);
1013 }
1014 
1015 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
1016   // There used to be various other llvm.dbg.* nodes, but we don't support
1017   // upgrading them and we want to reserve the namespace for future uses.
1018   if (NMD.getName().starts_with("llvm.dbg."))
1019     CheckDI(NMD.getName() == "llvm.dbg.cu",
1020             "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
1021   for (const MDNode *MD : NMD.operands()) {
1022     if (NMD.getName() == "llvm.dbg.cu")
1023       CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
1024 
1025     if (!MD)
1026       continue;
1027 
1028     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
1029   }
1030 }
1031 
1032 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
1033   // Only visit each node once.  Metadata can be mutually recursive, so this
1034   // avoids infinite recursion here, as well as being an optimization.
1035   if (!MDNodes.insert(&MD).second)
1036     return;
1037 
1038   Check(&MD.getContext() == &Context,
1039         "MDNode context does not match Module context!", &MD);
1040 
1041   switch (MD.getMetadataID()) {
1042   default:
1043     llvm_unreachable("Invalid MDNode subclass");
1044   case Metadata::MDTupleKind:
1045     break;
1046 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
1047   case Metadata::CLASS##Kind:                                                  \
1048     visit##CLASS(cast<CLASS>(MD));                                             \
1049     break;
1050 #include "llvm/IR/Metadata.def"
1051   }
1052 
1053   for (const Metadata *Op : MD.operands()) {
1054     if (!Op)
1055       continue;
1056     Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
1057           &MD, Op);
1058     CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1059             "DILocation not allowed within this metadata node", &MD, Op);
1060     if (auto *N = dyn_cast<MDNode>(Op)) {
1061       visitMDNode(*N, AllowLocs);
1062       continue;
1063     }
1064     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
1065       visitValueAsMetadata(*V, nullptr);
1066       continue;
1067     }
1068   }
1069 
1070   // Check these last, so we diagnose problems in operands first.
1071   Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
1072   Check(MD.isResolved(), "All nodes should be resolved!", &MD);
1073 }
1074 
1075 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
1076   Check(MD.getValue(), "Expected valid value", &MD);
1077   Check(!MD.getValue()->getType()->isMetadataTy(),
1078         "Unexpected metadata round-trip through values", &MD, MD.getValue());
1079 
1080   auto *L = dyn_cast<LocalAsMetadata>(&MD);
1081   if (!L)
1082     return;
1083 
1084   Check(F, "function-local metadata used outside a function", L);
1085 
1086   // If this was an instruction, bb, or argument, verify that it is in the
1087   // function that we expect.
1088   Function *ActualF = nullptr;
1089   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
1090     Check(I->getParent(), "function-local metadata not in basic block", L, I);
1091     ActualF = I->getParent()->getParent();
1092   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
1093     ActualF = BB->getParent();
1094   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
1095     ActualF = A->getParent();
1096   assert(ActualF && "Unimplemented function local metadata case!");
1097 
1098   Check(ActualF == F, "function-local metadata used in wrong function", L);
1099 }
1100 
1101 void Verifier::visitDIArgList(const DIArgList &AL, Function *F) {
1102   for (const ValueAsMetadata *VAM : AL.getArgs())
1103     visitValueAsMetadata(*VAM, F);
1104 }
1105 
1106 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
1107   Metadata *MD = MDV.getMetadata();
1108   if (auto *N = dyn_cast<MDNode>(MD)) {
1109     visitMDNode(*N, AreDebugLocsAllowed::No);
1110     return;
1111   }
1112 
1113   // Only visit each node once.  Metadata can be mutually recursive, so this
1114   // avoids infinite recursion here, as well as being an optimization.
1115   if (!MDNodes.insert(MD).second)
1116     return;
1117 
1118   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1119     visitValueAsMetadata(*V, F);
1120 
1121   if (auto *AL = dyn_cast<DIArgList>(MD))
1122     visitDIArgList(*AL, F);
1123 }
1124 
1125 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
1126 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
1127 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1128 
1129 void Verifier::visitDILocation(const DILocation &N) {
1130   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1131           "location requires a valid scope", &N, N.getRawScope());
1132   if (auto *IA = N.getRawInlinedAt())
1133     CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1134   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1135     CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1136 }
1137 
1138 void Verifier::visitGenericDINode(const GenericDINode &N) {
1139   CheckDI(N.getTag(), "invalid tag", &N);
1140 }
1141 
1142 void Verifier::visitDIScope(const DIScope &N) {
1143   if (auto *F = N.getRawFile())
1144     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1145 }
1146 
1147 void Verifier::visitDISubrange(const DISubrange &N) {
1148   CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1149   CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1150           "Subrange can have any one of count or upperBound", &N);
1151   auto *CBound = N.getRawCountNode();
1152   CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1153               isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1154           "Count must be signed constant or DIVariable or DIExpression", &N);
1155   auto Count = N.getCount();
1156   CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1157               cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1158           "invalid subrange count", &N);
1159   auto *LBound = N.getRawLowerBound();
1160   CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1161               isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1162           "LowerBound must be signed constant or DIVariable or DIExpression",
1163           &N);
1164   auto *UBound = N.getRawUpperBound();
1165   CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1166               isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1167           "UpperBound must be signed constant or DIVariable or DIExpression",
1168           &N);
1169   auto *Stride = N.getRawStride();
1170   CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1171               isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1172           "Stride must be signed constant or DIVariable or DIExpression", &N);
1173 }
1174 
1175 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1176   CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1177   CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1178           "GenericSubrange can have any one of count or upperBound", &N);
1179   auto *CBound = N.getRawCountNode();
1180   CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1181           "Count must be signed constant or DIVariable or DIExpression", &N);
1182   auto *LBound = N.getRawLowerBound();
1183   CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1184   CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1185           "LowerBound must be signed constant or DIVariable or DIExpression",
1186           &N);
1187   auto *UBound = N.getRawUpperBound();
1188   CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1189           "UpperBound must be signed constant or DIVariable or DIExpression",
1190           &N);
1191   auto *Stride = N.getRawStride();
1192   CheckDI(Stride, "GenericSubrange must contain stride", &N);
1193   CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1194           "Stride must be signed constant or DIVariable or DIExpression", &N);
1195 }
1196 
1197 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1198   CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1199 }
1200 
1201 void Verifier::visitDIBasicType(const DIBasicType &N) {
1202   CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1203               N.getTag() == dwarf::DW_TAG_unspecified_type ||
1204               N.getTag() == dwarf::DW_TAG_string_type,
1205           "invalid tag", &N);
1206 }
1207 
1208 void Verifier::visitDIStringType(const DIStringType &N) {
1209   CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1210   CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1211           &N);
1212 }
1213 
1214 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1215   // Common scope checks.
1216   visitDIScope(N);
1217 
1218   CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1219               N.getTag() == dwarf::DW_TAG_pointer_type ||
1220               N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1221               N.getTag() == dwarf::DW_TAG_reference_type ||
1222               N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1223               N.getTag() == dwarf::DW_TAG_const_type ||
1224               N.getTag() == dwarf::DW_TAG_immutable_type ||
1225               N.getTag() == dwarf::DW_TAG_volatile_type ||
1226               N.getTag() == dwarf::DW_TAG_restrict_type ||
1227               N.getTag() == dwarf::DW_TAG_atomic_type ||
1228               N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ||
1229               N.getTag() == dwarf::DW_TAG_member ||
1230               (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) ||
1231               N.getTag() == dwarf::DW_TAG_inheritance ||
1232               N.getTag() == dwarf::DW_TAG_friend ||
1233               N.getTag() == dwarf::DW_TAG_set_type ||
1234               N.getTag() == dwarf::DW_TAG_template_alias,
1235           "invalid tag", &N);
1236   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1237     CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1238             N.getRawExtraData());
1239   }
1240 
1241   if (N.getTag() == dwarf::DW_TAG_set_type) {
1242     if (auto *T = N.getRawBaseType()) {
1243       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1244       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1245       CheckDI(
1246           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1247               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1248                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1249                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1250                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1251                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1252           "invalid set base type", &N, T);
1253     }
1254   }
1255 
1256   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1257   CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1258           N.getRawBaseType());
1259 
1260   if (N.getDWARFAddressSpace()) {
1261     CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1262                 N.getTag() == dwarf::DW_TAG_reference_type ||
1263                 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1264             "DWARF address space only applies to pointer or reference types",
1265             &N);
1266   }
1267 }
1268 
1269 /// Detect mutually exclusive flags.
1270 static bool hasConflictingReferenceFlags(unsigned Flags) {
1271   return ((Flags & DINode::FlagLValueReference) &&
1272           (Flags & DINode::FlagRValueReference)) ||
1273          ((Flags & DINode::FlagTypePassByValue) &&
1274           (Flags & DINode::FlagTypePassByReference));
1275 }
1276 
1277 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1278   auto *Params = dyn_cast<MDTuple>(&RawParams);
1279   CheckDI(Params, "invalid template params", &N, &RawParams);
1280   for (Metadata *Op : Params->operands()) {
1281     CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1282             &N, Params, Op);
1283   }
1284 }
1285 
1286 void Verifier::visitDICompositeType(const DICompositeType &N) {
1287   // Common scope checks.
1288   visitDIScope(N);
1289 
1290   CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1291               N.getTag() == dwarf::DW_TAG_structure_type ||
1292               N.getTag() == dwarf::DW_TAG_union_type ||
1293               N.getTag() == dwarf::DW_TAG_enumeration_type ||
1294               N.getTag() == dwarf::DW_TAG_class_type ||
1295               N.getTag() == dwarf::DW_TAG_variant_part ||
1296               N.getTag() == dwarf::DW_TAG_namelist,
1297           "invalid tag", &N);
1298 
1299   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1300   CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1301           N.getRawBaseType());
1302 
1303   CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1304           "invalid composite elements", &N, N.getRawElements());
1305   CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1306           N.getRawVTableHolder());
1307   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1308           "invalid reference flags", &N);
1309   unsigned DIBlockByRefStruct = 1 << 4;
1310   CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1311           "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1312 
1313   if (N.isVector()) {
1314     const DINodeArray Elements = N.getElements();
1315     CheckDI(Elements.size() == 1 &&
1316                 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1317             "invalid vector, expected one element of type subrange", &N);
1318   }
1319 
1320   if (auto *Params = N.getRawTemplateParams())
1321     visitTemplateParams(N, *Params);
1322 
1323   if (auto *D = N.getRawDiscriminator()) {
1324     CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1325             "discriminator can only appear on variant part");
1326   }
1327 
1328   if (N.getRawDataLocation()) {
1329     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1330             "dataLocation can only appear in array type");
1331   }
1332 
1333   if (N.getRawAssociated()) {
1334     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1335             "associated can only appear in array type");
1336   }
1337 
1338   if (N.getRawAllocated()) {
1339     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1340             "allocated can only appear in array type");
1341   }
1342 
1343   if (N.getRawRank()) {
1344     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1345             "rank can only appear in array type");
1346   }
1347 
1348   if (N.getTag() == dwarf::DW_TAG_array_type) {
1349     CheckDI(N.getRawBaseType(), "array types must have a base type", &N);
1350   }
1351 }
1352 
1353 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1354   CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1355   if (auto *Types = N.getRawTypeArray()) {
1356     CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1357     for (Metadata *Ty : N.getTypeArray()->operands()) {
1358       CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1359     }
1360   }
1361   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1362           "invalid reference flags", &N);
1363 }
1364 
1365 void Verifier::visitDIFile(const DIFile &N) {
1366   CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1367   std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1368   if (Checksum) {
1369     CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1370             "invalid checksum kind", &N);
1371     size_t Size;
1372     switch (Checksum->Kind) {
1373     case DIFile::CSK_MD5:
1374       Size = 32;
1375       break;
1376     case DIFile::CSK_SHA1:
1377       Size = 40;
1378       break;
1379     case DIFile::CSK_SHA256:
1380       Size = 64;
1381       break;
1382     }
1383     CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1384     CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1385             "invalid checksum", &N);
1386   }
1387 }
1388 
1389 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1390   CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1391   CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1392 
1393   // Don't bother verifying the compilation directory or producer string
1394   // as those could be empty.
1395   CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1396           N.getRawFile());
1397   CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1398           N.getFile());
1399 
1400   CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1401           "invalid emission kind", &N);
1402 
1403   if (auto *Array = N.getRawEnumTypes()) {
1404     CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1405     for (Metadata *Op : N.getEnumTypes()->operands()) {
1406       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1407       CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1408               "invalid enum type", &N, N.getEnumTypes(), Op);
1409     }
1410   }
1411   if (auto *Array = N.getRawRetainedTypes()) {
1412     CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1413     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1414       CheckDI(
1415           Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1416                                      !cast<DISubprogram>(Op)->isDefinition())),
1417           "invalid retained type", &N, Op);
1418     }
1419   }
1420   if (auto *Array = N.getRawGlobalVariables()) {
1421     CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1422     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1423       CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1424               "invalid global variable ref", &N, Op);
1425     }
1426   }
1427   if (auto *Array = N.getRawImportedEntities()) {
1428     CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1429     for (Metadata *Op : N.getImportedEntities()->operands()) {
1430       CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1431               &N, Op);
1432     }
1433   }
1434   if (auto *Array = N.getRawMacros()) {
1435     CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1436     for (Metadata *Op : N.getMacros()->operands()) {
1437       CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1438     }
1439   }
1440   CUVisited.insert(&N);
1441 }
1442 
1443 void Verifier::visitDISubprogram(const DISubprogram &N) {
1444   CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1445   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1446   if (auto *F = N.getRawFile())
1447     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1448   else
1449     CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1450   if (auto *T = N.getRawType())
1451     CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1452   CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1453           N.getRawContainingType());
1454   if (auto *Params = N.getRawTemplateParams())
1455     visitTemplateParams(N, *Params);
1456   if (auto *S = N.getRawDeclaration())
1457     CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1458             "invalid subprogram declaration", &N, S);
1459   if (auto *RawNode = N.getRawRetainedNodes()) {
1460     auto *Node = dyn_cast<MDTuple>(RawNode);
1461     CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1462     for (Metadata *Op : Node->operands()) {
1463       CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
1464                      isa<DIImportedEntity>(Op)),
1465               "invalid retained nodes, expected DILocalVariable, DILabel or "
1466               "DIImportedEntity",
1467               &N, Node, Op);
1468     }
1469   }
1470   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1471           "invalid reference flags", &N);
1472 
1473   auto *Unit = N.getRawUnit();
1474   if (N.isDefinition()) {
1475     // Subprogram definitions (not part of the type hierarchy).
1476     CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1477     CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1478     CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1479     // There's no good way to cross the CU boundary to insert a nested
1480     // DISubprogram definition in one CU into a type defined in another CU.
1481     auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope());
1482     if (CT && CT->getRawIdentifier() &&
1483         M.getContext().isODRUniquingDebugTypes())
1484       CheckDI(N.getDeclaration(),
1485               "definition subprograms cannot be nested within DICompositeType "
1486               "when enabling ODR",
1487               &N);
1488   } else {
1489     // Subprogram declarations (part of the type hierarchy).
1490     CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1491     CheckDI(!N.getRawDeclaration(),
1492             "subprogram declaration must not have a declaration field");
1493   }
1494 
1495   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1496     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1497     CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1498     for (Metadata *Op : ThrownTypes->operands())
1499       CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1500               Op);
1501   }
1502 
1503   if (N.areAllCallsDescribed())
1504     CheckDI(N.isDefinition(),
1505             "DIFlagAllCallsDescribed must be attached to a definition");
1506 }
1507 
1508 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1509   CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1510   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1511           "invalid local scope", &N, N.getRawScope());
1512   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1513     CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1514 }
1515 
1516 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1517   visitDILexicalBlockBase(N);
1518 
1519   CheckDI(N.getLine() || !N.getColumn(),
1520           "cannot have column info without line info", &N);
1521 }
1522 
1523 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1524   visitDILexicalBlockBase(N);
1525 }
1526 
1527 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1528   CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1529   if (auto *S = N.getRawScope())
1530     CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1531   if (auto *S = N.getRawDecl())
1532     CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1533 }
1534 
1535 void Verifier::visitDINamespace(const DINamespace &N) {
1536   CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1537   if (auto *S = N.getRawScope())
1538     CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1539 }
1540 
1541 void Verifier::visitDIMacro(const DIMacro &N) {
1542   CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1543               N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1544           "invalid macinfo type", &N);
1545   CheckDI(!N.getName().empty(), "anonymous macro", &N);
1546   if (!N.getValue().empty()) {
1547     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1548   }
1549 }
1550 
1551 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1552   CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1553           "invalid macinfo type", &N);
1554   if (auto *F = N.getRawFile())
1555     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1556 
1557   if (auto *Array = N.getRawElements()) {
1558     CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1559     for (Metadata *Op : N.getElements()->operands()) {
1560       CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1561     }
1562   }
1563 }
1564 
1565 void Verifier::visitDIModule(const DIModule &N) {
1566   CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1567   CheckDI(!N.getName().empty(), "anonymous module", &N);
1568 }
1569 
1570 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1571   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1572 }
1573 
1574 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1575   visitDITemplateParameter(N);
1576 
1577   CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1578           &N);
1579 }
1580 
1581 void Verifier::visitDITemplateValueParameter(
1582     const DITemplateValueParameter &N) {
1583   visitDITemplateParameter(N);
1584 
1585   CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1586               N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1587               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1588           "invalid tag", &N);
1589 }
1590 
1591 void Verifier::visitDIVariable(const DIVariable &N) {
1592   if (auto *S = N.getRawScope())
1593     CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1594   if (auto *F = N.getRawFile())
1595     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1596 }
1597 
1598 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1599   // Checks common to all variables.
1600   visitDIVariable(N);
1601 
1602   CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1603   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1604   // Check only if the global variable is not an extern
1605   if (N.isDefinition())
1606     CheckDI(N.getType(), "missing global variable type", &N);
1607   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1608     CheckDI(isa<DIDerivedType>(Member),
1609             "invalid static data member declaration", &N, Member);
1610   }
1611 }
1612 
1613 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1614   // Checks common to all variables.
1615   visitDIVariable(N);
1616 
1617   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1618   CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1619   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1620           "local variable requires a valid scope", &N, N.getRawScope());
1621   if (auto Ty = N.getType())
1622     CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1623 }
1624 
1625 void Verifier::visitDIAssignID(const DIAssignID &N) {
1626   CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1627   CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1628 }
1629 
1630 void Verifier::visitDILabel(const DILabel &N) {
1631   if (auto *S = N.getRawScope())
1632     CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1633   if (auto *F = N.getRawFile())
1634     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1635 
1636   CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1637   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1638           "label requires a valid scope", &N, N.getRawScope());
1639 }
1640 
1641 void Verifier::visitDIExpression(const DIExpression &N) {
1642   CheckDI(N.isValid(), "invalid expression", &N);
1643 }
1644 
1645 void Verifier::visitDIGlobalVariableExpression(
1646     const DIGlobalVariableExpression &GVE) {
1647   CheckDI(GVE.getVariable(), "missing variable");
1648   if (auto *Var = GVE.getVariable())
1649     visitDIGlobalVariable(*Var);
1650   if (auto *Expr = GVE.getExpression()) {
1651     visitDIExpression(*Expr);
1652     if (auto Fragment = Expr->getFragmentInfo())
1653       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1654   }
1655 }
1656 
1657 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1658   CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1659   if (auto *T = N.getRawType())
1660     CheckDI(isType(T), "invalid type ref", &N, T);
1661   if (auto *F = N.getRawFile())
1662     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1663 }
1664 
1665 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1666   CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1667               N.getTag() == dwarf::DW_TAG_imported_declaration,
1668           "invalid tag", &N);
1669   if (auto *S = N.getRawScope())
1670     CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1671   CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1672           N.getRawEntity());
1673 }
1674 
1675 void Verifier::visitComdat(const Comdat &C) {
1676   // In COFF the Module is invalid if the GlobalValue has private linkage.
1677   // Entities with private linkage don't have entries in the symbol table.
1678   if (TT.isOSBinFormatCOFF())
1679     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1680       Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1681             GV);
1682 }
1683 
1684 void Verifier::visitModuleIdents() {
1685   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1686   if (!Idents)
1687     return;
1688 
1689   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1690   // Scan each llvm.ident entry and make sure that this requirement is met.
1691   for (const MDNode *N : Idents->operands()) {
1692     Check(N->getNumOperands() == 1,
1693           "incorrect number of operands in llvm.ident metadata", N);
1694     Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1695           ("invalid value for llvm.ident metadata entry operand"
1696            "(the operand should be a string)"),
1697           N->getOperand(0));
1698   }
1699 }
1700 
1701 void Verifier::visitModuleCommandLines() {
1702   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1703   if (!CommandLines)
1704     return;
1705 
1706   // llvm.commandline takes a list of metadata entry. Each entry has only one
1707   // string. Scan each llvm.commandline entry and make sure that this
1708   // requirement is met.
1709   for (const MDNode *N : CommandLines->operands()) {
1710     Check(N->getNumOperands() == 1,
1711           "incorrect number of operands in llvm.commandline metadata", N);
1712     Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1713           ("invalid value for llvm.commandline metadata entry operand"
1714            "(the operand should be a string)"),
1715           N->getOperand(0));
1716   }
1717 }
1718 
1719 void Verifier::visitModuleFlags() {
1720   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1721   if (!Flags) return;
1722 
1723   // Scan each flag, and track the flags and requirements.
1724   DenseMap<const MDString*, const MDNode*> SeenIDs;
1725   SmallVector<const MDNode*, 16> Requirements;
1726   uint64_t PAuthABIPlatform = -1;
1727   uint64_t PAuthABIVersion = -1;
1728   for (const MDNode *MDN : Flags->operands()) {
1729     visitModuleFlag(MDN, SeenIDs, Requirements);
1730     if (MDN->getNumOperands() != 3)
1731       continue;
1732     if (const auto *FlagName = dyn_cast_or_null<MDString>(MDN->getOperand(1))) {
1733       if (FlagName->getString() == "aarch64-elf-pauthabi-platform") {
1734         if (const auto *PAP =
1735                 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2)))
1736           PAuthABIPlatform = PAP->getZExtValue();
1737       } else if (FlagName->getString() == "aarch64-elf-pauthabi-version") {
1738         if (const auto *PAV =
1739                 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2)))
1740           PAuthABIVersion = PAV->getZExtValue();
1741       }
1742     }
1743   }
1744 
1745   if ((PAuthABIPlatform == uint64_t(-1)) != (PAuthABIVersion == uint64_t(-1)))
1746     CheckFailed("either both or no 'aarch64-elf-pauthabi-platform' and "
1747                 "'aarch64-elf-pauthabi-version' module flags must be present");
1748 
1749   // Validate that the requirements in the module are valid.
1750   for (const MDNode *Requirement : Requirements) {
1751     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1752     const Metadata *ReqValue = Requirement->getOperand(1);
1753 
1754     const MDNode *Op = SeenIDs.lookup(Flag);
1755     if (!Op) {
1756       CheckFailed("invalid requirement on flag, flag is not present in module",
1757                   Flag);
1758       continue;
1759     }
1760 
1761     if (Op->getOperand(2) != ReqValue) {
1762       CheckFailed(("invalid requirement on flag, "
1763                    "flag does not have the required value"),
1764                   Flag);
1765       continue;
1766     }
1767   }
1768 }
1769 
1770 void
1771 Verifier::visitModuleFlag(const MDNode *Op,
1772                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1773                           SmallVectorImpl<const MDNode *> &Requirements) {
1774   // Each module flag should have three arguments, the merge behavior (a
1775   // constant int), the flag ID (an MDString), and the value.
1776   Check(Op->getNumOperands() == 3,
1777         "incorrect number of operands in module flag", Op);
1778   Module::ModFlagBehavior MFB;
1779   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1780     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1781           "invalid behavior operand in module flag (expected constant integer)",
1782           Op->getOperand(0));
1783     Check(false,
1784           "invalid behavior operand in module flag (unexpected constant)",
1785           Op->getOperand(0));
1786   }
1787   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1788   Check(ID, "invalid ID operand in module flag (expected metadata string)",
1789         Op->getOperand(1));
1790 
1791   // Check the values for behaviors with additional requirements.
1792   switch (MFB) {
1793   case Module::Error:
1794   case Module::Warning:
1795   case Module::Override:
1796     // These behavior types accept any value.
1797     break;
1798 
1799   case Module::Min: {
1800     auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1801     Check(V && V->getValue().isNonNegative(),
1802           "invalid value for 'min' module flag (expected constant non-negative "
1803           "integer)",
1804           Op->getOperand(2));
1805     break;
1806   }
1807 
1808   case Module::Max: {
1809     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1810           "invalid value for 'max' module flag (expected constant integer)",
1811           Op->getOperand(2));
1812     break;
1813   }
1814 
1815   case Module::Require: {
1816     // The value should itself be an MDNode with two operands, a flag ID (an
1817     // MDString), and a value.
1818     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1819     Check(Value && Value->getNumOperands() == 2,
1820           "invalid value for 'require' module flag (expected metadata pair)",
1821           Op->getOperand(2));
1822     Check(isa<MDString>(Value->getOperand(0)),
1823           ("invalid value for 'require' module flag "
1824            "(first value operand should be a string)"),
1825           Value->getOperand(0));
1826 
1827     // Append it to the list of requirements, to check once all module flags are
1828     // scanned.
1829     Requirements.push_back(Value);
1830     break;
1831   }
1832 
1833   case Module::Append:
1834   case Module::AppendUnique: {
1835     // These behavior types require the operand be an MDNode.
1836     Check(isa<MDNode>(Op->getOperand(2)),
1837           "invalid value for 'append'-type module flag "
1838           "(expected a metadata node)",
1839           Op->getOperand(2));
1840     break;
1841   }
1842   }
1843 
1844   // Unless this is a "requires" flag, check the ID is unique.
1845   if (MFB != Module::Require) {
1846     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1847     Check(Inserted,
1848           "module flag identifiers must be unique (or of 'require' type)", ID);
1849   }
1850 
1851   if (ID->getString() == "wchar_size") {
1852     ConstantInt *Value
1853       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1854     Check(Value, "wchar_size metadata requires constant integer argument");
1855   }
1856 
1857   if (ID->getString() == "Linker Options") {
1858     // If the llvm.linker.options named metadata exists, we assume that the
1859     // bitcode reader has upgraded the module flag. Otherwise the flag might
1860     // have been created by a client directly.
1861     Check(M.getNamedMetadata("llvm.linker.options"),
1862           "'Linker Options' named metadata no longer supported");
1863   }
1864 
1865   if (ID->getString() == "SemanticInterposition") {
1866     ConstantInt *Value =
1867         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1868     Check(Value,
1869           "SemanticInterposition metadata requires constant integer argument");
1870   }
1871 
1872   if (ID->getString() == "CG Profile") {
1873     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1874       visitModuleFlagCGProfileEntry(MDO);
1875   }
1876 }
1877 
1878 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1879   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1880     if (!FuncMDO)
1881       return;
1882     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1883     Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1884           "expected a Function or null", FuncMDO);
1885   };
1886   auto Node = dyn_cast_or_null<MDNode>(MDO);
1887   Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1888   CheckFunction(Node->getOperand(0));
1889   CheckFunction(Node->getOperand(1));
1890   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1891   Check(Count && Count->getType()->isIntegerTy(),
1892         "expected an integer constant", Node->getOperand(2));
1893 }
1894 
1895 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1896   for (Attribute A : Attrs) {
1897 
1898     if (A.isStringAttribute()) {
1899 #define GET_ATTR_NAMES
1900 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1901 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1902   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1903     auto V = A.getValueAsString();                                             \
1904     if (!(V.empty() || V == "true" || V == "false"))                           \
1905       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1906                   "");                                                         \
1907   }
1908 
1909 #include "llvm/IR/Attributes.inc"
1910       continue;
1911     }
1912 
1913     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1914       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1915                   V);
1916       return;
1917     }
1918   }
1919 }
1920 
1921 // VerifyParameterAttrs - Check the given attributes for an argument or return
1922 // value of the specified type.  The value V is printed in error messages.
1923 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1924                                     const Value *V) {
1925   if (!Attrs.hasAttributes())
1926     return;
1927 
1928   verifyAttributeTypes(Attrs, V);
1929 
1930   for (Attribute Attr : Attrs)
1931     Check(Attr.isStringAttribute() ||
1932               Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1933           "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1934           V);
1935 
1936   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1937     Check(Attrs.getNumAttributes() == 1,
1938           "Attribute 'immarg' is incompatible with other attributes", V);
1939   }
1940 
1941   // Check for mutually incompatible attributes.  Only inreg is compatible with
1942   // sret.
1943   unsigned AttrCount = 0;
1944   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1945   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1946   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1947   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1948                Attrs.hasAttribute(Attribute::InReg);
1949   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1950   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1951   Check(AttrCount <= 1,
1952         "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1953         "'byref', and 'sret' are incompatible!",
1954         V);
1955 
1956   Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1957           Attrs.hasAttribute(Attribute::ReadOnly)),
1958         "Attributes "
1959         "'inalloca and readonly' are incompatible!",
1960         V);
1961 
1962   Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1963           Attrs.hasAttribute(Attribute::Returned)),
1964         "Attributes "
1965         "'sret and returned' are incompatible!",
1966         V);
1967 
1968   Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1969           Attrs.hasAttribute(Attribute::SExt)),
1970         "Attributes "
1971         "'zeroext and signext' are incompatible!",
1972         V);
1973 
1974   Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1975           Attrs.hasAttribute(Attribute::ReadOnly)),
1976         "Attributes "
1977         "'readnone and readonly' are incompatible!",
1978         V);
1979 
1980   Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1981           Attrs.hasAttribute(Attribute::WriteOnly)),
1982         "Attributes "
1983         "'readnone and writeonly' are incompatible!",
1984         V);
1985 
1986   Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1987           Attrs.hasAttribute(Attribute::WriteOnly)),
1988         "Attributes "
1989         "'readonly and writeonly' are incompatible!",
1990         V);
1991 
1992   Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
1993           Attrs.hasAttribute(Attribute::AlwaysInline)),
1994         "Attributes "
1995         "'noinline and alwaysinline' are incompatible!",
1996         V);
1997 
1998   Check(!(Attrs.hasAttribute(Attribute::Writable) &&
1999           Attrs.hasAttribute(Attribute::ReadNone)),
2000         "Attributes writable and readnone are incompatible!", V);
2001 
2002   Check(!(Attrs.hasAttribute(Attribute::Writable) &&
2003           Attrs.hasAttribute(Attribute::ReadOnly)),
2004         "Attributes writable and readonly are incompatible!", V);
2005 
2006   AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
2007   for (Attribute Attr : Attrs) {
2008     if (!Attr.isStringAttribute() &&
2009         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
2010       CheckFailed("Attribute '" + Attr.getAsString() +
2011                   "' applied to incompatible type!", V);
2012       return;
2013     }
2014   }
2015 
2016   if (isa<PointerType>(Ty)) {
2017     if (Attrs.hasAttribute(Attribute::Alignment)) {
2018       Align AttrAlign = Attrs.getAlignment().valueOrOne();
2019       Check(AttrAlign.value() <= Value::MaximumAlignment,
2020             "huge alignment values are unsupported", V);
2021     }
2022     if (Attrs.hasAttribute(Attribute::ByVal)) {
2023       SmallPtrSet<Type *, 4> Visited;
2024       Check(Attrs.getByValType()->isSized(&Visited),
2025             "Attribute 'byval' does not support unsized types!", V);
2026       Check(DL.getTypeAllocSize(Attrs.getByValType()).getKnownMinValue() <
2027                 (1ULL << 32),
2028             "huge 'byval' arguments are unsupported", V);
2029     }
2030     if (Attrs.hasAttribute(Attribute::ByRef)) {
2031       SmallPtrSet<Type *, 4> Visited;
2032       Check(Attrs.getByRefType()->isSized(&Visited),
2033             "Attribute 'byref' does not support unsized types!", V);
2034       Check(DL.getTypeAllocSize(Attrs.getByRefType()).getKnownMinValue() <
2035                 (1ULL << 32),
2036             "huge 'byref' arguments are unsupported", V);
2037     }
2038     if (Attrs.hasAttribute(Attribute::InAlloca)) {
2039       SmallPtrSet<Type *, 4> Visited;
2040       Check(Attrs.getInAllocaType()->isSized(&Visited),
2041             "Attribute 'inalloca' does not support unsized types!", V);
2042       Check(DL.getTypeAllocSize(Attrs.getInAllocaType()).getKnownMinValue() <
2043                 (1ULL << 32),
2044             "huge 'inalloca' arguments are unsupported", V);
2045     }
2046     if (Attrs.hasAttribute(Attribute::Preallocated)) {
2047       SmallPtrSet<Type *, 4> Visited;
2048       Check(Attrs.getPreallocatedType()->isSized(&Visited),
2049             "Attribute 'preallocated' does not support unsized types!", V);
2050       Check(
2051           DL.getTypeAllocSize(Attrs.getPreallocatedType()).getKnownMinValue() <
2052               (1ULL << 32),
2053           "huge 'preallocated' arguments are unsupported", V);
2054     }
2055   }
2056 
2057   if (Attrs.hasAttribute(Attribute::Initializes)) {
2058     auto Inits = Attrs.getAttribute(Attribute::Initializes).getInitializes();
2059     Check(!Inits.empty(), "Attribute 'initializes' does not support empty list",
2060           V);
2061     Check(ConstantRangeList::isOrderedRanges(Inits),
2062           "Attribute 'initializes' does not support unordered ranges", V);
2063   }
2064 
2065   if (Attrs.hasAttribute(Attribute::NoFPClass)) {
2066     uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
2067     Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
2068           V);
2069     Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
2070           "Invalid value for 'nofpclass' test mask", V);
2071   }
2072   if (Attrs.hasAttribute(Attribute::Range)) {
2073     const ConstantRange &CR =
2074         Attrs.getAttribute(Attribute::Range).getValueAsConstantRange();
2075     Check(Ty->isIntOrIntVectorTy(CR.getBitWidth()),
2076           "Range bit width must match type bit width!", V);
2077   }
2078 }
2079 
2080 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
2081                                             const Value *V) {
2082   if (Attrs.hasFnAttr(Attr)) {
2083     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
2084     unsigned N;
2085     if (S.getAsInteger(10, N))
2086       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
2087   }
2088 }
2089 
2090 // Check parameter attributes against a function type.
2091 // The value V is printed in error messages.
2092 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
2093                                    const Value *V, bool IsIntrinsic,
2094                                    bool IsInlineAsm) {
2095   if (Attrs.isEmpty())
2096     return;
2097 
2098   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
2099     Check(Attrs.hasParentContext(Context),
2100           "Attribute list does not match Module context!", &Attrs, V);
2101     for (const auto &AttrSet : Attrs) {
2102       Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2103             "Attribute set does not match Module context!", &AttrSet, V);
2104       for (const auto &A : AttrSet) {
2105         Check(A.hasParentContext(Context),
2106               "Attribute does not match Module context!", &A, V);
2107       }
2108     }
2109   }
2110 
2111   bool SawNest = false;
2112   bool SawReturned = false;
2113   bool SawSRet = false;
2114   bool SawSwiftSelf = false;
2115   bool SawSwiftAsync = false;
2116   bool SawSwiftError = false;
2117 
2118   // Verify return value attributes.
2119   AttributeSet RetAttrs = Attrs.getRetAttrs();
2120   for (Attribute RetAttr : RetAttrs)
2121     Check(RetAttr.isStringAttribute() ||
2122               Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
2123           "Attribute '" + RetAttr.getAsString() +
2124               "' does not apply to function return values",
2125           V);
2126 
2127   unsigned MaxParameterWidth = 0;
2128   auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
2129     if (Ty->isVectorTy()) {
2130       if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
2131         unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2132         if (Size > MaxParameterWidth)
2133           MaxParameterWidth = Size;
2134       }
2135     }
2136   };
2137   GetMaxParameterWidth(FT->getReturnType());
2138   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2139 
2140   // Verify parameter attributes.
2141   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2142     Type *Ty = FT->getParamType(i);
2143     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
2144 
2145     if (!IsIntrinsic) {
2146       Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
2147             "immarg attribute only applies to intrinsics", V);
2148       if (!IsInlineAsm)
2149         Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
2150               "Attribute 'elementtype' can only be applied to intrinsics"
2151               " and inline asm.",
2152               V);
2153     }
2154 
2155     verifyParameterAttrs(ArgAttrs, Ty, V);
2156     GetMaxParameterWidth(Ty);
2157 
2158     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2159       Check(!SawNest, "More than one parameter has attribute nest!", V);
2160       SawNest = true;
2161     }
2162 
2163     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2164       Check(!SawReturned, "More than one parameter has attribute returned!", V);
2165       Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2166             "Incompatible argument and return types for 'returned' attribute",
2167             V);
2168       SawReturned = true;
2169     }
2170 
2171     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2172       Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2173       Check(i == 0 || i == 1,
2174             "Attribute 'sret' is not on first or second parameter!", V);
2175       SawSRet = true;
2176     }
2177 
2178     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2179       Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2180       SawSwiftSelf = true;
2181     }
2182 
2183     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2184       Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2185       SawSwiftAsync = true;
2186     }
2187 
2188     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2189       Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2190       SawSwiftError = true;
2191     }
2192 
2193     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2194       Check(i == FT->getNumParams() - 1,
2195             "inalloca isn't on the last parameter!", V);
2196     }
2197   }
2198 
2199   if (!Attrs.hasFnAttrs())
2200     return;
2201 
2202   verifyAttributeTypes(Attrs.getFnAttrs(), V);
2203   for (Attribute FnAttr : Attrs.getFnAttrs())
2204     Check(FnAttr.isStringAttribute() ||
2205               Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2206           "Attribute '" + FnAttr.getAsString() +
2207               "' does not apply to functions!",
2208           V);
2209 
2210   Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2211           Attrs.hasFnAttr(Attribute::AlwaysInline)),
2212         "Attributes 'noinline and alwaysinline' are incompatible!", V);
2213 
2214   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2215     Check(Attrs.hasFnAttr(Attribute::NoInline),
2216           "Attribute 'optnone' requires 'noinline'!", V);
2217 
2218     Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2219           "Attributes 'optsize and optnone' are incompatible!", V);
2220 
2221     Check(!Attrs.hasFnAttr(Attribute::MinSize),
2222           "Attributes 'minsize and optnone' are incompatible!", V);
2223 
2224     Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2225           "Attributes 'optdebug and optnone' are incompatible!", V);
2226   }
2227 
2228   if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2229     Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2230           "Attributes 'optsize and optdebug' are incompatible!", V);
2231 
2232     Check(!Attrs.hasFnAttr(Attribute::MinSize),
2233           "Attributes 'minsize and optdebug' are incompatible!", V);
2234   }
2235 
2236   Check(!Attrs.hasAttrSomewhere(Attribute::Writable) ||
2237         isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2238         "Attribute writable and memory without argmem: write are incompatible!",
2239         V);
2240 
2241   if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2242     Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2243            "Attributes 'aarch64_pstate_sm_enabled and "
2244            "aarch64_pstate_sm_compatible' are incompatible!",
2245            V);
2246   }
2247 
2248   Check((Attrs.hasFnAttr("aarch64_new_za") + Attrs.hasFnAttr("aarch64_in_za") +
2249          Attrs.hasFnAttr("aarch64_inout_za") +
2250          Attrs.hasFnAttr("aarch64_out_za") +
2251          Attrs.hasFnAttr("aarch64_preserves_za")) <= 1,
2252         "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', "
2253         "'aarch64_inout_za' and 'aarch64_preserves_za' are mutually exclusive",
2254         V);
2255 
2256   Check(
2257       (Attrs.hasFnAttr("aarch64_new_zt0") + Attrs.hasFnAttr("aarch64_in_zt0") +
2258        Attrs.hasFnAttr("aarch64_inout_zt0") +
2259        Attrs.hasFnAttr("aarch64_out_zt0") +
2260        Attrs.hasFnAttr("aarch64_preserves_zt0")) <= 1,
2261       "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2262       "'aarch64_inout_zt0' and 'aarch64_preserves_zt0' are mutually exclusive",
2263       V);
2264 
2265   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2266     const GlobalValue *GV = cast<GlobalValue>(V);
2267     Check(GV->hasGlobalUnnamedAddr(),
2268           "Attribute 'jumptable' requires 'unnamed_addr'", V);
2269   }
2270 
2271   if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2272     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2273       if (ParamNo >= FT->getNumParams()) {
2274         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2275         return false;
2276       }
2277 
2278       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2279         CheckFailed("'allocsize' " + Name +
2280                         " argument must refer to an integer parameter",
2281                     V);
2282         return false;
2283       }
2284 
2285       return true;
2286     };
2287 
2288     if (!CheckParam("element size", Args->first))
2289       return;
2290 
2291     if (Args->second && !CheckParam("number of elements", *Args->second))
2292       return;
2293   }
2294 
2295   if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2296     AllocFnKind K = Attrs.getAllocKind();
2297     AllocFnKind Type =
2298         K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2299     if (!is_contained(
2300             {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2301             Type))
2302       CheckFailed(
2303           "'allockind()' requires exactly one of alloc, realloc, and free");
2304     if ((Type == AllocFnKind::Free) &&
2305         ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2306                AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2307       CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2308                   "or aligned modifiers.");
2309     AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2310     if ((K & ZeroedUninit) == ZeroedUninit)
2311       CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2312   }
2313 
2314   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2315     unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2316     if (VScaleMin == 0)
2317       CheckFailed("'vscale_range' minimum must be greater than 0", V);
2318     else if (!isPowerOf2_32(VScaleMin))
2319       CheckFailed("'vscale_range' minimum must be power-of-two value", V);
2320     std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2321     if (VScaleMax && VScaleMin > VScaleMax)
2322       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2323     else if (VScaleMax && !isPowerOf2_32(*VScaleMax))
2324       CheckFailed("'vscale_range' maximum must be power-of-two value", V);
2325   }
2326 
2327   if (Attrs.hasFnAttr("frame-pointer")) {
2328     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2329     if (FP != "all" && FP != "non-leaf" && FP != "none" && FP != "reserved")
2330       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2331   }
2332 
2333   // Check EVEX512 feature.
2334   if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") &&
2335       TT.isX86()) {
2336     StringRef TF = Attrs.getFnAttr("target-features").getValueAsString();
2337     Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
2338           "512-bit vector arguments require 'evex512' for AVX512", V);
2339   }
2340 
2341   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2342   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2343   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2344 
2345   if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) {
2346     StringRef S = A.getValueAsString();
2347     if (S != "none" && S != "all" && S != "non-leaf")
2348       CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V);
2349   }
2350 
2351   if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) {
2352     StringRef S = A.getValueAsString();
2353     if (S != "a_key" && S != "b_key")
2354       CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S,
2355                   V);
2356     if (auto AA = Attrs.getFnAttr("sign-return-address"); !AA.isValid()) {
2357       CheckFailed(
2358           "'sign-return-address-key' present without `sign-return-address`");
2359     }
2360   }
2361 
2362   if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) {
2363     StringRef S = A.getValueAsString();
2364     if (S != "" && S != "true" && S != "false")
2365       CheckFailed(
2366           "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2367   }
2368 
2369   if (auto A = Attrs.getFnAttr("branch-protection-pauth-lr"); A.isValid()) {
2370     StringRef S = A.getValueAsString();
2371     if (S != "" && S != "true" && S != "false")
2372       CheckFailed(
2373           "invalid value for 'branch-protection-pauth-lr' attribute: " + S, V);
2374   }
2375 
2376   if (auto A = Attrs.getFnAttr("guarded-control-stack"); A.isValid()) {
2377     StringRef S = A.getValueAsString();
2378     if (S != "" && S != "true" && S != "false")
2379       CheckFailed("invalid value for 'guarded-control-stack' attribute: " + S,
2380                   V);
2381   }
2382 
2383   if (auto A = Attrs.getFnAttr("vector-function-abi-variant"); A.isValid()) {
2384     StringRef S = A.getValueAsString();
2385     const std::optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, FT);
2386     if (!Info)
2387       CheckFailed("invalid name for a VFABI variant: " + S, V);
2388   }
2389 }
2390 
2391 void Verifier::verifyFunctionMetadata(
2392     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2393   for (const auto &Pair : MDs) {
2394     if (Pair.first == LLVMContext::MD_prof) {
2395       MDNode *MD = Pair.second;
2396       Check(MD->getNumOperands() >= 2,
2397             "!prof annotations should have no less than 2 operands", MD);
2398 
2399       // Check first operand.
2400       Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2401             MD);
2402       Check(isa<MDString>(MD->getOperand(0)),
2403             "expected string with name of the !prof annotation", MD);
2404       MDString *MDS = cast<MDString>(MD->getOperand(0));
2405       StringRef ProfName = MDS->getString();
2406       Check(ProfName == "function_entry_count" ||
2407                 ProfName == "synthetic_function_entry_count",
2408             "first operand should be 'function_entry_count'"
2409             " or 'synthetic_function_entry_count'",
2410             MD);
2411 
2412       // Check second operand.
2413       Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2414             MD);
2415       Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2416             "expected integer argument to function_entry_count", MD);
2417     } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2418       MDNode *MD = Pair.second;
2419       Check(MD->getNumOperands() == 1,
2420             "!kcfi_type must have exactly one operand", MD);
2421       Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2422             MD);
2423       Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2424             "expected a constant operand for !kcfi_type", MD);
2425       Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2426       Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()),
2427             "expected a constant integer operand for !kcfi_type", MD);
2428       Check(cast<ConstantInt>(C)->getBitWidth() == 32,
2429             "expected a 32-bit integer constant operand for !kcfi_type", MD);
2430     }
2431   }
2432 }
2433 
2434 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2435   if (!ConstantExprVisited.insert(EntryC).second)
2436     return;
2437 
2438   SmallVector<const Constant *, 16> Stack;
2439   Stack.push_back(EntryC);
2440 
2441   while (!Stack.empty()) {
2442     const Constant *C = Stack.pop_back_val();
2443 
2444     // Check this constant expression.
2445     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2446       visitConstantExpr(CE);
2447 
2448     if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C))
2449       visitConstantPtrAuth(CPA);
2450 
2451     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2452       // Global Values get visited separately, but we do need to make sure
2453       // that the global value is in the correct module
2454       Check(GV->getParent() == &M, "Referencing global in another module!",
2455             EntryC, &M, GV, GV->getParent());
2456       continue;
2457     }
2458 
2459     // Visit all sub-expressions.
2460     for (const Use &U : C->operands()) {
2461       const auto *OpC = dyn_cast<Constant>(U);
2462       if (!OpC)
2463         continue;
2464       if (!ConstantExprVisited.insert(OpC).second)
2465         continue;
2466       Stack.push_back(OpC);
2467     }
2468   }
2469 }
2470 
2471 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2472   if (CE->getOpcode() == Instruction::BitCast)
2473     Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2474                                 CE->getType()),
2475           "Invalid bitcast", CE);
2476 }
2477 
2478 void Verifier::visitConstantPtrAuth(const ConstantPtrAuth *CPA) {
2479   Check(CPA->getPointer()->getType()->isPointerTy(),
2480         "signed ptrauth constant base pointer must have pointer type");
2481 
2482   Check(CPA->getType() == CPA->getPointer()->getType(),
2483         "signed ptrauth constant must have same type as its base pointer");
2484 
2485   Check(CPA->getKey()->getBitWidth() == 32,
2486         "signed ptrauth constant key must be i32 constant integer");
2487 
2488   Check(CPA->getAddrDiscriminator()->getType()->isPointerTy(),
2489         "signed ptrauth constant address discriminator must be a pointer");
2490 
2491   Check(CPA->getDiscriminator()->getBitWidth() == 64,
2492         "signed ptrauth constant discriminator must be i64 constant integer");
2493 }
2494 
2495 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2496   // There shouldn't be more attribute sets than there are parameters plus the
2497   // function and return value.
2498   return Attrs.getNumAttrSets() <= Params + 2;
2499 }
2500 
2501 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2502   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2503   unsigned ArgNo = 0;
2504   unsigned LabelNo = 0;
2505   for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2506     if (CI.Type == InlineAsm::isLabel) {
2507       ++LabelNo;
2508       continue;
2509     }
2510 
2511     // Only deal with constraints that correspond to call arguments.
2512     if (!CI.hasArg())
2513       continue;
2514 
2515     if (CI.isIndirect) {
2516       const Value *Arg = Call.getArgOperand(ArgNo);
2517       Check(Arg->getType()->isPointerTy(),
2518             "Operand for indirect constraint must have pointer type", &Call);
2519 
2520       Check(Call.getParamElementType(ArgNo),
2521             "Operand for indirect constraint must have elementtype attribute",
2522             &Call);
2523     } else {
2524       Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2525             "Elementtype attribute can only be applied for indirect "
2526             "constraints",
2527             &Call);
2528     }
2529 
2530     ArgNo++;
2531   }
2532 
2533   if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2534     Check(LabelNo == CallBr->getNumIndirectDests(),
2535           "Number of label constraints does not match number of callbr dests",
2536           &Call);
2537   } else {
2538     Check(LabelNo == 0, "Label constraints can only be used with callbr",
2539           &Call);
2540   }
2541 }
2542 
2543 /// Verify that statepoint intrinsic is well formed.
2544 void Verifier::verifyStatepoint(const CallBase &Call) {
2545   assert(Call.getCalledFunction() &&
2546          Call.getCalledFunction()->getIntrinsicID() ==
2547              Intrinsic::experimental_gc_statepoint);
2548 
2549   Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2550             !Call.onlyAccessesArgMemory(),
2551         "gc.statepoint must read and write all memory to preserve "
2552         "reordering restrictions required by safepoint semantics",
2553         Call);
2554 
2555   const int64_t NumPatchBytes =
2556       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2557   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2558   Check(NumPatchBytes >= 0,
2559         "gc.statepoint number of patchable bytes must be "
2560         "positive",
2561         Call);
2562 
2563   Type *TargetElemType = Call.getParamElementType(2);
2564   Check(TargetElemType,
2565         "gc.statepoint callee argument must have elementtype attribute", Call);
2566   FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2567   Check(TargetFuncType,
2568         "gc.statepoint callee elementtype must be function type", Call);
2569 
2570   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2571   Check(NumCallArgs >= 0,
2572         "gc.statepoint number of arguments to underlying call "
2573         "must be positive",
2574         Call);
2575   const int NumParams = (int)TargetFuncType->getNumParams();
2576   if (TargetFuncType->isVarArg()) {
2577     Check(NumCallArgs >= NumParams,
2578           "gc.statepoint mismatch in number of vararg call args", Call);
2579 
2580     // TODO: Remove this limitation
2581     Check(TargetFuncType->getReturnType()->isVoidTy(),
2582           "gc.statepoint doesn't support wrapping non-void "
2583           "vararg functions yet",
2584           Call);
2585   } else
2586     Check(NumCallArgs == NumParams,
2587           "gc.statepoint mismatch in number of call args", Call);
2588 
2589   const uint64_t Flags
2590     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2591   Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2592         "unknown flag used in gc.statepoint flags argument", Call);
2593 
2594   // Verify that the types of the call parameter arguments match
2595   // the type of the wrapped callee.
2596   AttributeList Attrs = Call.getAttributes();
2597   for (int i = 0; i < NumParams; i++) {
2598     Type *ParamType = TargetFuncType->getParamType(i);
2599     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2600     Check(ArgType == ParamType,
2601           "gc.statepoint call argument does not match wrapped "
2602           "function type",
2603           Call);
2604 
2605     if (TargetFuncType->isVarArg()) {
2606       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2607       Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2608             "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2609     }
2610   }
2611 
2612   const int EndCallArgsInx = 4 + NumCallArgs;
2613 
2614   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2615   Check(isa<ConstantInt>(NumTransitionArgsV),
2616         "gc.statepoint number of transition arguments "
2617         "must be constant integer",
2618         Call);
2619   const int NumTransitionArgs =
2620       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2621   Check(NumTransitionArgs == 0,
2622         "gc.statepoint w/inline transition bundle is deprecated", Call);
2623   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2624 
2625   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2626   Check(isa<ConstantInt>(NumDeoptArgsV),
2627         "gc.statepoint number of deoptimization arguments "
2628         "must be constant integer",
2629         Call);
2630   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2631   Check(NumDeoptArgs == 0,
2632         "gc.statepoint w/inline deopt operands is deprecated", Call);
2633 
2634   const int ExpectedNumArgs = 7 + NumCallArgs;
2635   Check(ExpectedNumArgs == (int)Call.arg_size(),
2636         "gc.statepoint too many arguments", Call);
2637 
2638   // Check that the only uses of this gc.statepoint are gc.result or
2639   // gc.relocate calls which are tied to this statepoint and thus part
2640   // of the same statepoint sequence
2641   for (const User *U : Call.users()) {
2642     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2643     Check(UserCall, "illegal use of statepoint token", Call, U);
2644     if (!UserCall)
2645       continue;
2646     Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2647           "gc.result or gc.relocate are the only value uses "
2648           "of a gc.statepoint",
2649           Call, U);
2650     if (isa<GCResultInst>(UserCall)) {
2651       Check(UserCall->getArgOperand(0) == &Call,
2652             "gc.result connected to wrong gc.statepoint", Call, UserCall);
2653     } else if (isa<GCRelocateInst>(Call)) {
2654       Check(UserCall->getArgOperand(0) == &Call,
2655             "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2656     }
2657   }
2658 
2659   // Note: It is legal for a single derived pointer to be listed multiple
2660   // times.  It's non-optimal, but it is legal.  It can also happen after
2661   // insertion if we strip a bitcast away.
2662   // Note: It is really tempting to check that each base is relocated and
2663   // that a derived pointer is never reused as a base pointer.  This turns
2664   // out to be problematic since optimizations run after safepoint insertion
2665   // can recognize equality properties that the insertion logic doesn't know
2666   // about.  See example statepoint.ll in the verifier subdirectory
2667 }
2668 
2669 void Verifier::verifyFrameRecoverIndices() {
2670   for (auto &Counts : FrameEscapeInfo) {
2671     Function *F = Counts.first;
2672     unsigned EscapedObjectCount = Counts.second.first;
2673     unsigned MaxRecoveredIndex = Counts.second.second;
2674     Check(MaxRecoveredIndex <= EscapedObjectCount,
2675           "all indices passed to llvm.localrecover must be less than the "
2676           "number of arguments passed to llvm.localescape in the parent "
2677           "function",
2678           F);
2679   }
2680 }
2681 
2682 static Instruction *getSuccPad(Instruction *Terminator) {
2683   BasicBlock *UnwindDest;
2684   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2685     UnwindDest = II->getUnwindDest();
2686   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2687     UnwindDest = CSI->getUnwindDest();
2688   else
2689     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2690   return UnwindDest->getFirstNonPHI();
2691 }
2692 
2693 void Verifier::verifySiblingFuncletUnwinds() {
2694   SmallPtrSet<Instruction *, 8> Visited;
2695   SmallPtrSet<Instruction *, 8> Active;
2696   for (const auto &Pair : SiblingFuncletInfo) {
2697     Instruction *PredPad = Pair.first;
2698     if (Visited.count(PredPad))
2699       continue;
2700     Active.insert(PredPad);
2701     Instruction *Terminator = Pair.second;
2702     do {
2703       Instruction *SuccPad = getSuccPad(Terminator);
2704       if (Active.count(SuccPad)) {
2705         // Found a cycle; report error
2706         Instruction *CyclePad = SuccPad;
2707         SmallVector<Instruction *, 8> CycleNodes;
2708         do {
2709           CycleNodes.push_back(CyclePad);
2710           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2711           if (CycleTerminator != CyclePad)
2712             CycleNodes.push_back(CycleTerminator);
2713           CyclePad = getSuccPad(CycleTerminator);
2714         } while (CyclePad != SuccPad);
2715         Check(false, "EH pads can't handle each other's exceptions",
2716               ArrayRef<Instruction *>(CycleNodes));
2717       }
2718       // Don't re-walk a node we've already checked
2719       if (!Visited.insert(SuccPad).second)
2720         break;
2721       // Walk to this successor if it has a map entry.
2722       PredPad = SuccPad;
2723       auto TermI = SiblingFuncletInfo.find(PredPad);
2724       if (TermI == SiblingFuncletInfo.end())
2725         break;
2726       Terminator = TermI->second;
2727       Active.insert(PredPad);
2728     } while (true);
2729     // Each node only has one successor, so we've walked all the active
2730     // nodes' successors.
2731     Active.clear();
2732   }
2733 }
2734 
2735 // visitFunction - Verify that a function is ok.
2736 //
2737 void Verifier::visitFunction(const Function &F) {
2738   visitGlobalValue(F);
2739 
2740   // Check function arguments.
2741   FunctionType *FT = F.getFunctionType();
2742   unsigned NumArgs = F.arg_size();
2743 
2744   Check(&Context == &F.getContext(),
2745         "Function context does not match Module context!", &F);
2746 
2747   Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2748   Check(FT->getNumParams() == NumArgs,
2749         "# formal arguments must match # of arguments for function type!", &F,
2750         FT);
2751   Check(F.getReturnType()->isFirstClassType() ||
2752             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2753         "Functions cannot return aggregate values!", &F);
2754 
2755   Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2756         "Invalid struct return type!", &F);
2757 
2758   AttributeList Attrs = F.getAttributes();
2759 
2760   Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2761         "Attribute after last parameter!", &F);
2762 
2763   CheckDI(F.IsNewDbgInfoFormat == F.getParent()->IsNewDbgInfoFormat,
2764           "Function debug format should match parent module", &F,
2765           F.IsNewDbgInfoFormat, F.getParent(),
2766           F.getParent()->IsNewDbgInfoFormat);
2767 
2768   bool IsIntrinsic = F.isIntrinsic();
2769 
2770   // Check function attributes.
2771   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2772 
2773   // On function declarations/definitions, we do not support the builtin
2774   // attribute. We do not check this in VerifyFunctionAttrs since that is
2775   // checking for Attributes that can/can not ever be on functions.
2776   Check(!Attrs.hasFnAttr(Attribute::Builtin),
2777         "Attribute 'builtin' can only be applied to a callsite.", &F);
2778 
2779   Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2780         "Attribute 'elementtype' can only be applied to a callsite.", &F);
2781 
2782   // Check that this function meets the restrictions on this calling convention.
2783   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2784   // restrictions can be lifted.
2785   switch (F.getCallingConv()) {
2786   default:
2787   case CallingConv::C:
2788     break;
2789   case CallingConv::X86_INTR: {
2790     Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2791           "Calling convention parameter requires byval", &F);
2792     break;
2793   }
2794   case CallingConv::AMDGPU_KERNEL:
2795   case CallingConv::SPIR_KERNEL:
2796   case CallingConv::AMDGPU_CS_Chain:
2797   case CallingConv::AMDGPU_CS_ChainPreserve:
2798     Check(F.getReturnType()->isVoidTy(),
2799           "Calling convention requires void return type", &F);
2800     [[fallthrough]];
2801   case CallingConv::AMDGPU_VS:
2802   case CallingConv::AMDGPU_HS:
2803   case CallingConv::AMDGPU_GS:
2804   case CallingConv::AMDGPU_PS:
2805   case CallingConv::AMDGPU_CS:
2806     Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2807     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2808       const unsigned StackAS = DL.getAllocaAddrSpace();
2809       unsigned i = 0;
2810       for (const Argument &Arg : F.args()) {
2811         Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2812               "Calling convention disallows byval", &F);
2813         Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2814               "Calling convention disallows preallocated", &F);
2815         Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2816               "Calling convention disallows inalloca", &F);
2817 
2818         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2819           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2820           // value here.
2821           Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2822                 "Calling convention disallows stack byref", &F);
2823         }
2824 
2825         ++i;
2826       }
2827     }
2828 
2829     [[fallthrough]];
2830   case CallingConv::Fast:
2831   case CallingConv::Cold:
2832   case CallingConv::Intel_OCL_BI:
2833   case CallingConv::PTX_Kernel:
2834   case CallingConv::PTX_Device:
2835     Check(!F.isVarArg(),
2836           "Calling convention does not support varargs or "
2837           "perfect forwarding!",
2838           &F);
2839     break;
2840   }
2841 
2842   // Check that the argument values match the function type for this function...
2843   unsigned i = 0;
2844   for (const Argument &Arg : F.args()) {
2845     Check(Arg.getType() == FT->getParamType(i),
2846           "Argument value does not match function argument type!", &Arg,
2847           FT->getParamType(i));
2848     Check(Arg.getType()->isFirstClassType(),
2849           "Function arguments must have first-class types!", &Arg);
2850     if (!IsIntrinsic) {
2851       Check(!Arg.getType()->isMetadataTy(),
2852             "Function takes metadata but isn't an intrinsic", &Arg, &F);
2853       Check(!Arg.getType()->isTokenTy(),
2854             "Function takes token but isn't an intrinsic", &Arg, &F);
2855       Check(!Arg.getType()->isX86_AMXTy(),
2856             "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2857     }
2858 
2859     // Check that swifterror argument is only used by loads and stores.
2860     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2861       verifySwiftErrorValue(&Arg);
2862     }
2863     ++i;
2864   }
2865 
2866   if (!IsIntrinsic) {
2867     Check(!F.getReturnType()->isTokenTy(),
2868           "Function returns a token but isn't an intrinsic", &F);
2869     Check(!F.getReturnType()->isX86_AMXTy(),
2870           "Function returns a x86_amx but isn't an intrinsic", &F);
2871   }
2872 
2873   // Get the function metadata attachments.
2874   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2875   F.getAllMetadata(MDs);
2876   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2877   verifyFunctionMetadata(MDs);
2878 
2879   // Check validity of the personality function
2880   if (F.hasPersonalityFn()) {
2881     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2882     if (Per)
2883       Check(Per->getParent() == F.getParent(),
2884             "Referencing personality function in another module!", &F,
2885             F.getParent(), Per, Per->getParent());
2886   }
2887 
2888   // EH funclet coloring can be expensive, recompute on-demand
2889   BlockEHFuncletColors.clear();
2890 
2891   if (F.isMaterializable()) {
2892     // Function has a body somewhere we can't see.
2893     Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2894           MDs.empty() ? nullptr : MDs.front().second);
2895   } else if (F.isDeclaration()) {
2896     for (const auto &I : MDs) {
2897       // This is used for call site debug information.
2898       CheckDI(I.first != LLVMContext::MD_dbg ||
2899                   !cast<DISubprogram>(I.second)->isDistinct(),
2900               "function declaration may only have a unique !dbg attachment",
2901               &F);
2902       Check(I.first != LLVMContext::MD_prof,
2903             "function declaration may not have a !prof attachment", &F);
2904 
2905       // Verify the metadata itself.
2906       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2907     }
2908     Check(!F.hasPersonalityFn(),
2909           "Function declaration shouldn't have a personality routine", &F);
2910   } else {
2911     // Verify that this function (which has a body) is not named "llvm.*".  It
2912     // is not legal to define intrinsics.
2913     Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2914 
2915     // Check the entry node
2916     const BasicBlock *Entry = &F.getEntryBlock();
2917     Check(pred_empty(Entry),
2918           "Entry block to function must not have predecessors!", Entry);
2919 
2920     // The address of the entry block cannot be taken, unless it is dead.
2921     if (Entry->hasAddressTaken()) {
2922       Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2923             "blockaddress may not be used with the entry block!", Entry);
2924     }
2925 
2926     unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2927              NumKCFIAttachments = 0;
2928     // Visit metadata attachments.
2929     for (const auto &I : MDs) {
2930       // Verify that the attachment is legal.
2931       auto AllowLocs = AreDebugLocsAllowed::No;
2932       switch (I.first) {
2933       default:
2934         break;
2935       case LLVMContext::MD_dbg: {
2936         ++NumDebugAttachments;
2937         CheckDI(NumDebugAttachments == 1,
2938                 "function must have a single !dbg attachment", &F, I.second);
2939         CheckDI(isa<DISubprogram>(I.second),
2940                 "function !dbg attachment must be a subprogram", &F, I.second);
2941         CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2942                 "function definition may only have a distinct !dbg attachment",
2943                 &F);
2944 
2945         auto *SP = cast<DISubprogram>(I.second);
2946         const Function *&AttachedTo = DISubprogramAttachments[SP];
2947         CheckDI(!AttachedTo || AttachedTo == &F,
2948                 "DISubprogram attached to more than one function", SP, &F);
2949         AttachedTo = &F;
2950         AllowLocs = AreDebugLocsAllowed::Yes;
2951         break;
2952       }
2953       case LLVMContext::MD_prof:
2954         ++NumProfAttachments;
2955         Check(NumProfAttachments == 1,
2956               "function must have a single !prof attachment", &F, I.second);
2957         break;
2958       case LLVMContext::MD_kcfi_type:
2959         ++NumKCFIAttachments;
2960         Check(NumKCFIAttachments == 1,
2961               "function must have a single !kcfi_type attachment", &F,
2962               I.second);
2963         break;
2964       }
2965 
2966       // Verify the metadata itself.
2967       visitMDNode(*I.second, AllowLocs);
2968     }
2969   }
2970 
2971   // If this function is actually an intrinsic, verify that it is only used in
2972   // direct call/invokes, never having its "address taken".
2973   // Only do this if the module is materialized, otherwise we don't have all the
2974   // uses.
2975   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2976     const User *U;
2977     if (F.hasAddressTaken(&U, false, true, false,
2978                           /*IgnoreARCAttachedCall=*/true))
2979       Check(false, "Invalid user of intrinsic instruction!", U);
2980   }
2981 
2982   // Check intrinsics' signatures.
2983   switch (F.getIntrinsicID()) {
2984   case Intrinsic::experimental_gc_get_pointer_base: {
2985     FunctionType *FT = F.getFunctionType();
2986     Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2987     Check(isa<PointerType>(F.getReturnType()),
2988           "gc.get.pointer.base must return a pointer", F);
2989     Check(FT->getParamType(0) == F.getReturnType(),
2990           "gc.get.pointer.base operand and result must be of the same type", F);
2991     break;
2992   }
2993   case Intrinsic::experimental_gc_get_pointer_offset: {
2994     FunctionType *FT = F.getFunctionType();
2995     Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2996     Check(isa<PointerType>(FT->getParamType(0)),
2997           "gc.get.pointer.offset operand must be a pointer", F);
2998     Check(F.getReturnType()->isIntegerTy(),
2999           "gc.get.pointer.offset must return integer", F);
3000     break;
3001   }
3002   }
3003 
3004   auto *N = F.getSubprogram();
3005   HasDebugInfo = (N != nullptr);
3006   if (!HasDebugInfo)
3007     return;
3008 
3009   // Check that all !dbg attachments lead to back to N.
3010   //
3011   // FIXME: Check this incrementally while visiting !dbg attachments.
3012   // FIXME: Only check when N is the canonical subprogram for F.
3013   SmallPtrSet<const MDNode *, 32> Seen;
3014   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
3015     // Be careful about using DILocation here since we might be dealing with
3016     // broken code (this is the Verifier after all).
3017     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
3018     if (!DL)
3019       return;
3020     if (!Seen.insert(DL).second)
3021       return;
3022 
3023     Metadata *Parent = DL->getRawScope();
3024     CheckDI(Parent && isa<DILocalScope>(Parent),
3025             "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
3026 
3027     DILocalScope *Scope = DL->getInlinedAtScope();
3028     Check(Scope, "Failed to find DILocalScope", DL);
3029 
3030     if (!Seen.insert(Scope).second)
3031       return;
3032 
3033     DISubprogram *SP = Scope->getSubprogram();
3034 
3035     // Scope and SP could be the same MDNode and we don't want to skip
3036     // validation in that case
3037     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
3038       return;
3039 
3040     CheckDI(SP->describes(&F),
3041             "!dbg attachment points at wrong subprogram for function", N, &F,
3042             &I, DL, Scope, SP);
3043   };
3044   for (auto &BB : F)
3045     for (auto &I : BB) {
3046       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
3047       // The llvm.loop annotations also contain two DILocations.
3048       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
3049         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
3050           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
3051       if (BrokenDebugInfo)
3052         return;
3053     }
3054 }
3055 
3056 // verifyBasicBlock - Verify that a basic block is well formed...
3057 //
3058 void Verifier::visitBasicBlock(BasicBlock &BB) {
3059   InstsInThisBlock.clear();
3060   ConvergenceVerifyHelper.visit(BB);
3061 
3062   // Ensure that basic blocks have terminators!
3063   Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
3064 
3065   // Check constraints that this basic block imposes on all of the PHI nodes in
3066   // it.
3067   if (isa<PHINode>(BB.front())) {
3068     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
3069     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
3070     llvm::sort(Preds);
3071     for (const PHINode &PN : BB.phis()) {
3072       Check(PN.getNumIncomingValues() == Preds.size(),
3073             "PHINode should have one entry for each predecessor of its "
3074             "parent basic block!",
3075             &PN);
3076 
3077       // Get and sort all incoming values in the PHI node...
3078       Values.clear();
3079       Values.reserve(PN.getNumIncomingValues());
3080       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
3081         Values.push_back(
3082             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
3083       llvm::sort(Values);
3084 
3085       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
3086         // Check to make sure that if there is more than one entry for a
3087         // particular basic block in this PHI node, that the incoming values are
3088         // all identical.
3089         //
3090         Check(i == 0 || Values[i].first != Values[i - 1].first ||
3091                   Values[i].second == Values[i - 1].second,
3092               "PHI node has multiple entries for the same basic block with "
3093               "different incoming values!",
3094               &PN, Values[i].first, Values[i].second, Values[i - 1].second);
3095 
3096         // Check to make sure that the predecessors and PHI node entries are
3097         // matched up.
3098         Check(Values[i].first == Preds[i],
3099               "PHI node entries do not match predecessors!", &PN,
3100               Values[i].first, Preds[i]);
3101       }
3102     }
3103   }
3104 
3105   // Check that all instructions have their parent pointers set up correctly.
3106   for (auto &I : BB)
3107   {
3108     Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
3109   }
3110 
3111   CheckDI(BB.IsNewDbgInfoFormat == BB.getParent()->IsNewDbgInfoFormat,
3112           "BB debug format should match parent function", &BB,
3113           BB.IsNewDbgInfoFormat, BB.getParent(),
3114           BB.getParent()->IsNewDbgInfoFormat);
3115 
3116   // Confirm that no issues arise from the debug program.
3117   if (BB.IsNewDbgInfoFormat)
3118     CheckDI(!BB.getTrailingDbgRecords(), "Basic Block has trailing DbgRecords!",
3119             &BB);
3120 }
3121 
3122 void Verifier::visitTerminator(Instruction &I) {
3123   // Ensure that terminators only exist at the end of the basic block.
3124   Check(&I == I.getParent()->getTerminator(),
3125         "Terminator found in the middle of a basic block!", I.getParent());
3126   visitInstruction(I);
3127 }
3128 
3129 void Verifier::visitBranchInst(BranchInst &BI) {
3130   if (BI.isConditional()) {
3131     Check(BI.getCondition()->getType()->isIntegerTy(1),
3132           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
3133   }
3134   visitTerminator(BI);
3135 }
3136 
3137 void Verifier::visitReturnInst(ReturnInst &RI) {
3138   Function *F = RI.getParent()->getParent();
3139   unsigned N = RI.getNumOperands();
3140   if (F->getReturnType()->isVoidTy())
3141     Check(N == 0,
3142           "Found return instr that returns non-void in Function of void "
3143           "return type!",
3144           &RI, F->getReturnType());
3145   else
3146     Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
3147           "Function return type does not match operand "
3148           "type of return inst!",
3149           &RI, F->getReturnType());
3150 
3151   // Check to make sure that the return value has necessary properties for
3152   // terminators...
3153   visitTerminator(RI);
3154 }
3155 
3156 void Verifier::visitSwitchInst(SwitchInst &SI) {
3157   Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
3158   // Check to make sure that all of the constants in the switch instruction
3159   // have the same type as the switched-on value.
3160   Type *SwitchTy = SI.getCondition()->getType();
3161   SmallPtrSet<ConstantInt*, 32> Constants;
3162   for (auto &Case : SI.cases()) {
3163     Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
3164           "Case value is not a constant integer.", &SI);
3165     Check(Case.getCaseValue()->getType() == SwitchTy,
3166           "Switch constants must all be same type as switch value!", &SI);
3167     Check(Constants.insert(Case.getCaseValue()).second,
3168           "Duplicate integer as switch case", &SI, Case.getCaseValue());
3169   }
3170 
3171   visitTerminator(SI);
3172 }
3173 
3174 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3175   Check(BI.getAddress()->getType()->isPointerTy(),
3176         "Indirectbr operand must have pointer type!", &BI);
3177   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
3178     Check(BI.getDestination(i)->getType()->isLabelTy(),
3179           "Indirectbr destinations must all have pointer type!", &BI);
3180 
3181   visitTerminator(BI);
3182 }
3183 
3184 void Verifier::visitCallBrInst(CallBrInst &CBI) {
3185   Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
3186   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
3187   Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
3188 
3189   verifyInlineAsmCall(CBI);
3190   visitTerminator(CBI);
3191 }
3192 
3193 void Verifier::visitSelectInst(SelectInst &SI) {
3194   Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
3195                                         SI.getOperand(2)),
3196         "Invalid operands for select instruction!", &SI);
3197 
3198   Check(SI.getTrueValue()->getType() == SI.getType(),
3199         "Select values must have same type as select instruction!", &SI);
3200   visitInstruction(SI);
3201 }
3202 
3203 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3204 /// a pass, if any exist, it's an error.
3205 ///
3206 void Verifier::visitUserOp1(Instruction &I) {
3207   Check(false, "User-defined operators should not live outside of a pass!", &I);
3208 }
3209 
3210 void Verifier::visitTruncInst(TruncInst &I) {
3211   // Get the source and destination types
3212   Type *SrcTy = I.getOperand(0)->getType();
3213   Type *DestTy = I.getType();
3214 
3215   // Get the size of the types in bits, we'll need this later
3216   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3217   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3218 
3219   Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
3220   Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
3221   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3222         "trunc source and destination must both be a vector or neither", &I);
3223   Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
3224 
3225   visitInstruction(I);
3226 }
3227 
3228 void Verifier::visitZExtInst(ZExtInst &I) {
3229   // Get the source and destination types
3230   Type *SrcTy = I.getOperand(0)->getType();
3231   Type *DestTy = I.getType();
3232 
3233   // Get the size of the types in bits, we'll need this later
3234   Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
3235   Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
3236   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3237         "zext source and destination must both be a vector or neither", &I);
3238   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3239   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3240 
3241   Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
3242 
3243   visitInstruction(I);
3244 }
3245 
3246 void Verifier::visitSExtInst(SExtInst &I) {
3247   // Get the source and destination types
3248   Type *SrcTy = I.getOperand(0)->getType();
3249   Type *DestTy = I.getType();
3250 
3251   // Get the size of the types in bits, we'll need this later
3252   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3253   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3254 
3255   Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
3256   Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
3257   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3258         "sext source and destination must both be a vector or neither", &I);
3259   Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
3260 
3261   visitInstruction(I);
3262 }
3263 
3264 void Verifier::visitFPTruncInst(FPTruncInst &I) {
3265   // Get the source and destination types
3266   Type *SrcTy = I.getOperand(0)->getType();
3267   Type *DestTy = I.getType();
3268   // Get the size of the types in bits, we'll need this later
3269   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3270   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3271 
3272   Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
3273   Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
3274   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3275         "fptrunc source and destination must both be a vector or neither", &I);
3276   Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3277 
3278   visitInstruction(I);
3279 }
3280 
3281 void Verifier::visitFPExtInst(FPExtInst &I) {
3282   // Get the source and destination types
3283   Type *SrcTy = I.getOperand(0)->getType();
3284   Type *DestTy = I.getType();
3285 
3286   // Get the size of the types in bits, we'll need this later
3287   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3288   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3289 
3290   Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3291   Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3292   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3293         "fpext source and destination must both be a vector or neither", &I);
3294   Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3295 
3296   visitInstruction(I);
3297 }
3298 
3299 void Verifier::visitUIToFPInst(UIToFPInst &I) {
3300   // Get the source and destination types
3301   Type *SrcTy = I.getOperand(0)->getType();
3302   Type *DestTy = I.getType();
3303 
3304   bool SrcVec = SrcTy->isVectorTy();
3305   bool DstVec = DestTy->isVectorTy();
3306 
3307   Check(SrcVec == DstVec,
3308         "UIToFP source and dest must both be vector or scalar", &I);
3309   Check(SrcTy->isIntOrIntVectorTy(),
3310         "UIToFP source must be integer or integer vector", &I);
3311   Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3312         &I);
3313 
3314   if (SrcVec && DstVec)
3315     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3316               cast<VectorType>(DestTy)->getElementCount(),
3317           "UIToFP source and dest vector length mismatch", &I);
3318 
3319   visitInstruction(I);
3320 }
3321 
3322 void Verifier::visitSIToFPInst(SIToFPInst &I) {
3323   // Get the source and destination types
3324   Type *SrcTy = I.getOperand(0)->getType();
3325   Type *DestTy = I.getType();
3326 
3327   bool SrcVec = SrcTy->isVectorTy();
3328   bool DstVec = DestTy->isVectorTy();
3329 
3330   Check(SrcVec == DstVec,
3331         "SIToFP source and dest must both be vector or scalar", &I);
3332   Check(SrcTy->isIntOrIntVectorTy(),
3333         "SIToFP source must be integer or integer vector", &I);
3334   Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3335         &I);
3336 
3337   if (SrcVec && DstVec)
3338     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3339               cast<VectorType>(DestTy)->getElementCount(),
3340           "SIToFP source and dest vector length mismatch", &I);
3341 
3342   visitInstruction(I);
3343 }
3344 
3345 void Verifier::visitFPToUIInst(FPToUIInst &I) {
3346   // Get the source and destination types
3347   Type *SrcTy = I.getOperand(0)->getType();
3348   Type *DestTy = I.getType();
3349 
3350   bool SrcVec = SrcTy->isVectorTy();
3351   bool DstVec = DestTy->isVectorTy();
3352 
3353   Check(SrcVec == DstVec,
3354         "FPToUI source and dest must both be vector or scalar", &I);
3355   Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3356   Check(DestTy->isIntOrIntVectorTy(),
3357         "FPToUI result must be integer or integer vector", &I);
3358 
3359   if (SrcVec && DstVec)
3360     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3361               cast<VectorType>(DestTy)->getElementCount(),
3362           "FPToUI source and dest vector length mismatch", &I);
3363 
3364   visitInstruction(I);
3365 }
3366 
3367 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3368   // Get the source and destination types
3369   Type *SrcTy = I.getOperand(0)->getType();
3370   Type *DestTy = I.getType();
3371 
3372   bool SrcVec = SrcTy->isVectorTy();
3373   bool DstVec = DestTy->isVectorTy();
3374 
3375   Check(SrcVec == DstVec,
3376         "FPToSI source and dest must both be vector or scalar", &I);
3377   Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3378   Check(DestTy->isIntOrIntVectorTy(),
3379         "FPToSI result must be integer or integer vector", &I);
3380 
3381   if (SrcVec && DstVec)
3382     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3383               cast<VectorType>(DestTy)->getElementCount(),
3384           "FPToSI source and dest vector length mismatch", &I);
3385 
3386   visitInstruction(I);
3387 }
3388 
3389 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3390   // Get the source and destination types
3391   Type *SrcTy = I.getOperand(0)->getType();
3392   Type *DestTy = I.getType();
3393 
3394   Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3395 
3396   Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3397   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3398         &I);
3399 
3400   if (SrcTy->isVectorTy()) {
3401     auto *VSrc = cast<VectorType>(SrcTy);
3402     auto *VDest = cast<VectorType>(DestTy);
3403     Check(VSrc->getElementCount() == VDest->getElementCount(),
3404           "PtrToInt Vector width mismatch", &I);
3405   }
3406 
3407   visitInstruction(I);
3408 }
3409 
3410 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3411   // Get the source and destination types
3412   Type *SrcTy = I.getOperand(0)->getType();
3413   Type *DestTy = I.getType();
3414 
3415   Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3416   Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3417 
3418   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3419         &I);
3420   if (SrcTy->isVectorTy()) {
3421     auto *VSrc = cast<VectorType>(SrcTy);
3422     auto *VDest = cast<VectorType>(DestTy);
3423     Check(VSrc->getElementCount() == VDest->getElementCount(),
3424           "IntToPtr Vector width mismatch", &I);
3425   }
3426   visitInstruction(I);
3427 }
3428 
3429 void Verifier::visitBitCastInst(BitCastInst &I) {
3430   Check(
3431       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3432       "Invalid bitcast", &I);
3433   visitInstruction(I);
3434 }
3435 
3436 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3437   Type *SrcTy = I.getOperand(0)->getType();
3438   Type *DestTy = I.getType();
3439 
3440   Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3441         &I);
3442   Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3443         &I);
3444   Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3445         "AddrSpaceCast must be between different address spaces", &I);
3446   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3447     Check(SrcVTy->getElementCount() ==
3448               cast<VectorType>(DestTy)->getElementCount(),
3449           "AddrSpaceCast vector pointer number of elements mismatch", &I);
3450   visitInstruction(I);
3451 }
3452 
3453 /// visitPHINode - Ensure that a PHI node is well formed.
3454 ///
3455 void Verifier::visitPHINode(PHINode &PN) {
3456   // Ensure that the PHI nodes are all grouped together at the top of the block.
3457   // This can be tested by checking whether the instruction before this is
3458   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3459   // then there is some other instruction before a PHI.
3460   Check(&PN == &PN.getParent()->front() ||
3461             isa<PHINode>(--BasicBlock::iterator(&PN)),
3462         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3463 
3464   // Check that a PHI doesn't yield a Token.
3465   Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3466 
3467   // Check that all of the values of the PHI node have the same type as the
3468   // result.
3469   for (Value *IncValue : PN.incoming_values()) {
3470     Check(PN.getType() == IncValue->getType(),
3471           "PHI node operands are not the same type as the result!", &PN);
3472   }
3473 
3474   // All other PHI node constraints are checked in the visitBasicBlock method.
3475 
3476   visitInstruction(PN);
3477 }
3478 
3479 void Verifier::visitCallBase(CallBase &Call) {
3480   Check(Call.getCalledOperand()->getType()->isPointerTy(),
3481         "Called function must be a pointer!", Call);
3482   FunctionType *FTy = Call.getFunctionType();
3483 
3484   // Verify that the correct number of arguments are being passed
3485   if (FTy->isVarArg())
3486     Check(Call.arg_size() >= FTy->getNumParams(),
3487           "Called function requires more parameters than were provided!", Call);
3488   else
3489     Check(Call.arg_size() == FTy->getNumParams(),
3490           "Incorrect number of arguments passed to called function!", Call);
3491 
3492   // Verify that all arguments to the call match the function type.
3493   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3494     Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3495           "Call parameter type does not match function signature!",
3496           Call.getArgOperand(i), FTy->getParamType(i), Call);
3497 
3498   AttributeList Attrs = Call.getAttributes();
3499 
3500   Check(verifyAttributeCount(Attrs, Call.arg_size()),
3501         "Attribute after last parameter!", Call);
3502 
3503   Function *Callee =
3504       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3505   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3506   if (IsIntrinsic)
3507     Check(Callee->getValueType() == FTy,
3508           "Intrinsic called with incompatible signature", Call);
3509 
3510   // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3511   // convention.
3512   auto CC = Call.getCallingConv();
3513   Check(CC != CallingConv::AMDGPU_CS_Chain &&
3514             CC != CallingConv::AMDGPU_CS_ChainPreserve,
3515         "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3516         "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3517         Call);
3518 
3519   // Disallow passing/returning values with alignment higher than we can
3520   // represent.
3521   // FIXME: Consider making DataLayout cap the alignment, so this isn't
3522   // necessary.
3523   auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3524     if (!Ty->isSized())
3525       return;
3526     Align ABIAlign = DL.getABITypeAlign(Ty);
3527     Check(ABIAlign.value() <= Value::MaximumAlignment,
3528           "Incorrect alignment of " + Message + " to called function!", Call);
3529   };
3530 
3531   if (!IsIntrinsic) {
3532     VerifyTypeAlign(FTy->getReturnType(), "return type");
3533     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3534       Type *Ty = FTy->getParamType(i);
3535       VerifyTypeAlign(Ty, "argument passed");
3536     }
3537   }
3538 
3539   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3540     // Don't allow speculatable on call sites, unless the underlying function
3541     // declaration is also speculatable.
3542     Check(Callee && Callee->isSpeculatable(),
3543           "speculatable attribute may not apply to call sites", Call);
3544   }
3545 
3546   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3547     Check(Call.getCalledFunction()->getIntrinsicID() ==
3548               Intrinsic::call_preallocated_arg,
3549           "preallocated as a call site attribute can only be on "
3550           "llvm.call.preallocated.arg");
3551   }
3552 
3553   // Verify call attributes.
3554   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3555 
3556   // Conservatively check the inalloca argument.
3557   // We have a bug if we can find that there is an underlying alloca without
3558   // inalloca.
3559   if (Call.hasInAllocaArgument()) {
3560     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3561     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3562       Check(AI->isUsedWithInAlloca(),
3563             "inalloca argument for call has mismatched alloca", AI, Call);
3564   }
3565 
3566   // For each argument of the callsite, if it has the swifterror argument,
3567   // make sure the underlying alloca/parameter it comes from has a swifterror as
3568   // well.
3569   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3570     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3571       Value *SwiftErrorArg = Call.getArgOperand(i);
3572       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3573         Check(AI->isSwiftError(),
3574               "swifterror argument for call has mismatched alloca", AI, Call);
3575         continue;
3576       }
3577       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3578       Check(ArgI, "swifterror argument should come from an alloca or parameter",
3579             SwiftErrorArg, Call);
3580       Check(ArgI->hasSwiftErrorAttr(),
3581             "swifterror argument for call has mismatched parameter", ArgI,
3582             Call);
3583     }
3584 
3585     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3586       // Don't allow immarg on call sites, unless the underlying declaration
3587       // also has the matching immarg.
3588       Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3589             "immarg may not apply only to call sites", Call.getArgOperand(i),
3590             Call);
3591     }
3592 
3593     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3594       Value *ArgVal = Call.getArgOperand(i);
3595       Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3596             "immarg operand has non-immediate parameter", ArgVal, Call);
3597     }
3598 
3599     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3600       Value *ArgVal = Call.getArgOperand(i);
3601       bool hasOB =
3602           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3603       bool isMustTail = Call.isMustTailCall();
3604       Check(hasOB != isMustTail,
3605             "preallocated operand either requires a preallocated bundle or "
3606             "the call to be musttail (but not both)",
3607             ArgVal, Call);
3608     }
3609   }
3610 
3611   if (FTy->isVarArg()) {
3612     // FIXME? is 'nest' even legal here?
3613     bool SawNest = false;
3614     bool SawReturned = false;
3615 
3616     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3617       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3618         SawNest = true;
3619       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3620         SawReturned = true;
3621     }
3622 
3623     // Check attributes on the varargs part.
3624     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3625       Type *Ty = Call.getArgOperand(Idx)->getType();
3626       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3627       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3628 
3629       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3630         Check(!SawNest, "More than one parameter has attribute nest!", Call);
3631         SawNest = true;
3632       }
3633 
3634       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3635         Check(!SawReturned, "More than one parameter has attribute returned!",
3636               Call);
3637         Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3638               "Incompatible argument and return types for 'returned' "
3639               "attribute",
3640               Call);
3641         SawReturned = true;
3642       }
3643 
3644       // Statepoint intrinsic is vararg but the wrapped function may be not.
3645       // Allow sret here and check the wrapped function in verifyStatepoint.
3646       if (!Call.getCalledFunction() ||
3647           Call.getCalledFunction()->getIntrinsicID() !=
3648               Intrinsic::experimental_gc_statepoint)
3649         Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3650               "Attribute 'sret' cannot be used for vararg call arguments!",
3651               Call);
3652 
3653       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3654         Check(Idx == Call.arg_size() - 1,
3655               "inalloca isn't on the last argument!", Call);
3656     }
3657   }
3658 
3659   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3660   if (!IsIntrinsic) {
3661     for (Type *ParamTy : FTy->params()) {
3662       Check(!ParamTy->isMetadataTy(),
3663             "Function has metadata parameter but isn't an intrinsic", Call);
3664       Check(!ParamTy->isTokenTy(),
3665             "Function has token parameter but isn't an intrinsic", Call);
3666     }
3667   }
3668 
3669   // Verify that indirect calls don't return tokens.
3670   if (!Call.getCalledFunction()) {
3671     Check(!FTy->getReturnType()->isTokenTy(),
3672           "Return type cannot be token for indirect call!");
3673     Check(!FTy->getReturnType()->isX86_AMXTy(),
3674           "Return type cannot be x86_amx for indirect call!");
3675   }
3676 
3677   if (Function *F = Call.getCalledFunction())
3678     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3679       visitIntrinsicCall(ID, Call);
3680 
3681   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3682   // most one "gc-transition", at most one "cfguardtarget", at most one
3683   // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3684   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3685        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3686        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3687        FoundPtrauthBundle = false, FoundKCFIBundle = false,
3688        FoundAttachedCallBundle = false;
3689   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3690     OperandBundleUse BU = Call.getOperandBundleAt(i);
3691     uint32_t Tag = BU.getTagID();
3692     if (Tag == LLVMContext::OB_deopt) {
3693       Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3694       FoundDeoptBundle = true;
3695     } else if (Tag == LLVMContext::OB_gc_transition) {
3696       Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3697             Call);
3698       FoundGCTransitionBundle = true;
3699     } else if (Tag == LLVMContext::OB_funclet) {
3700       Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3701       FoundFuncletBundle = true;
3702       Check(BU.Inputs.size() == 1,
3703             "Expected exactly one funclet bundle operand", Call);
3704       Check(isa<FuncletPadInst>(BU.Inputs.front()),
3705             "Funclet bundle operands should correspond to a FuncletPadInst",
3706             Call);
3707     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3708       Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3709             Call);
3710       FoundCFGuardTargetBundle = true;
3711       Check(BU.Inputs.size() == 1,
3712             "Expected exactly one cfguardtarget bundle operand", Call);
3713     } else if (Tag == LLVMContext::OB_ptrauth) {
3714       Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3715       FoundPtrauthBundle = true;
3716       Check(BU.Inputs.size() == 2,
3717             "Expected exactly two ptrauth bundle operands", Call);
3718       Check(isa<ConstantInt>(BU.Inputs[0]) &&
3719                 BU.Inputs[0]->getType()->isIntegerTy(32),
3720             "Ptrauth bundle key operand must be an i32 constant", Call);
3721       Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3722             "Ptrauth bundle discriminator operand must be an i64", Call);
3723     } else if (Tag == LLVMContext::OB_kcfi) {
3724       Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3725       FoundKCFIBundle = true;
3726       Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3727             Call);
3728       Check(isa<ConstantInt>(BU.Inputs[0]) &&
3729                 BU.Inputs[0]->getType()->isIntegerTy(32),
3730             "Kcfi bundle operand must be an i32 constant", Call);
3731     } else if (Tag == LLVMContext::OB_preallocated) {
3732       Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3733             Call);
3734       FoundPreallocatedBundle = true;
3735       Check(BU.Inputs.size() == 1,
3736             "Expected exactly one preallocated bundle operand", Call);
3737       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3738       Check(Input &&
3739                 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3740             "\"preallocated\" argument must be a token from "
3741             "llvm.call.preallocated.setup",
3742             Call);
3743     } else if (Tag == LLVMContext::OB_gc_live) {
3744       Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3745       FoundGCLiveBundle = true;
3746     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3747       Check(!FoundAttachedCallBundle,
3748             "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3749       FoundAttachedCallBundle = true;
3750       verifyAttachedCallBundle(Call, BU);
3751     }
3752   }
3753 
3754   // Verify that callee and callsite agree on whether to use pointer auth.
3755   Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3756         "Direct call cannot have a ptrauth bundle", Call);
3757 
3758   // Verify that each inlinable callsite of a debug-info-bearing function in a
3759   // debug-info-bearing function has a debug location attached to it. Failure to
3760   // do so causes assertion failures when the inliner sets up inline scope info
3761   // (Interposable functions are not inlinable, neither are functions without
3762   //  definitions.)
3763   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3764       !Call.getCalledFunction()->isInterposable() &&
3765       !Call.getCalledFunction()->isDeclaration() &&
3766       Call.getCalledFunction()->getSubprogram())
3767     CheckDI(Call.getDebugLoc(),
3768             "inlinable function call in a function with "
3769             "debug info must have a !dbg location",
3770             Call);
3771 
3772   if (Call.isInlineAsm())
3773     verifyInlineAsmCall(Call);
3774 
3775   ConvergenceVerifyHelper.visit(Call);
3776 
3777   visitInstruction(Call);
3778 }
3779 
3780 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3781                                          StringRef Context) {
3782   Check(!Attrs.contains(Attribute::InAlloca),
3783         Twine("inalloca attribute not allowed in ") + Context);
3784   Check(!Attrs.contains(Attribute::InReg),
3785         Twine("inreg attribute not allowed in ") + Context);
3786   Check(!Attrs.contains(Attribute::SwiftError),
3787         Twine("swifterror attribute not allowed in ") + Context);
3788   Check(!Attrs.contains(Attribute::Preallocated),
3789         Twine("preallocated attribute not allowed in ") + Context);
3790   Check(!Attrs.contains(Attribute::ByRef),
3791         Twine("byref attribute not allowed in ") + Context);
3792 }
3793 
3794 /// Two types are "congruent" if they are identical, or if they are both pointer
3795 /// types with different pointee types and the same address space.
3796 static bool isTypeCongruent(Type *L, Type *R) {
3797   if (L == R)
3798     return true;
3799   PointerType *PL = dyn_cast<PointerType>(L);
3800   PointerType *PR = dyn_cast<PointerType>(R);
3801   if (!PL || !PR)
3802     return false;
3803   return PL->getAddressSpace() == PR->getAddressSpace();
3804 }
3805 
3806 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3807   static const Attribute::AttrKind ABIAttrs[] = {
3808       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3809       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3810       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3811       Attribute::ByRef};
3812   AttrBuilder Copy(C);
3813   for (auto AK : ABIAttrs) {
3814     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3815     if (Attr.isValid())
3816       Copy.addAttribute(Attr);
3817   }
3818 
3819   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3820   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3821       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3822        Attrs.hasParamAttr(I, Attribute::ByRef)))
3823     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3824   return Copy;
3825 }
3826 
3827 void Verifier::verifyMustTailCall(CallInst &CI) {
3828   Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3829 
3830   Function *F = CI.getParent()->getParent();
3831   FunctionType *CallerTy = F->getFunctionType();
3832   FunctionType *CalleeTy = CI.getFunctionType();
3833   Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3834         "cannot guarantee tail call due to mismatched varargs", &CI);
3835   Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3836         "cannot guarantee tail call due to mismatched return types", &CI);
3837 
3838   // - The calling conventions of the caller and callee must match.
3839   Check(F->getCallingConv() == CI.getCallingConv(),
3840         "cannot guarantee tail call due to mismatched calling conv", &CI);
3841 
3842   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3843   //   or a pointer bitcast followed by a ret instruction.
3844   // - The ret instruction must return the (possibly bitcasted) value
3845   //   produced by the call or void.
3846   Value *RetVal = &CI;
3847   Instruction *Next = CI.getNextNode();
3848 
3849   // Handle the optional bitcast.
3850   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3851     Check(BI->getOperand(0) == RetVal,
3852           "bitcast following musttail call must use the call", BI);
3853     RetVal = BI;
3854     Next = BI->getNextNode();
3855   }
3856 
3857   // Check the return.
3858   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3859   Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3860   Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3861             isa<UndefValue>(Ret->getReturnValue()),
3862         "musttail call result must be returned", Ret);
3863 
3864   AttributeList CallerAttrs = F->getAttributes();
3865   AttributeList CalleeAttrs = CI.getAttributes();
3866   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3867       CI.getCallingConv() == CallingConv::Tail) {
3868     StringRef CCName =
3869         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3870 
3871     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3872     //   are allowed in swifttailcc call
3873     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3874       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3875       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3876       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3877     }
3878     for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3879       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3880       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3881       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3882     }
3883     // - Varargs functions are not allowed
3884     Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3885                                      " tail call for varargs function");
3886     return;
3887   }
3888 
3889   // - The caller and callee prototypes must match.  Pointer types of
3890   //   parameters or return types may differ in pointee type, but not
3891   //   address space.
3892   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3893     Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3894           "cannot guarantee tail call due to mismatched parameter counts", &CI);
3895     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3896       Check(
3897           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3898           "cannot guarantee tail call due to mismatched parameter types", &CI);
3899     }
3900   }
3901 
3902   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3903   //   returned, preallocated, and inalloca, must match.
3904   for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3905     AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3906     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3907     Check(CallerABIAttrs == CalleeABIAttrs,
3908           "cannot guarantee tail call due to mismatched ABI impacting "
3909           "function attributes",
3910           &CI, CI.getOperand(I));
3911   }
3912 }
3913 
3914 void Verifier::visitCallInst(CallInst &CI) {
3915   visitCallBase(CI);
3916 
3917   if (CI.isMustTailCall())
3918     verifyMustTailCall(CI);
3919 }
3920 
3921 void Verifier::visitInvokeInst(InvokeInst &II) {
3922   visitCallBase(II);
3923 
3924   // Verify that the first non-PHI instruction of the unwind destination is an
3925   // exception handling instruction.
3926   Check(
3927       II.getUnwindDest()->isEHPad(),
3928       "The unwind destination does not have an exception handling instruction!",
3929       &II);
3930 
3931   visitTerminator(II);
3932 }
3933 
3934 /// visitUnaryOperator - Check the argument to the unary operator.
3935 ///
3936 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3937   Check(U.getType() == U.getOperand(0)->getType(),
3938         "Unary operators must have same type for"
3939         "operands and result!",
3940         &U);
3941 
3942   switch (U.getOpcode()) {
3943   // Check that floating-point arithmetic operators are only used with
3944   // floating-point operands.
3945   case Instruction::FNeg:
3946     Check(U.getType()->isFPOrFPVectorTy(),
3947           "FNeg operator only works with float types!", &U);
3948     break;
3949   default:
3950     llvm_unreachable("Unknown UnaryOperator opcode!");
3951   }
3952 
3953   visitInstruction(U);
3954 }
3955 
3956 /// visitBinaryOperator - Check that both arguments to the binary operator are
3957 /// of the same type!
3958 ///
3959 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3960   Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3961         "Both operands to a binary operator are not of the same type!", &B);
3962 
3963   switch (B.getOpcode()) {
3964   // Check that integer arithmetic operators are only used with
3965   // integral operands.
3966   case Instruction::Add:
3967   case Instruction::Sub:
3968   case Instruction::Mul:
3969   case Instruction::SDiv:
3970   case Instruction::UDiv:
3971   case Instruction::SRem:
3972   case Instruction::URem:
3973     Check(B.getType()->isIntOrIntVectorTy(),
3974           "Integer arithmetic operators only work with integral types!", &B);
3975     Check(B.getType() == B.getOperand(0)->getType(),
3976           "Integer arithmetic operators must have same type "
3977           "for operands and result!",
3978           &B);
3979     break;
3980   // Check that floating-point arithmetic operators are only used with
3981   // floating-point operands.
3982   case Instruction::FAdd:
3983   case Instruction::FSub:
3984   case Instruction::FMul:
3985   case Instruction::FDiv:
3986   case Instruction::FRem:
3987     Check(B.getType()->isFPOrFPVectorTy(),
3988           "Floating-point arithmetic operators only work with "
3989           "floating-point types!",
3990           &B);
3991     Check(B.getType() == B.getOperand(0)->getType(),
3992           "Floating-point arithmetic operators must have same type "
3993           "for operands and result!",
3994           &B);
3995     break;
3996   // Check that logical operators are only used with integral operands.
3997   case Instruction::And:
3998   case Instruction::Or:
3999   case Instruction::Xor:
4000     Check(B.getType()->isIntOrIntVectorTy(),
4001           "Logical operators only work with integral types!", &B);
4002     Check(B.getType() == B.getOperand(0)->getType(),
4003           "Logical operators must have same type for operands and result!", &B);
4004     break;
4005   case Instruction::Shl:
4006   case Instruction::LShr:
4007   case Instruction::AShr:
4008     Check(B.getType()->isIntOrIntVectorTy(),
4009           "Shifts only work with integral types!", &B);
4010     Check(B.getType() == B.getOperand(0)->getType(),
4011           "Shift return type must be same as operands!", &B);
4012     break;
4013   default:
4014     llvm_unreachable("Unknown BinaryOperator opcode!");
4015   }
4016 
4017   visitInstruction(B);
4018 }
4019 
4020 void Verifier::visitICmpInst(ICmpInst &IC) {
4021   // Check that the operands are the same type
4022   Type *Op0Ty = IC.getOperand(0)->getType();
4023   Type *Op1Ty = IC.getOperand(1)->getType();
4024   Check(Op0Ty == Op1Ty,
4025         "Both operands to ICmp instruction are not of the same type!", &IC);
4026   // Check that the operands are the right type
4027   Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
4028         "Invalid operand types for ICmp instruction", &IC);
4029   // Check that the predicate is valid.
4030   Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
4031 
4032   visitInstruction(IC);
4033 }
4034 
4035 void Verifier::visitFCmpInst(FCmpInst &FC) {
4036   // Check that the operands are the same type
4037   Type *Op0Ty = FC.getOperand(0)->getType();
4038   Type *Op1Ty = FC.getOperand(1)->getType();
4039   Check(Op0Ty == Op1Ty,
4040         "Both operands to FCmp instruction are not of the same type!", &FC);
4041   // Check that the operands are the right type
4042   Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
4043         &FC);
4044   // Check that the predicate is valid.
4045   Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
4046 
4047   visitInstruction(FC);
4048 }
4049 
4050 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
4051   Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
4052         "Invalid extractelement operands!", &EI);
4053   visitInstruction(EI);
4054 }
4055 
4056 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
4057   Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
4058                                            IE.getOperand(2)),
4059         "Invalid insertelement operands!", &IE);
4060   visitInstruction(IE);
4061 }
4062 
4063 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
4064   Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
4065                                            SV.getShuffleMask()),
4066         "Invalid shufflevector operands!", &SV);
4067   visitInstruction(SV);
4068 }
4069 
4070 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
4071   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
4072 
4073   Check(isa<PointerType>(TargetTy),
4074         "GEP base pointer is not a vector or a vector of pointers", &GEP);
4075   Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
4076 
4077   if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) {
4078     SmallPtrSet<Type *, 4> Visited;
4079     Check(!STy->containsScalableVectorType(&Visited),
4080           "getelementptr cannot target structure that contains scalable vector"
4081           "type",
4082           &GEP);
4083   }
4084 
4085   SmallVector<Value *, 16> Idxs(GEP.indices());
4086   Check(
4087       all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
4088       "GEP indexes must be integers", &GEP);
4089   Type *ElTy =
4090       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
4091   Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
4092 
4093   Check(GEP.getType()->isPtrOrPtrVectorTy() &&
4094             GEP.getResultElementType() == ElTy,
4095         "GEP is not of right type for indices!", &GEP, ElTy);
4096 
4097   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
4098     // Additional checks for vector GEPs.
4099     ElementCount GEPWidth = GEPVTy->getElementCount();
4100     if (GEP.getPointerOperandType()->isVectorTy())
4101       Check(
4102           GEPWidth ==
4103               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
4104           "Vector GEP result width doesn't match operand's", &GEP);
4105     for (Value *Idx : Idxs) {
4106       Type *IndexTy = Idx->getType();
4107       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
4108         ElementCount IndexWidth = IndexVTy->getElementCount();
4109         Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
4110       }
4111       Check(IndexTy->isIntOrIntVectorTy(),
4112             "All GEP indices should be of integer type");
4113     }
4114   }
4115 
4116   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
4117     Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
4118           "GEP address space doesn't match type", &GEP);
4119   }
4120 
4121   visitInstruction(GEP);
4122 }
4123 
4124 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
4125   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
4126 }
4127 
4128 /// Verify !range and !absolute_symbol metadata. These have the same
4129 /// restrictions, except !absolute_symbol allows the full set.
4130 void Verifier::verifyRangeMetadata(const Value &I, const MDNode *Range,
4131                                    Type *Ty, bool IsAbsoluteSymbol) {
4132   unsigned NumOperands = Range->getNumOperands();
4133   Check(NumOperands % 2 == 0, "Unfinished range!", Range);
4134   unsigned NumRanges = NumOperands / 2;
4135   Check(NumRanges >= 1, "It should have at least one range!", Range);
4136 
4137   ConstantRange LastRange(1, true); // Dummy initial value
4138   for (unsigned i = 0; i < NumRanges; ++i) {
4139     ConstantInt *Low =
4140         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
4141     Check(Low, "The lower limit must be an integer!", Low);
4142     ConstantInt *High =
4143         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
4144     Check(High, "The upper limit must be an integer!", High);
4145     Check(High->getType() == Low->getType() &&
4146           High->getType() == Ty->getScalarType(),
4147           "Range types must match instruction type!", &I);
4148 
4149     APInt HighV = High->getValue();
4150     APInt LowV = Low->getValue();
4151 
4152     // ConstantRange asserts if the ranges are the same except for the min/max
4153     // value. Leave the cases it tolerates for the empty range error below.
4154     Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
4155           "The upper and lower limits cannot be the same value", &I);
4156 
4157     ConstantRange CurRange(LowV, HighV);
4158     Check(!CurRange.isEmptySet() && (IsAbsoluteSymbol || !CurRange.isFullSet()),
4159           "Range must not be empty!", Range);
4160     if (i != 0) {
4161       Check(CurRange.intersectWith(LastRange).isEmptySet(),
4162             "Intervals are overlapping", Range);
4163       Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
4164             Range);
4165       Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
4166             Range);
4167     }
4168     LastRange = ConstantRange(LowV, HighV);
4169   }
4170   if (NumRanges > 2) {
4171     APInt FirstLow =
4172         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
4173     APInt FirstHigh =
4174         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
4175     ConstantRange FirstRange(FirstLow, FirstHigh);
4176     Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4177           "Intervals are overlapping", Range);
4178     Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
4179           Range);
4180   }
4181 }
4182 
4183 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
4184   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
4185          "precondition violation");
4186   verifyRangeMetadata(I, Range, Ty, false);
4187 }
4188 
4189 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
4190   unsigned Size = DL.getTypeSizeInBits(Ty);
4191   Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
4192   Check(!(Size & (Size - 1)),
4193         "atomic memory access' operand must have a power-of-two size", Ty, I);
4194 }
4195 
4196 void Verifier::visitLoadInst(LoadInst &LI) {
4197   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
4198   Check(PTy, "Load operand must be a pointer.", &LI);
4199   Type *ElTy = LI.getType();
4200   if (MaybeAlign A = LI.getAlign()) {
4201     Check(A->value() <= Value::MaximumAlignment,
4202           "huge alignment values are unsupported", &LI);
4203   }
4204   Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
4205   if (LI.isAtomic()) {
4206     Check(LI.getOrdering() != AtomicOrdering::Release &&
4207               LI.getOrdering() != AtomicOrdering::AcquireRelease,
4208           "Load cannot have Release ordering", &LI);
4209     Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4210           "atomic load operand must have integer, pointer, or floating point "
4211           "type!",
4212           ElTy, &LI);
4213     checkAtomicMemAccessSize(ElTy, &LI);
4214   } else {
4215     Check(LI.getSyncScopeID() == SyncScope::System,
4216           "Non-atomic load cannot have SynchronizationScope specified", &LI);
4217   }
4218 
4219   visitInstruction(LI);
4220 }
4221 
4222 void Verifier::visitStoreInst(StoreInst &SI) {
4223   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
4224   Check(PTy, "Store operand must be a pointer.", &SI);
4225   Type *ElTy = SI.getOperand(0)->getType();
4226   if (MaybeAlign A = SI.getAlign()) {
4227     Check(A->value() <= Value::MaximumAlignment,
4228           "huge alignment values are unsupported", &SI);
4229   }
4230   Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
4231   if (SI.isAtomic()) {
4232     Check(SI.getOrdering() != AtomicOrdering::Acquire &&
4233               SI.getOrdering() != AtomicOrdering::AcquireRelease,
4234           "Store cannot have Acquire ordering", &SI);
4235     Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4236           "atomic store operand must have integer, pointer, or floating point "
4237           "type!",
4238           ElTy, &SI);
4239     checkAtomicMemAccessSize(ElTy, &SI);
4240   } else {
4241     Check(SI.getSyncScopeID() == SyncScope::System,
4242           "Non-atomic store cannot have SynchronizationScope specified", &SI);
4243   }
4244   visitInstruction(SI);
4245 }
4246 
4247 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
4248 void Verifier::verifySwiftErrorCall(CallBase &Call,
4249                                     const Value *SwiftErrorVal) {
4250   for (const auto &I : llvm::enumerate(Call.args())) {
4251     if (I.value() == SwiftErrorVal) {
4252       Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
4253             "swifterror value when used in a callsite should be marked "
4254             "with swifterror attribute",
4255             SwiftErrorVal, Call);
4256     }
4257   }
4258 }
4259 
4260 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
4261   // Check that swifterror value is only used by loads, stores, or as
4262   // a swifterror argument.
4263   for (const User *U : SwiftErrorVal->users()) {
4264     Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4265               isa<InvokeInst>(U),
4266           "swifterror value can only be loaded and stored from, or "
4267           "as a swifterror argument!",
4268           SwiftErrorVal, U);
4269     // If it is used by a store, check it is the second operand.
4270     if (auto StoreI = dyn_cast<StoreInst>(U))
4271       Check(StoreI->getOperand(1) == SwiftErrorVal,
4272             "swifterror value should be the second operand when used "
4273             "by stores",
4274             SwiftErrorVal, U);
4275     if (auto *Call = dyn_cast<CallBase>(U))
4276       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
4277   }
4278 }
4279 
4280 void Verifier::visitAllocaInst(AllocaInst &AI) {
4281   SmallPtrSet<Type*, 4> Visited;
4282   Check(AI.getAllocatedType()->isSized(&Visited),
4283         "Cannot allocate unsized type", &AI);
4284   Check(AI.getArraySize()->getType()->isIntegerTy(),
4285         "Alloca array size must have integer type", &AI);
4286   if (MaybeAlign A = AI.getAlign()) {
4287     Check(A->value() <= Value::MaximumAlignment,
4288           "huge alignment values are unsupported", &AI);
4289   }
4290 
4291   if (AI.isSwiftError()) {
4292     Check(AI.getAllocatedType()->isPointerTy(),
4293           "swifterror alloca must have pointer type", &AI);
4294     Check(!AI.isArrayAllocation(),
4295           "swifterror alloca must not be array allocation", &AI);
4296     verifySwiftErrorValue(&AI);
4297   }
4298 
4299   visitInstruction(AI);
4300 }
4301 
4302 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4303   Type *ElTy = CXI.getOperand(1)->getType();
4304   Check(ElTy->isIntOrPtrTy(),
4305         "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4306   checkAtomicMemAccessSize(ElTy, &CXI);
4307   visitInstruction(CXI);
4308 }
4309 
4310 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4311   Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4312         "atomicrmw instructions cannot be unordered.", &RMWI);
4313   auto Op = RMWI.getOperation();
4314   Type *ElTy = RMWI.getOperand(1)->getType();
4315   if (Op == AtomicRMWInst::Xchg) {
4316     Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4317               ElTy->isPointerTy(),
4318           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4319               " operand must have integer or floating point type!",
4320           &RMWI, ElTy);
4321   } else if (AtomicRMWInst::isFPOperation(Op)) {
4322     Check(ElTy->isFPOrFPVectorTy() && !isa<ScalableVectorType>(ElTy),
4323           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4324               " operand must have floating-point or fixed vector of floating-point "
4325               "type!",
4326           &RMWI, ElTy);
4327   } else {
4328     Check(ElTy->isIntegerTy(),
4329           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4330               " operand must have integer type!",
4331           &RMWI, ElTy);
4332   }
4333   checkAtomicMemAccessSize(ElTy, &RMWI);
4334   Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4335         "Invalid binary operation!", &RMWI);
4336   visitInstruction(RMWI);
4337 }
4338 
4339 void Verifier::visitFenceInst(FenceInst &FI) {
4340   const AtomicOrdering Ordering = FI.getOrdering();
4341   Check(Ordering == AtomicOrdering::Acquire ||
4342             Ordering == AtomicOrdering::Release ||
4343             Ordering == AtomicOrdering::AcquireRelease ||
4344             Ordering == AtomicOrdering::SequentiallyConsistent,
4345         "fence instructions may only have acquire, release, acq_rel, or "
4346         "seq_cst ordering.",
4347         &FI);
4348   visitInstruction(FI);
4349 }
4350 
4351 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4352   Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4353                                          EVI.getIndices()) == EVI.getType(),
4354         "Invalid ExtractValueInst operands!", &EVI);
4355 
4356   visitInstruction(EVI);
4357 }
4358 
4359 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4360   Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4361                                          IVI.getIndices()) ==
4362             IVI.getOperand(1)->getType(),
4363         "Invalid InsertValueInst operands!", &IVI);
4364 
4365   visitInstruction(IVI);
4366 }
4367 
4368 static Value *getParentPad(Value *EHPad) {
4369   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4370     return FPI->getParentPad();
4371 
4372   return cast<CatchSwitchInst>(EHPad)->getParentPad();
4373 }
4374 
4375 void Verifier::visitEHPadPredecessors(Instruction &I) {
4376   assert(I.isEHPad());
4377 
4378   BasicBlock *BB = I.getParent();
4379   Function *F = BB->getParent();
4380 
4381   Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4382 
4383   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4384     // The landingpad instruction defines its parent as a landing pad block. The
4385     // landing pad block may be branched to only by the unwind edge of an
4386     // invoke.
4387     for (BasicBlock *PredBB : predecessors(BB)) {
4388       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4389       Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4390             "Block containing LandingPadInst must be jumped to "
4391             "only by the unwind edge of an invoke.",
4392             LPI);
4393     }
4394     return;
4395   }
4396   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4397     if (!pred_empty(BB))
4398       Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4399             "Block containg CatchPadInst must be jumped to "
4400             "only by its catchswitch.",
4401             CPI);
4402     Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4403           "Catchswitch cannot unwind to one of its catchpads",
4404           CPI->getCatchSwitch(), CPI);
4405     return;
4406   }
4407 
4408   // Verify that each pred has a legal terminator with a legal to/from EH
4409   // pad relationship.
4410   Instruction *ToPad = &I;
4411   Value *ToPadParent = getParentPad(ToPad);
4412   for (BasicBlock *PredBB : predecessors(BB)) {
4413     Instruction *TI = PredBB->getTerminator();
4414     Value *FromPad;
4415     if (auto *II = dyn_cast<InvokeInst>(TI)) {
4416       Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4417             "EH pad must be jumped to via an unwind edge", ToPad, II);
4418       auto *CalledFn =
4419           dyn_cast<Function>(II->getCalledOperand()->stripPointerCasts());
4420       if (CalledFn && CalledFn->isIntrinsic() && II->doesNotThrow() &&
4421           !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
4422         continue;
4423       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4424         FromPad = Bundle->Inputs[0];
4425       else
4426         FromPad = ConstantTokenNone::get(II->getContext());
4427     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4428       FromPad = CRI->getOperand(0);
4429       Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4430     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4431       FromPad = CSI;
4432     } else {
4433       Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4434     }
4435 
4436     // The edge may exit from zero or more nested pads.
4437     SmallSet<Value *, 8> Seen;
4438     for (;; FromPad = getParentPad(FromPad)) {
4439       Check(FromPad != ToPad,
4440             "EH pad cannot handle exceptions raised within it", FromPad, TI);
4441       if (FromPad == ToPadParent) {
4442         // This is a legal unwind edge.
4443         break;
4444       }
4445       Check(!isa<ConstantTokenNone>(FromPad),
4446             "A single unwind edge may only enter one EH pad", TI);
4447       Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4448             FromPad);
4449 
4450       // This will be diagnosed on the corresponding instruction already. We
4451       // need the extra check here to make sure getParentPad() works.
4452       Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4453             "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4454     }
4455   }
4456 }
4457 
4458 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4459   // The landingpad instruction is ill-formed if it doesn't have any clauses and
4460   // isn't a cleanup.
4461   Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4462         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4463 
4464   visitEHPadPredecessors(LPI);
4465 
4466   if (!LandingPadResultTy)
4467     LandingPadResultTy = LPI.getType();
4468   else
4469     Check(LandingPadResultTy == LPI.getType(),
4470           "The landingpad instruction should have a consistent result type "
4471           "inside a function.",
4472           &LPI);
4473 
4474   Function *F = LPI.getParent()->getParent();
4475   Check(F->hasPersonalityFn(),
4476         "LandingPadInst needs to be in a function with a personality.", &LPI);
4477 
4478   // The landingpad instruction must be the first non-PHI instruction in the
4479   // block.
4480   Check(LPI.getParent()->getLandingPadInst() == &LPI,
4481         "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4482 
4483   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4484     Constant *Clause = LPI.getClause(i);
4485     if (LPI.isCatch(i)) {
4486       Check(isa<PointerType>(Clause->getType()),
4487             "Catch operand does not have pointer type!", &LPI);
4488     } else {
4489       Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4490       Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4491             "Filter operand is not an array of constants!", &LPI);
4492     }
4493   }
4494 
4495   visitInstruction(LPI);
4496 }
4497 
4498 void Verifier::visitResumeInst(ResumeInst &RI) {
4499   Check(RI.getFunction()->hasPersonalityFn(),
4500         "ResumeInst needs to be in a function with a personality.", &RI);
4501 
4502   if (!LandingPadResultTy)
4503     LandingPadResultTy = RI.getValue()->getType();
4504   else
4505     Check(LandingPadResultTy == RI.getValue()->getType(),
4506           "The resume instruction should have a consistent result type "
4507           "inside a function.",
4508           &RI);
4509 
4510   visitTerminator(RI);
4511 }
4512 
4513 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4514   BasicBlock *BB = CPI.getParent();
4515 
4516   Function *F = BB->getParent();
4517   Check(F->hasPersonalityFn(),
4518         "CatchPadInst needs to be in a function with a personality.", &CPI);
4519 
4520   Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4521         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4522         CPI.getParentPad());
4523 
4524   // The catchpad instruction must be the first non-PHI instruction in the
4525   // block.
4526   Check(BB->getFirstNonPHI() == &CPI,
4527         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4528 
4529   visitEHPadPredecessors(CPI);
4530   visitFuncletPadInst(CPI);
4531 }
4532 
4533 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4534   Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4535         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4536         CatchReturn.getOperand(0));
4537 
4538   visitTerminator(CatchReturn);
4539 }
4540 
4541 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4542   BasicBlock *BB = CPI.getParent();
4543 
4544   Function *F = BB->getParent();
4545   Check(F->hasPersonalityFn(),
4546         "CleanupPadInst needs to be in a function with a personality.", &CPI);
4547 
4548   // The cleanuppad instruction must be the first non-PHI instruction in the
4549   // block.
4550   Check(BB->getFirstNonPHI() == &CPI,
4551         "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4552 
4553   auto *ParentPad = CPI.getParentPad();
4554   Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4555         "CleanupPadInst has an invalid parent.", &CPI);
4556 
4557   visitEHPadPredecessors(CPI);
4558   visitFuncletPadInst(CPI);
4559 }
4560 
4561 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4562   User *FirstUser = nullptr;
4563   Value *FirstUnwindPad = nullptr;
4564   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4565   SmallSet<FuncletPadInst *, 8> Seen;
4566 
4567   while (!Worklist.empty()) {
4568     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4569     Check(Seen.insert(CurrentPad).second,
4570           "FuncletPadInst must not be nested within itself", CurrentPad);
4571     Value *UnresolvedAncestorPad = nullptr;
4572     for (User *U : CurrentPad->users()) {
4573       BasicBlock *UnwindDest;
4574       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4575         UnwindDest = CRI->getUnwindDest();
4576       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4577         // We allow catchswitch unwind to caller to nest
4578         // within an outer pad that unwinds somewhere else,
4579         // because catchswitch doesn't have a nounwind variant.
4580         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4581         if (CSI->unwindsToCaller())
4582           continue;
4583         UnwindDest = CSI->getUnwindDest();
4584       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4585         UnwindDest = II->getUnwindDest();
4586       } else if (isa<CallInst>(U)) {
4587         // Calls which don't unwind may be found inside funclet
4588         // pads that unwind somewhere else.  We don't *require*
4589         // such calls to be annotated nounwind.
4590         continue;
4591       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4592         // The unwind dest for a cleanup can only be found by
4593         // recursive search.  Add it to the worklist, and we'll
4594         // search for its first use that determines where it unwinds.
4595         Worklist.push_back(CPI);
4596         continue;
4597       } else {
4598         Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4599         continue;
4600       }
4601 
4602       Value *UnwindPad;
4603       bool ExitsFPI;
4604       if (UnwindDest) {
4605         UnwindPad = UnwindDest->getFirstNonPHI();
4606         if (!cast<Instruction>(UnwindPad)->isEHPad())
4607           continue;
4608         Value *UnwindParent = getParentPad(UnwindPad);
4609         // Ignore unwind edges that don't exit CurrentPad.
4610         if (UnwindParent == CurrentPad)
4611           continue;
4612         // Determine whether the original funclet pad is exited,
4613         // and if we are scanning nested pads determine how many
4614         // of them are exited so we can stop searching their
4615         // children.
4616         Value *ExitedPad = CurrentPad;
4617         ExitsFPI = false;
4618         do {
4619           if (ExitedPad == &FPI) {
4620             ExitsFPI = true;
4621             // Now we can resolve any ancestors of CurrentPad up to
4622             // FPI, but not including FPI since we need to make sure
4623             // to check all direct users of FPI for consistency.
4624             UnresolvedAncestorPad = &FPI;
4625             break;
4626           }
4627           Value *ExitedParent = getParentPad(ExitedPad);
4628           if (ExitedParent == UnwindParent) {
4629             // ExitedPad is the ancestor-most pad which this unwind
4630             // edge exits, so we can resolve up to it, meaning that
4631             // ExitedParent is the first ancestor still unresolved.
4632             UnresolvedAncestorPad = ExitedParent;
4633             break;
4634           }
4635           ExitedPad = ExitedParent;
4636         } while (!isa<ConstantTokenNone>(ExitedPad));
4637       } else {
4638         // Unwinding to caller exits all pads.
4639         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4640         ExitsFPI = true;
4641         UnresolvedAncestorPad = &FPI;
4642       }
4643 
4644       if (ExitsFPI) {
4645         // This unwind edge exits FPI.  Make sure it agrees with other
4646         // such edges.
4647         if (FirstUser) {
4648           Check(UnwindPad == FirstUnwindPad,
4649                 "Unwind edges out of a funclet "
4650                 "pad must have the same unwind "
4651                 "dest",
4652                 &FPI, U, FirstUser);
4653         } else {
4654           FirstUser = U;
4655           FirstUnwindPad = UnwindPad;
4656           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4657           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4658               getParentPad(UnwindPad) == getParentPad(&FPI))
4659             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4660         }
4661       }
4662       // Make sure we visit all uses of FPI, but for nested pads stop as
4663       // soon as we know where they unwind to.
4664       if (CurrentPad != &FPI)
4665         break;
4666     }
4667     if (UnresolvedAncestorPad) {
4668       if (CurrentPad == UnresolvedAncestorPad) {
4669         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4670         // we've found an unwind edge that exits it, because we need to verify
4671         // all direct uses of FPI.
4672         assert(CurrentPad == &FPI);
4673         continue;
4674       }
4675       // Pop off the worklist any nested pads that we've found an unwind
4676       // destination for.  The pads on the worklist are the uncles,
4677       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4678       // for all ancestors of CurrentPad up to but not including
4679       // UnresolvedAncestorPad.
4680       Value *ResolvedPad = CurrentPad;
4681       while (!Worklist.empty()) {
4682         Value *UnclePad = Worklist.back();
4683         Value *AncestorPad = getParentPad(UnclePad);
4684         // Walk ResolvedPad up the ancestor list until we either find the
4685         // uncle's parent or the last resolved ancestor.
4686         while (ResolvedPad != AncestorPad) {
4687           Value *ResolvedParent = getParentPad(ResolvedPad);
4688           if (ResolvedParent == UnresolvedAncestorPad) {
4689             break;
4690           }
4691           ResolvedPad = ResolvedParent;
4692         }
4693         // If the resolved ancestor search didn't find the uncle's parent,
4694         // then the uncle is not yet resolved.
4695         if (ResolvedPad != AncestorPad)
4696           break;
4697         // This uncle is resolved, so pop it from the worklist.
4698         Worklist.pop_back();
4699       }
4700     }
4701   }
4702 
4703   if (FirstUnwindPad) {
4704     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4705       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4706       Value *SwitchUnwindPad;
4707       if (SwitchUnwindDest)
4708         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4709       else
4710         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4711       Check(SwitchUnwindPad == FirstUnwindPad,
4712             "Unwind edges out of a catch must have the same unwind dest as "
4713             "the parent catchswitch",
4714             &FPI, FirstUser, CatchSwitch);
4715     }
4716   }
4717 
4718   visitInstruction(FPI);
4719 }
4720 
4721 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4722   BasicBlock *BB = CatchSwitch.getParent();
4723 
4724   Function *F = BB->getParent();
4725   Check(F->hasPersonalityFn(),
4726         "CatchSwitchInst needs to be in a function with a personality.",
4727         &CatchSwitch);
4728 
4729   // The catchswitch instruction must be the first non-PHI instruction in the
4730   // block.
4731   Check(BB->getFirstNonPHI() == &CatchSwitch,
4732         "CatchSwitchInst not the first non-PHI instruction in the block.",
4733         &CatchSwitch);
4734 
4735   auto *ParentPad = CatchSwitch.getParentPad();
4736   Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4737         "CatchSwitchInst has an invalid parent.", ParentPad);
4738 
4739   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4740     Instruction *I = UnwindDest->getFirstNonPHI();
4741     Check(I->isEHPad() && !isa<LandingPadInst>(I),
4742           "CatchSwitchInst must unwind to an EH block which is not a "
4743           "landingpad.",
4744           &CatchSwitch);
4745 
4746     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4747     if (getParentPad(I) == ParentPad)
4748       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4749   }
4750 
4751   Check(CatchSwitch.getNumHandlers() != 0,
4752         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4753 
4754   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4755     Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4756           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4757   }
4758 
4759   visitEHPadPredecessors(CatchSwitch);
4760   visitTerminator(CatchSwitch);
4761 }
4762 
4763 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4764   Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4765         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4766         CRI.getOperand(0));
4767 
4768   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4769     Instruction *I = UnwindDest->getFirstNonPHI();
4770     Check(I->isEHPad() && !isa<LandingPadInst>(I),
4771           "CleanupReturnInst must unwind to an EH block which is not a "
4772           "landingpad.",
4773           &CRI);
4774   }
4775 
4776   visitTerminator(CRI);
4777 }
4778 
4779 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4780   Instruction *Op = cast<Instruction>(I.getOperand(i));
4781   // If the we have an invalid invoke, don't try to compute the dominance.
4782   // We already reject it in the invoke specific checks and the dominance
4783   // computation doesn't handle multiple edges.
4784   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4785     if (II->getNormalDest() == II->getUnwindDest())
4786       return;
4787   }
4788 
4789   // Quick check whether the def has already been encountered in the same block.
4790   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4791   // uses are defined to happen on the incoming edge, not at the instruction.
4792   //
4793   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4794   // wrapping an SSA value, assert that we've already encountered it.  See
4795   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4796   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4797     return;
4798 
4799   const Use &U = I.getOperandUse(i);
4800   Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4801 }
4802 
4803 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4804   Check(I.getType()->isPointerTy(),
4805         "dereferenceable, dereferenceable_or_null "
4806         "apply only to pointer types",
4807         &I);
4808   Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4809         "dereferenceable, dereferenceable_or_null apply only to load"
4810         " and inttoptr instructions, use attributes for calls or invokes",
4811         &I);
4812   Check(MD->getNumOperands() == 1,
4813         "dereferenceable, dereferenceable_or_null "
4814         "take one operand!",
4815         &I);
4816   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4817   Check(CI && CI->getType()->isIntegerTy(64),
4818         "dereferenceable, "
4819         "dereferenceable_or_null metadata value must be an i64!",
4820         &I);
4821 }
4822 
4823 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4824   Check(MD->getNumOperands() >= 2,
4825         "!prof annotations should have no less than 2 operands", MD);
4826 
4827   // Check first operand.
4828   Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4829   Check(isa<MDString>(MD->getOperand(0)),
4830         "expected string with name of the !prof annotation", MD);
4831   MDString *MDS = cast<MDString>(MD->getOperand(0));
4832   StringRef ProfName = MDS->getString();
4833 
4834   // Check consistency of !prof branch_weights metadata.
4835   if (ProfName == "branch_weights") {
4836     unsigned NumBranchWeights = getNumBranchWeights(*MD);
4837     if (isa<InvokeInst>(&I)) {
4838       Check(NumBranchWeights == 1 || NumBranchWeights == 2,
4839             "Wrong number of InvokeInst branch_weights operands", MD);
4840     } else {
4841       unsigned ExpectedNumOperands = 0;
4842       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4843         ExpectedNumOperands = BI->getNumSuccessors();
4844       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4845         ExpectedNumOperands = SI->getNumSuccessors();
4846       else if (isa<CallInst>(&I))
4847         ExpectedNumOperands = 1;
4848       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4849         ExpectedNumOperands = IBI->getNumDestinations();
4850       else if (isa<SelectInst>(&I))
4851         ExpectedNumOperands = 2;
4852       else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
4853         ExpectedNumOperands = CI->getNumSuccessors();
4854       else
4855         CheckFailed("!prof branch_weights are not allowed for this instruction",
4856                     MD);
4857 
4858       Check(NumBranchWeights == ExpectedNumOperands, "Wrong number of operands",
4859             MD);
4860     }
4861     for (unsigned i = getBranchWeightOffset(MD); i < MD->getNumOperands();
4862          ++i) {
4863       auto &MDO = MD->getOperand(i);
4864       Check(MDO, "second operand should not be null", MD);
4865       Check(mdconst::dyn_extract<ConstantInt>(MDO),
4866             "!prof brunch_weights operand is not a const int");
4867     }
4868   }
4869 }
4870 
4871 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4872   assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4873   bool ExpectedInstTy =
4874       isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
4875   CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4876           I, MD);
4877   // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4878   // only be found as DbgAssignIntrinsic operands.
4879   if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4880     for (auto *User : AsValue->users()) {
4881       CheckDI(isa<DbgAssignIntrinsic>(User),
4882               "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4883               MD, User);
4884       // All of the dbg.assign intrinsics should be in the same function as I.
4885       if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
4886         CheckDI(DAI->getFunction() == I.getFunction(),
4887                 "dbg.assign not in same function as inst", DAI, &I);
4888     }
4889   }
4890   for (DbgVariableRecord *DVR :
4891        cast<DIAssignID>(MD)->getAllDbgVariableRecordUsers()) {
4892     CheckDI(DVR->isDbgAssign(),
4893             "!DIAssignID should only be used by Assign DVRs.", MD, DVR);
4894     CheckDI(DVR->getFunction() == I.getFunction(),
4895             "DVRAssign not in same function as inst", DVR, &I);
4896   }
4897 }
4898 
4899 void Verifier::visitMMRAMetadata(Instruction &I, MDNode *MD) {
4900   Check(canInstructionHaveMMRAs(I),
4901         "!mmra metadata attached to unexpected instruction kind", I, MD);
4902 
4903   // MMRA Metadata should either be a tag, e.g. !{!"foo", !"bar"}, or a
4904   // list of tags such as !2 in the following example:
4905   //    !0 = !{!"a", !"b"}
4906   //    !1 = !{!"c", !"d"}
4907   //    !2 = !{!0, !1}
4908   if (MMRAMetadata::isTagMD(MD))
4909     return;
4910 
4911   Check(isa<MDTuple>(MD), "!mmra expected to be a metadata tuple", I, MD);
4912   for (const MDOperand &MDOp : MD->operands())
4913     Check(MMRAMetadata::isTagMD(MDOp.get()),
4914           "!mmra metadata tuple operand is not an MMRA tag", I, MDOp.get());
4915 }
4916 
4917 void Verifier::visitCallStackMetadata(MDNode *MD) {
4918   // Call stack metadata should consist of a list of at least 1 constant int
4919   // (representing a hash of the location).
4920   Check(MD->getNumOperands() >= 1,
4921         "call stack metadata should have at least 1 operand", MD);
4922 
4923   for (const auto &Op : MD->operands())
4924     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4925           "call stack metadata operand should be constant integer", Op);
4926 }
4927 
4928 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4929   Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4930   Check(MD->getNumOperands() >= 1,
4931         "!memprof annotations should have at least 1 metadata operand "
4932         "(MemInfoBlock)",
4933         MD);
4934 
4935   // Check each MIB
4936   for (auto &MIBOp : MD->operands()) {
4937     MDNode *MIB = dyn_cast<MDNode>(MIBOp);
4938     // The first operand of an MIB should be the call stack metadata.
4939     // There rest of the operands should be MDString tags, and there should be
4940     // at least one.
4941     Check(MIB->getNumOperands() >= 2,
4942           "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
4943 
4944     // Check call stack metadata (first operand).
4945     Check(MIB->getOperand(0) != nullptr,
4946           "!memprof MemInfoBlock first operand should not be null", MIB);
4947     Check(isa<MDNode>(MIB->getOperand(0)),
4948           "!memprof MemInfoBlock first operand should be an MDNode", MIB);
4949     MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
4950     visitCallStackMetadata(StackMD);
4951 
4952     // Check that remaining operands, except possibly the last, are MDString.
4953     Check(llvm::all_of(MIB->operands().drop_front().drop_back(),
4954                        [](const MDOperand &Op) { return isa<MDString>(Op); }),
4955           "Not all !memprof MemInfoBlock operands 1 to N-1 are MDString", MIB);
4956     // The last operand might be the total profiled size so can be an integer.
4957     auto &LastOperand = MIB->operands().back();
4958     Check(isa<MDString>(LastOperand) || mdconst::hasa<ConstantInt>(LastOperand),
4959           "Last !memprof MemInfoBlock operand not MDString or int", MIB);
4960   }
4961 }
4962 
4963 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
4964   Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
4965   // Verify the partial callstack annotated from memprof profiles. This callsite
4966   // is a part of a profiled allocation callstack.
4967   visitCallStackMetadata(MD);
4968 }
4969 
4970 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4971   Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4972   Check(Annotation->getNumOperands() >= 1,
4973         "annotation must have at least one operand");
4974   for (const MDOperand &Op : Annotation->operands()) {
4975     bool TupleOfStrings =
4976         isa<MDTuple>(Op.get()) &&
4977         all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) {
4978           return isa<MDString>(Annotation.get());
4979         });
4980     Check(isa<MDString>(Op.get()) || TupleOfStrings,
4981           "operands must be a string or a tuple of strings");
4982   }
4983 }
4984 
4985 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4986   unsigned NumOps = MD->getNumOperands();
4987   Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4988         MD);
4989   Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4990         "first scope operand must be self-referential or string", MD);
4991   if (NumOps == 3)
4992     Check(isa<MDString>(MD->getOperand(2)),
4993           "third scope operand must be string (if used)", MD);
4994 
4995   MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4996   Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4997 
4998   unsigned NumDomainOps = Domain->getNumOperands();
4999   Check(NumDomainOps >= 1 && NumDomainOps <= 2,
5000         "domain must have one or two operands", Domain);
5001   Check(Domain->getOperand(0).get() == Domain ||
5002             isa<MDString>(Domain->getOperand(0)),
5003         "first domain operand must be self-referential or string", Domain);
5004   if (NumDomainOps == 2)
5005     Check(isa<MDString>(Domain->getOperand(1)),
5006           "second domain operand must be string (if used)", Domain);
5007 }
5008 
5009 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
5010   for (const MDOperand &Op : MD->operands()) {
5011     const MDNode *OpMD = dyn_cast<MDNode>(Op);
5012     Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
5013     visitAliasScopeMetadata(OpMD);
5014   }
5015 }
5016 
5017 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
5018   auto IsValidAccessScope = [](const MDNode *MD) {
5019     return MD->getNumOperands() == 0 && MD->isDistinct();
5020   };
5021 
5022   // It must be either an access scope itself...
5023   if (IsValidAccessScope(MD))
5024     return;
5025 
5026   // ...or a list of access scopes.
5027   for (const MDOperand &Op : MD->operands()) {
5028     const MDNode *OpMD = dyn_cast<MDNode>(Op);
5029     Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
5030     Check(IsValidAccessScope(OpMD),
5031           "Access scope list contains invalid access scope", MD);
5032   }
5033 }
5034 
5035 /// verifyInstruction - Verify that an instruction is well formed.
5036 ///
5037 void Verifier::visitInstruction(Instruction &I) {
5038   BasicBlock *BB = I.getParent();
5039   Check(BB, "Instruction not embedded in basic block!", &I);
5040 
5041   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
5042     for (User *U : I.users()) {
5043       Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
5044             "Only PHI nodes may reference their own value!", &I);
5045     }
5046   }
5047 
5048   // Check that void typed values don't have names
5049   Check(!I.getType()->isVoidTy() || !I.hasName(),
5050         "Instruction has a name, but provides a void value!", &I);
5051 
5052   // Check that the return value of the instruction is either void or a legal
5053   // value type.
5054   Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
5055         "Instruction returns a non-scalar type!", &I);
5056 
5057   // Check that the instruction doesn't produce metadata. Calls are already
5058   // checked against the callee type.
5059   Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
5060         "Invalid use of metadata!", &I);
5061 
5062   // Check that all uses of the instruction, if they are instructions
5063   // themselves, actually have parent basic blocks.  If the use is not an
5064   // instruction, it is an error!
5065   for (Use &U : I.uses()) {
5066     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
5067       Check(Used->getParent() != nullptr,
5068             "Instruction referencing"
5069             " instruction not embedded in a basic block!",
5070             &I, Used);
5071     else {
5072       CheckFailed("Use of instruction is not an instruction!", U);
5073       return;
5074     }
5075   }
5076 
5077   // Get a pointer to the call base of the instruction if it is some form of
5078   // call.
5079   const CallBase *CBI = dyn_cast<CallBase>(&I);
5080 
5081   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
5082     Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
5083 
5084     // Check to make sure that only first-class-values are operands to
5085     // instructions.
5086     if (!I.getOperand(i)->getType()->isFirstClassType()) {
5087       Check(false, "Instruction operands must be first-class values!", &I);
5088     }
5089 
5090     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
5091       // This code checks whether the function is used as the operand of a
5092       // clang_arc_attachedcall operand bundle.
5093       auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
5094                                       int Idx) {
5095         return CBI && CBI->isOperandBundleOfType(
5096                           LLVMContext::OB_clang_arc_attachedcall, Idx);
5097       };
5098 
5099       // Check to make sure that the "address of" an intrinsic function is never
5100       // taken. Ignore cases where the address of the intrinsic function is used
5101       // as the argument of operand bundle "clang.arc.attachedcall" as those
5102       // cases are handled in verifyAttachedCallBundle.
5103       Check((!F->isIntrinsic() ||
5104              (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
5105              IsAttachedCallOperand(F, CBI, i)),
5106             "Cannot take the address of an intrinsic!", &I);
5107       Check(!F->isIntrinsic() || isa<CallInst>(I) ||
5108                 F->getIntrinsicID() == Intrinsic::donothing ||
5109                 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
5110                 F->getIntrinsicID() == Intrinsic::seh_try_end ||
5111                 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
5112                 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
5113                 F->getIntrinsicID() == Intrinsic::coro_resume ||
5114                 F->getIntrinsicID() == Intrinsic::coro_destroy ||
5115                 F->getIntrinsicID() == Intrinsic::coro_await_suspend_void ||
5116                 F->getIntrinsicID() == Intrinsic::coro_await_suspend_bool ||
5117                 F->getIntrinsicID() == Intrinsic::coro_await_suspend_handle ||
5118                 F->getIntrinsicID() ==
5119                     Intrinsic::experimental_patchpoint_void ||
5120                 F->getIntrinsicID() == Intrinsic::experimental_patchpoint ||
5121                 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
5122                 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
5123                 IsAttachedCallOperand(F, CBI, i),
5124             "Cannot invoke an intrinsic other than donothing, patchpoint, "
5125             "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
5126             &I);
5127       Check(F->getParent() == &M, "Referencing function in another module!", &I,
5128             &M, F, F->getParent());
5129     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
5130       Check(OpBB->getParent() == BB->getParent(),
5131             "Referring to a basic block in another function!", &I);
5132     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
5133       Check(OpArg->getParent() == BB->getParent(),
5134             "Referring to an argument in another function!", &I);
5135     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
5136       Check(GV->getParent() == &M, "Referencing global in another module!", &I,
5137             &M, GV, GV->getParent());
5138     } else if (Instruction *OpInst = dyn_cast<Instruction>(I.getOperand(i))) {
5139       Check(OpInst->getFunction() == BB->getParent(),
5140             "Referring to an instruction in another function!", &I);
5141       verifyDominatesUse(I, i);
5142     } else if (isa<InlineAsm>(I.getOperand(i))) {
5143       Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
5144             "Cannot take the address of an inline asm!", &I);
5145     } else if (auto *CPA = dyn_cast<ConstantPtrAuth>(I.getOperand(i))) {
5146       visitConstantExprsRecursively(CPA);
5147     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
5148       if (CE->getType()->isPtrOrPtrVectorTy()) {
5149         // If we have a ConstantExpr pointer, we need to see if it came from an
5150         // illegal bitcast.
5151         visitConstantExprsRecursively(CE);
5152       }
5153     }
5154   }
5155 
5156   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
5157     Check(I.getType()->isFPOrFPVectorTy(),
5158           "fpmath requires a floating point result!", &I);
5159     Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
5160     if (ConstantFP *CFP0 =
5161             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
5162       const APFloat &Accuracy = CFP0->getValueAPF();
5163       Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
5164             "fpmath accuracy must have float type", &I);
5165       Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
5166             "fpmath accuracy not a positive number!", &I);
5167     } else {
5168       Check(false, "invalid fpmath accuracy!", &I);
5169     }
5170   }
5171 
5172   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
5173     Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
5174           "Ranges are only for loads, calls and invokes!", &I);
5175     visitRangeMetadata(I, Range, I.getType());
5176   }
5177 
5178   if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
5179     Check(isa<LoadInst>(I) || isa<StoreInst>(I),
5180           "invariant.group metadata is only for loads and stores", &I);
5181   }
5182 
5183   if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
5184     Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
5185           &I);
5186     Check(isa<LoadInst>(I),
5187           "nonnull applies only to load instructions, use attributes"
5188           " for calls or invokes",
5189           &I);
5190     Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
5191   }
5192 
5193   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
5194     visitDereferenceableMetadata(I, MD);
5195 
5196   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
5197     visitDereferenceableMetadata(I, MD);
5198 
5199   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
5200     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
5201 
5202   if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
5203     visitAliasScopeListMetadata(MD);
5204   if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
5205     visitAliasScopeListMetadata(MD);
5206 
5207   if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
5208     visitAccessGroupMetadata(MD);
5209 
5210   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
5211     Check(I.getType()->isPointerTy(), "align applies only to pointer types",
5212           &I);
5213     Check(isa<LoadInst>(I),
5214           "align applies only to load instructions, "
5215           "use attributes for calls or invokes",
5216           &I);
5217     Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
5218     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
5219     Check(CI && CI->getType()->isIntegerTy(64),
5220           "align metadata value must be an i64!", &I);
5221     uint64_t Align = CI->getZExtValue();
5222     Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
5223           &I);
5224     Check(Align <= Value::MaximumAlignment,
5225           "alignment is larger that implementation defined limit", &I);
5226   }
5227 
5228   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
5229     visitProfMetadata(I, MD);
5230 
5231   if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
5232     visitMemProfMetadata(I, MD);
5233 
5234   if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
5235     visitCallsiteMetadata(I, MD);
5236 
5237   if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
5238     visitDIAssignIDMetadata(I, MD);
5239 
5240   if (MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra))
5241     visitMMRAMetadata(I, MMRA);
5242 
5243   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
5244     visitAnnotationMetadata(Annotation);
5245 
5246   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
5247     CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
5248     visitMDNode(*N, AreDebugLocsAllowed::Yes);
5249   }
5250 
5251   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
5252     verifyFragmentExpression(*DII);
5253     verifyNotEntryValue(*DII);
5254   }
5255 
5256   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
5257   I.getAllMetadata(MDs);
5258   for (auto Attachment : MDs) {
5259     unsigned Kind = Attachment.first;
5260     auto AllowLocs =
5261         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
5262             ? AreDebugLocsAllowed::Yes
5263             : AreDebugLocsAllowed::No;
5264     visitMDNode(*Attachment.second, AllowLocs);
5265   }
5266 
5267   InstsInThisBlock.insert(&I);
5268 }
5269 
5270 /// Allow intrinsics to be verified in different ways.
5271 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
5272   Function *IF = Call.getCalledFunction();
5273   Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
5274         IF);
5275 
5276   // Verify that the intrinsic prototype lines up with what the .td files
5277   // describe.
5278   FunctionType *IFTy = IF->getFunctionType();
5279   bool IsVarArg = IFTy->isVarArg();
5280 
5281   SmallVector<Intrinsic::IITDescriptor, 8> Table;
5282   getIntrinsicInfoTableEntries(ID, Table);
5283   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
5284 
5285   // Walk the descriptors to extract overloaded types.
5286   SmallVector<Type *, 4> ArgTys;
5287   Intrinsic::MatchIntrinsicTypesResult Res =
5288       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
5289   Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
5290         "Intrinsic has incorrect return type!", IF);
5291   Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
5292         "Intrinsic has incorrect argument type!", IF);
5293 
5294   // Verify if the intrinsic call matches the vararg property.
5295   if (IsVarArg)
5296     Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5297           "Intrinsic was not defined with variable arguments!", IF);
5298   else
5299     Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5300           "Callsite was not defined with variable arguments!", IF);
5301 
5302   // All descriptors should be absorbed by now.
5303   Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
5304 
5305   // Now that we have the intrinsic ID and the actual argument types (and we
5306   // know they are legal for the intrinsic!) get the intrinsic name through the
5307   // usual means.  This allows us to verify the mangling of argument types into
5308   // the name.
5309   const std::string ExpectedName =
5310       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
5311   Check(ExpectedName == IF->getName(),
5312         "Intrinsic name not mangled correctly for type arguments! "
5313         "Should be: " +
5314             ExpectedName,
5315         IF);
5316 
5317   // If the intrinsic takes MDNode arguments, verify that they are either global
5318   // or are local to *this* function.
5319   for (Value *V : Call.args()) {
5320     if (auto *MD = dyn_cast<MetadataAsValue>(V))
5321       visitMetadataAsValue(*MD, Call.getCaller());
5322     if (auto *Const = dyn_cast<Constant>(V))
5323       Check(!Const->getType()->isX86_AMXTy(),
5324             "const x86_amx is not allowed in argument!");
5325   }
5326 
5327   switch (ID) {
5328   default:
5329     break;
5330   case Intrinsic::assume: {
5331     for (auto &Elem : Call.bundle_op_infos()) {
5332       unsigned ArgCount = Elem.End - Elem.Begin;
5333       // Separate storage assumptions are special insofar as they're the only
5334       // operand bundles allowed on assumes that aren't parameter attributes.
5335       if (Elem.Tag->getKey() == "separate_storage") {
5336         Check(ArgCount == 2,
5337               "separate_storage assumptions should have 2 arguments", Call);
5338         Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
5339                   Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
5340               "arguments to separate_storage assumptions should be pointers",
5341               Call);
5342         return;
5343       }
5344       Check(Elem.Tag->getKey() == "ignore" ||
5345                 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5346             "tags must be valid attribute names", Call);
5347       Attribute::AttrKind Kind =
5348           Attribute::getAttrKindFromName(Elem.Tag->getKey());
5349       if (Kind == Attribute::Alignment) {
5350         Check(ArgCount <= 3 && ArgCount >= 2,
5351               "alignment assumptions should have 2 or 3 arguments", Call);
5352         Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
5353               "first argument should be a pointer", Call);
5354         Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
5355               "second argument should be an integer", Call);
5356         if (ArgCount == 3)
5357           Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5358                 "third argument should be an integer if present", Call);
5359         return;
5360       }
5361       Check(ArgCount <= 2, "too many arguments", Call);
5362       if (Kind == Attribute::None)
5363         break;
5364       if (Attribute::isIntAttrKind(Kind)) {
5365         Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5366         Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5367               "the second argument should be a constant integral value", Call);
5368       } else if (Attribute::canUseAsParamAttr(Kind)) {
5369         Check((ArgCount) == 1, "this attribute should have one argument", Call);
5370       } else if (Attribute::canUseAsFnAttr(Kind)) {
5371         Check((ArgCount) == 0, "this attribute has no argument", Call);
5372       }
5373     }
5374     break;
5375   }
5376   case Intrinsic::ucmp:
5377   case Intrinsic::scmp: {
5378     Type *SrcTy = Call.getOperand(0)->getType();
5379     Type *DestTy = Call.getType();
5380 
5381     Check(DestTy->getScalarSizeInBits() >= 2,
5382           "result type must be at least 2 bits wide", Call);
5383 
5384     bool IsDestTypeVector = DestTy->isVectorTy();
5385     Check(SrcTy->isVectorTy() == IsDestTypeVector,
5386           "ucmp/scmp argument and result types must both be either vector or "
5387           "scalar types",
5388           Call);
5389     if (IsDestTypeVector) {
5390       auto SrcVecLen = cast<VectorType>(SrcTy)->getElementCount();
5391       auto DestVecLen = cast<VectorType>(DestTy)->getElementCount();
5392       Check(SrcVecLen == DestVecLen,
5393             "return type and arguments must have the same number of "
5394             "elements",
5395             Call);
5396     }
5397     break;
5398   }
5399   case Intrinsic::coro_id: {
5400     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
5401     if (isa<ConstantPointerNull>(InfoArg))
5402       break;
5403     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5404     Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5405           "info argument of llvm.coro.id must refer to an initialized "
5406           "constant");
5407     Constant *Init = GV->getInitializer();
5408     Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5409           "info argument of llvm.coro.id must refer to either a struct or "
5410           "an array");
5411     break;
5412   }
5413   case Intrinsic::is_fpclass: {
5414     const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
5415     Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
5416           "unsupported bits for llvm.is.fpclass test mask");
5417     break;
5418   }
5419   case Intrinsic::fptrunc_round: {
5420     // Check the rounding mode
5421     Metadata *MD = nullptr;
5422     auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
5423     if (MAV)
5424       MD = MAV->getMetadata();
5425 
5426     Check(MD != nullptr, "missing rounding mode argument", Call);
5427 
5428     Check(isa<MDString>(MD),
5429           ("invalid value for llvm.fptrunc.round metadata operand"
5430            " (the operand should be a string)"),
5431           MD);
5432 
5433     std::optional<RoundingMode> RoundMode =
5434         convertStrToRoundingMode(cast<MDString>(MD)->getString());
5435     Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5436           "unsupported rounding mode argument", Call);
5437     break;
5438   }
5439 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5440 #include "llvm/IR/VPIntrinsics.def"
5441 #undef BEGIN_REGISTER_VP_INTRINSIC
5442     visitVPIntrinsic(cast<VPIntrinsic>(Call));
5443     break;
5444 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
5445   case Intrinsic::INTRINSIC:
5446 #include "llvm/IR/ConstrainedOps.def"
5447 #undef INSTRUCTION
5448     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5449     break;
5450   case Intrinsic::dbg_declare: // llvm.dbg.declare
5451     Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5452           "invalid llvm.dbg.declare intrinsic call 1", Call);
5453     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
5454     break;
5455   case Intrinsic::dbg_value: // llvm.dbg.value
5456     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
5457     break;
5458   case Intrinsic::dbg_assign: // llvm.dbg.assign
5459     visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
5460     break;
5461   case Intrinsic::dbg_label: // llvm.dbg.label
5462     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
5463     break;
5464   case Intrinsic::memcpy:
5465   case Intrinsic::memcpy_inline:
5466   case Intrinsic::memmove:
5467   case Intrinsic::memset:
5468   case Intrinsic::memset_inline: {
5469     break;
5470   }
5471   case Intrinsic::memcpy_element_unordered_atomic:
5472   case Intrinsic::memmove_element_unordered_atomic:
5473   case Intrinsic::memset_element_unordered_atomic: {
5474     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5475 
5476     ConstantInt *ElementSizeCI =
5477         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5478     const APInt &ElementSizeVal = ElementSizeCI->getValue();
5479     Check(ElementSizeVal.isPowerOf2(),
5480           "element size of the element-wise atomic memory intrinsic "
5481           "must be a power of 2",
5482           Call);
5483 
5484     auto IsValidAlignment = [&](MaybeAlign Alignment) {
5485       return Alignment && ElementSizeVal.ule(Alignment->value());
5486     };
5487     Check(IsValidAlignment(AMI->getDestAlign()),
5488           "incorrect alignment of the destination argument", Call);
5489     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5490       Check(IsValidAlignment(AMT->getSourceAlign()),
5491             "incorrect alignment of the source argument", Call);
5492     }
5493     break;
5494   }
5495   case Intrinsic::call_preallocated_setup: {
5496     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5497     Check(NumArgs != nullptr,
5498           "llvm.call.preallocated.setup argument must be a constant");
5499     bool FoundCall = false;
5500     for (User *U : Call.users()) {
5501       auto *UseCall = dyn_cast<CallBase>(U);
5502       Check(UseCall != nullptr,
5503             "Uses of llvm.call.preallocated.setup must be calls");
5504       const Function *Fn = UseCall->getCalledFunction();
5505       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5506         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5507         Check(AllocArgIndex != nullptr,
5508               "llvm.call.preallocated.alloc arg index must be a constant");
5509         auto AllocArgIndexInt = AllocArgIndex->getValue();
5510         Check(AllocArgIndexInt.sge(0) &&
5511                   AllocArgIndexInt.slt(NumArgs->getValue()),
5512               "llvm.call.preallocated.alloc arg index must be between 0 and "
5513               "corresponding "
5514               "llvm.call.preallocated.setup's argument count");
5515       } else if (Fn && Fn->getIntrinsicID() ==
5516                            Intrinsic::call_preallocated_teardown) {
5517         // nothing to do
5518       } else {
5519         Check(!FoundCall, "Can have at most one call corresponding to a "
5520                           "llvm.call.preallocated.setup");
5521         FoundCall = true;
5522         size_t NumPreallocatedArgs = 0;
5523         for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5524           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5525             ++NumPreallocatedArgs;
5526           }
5527         }
5528         Check(NumPreallocatedArgs != 0,
5529               "cannot use preallocated intrinsics on a call without "
5530               "preallocated arguments");
5531         Check(NumArgs->equalsInt(NumPreallocatedArgs),
5532               "llvm.call.preallocated.setup arg size must be equal to number "
5533               "of preallocated arguments "
5534               "at call site",
5535               Call, *UseCall);
5536         // getOperandBundle() cannot be called if more than one of the operand
5537         // bundle exists. There is already a check elsewhere for this, so skip
5538         // here if we see more than one.
5539         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5540             1) {
5541           return;
5542         }
5543         auto PreallocatedBundle =
5544             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5545         Check(PreallocatedBundle,
5546               "Use of llvm.call.preallocated.setup outside intrinsics "
5547               "must be in \"preallocated\" operand bundle");
5548         Check(PreallocatedBundle->Inputs.front().get() == &Call,
5549               "preallocated bundle must have token from corresponding "
5550               "llvm.call.preallocated.setup");
5551       }
5552     }
5553     break;
5554   }
5555   case Intrinsic::call_preallocated_arg: {
5556     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5557     Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5558                        Intrinsic::call_preallocated_setup,
5559           "llvm.call.preallocated.arg token argument must be a "
5560           "llvm.call.preallocated.setup");
5561     Check(Call.hasFnAttr(Attribute::Preallocated),
5562           "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5563           "call site attribute");
5564     break;
5565   }
5566   case Intrinsic::call_preallocated_teardown: {
5567     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5568     Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5569                        Intrinsic::call_preallocated_setup,
5570           "llvm.call.preallocated.teardown token argument must be a "
5571           "llvm.call.preallocated.setup");
5572     break;
5573   }
5574   case Intrinsic::gcroot:
5575   case Intrinsic::gcwrite:
5576   case Intrinsic::gcread:
5577     if (ID == Intrinsic::gcroot) {
5578       AllocaInst *AI =
5579           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5580       Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5581       Check(isa<Constant>(Call.getArgOperand(1)),
5582             "llvm.gcroot parameter #2 must be a constant.", Call);
5583       if (!AI->getAllocatedType()->isPointerTy()) {
5584         Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5585               "llvm.gcroot parameter #1 must either be a pointer alloca, "
5586               "or argument #2 must be a non-null constant.",
5587               Call);
5588       }
5589     }
5590 
5591     Check(Call.getParent()->getParent()->hasGC(),
5592           "Enclosing function does not use GC.", Call);
5593     break;
5594   case Intrinsic::init_trampoline:
5595     Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5596           "llvm.init_trampoline parameter #2 must resolve to a function.",
5597           Call);
5598     break;
5599   case Intrinsic::prefetch:
5600     Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5601           "rw argument to llvm.prefetch must be 0-1", Call);
5602     Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5603           "locality argument to llvm.prefetch must be 0-3", Call);
5604     Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5605           "cache type argument to llvm.prefetch must be 0-1", Call);
5606     break;
5607   case Intrinsic::stackprotector:
5608     Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5609           "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5610     break;
5611   case Intrinsic::localescape: {
5612     BasicBlock *BB = Call.getParent();
5613     Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5614           Call);
5615     Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5616           Call);
5617     for (Value *Arg : Call.args()) {
5618       if (isa<ConstantPointerNull>(Arg))
5619         continue; // Null values are allowed as placeholders.
5620       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5621       Check(AI && AI->isStaticAlloca(),
5622             "llvm.localescape only accepts static allocas", Call);
5623     }
5624     FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5625     SawFrameEscape = true;
5626     break;
5627   }
5628   case Intrinsic::localrecover: {
5629     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5630     Function *Fn = dyn_cast<Function>(FnArg);
5631     Check(Fn && !Fn->isDeclaration(),
5632           "llvm.localrecover first "
5633           "argument must be function defined in this module",
5634           Call);
5635     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5636     auto &Entry = FrameEscapeInfo[Fn];
5637     Entry.second = unsigned(
5638         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5639     break;
5640   }
5641 
5642   case Intrinsic::experimental_gc_statepoint:
5643     if (auto *CI = dyn_cast<CallInst>(&Call))
5644       Check(!CI->isInlineAsm(),
5645             "gc.statepoint support for inline assembly unimplemented", CI);
5646     Check(Call.getParent()->getParent()->hasGC(),
5647           "Enclosing function does not use GC.", Call);
5648 
5649     verifyStatepoint(Call);
5650     break;
5651   case Intrinsic::experimental_gc_result: {
5652     Check(Call.getParent()->getParent()->hasGC(),
5653           "Enclosing function does not use GC.", Call);
5654 
5655     auto *Statepoint = Call.getArgOperand(0);
5656     if (isa<UndefValue>(Statepoint))
5657       break;
5658 
5659     // Are we tied to a statepoint properly?
5660     const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5661     const Function *StatepointFn =
5662         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5663     Check(StatepointFn && StatepointFn->isDeclaration() &&
5664               StatepointFn->getIntrinsicID() ==
5665                   Intrinsic::experimental_gc_statepoint,
5666           "gc.result operand #1 must be from a statepoint", Call,
5667           Call.getArgOperand(0));
5668 
5669     // Check that result type matches wrapped callee.
5670     auto *TargetFuncType =
5671         cast<FunctionType>(StatepointCall->getParamElementType(2));
5672     Check(Call.getType() == TargetFuncType->getReturnType(),
5673           "gc.result result type does not match wrapped callee", Call);
5674     break;
5675   }
5676   case Intrinsic::experimental_gc_relocate: {
5677     Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5678 
5679     Check(isa<PointerType>(Call.getType()->getScalarType()),
5680           "gc.relocate must return a pointer or a vector of pointers", Call);
5681 
5682     // Check that this relocate is correctly tied to the statepoint
5683 
5684     // This is case for relocate on the unwinding path of an invoke statepoint
5685     if (LandingPadInst *LandingPad =
5686             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5687 
5688       const BasicBlock *InvokeBB =
5689           LandingPad->getParent()->getUniquePredecessor();
5690 
5691       // Landingpad relocates should have only one predecessor with invoke
5692       // statepoint terminator
5693       Check(InvokeBB, "safepoints should have unique landingpads",
5694             LandingPad->getParent());
5695       Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5696             InvokeBB);
5697       Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5698             "gc relocate should be linked to a statepoint", InvokeBB);
5699     } else {
5700       // In all other cases relocate should be tied to the statepoint directly.
5701       // This covers relocates on a normal return path of invoke statepoint and
5702       // relocates of a call statepoint.
5703       auto *Token = Call.getArgOperand(0);
5704       Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5705             "gc relocate is incorrectly tied to the statepoint", Call, Token);
5706     }
5707 
5708     // Verify rest of the relocate arguments.
5709     const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5710 
5711     // Both the base and derived must be piped through the safepoint.
5712     Value *Base = Call.getArgOperand(1);
5713     Check(isa<ConstantInt>(Base),
5714           "gc.relocate operand #2 must be integer offset", Call);
5715 
5716     Value *Derived = Call.getArgOperand(2);
5717     Check(isa<ConstantInt>(Derived),
5718           "gc.relocate operand #3 must be integer offset", Call);
5719 
5720     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5721     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5722 
5723     // Check the bounds
5724     if (isa<UndefValue>(StatepointCall))
5725       break;
5726     if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5727                        .getOperandBundle(LLVMContext::OB_gc_live)) {
5728       Check(BaseIndex < Opt->Inputs.size(),
5729             "gc.relocate: statepoint base index out of bounds", Call);
5730       Check(DerivedIndex < Opt->Inputs.size(),
5731             "gc.relocate: statepoint derived index out of bounds", Call);
5732     }
5733 
5734     // Relocated value must be either a pointer type or vector-of-pointer type,
5735     // but gc_relocate does not need to return the same pointer type as the
5736     // relocated pointer. It can be casted to the correct type later if it's
5737     // desired. However, they must have the same address space and 'vectorness'
5738     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5739     auto *ResultType = Call.getType();
5740     auto *DerivedType = Relocate.getDerivedPtr()->getType();
5741     auto *BaseType = Relocate.getBasePtr()->getType();
5742 
5743     Check(BaseType->isPtrOrPtrVectorTy(),
5744           "gc.relocate: relocated value must be a pointer", Call);
5745     Check(DerivedType->isPtrOrPtrVectorTy(),
5746           "gc.relocate: relocated value must be a pointer", Call);
5747 
5748     Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5749           "gc.relocate: vector relocates to vector and pointer to pointer",
5750           Call);
5751     Check(
5752         ResultType->getPointerAddressSpace() ==
5753             DerivedType->getPointerAddressSpace(),
5754         "gc.relocate: relocating a pointer shouldn't change its address space",
5755         Call);
5756 
5757     auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
5758     Check(GC, "gc.relocate: calling function must have GCStrategy",
5759           Call.getFunction());
5760     if (GC) {
5761       auto isGCPtr = [&GC](Type *PTy) {
5762         return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
5763       };
5764       Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5765       Check(isGCPtr(BaseType),
5766             "gc.relocate: relocated value must be a gc pointer", Call);
5767       Check(isGCPtr(DerivedType),
5768             "gc.relocate: relocated value must be a gc pointer", Call);
5769     }
5770     break;
5771   }
5772   case Intrinsic::experimental_patchpoint: {
5773     if (Call.getCallingConv() == CallingConv::AnyReg) {
5774       Check(Call.getType()->isSingleValueType(),
5775             "patchpoint: invalid return type used with anyregcc", Call);
5776     }
5777     break;
5778   }
5779   case Intrinsic::eh_exceptioncode:
5780   case Intrinsic::eh_exceptionpointer: {
5781     Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5782           "eh.exceptionpointer argument must be a catchpad", Call);
5783     break;
5784   }
5785   case Intrinsic::get_active_lane_mask: {
5786     Check(Call.getType()->isVectorTy(),
5787           "get_active_lane_mask: must return a "
5788           "vector",
5789           Call);
5790     auto *ElemTy = Call.getType()->getScalarType();
5791     Check(ElemTy->isIntegerTy(1),
5792           "get_active_lane_mask: element type is not "
5793           "i1",
5794           Call);
5795     break;
5796   }
5797   case Intrinsic::experimental_get_vector_length: {
5798     ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1));
5799     Check(!VF->isNegative() && !VF->isZero(),
5800           "get_vector_length: VF must be positive", Call);
5801     break;
5802   }
5803   case Intrinsic::masked_load: {
5804     Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5805           Call);
5806 
5807     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5808     Value *Mask = Call.getArgOperand(2);
5809     Value *PassThru = Call.getArgOperand(3);
5810     Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5811           Call);
5812     Check(Alignment->getValue().isPowerOf2(),
5813           "masked_load: alignment must be a power of 2", Call);
5814     Check(PassThru->getType() == Call.getType(),
5815           "masked_load: pass through and return type must match", Call);
5816     Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5817               cast<VectorType>(Call.getType())->getElementCount(),
5818           "masked_load: vector mask must be same length as return", Call);
5819     break;
5820   }
5821   case Intrinsic::masked_store: {
5822     Value *Val = Call.getArgOperand(0);
5823     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5824     Value *Mask = Call.getArgOperand(3);
5825     Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5826           Call);
5827     Check(Alignment->getValue().isPowerOf2(),
5828           "masked_store: alignment must be a power of 2", Call);
5829     Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5830               cast<VectorType>(Val->getType())->getElementCount(),
5831           "masked_store: vector mask must be same length as value", Call);
5832     break;
5833   }
5834 
5835   case Intrinsic::masked_gather: {
5836     const APInt &Alignment =
5837         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5838     Check(Alignment.isZero() || Alignment.isPowerOf2(),
5839           "masked_gather: alignment must be 0 or a power of 2", Call);
5840     break;
5841   }
5842   case Intrinsic::masked_scatter: {
5843     const APInt &Alignment =
5844         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5845     Check(Alignment.isZero() || Alignment.isPowerOf2(),
5846           "masked_scatter: alignment must be 0 or a power of 2", Call);
5847     break;
5848   }
5849 
5850   case Intrinsic::experimental_guard: {
5851     Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5852     Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5853           "experimental_guard must have exactly one "
5854           "\"deopt\" operand bundle");
5855     break;
5856   }
5857 
5858   case Intrinsic::experimental_deoptimize: {
5859     Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5860           Call);
5861     Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5862           "experimental_deoptimize must have exactly one "
5863           "\"deopt\" operand bundle");
5864     Check(Call.getType() == Call.getFunction()->getReturnType(),
5865           "experimental_deoptimize return type must match caller return type");
5866 
5867     if (isa<CallInst>(Call)) {
5868       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5869       Check(RI,
5870             "calls to experimental_deoptimize must be followed by a return");
5871 
5872       if (!Call.getType()->isVoidTy() && RI)
5873         Check(RI->getReturnValue() == &Call,
5874               "calls to experimental_deoptimize must be followed by a return "
5875               "of the value computed by experimental_deoptimize");
5876     }
5877 
5878     break;
5879   }
5880   case Intrinsic::vastart: {
5881     Check(Call.getFunction()->isVarArg(),
5882           "va_start called in a non-varargs function");
5883     break;
5884   }
5885   case Intrinsic::vector_reduce_and:
5886   case Intrinsic::vector_reduce_or:
5887   case Intrinsic::vector_reduce_xor:
5888   case Intrinsic::vector_reduce_add:
5889   case Intrinsic::vector_reduce_mul:
5890   case Intrinsic::vector_reduce_smax:
5891   case Intrinsic::vector_reduce_smin:
5892   case Intrinsic::vector_reduce_umax:
5893   case Intrinsic::vector_reduce_umin: {
5894     Type *ArgTy = Call.getArgOperand(0)->getType();
5895     Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5896           "Intrinsic has incorrect argument type!");
5897     break;
5898   }
5899   case Intrinsic::vector_reduce_fmax:
5900   case Intrinsic::vector_reduce_fmin: {
5901     Type *ArgTy = Call.getArgOperand(0)->getType();
5902     Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5903           "Intrinsic has incorrect argument type!");
5904     break;
5905   }
5906   case Intrinsic::vector_reduce_fadd:
5907   case Intrinsic::vector_reduce_fmul: {
5908     // Unlike the other reductions, the first argument is a start value. The
5909     // second argument is the vector to be reduced.
5910     Type *ArgTy = Call.getArgOperand(1)->getType();
5911     Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5912           "Intrinsic has incorrect argument type!");
5913     break;
5914   }
5915   case Intrinsic::smul_fix:
5916   case Intrinsic::smul_fix_sat:
5917   case Intrinsic::umul_fix:
5918   case Intrinsic::umul_fix_sat:
5919   case Intrinsic::sdiv_fix:
5920   case Intrinsic::sdiv_fix_sat:
5921   case Intrinsic::udiv_fix:
5922   case Intrinsic::udiv_fix_sat: {
5923     Value *Op1 = Call.getArgOperand(0);
5924     Value *Op2 = Call.getArgOperand(1);
5925     Check(Op1->getType()->isIntOrIntVectorTy(),
5926           "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5927           "vector of ints");
5928     Check(Op2->getType()->isIntOrIntVectorTy(),
5929           "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5930           "vector of ints");
5931 
5932     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5933     Check(Op3->getType()->isIntegerTy(),
5934           "third operand of [us][mul|div]_fix[_sat] must be an int type");
5935     Check(Op3->getBitWidth() <= 32,
5936           "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
5937 
5938     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5939         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5940       Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5941             "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5942             "the operands");
5943     } else {
5944       Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5945             "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5946             "to the width of the operands");
5947     }
5948     break;
5949   }
5950   case Intrinsic::lrint:
5951   case Intrinsic::llrint: {
5952     Type *ValTy = Call.getArgOperand(0)->getType();
5953     Type *ResultTy = Call.getType();
5954     Check(
5955         ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(),
5956         "llvm.lrint, llvm.llrint: argument must be floating-point or vector "
5957         "of floating-points, and result must be integer or vector of integers",
5958         &Call);
5959     Check(ValTy->isVectorTy() == ResultTy->isVectorTy(),
5960           "llvm.lrint, llvm.llrint: argument and result disagree on vector use",
5961           &Call);
5962     if (ValTy->isVectorTy()) {
5963       Check(cast<VectorType>(ValTy)->getElementCount() ==
5964                 cast<VectorType>(ResultTy)->getElementCount(),
5965             "llvm.lrint, llvm.llrint: argument must be same length as result",
5966             &Call);
5967     }
5968     break;
5969   }
5970   case Intrinsic::lround:
5971   case Intrinsic::llround: {
5972     Type *ValTy = Call.getArgOperand(0)->getType();
5973     Type *ResultTy = Call.getType();
5974     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5975           "Intrinsic does not support vectors", &Call);
5976     break;
5977   }
5978   case Intrinsic::bswap: {
5979     Type *Ty = Call.getType();
5980     unsigned Size = Ty->getScalarSizeInBits();
5981     Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5982     break;
5983   }
5984   case Intrinsic::invariant_start: {
5985     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5986     Check(InvariantSize &&
5987               (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5988           "invariant_start parameter must be -1, 0 or a positive number",
5989           &Call);
5990     break;
5991   }
5992   case Intrinsic::matrix_multiply:
5993   case Intrinsic::matrix_transpose:
5994   case Intrinsic::matrix_column_major_load:
5995   case Intrinsic::matrix_column_major_store: {
5996     Function *IF = Call.getCalledFunction();
5997     ConstantInt *Stride = nullptr;
5998     ConstantInt *NumRows;
5999     ConstantInt *NumColumns;
6000     VectorType *ResultTy;
6001     Type *Op0ElemTy = nullptr;
6002     Type *Op1ElemTy = nullptr;
6003     switch (ID) {
6004     case Intrinsic::matrix_multiply: {
6005       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
6006       ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3));
6007       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
6008       Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType())
6009                     ->getNumElements() ==
6010                 NumRows->getZExtValue() * N->getZExtValue(),
6011             "First argument of a matrix operation does not match specified "
6012             "shape!");
6013       Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType())
6014                     ->getNumElements() ==
6015                 N->getZExtValue() * NumColumns->getZExtValue(),
6016             "Second argument of a matrix operation does not match specified "
6017             "shape!");
6018 
6019       ResultTy = cast<VectorType>(Call.getType());
6020       Op0ElemTy =
6021           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
6022       Op1ElemTy =
6023           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
6024       break;
6025     }
6026     case Intrinsic::matrix_transpose:
6027       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
6028       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
6029       ResultTy = cast<VectorType>(Call.getType());
6030       Op0ElemTy =
6031           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
6032       break;
6033     case Intrinsic::matrix_column_major_load: {
6034       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
6035       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
6036       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
6037       ResultTy = cast<VectorType>(Call.getType());
6038       break;
6039     }
6040     case Intrinsic::matrix_column_major_store: {
6041       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
6042       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
6043       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
6044       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
6045       Op0ElemTy =
6046           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
6047       break;
6048     }
6049     default:
6050       llvm_unreachable("unexpected intrinsic");
6051     }
6052 
6053     Check(ResultTy->getElementType()->isIntegerTy() ||
6054               ResultTy->getElementType()->isFloatingPointTy(),
6055           "Result type must be an integer or floating-point type!", IF);
6056 
6057     if (Op0ElemTy)
6058       Check(ResultTy->getElementType() == Op0ElemTy,
6059             "Vector element type mismatch of the result and first operand "
6060             "vector!",
6061             IF);
6062 
6063     if (Op1ElemTy)
6064       Check(ResultTy->getElementType() == Op1ElemTy,
6065             "Vector element type mismatch of the result and second operand "
6066             "vector!",
6067             IF);
6068 
6069     Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
6070               NumRows->getZExtValue() * NumColumns->getZExtValue(),
6071           "Result of a matrix operation does not fit in the returned vector!");
6072 
6073     if (Stride)
6074       Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
6075             "Stride must be greater or equal than the number of rows!", IF);
6076 
6077     break;
6078   }
6079   case Intrinsic::vector_splice: {
6080     VectorType *VecTy = cast<VectorType>(Call.getType());
6081     int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
6082     int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
6083     if (Call.getParent() && Call.getParent()->getParent()) {
6084       AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
6085       if (Attrs.hasFnAttr(Attribute::VScaleRange))
6086         KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
6087     }
6088     Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
6089               (Idx >= 0 && Idx < KnownMinNumElements),
6090           "The splice index exceeds the range [-VL, VL-1] where VL is the "
6091           "known minimum number of elements in the vector. For scalable "
6092           "vectors the minimum number of elements is determined from "
6093           "vscale_range.",
6094           &Call);
6095     break;
6096   }
6097   case Intrinsic::experimental_stepvector: {
6098     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
6099     Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
6100               VecTy->getScalarSizeInBits() >= 8,
6101           "experimental_stepvector only supported for vectors of integers "
6102           "with a bitwidth of at least 8.",
6103           &Call);
6104     break;
6105   }
6106   case Intrinsic::vector_insert: {
6107     Value *Vec = Call.getArgOperand(0);
6108     Value *SubVec = Call.getArgOperand(1);
6109     Value *Idx = Call.getArgOperand(2);
6110     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6111 
6112     VectorType *VecTy = cast<VectorType>(Vec->getType());
6113     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
6114 
6115     ElementCount VecEC = VecTy->getElementCount();
6116     ElementCount SubVecEC = SubVecTy->getElementCount();
6117     Check(VecTy->getElementType() == SubVecTy->getElementType(),
6118           "vector_insert parameters must have the same element "
6119           "type.",
6120           &Call);
6121     Check(IdxN % SubVecEC.getKnownMinValue() == 0,
6122           "vector_insert index must be a constant multiple of "
6123           "the subvector's known minimum vector length.");
6124 
6125     // If this insertion is not the 'mixed' case where a fixed vector is
6126     // inserted into a scalable vector, ensure that the insertion of the
6127     // subvector does not overrun the parent vector.
6128     if (VecEC.isScalable() == SubVecEC.isScalable()) {
6129       Check(IdxN < VecEC.getKnownMinValue() &&
6130                 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
6131             "subvector operand of vector_insert would overrun the "
6132             "vector being inserted into.");
6133     }
6134     break;
6135   }
6136   case Intrinsic::vector_extract: {
6137     Value *Vec = Call.getArgOperand(0);
6138     Value *Idx = Call.getArgOperand(1);
6139     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6140 
6141     VectorType *ResultTy = cast<VectorType>(Call.getType());
6142     VectorType *VecTy = cast<VectorType>(Vec->getType());
6143 
6144     ElementCount VecEC = VecTy->getElementCount();
6145     ElementCount ResultEC = ResultTy->getElementCount();
6146 
6147     Check(ResultTy->getElementType() == VecTy->getElementType(),
6148           "vector_extract result must have the same element "
6149           "type as the input vector.",
6150           &Call);
6151     Check(IdxN % ResultEC.getKnownMinValue() == 0,
6152           "vector_extract index must be a constant multiple of "
6153           "the result type's known minimum vector length.");
6154 
6155     // If this extraction is not the 'mixed' case where a fixed vector is
6156     // extracted from a scalable vector, ensure that the extraction does not
6157     // overrun the parent vector.
6158     if (VecEC.isScalable() == ResultEC.isScalable()) {
6159       Check(IdxN < VecEC.getKnownMinValue() &&
6160                 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
6161             "vector_extract would overrun.");
6162     }
6163     break;
6164   }
6165   case Intrinsic::experimental_vector_partial_reduce_add: {
6166     VectorType *AccTy = cast<VectorType>(Call.getArgOperand(0)->getType());
6167     VectorType *VecTy = cast<VectorType>(Call.getArgOperand(1)->getType());
6168 
6169     unsigned VecWidth = VecTy->getElementCount().getKnownMinValue();
6170     unsigned AccWidth = AccTy->getElementCount().getKnownMinValue();
6171 
6172     Check((VecWidth % AccWidth) == 0,
6173           "Invalid vector widths for partial "
6174           "reduction. The width of the input vector "
6175           "must be a positive integer multiple of "
6176           "the width of the accumulator vector.");
6177     break;
6178   }
6179   case Intrinsic::experimental_noalias_scope_decl: {
6180     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
6181     break;
6182   }
6183   case Intrinsic::preserve_array_access_index:
6184   case Intrinsic::preserve_struct_access_index:
6185   case Intrinsic::aarch64_ldaxr:
6186   case Intrinsic::aarch64_ldxr:
6187   case Intrinsic::arm_ldaex:
6188   case Intrinsic::arm_ldrex: {
6189     Type *ElemTy = Call.getParamElementType(0);
6190     Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
6191           &Call);
6192     break;
6193   }
6194   case Intrinsic::aarch64_stlxr:
6195   case Intrinsic::aarch64_stxr:
6196   case Intrinsic::arm_stlex:
6197   case Intrinsic::arm_strex: {
6198     Type *ElemTy = Call.getAttributes().getParamElementType(1);
6199     Check(ElemTy,
6200           "Intrinsic requires elementtype attribute on second argument.",
6201           &Call);
6202     break;
6203   }
6204   case Intrinsic::aarch64_prefetch: {
6205     Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
6206           "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6207     Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
6208           "target argument to llvm.aarch64.prefetch must be 0-3", Call);
6209     Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
6210           "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6211     Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
6212           "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6213     break;
6214   }
6215   case Intrinsic::callbr_landingpad: {
6216     const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0));
6217     Check(CBR, "intrinstic requires callbr operand", &Call);
6218     if (!CBR)
6219       break;
6220 
6221     const BasicBlock *LandingPadBB = Call.getParent();
6222     const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor();
6223     if (!PredBB) {
6224       CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call);
6225       break;
6226     }
6227     if (!isa<CallBrInst>(PredBB->getTerminator())) {
6228       CheckFailed("Intrinsic must have corresponding callbr in predecessor",
6229                   &Call);
6230       break;
6231     }
6232     Check(llvm::any_of(CBR->getIndirectDests(),
6233                        [LandingPadBB](const BasicBlock *IndDest) {
6234                          return IndDest == LandingPadBB;
6235                        }),
6236           "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6237           "block in indirect destination list",
6238           &Call);
6239     const Instruction &First = *LandingPadBB->begin();
6240     Check(&First == &Call, "No other instructions may proceed intrinsic",
6241           &Call);
6242     break;
6243   }
6244   case Intrinsic::amdgcn_cs_chain: {
6245     auto CallerCC = Call.getCaller()->getCallingConv();
6246     switch (CallerCC) {
6247     case CallingConv::AMDGPU_CS:
6248     case CallingConv::AMDGPU_CS_Chain:
6249     case CallingConv::AMDGPU_CS_ChainPreserve:
6250       break;
6251     default:
6252       CheckFailed("Intrinsic can only be used from functions with the "
6253                   "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6254                   "calling conventions",
6255                   &Call);
6256       break;
6257     }
6258 
6259     Check(Call.paramHasAttr(2, Attribute::InReg),
6260           "SGPR arguments must have the `inreg` attribute", &Call);
6261     Check(!Call.paramHasAttr(3, Attribute::InReg),
6262           "VGPR arguments must not have the `inreg` attribute", &Call);
6263     break;
6264   }
6265   case Intrinsic::amdgcn_set_inactive_chain_arg: {
6266     auto CallerCC = Call.getCaller()->getCallingConv();
6267     switch (CallerCC) {
6268     case CallingConv::AMDGPU_CS_Chain:
6269     case CallingConv::AMDGPU_CS_ChainPreserve:
6270       break;
6271     default:
6272       CheckFailed("Intrinsic can only be used from functions with the "
6273                   "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6274                   "calling conventions",
6275                   &Call);
6276       break;
6277     }
6278 
6279     unsigned InactiveIdx = 1;
6280     Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg),
6281           "Value for inactive lanes must not have the `inreg` attribute",
6282           &Call);
6283     Check(isa<Argument>(Call.getArgOperand(InactiveIdx)),
6284           "Value for inactive lanes must be a function argument", &Call);
6285     Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(),
6286           "Value for inactive lanes must be a VGPR function argument", &Call);
6287     break;
6288   }
6289   case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6290   case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6291     Value *V = Call.getArgOperand(0);
6292     unsigned RegCount = cast<ConstantInt>(V)->getZExtValue();
6293     Check(RegCount % 8 == 0,
6294           "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6295     Check((RegCount >= 24 && RegCount <= 256),
6296           "reg_count argument to nvvm.setmaxnreg must be within [24, 256]");
6297     break;
6298   }
6299   case Intrinsic::experimental_convergence_entry:
6300   case Intrinsic::experimental_convergence_anchor:
6301     break;
6302   case Intrinsic::experimental_convergence_loop:
6303     break;
6304   case Intrinsic::ptrmask: {
6305     Type *Ty0 = Call.getArgOperand(0)->getType();
6306     Type *Ty1 = Call.getArgOperand(1)->getType();
6307     Check(Ty0->isPtrOrPtrVectorTy(),
6308           "llvm.ptrmask intrinsic first argument must be pointer or vector "
6309           "of pointers",
6310           &Call);
6311     Check(
6312         Ty0->isVectorTy() == Ty1->isVectorTy(),
6313         "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6314         &Call);
6315     if (Ty0->isVectorTy())
6316       Check(cast<VectorType>(Ty0)->getElementCount() ==
6317                 cast<VectorType>(Ty1)->getElementCount(),
6318             "llvm.ptrmask intrinsic arguments must have the same number of "
6319             "elements",
6320             &Call);
6321     Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(),
6322           "llvm.ptrmask intrinsic second argument bitwidth must match "
6323           "pointer index type size of first argument",
6324           &Call);
6325     break;
6326   }
6327   case Intrinsic::threadlocal_address: {
6328     const Value &Arg0 = *Call.getArgOperand(0);
6329     Check(isa<GlobalValue>(Arg0),
6330           "llvm.threadlocal.address first argument must be a GlobalValue");
6331     Check(cast<GlobalValue>(Arg0).isThreadLocal(),
6332           "llvm.threadlocal.address operand isThreadLocal() must be true");
6333     break;
6334   }
6335   };
6336 
6337   // Verify that there aren't any unmediated control transfers between funclets.
6338   if (IntrinsicInst::mayLowerToFunctionCall(ID)) {
6339     Function *F = Call.getParent()->getParent();
6340     if (F->hasPersonalityFn() &&
6341         isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) {
6342       // Run EH funclet coloring on-demand and cache results for other intrinsic
6343       // calls in this function
6344       if (BlockEHFuncletColors.empty())
6345         BlockEHFuncletColors = colorEHFunclets(*F);
6346 
6347       // Check for catch-/cleanup-pad in first funclet block
6348       bool InEHFunclet = false;
6349       BasicBlock *CallBB = Call.getParent();
6350       const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second;
6351       assert(CV.size() > 0 && "Uncolored block");
6352       for (BasicBlock *ColorFirstBB : CV)
6353         if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI()))
6354           InEHFunclet = true;
6355 
6356       // Check for funclet operand bundle
6357       bool HasToken = false;
6358       for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I)
6359         if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet)
6360           HasToken = true;
6361 
6362       // This would cause silent code truncation in WinEHPrepare
6363       if (InEHFunclet)
6364         Check(HasToken, "Missing funclet token on intrinsic call", &Call);
6365     }
6366   }
6367 }
6368 
6369 /// Carefully grab the subprogram from a local scope.
6370 ///
6371 /// This carefully grabs the subprogram from a local scope, avoiding the
6372 /// built-in assertions that would typically fire.
6373 static DISubprogram *getSubprogram(Metadata *LocalScope) {
6374   if (!LocalScope)
6375     return nullptr;
6376 
6377   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
6378     return SP;
6379 
6380   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
6381     return getSubprogram(LB->getRawScope());
6382 
6383   // Just return null; broken scope chains are checked elsewhere.
6384   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
6385   return nullptr;
6386 }
6387 
6388 void Verifier::visit(DbgLabelRecord &DLR) {
6389   CheckDI(isa<DILabel>(DLR.getRawLabel()),
6390           "invalid #dbg_label intrinsic variable", &DLR, DLR.getRawLabel());
6391 
6392   // Ignore broken !dbg attachments; they're checked elsewhere.
6393   if (MDNode *N = DLR.getDebugLoc().getAsMDNode())
6394     if (!isa<DILocation>(N))
6395       return;
6396 
6397   BasicBlock *BB = DLR.getParent();
6398   Function *F = BB ? BB->getParent() : nullptr;
6399 
6400   // The scopes for variables and !dbg attachments must agree.
6401   DILabel *Label = DLR.getLabel();
6402   DILocation *Loc = DLR.getDebugLoc();
6403   CheckDI(Loc, "#dbg_label record requires a !dbg attachment", &DLR, BB, F);
6404 
6405   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6406   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6407   if (!LabelSP || !LocSP)
6408     return;
6409 
6410   CheckDI(LabelSP == LocSP,
6411           "mismatched subprogram between #dbg_label label and !dbg attachment",
6412           &DLR, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6413           Loc->getScope()->getSubprogram());
6414 }
6415 
6416 void Verifier::visit(DbgVariableRecord &DVR) {
6417   BasicBlock *BB = DVR.getParent();
6418   Function *F = BB->getParent();
6419 
6420   CheckDI(DVR.getType() == DbgVariableRecord::LocationType::Value ||
6421               DVR.getType() == DbgVariableRecord::LocationType::Declare ||
6422               DVR.getType() == DbgVariableRecord::LocationType::Assign,
6423           "invalid #dbg record type", &DVR, DVR.getType());
6424 
6425   // The location for a DbgVariableRecord must be either a ValueAsMetadata,
6426   // DIArgList, or an empty MDNode (which is a legacy representation for an
6427   // "undef" location).
6428   auto *MD = DVR.getRawLocation();
6429   CheckDI(MD && (isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6430                  (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands())),
6431           "invalid #dbg record address/value", &DVR, MD);
6432   if (auto *VAM = dyn_cast<ValueAsMetadata>(MD))
6433     visitValueAsMetadata(*VAM, F);
6434   else if (auto *AL = dyn_cast<DIArgList>(MD))
6435     visitDIArgList(*AL, F);
6436 
6437   CheckDI(isa_and_nonnull<DILocalVariable>(DVR.getRawVariable()),
6438           "invalid #dbg record variable", &DVR, DVR.getRawVariable());
6439   visitMDNode(*DVR.getRawVariable(), AreDebugLocsAllowed::No);
6440 
6441   CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawExpression()),
6442           "invalid #dbg record expression", &DVR, DVR.getRawExpression());
6443   visitMDNode(*DVR.getExpression(), AreDebugLocsAllowed::No);
6444 
6445   if (DVR.isDbgAssign()) {
6446     CheckDI(isa_and_nonnull<DIAssignID>(DVR.getRawAssignID()),
6447             "invalid #dbg_assign DIAssignID", &DVR, DVR.getRawAssignID());
6448     visitMDNode(*cast<DIAssignID>(DVR.getRawAssignID()),
6449                 AreDebugLocsAllowed::No);
6450 
6451     const auto *RawAddr = DVR.getRawAddress();
6452     // Similarly to the location above, the address for an assign
6453     // DbgVariableRecord must be a ValueAsMetadata or an empty MDNode, which
6454     // represents an undef address.
6455     CheckDI(
6456         isa<ValueAsMetadata>(RawAddr) ||
6457             (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6458         "invalid #dbg_assign address", &DVR, DVR.getRawAddress());
6459     if (auto *VAM = dyn_cast<ValueAsMetadata>(RawAddr))
6460       visitValueAsMetadata(*VAM, F);
6461 
6462     CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawAddressExpression()),
6463             "invalid #dbg_assign address expression", &DVR,
6464             DVR.getRawAddressExpression());
6465     visitMDNode(*DVR.getAddressExpression(), AreDebugLocsAllowed::No);
6466 
6467     // All of the linked instructions should be in the same function as DVR.
6468     for (Instruction *I : at::getAssignmentInsts(&DVR))
6469       CheckDI(DVR.getFunction() == I->getFunction(),
6470               "inst not in same function as #dbg_assign", I, &DVR);
6471   }
6472 
6473   // This check is redundant with one in visitLocalVariable().
6474   DILocalVariable *Var = DVR.getVariable();
6475   CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6476           Var->getRawType());
6477 
6478   auto *DLNode = DVR.getDebugLoc().getAsMDNode();
6479   CheckDI(isa_and_nonnull<DILocation>(DLNode), "invalid #dbg record DILocation",
6480           &DVR, DLNode);
6481   DILocation *Loc = DVR.getDebugLoc();
6482 
6483   // The scopes for variables and !dbg attachments must agree.
6484   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6485   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6486   if (!VarSP || !LocSP)
6487     return; // Broken scope chains are checked elsewhere.
6488 
6489   CheckDI(VarSP == LocSP,
6490           "mismatched subprogram between #dbg record variable and DILocation",
6491           &DVR, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6492           Loc->getScope()->getSubprogram());
6493 
6494   verifyFnArgs(DVR);
6495 }
6496 
6497 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
6498   if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
6499     auto *RetTy = cast<VectorType>(VPCast->getType());
6500     auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
6501     Check(RetTy->getElementCount() == ValTy->getElementCount(),
6502           "VP cast intrinsic first argument and result vector lengths must be "
6503           "equal",
6504           *VPCast);
6505 
6506     switch (VPCast->getIntrinsicID()) {
6507     default:
6508       llvm_unreachable("Unknown VP cast intrinsic");
6509     case Intrinsic::vp_trunc:
6510       Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6511             "llvm.vp.trunc intrinsic first argument and result element type "
6512             "must be integer",
6513             *VPCast);
6514       Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6515             "llvm.vp.trunc intrinsic the bit size of first argument must be "
6516             "larger than the bit size of the return type",
6517             *VPCast);
6518       break;
6519     case Intrinsic::vp_zext:
6520     case Intrinsic::vp_sext:
6521       Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6522             "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6523             "element type must be integer",
6524             *VPCast);
6525       Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6526             "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6527             "argument must be smaller than the bit size of the return type",
6528             *VPCast);
6529       break;
6530     case Intrinsic::vp_fptoui:
6531     case Intrinsic::vp_fptosi:
6532     case Intrinsic::vp_lrint:
6533     case Intrinsic::vp_llrint:
6534       Check(
6535           RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
6536           "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element "
6537           "type must be floating-point and result element type must be integer",
6538           *VPCast);
6539       break;
6540     case Intrinsic::vp_uitofp:
6541     case Intrinsic::vp_sitofp:
6542       Check(
6543           RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
6544           "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6545           "type must be integer and result element type must be floating-point",
6546           *VPCast);
6547       break;
6548     case Intrinsic::vp_fptrunc:
6549       Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6550             "llvm.vp.fptrunc intrinsic first argument and result element type "
6551             "must be floating-point",
6552             *VPCast);
6553       Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6554             "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6555             "larger than the bit size of the return type",
6556             *VPCast);
6557       break;
6558     case Intrinsic::vp_fpext:
6559       Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6560             "llvm.vp.fpext intrinsic first argument and result element type "
6561             "must be floating-point",
6562             *VPCast);
6563       Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6564             "llvm.vp.fpext intrinsic the bit size of first argument must be "
6565             "smaller than the bit size of the return type",
6566             *VPCast);
6567       break;
6568     case Intrinsic::vp_ptrtoint:
6569       Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
6570             "llvm.vp.ptrtoint intrinsic first argument element type must be "
6571             "pointer and result element type must be integer",
6572             *VPCast);
6573       break;
6574     case Intrinsic::vp_inttoptr:
6575       Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
6576             "llvm.vp.inttoptr intrinsic first argument element type must be "
6577             "integer and result element type must be pointer",
6578             *VPCast);
6579       break;
6580     }
6581   }
6582   if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
6583     auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6584     Check(CmpInst::isFPPredicate(Pred),
6585           "invalid predicate for VP FP comparison intrinsic", &VPI);
6586   }
6587   if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
6588     auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6589     Check(CmpInst::isIntPredicate(Pred),
6590           "invalid predicate for VP integer comparison intrinsic", &VPI);
6591   }
6592   if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) {
6593     auto TestMask = cast<ConstantInt>(VPI.getOperand(1));
6594     Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
6595           "unsupported bits for llvm.vp.is.fpclass test mask");
6596   }
6597 }
6598 
6599 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
6600   unsigned NumOperands = FPI.getNonMetadataArgCount();
6601   bool HasRoundingMD =
6602       Intrinsic::hasConstrainedFPRoundingModeOperand(FPI.getIntrinsicID());
6603 
6604   // Add the expected number of metadata operands.
6605   NumOperands += (1 + HasRoundingMD);
6606 
6607   // Compare intrinsics carry an extra predicate metadata operand.
6608   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
6609     NumOperands += 1;
6610   Check((FPI.arg_size() == NumOperands),
6611         "invalid arguments for constrained FP intrinsic", &FPI);
6612 
6613   switch (FPI.getIntrinsicID()) {
6614   case Intrinsic::experimental_constrained_lrint:
6615   case Intrinsic::experimental_constrained_llrint: {
6616     Type *ValTy = FPI.getArgOperand(0)->getType();
6617     Type *ResultTy = FPI.getType();
6618     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6619           "Intrinsic does not support vectors", &FPI);
6620     break;
6621   }
6622 
6623   case Intrinsic::experimental_constrained_lround:
6624   case Intrinsic::experimental_constrained_llround: {
6625     Type *ValTy = FPI.getArgOperand(0)->getType();
6626     Type *ResultTy = FPI.getType();
6627     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6628           "Intrinsic does not support vectors", &FPI);
6629     break;
6630   }
6631 
6632   case Intrinsic::experimental_constrained_fcmp:
6633   case Intrinsic::experimental_constrained_fcmps: {
6634     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
6635     Check(CmpInst::isFPPredicate(Pred),
6636           "invalid predicate for constrained FP comparison intrinsic", &FPI);
6637     break;
6638   }
6639 
6640   case Intrinsic::experimental_constrained_fptosi:
6641   case Intrinsic::experimental_constrained_fptoui: {
6642     Value *Operand = FPI.getArgOperand(0);
6643     ElementCount SrcEC;
6644     Check(Operand->getType()->isFPOrFPVectorTy(),
6645           "Intrinsic first argument must be floating point", &FPI);
6646     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6647       SrcEC = cast<VectorType>(OperandT)->getElementCount();
6648     }
6649 
6650     Operand = &FPI;
6651     Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6652           "Intrinsic first argument and result disagree on vector use", &FPI);
6653     Check(Operand->getType()->isIntOrIntVectorTy(),
6654           "Intrinsic result must be an integer", &FPI);
6655     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6656       Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6657             "Intrinsic first argument and result vector lengths must be equal",
6658             &FPI);
6659     }
6660     break;
6661   }
6662 
6663   case Intrinsic::experimental_constrained_sitofp:
6664   case Intrinsic::experimental_constrained_uitofp: {
6665     Value *Operand = FPI.getArgOperand(0);
6666     ElementCount SrcEC;
6667     Check(Operand->getType()->isIntOrIntVectorTy(),
6668           "Intrinsic first argument must be integer", &FPI);
6669     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6670       SrcEC = cast<VectorType>(OperandT)->getElementCount();
6671     }
6672 
6673     Operand = &FPI;
6674     Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6675           "Intrinsic first argument and result disagree on vector use", &FPI);
6676     Check(Operand->getType()->isFPOrFPVectorTy(),
6677           "Intrinsic result must be a floating point", &FPI);
6678     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6679       Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6680             "Intrinsic first argument and result vector lengths must be equal",
6681             &FPI);
6682     }
6683     break;
6684   }
6685 
6686   case Intrinsic::experimental_constrained_fptrunc:
6687   case Intrinsic::experimental_constrained_fpext: {
6688     Value *Operand = FPI.getArgOperand(0);
6689     Type *OperandTy = Operand->getType();
6690     Value *Result = &FPI;
6691     Type *ResultTy = Result->getType();
6692     Check(OperandTy->isFPOrFPVectorTy(),
6693           "Intrinsic first argument must be FP or FP vector", &FPI);
6694     Check(ResultTy->isFPOrFPVectorTy(),
6695           "Intrinsic result must be FP or FP vector", &FPI);
6696     Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6697           "Intrinsic first argument and result disagree on vector use", &FPI);
6698     if (OperandTy->isVectorTy()) {
6699       Check(cast<VectorType>(OperandTy)->getElementCount() ==
6700                 cast<VectorType>(ResultTy)->getElementCount(),
6701             "Intrinsic first argument and result vector lengths must be equal",
6702             &FPI);
6703     }
6704     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6705       Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6706             "Intrinsic first argument's type must be larger than result type",
6707             &FPI);
6708     } else {
6709       Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6710             "Intrinsic first argument's type must be smaller than result type",
6711             &FPI);
6712     }
6713     break;
6714   }
6715 
6716   default:
6717     break;
6718   }
6719 
6720   // If a non-metadata argument is passed in a metadata slot then the
6721   // error will be caught earlier when the incorrect argument doesn't
6722   // match the specification in the intrinsic call table. Thus, no
6723   // argument type check is needed here.
6724 
6725   Check(FPI.getExceptionBehavior().has_value(),
6726         "invalid exception behavior argument", &FPI);
6727   if (HasRoundingMD) {
6728     Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6729           &FPI);
6730   }
6731 }
6732 
6733 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6734   auto *MD = DII.getRawLocation();
6735   CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6736               (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6737           "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6738   CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6739           "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6740           DII.getRawVariable());
6741   CheckDI(isa<DIExpression>(DII.getRawExpression()),
6742           "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6743           DII.getRawExpression());
6744 
6745   if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6746     CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6747             "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6748             DAI->getRawAssignID());
6749     const auto *RawAddr = DAI->getRawAddress();
6750     CheckDI(
6751         isa<ValueAsMetadata>(RawAddr) ||
6752             (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6753         "invalid llvm.dbg.assign intrinsic address", &DII,
6754         DAI->getRawAddress());
6755     CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6756             "invalid llvm.dbg.assign intrinsic address expression", &DII,
6757             DAI->getRawAddressExpression());
6758     // All of the linked instructions should be in the same function as DII.
6759     for (Instruction *I : at::getAssignmentInsts(DAI))
6760       CheckDI(DAI->getFunction() == I->getFunction(),
6761               "inst not in same function as dbg.assign", I, DAI);
6762   }
6763 
6764   // Ignore broken !dbg attachments; they're checked elsewhere.
6765   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6766     if (!isa<DILocation>(N))
6767       return;
6768 
6769   BasicBlock *BB = DII.getParent();
6770   Function *F = BB ? BB->getParent() : nullptr;
6771 
6772   // The scopes for variables and !dbg attachments must agree.
6773   DILocalVariable *Var = DII.getVariable();
6774   DILocation *Loc = DII.getDebugLoc();
6775   CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6776           &DII, BB, F);
6777 
6778   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6779   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6780   if (!VarSP || !LocSP)
6781     return; // Broken scope chains are checked elsewhere.
6782 
6783   CheckDI(VarSP == LocSP,
6784           "mismatched subprogram between llvm.dbg." + Kind +
6785               " variable and !dbg attachment",
6786           &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6787           Loc->getScope()->getSubprogram());
6788 
6789   // This check is redundant with one in visitLocalVariable().
6790   CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6791           Var->getRawType());
6792   verifyFnArgs(DII);
6793 }
6794 
6795 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6796   CheckDI(isa<DILabel>(DLI.getRawLabel()),
6797           "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6798           DLI.getRawLabel());
6799 
6800   // Ignore broken !dbg attachments; they're checked elsewhere.
6801   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6802     if (!isa<DILocation>(N))
6803       return;
6804 
6805   BasicBlock *BB = DLI.getParent();
6806   Function *F = BB ? BB->getParent() : nullptr;
6807 
6808   // The scopes for variables and !dbg attachments must agree.
6809   DILabel *Label = DLI.getLabel();
6810   DILocation *Loc = DLI.getDebugLoc();
6811   Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6812         BB, F);
6813 
6814   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6815   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6816   if (!LabelSP || !LocSP)
6817     return;
6818 
6819   CheckDI(LabelSP == LocSP,
6820           "mismatched subprogram between llvm.dbg." + Kind +
6821               " label and !dbg attachment",
6822           &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6823           Loc->getScope()->getSubprogram());
6824 }
6825 
6826 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
6827   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
6828   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6829 
6830   // We don't know whether this intrinsic verified correctly.
6831   if (!V || !E || !E->isValid())
6832     return;
6833 
6834   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6835   auto Fragment = E->getFragmentInfo();
6836   if (!Fragment)
6837     return;
6838 
6839   // The frontend helps out GDB by emitting the members of local anonymous
6840   // unions as artificial local variables with shared storage. When SROA splits
6841   // the storage for artificial local variables that are smaller than the entire
6842   // union, the overhang piece will be outside of the allotted space for the
6843   // variable and this check fails.
6844   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6845   if (V->isArtificial())
6846     return;
6847 
6848   verifyFragmentExpression(*V, *Fragment, &I);
6849 }
6850 void Verifier::verifyFragmentExpression(const DbgVariableRecord &DVR) {
6851   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(DVR.getRawVariable());
6852   DIExpression *E = dyn_cast_or_null<DIExpression>(DVR.getRawExpression());
6853 
6854   // We don't know whether this intrinsic verified correctly.
6855   if (!V || !E || !E->isValid())
6856     return;
6857 
6858   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6859   auto Fragment = E->getFragmentInfo();
6860   if (!Fragment)
6861     return;
6862 
6863   // The frontend helps out GDB by emitting the members of local anonymous
6864   // unions as artificial local variables with shared storage. When SROA splits
6865   // the storage for artificial local variables that are smaller than the entire
6866   // union, the overhang piece will be outside of the allotted space for the
6867   // variable and this check fails.
6868   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6869   if (V->isArtificial())
6870     return;
6871 
6872   verifyFragmentExpression(*V, *Fragment, &DVR);
6873 }
6874 
6875 template <typename ValueOrMetadata>
6876 void Verifier::verifyFragmentExpression(const DIVariable &V,
6877                                         DIExpression::FragmentInfo Fragment,
6878                                         ValueOrMetadata *Desc) {
6879   // If there's no size, the type is broken, but that should be checked
6880   // elsewhere.
6881   auto VarSize = V.getSizeInBits();
6882   if (!VarSize)
6883     return;
6884 
6885   unsigned FragSize = Fragment.SizeInBits;
6886   unsigned FragOffset = Fragment.OffsetInBits;
6887   CheckDI(FragSize + FragOffset <= *VarSize,
6888           "fragment is larger than or outside of variable", Desc, &V);
6889   CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
6890 }
6891 
6892 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
6893   // This function does not take the scope of noninlined function arguments into
6894   // account. Don't run it if current function is nodebug, because it may
6895   // contain inlined debug intrinsics.
6896   if (!HasDebugInfo)
6897     return;
6898 
6899   // For performance reasons only check non-inlined ones.
6900   if (I.getDebugLoc()->getInlinedAt())
6901     return;
6902 
6903   DILocalVariable *Var = I.getVariable();
6904   CheckDI(Var, "dbg intrinsic without variable");
6905 
6906   unsigned ArgNo = Var->getArg();
6907   if (!ArgNo)
6908     return;
6909 
6910   // Verify there are no duplicate function argument debug info entries.
6911   // These will cause hard-to-debug assertions in the DWARF backend.
6912   if (DebugFnArgs.size() < ArgNo)
6913     DebugFnArgs.resize(ArgNo, nullptr);
6914 
6915   auto *Prev = DebugFnArgs[ArgNo - 1];
6916   DebugFnArgs[ArgNo - 1] = Var;
6917   CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
6918           Prev, Var);
6919 }
6920 void Verifier::verifyFnArgs(const DbgVariableRecord &DVR) {
6921   // This function does not take the scope of noninlined function arguments into
6922   // account. Don't run it if current function is nodebug, because it may
6923   // contain inlined debug intrinsics.
6924   if (!HasDebugInfo)
6925     return;
6926 
6927   // For performance reasons only check non-inlined ones.
6928   if (DVR.getDebugLoc()->getInlinedAt())
6929     return;
6930 
6931   DILocalVariable *Var = DVR.getVariable();
6932   CheckDI(Var, "#dbg record without variable");
6933 
6934   unsigned ArgNo = Var->getArg();
6935   if (!ArgNo)
6936     return;
6937 
6938   // Verify there are no duplicate function argument debug info entries.
6939   // These will cause hard-to-debug assertions in the DWARF backend.
6940   if (DebugFnArgs.size() < ArgNo)
6941     DebugFnArgs.resize(ArgNo, nullptr);
6942 
6943   auto *Prev = DebugFnArgs[ArgNo - 1];
6944   DebugFnArgs[ArgNo - 1] = Var;
6945   CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &DVR,
6946           Prev, Var);
6947 }
6948 
6949 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
6950   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6951 
6952   // We don't know whether this intrinsic verified correctly.
6953   if (!E || !E->isValid())
6954     return;
6955 
6956   if (isa<ValueAsMetadata>(I.getRawLocation())) {
6957     Value *VarValue = I.getVariableLocationOp(0);
6958     if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
6959       return;
6960     // We allow EntryValues for swift async arguments, as they have an
6961     // ABI-guarantee to be turned into a specific register.
6962     if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
6963         ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
6964       return;
6965   }
6966 
6967   CheckDI(!E->isEntryValue(),
6968           "Entry values are only allowed in MIR unless they target a "
6969           "swiftasync Argument",
6970           &I);
6971 }
6972 void Verifier::verifyNotEntryValue(const DbgVariableRecord &DVR) {
6973   DIExpression *E = dyn_cast_or_null<DIExpression>(DVR.getRawExpression());
6974 
6975   // We don't know whether this intrinsic verified correctly.
6976   if (!E || !E->isValid())
6977     return;
6978 
6979   if (isa<ValueAsMetadata>(DVR.getRawLocation())) {
6980     Value *VarValue = DVR.getVariableLocationOp(0);
6981     if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
6982       return;
6983     // We allow EntryValues for swift async arguments, as they have an
6984     // ABI-guarantee to be turned into a specific register.
6985     if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
6986         ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
6987       return;
6988   }
6989 
6990   CheckDI(!E->isEntryValue(),
6991           "Entry values are only allowed in MIR unless they target a "
6992           "swiftasync Argument",
6993           &DVR);
6994 }
6995 
6996 void Verifier::verifyCompileUnits() {
6997   // When more than one Module is imported into the same context, such as during
6998   // an LTO build before linking the modules, ODR type uniquing may cause types
6999   // to point to a different CU. This check does not make sense in this case.
7000   if (M.getContext().isODRUniquingDebugTypes())
7001     return;
7002   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
7003   SmallPtrSet<const Metadata *, 2> Listed;
7004   if (CUs)
7005     Listed.insert(CUs->op_begin(), CUs->op_end());
7006   for (const auto *CU : CUVisited)
7007     CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
7008   CUVisited.clear();
7009 }
7010 
7011 void Verifier::verifyDeoptimizeCallingConvs() {
7012   if (DeoptimizeDeclarations.empty())
7013     return;
7014 
7015   const Function *First = DeoptimizeDeclarations[0];
7016   for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
7017     Check(First->getCallingConv() == F->getCallingConv(),
7018           "All llvm.experimental.deoptimize declarations must have the same "
7019           "calling convention",
7020           First, F);
7021   }
7022 }
7023 
7024 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
7025                                         const OperandBundleUse &BU) {
7026   FunctionType *FTy = Call.getFunctionType();
7027 
7028   Check((FTy->getReturnType()->isPointerTy() ||
7029          (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
7030         "a call with operand bundle \"clang.arc.attachedcall\" must call a "
7031         "function returning a pointer or a non-returning function that has a "
7032         "void return type",
7033         Call);
7034 
7035   Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
7036         "operand bundle \"clang.arc.attachedcall\" requires one function as "
7037         "an argument",
7038         Call);
7039 
7040   auto *Fn = cast<Function>(BU.Inputs.front());
7041   Intrinsic::ID IID = Fn->getIntrinsicID();
7042 
7043   if (IID) {
7044     Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
7045            IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
7046           "invalid function argument", Call);
7047   } else {
7048     StringRef FnName = Fn->getName();
7049     Check((FnName == "objc_retainAutoreleasedReturnValue" ||
7050            FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
7051           "invalid function argument", Call);
7052   }
7053 }
7054 
7055 void Verifier::verifyNoAliasScopeDecl() {
7056   if (NoAliasScopeDecls.empty())
7057     return;
7058 
7059   // only a single scope must be declared at a time.
7060   for (auto *II : NoAliasScopeDecls) {
7061     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
7062            "Not a llvm.experimental.noalias.scope.decl ?");
7063     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
7064         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
7065     Check(ScopeListMV != nullptr,
7066           "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
7067           "argument",
7068           II);
7069 
7070     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
7071     Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
7072     Check(ScopeListMD->getNumOperands() == 1,
7073           "!id.scope.list must point to a list with a single scope", II);
7074     visitAliasScopeListMetadata(ScopeListMD);
7075   }
7076 
7077   // Only check the domination rule when requested. Once all passes have been
7078   // adapted this option can go away.
7079   if (!VerifyNoAliasScopeDomination)
7080     return;
7081 
7082   // Now sort the intrinsics based on the scope MDNode so that declarations of
7083   // the same scopes are next to each other.
7084   auto GetScope = [](IntrinsicInst *II) {
7085     const auto *ScopeListMV = cast<MetadataAsValue>(
7086         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
7087     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
7088   };
7089 
7090   // We are sorting on MDNode pointers here. For valid input IR this is ok.
7091   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
7092   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
7093     return GetScope(Lhs) < GetScope(Rhs);
7094   };
7095 
7096   llvm::sort(NoAliasScopeDecls, Compare);
7097 
7098   // Go over the intrinsics and check that for the same scope, they are not
7099   // dominating each other.
7100   auto ItCurrent = NoAliasScopeDecls.begin();
7101   while (ItCurrent != NoAliasScopeDecls.end()) {
7102     auto CurScope = GetScope(*ItCurrent);
7103     auto ItNext = ItCurrent;
7104     do {
7105       ++ItNext;
7106     } while (ItNext != NoAliasScopeDecls.end() &&
7107              GetScope(*ItNext) == CurScope);
7108 
7109     // [ItCurrent, ItNext) represents the declarations for the same scope.
7110     // Ensure they are not dominating each other.. but only if it is not too
7111     // expensive.
7112     if (ItNext - ItCurrent < 32)
7113       for (auto *I : llvm::make_range(ItCurrent, ItNext))
7114         for (auto *J : llvm::make_range(ItCurrent, ItNext))
7115           if (I != J)
7116             Check(!DT.dominates(I, J),
7117                   "llvm.experimental.noalias.scope.decl dominates another one "
7118                   "with the same scope",
7119                   I);
7120     ItCurrent = ItNext;
7121   }
7122 }
7123 
7124 //===----------------------------------------------------------------------===//
7125 //  Implement the public interfaces to this file...
7126 //===----------------------------------------------------------------------===//
7127 
7128 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
7129   Function &F = const_cast<Function &>(f);
7130 
7131   // Don't use a raw_null_ostream.  Printing IR is expensive.
7132   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
7133 
7134   // Note that this function's return value is inverted from what you would
7135   // expect of a function called "verify".
7136   return !V.verify(F);
7137 }
7138 
7139 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
7140                         bool *BrokenDebugInfo) {
7141   // Don't use a raw_null_ostream.  Printing IR is expensive.
7142   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
7143 
7144   bool Broken = false;
7145   for (const Function &F : M)
7146     Broken |= !V.verify(F);
7147 
7148   Broken |= !V.verify();
7149   if (BrokenDebugInfo)
7150     *BrokenDebugInfo = V.hasBrokenDebugInfo();
7151   // Note that this function's return value is inverted from what you would
7152   // expect of a function called "verify".
7153   return Broken;
7154 }
7155 
7156 namespace {
7157 
7158 struct VerifierLegacyPass : public FunctionPass {
7159   static char ID;
7160 
7161   std::unique_ptr<Verifier> V;
7162   bool FatalErrors = true;
7163 
7164   VerifierLegacyPass() : FunctionPass(ID) {
7165     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
7166   }
7167   explicit VerifierLegacyPass(bool FatalErrors)
7168       : FunctionPass(ID),
7169         FatalErrors(FatalErrors) {
7170     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
7171   }
7172 
7173   bool doInitialization(Module &M) override {
7174     V = std::make_unique<Verifier>(
7175         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
7176     return false;
7177   }
7178 
7179   bool runOnFunction(Function &F) override {
7180     if (!V->verify(F) && FatalErrors) {
7181       errs() << "in function " << F.getName() << '\n';
7182       report_fatal_error("Broken function found, compilation aborted!");
7183     }
7184     return false;
7185   }
7186 
7187   bool doFinalization(Module &M) override {
7188     bool HasErrors = false;
7189     for (Function &F : M)
7190       if (F.isDeclaration())
7191         HasErrors |= !V->verify(F);
7192 
7193     HasErrors |= !V->verify();
7194     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
7195       report_fatal_error("Broken module found, compilation aborted!");
7196     return false;
7197   }
7198 
7199   void getAnalysisUsage(AnalysisUsage &AU) const override {
7200     AU.setPreservesAll();
7201   }
7202 };
7203 
7204 } // end anonymous namespace
7205 
7206 /// Helper to issue failure from the TBAA verification
7207 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
7208   if (Diagnostic)
7209     return Diagnostic->CheckFailed(Args...);
7210 }
7211 
7212 #define CheckTBAA(C, ...)                                                      \
7213   do {                                                                         \
7214     if (!(C)) {                                                                \
7215       CheckFailed(__VA_ARGS__);                                                \
7216       return false;                                                            \
7217     }                                                                          \
7218   } while (false)
7219 
7220 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
7221 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
7222 /// struct-type node describing an aggregate data structure (like a struct).
7223 TBAAVerifier::TBAABaseNodeSummary
7224 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
7225                                  bool IsNewFormat) {
7226   if (BaseNode->getNumOperands() < 2) {
7227     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
7228     return {true, ~0u};
7229   }
7230 
7231   auto Itr = TBAABaseNodes.find(BaseNode);
7232   if (Itr != TBAABaseNodes.end())
7233     return Itr->second;
7234 
7235   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
7236   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
7237   (void)InsertResult;
7238   assert(InsertResult.second && "We just checked!");
7239   return Result;
7240 }
7241 
7242 TBAAVerifier::TBAABaseNodeSummary
7243 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
7244                                      bool IsNewFormat) {
7245   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
7246 
7247   if (BaseNode->getNumOperands() == 2) {
7248     // Scalar nodes can only be accessed at offset 0.
7249     return isValidScalarTBAANode(BaseNode)
7250                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
7251                : InvalidNode;
7252   }
7253 
7254   if (IsNewFormat) {
7255     if (BaseNode->getNumOperands() % 3 != 0) {
7256       CheckFailed("Access tag nodes must have the number of operands that is a "
7257                   "multiple of 3!", BaseNode);
7258       return InvalidNode;
7259     }
7260   } else {
7261     if (BaseNode->getNumOperands() % 2 != 1) {
7262       CheckFailed("Struct tag nodes must have an odd number of operands!",
7263                   BaseNode);
7264       return InvalidNode;
7265     }
7266   }
7267 
7268   // Check the type size field.
7269   if (IsNewFormat) {
7270     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7271         BaseNode->getOperand(1));
7272     if (!TypeSizeNode) {
7273       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
7274       return InvalidNode;
7275     }
7276   }
7277 
7278   // Check the type name field. In the new format it can be anything.
7279   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
7280     CheckFailed("Struct tag nodes have a string as their first operand",
7281                 BaseNode);
7282     return InvalidNode;
7283   }
7284 
7285   bool Failed = false;
7286 
7287   std::optional<APInt> PrevOffset;
7288   unsigned BitWidth = ~0u;
7289 
7290   // We've already checked that BaseNode is not a degenerate root node with one
7291   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
7292   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7293   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7294   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
7295            Idx += NumOpsPerField) {
7296     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
7297     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
7298     if (!isa<MDNode>(FieldTy)) {
7299       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
7300       Failed = true;
7301       continue;
7302     }
7303 
7304     auto *OffsetEntryCI =
7305         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
7306     if (!OffsetEntryCI) {
7307       CheckFailed("Offset entries must be constants!", &I, BaseNode);
7308       Failed = true;
7309       continue;
7310     }
7311 
7312     if (BitWidth == ~0u)
7313       BitWidth = OffsetEntryCI->getBitWidth();
7314 
7315     if (OffsetEntryCI->getBitWidth() != BitWidth) {
7316       CheckFailed(
7317           "Bitwidth between the offsets and struct type entries must match", &I,
7318           BaseNode);
7319       Failed = true;
7320       continue;
7321     }
7322 
7323     // NB! As far as I can tell, we generate a non-strictly increasing offset
7324     // sequence only from structs that have zero size bit fields.  When
7325     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
7326     // pick the field lexically the latest in struct type metadata node.  This
7327     // mirrors the actual behavior of the alias analysis implementation.
7328     bool IsAscending =
7329         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
7330 
7331     if (!IsAscending) {
7332       CheckFailed("Offsets must be increasing!", &I, BaseNode);
7333       Failed = true;
7334     }
7335 
7336     PrevOffset = OffsetEntryCI->getValue();
7337 
7338     if (IsNewFormat) {
7339       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7340           BaseNode->getOperand(Idx + 2));
7341       if (!MemberSizeNode) {
7342         CheckFailed("Member size entries must be constants!", &I, BaseNode);
7343         Failed = true;
7344         continue;
7345       }
7346     }
7347   }
7348 
7349   return Failed ? InvalidNode
7350                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
7351 }
7352 
7353 static bool IsRootTBAANode(const MDNode *MD) {
7354   return MD->getNumOperands() < 2;
7355 }
7356 
7357 static bool IsScalarTBAANodeImpl(const MDNode *MD,
7358                                  SmallPtrSetImpl<const MDNode *> &Visited) {
7359   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
7360     return false;
7361 
7362   if (!isa<MDString>(MD->getOperand(0)))
7363     return false;
7364 
7365   if (MD->getNumOperands() == 3) {
7366     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
7367     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
7368       return false;
7369   }
7370 
7371   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
7372   return Parent && Visited.insert(Parent).second &&
7373          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
7374 }
7375 
7376 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
7377   auto ResultIt = TBAAScalarNodes.find(MD);
7378   if (ResultIt != TBAAScalarNodes.end())
7379     return ResultIt->second;
7380 
7381   SmallPtrSet<const MDNode *, 4> Visited;
7382   bool Result = IsScalarTBAANodeImpl(MD, Visited);
7383   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
7384   (void)InsertResult;
7385   assert(InsertResult.second && "Just checked!");
7386 
7387   return Result;
7388 }
7389 
7390 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
7391 /// Offset in place to be the offset within the field node returned.
7392 ///
7393 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
7394 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
7395                                                    const MDNode *BaseNode,
7396                                                    APInt &Offset,
7397                                                    bool IsNewFormat) {
7398   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
7399 
7400   // Scalar nodes have only one possible "field" -- their parent in the access
7401   // hierarchy.  Offset must be zero at this point, but our caller is supposed
7402   // to check that.
7403   if (BaseNode->getNumOperands() == 2)
7404     return cast<MDNode>(BaseNode->getOperand(1));
7405 
7406   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7407   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7408   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
7409            Idx += NumOpsPerField) {
7410     auto *OffsetEntryCI =
7411         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
7412     if (OffsetEntryCI->getValue().ugt(Offset)) {
7413       if (Idx == FirstFieldOpNo) {
7414         CheckFailed("Could not find TBAA parent in struct type node", &I,
7415                     BaseNode, &Offset);
7416         return nullptr;
7417       }
7418 
7419       unsigned PrevIdx = Idx - NumOpsPerField;
7420       auto *PrevOffsetEntryCI =
7421           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
7422       Offset -= PrevOffsetEntryCI->getValue();
7423       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
7424     }
7425   }
7426 
7427   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
7428   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
7429       BaseNode->getOperand(LastIdx + 1));
7430   Offset -= LastOffsetEntryCI->getValue();
7431   return cast<MDNode>(BaseNode->getOperand(LastIdx));
7432 }
7433 
7434 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
7435   if (!Type || Type->getNumOperands() < 3)
7436     return false;
7437 
7438   // In the new format type nodes shall have a reference to the parent type as
7439   // its first operand.
7440   return isa_and_nonnull<MDNode>(Type->getOperand(0));
7441 }
7442 
7443 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
7444   CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
7445             &I, MD);
7446 
7447   CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
7448                 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
7449                 isa<AtomicCmpXchgInst>(I),
7450             "This instruction shall not have a TBAA access tag!", &I);
7451 
7452   bool IsStructPathTBAA =
7453       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
7454 
7455   CheckTBAA(IsStructPathTBAA,
7456             "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7457             &I);
7458 
7459   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
7460   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
7461 
7462   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
7463 
7464   if (IsNewFormat) {
7465     CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
7466               "Access tag metadata must have either 4 or 5 operands", &I, MD);
7467   } else {
7468     CheckTBAA(MD->getNumOperands() < 5,
7469               "Struct tag metadata must have either 3 or 4 operands", &I, MD);
7470   }
7471 
7472   // Check the access size field.
7473   if (IsNewFormat) {
7474     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7475         MD->getOperand(3));
7476     CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
7477   }
7478 
7479   // Check the immutability flag.
7480   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
7481   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
7482     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
7483         MD->getOperand(ImmutabilityFlagOpNo));
7484     CheckTBAA(IsImmutableCI,
7485               "Immutability tag on struct tag metadata must be a constant", &I,
7486               MD);
7487     CheckTBAA(
7488         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
7489         "Immutability part of the struct tag metadata must be either 0 or 1",
7490         &I, MD);
7491   }
7492 
7493   CheckTBAA(BaseNode && AccessType,
7494             "Malformed struct tag metadata: base and access-type "
7495             "should be non-null and point to Metadata nodes",
7496             &I, MD, BaseNode, AccessType);
7497 
7498   if (!IsNewFormat) {
7499     CheckTBAA(isValidScalarTBAANode(AccessType),
7500               "Access type node must be a valid scalar type", &I, MD,
7501               AccessType);
7502   }
7503 
7504   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
7505   CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
7506 
7507   APInt Offset = OffsetCI->getValue();
7508   bool SeenAccessTypeInPath = false;
7509 
7510   SmallPtrSet<MDNode *, 4> StructPath;
7511 
7512   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
7513        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
7514                                                IsNewFormat)) {
7515     if (!StructPath.insert(BaseNode).second) {
7516       CheckFailed("Cycle detected in struct path", &I, MD);
7517       return false;
7518     }
7519 
7520     bool Invalid;
7521     unsigned BaseNodeBitWidth;
7522     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
7523                                                              IsNewFormat);
7524 
7525     // If the base node is invalid in itself, then we've already printed all the
7526     // errors we wanted to print.
7527     if (Invalid)
7528       return false;
7529 
7530     SeenAccessTypeInPath |= BaseNode == AccessType;
7531 
7532     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
7533       CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
7534                 &I, MD, &Offset);
7535 
7536     CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
7537                   (BaseNodeBitWidth == 0 && Offset == 0) ||
7538                   (IsNewFormat && BaseNodeBitWidth == ~0u),
7539               "Access bit-width not the same as description bit-width", &I, MD,
7540               BaseNodeBitWidth, Offset.getBitWidth());
7541 
7542     if (IsNewFormat && SeenAccessTypeInPath)
7543       break;
7544   }
7545 
7546   CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
7547             MD);
7548   return true;
7549 }
7550 
7551 char VerifierLegacyPass::ID = 0;
7552 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
7553 
7554 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
7555   return new VerifierLegacyPass(FatalErrors);
7556 }
7557 
7558 AnalysisKey VerifierAnalysis::Key;
7559 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
7560                                                ModuleAnalysisManager &) {
7561   Result Res;
7562   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
7563   return Res;
7564 }
7565 
7566 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
7567                                                FunctionAnalysisManager &) {
7568   return { llvm::verifyFunction(F, &dbgs()), false };
7569 }
7570 
7571 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
7572   auto Res = AM.getResult<VerifierAnalysis>(M);
7573   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
7574     report_fatal_error("Broken module found, compilation aborted!");
7575 
7576   return PreservedAnalyses::all();
7577 }
7578 
7579 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
7580   auto res = AM.getResult<VerifierAnalysis>(F);
7581   if (res.IRBroken && FatalErrors)
7582     report_fatal_error("Broken function found, compilation aborted!");
7583 
7584   return PreservedAnalyses::all();
7585 }
7586