xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Verifier.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * All basic blocks should only end with terminator insts, not contain them
27 //  * The entry node to a function must not have predecessors
28 //  * All Instructions must be embedded into a basic block
29 //  * Functions cannot take a void-typed parameter
30 //  * Verify that a function's argument list agrees with it's declared type.
31 //  * It is illegal to specify a name for a void value.
32 //  * It is illegal to have a internal global value with no initializer
33 //  * It is illegal to have a ret instruction that returns a value that does not
34 //    agree with the function return value type.
35 //  * Function call argument types match the function prototype
36 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
37 //    only by the unwind edge of an invoke instruction.
38 //  * A landingpad instruction must be the first non-PHI instruction in the
39 //    block.
40 //  * Landingpad instructions must be in a function with a personality function.
41 //  * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42 //    The applied restrictions are too numerous to list here.
43 //  * The convergence entry intrinsic and the loop heart must be the first
44 //    non-PHI instruction in their respective block. This does not conflict with
45 //    the landing pads, since these two kinds cannot occur in the same block.
46 //  * All other things that are tested by asserts spread about the code...
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/ADT/APFloat.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/MapVector.h"
56 #include "llvm/ADT/PostOrderIterator.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallPtrSet.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/StringMap.h"
63 #include "llvm/ADT/StringRef.h"
64 #include "llvm/ADT/Twine.h"
65 #include "llvm/BinaryFormat/Dwarf.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/AttributeMask.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/BasicBlock.h"
70 #include "llvm/IR/CFG.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Comdat.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/ConvergenceVerifier.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfo.h"
79 #include "llvm/IR/DebugInfoMetadata.h"
80 #include "llvm/IR/DebugLoc.h"
81 #include "llvm/IR/DerivedTypes.h"
82 #include "llvm/IR/Dominators.h"
83 #include "llvm/IR/EHPersonalities.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/GCStrategy.h"
86 #include "llvm/IR/GlobalAlias.h"
87 #include "llvm/IR/GlobalValue.h"
88 #include "llvm/IR/GlobalVariable.h"
89 #include "llvm/IR/InlineAsm.h"
90 #include "llvm/IR/InstVisitor.h"
91 #include "llvm/IR/InstrTypes.h"
92 #include "llvm/IR/Instruction.h"
93 #include "llvm/IR/Instructions.h"
94 #include "llvm/IR/IntrinsicInst.h"
95 #include "llvm/IR/Intrinsics.h"
96 #include "llvm/IR/IntrinsicsAArch64.h"
97 #include "llvm/IR/IntrinsicsAMDGPU.h"
98 #include "llvm/IR/IntrinsicsARM.h"
99 #include "llvm/IR/IntrinsicsNVPTX.h"
100 #include "llvm/IR/IntrinsicsWebAssembly.h"
101 #include "llvm/IR/LLVMContext.h"
102 #include "llvm/IR/Metadata.h"
103 #include "llvm/IR/Module.h"
104 #include "llvm/IR/ModuleSlotTracker.h"
105 #include "llvm/IR/PassManager.h"
106 #include "llvm/IR/Statepoint.h"
107 #include "llvm/IR/Type.h"
108 #include "llvm/IR/Use.h"
109 #include "llvm/IR/User.h"
110 #include "llvm/IR/VFABIDemangler.h"
111 #include "llvm/IR/Value.h"
112 #include "llvm/InitializePasses.h"
113 #include "llvm/Pass.h"
114 #include "llvm/Support/AtomicOrdering.h"
115 #include "llvm/Support/Casting.h"
116 #include "llvm/Support/CommandLine.h"
117 #include "llvm/Support/ErrorHandling.h"
118 #include "llvm/Support/MathExtras.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include <algorithm>
121 #include <cassert>
122 #include <cstdint>
123 #include <memory>
124 #include <optional>
125 #include <string>
126 #include <utility>
127 
128 using namespace llvm;
129 
130 static cl::opt<bool> VerifyNoAliasScopeDomination(
131     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
132     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
133              "scopes are not dominating"));
134 
135 namespace llvm {
136 
137 struct VerifierSupport {
138   raw_ostream *OS;
139   const Module &M;
140   ModuleSlotTracker MST;
141   Triple TT;
142   const DataLayout &DL;
143   LLVMContext &Context;
144 
145   /// Track the brokenness of the module while recursively visiting.
146   bool Broken = false;
147   /// Broken debug info can be "recovered" from by stripping the debug info.
148   bool BrokenDebugInfo = false;
149   /// Whether to treat broken debug info as an error.
150   bool TreatBrokenDebugInfoAsError = true;
151 
152   explicit VerifierSupport(raw_ostream *OS, const Module &M)
153       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
154         Context(M.getContext()) {}
155 
156 private:
157   void Write(const Module *M) {
158     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
159   }
160 
161   void Write(const Value *V) {
162     if (V)
163       Write(*V);
164   }
165 
166   void Write(const Value &V) {
167     if (isa<Instruction>(V)) {
168       V.print(*OS, MST);
169       *OS << '\n';
170     } else {
171       V.printAsOperand(*OS, true, MST);
172       *OS << '\n';
173     }
174   }
175 
176   void Write(const DPValue *V) {
177     if (V)
178       V->print(*OS, MST, false);
179   }
180 
181   void Write(const Metadata *MD) {
182     if (!MD)
183       return;
184     MD->print(*OS, MST, &M);
185     *OS << '\n';
186   }
187 
188   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
189     Write(MD.get());
190   }
191 
192   void Write(const NamedMDNode *NMD) {
193     if (!NMD)
194       return;
195     NMD->print(*OS, MST);
196     *OS << '\n';
197   }
198 
199   void Write(Type *T) {
200     if (!T)
201       return;
202     *OS << ' ' << *T;
203   }
204 
205   void Write(const Comdat *C) {
206     if (!C)
207       return;
208     *OS << *C;
209   }
210 
211   void Write(const APInt *AI) {
212     if (!AI)
213       return;
214     *OS << *AI << '\n';
215   }
216 
217   void Write(const unsigned i) { *OS << i << '\n'; }
218 
219   // NOLINTNEXTLINE(readability-identifier-naming)
220   void Write(const Attribute *A) {
221     if (!A)
222       return;
223     *OS << A->getAsString() << '\n';
224   }
225 
226   // NOLINTNEXTLINE(readability-identifier-naming)
227   void Write(const AttributeSet *AS) {
228     if (!AS)
229       return;
230     *OS << AS->getAsString() << '\n';
231   }
232 
233   // NOLINTNEXTLINE(readability-identifier-naming)
234   void Write(const AttributeList *AL) {
235     if (!AL)
236       return;
237     AL->print(*OS);
238   }
239 
240   void Write(Printable P) { *OS << P << '\n'; }
241 
242   template <typename T> void Write(ArrayRef<T> Vs) {
243     for (const T &V : Vs)
244       Write(V);
245   }
246 
247   template <typename T1, typename... Ts>
248   void WriteTs(const T1 &V1, const Ts &... Vs) {
249     Write(V1);
250     WriteTs(Vs...);
251   }
252 
253   template <typename... Ts> void WriteTs() {}
254 
255 public:
256   /// A check failed, so printout out the condition and the message.
257   ///
258   /// This provides a nice place to put a breakpoint if you want to see why
259   /// something is not correct.
260   void CheckFailed(const Twine &Message) {
261     if (OS)
262       *OS << Message << '\n';
263     Broken = true;
264   }
265 
266   /// A check failed (with values to print).
267   ///
268   /// This calls the Message-only version so that the above is easier to set a
269   /// breakpoint on.
270   template <typename T1, typename... Ts>
271   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
272     CheckFailed(Message);
273     if (OS)
274       WriteTs(V1, Vs...);
275   }
276 
277   /// A debug info check failed.
278   void DebugInfoCheckFailed(const Twine &Message) {
279     if (OS)
280       *OS << Message << '\n';
281     Broken |= TreatBrokenDebugInfoAsError;
282     BrokenDebugInfo = true;
283   }
284 
285   /// A debug info check failed (with values to print).
286   template <typename T1, typename... Ts>
287   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
288                             const Ts &... Vs) {
289     DebugInfoCheckFailed(Message);
290     if (OS)
291       WriteTs(V1, Vs...);
292   }
293 };
294 
295 } // namespace llvm
296 
297 namespace {
298 
299 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
300   friend class InstVisitor<Verifier>;
301 
302   // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
303   // the alignment size should not exceed 2^15. Since encode(Align)
304   // would plus the shift value by 1, the alignment size should
305   // not exceed 2^14, otherwise it can NOT be properly lowered
306   // in backend.
307   static constexpr unsigned ParamMaxAlignment = 1 << 14;
308   DominatorTree DT;
309 
310   /// When verifying a basic block, keep track of all of the
311   /// instructions we have seen so far.
312   ///
313   /// This allows us to do efficient dominance checks for the case when an
314   /// instruction has an operand that is an instruction in the same block.
315   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
316 
317   /// Keep track of the metadata nodes that have been checked already.
318   SmallPtrSet<const Metadata *, 32> MDNodes;
319 
320   /// Keep track which DISubprogram is attached to which function.
321   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
322 
323   /// Track all DICompileUnits visited.
324   SmallPtrSet<const Metadata *, 2> CUVisited;
325 
326   /// The result type for a landingpad.
327   Type *LandingPadResultTy;
328 
329   /// Whether we've seen a call to @llvm.localescape in this function
330   /// already.
331   bool SawFrameEscape;
332 
333   /// Whether the current function has a DISubprogram attached to it.
334   bool HasDebugInfo = false;
335 
336   /// The current source language.
337   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
338 
339   /// Stores the count of how many objects were passed to llvm.localescape for a
340   /// given function and the largest index passed to llvm.localrecover.
341   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
342 
343   // Maps catchswitches and cleanuppads that unwind to siblings to the
344   // terminators that indicate the unwind, used to detect cycles therein.
345   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
346 
347   /// Cache which blocks are in which funclet, if an EH funclet personality is
348   /// in use. Otherwise empty.
349   DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
350 
351   /// Cache of constants visited in search of ConstantExprs.
352   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
353 
354   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
355   SmallVector<const Function *, 4> DeoptimizeDeclarations;
356 
357   /// Cache of attribute lists verified.
358   SmallPtrSet<const void *, 32> AttributeListsVisited;
359 
360   // Verify that this GlobalValue is only used in this module.
361   // This map is used to avoid visiting uses twice. We can arrive at a user
362   // twice, if they have multiple operands. In particular for very large
363   // constant expressions, we can arrive at a particular user many times.
364   SmallPtrSet<const Value *, 32> GlobalValueVisited;
365 
366   // Keeps track of duplicate function argument debug info.
367   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
368 
369   TBAAVerifier TBAAVerifyHelper;
370   ConvergenceVerifier ConvergenceVerifyHelper;
371 
372   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
373 
374   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
375 
376 public:
377   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
378                     const Module &M)
379       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
380         SawFrameEscape(false), TBAAVerifyHelper(this) {
381     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
382   }
383 
384   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
385 
386   bool verify(const Function &F) {
387     assert(F.getParent() == &M &&
388            "An instance of this class only works with a specific module!");
389 
390     // First ensure the function is well-enough formed to compute dominance
391     // information, and directly compute a dominance tree. We don't rely on the
392     // pass manager to provide this as it isolates us from a potentially
393     // out-of-date dominator tree and makes it significantly more complex to run
394     // this code outside of a pass manager.
395     // FIXME: It's really gross that we have to cast away constness here.
396     if (!F.empty())
397       DT.recalculate(const_cast<Function &>(F));
398 
399     for (const BasicBlock &BB : F) {
400       if (!BB.empty() && BB.back().isTerminator())
401         continue;
402 
403       if (OS) {
404         *OS << "Basic Block in function '" << F.getName()
405             << "' does not have terminator!\n";
406         BB.printAsOperand(*OS, true, MST);
407         *OS << "\n";
408       }
409       return false;
410     }
411 
412     auto FailureCB = [this](const Twine &Message) {
413       this->CheckFailed(Message);
414     };
415     ConvergenceVerifyHelper.initialize(OS, FailureCB, F);
416 
417     Broken = false;
418     // FIXME: We strip const here because the inst visitor strips const.
419     visit(const_cast<Function &>(F));
420     verifySiblingFuncletUnwinds();
421 
422     if (ConvergenceVerifyHelper.sawTokens())
423       ConvergenceVerifyHelper.verify(DT);
424 
425     InstsInThisBlock.clear();
426     DebugFnArgs.clear();
427     LandingPadResultTy = nullptr;
428     SawFrameEscape = false;
429     SiblingFuncletInfo.clear();
430     verifyNoAliasScopeDecl();
431     NoAliasScopeDecls.clear();
432 
433     return !Broken;
434   }
435 
436   /// Verify the module that this instance of \c Verifier was initialized with.
437   bool verify() {
438     Broken = false;
439 
440     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
441     for (const Function &F : M)
442       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
443         DeoptimizeDeclarations.push_back(&F);
444 
445     // Now that we've visited every function, verify that we never asked to
446     // recover a frame index that wasn't escaped.
447     verifyFrameRecoverIndices();
448     for (const GlobalVariable &GV : M.globals())
449       visitGlobalVariable(GV);
450 
451     for (const GlobalAlias &GA : M.aliases())
452       visitGlobalAlias(GA);
453 
454     for (const GlobalIFunc &GI : M.ifuncs())
455       visitGlobalIFunc(GI);
456 
457     for (const NamedMDNode &NMD : M.named_metadata())
458       visitNamedMDNode(NMD);
459 
460     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
461       visitComdat(SMEC.getValue());
462 
463     visitModuleFlags();
464     visitModuleIdents();
465     visitModuleCommandLines();
466 
467     verifyCompileUnits();
468 
469     verifyDeoptimizeCallingConvs();
470     DISubprogramAttachments.clear();
471     return !Broken;
472   }
473 
474 private:
475   /// Whether a metadata node is allowed to be, or contain, a DILocation.
476   enum class AreDebugLocsAllowed { No, Yes };
477 
478   // Verification methods...
479   void visitGlobalValue(const GlobalValue &GV);
480   void visitGlobalVariable(const GlobalVariable &GV);
481   void visitGlobalAlias(const GlobalAlias &GA);
482   void visitGlobalIFunc(const GlobalIFunc &GI);
483   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
484   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
485                            const GlobalAlias &A, const Constant &C);
486   void visitNamedMDNode(const NamedMDNode &NMD);
487   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
488   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
489   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
490   void visitDIArgList(const DIArgList &AL, Function *F);
491   void visitComdat(const Comdat &C);
492   void visitModuleIdents();
493   void visitModuleCommandLines();
494   void visitModuleFlags();
495   void visitModuleFlag(const MDNode *Op,
496                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
497                        SmallVectorImpl<const MDNode *> &Requirements);
498   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
499   void visitFunction(const Function &F);
500   void visitBasicBlock(BasicBlock &BB);
501   void verifyRangeMetadata(const Value &V, const MDNode *Range, Type *Ty,
502                            bool IsAbsoluteSymbol);
503   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
504   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
505   void visitProfMetadata(Instruction &I, MDNode *MD);
506   void visitCallStackMetadata(MDNode *MD);
507   void visitMemProfMetadata(Instruction &I, MDNode *MD);
508   void visitCallsiteMetadata(Instruction &I, MDNode *MD);
509   void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
510   void visitAnnotationMetadata(MDNode *Annotation);
511   void visitAliasScopeMetadata(const MDNode *MD);
512   void visitAliasScopeListMetadata(const MDNode *MD);
513   void visitAccessGroupMetadata(const MDNode *MD);
514 
515   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
516 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
517 #include "llvm/IR/Metadata.def"
518   void visitDIScope(const DIScope &N);
519   void visitDIVariable(const DIVariable &N);
520   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
521   void visitDITemplateParameter(const DITemplateParameter &N);
522 
523   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
524 
525   // InstVisitor overrides...
526   using InstVisitor<Verifier>::visit;
527   void visit(Instruction &I);
528 
529   void visitTruncInst(TruncInst &I);
530   void visitZExtInst(ZExtInst &I);
531   void visitSExtInst(SExtInst &I);
532   void visitFPTruncInst(FPTruncInst &I);
533   void visitFPExtInst(FPExtInst &I);
534   void visitFPToUIInst(FPToUIInst &I);
535   void visitFPToSIInst(FPToSIInst &I);
536   void visitUIToFPInst(UIToFPInst &I);
537   void visitSIToFPInst(SIToFPInst &I);
538   void visitIntToPtrInst(IntToPtrInst &I);
539   void visitPtrToIntInst(PtrToIntInst &I);
540   void visitBitCastInst(BitCastInst &I);
541   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
542   void visitPHINode(PHINode &PN);
543   void visitCallBase(CallBase &Call);
544   void visitUnaryOperator(UnaryOperator &U);
545   void visitBinaryOperator(BinaryOperator &B);
546   void visitICmpInst(ICmpInst &IC);
547   void visitFCmpInst(FCmpInst &FC);
548   void visitExtractElementInst(ExtractElementInst &EI);
549   void visitInsertElementInst(InsertElementInst &EI);
550   void visitShuffleVectorInst(ShuffleVectorInst &EI);
551   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
552   void visitCallInst(CallInst &CI);
553   void visitInvokeInst(InvokeInst &II);
554   void visitGetElementPtrInst(GetElementPtrInst &GEP);
555   void visitLoadInst(LoadInst &LI);
556   void visitStoreInst(StoreInst &SI);
557   void verifyDominatesUse(Instruction &I, unsigned i);
558   void visitInstruction(Instruction &I);
559   void visitTerminator(Instruction &I);
560   void visitBranchInst(BranchInst &BI);
561   void visitReturnInst(ReturnInst &RI);
562   void visitSwitchInst(SwitchInst &SI);
563   void visitIndirectBrInst(IndirectBrInst &BI);
564   void visitCallBrInst(CallBrInst &CBI);
565   void visitSelectInst(SelectInst &SI);
566   void visitUserOp1(Instruction &I);
567   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
568   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
569   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
570   void visitVPIntrinsic(VPIntrinsic &VPI);
571   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
572   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
573   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
574   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
575   void visitFenceInst(FenceInst &FI);
576   void visitAllocaInst(AllocaInst &AI);
577   void visitExtractValueInst(ExtractValueInst &EVI);
578   void visitInsertValueInst(InsertValueInst &IVI);
579   void visitEHPadPredecessors(Instruction &I);
580   void visitLandingPadInst(LandingPadInst &LPI);
581   void visitResumeInst(ResumeInst &RI);
582   void visitCatchPadInst(CatchPadInst &CPI);
583   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
584   void visitCleanupPadInst(CleanupPadInst &CPI);
585   void visitFuncletPadInst(FuncletPadInst &FPI);
586   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
587   void visitCleanupReturnInst(CleanupReturnInst &CRI);
588 
589   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
590   void verifySwiftErrorValue(const Value *SwiftErrorVal);
591   void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
592   void verifyMustTailCall(CallInst &CI);
593   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
594   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
595   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
596   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
597                                     const Value *V);
598   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
599                            const Value *V, bool IsIntrinsic, bool IsInlineAsm);
600   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
601 
602   void visitConstantExprsRecursively(const Constant *EntryC);
603   void visitConstantExpr(const ConstantExpr *CE);
604   void verifyInlineAsmCall(const CallBase &Call);
605   void verifyStatepoint(const CallBase &Call);
606   void verifyFrameRecoverIndices();
607   void verifySiblingFuncletUnwinds();
608 
609   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
610   template <typename ValueOrMetadata>
611   void verifyFragmentExpression(const DIVariable &V,
612                                 DIExpression::FragmentInfo Fragment,
613                                 ValueOrMetadata *Desc);
614   void verifyFnArgs(const DbgVariableIntrinsic &I);
615   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
616 
617   /// Module-level debug info verification...
618   void verifyCompileUnits();
619 
620   /// Module-level verification that all @llvm.experimental.deoptimize
621   /// declarations share the same calling convention.
622   void verifyDeoptimizeCallingConvs();
623 
624   void verifyAttachedCallBundle(const CallBase &Call,
625                                 const OperandBundleUse &BU);
626 
627   /// Verify the llvm.experimental.noalias.scope.decl declarations
628   void verifyNoAliasScopeDecl();
629 };
630 
631 } // end anonymous namespace
632 
633 /// We know that cond should be true, if not print an error message.
634 #define Check(C, ...)                                                          \
635   do {                                                                         \
636     if (!(C)) {                                                                \
637       CheckFailed(__VA_ARGS__);                                                \
638       return;                                                                  \
639     }                                                                          \
640   } while (false)
641 
642 /// We know that a debug info condition should be true, if not print
643 /// an error message.
644 #define CheckDI(C, ...)                                                        \
645   do {                                                                         \
646     if (!(C)) {                                                                \
647       DebugInfoCheckFailed(__VA_ARGS__);                                       \
648       return;                                                                  \
649     }                                                                          \
650   } while (false)
651 
652 void Verifier::visit(Instruction &I) {
653   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
654     Check(I.getOperand(i) != nullptr, "Operand is null", &I);
655   InstVisitor<Verifier>::visit(I);
656 }
657 
658 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
659 static void forEachUser(const Value *User,
660                         SmallPtrSet<const Value *, 32> &Visited,
661                         llvm::function_ref<bool(const Value *)> Callback) {
662   if (!Visited.insert(User).second)
663     return;
664 
665   SmallVector<const Value *> WorkList;
666   append_range(WorkList, User->materialized_users());
667   while (!WorkList.empty()) {
668    const Value *Cur = WorkList.pop_back_val();
669     if (!Visited.insert(Cur).second)
670       continue;
671     if (Callback(Cur))
672       append_range(WorkList, Cur->materialized_users());
673   }
674 }
675 
676 void Verifier::visitGlobalValue(const GlobalValue &GV) {
677   Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
678         "Global is external, but doesn't have external or weak linkage!", &GV);
679 
680   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
681 
682     if (MaybeAlign A = GO->getAlign()) {
683       Check(A->value() <= Value::MaximumAlignment,
684             "huge alignment values are unsupported", GO);
685     }
686 
687     if (const MDNode *Associated =
688             GO->getMetadata(LLVMContext::MD_associated)) {
689       Check(Associated->getNumOperands() == 1,
690             "associated metadata must have one operand", &GV, Associated);
691       const Metadata *Op = Associated->getOperand(0).get();
692       Check(Op, "associated metadata must have a global value", GO, Associated);
693 
694       const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op);
695       Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
696       if (VM) {
697         Check(isa<PointerType>(VM->getValue()->getType()),
698               "associated value must be pointer typed", GV, Associated);
699 
700         const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
701         Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
702               "associated metadata must point to a GlobalObject", GO, Stripped);
703         Check(Stripped != GO,
704               "global values should not associate to themselves", GO,
705               Associated);
706       }
707     }
708 
709     // FIXME: Why is getMetadata on GlobalValue protected?
710     if (const MDNode *AbsoluteSymbol =
711             GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
712       verifyRangeMetadata(*GO, AbsoluteSymbol, DL.getIntPtrType(GO->getType()),
713                           true);
714     }
715   }
716 
717   Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
718         "Only global variables can have appending linkage!", &GV);
719 
720   if (GV.hasAppendingLinkage()) {
721     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
722     Check(GVar && GVar->getValueType()->isArrayTy(),
723           "Only global arrays can have appending linkage!", GVar);
724   }
725 
726   if (GV.isDeclarationForLinker())
727     Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
728 
729   if (GV.hasDLLExportStorageClass()) {
730     Check(!GV.hasHiddenVisibility(),
731           "dllexport GlobalValue must have default or protected visibility",
732           &GV);
733   }
734   if (GV.hasDLLImportStorageClass()) {
735     Check(GV.hasDefaultVisibility(),
736           "dllimport GlobalValue must have default visibility", &GV);
737     Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
738           &GV);
739 
740     Check((GV.isDeclaration() &&
741            (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
742               GV.hasAvailableExternallyLinkage(),
743           "Global is marked as dllimport, but not external", &GV);
744   }
745 
746   if (GV.isImplicitDSOLocal())
747     Check(GV.isDSOLocal(),
748           "GlobalValue with local linkage or non-default "
749           "visibility must be dso_local!",
750           &GV);
751 
752   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
753     if (const Instruction *I = dyn_cast<Instruction>(V)) {
754       if (!I->getParent() || !I->getParent()->getParent())
755         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
756                     I);
757       else if (I->getParent()->getParent()->getParent() != &M)
758         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
759                     I->getParent()->getParent(),
760                     I->getParent()->getParent()->getParent());
761       return false;
762     } else if (const Function *F = dyn_cast<Function>(V)) {
763       if (F->getParent() != &M)
764         CheckFailed("Global is used by function in a different module", &GV, &M,
765                     F, F->getParent());
766       return false;
767     }
768     return true;
769   });
770 }
771 
772 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
773   if (GV.hasInitializer()) {
774     Check(GV.getInitializer()->getType() == GV.getValueType(),
775           "Global variable initializer type does not match global "
776           "variable type!",
777           &GV);
778     // If the global has common linkage, it must have a zero initializer and
779     // cannot be constant.
780     if (GV.hasCommonLinkage()) {
781       Check(GV.getInitializer()->isNullValue(),
782             "'common' global must have a zero initializer!", &GV);
783       Check(!GV.isConstant(), "'common' global may not be marked constant!",
784             &GV);
785       Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
786     }
787   }
788 
789   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
790                        GV.getName() == "llvm.global_dtors")) {
791     Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
792           "invalid linkage for intrinsic global variable", &GV);
793     Check(GV.materialized_use_empty(),
794           "invalid uses of intrinsic global variable", &GV);
795 
796     // Don't worry about emitting an error for it not being an array,
797     // visitGlobalValue will complain on appending non-array.
798     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
799       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
800       PointerType *FuncPtrTy =
801           PointerType::get(Context, DL.getProgramAddressSpace());
802       Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
803                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
804                 STy->getTypeAtIndex(1) == FuncPtrTy,
805             "wrong type for intrinsic global variable", &GV);
806       Check(STy->getNumElements() == 3,
807             "the third field of the element type is mandatory, "
808             "specify ptr null to migrate from the obsoleted 2-field form");
809       Type *ETy = STy->getTypeAtIndex(2);
810       Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
811             &GV);
812     }
813   }
814 
815   if (GV.hasName() && (GV.getName() == "llvm.used" ||
816                        GV.getName() == "llvm.compiler.used")) {
817     Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
818           "invalid linkage for intrinsic global variable", &GV);
819     Check(GV.materialized_use_empty(),
820           "invalid uses of intrinsic global variable", &GV);
821 
822     Type *GVType = GV.getValueType();
823     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
824       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
825       Check(PTy, "wrong type for intrinsic global variable", &GV);
826       if (GV.hasInitializer()) {
827         const Constant *Init = GV.getInitializer();
828         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
829         Check(InitArray, "wrong initalizer for intrinsic global variable",
830               Init);
831         for (Value *Op : InitArray->operands()) {
832           Value *V = Op->stripPointerCasts();
833           Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
834                     isa<GlobalAlias>(V),
835                 Twine("invalid ") + GV.getName() + " member", V);
836           Check(V->hasName(),
837                 Twine("members of ") + GV.getName() + " must be named", V);
838         }
839       }
840     }
841   }
842 
843   // Visit any debug info attachments.
844   SmallVector<MDNode *, 1> MDs;
845   GV.getMetadata(LLVMContext::MD_dbg, MDs);
846   for (auto *MD : MDs) {
847     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
848       visitDIGlobalVariableExpression(*GVE);
849     else
850       CheckDI(false, "!dbg attachment of global variable must be a "
851                      "DIGlobalVariableExpression");
852   }
853 
854   // Scalable vectors cannot be global variables, since we don't know
855   // the runtime size.
856   Check(!GV.getValueType()->isScalableTy(),
857         "Globals cannot contain scalable types", &GV);
858 
859   // Check if it's a target extension type that disallows being used as a
860   // global.
861   if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType()))
862     Check(TTy->hasProperty(TargetExtType::CanBeGlobal),
863           "Global @" + GV.getName() + " has illegal target extension type",
864           TTy);
865 
866   if (!GV.hasInitializer()) {
867     visitGlobalValue(GV);
868     return;
869   }
870 
871   // Walk any aggregate initializers looking for bitcasts between address spaces
872   visitConstantExprsRecursively(GV.getInitializer());
873 
874   visitGlobalValue(GV);
875 }
876 
877 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
878   SmallPtrSet<const GlobalAlias*, 4> Visited;
879   Visited.insert(&GA);
880   visitAliaseeSubExpr(Visited, GA, C);
881 }
882 
883 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
884                                    const GlobalAlias &GA, const Constant &C) {
885   if (GA.hasAvailableExternallyLinkage()) {
886     Check(isa<GlobalValue>(C) &&
887               cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
888           "available_externally alias must point to available_externally "
889           "global value",
890           &GA);
891   }
892   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
893     if (!GA.hasAvailableExternallyLinkage()) {
894       Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
895             &GA);
896     }
897 
898     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
899       Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
900 
901       Check(!GA2->isInterposable(),
902             "Alias cannot point to an interposable alias", &GA);
903     } else {
904       // Only continue verifying subexpressions of GlobalAliases.
905       // Do not recurse into global initializers.
906       return;
907     }
908   }
909 
910   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
911     visitConstantExprsRecursively(CE);
912 
913   for (const Use &U : C.operands()) {
914     Value *V = &*U;
915     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
916       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
917     else if (const auto *C2 = dyn_cast<Constant>(V))
918       visitAliaseeSubExpr(Visited, GA, *C2);
919   }
920 }
921 
922 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
923   Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
924         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
925         "weak_odr, external, or available_externally linkage!",
926         &GA);
927   const Constant *Aliasee = GA.getAliasee();
928   Check(Aliasee, "Aliasee cannot be NULL!", &GA);
929   Check(GA.getType() == Aliasee->getType(),
930         "Alias and aliasee types should match!", &GA);
931 
932   Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
933         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
934 
935   visitAliaseeSubExpr(GA, *Aliasee);
936 
937   visitGlobalValue(GA);
938 }
939 
940 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
941   Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
942         "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
943         "weak_odr, or external linkage!",
944         &GI);
945   // Pierce through ConstantExprs and GlobalAliases and check that the resolver
946   // is a Function definition.
947   const Function *Resolver = GI.getResolverFunction();
948   Check(Resolver, "IFunc must have a Function resolver", &GI);
949   Check(!Resolver->isDeclarationForLinker(),
950         "IFunc resolver must be a definition", &GI);
951 
952   // Check that the immediate resolver operand (prior to any bitcasts) has the
953   // correct type.
954   const Type *ResolverTy = GI.getResolver()->getType();
955 
956   Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
957         "IFunc resolver must return a pointer", &GI);
958 
959   const Type *ResolverFuncTy =
960       GlobalIFunc::getResolverFunctionType(GI.getValueType());
961   Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()),
962         "IFunc resolver has incorrect type", &GI);
963 }
964 
965 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
966   // There used to be various other llvm.dbg.* nodes, but we don't support
967   // upgrading them and we want to reserve the namespace for future uses.
968   if (NMD.getName().starts_with("llvm.dbg."))
969     CheckDI(NMD.getName() == "llvm.dbg.cu",
970             "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
971   for (const MDNode *MD : NMD.operands()) {
972     if (NMD.getName() == "llvm.dbg.cu")
973       CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
974 
975     if (!MD)
976       continue;
977 
978     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
979   }
980 }
981 
982 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
983   // Only visit each node once.  Metadata can be mutually recursive, so this
984   // avoids infinite recursion here, as well as being an optimization.
985   if (!MDNodes.insert(&MD).second)
986     return;
987 
988   Check(&MD.getContext() == &Context,
989         "MDNode context does not match Module context!", &MD);
990 
991   switch (MD.getMetadataID()) {
992   default:
993     llvm_unreachable("Invalid MDNode subclass");
994   case Metadata::MDTupleKind:
995     break;
996 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
997   case Metadata::CLASS##Kind:                                                  \
998     visit##CLASS(cast<CLASS>(MD));                                             \
999     break;
1000 #include "llvm/IR/Metadata.def"
1001   }
1002 
1003   for (const Metadata *Op : MD.operands()) {
1004     if (!Op)
1005       continue;
1006     Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
1007           &MD, Op);
1008     CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1009             "DILocation not allowed within this metadata node", &MD, Op);
1010     if (auto *N = dyn_cast<MDNode>(Op)) {
1011       visitMDNode(*N, AllowLocs);
1012       continue;
1013     }
1014     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
1015       visitValueAsMetadata(*V, nullptr);
1016       continue;
1017     }
1018   }
1019 
1020   // Check these last, so we diagnose problems in operands first.
1021   Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
1022   Check(MD.isResolved(), "All nodes should be resolved!", &MD);
1023 }
1024 
1025 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
1026   Check(MD.getValue(), "Expected valid value", &MD);
1027   Check(!MD.getValue()->getType()->isMetadataTy(),
1028         "Unexpected metadata round-trip through values", &MD, MD.getValue());
1029 
1030   auto *L = dyn_cast<LocalAsMetadata>(&MD);
1031   if (!L)
1032     return;
1033 
1034   Check(F, "function-local metadata used outside a function", L);
1035 
1036   // If this was an instruction, bb, or argument, verify that it is in the
1037   // function that we expect.
1038   Function *ActualF = nullptr;
1039   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
1040     Check(I->getParent(), "function-local metadata not in basic block", L, I);
1041     ActualF = I->getParent()->getParent();
1042   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
1043     ActualF = BB->getParent();
1044   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
1045     ActualF = A->getParent();
1046   assert(ActualF && "Unimplemented function local metadata case!");
1047 
1048   Check(ActualF == F, "function-local metadata used in wrong function", L);
1049 }
1050 
1051 void Verifier::visitDIArgList(const DIArgList &AL, Function *F) {
1052   for (const ValueAsMetadata *VAM : AL.getArgs())
1053     visitValueAsMetadata(*VAM, F);
1054 }
1055 
1056 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
1057   Metadata *MD = MDV.getMetadata();
1058   if (auto *N = dyn_cast<MDNode>(MD)) {
1059     visitMDNode(*N, AreDebugLocsAllowed::No);
1060     return;
1061   }
1062 
1063   // Only visit each node once.  Metadata can be mutually recursive, so this
1064   // avoids infinite recursion here, as well as being an optimization.
1065   if (!MDNodes.insert(MD).second)
1066     return;
1067 
1068   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1069     visitValueAsMetadata(*V, F);
1070 
1071   if (auto *AL = dyn_cast<DIArgList>(MD))
1072     visitDIArgList(*AL, F);
1073 }
1074 
1075 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
1076 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
1077 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1078 
1079 void Verifier::visitDILocation(const DILocation &N) {
1080   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1081           "location requires a valid scope", &N, N.getRawScope());
1082   if (auto *IA = N.getRawInlinedAt())
1083     CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1084   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1085     CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1086 }
1087 
1088 void Verifier::visitGenericDINode(const GenericDINode &N) {
1089   CheckDI(N.getTag(), "invalid tag", &N);
1090 }
1091 
1092 void Verifier::visitDIScope(const DIScope &N) {
1093   if (auto *F = N.getRawFile())
1094     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1095 }
1096 
1097 void Verifier::visitDISubrange(const DISubrange &N) {
1098   CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1099   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
1100   CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
1101               N.getRawUpperBound(),
1102           "Subrange must contain count or upperBound", &N);
1103   CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1104           "Subrange can have any one of count or upperBound", &N);
1105   auto *CBound = N.getRawCountNode();
1106   CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1107               isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1108           "Count must be signed constant or DIVariable or DIExpression", &N);
1109   auto Count = N.getCount();
1110   CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1111               cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1112           "invalid subrange count", &N);
1113   auto *LBound = N.getRawLowerBound();
1114   CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1115               isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1116           "LowerBound must be signed constant or DIVariable or DIExpression",
1117           &N);
1118   auto *UBound = N.getRawUpperBound();
1119   CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1120               isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1121           "UpperBound must be signed constant or DIVariable or DIExpression",
1122           &N);
1123   auto *Stride = N.getRawStride();
1124   CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1125               isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1126           "Stride must be signed constant or DIVariable or DIExpression", &N);
1127 }
1128 
1129 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1130   CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1131   CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
1132           "GenericSubrange must contain count or upperBound", &N);
1133   CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1134           "GenericSubrange can have any one of count or upperBound", &N);
1135   auto *CBound = N.getRawCountNode();
1136   CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1137           "Count must be signed constant or DIVariable or DIExpression", &N);
1138   auto *LBound = N.getRawLowerBound();
1139   CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1140   CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1141           "LowerBound must be signed constant or DIVariable or DIExpression",
1142           &N);
1143   auto *UBound = N.getRawUpperBound();
1144   CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1145           "UpperBound must be signed constant or DIVariable or DIExpression",
1146           &N);
1147   auto *Stride = N.getRawStride();
1148   CheckDI(Stride, "GenericSubrange must contain stride", &N);
1149   CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1150           "Stride must be signed constant or DIVariable or DIExpression", &N);
1151 }
1152 
1153 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1154   CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1155 }
1156 
1157 void Verifier::visitDIBasicType(const DIBasicType &N) {
1158   CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1159               N.getTag() == dwarf::DW_TAG_unspecified_type ||
1160               N.getTag() == dwarf::DW_TAG_string_type,
1161           "invalid tag", &N);
1162 }
1163 
1164 void Verifier::visitDIStringType(const DIStringType &N) {
1165   CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1166   CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1167           &N);
1168 }
1169 
1170 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1171   // Common scope checks.
1172   visitDIScope(N);
1173 
1174   CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1175               N.getTag() == dwarf::DW_TAG_pointer_type ||
1176               N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1177               N.getTag() == dwarf::DW_TAG_reference_type ||
1178               N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1179               N.getTag() == dwarf::DW_TAG_const_type ||
1180               N.getTag() == dwarf::DW_TAG_immutable_type ||
1181               N.getTag() == dwarf::DW_TAG_volatile_type ||
1182               N.getTag() == dwarf::DW_TAG_restrict_type ||
1183               N.getTag() == dwarf::DW_TAG_atomic_type ||
1184               N.getTag() == dwarf::DW_TAG_member ||
1185               (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) ||
1186               N.getTag() == dwarf::DW_TAG_inheritance ||
1187               N.getTag() == dwarf::DW_TAG_friend ||
1188               N.getTag() == dwarf::DW_TAG_set_type,
1189           "invalid tag", &N);
1190   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1191     CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1192             N.getRawExtraData());
1193   }
1194 
1195   if (N.getTag() == dwarf::DW_TAG_set_type) {
1196     if (auto *T = N.getRawBaseType()) {
1197       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1198       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1199       CheckDI(
1200           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1201               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1202                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1203                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1204                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1205                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1206           "invalid set base type", &N, T);
1207     }
1208   }
1209 
1210   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1211   CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1212           N.getRawBaseType());
1213 
1214   if (N.getDWARFAddressSpace()) {
1215     CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1216                 N.getTag() == dwarf::DW_TAG_reference_type ||
1217                 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1218             "DWARF address space only applies to pointer or reference types",
1219             &N);
1220   }
1221 }
1222 
1223 /// Detect mutually exclusive flags.
1224 static bool hasConflictingReferenceFlags(unsigned Flags) {
1225   return ((Flags & DINode::FlagLValueReference) &&
1226           (Flags & DINode::FlagRValueReference)) ||
1227          ((Flags & DINode::FlagTypePassByValue) &&
1228           (Flags & DINode::FlagTypePassByReference));
1229 }
1230 
1231 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1232   auto *Params = dyn_cast<MDTuple>(&RawParams);
1233   CheckDI(Params, "invalid template params", &N, &RawParams);
1234   for (Metadata *Op : Params->operands()) {
1235     CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1236             &N, Params, Op);
1237   }
1238 }
1239 
1240 void Verifier::visitDICompositeType(const DICompositeType &N) {
1241   // Common scope checks.
1242   visitDIScope(N);
1243 
1244   CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1245               N.getTag() == dwarf::DW_TAG_structure_type ||
1246               N.getTag() == dwarf::DW_TAG_union_type ||
1247               N.getTag() == dwarf::DW_TAG_enumeration_type ||
1248               N.getTag() == dwarf::DW_TAG_class_type ||
1249               N.getTag() == dwarf::DW_TAG_variant_part ||
1250               N.getTag() == dwarf::DW_TAG_namelist,
1251           "invalid tag", &N);
1252 
1253   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1254   CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1255           N.getRawBaseType());
1256 
1257   CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1258           "invalid composite elements", &N, N.getRawElements());
1259   CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1260           N.getRawVTableHolder());
1261   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1262           "invalid reference flags", &N);
1263   unsigned DIBlockByRefStruct = 1 << 4;
1264   CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1265           "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1266 
1267   if (N.isVector()) {
1268     const DINodeArray Elements = N.getElements();
1269     CheckDI(Elements.size() == 1 &&
1270                 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1271             "invalid vector, expected one element of type subrange", &N);
1272   }
1273 
1274   if (auto *Params = N.getRawTemplateParams())
1275     visitTemplateParams(N, *Params);
1276 
1277   if (auto *D = N.getRawDiscriminator()) {
1278     CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1279             "discriminator can only appear on variant part");
1280   }
1281 
1282   if (N.getRawDataLocation()) {
1283     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1284             "dataLocation can only appear in array type");
1285   }
1286 
1287   if (N.getRawAssociated()) {
1288     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1289             "associated can only appear in array type");
1290   }
1291 
1292   if (N.getRawAllocated()) {
1293     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1294             "allocated can only appear in array type");
1295   }
1296 
1297   if (N.getRawRank()) {
1298     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1299             "rank can only appear in array type");
1300   }
1301 
1302   if (N.getTag() == dwarf::DW_TAG_array_type) {
1303     CheckDI(N.getRawBaseType(), "array types must have a base type", &N);
1304   }
1305 }
1306 
1307 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1308   CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1309   if (auto *Types = N.getRawTypeArray()) {
1310     CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1311     for (Metadata *Ty : N.getTypeArray()->operands()) {
1312       CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1313     }
1314   }
1315   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1316           "invalid reference flags", &N);
1317 }
1318 
1319 void Verifier::visitDIFile(const DIFile &N) {
1320   CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1321   std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1322   if (Checksum) {
1323     CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1324             "invalid checksum kind", &N);
1325     size_t Size;
1326     switch (Checksum->Kind) {
1327     case DIFile::CSK_MD5:
1328       Size = 32;
1329       break;
1330     case DIFile::CSK_SHA1:
1331       Size = 40;
1332       break;
1333     case DIFile::CSK_SHA256:
1334       Size = 64;
1335       break;
1336     }
1337     CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1338     CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1339             "invalid checksum", &N);
1340   }
1341 }
1342 
1343 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1344   CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1345   CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1346 
1347   // Don't bother verifying the compilation directory or producer string
1348   // as those could be empty.
1349   CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1350           N.getRawFile());
1351   CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1352           N.getFile());
1353 
1354   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1355 
1356   CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1357           "invalid emission kind", &N);
1358 
1359   if (auto *Array = N.getRawEnumTypes()) {
1360     CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1361     for (Metadata *Op : N.getEnumTypes()->operands()) {
1362       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1363       CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1364               "invalid enum type", &N, N.getEnumTypes(), Op);
1365     }
1366   }
1367   if (auto *Array = N.getRawRetainedTypes()) {
1368     CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1369     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1370       CheckDI(
1371           Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1372                                      !cast<DISubprogram>(Op)->isDefinition())),
1373           "invalid retained type", &N, Op);
1374     }
1375   }
1376   if (auto *Array = N.getRawGlobalVariables()) {
1377     CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1378     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1379       CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1380               "invalid global variable ref", &N, Op);
1381     }
1382   }
1383   if (auto *Array = N.getRawImportedEntities()) {
1384     CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1385     for (Metadata *Op : N.getImportedEntities()->operands()) {
1386       CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1387               &N, Op);
1388     }
1389   }
1390   if (auto *Array = N.getRawMacros()) {
1391     CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1392     for (Metadata *Op : N.getMacros()->operands()) {
1393       CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1394     }
1395   }
1396   CUVisited.insert(&N);
1397 }
1398 
1399 void Verifier::visitDISubprogram(const DISubprogram &N) {
1400   CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1401   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1402   if (auto *F = N.getRawFile())
1403     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1404   else
1405     CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1406   if (auto *T = N.getRawType())
1407     CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1408   CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1409           N.getRawContainingType());
1410   if (auto *Params = N.getRawTemplateParams())
1411     visitTemplateParams(N, *Params);
1412   if (auto *S = N.getRawDeclaration())
1413     CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1414             "invalid subprogram declaration", &N, S);
1415   if (auto *RawNode = N.getRawRetainedNodes()) {
1416     auto *Node = dyn_cast<MDTuple>(RawNode);
1417     CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1418     for (Metadata *Op : Node->operands()) {
1419       CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
1420                      isa<DIImportedEntity>(Op)),
1421               "invalid retained nodes, expected DILocalVariable, DILabel or "
1422               "DIImportedEntity",
1423               &N, Node, Op);
1424     }
1425   }
1426   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1427           "invalid reference flags", &N);
1428 
1429   auto *Unit = N.getRawUnit();
1430   if (N.isDefinition()) {
1431     // Subprogram definitions (not part of the type hierarchy).
1432     CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1433     CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1434     CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1435     // There's no good way to cross the CU boundary to insert a nested
1436     // DISubprogram definition in one CU into a type defined in another CU.
1437     auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope());
1438     if (CT && CT->getRawIdentifier() &&
1439         M.getContext().isODRUniquingDebugTypes())
1440       CheckDI(N.getDeclaration(),
1441               "definition subprograms cannot be nested within DICompositeType "
1442               "when enabling ODR",
1443               &N);
1444   } else {
1445     // Subprogram declarations (part of the type hierarchy).
1446     CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1447     CheckDI(!N.getRawDeclaration(),
1448             "subprogram declaration must not have a declaration field");
1449   }
1450 
1451   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1452     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1453     CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1454     for (Metadata *Op : ThrownTypes->operands())
1455       CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1456               Op);
1457   }
1458 
1459   if (N.areAllCallsDescribed())
1460     CheckDI(N.isDefinition(),
1461             "DIFlagAllCallsDescribed must be attached to a definition");
1462 }
1463 
1464 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1465   CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1466   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1467           "invalid local scope", &N, N.getRawScope());
1468   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1469     CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1470 }
1471 
1472 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1473   visitDILexicalBlockBase(N);
1474 
1475   CheckDI(N.getLine() || !N.getColumn(),
1476           "cannot have column info without line info", &N);
1477 }
1478 
1479 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1480   visitDILexicalBlockBase(N);
1481 }
1482 
1483 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1484   CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1485   if (auto *S = N.getRawScope())
1486     CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1487   if (auto *S = N.getRawDecl())
1488     CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1489 }
1490 
1491 void Verifier::visitDINamespace(const DINamespace &N) {
1492   CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1493   if (auto *S = N.getRawScope())
1494     CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1495 }
1496 
1497 void Verifier::visitDIMacro(const DIMacro &N) {
1498   CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1499               N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1500           "invalid macinfo type", &N);
1501   CheckDI(!N.getName().empty(), "anonymous macro", &N);
1502   if (!N.getValue().empty()) {
1503     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1504   }
1505 }
1506 
1507 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1508   CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1509           "invalid macinfo type", &N);
1510   if (auto *F = N.getRawFile())
1511     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1512 
1513   if (auto *Array = N.getRawElements()) {
1514     CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1515     for (Metadata *Op : N.getElements()->operands()) {
1516       CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1517     }
1518   }
1519 }
1520 
1521 void Verifier::visitDIModule(const DIModule &N) {
1522   CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1523   CheckDI(!N.getName().empty(), "anonymous module", &N);
1524 }
1525 
1526 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1527   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1528 }
1529 
1530 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1531   visitDITemplateParameter(N);
1532 
1533   CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1534           &N);
1535 }
1536 
1537 void Verifier::visitDITemplateValueParameter(
1538     const DITemplateValueParameter &N) {
1539   visitDITemplateParameter(N);
1540 
1541   CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1542               N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1543               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1544           "invalid tag", &N);
1545 }
1546 
1547 void Verifier::visitDIVariable(const DIVariable &N) {
1548   if (auto *S = N.getRawScope())
1549     CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1550   if (auto *F = N.getRawFile())
1551     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1552 }
1553 
1554 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1555   // Checks common to all variables.
1556   visitDIVariable(N);
1557 
1558   CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1559   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1560   // Check only if the global variable is not an extern
1561   if (N.isDefinition())
1562     CheckDI(N.getType(), "missing global variable type", &N);
1563   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1564     CheckDI(isa<DIDerivedType>(Member),
1565             "invalid static data member declaration", &N, Member);
1566   }
1567 }
1568 
1569 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1570   // Checks common to all variables.
1571   visitDIVariable(N);
1572 
1573   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1574   CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1575   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1576           "local variable requires a valid scope", &N, N.getRawScope());
1577   if (auto Ty = N.getType())
1578     CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1579 }
1580 
1581 void Verifier::visitDIAssignID(const DIAssignID &N) {
1582   CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1583   CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1584 }
1585 
1586 void Verifier::visitDILabel(const DILabel &N) {
1587   if (auto *S = N.getRawScope())
1588     CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1589   if (auto *F = N.getRawFile())
1590     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1591 
1592   CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1593   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1594           "label requires a valid scope", &N, N.getRawScope());
1595 }
1596 
1597 void Verifier::visitDIExpression(const DIExpression &N) {
1598   CheckDI(N.isValid(), "invalid expression", &N);
1599 }
1600 
1601 void Verifier::visitDIGlobalVariableExpression(
1602     const DIGlobalVariableExpression &GVE) {
1603   CheckDI(GVE.getVariable(), "missing variable");
1604   if (auto *Var = GVE.getVariable())
1605     visitDIGlobalVariable(*Var);
1606   if (auto *Expr = GVE.getExpression()) {
1607     visitDIExpression(*Expr);
1608     if (auto Fragment = Expr->getFragmentInfo())
1609       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1610   }
1611 }
1612 
1613 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1614   CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1615   if (auto *T = N.getRawType())
1616     CheckDI(isType(T), "invalid type ref", &N, T);
1617   if (auto *F = N.getRawFile())
1618     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1619 }
1620 
1621 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1622   CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1623               N.getTag() == dwarf::DW_TAG_imported_declaration,
1624           "invalid tag", &N);
1625   if (auto *S = N.getRawScope())
1626     CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1627   CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1628           N.getRawEntity());
1629 }
1630 
1631 void Verifier::visitComdat(const Comdat &C) {
1632   // In COFF the Module is invalid if the GlobalValue has private linkage.
1633   // Entities with private linkage don't have entries in the symbol table.
1634   if (TT.isOSBinFormatCOFF())
1635     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1636       Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1637             GV);
1638 }
1639 
1640 void Verifier::visitModuleIdents() {
1641   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1642   if (!Idents)
1643     return;
1644 
1645   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1646   // Scan each llvm.ident entry and make sure that this requirement is met.
1647   for (const MDNode *N : Idents->operands()) {
1648     Check(N->getNumOperands() == 1,
1649           "incorrect number of operands in llvm.ident metadata", N);
1650     Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1651           ("invalid value for llvm.ident metadata entry operand"
1652            "(the operand should be a string)"),
1653           N->getOperand(0));
1654   }
1655 }
1656 
1657 void Verifier::visitModuleCommandLines() {
1658   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1659   if (!CommandLines)
1660     return;
1661 
1662   // llvm.commandline takes a list of metadata entry. Each entry has only one
1663   // string. Scan each llvm.commandline entry and make sure that this
1664   // requirement is met.
1665   for (const MDNode *N : CommandLines->operands()) {
1666     Check(N->getNumOperands() == 1,
1667           "incorrect number of operands in llvm.commandline metadata", N);
1668     Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1669           ("invalid value for llvm.commandline metadata entry operand"
1670            "(the operand should be a string)"),
1671           N->getOperand(0));
1672   }
1673 }
1674 
1675 void Verifier::visitModuleFlags() {
1676   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1677   if (!Flags) return;
1678 
1679   // Scan each flag, and track the flags and requirements.
1680   DenseMap<const MDString*, const MDNode*> SeenIDs;
1681   SmallVector<const MDNode*, 16> Requirements;
1682   for (const MDNode *MDN : Flags->operands())
1683     visitModuleFlag(MDN, SeenIDs, Requirements);
1684 
1685   // Validate that the requirements in the module are valid.
1686   for (const MDNode *Requirement : Requirements) {
1687     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1688     const Metadata *ReqValue = Requirement->getOperand(1);
1689 
1690     const MDNode *Op = SeenIDs.lookup(Flag);
1691     if (!Op) {
1692       CheckFailed("invalid requirement on flag, flag is not present in module",
1693                   Flag);
1694       continue;
1695     }
1696 
1697     if (Op->getOperand(2) != ReqValue) {
1698       CheckFailed(("invalid requirement on flag, "
1699                    "flag does not have the required value"),
1700                   Flag);
1701       continue;
1702     }
1703   }
1704 }
1705 
1706 void
1707 Verifier::visitModuleFlag(const MDNode *Op,
1708                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1709                           SmallVectorImpl<const MDNode *> &Requirements) {
1710   // Each module flag should have three arguments, the merge behavior (a
1711   // constant int), the flag ID (an MDString), and the value.
1712   Check(Op->getNumOperands() == 3,
1713         "incorrect number of operands in module flag", Op);
1714   Module::ModFlagBehavior MFB;
1715   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1716     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1717           "invalid behavior operand in module flag (expected constant integer)",
1718           Op->getOperand(0));
1719     Check(false,
1720           "invalid behavior operand in module flag (unexpected constant)",
1721           Op->getOperand(0));
1722   }
1723   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1724   Check(ID, "invalid ID operand in module flag (expected metadata string)",
1725         Op->getOperand(1));
1726 
1727   // Check the values for behaviors with additional requirements.
1728   switch (MFB) {
1729   case Module::Error:
1730   case Module::Warning:
1731   case Module::Override:
1732     // These behavior types accept any value.
1733     break;
1734 
1735   case Module::Min: {
1736     auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1737     Check(V && V->getValue().isNonNegative(),
1738           "invalid value for 'min' module flag (expected constant non-negative "
1739           "integer)",
1740           Op->getOperand(2));
1741     break;
1742   }
1743 
1744   case Module::Max: {
1745     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1746           "invalid value for 'max' module flag (expected constant integer)",
1747           Op->getOperand(2));
1748     break;
1749   }
1750 
1751   case Module::Require: {
1752     // The value should itself be an MDNode with two operands, a flag ID (an
1753     // MDString), and a value.
1754     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1755     Check(Value && Value->getNumOperands() == 2,
1756           "invalid value for 'require' module flag (expected metadata pair)",
1757           Op->getOperand(2));
1758     Check(isa<MDString>(Value->getOperand(0)),
1759           ("invalid value for 'require' module flag "
1760            "(first value operand should be a string)"),
1761           Value->getOperand(0));
1762 
1763     // Append it to the list of requirements, to check once all module flags are
1764     // scanned.
1765     Requirements.push_back(Value);
1766     break;
1767   }
1768 
1769   case Module::Append:
1770   case Module::AppendUnique: {
1771     // These behavior types require the operand be an MDNode.
1772     Check(isa<MDNode>(Op->getOperand(2)),
1773           "invalid value for 'append'-type module flag "
1774           "(expected a metadata node)",
1775           Op->getOperand(2));
1776     break;
1777   }
1778   }
1779 
1780   // Unless this is a "requires" flag, check the ID is unique.
1781   if (MFB != Module::Require) {
1782     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1783     Check(Inserted,
1784           "module flag identifiers must be unique (or of 'require' type)", ID);
1785   }
1786 
1787   if (ID->getString() == "wchar_size") {
1788     ConstantInt *Value
1789       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1790     Check(Value, "wchar_size metadata requires constant integer argument");
1791   }
1792 
1793   if (ID->getString() == "Linker Options") {
1794     // If the llvm.linker.options named metadata exists, we assume that the
1795     // bitcode reader has upgraded the module flag. Otherwise the flag might
1796     // have been created by a client directly.
1797     Check(M.getNamedMetadata("llvm.linker.options"),
1798           "'Linker Options' named metadata no longer supported");
1799   }
1800 
1801   if (ID->getString() == "SemanticInterposition") {
1802     ConstantInt *Value =
1803         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1804     Check(Value,
1805           "SemanticInterposition metadata requires constant integer argument");
1806   }
1807 
1808   if (ID->getString() == "CG Profile") {
1809     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1810       visitModuleFlagCGProfileEntry(MDO);
1811   }
1812 }
1813 
1814 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1815   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1816     if (!FuncMDO)
1817       return;
1818     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1819     Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1820           "expected a Function or null", FuncMDO);
1821   };
1822   auto Node = dyn_cast_or_null<MDNode>(MDO);
1823   Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1824   CheckFunction(Node->getOperand(0));
1825   CheckFunction(Node->getOperand(1));
1826   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1827   Check(Count && Count->getType()->isIntegerTy(),
1828         "expected an integer constant", Node->getOperand(2));
1829 }
1830 
1831 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1832   for (Attribute A : Attrs) {
1833 
1834     if (A.isStringAttribute()) {
1835 #define GET_ATTR_NAMES
1836 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1837 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1838   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1839     auto V = A.getValueAsString();                                             \
1840     if (!(V.empty() || V == "true" || V == "false"))                           \
1841       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1842                   "");                                                         \
1843   }
1844 
1845 #include "llvm/IR/Attributes.inc"
1846       continue;
1847     }
1848 
1849     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1850       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1851                   V);
1852       return;
1853     }
1854   }
1855 }
1856 
1857 // VerifyParameterAttrs - Check the given attributes for an argument or return
1858 // value of the specified type.  The value V is printed in error messages.
1859 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1860                                     const Value *V) {
1861   if (!Attrs.hasAttributes())
1862     return;
1863 
1864   verifyAttributeTypes(Attrs, V);
1865 
1866   for (Attribute Attr : Attrs)
1867     Check(Attr.isStringAttribute() ||
1868               Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1869           "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1870           V);
1871 
1872   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1873     Check(Attrs.getNumAttributes() == 1,
1874           "Attribute 'immarg' is incompatible with other attributes", V);
1875   }
1876 
1877   // Check for mutually incompatible attributes.  Only inreg is compatible with
1878   // sret.
1879   unsigned AttrCount = 0;
1880   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1881   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1882   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1883   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1884                Attrs.hasAttribute(Attribute::InReg);
1885   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1886   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1887   Check(AttrCount <= 1,
1888         "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1889         "'byref', and 'sret' are incompatible!",
1890         V);
1891 
1892   Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1893           Attrs.hasAttribute(Attribute::ReadOnly)),
1894         "Attributes "
1895         "'inalloca and readonly' are incompatible!",
1896         V);
1897 
1898   Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1899           Attrs.hasAttribute(Attribute::Returned)),
1900         "Attributes "
1901         "'sret and returned' are incompatible!",
1902         V);
1903 
1904   Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1905           Attrs.hasAttribute(Attribute::SExt)),
1906         "Attributes "
1907         "'zeroext and signext' are incompatible!",
1908         V);
1909 
1910   Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1911           Attrs.hasAttribute(Attribute::ReadOnly)),
1912         "Attributes "
1913         "'readnone and readonly' are incompatible!",
1914         V);
1915 
1916   Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1917           Attrs.hasAttribute(Attribute::WriteOnly)),
1918         "Attributes "
1919         "'readnone and writeonly' are incompatible!",
1920         V);
1921 
1922   Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1923           Attrs.hasAttribute(Attribute::WriteOnly)),
1924         "Attributes "
1925         "'readonly and writeonly' are incompatible!",
1926         V);
1927 
1928   Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
1929           Attrs.hasAttribute(Attribute::AlwaysInline)),
1930         "Attributes "
1931         "'noinline and alwaysinline' are incompatible!",
1932         V);
1933 
1934   Check(!(Attrs.hasAttribute(Attribute::Writable) &&
1935           Attrs.hasAttribute(Attribute::ReadNone)),
1936         "Attributes writable and readnone are incompatible!", V);
1937 
1938   Check(!(Attrs.hasAttribute(Attribute::Writable) &&
1939           Attrs.hasAttribute(Attribute::ReadOnly)),
1940         "Attributes writable and readonly are incompatible!", V);
1941 
1942   AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1943   for (Attribute Attr : Attrs) {
1944     if (!Attr.isStringAttribute() &&
1945         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1946       CheckFailed("Attribute '" + Attr.getAsString() +
1947                   "' applied to incompatible type!", V);
1948       return;
1949     }
1950   }
1951 
1952   if (isa<PointerType>(Ty)) {
1953     if (Attrs.hasAttribute(Attribute::ByVal)) {
1954       if (Attrs.hasAttribute(Attribute::Alignment)) {
1955         Align AttrAlign = Attrs.getAlignment().valueOrOne();
1956         Align MaxAlign(ParamMaxAlignment);
1957         Check(AttrAlign <= MaxAlign,
1958               "Attribute 'align' exceed the max size 2^14", V);
1959       }
1960       SmallPtrSet<Type *, 4> Visited;
1961       Check(Attrs.getByValType()->isSized(&Visited),
1962             "Attribute 'byval' does not support unsized types!", V);
1963     }
1964     if (Attrs.hasAttribute(Attribute::ByRef)) {
1965       SmallPtrSet<Type *, 4> Visited;
1966       Check(Attrs.getByRefType()->isSized(&Visited),
1967             "Attribute 'byref' does not support unsized types!", V);
1968     }
1969     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1970       SmallPtrSet<Type *, 4> Visited;
1971       Check(Attrs.getInAllocaType()->isSized(&Visited),
1972             "Attribute 'inalloca' does not support unsized types!", V);
1973     }
1974     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1975       SmallPtrSet<Type *, 4> Visited;
1976       Check(Attrs.getPreallocatedType()->isSized(&Visited),
1977             "Attribute 'preallocated' does not support unsized types!", V);
1978     }
1979   }
1980 
1981   if (Attrs.hasAttribute(Attribute::NoFPClass)) {
1982     uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
1983     Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
1984           V);
1985     Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
1986           "Invalid value for 'nofpclass' test mask", V);
1987   }
1988 }
1989 
1990 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1991                                             const Value *V) {
1992   if (Attrs.hasFnAttr(Attr)) {
1993     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1994     unsigned N;
1995     if (S.getAsInteger(10, N))
1996       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1997   }
1998 }
1999 
2000 // Check parameter attributes against a function type.
2001 // The value V is printed in error messages.
2002 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
2003                                    const Value *V, bool IsIntrinsic,
2004                                    bool IsInlineAsm) {
2005   if (Attrs.isEmpty())
2006     return;
2007 
2008   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
2009     Check(Attrs.hasParentContext(Context),
2010           "Attribute list does not match Module context!", &Attrs, V);
2011     for (const auto &AttrSet : Attrs) {
2012       Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2013             "Attribute set does not match Module context!", &AttrSet, V);
2014       for (const auto &A : AttrSet) {
2015         Check(A.hasParentContext(Context),
2016               "Attribute does not match Module context!", &A, V);
2017       }
2018     }
2019   }
2020 
2021   bool SawNest = false;
2022   bool SawReturned = false;
2023   bool SawSRet = false;
2024   bool SawSwiftSelf = false;
2025   bool SawSwiftAsync = false;
2026   bool SawSwiftError = false;
2027 
2028   // Verify return value attributes.
2029   AttributeSet RetAttrs = Attrs.getRetAttrs();
2030   for (Attribute RetAttr : RetAttrs)
2031     Check(RetAttr.isStringAttribute() ||
2032               Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
2033           "Attribute '" + RetAttr.getAsString() +
2034               "' does not apply to function return values",
2035           V);
2036 
2037   unsigned MaxParameterWidth = 0;
2038   auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
2039     if (Ty->isVectorTy()) {
2040       if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
2041         unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2042         if (Size > MaxParameterWidth)
2043           MaxParameterWidth = Size;
2044       }
2045     }
2046   };
2047   GetMaxParameterWidth(FT->getReturnType());
2048   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2049 
2050   // Verify parameter attributes.
2051   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2052     Type *Ty = FT->getParamType(i);
2053     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
2054 
2055     if (!IsIntrinsic) {
2056       Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
2057             "immarg attribute only applies to intrinsics", V);
2058       if (!IsInlineAsm)
2059         Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
2060               "Attribute 'elementtype' can only be applied to intrinsics"
2061               " and inline asm.",
2062               V);
2063     }
2064 
2065     verifyParameterAttrs(ArgAttrs, Ty, V);
2066     GetMaxParameterWidth(Ty);
2067 
2068     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2069       Check(!SawNest, "More than one parameter has attribute nest!", V);
2070       SawNest = true;
2071     }
2072 
2073     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2074       Check(!SawReturned, "More than one parameter has attribute returned!", V);
2075       Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2076             "Incompatible argument and return types for 'returned' attribute",
2077             V);
2078       SawReturned = true;
2079     }
2080 
2081     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2082       Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2083       Check(i == 0 || i == 1,
2084             "Attribute 'sret' is not on first or second parameter!", V);
2085       SawSRet = true;
2086     }
2087 
2088     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2089       Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2090       SawSwiftSelf = true;
2091     }
2092 
2093     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2094       Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2095       SawSwiftAsync = true;
2096     }
2097 
2098     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2099       Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2100       SawSwiftError = true;
2101     }
2102 
2103     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2104       Check(i == FT->getNumParams() - 1,
2105             "inalloca isn't on the last parameter!", V);
2106     }
2107   }
2108 
2109   if (!Attrs.hasFnAttrs())
2110     return;
2111 
2112   verifyAttributeTypes(Attrs.getFnAttrs(), V);
2113   for (Attribute FnAttr : Attrs.getFnAttrs())
2114     Check(FnAttr.isStringAttribute() ||
2115               Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2116           "Attribute '" + FnAttr.getAsString() +
2117               "' does not apply to functions!",
2118           V);
2119 
2120   Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2121           Attrs.hasFnAttr(Attribute::AlwaysInline)),
2122         "Attributes 'noinline and alwaysinline' are incompatible!", V);
2123 
2124   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2125     Check(Attrs.hasFnAttr(Attribute::NoInline),
2126           "Attribute 'optnone' requires 'noinline'!", V);
2127 
2128     Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2129           "Attributes 'optsize and optnone' are incompatible!", V);
2130 
2131     Check(!Attrs.hasFnAttr(Attribute::MinSize),
2132           "Attributes 'minsize and optnone' are incompatible!", V);
2133 
2134     Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2135           "Attributes 'optdebug and optnone' are incompatible!", V);
2136   }
2137 
2138   if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2139     Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2140           "Attributes 'optsize and optdebug' are incompatible!", V);
2141 
2142     Check(!Attrs.hasFnAttr(Attribute::MinSize),
2143           "Attributes 'minsize and optdebug' are incompatible!", V);
2144   }
2145 
2146   Check(!Attrs.hasAttrSomewhere(Attribute::Writable) ||
2147         isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2148         "Attribute writable and memory without argmem: write are incompatible!",
2149         V);
2150 
2151   if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2152     Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2153            "Attributes 'aarch64_pstate_sm_enabled and "
2154            "aarch64_pstate_sm_compatible' are incompatible!",
2155            V);
2156   }
2157 
2158   if (Attrs.hasFnAttr("aarch64_pstate_za_new")) {
2159     Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"),
2160            "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' "
2161            "are incompatible!",
2162            V);
2163 
2164     Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"),
2165            "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' "
2166            "are incompatible!",
2167            V);
2168   }
2169 
2170   Check(
2171       (Attrs.hasFnAttr("aarch64_new_zt0") + Attrs.hasFnAttr("aarch64_in_zt0") +
2172        Attrs.hasFnAttr("aarch64_inout_zt0") +
2173        Attrs.hasFnAttr("aarch64_out_zt0") +
2174        Attrs.hasFnAttr("aarch64_preserves_zt0")) <= 1,
2175       "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2176       "'aarch64_inout_zt0' and 'aarch64_preserves_zt0' are mutually exclusive",
2177       V);
2178 
2179   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2180     const GlobalValue *GV = cast<GlobalValue>(V);
2181     Check(GV->hasGlobalUnnamedAddr(),
2182           "Attribute 'jumptable' requires 'unnamed_addr'", V);
2183   }
2184 
2185   if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2186     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2187       if (ParamNo >= FT->getNumParams()) {
2188         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2189         return false;
2190       }
2191 
2192       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2193         CheckFailed("'allocsize' " + Name +
2194                         " argument must refer to an integer parameter",
2195                     V);
2196         return false;
2197       }
2198 
2199       return true;
2200     };
2201 
2202     if (!CheckParam("element size", Args->first))
2203       return;
2204 
2205     if (Args->second && !CheckParam("number of elements", *Args->second))
2206       return;
2207   }
2208 
2209   if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2210     AllocFnKind K = Attrs.getAllocKind();
2211     AllocFnKind Type =
2212         K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2213     if (!is_contained(
2214             {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2215             Type))
2216       CheckFailed(
2217           "'allockind()' requires exactly one of alloc, realloc, and free");
2218     if ((Type == AllocFnKind::Free) &&
2219         ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2220                AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2221       CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2222                   "or aligned modifiers.");
2223     AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2224     if ((K & ZeroedUninit) == ZeroedUninit)
2225       CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2226   }
2227 
2228   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2229     unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2230     if (VScaleMin == 0)
2231       CheckFailed("'vscale_range' minimum must be greater than 0", V);
2232     else if (!isPowerOf2_32(VScaleMin))
2233       CheckFailed("'vscale_range' minimum must be power-of-two value", V);
2234     std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2235     if (VScaleMax && VScaleMin > VScaleMax)
2236       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2237     else if (VScaleMax && !isPowerOf2_32(*VScaleMax))
2238       CheckFailed("'vscale_range' maximum must be power-of-two value", V);
2239   }
2240 
2241   if (Attrs.hasFnAttr("frame-pointer")) {
2242     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2243     if (FP != "all" && FP != "non-leaf" && FP != "none")
2244       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2245   }
2246 
2247   // Check EVEX512 feature.
2248   if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") &&
2249       TT.isX86()) {
2250     StringRef TF = Attrs.getFnAttr("target-features").getValueAsString();
2251     Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
2252           "512-bit vector arguments require 'evex512' for AVX512", V);
2253   }
2254 
2255   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2256   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2257   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2258 
2259   if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) {
2260     StringRef S = A.getValueAsString();
2261     if (S != "none" && S != "all" && S != "non-leaf")
2262       CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V);
2263   }
2264 
2265   if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) {
2266     StringRef S = A.getValueAsString();
2267     if (S != "a_key" && S != "b_key")
2268       CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S,
2269                   V);
2270   }
2271 
2272   if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) {
2273     StringRef S = A.getValueAsString();
2274     if (S != "true" && S != "false")
2275       CheckFailed(
2276           "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2277   }
2278 
2279   if (auto A = Attrs.getFnAttr("vector-function-abi-variant"); A.isValid()) {
2280     StringRef S = A.getValueAsString();
2281     const std::optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, FT);
2282     if (!Info)
2283       CheckFailed("invalid name for a VFABI variant: " + S, V);
2284   }
2285 }
2286 
2287 void Verifier::verifyFunctionMetadata(
2288     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2289   for (const auto &Pair : MDs) {
2290     if (Pair.first == LLVMContext::MD_prof) {
2291       MDNode *MD = Pair.second;
2292       Check(MD->getNumOperands() >= 2,
2293             "!prof annotations should have no less than 2 operands", MD);
2294 
2295       // Check first operand.
2296       Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2297             MD);
2298       Check(isa<MDString>(MD->getOperand(0)),
2299             "expected string with name of the !prof annotation", MD);
2300       MDString *MDS = cast<MDString>(MD->getOperand(0));
2301       StringRef ProfName = MDS->getString();
2302       Check(ProfName.equals("function_entry_count") ||
2303                 ProfName.equals("synthetic_function_entry_count"),
2304             "first operand should be 'function_entry_count'"
2305             " or 'synthetic_function_entry_count'",
2306             MD);
2307 
2308       // Check second operand.
2309       Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2310             MD);
2311       Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2312             "expected integer argument to function_entry_count", MD);
2313     } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2314       MDNode *MD = Pair.second;
2315       Check(MD->getNumOperands() == 1,
2316             "!kcfi_type must have exactly one operand", MD);
2317       Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2318             MD);
2319       Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2320             "expected a constant operand for !kcfi_type", MD);
2321       Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2322       Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()),
2323             "expected a constant integer operand for !kcfi_type", MD);
2324       Check(cast<ConstantInt>(C)->getBitWidth() == 32,
2325             "expected a 32-bit integer constant operand for !kcfi_type", MD);
2326     }
2327   }
2328 }
2329 
2330 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2331   if (!ConstantExprVisited.insert(EntryC).second)
2332     return;
2333 
2334   SmallVector<const Constant *, 16> Stack;
2335   Stack.push_back(EntryC);
2336 
2337   while (!Stack.empty()) {
2338     const Constant *C = Stack.pop_back_val();
2339 
2340     // Check this constant expression.
2341     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2342       visitConstantExpr(CE);
2343 
2344     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2345       // Global Values get visited separately, but we do need to make sure
2346       // that the global value is in the correct module
2347       Check(GV->getParent() == &M, "Referencing global in another module!",
2348             EntryC, &M, GV, GV->getParent());
2349       continue;
2350     }
2351 
2352     // Visit all sub-expressions.
2353     for (const Use &U : C->operands()) {
2354       const auto *OpC = dyn_cast<Constant>(U);
2355       if (!OpC)
2356         continue;
2357       if (!ConstantExprVisited.insert(OpC).second)
2358         continue;
2359       Stack.push_back(OpC);
2360     }
2361   }
2362 }
2363 
2364 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2365   if (CE->getOpcode() == Instruction::BitCast)
2366     Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2367                                 CE->getType()),
2368           "Invalid bitcast", CE);
2369 }
2370 
2371 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2372   // There shouldn't be more attribute sets than there are parameters plus the
2373   // function and return value.
2374   return Attrs.getNumAttrSets() <= Params + 2;
2375 }
2376 
2377 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2378   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2379   unsigned ArgNo = 0;
2380   unsigned LabelNo = 0;
2381   for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2382     if (CI.Type == InlineAsm::isLabel) {
2383       ++LabelNo;
2384       continue;
2385     }
2386 
2387     // Only deal with constraints that correspond to call arguments.
2388     if (!CI.hasArg())
2389       continue;
2390 
2391     if (CI.isIndirect) {
2392       const Value *Arg = Call.getArgOperand(ArgNo);
2393       Check(Arg->getType()->isPointerTy(),
2394             "Operand for indirect constraint must have pointer type", &Call);
2395 
2396       Check(Call.getParamElementType(ArgNo),
2397             "Operand for indirect constraint must have elementtype attribute",
2398             &Call);
2399     } else {
2400       Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2401             "Elementtype attribute can only be applied for indirect "
2402             "constraints",
2403             &Call);
2404     }
2405 
2406     ArgNo++;
2407   }
2408 
2409   if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2410     Check(LabelNo == CallBr->getNumIndirectDests(),
2411           "Number of label constraints does not match number of callbr dests",
2412           &Call);
2413   } else {
2414     Check(LabelNo == 0, "Label constraints can only be used with callbr",
2415           &Call);
2416   }
2417 }
2418 
2419 /// Verify that statepoint intrinsic is well formed.
2420 void Verifier::verifyStatepoint(const CallBase &Call) {
2421   assert(Call.getCalledFunction() &&
2422          Call.getCalledFunction()->getIntrinsicID() ==
2423              Intrinsic::experimental_gc_statepoint);
2424 
2425   Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2426             !Call.onlyAccessesArgMemory(),
2427         "gc.statepoint must read and write all memory to preserve "
2428         "reordering restrictions required by safepoint semantics",
2429         Call);
2430 
2431   const int64_t NumPatchBytes =
2432       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2433   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2434   Check(NumPatchBytes >= 0,
2435         "gc.statepoint number of patchable bytes must be "
2436         "positive",
2437         Call);
2438 
2439   Type *TargetElemType = Call.getParamElementType(2);
2440   Check(TargetElemType,
2441         "gc.statepoint callee argument must have elementtype attribute", Call);
2442   FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2443   Check(TargetFuncType,
2444         "gc.statepoint callee elementtype must be function type", Call);
2445 
2446   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2447   Check(NumCallArgs >= 0,
2448         "gc.statepoint number of arguments to underlying call "
2449         "must be positive",
2450         Call);
2451   const int NumParams = (int)TargetFuncType->getNumParams();
2452   if (TargetFuncType->isVarArg()) {
2453     Check(NumCallArgs >= NumParams,
2454           "gc.statepoint mismatch in number of vararg call args", Call);
2455 
2456     // TODO: Remove this limitation
2457     Check(TargetFuncType->getReturnType()->isVoidTy(),
2458           "gc.statepoint doesn't support wrapping non-void "
2459           "vararg functions yet",
2460           Call);
2461   } else
2462     Check(NumCallArgs == NumParams,
2463           "gc.statepoint mismatch in number of call args", Call);
2464 
2465   const uint64_t Flags
2466     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2467   Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2468         "unknown flag used in gc.statepoint flags argument", Call);
2469 
2470   // Verify that the types of the call parameter arguments match
2471   // the type of the wrapped callee.
2472   AttributeList Attrs = Call.getAttributes();
2473   for (int i = 0; i < NumParams; i++) {
2474     Type *ParamType = TargetFuncType->getParamType(i);
2475     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2476     Check(ArgType == ParamType,
2477           "gc.statepoint call argument does not match wrapped "
2478           "function type",
2479           Call);
2480 
2481     if (TargetFuncType->isVarArg()) {
2482       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2483       Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2484             "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2485     }
2486   }
2487 
2488   const int EndCallArgsInx = 4 + NumCallArgs;
2489 
2490   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2491   Check(isa<ConstantInt>(NumTransitionArgsV),
2492         "gc.statepoint number of transition arguments "
2493         "must be constant integer",
2494         Call);
2495   const int NumTransitionArgs =
2496       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2497   Check(NumTransitionArgs == 0,
2498         "gc.statepoint w/inline transition bundle is deprecated", Call);
2499   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2500 
2501   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2502   Check(isa<ConstantInt>(NumDeoptArgsV),
2503         "gc.statepoint number of deoptimization arguments "
2504         "must be constant integer",
2505         Call);
2506   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2507   Check(NumDeoptArgs == 0,
2508         "gc.statepoint w/inline deopt operands is deprecated", Call);
2509 
2510   const int ExpectedNumArgs = 7 + NumCallArgs;
2511   Check(ExpectedNumArgs == (int)Call.arg_size(),
2512         "gc.statepoint too many arguments", Call);
2513 
2514   // Check that the only uses of this gc.statepoint are gc.result or
2515   // gc.relocate calls which are tied to this statepoint and thus part
2516   // of the same statepoint sequence
2517   for (const User *U : Call.users()) {
2518     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2519     Check(UserCall, "illegal use of statepoint token", Call, U);
2520     if (!UserCall)
2521       continue;
2522     Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2523           "gc.result or gc.relocate are the only value uses "
2524           "of a gc.statepoint",
2525           Call, U);
2526     if (isa<GCResultInst>(UserCall)) {
2527       Check(UserCall->getArgOperand(0) == &Call,
2528             "gc.result connected to wrong gc.statepoint", Call, UserCall);
2529     } else if (isa<GCRelocateInst>(Call)) {
2530       Check(UserCall->getArgOperand(0) == &Call,
2531             "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2532     }
2533   }
2534 
2535   // Note: It is legal for a single derived pointer to be listed multiple
2536   // times.  It's non-optimal, but it is legal.  It can also happen after
2537   // insertion if we strip a bitcast away.
2538   // Note: It is really tempting to check that each base is relocated and
2539   // that a derived pointer is never reused as a base pointer.  This turns
2540   // out to be problematic since optimizations run after safepoint insertion
2541   // can recognize equality properties that the insertion logic doesn't know
2542   // about.  See example statepoint.ll in the verifier subdirectory
2543 }
2544 
2545 void Verifier::verifyFrameRecoverIndices() {
2546   for (auto &Counts : FrameEscapeInfo) {
2547     Function *F = Counts.first;
2548     unsigned EscapedObjectCount = Counts.second.first;
2549     unsigned MaxRecoveredIndex = Counts.second.second;
2550     Check(MaxRecoveredIndex <= EscapedObjectCount,
2551           "all indices passed to llvm.localrecover must be less than the "
2552           "number of arguments passed to llvm.localescape in the parent "
2553           "function",
2554           F);
2555   }
2556 }
2557 
2558 static Instruction *getSuccPad(Instruction *Terminator) {
2559   BasicBlock *UnwindDest;
2560   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2561     UnwindDest = II->getUnwindDest();
2562   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2563     UnwindDest = CSI->getUnwindDest();
2564   else
2565     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2566   return UnwindDest->getFirstNonPHI();
2567 }
2568 
2569 void Verifier::verifySiblingFuncletUnwinds() {
2570   SmallPtrSet<Instruction *, 8> Visited;
2571   SmallPtrSet<Instruction *, 8> Active;
2572   for (const auto &Pair : SiblingFuncletInfo) {
2573     Instruction *PredPad = Pair.first;
2574     if (Visited.count(PredPad))
2575       continue;
2576     Active.insert(PredPad);
2577     Instruction *Terminator = Pair.second;
2578     do {
2579       Instruction *SuccPad = getSuccPad(Terminator);
2580       if (Active.count(SuccPad)) {
2581         // Found a cycle; report error
2582         Instruction *CyclePad = SuccPad;
2583         SmallVector<Instruction *, 8> CycleNodes;
2584         do {
2585           CycleNodes.push_back(CyclePad);
2586           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2587           if (CycleTerminator != CyclePad)
2588             CycleNodes.push_back(CycleTerminator);
2589           CyclePad = getSuccPad(CycleTerminator);
2590         } while (CyclePad != SuccPad);
2591         Check(false, "EH pads can't handle each other's exceptions",
2592               ArrayRef<Instruction *>(CycleNodes));
2593       }
2594       // Don't re-walk a node we've already checked
2595       if (!Visited.insert(SuccPad).second)
2596         break;
2597       // Walk to this successor if it has a map entry.
2598       PredPad = SuccPad;
2599       auto TermI = SiblingFuncletInfo.find(PredPad);
2600       if (TermI == SiblingFuncletInfo.end())
2601         break;
2602       Terminator = TermI->second;
2603       Active.insert(PredPad);
2604     } while (true);
2605     // Each node only has one successor, so we've walked all the active
2606     // nodes' successors.
2607     Active.clear();
2608   }
2609 }
2610 
2611 // visitFunction - Verify that a function is ok.
2612 //
2613 void Verifier::visitFunction(const Function &F) {
2614   visitGlobalValue(F);
2615 
2616   // Check function arguments.
2617   FunctionType *FT = F.getFunctionType();
2618   unsigned NumArgs = F.arg_size();
2619 
2620   Check(&Context == &F.getContext(),
2621         "Function context does not match Module context!", &F);
2622 
2623   Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2624   Check(FT->getNumParams() == NumArgs,
2625         "# formal arguments must match # of arguments for function type!", &F,
2626         FT);
2627   Check(F.getReturnType()->isFirstClassType() ||
2628             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2629         "Functions cannot return aggregate values!", &F);
2630 
2631   Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2632         "Invalid struct return type!", &F);
2633 
2634   AttributeList Attrs = F.getAttributes();
2635 
2636   Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2637         "Attribute after last parameter!", &F);
2638 
2639   bool IsIntrinsic = F.isIntrinsic();
2640 
2641   // Check function attributes.
2642   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2643 
2644   // On function declarations/definitions, we do not support the builtin
2645   // attribute. We do not check this in VerifyFunctionAttrs since that is
2646   // checking for Attributes that can/can not ever be on functions.
2647   Check(!Attrs.hasFnAttr(Attribute::Builtin),
2648         "Attribute 'builtin' can only be applied to a callsite.", &F);
2649 
2650   Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2651         "Attribute 'elementtype' can only be applied to a callsite.", &F);
2652 
2653   // Check that this function meets the restrictions on this calling convention.
2654   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2655   // restrictions can be lifted.
2656   switch (F.getCallingConv()) {
2657   default:
2658   case CallingConv::C:
2659     break;
2660   case CallingConv::X86_INTR: {
2661     Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2662           "Calling convention parameter requires byval", &F);
2663     break;
2664   }
2665   case CallingConv::AMDGPU_KERNEL:
2666   case CallingConv::SPIR_KERNEL:
2667   case CallingConv::AMDGPU_CS_Chain:
2668   case CallingConv::AMDGPU_CS_ChainPreserve:
2669     Check(F.getReturnType()->isVoidTy(),
2670           "Calling convention requires void return type", &F);
2671     [[fallthrough]];
2672   case CallingConv::AMDGPU_VS:
2673   case CallingConv::AMDGPU_HS:
2674   case CallingConv::AMDGPU_GS:
2675   case CallingConv::AMDGPU_PS:
2676   case CallingConv::AMDGPU_CS:
2677     Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2678     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2679       const unsigned StackAS = DL.getAllocaAddrSpace();
2680       unsigned i = 0;
2681       for (const Argument &Arg : F.args()) {
2682         Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2683               "Calling convention disallows byval", &F);
2684         Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2685               "Calling convention disallows preallocated", &F);
2686         Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2687               "Calling convention disallows inalloca", &F);
2688 
2689         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2690           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2691           // value here.
2692           Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2693                 "Calling convention disallows stack byref", &F);
2694         }
2695 
2696         ++i;
2697       }
2698     }
2699 
2700     [[fallthrough]];
2701   case CallingConv::Fast:
2702   case CallingConv::Cold:
2703   case CallingConv::Intel_OCL_BI:
2704   case CallingConv::PTX_Kernel:
2705   case CallingConv::PTX_Device:
2706     Check(!F.isVarArg(),
2707           "Calling convention does not support varargs or "
2708           "perfect forwarding!",
2709           &F);
2710     break;
2711   }
2712 
2713   // Check that the argument values match the function type for this function...
2714   unsigned i = 0;
2715   for (const Argument &Arg : F.args()) {
2716     Check(Arg.getType() == FT->getParamType(i),
2717           "Argument value does not match function argument type!", &Arg,
2718           FT->getParamType(i));
2719     Check(Arg.getType()->isFirstClassType(),
2720           "Function arguments must have first-class types!", &Arg);
2721     if (!IsIntrinsic) {
2722       Check(!Arg.getType()->isMetadataTy(),
2723             "Function takes metadata but isn't an intrinsic", &Arg, &F);
2724       Check(!Arg.getType()->isTokenTy(),
2725             "Function takes token but isn't an intrinsic", &Arg, &F);
2726       Check(!Arg.getType()->isX86_AMXTy(),
2727             "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2728     }
2729 
2730     // Check that swifterror argument is only used by loads and stores.
2731     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2732       verifySwiftErrorValue(&Arg);
2733     }
2734     ++i;
2735   }
2736 
2737   if (!IsIntrinsic) {
2738     Check(!F.getReturnType()->isTokenTy(),
2739           "Function returns a token but isn't an intrinsic", &F);
2740     Check(!F.getReturnType()->isX86_AMXTy(),
2741           "Function returns a x86_amx but isn't an intrinsic", &F);
2742   }
2743 
2744   // Get the function metadata attachments.
2745   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2746   F.getAllMetadata(MDs);
2747   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2748   verifyFunctionMetadata(MDs);
2749 
2750   // Check validity of the personality function
2751   if (F.hasPersonalityFn()) {
2752     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2753     if (Per)
2754       Check(Per->getParent() == F.getParent(),
2755             "Referencing personality function in another module!", &F,
2756             F.getParent(), Per, Per->getParent());
2757   }
2758 
2759   // EH funclet coloring can be expensive, recompute on-demand
2760   BlockEHFuncletColors.clear();
2761 
2762   if (F.isMaterializable()) {
2763     // Function has a body somewhere we can't see.
2764     Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2765           MDs.empty() ? nullptr : MDs.front().second);
2766   } else if (F.isDeclaration()) {
2767     for (const auto &I : MDs) {
2768       // This is used for call site debug information.
2769       CheckDI(I.first != LLVMContext::MD_dbg ||
2770                   !cast<DISubprogram>(I.second)->isDistinct(),
2771               "function declaration may only have a unique !dbg attachment",
2772               &F);
2773       Check(I.first != LLVMContext::MD_prof,
2774             "function declaration may not have a !prof attachment", &F);
2775 
2776       // Verify the metadata itself.
2777       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2778     }
2779     Check(!F.hasPersonalityFn(),
2780           "Function declaration shouldn't have a personality routine", &F);
2781   } else {
2782     // Verify that this function (which has a body) is not named "llvm.*".  It
2783     // is not legal to define intrinsics.
2784     Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2785 
2786     // Check the entry node
2787     const BasicBlock *Entry = &F.getEntryBlock();
2788     Check(pred_empty(Entry),
2789           "Entry block to function must not have predecessors!", Entry);
2790 
2791     // The address of the entry block cannot be taken, unless it is dead.
2792     if (Entry->hasAddressTaken()) {
2793       Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2794             "blockaddress may not be used with the entry block!", Entry);
2795     }
2796 
2797     unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2798              NumKCFIAttachments = 0;
2799     // Visit metadata attachments.
2800     for (const auto &I : MDs) {
2801       // Verify that the attachment is legal.
2802       auto AllowLocs = AreDebugLocsAllowed::No;
2803       switch (I.first) {
2804       default:
2805         break;
2806       case LLVMContext::MD_dbg: {
2807         ++NumDebugAttachments;
2808         CheckDI(NumDebugAttachments == 1,
2809                 "function must have a single !dbg attachment", &F, I.second);
2810         CheckDI(isa<DISubprogram>(I.second),
2811                 "function !dbg attachment must be a subprogram", &F, I.second);
2812         CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2813                 "function definition may only have a distinct !dbg attachment",
2814                 &F);
2815 
2816         auto *SP = cast<DISubprogram>(I.second);
2817         const Function *&AttachedTo = DISubprogramAttachments[SP];
2818         CheckDI(!AttachedTo || AttachedTo == &F,
2819                 "DISubprogram attached to more than one function", SP, &F);
2820         AttachedTo = &F;
2821         AllowLocs = AreDebugLocsAllowed::Yes;
2822         break;
2823       }
2824       case LLVMContext::MD_prof:
2825         ++NumProfAttachments;
2826         Check(NumProfAttachments == 1,
2827               "function must have a single !prof attachment", &F, I.second);
2828         break;
2829       case LLVMContext::MD_kcfi_type:
2830         ++NumKCFIAttachments;
2831         Check(NumKCFIAttachments == 1,
2832               "function must have a single !kcfi_type attachment", &F,
2833               I.second);
2834         break;
2835       }
2836 
2837       // Verify the metadata itself.
2838       visitMDNode(*I.second, AllowLocs);
2839     }
2840   }
2841 
2842   // If this function is actually an intrinsic, verify that it is only used in
2843   // direct call/invokes, never having its "address taken".
2844   // Only do this if the module is materialized, otherwise we don't have all the
2845   // uses.
2846   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2847     const User *U;
2848     if (F.hasAddressTaken(&U, false, true, false,
2849                           /*IgnoreARCAttachedCall=*/true))
2850       Check(false, "Invalid user of intrinsic instruction!", U);
2851   }
2852 
2853   // Check intrinsics' signatures.
2854   switch (F.getIntrinsicID()) {
2855   case Intrinsic::experimental_gc_get_pointer_base: {
2856     FunctionType *FT = F.getFunctionType();
2857     Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2858     Check(isa<PointerType>(F.getReturnType()),
2859           "gc.get.pointer.base must return a pointer", F);
2860     Check(FT->getParamType(0) == F.getReturnType(),
2861           "gc.get.pointer.base operand and result must be of the same type", F);
2862     break;
2863   }
2864   case Intrinsic::experimental_gc_get_pointer_offset: {
2865     FunctionType *FT = F.getFunctionType();
2866     Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2867     Check(isa<PointerType>(FT->getParamType(0)),
2868           "gc.get.pointer.offset operand must be a pointer", F);
2869     Check(F.getReturnType()->isIntegerTy(),
2870           "gc.get.pointer.offset must return integer", F);
2871     break;
2872   }
2873   }
2874 
2875   auto *N = F.getSubprogram();
2876   HasDebugInfo = (N != nullptr);
2877   if (!HasDebugInfo)
2878     return;
2879 
2880   // Check that all !dbg attachments lead to back to N.
2881   //
2882   // FIXME: Check this incrementally while visiting !dbg attachments.
2883   // FIXME: Only check when N is the canonical subprogram for F.
2884   SmallPtrSet<const MDNode *, 32> Seen;
2885   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2886     // Be careful about using DILocation here since we might be dealing with
2887     // broken code (this is the Verifier after all).
2888     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2889     if (!DL)
2890       return;
2891     if (!Seen.insert(DL).second)
2892       return;
2893 
2894     Metadata *Parent = DL->getRawScope();
2895     CheckDI(Parent && isa<DILocalScope>(Parent),
2896             "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
2897 
2898     DILocalScope *Scope = DL->getInlinedAtScope();
2899     Check(Scope, "Failed to find DILocalScope", DL);
2900 
2901     if (!Seen.insert(Scope).second)
2902       return;
2903 
2904     DISubprogram *SP = Scope->getSubprogram();
2905 
2906     // Scope and SP could be the same MDNode and we don't want to skip
2907     // validation in that case
2908     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2909       return;
2910 
2911     CheckDI(SP->describes(&F),
2912             "!dbg attachment points at wrong subprogram for function", N, &F,
2913             &I, DL, Scope, SP);
2914   };
2915   for (auto &BB : F)
2916     for (auto &I : BB) {
2917       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2918       // The llvm.loop annotations also contain two DILocations.
2919       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2920         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2921           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2922       if (BrokenDebugInfo)
2923         return;
2924     }
2925 }
2926 
2927 // verifyBasicBlock - Verify that a basic block is well formed...
2928 //
2929 void Verifier::visitBasicBlock(BasicBlock &BB) {
2930   InstsInThisBlock.clear();
2931   ConvergenceVerifyHelper.visit(BB);
2932 
2933   // Ensure that basic blocks have terminators!
2934   Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2935 
2936   // Check constraints that this basic block imposes on all of the PHI nodes in
2937   // it.
2938   if (isa<PHINode>(BB.front())) {
2939     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2940     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2941     llvm::sort(Preds);
2942     for (const PHINode &PN : BB.phis()) {
2943       Check(PN.getNumIncomingValues() == Preds.size(),
2944             "PHINode should have one entry for each predecessor of its "
2945             "parent basic block!",
2946             &PN);
2947 
2948       // Get and sort all incoming values in the PHI node...
2949       Values.clear();
2950       Values.reserve(PN.getNumIncomingValues());
2951       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2952         Values.push_back(
2953             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2954       llvm::sort(Values);
2955 
2956       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2957         // Check to make sure that if there is more than one entry for a
2958         // particular basic block in this PHI node, that the incoming values are
2959         // all identical.
2960         //
2961         Check(i == 0 || Values[i].first != Values[i - 1].first ||
2962                   Values[i].second == Values[i - 1].second,
2963               "PHI node has multiple entries for the same basic block with "
2964               "different incoming values!",
2965               &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2966 
2967         // Check to make sure that the predecessors and PHI node entries are
2968         // matched up.
2969         Check(Values[i].first == Preds[i],
2970               "PHI node entries do not match predecessors!", &PN,
2971               Values[i].first, Preds[i]);
2972       }
2973     }
2974   }
2975 
2976   // Check that all instructions have their parent pointers set up correctly.
2977   for (auto &I : BB)
2978   {
2979     Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2980   }
2981 
2982   // Confirm that no issues arise from the debug program.
2983   if (BB.IsNewDbgInfoFormat) {
2984     // Configure the validate function to not fire assertions, instead print
2985     // errors and return true if there's a problem.
2986     bool RetVal = BB.validateDbgValues(false, true, OS);
2987     Check(!RetVal, "Invalid configuration of new-debug-info data found");
2988   }
2989 }
2990 
2991 void Verifier::visitTerminator(Instruction &I) {
2992   // Ensure that terminators only exist at the end of the basic block.
2993   Check(&I == I.getParent()->getTerminator(),
2994         "Terminator found in the middle of a basic block!", I.getParent());
2995   visitInstruction(I);
2996 }
2997 
2998 void Verifier::visitBranchInst(BranchInst &BI) {
2999   if (BI.isConditional()) {
3000     Check(BI.getCondition()->getType()->isIntegerTy(1),
3001           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
3002   }
3003   visitTerminator(BI);
3004 }
3005 
3006 void Verifier::visitReturnInst(ReturnInst &RI) {
3007   Function *F = RI.getParent()->getParent();
3008   unsigned N = RI.getNumOperands();
3009   if (F->getReturnType()->isVoidTy())
3010     Check(N == 0,
3011           "Found return instr that returns non-void in Function of void "
3012           "return type!",
3013           &RI, F->getReturnType());
3014   else
3015     Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
3016           "Function return type does not match operand "
3017           "type of return inst!",
3018           &RI, F->getReturnType());
3019 
3020   // Check to make sure that the return value has necessary properties for
3021   // terminators...
3022   visitTerminator(RI);
3023 }
3024 
3025 void Verifier::visitSwitchInst(SwitchInst &SI) {
3026   Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
3027   // Check to make sure that all of the constants in the switch instruction
3028   // have the same type as the switched-on value.
3029   Type *SwitchTy = SI.getCondition()->getType();
3030   SmallPtrSet<ConstantInt*, 32> Constants;
3031   for (auto &Case : SI.cases()) {
3032     Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
3033           "Case value is not a constant integer.", &SI);
3034     Check(Case.getCaseValue()->getType() == SwitchTy,
3035           "Switch constants must all be same type as switch value!", &SI);
3036     Check(Constants.insert(Case.getCaseValue()).second,
3037           "Duplicate integer as switch case", &SI, Case.getCaseValue());
3038   }
3039 
3040   visitTerminator(SI);
3041 }
3042 
3043 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3044   Check(BI.getAddress()->getType()->isPointerTy(),
3045         "Indirectbr operand must have pointer type!", &BI);
3046   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
3047     Check(BI.getDestination(i)->getType()->isLabelTy(),
3048           "Indirectbr destinations must all have pointer type!", &BI);
3049 
3050   visitTerminator(BI);
3051 }
3052 
3053 void Verifier::visitCallBrInst(CallBrInst &CBI) {
3054   Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
3055   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
3056   Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
3057 
3058   verifyInlineAsmCall(CBI);
3059   visitTerminator(CBI);
3060 }
3061 
3062 void Verifier::visitSelectInst(SelectInst &SI) {
3063   Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
3064                                         SI.getOperand(2)),
3065         "Invalid operands for select instruction!", &SI);
3066 
3067   Check(SI.getTrueValue()->getType() == SI.getType(),
3068         "Select values must have same type as select instruction!", &SI);
3069   visitInstruction(SI);
3070 }
3071 
3072 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3073 /// a pass, if any exist, it's an error.
3074 ///
3075 void Verifier::visitUserOp1(Instruction &I) {
3076   Check(false, "User-defined operators should not live outside of a pass!", &I);
3077 }
3078 
3079 void Verifier::visitTruncInst(TruncInst &I) {
3080   // Get the source and destination types
3081   Type *SrcTy = I.getOperand(0)->getType();
3082   Type *DestTy = I.getType();
3083 
3084   // Get the size of the types in bits, we'll need this later
3085   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3086   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3087 
3088   Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
3089   Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
3090   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3091         "trunc source and destination must both be a vector or neither", &I);
3092   Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
3093 
3094   visitInstruction(I);
3095 }
3096 
3097 void Verifier::visitZExtInst(ZExtInst &I) {
3098   // Get the source and destination types
3099   Type *SrcTy = I.getOperand(0)->getType();
3100   Type *DestTy = I.getType();
3101 
3102   // Get the size of the types in bits, we'll need this later
3103   Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
3104   Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
3105   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3106         "zext source and destination must both be a vector or neither", &I);
3107   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3108   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3109 
3110   Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
3111 
3112   visitInstruction(I);
3113 }
3114 
3115 void Verifier::visitSExtInst(SExtInst &I) {
3116   // Get the source and destination types
3117   Type *SrcTy = I.getOperand(0)->getType();
3118   Type *DestTy = I.getType();
3119 
3120   // Get the size of the types in bits, we'll need this later
3121   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3122   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3123 
3124   Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
3125   Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
3126   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3127         "sext source and destination must both be a vector or neither", &I);
3128   Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
3129 
3130   visitInstruction(I);
3131 }
3132 
3133 void Verifier::visitFPTruncInst(FPTruncInst &I) {
3134   // Get the source and destination types
3135   Type *SrcTy = I.getOperand(0)->getType();
3136   Type *DestTy = I.getType();
3137   // Get the size of the types in bits, we'll need this later
3138   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3139   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3140 
3141   Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
3142   Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
3143   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3144         "fptrunc source and destination must both be a vector or neither", &I);
3145   Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3146 
3147   visitInstruction(I);
3148 }
3149 
3150 void Verifier::visitFPExtInst(FPExtInst &I) {
3151   // Get the source and destination types
3152   Type *SrcTy = I.getOperand(0)->getType();
3153   Type *DestTy = I.getType();
3154 
3155   // Get the size of the types in bits, we'll need this later
3156   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3157   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3158 
3159   Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3160   Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3161   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3162         "fpext source and destination must both be a vector or neither", &I);
3163   Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3164 
3165   visitInstruction(I);
3166 }
3167 
3168 void Verifier::visitUIToFPInst(UIToFPInst &I) {
3169   // Get the source and destination types
3170   Type *SrcTy = I.getOperand(0)->getType();
3171   Type *DestTy = I.getType();
3172 
3173   bool SrcVec = SrcTy->isVectorTy();
3174   bool DstVec = DestTy->isVectorTy();
3175 
3176   Check(SrcVec == DstVec,
3177         "UIToFP source and dest must both be vector or scalar", &I);
3178   Check(SrcTy->isIntOrIntVectorTy(),
3179         "UIToFP source must be integer or integer vector", &I);
3180   Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3181         &I);
3182 
3183   if (SrcVec && DstVec)
3184     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3185               cast<VectorType>(DestTy)->getElementCount(),
3186           "UIToFP source and dest vector length mismatch", &I);
3187 
3188   visitInstruction(I);
3189 }
3190 
3191 void Verifier::visitSIToFPInst(SIToFPInst &I) {
3192   // Get the source and destination types
3193   Type *SrcTy = I.getOperand(0)->getType();
3194   Type *DestTy = I.getType();
3195 
3196   bool SrcVec = SrcTy->isVectorTy();
3197   bool DstVec = DestTy->isVectorTy();
3198 
3199   Check(SrcVec == DstVec,
3200         "SIToFP source and dest must both be vector or scalar", &I);
3201   Check(SrcTy->isIntOrIntVectorTy(),
3202         "SIToFP source must be integer or integer vector", &I);
3203   Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3204         &I);
3205 
3206   if (SrcVec && DstVec)
3207     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3208               cast<VectorType>(DestTy)->getElementCount(),
3209           "SIToFP source and dest vector length mismatch", &I);
3210 
3211   visitInstruction(I);
3212 }
3213 
3214 void Verifier::visitFPToUIInst(FPToUIInst &I) {
3215   // Get the source and destination types
3216   Type *SrcTy = I.getOperand(0)->getType();
3217   Type *DestTy = I.getType();
3218 
3219   bool SrcVec = SrcTy->isVectorTy();
3220   bool DstVec = DestTy->isVectorTy();
3221 
3222   Check(SrcVec == DstVec,
3223         "FPToUI source and dest must both be vector or scalar", &I);
3224   Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3225   Check(DestTy->isIntOrIntVectorTy(),
3226         "FPToUI result must be integer or integer vector", &I);
3227 
3228   if (SrcVec && DstVec)
3229     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3230               cast<VectorType>(DestTy)->getElementCount(),
3231           "FPToUI source and dest vector length mismatch", &I);
3232 
3233   visitInstruction(I);
3234 }
3235 
3236 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3237   // Get the source and destination types
3238   Type *SrcTy = I.getOperand(0)->getType();
3239   Type *DestTy = I.getType();
3240 
3241   bool SrcVec = SrcTy->isVectorTy();
3242   bool DstVec = DestTy->isVectorTy();
3243 
3244   Check(SrcVec == DstVec,
3245         "FPToSI source and dest must both be vector or scalar", &I);
3246   Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3247   Check(DestTy->isIntOrIntVectorTy(),
3248         "FPToSI result must be integer or integer vector", &I);
3249 
3250   if (SrcVec && DstVec)
3251     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3252               cast<VectorType>(DestTy)->getElementCount(),
3253           "FPToSI source and dest vector length mismatch", &I);
3254 
3255   visitInstruction(I);
3256 }
3257 
3258 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3259   // Get the source and destination types
3260   Type *SrcTy = I.getOperand(0)->getType();
3261   Type *DestTy = I.getType();
3262 
3263   Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3264 
3265   Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3266   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3267         &I);
3268 
3269   if (SrcTy->isVectorTy()) {
3270     auto *VSrc = cast<VectorType>(SrcTy);
3271     auto *VDest = cast<VectorType>(DestTy);
3272     Check(VSrc->getElementCount() == VDest->getElementCount(),
3273           "PtrToInt Vector width mismatch", &I);
3274   }
3275 
3276   visitInstruction(I);
3277 }
3278 
3279 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3280   // Get the source and destination types
3281   Type *SrcTy = I.getOperand(0)->getType();
3282   Type *DestTy = I.getType();
3283 
3284   Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3285   Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3286 
3287   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3288         &I);
3289   if (SrcTy->isVectorTy()) {
3290     auto *VSrc = cast<VectorType>(SrcTy);
3291     auto *VDest = cast<VectorType>(DestTy);
3292     Check(VSrc->getElementCount() == VDest->getElementCount(),
3293           "IntToPtr Vector width mismatch", &I);
3294   }
3295   visitInstruction(I);
3296 }
3297 
3298 void Verifier::visitBitCastInst(BitCastInst &I) {
3299   Check(
3300       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3301       "Invalid bitcast", &I);
3302   visitInstruction(I);
3303 }
3304 
3305 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3306   Type *SrcTy = I.getOperand(0)->getType();
3307   Type *DestTy = I.getType();
3308 
3309   Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3310         &I);
3311   Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3312         &I);
3313   Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3314         "AddrSpaceCast must be between different address spaces", &I);
3315   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3316     Check(SrcVTy->getElementCount() ==
3317               cast<VectorType>(DestTy)->getElementCount(),
3318           "AddrSpaceCast vector pointer number of elements mismatch", &I);
3319   visitInstruction(I);
3320 }
3321 
3322 /// visitPHINode - Ensure that a PHI node is well formed.
3323 ///
3324 void Verifier::visitPHINode(PHINode &PN) {
3325   // Ensure that the PHI nodes are all grouped together at the top of the block.
3326   // This can be tested by checking whether the instruction before this is
3327   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3328   // then there is some other instruction before a PHI.
3329   Check(&PN == &PN.getParent()->front() ||
3330             isa<PHINode>(--BasicBlock::iterator(&PN)),
3331         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3332 
3333   // Check that a PHI doesn't yield a Token.
3334   Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3335 
3336   // Check that all of the values of the PHI node have the same type as the
3337   // result, and that the incoming blocks are really basic blocks.
3338   for (Value *IncValue : PN.incoming_values()) {
3339     Check(PN.getType() == IncValue->getType(),
3340           "PHI node operands are not the same type as the result!", &PN);
3341   }
3342 
3343   // All other PHI node constraints are checked in the visitBasicBlock method.
3344 
3345   visitInstruction(PN);
3346 }
3347 
3348 void Verifier::visitCallBase(CallBase &Call) {
3349   Check(Call.getCalledOperand()->getType()->isPointerTy(),
3350         "Called function must be a pointer!", Call);
3351   FunctionType *FTy = Call.getFunctionType();
3352 
3353   // Verify that the correct number of arguments are being passed
3354   if (FTy->isVarArg())
3355     Check(Call.arg_size() >= FTy->getNumParams(),
3356           "Called function requires more parameters than were provided!", Call);
3357   else
3358     Check(Call.arg_size() == FTy->getNumParams(),
3359           "Incorrect number of arguments passed to called function!", Call);
3360 
3361   // Verify that all arguments to the call match the function type.
3362   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3363     Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3364           "Call parameter type does not match function signature!",
3365           Call.getArgOperand(i), FTy->getParamType(i), Call);
3366 
3367   AttributeList Attrs = Call.getAttributes();
3368 
3369   Check(verifyAttributeCount(Attrs, Call.arg_size()),
3370         "Attribute after last parameter!", Call);
3371 
3372   Function *Callee =
3373       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3374   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3375   if (IsIntrinsic)
3376     Check(Callee->getValueType() == FTy,
3377           "Intrinsic called with incompatible signature", Call);
3378 
3379   // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3380   // convention.
3381   auto CC = Call.getCallingConv();
3382   Check(CC != CallingConv::AMDGPU_CS_Chain &&
3383             CC != CallingConv::AMDGPU_CS_ChainPreserve,
3384         "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3385         "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3386         Call);
3387 
3388   auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3389     if (!Ty->isSized())
3390       return;
3391     Align ABIAlign = DL.getABITypeAlign(Ty);
3392     Align MaxAlign(ParamMaxAlignment);
3393     Check(ABIAlign <= MaxAlign,
3394           "Incorrect alignment of " + Message + " to called function!", Call);
3395   };
3396 
3397   if (!IsIntrinsic) {
3398     VerifyTypeAlign(FTy->getReturnType(), "return type");
3399     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3400       Type *Ty = FTy->getParamType(i);
3401       VerifyTypeAlign(Ty, "argument passed");
3402     }
3403   }
3404 
3405   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3406     // Don't allow speculatable on call sites, unless the underlying function
3407     // declaration is also speculatable.
3408     Check(Callee && Callee->isSpeculatable(),
3409           "speculatable attribute may not apply to call sites", Call);
3410   }
3411 
3412   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3413     Check(Call.getCalledFunction()->getIntrinsicID() ==
3414               Intrinsic::call_preallocated_arg,
3415           "preallocated as a call site attribute can only be on "
3416           "llvm.call.preallocated.arg");
3417   }
3418 
3419   // Verify call attributes.
3420   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3421 
3422   // Conservatively check the inalloca argument.
3423   // We have a bug if we can find that there is an underlying alloca without
3424   // inalloca.
3425   if (Call.hasInAllocaArgument()) {
3426     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3427     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3428       Check(AI->isUsedWithInAlloca(),
3429             "inalloca argument for call has mismatched alloca", AI, Call);
3430   }
3431 
3432   // For each argument of the callsite, if it has the swifterror argument,
3433   // make sure the underlying alloca/parameter it comes from has a swifterror as
3434   // well.
3435   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3436     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3437       Value *SwiftErrorArg = Call.getArgOperand(i);
3438       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3439         Check(AI->isSwiftError(),
3440               "swifterror argument for call has mismatched alloca", AI, Call);
3441         continue;
3442       }
3443       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3444       Check(ArgI, "swifterror argument should come from an alloca or parameter",
3445             SwiftErrorArg, Call);
3446       Check(ArgI->hasSwiftErrorAttr(),
3447             "swifterror argument for call has mismatched parameter", ArgI,
3448             Call);
3449     }
3450 
3451     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3452       // Don't allow immarg on call sites, unless the underlying declaration
3453       // also has the matching immarg.
3454       Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3455             "immarg may not apply only to call sites", Call.getArgOperand(i),
3456             Call);
3457     }
3458 
3459     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3460       Value *ArgVal = Call.getArgOperand(i);
3461       Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3462             "immarg operand has non-immediate parameter", ArgVal, Call);
3463     }
3464 
3465     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3466       Value *ArgVal = Call.getArgOperand(i);
3467       bool hasOB =
3468           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3469       bool isMustTail = Call.isMustTailCall();
3470       Check(hasOB != isMustTail,
3471             "preallocated operand either requires a preallocated bundle or "
3472             "the call to be musttail (but not both)",
3473             ArgVal, Call);
3474     }
3475   }
3476 
3477   if (FTy->isVarArg()) {
3478     // FIXME? is 'nest' even legal here?
3479     bool SawNest = false;
3480     bool SawReturned = false;
3481 
3482     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3483       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3484         SawNest = true;
3485       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3486         SawReturned = true;
3487     }
3488 
3489     // Check attributes on the varargs part.
3490     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3491       Type *Ty = Call.getArgOperand(Idx)->getType();
3492       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3493       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3494 
3495       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3496         Check(!SawNest, "More than one parameter has attribute nest!", Call);
3497         SawNest = true;
3498       }
3499 
3500       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3501         Check(!SawReturned, "More than one parameter has attribute returned!",
3502               Call);
3503         Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3504               "Incompatible argument and return types for 'returned' "
3505               "attribute",
3506               Call);
3507         SawReturned = true;
3508       }
3509 
3510       // Statepoint intrinsic is vararg but the wrapped function may be not.
3511       // Allow sret here and check the wrapped function in verifyStatepoint.
3512       if (!Call.getCalledFunction() ||
3513           Call.getCalledFunction()->getIntrinsicID() !=
3514               Intrinsic::experimental_gc_statepoint)
3515         Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3516               "Attribute 'sret' cannot be used for vararg call arguments!",
3517               Call);
3518 
3519       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3520         Check(Idx == Call.arg_size() - 1,
3521               "inalloca isn't on the last argument!", Call);
3522     }
3523   }
3524 
3525   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3526   if (!IsIntrinsic) {
3527     for (Type *ParamTy : FTy->params()) {
3528       Check(!ParamTy->isMetadataTy(),
3529             "Function has metadata parameter but isn't an intrinsic", Call);
3530       Check(!ParamTy->isTokenTy(),
3531             "Function has token parameter but isn't an intrinsic", Call);
3532     }
3533   }
3534 
3535   // Verify that indirect calls don't return tokens.
3536   if (!Call.getCalledFunction()) {
3537     Check(!FTy->getReturnType()->isTokenTy(),
3538           "Return type cannot be token for indirect call!");
3539     Check(!FTy->getReturnType()->isX86_AMXTy(),
3540           "Return type cannot be x86_amx for indirect call!");
3541   }
3542 
3543   if (Function *F = Call.getCalledFunction())
3544     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3545       visitIntrinsicCall(ID, Call);
3546 
3547   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3548   // most one "gc-transition", at most one "cfguardtarget", at most one
3549   // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3550   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3551        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3552        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3553        FoundPtrauthBundle = false, FoundKCFIBundle = false,
3554        FoundAttachedCallBundle = false;
3555   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3556     OperandBundleUse BU = Call.getOperandBundleAt(i);
3557     uint32_t Tag = BU.getTagID();
3558     if (Tag == LLVMContext::OB_deopt) {
3559       Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3560       FoundDeoptBundle = true;
3561     } else if (Tag == LLVMContext::OB_gc_transition) {
3562       Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3563             Call);
3564       FoundGCTransitionBundle = true;
3565     } else if (Tag == LLVMContext::OB_funclet) {
3566       Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3567       FoundFuncletBundle = true;
3568       Check(BU.Inputs.size() == 1,
3569             "Expected exactly one funclet bundle operand", Call);
3570       Check(isa<FuncletPadInst>(BU.Inputs.front()),
3571             "Funclet bundle operands should correspond to a FuncletPadInst",
3572             Call);
3573     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3574       Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3575             Call);
3576       FoundCFGuardTargetBundle = true;
3577       Check(BU.Inputs.size() == 1,
3578             "Expected exactly one cfguardtarget bundle operand", Call);
3579     } else if (Tag == LLVMContext::OB_ptrauth) {
3580       Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3581       FoundPtrauthBundle = true;
3582       Check(BU.Inputs.size() == 2,
3583             "Expected exactly two ptrauth bundle operands", Call);
3584       Check(isa<ConstantInt>(BU.Inputs[0]) &&
3585                 BU.Inputs[0]->getType()->isIntegerTy(32),
3586             "Ptrauth bundle key operand must be an i32 constant", Call);
3587       Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3588             "Ptrauth bundle discriminator operand must be an i64", Call);
3589     } else if (Tag == LLVMContext::OB_kcfi) {
3590       Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3591       FoundKCFIBundle = true;
3592       Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3593             Call);
3594       Check(isa<ConstantInt>(BU.Inputs[0]) &&
3595                 BU.Inputs[0]->getType()->isIntegerTy(32),
3596             "Kcfi bundle operand must be an i32 constant", Call);
3597     } else if (Tag == LLVMContext::OB_preallocated) {
3598       Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3599             Call);
3600       FoundPreallocatedBundle = true;
3601       Check(BU.Inputs.size() == 1,
3602             "Expected exactly one preallocated bundle operand", Call);
3603       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3604       Check(Input &&
3605                 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3606             "\"preallocated\" argument must be a token from "
3607             "llvm.call.preallocated.setup",
3608             Call);
3609     } else if (Tag == LLVMContext::OB_gc_live) {
3610       Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3611       FoundGCLiveBundle = true;
3612     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3613       Check(!FoundAttachedCallBundle,
3614             "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3615       FoundAttachedCallBundle = true;
3616       verifyAttachedCallBundle(Call, BU);
3617     }
3618   }
3619 
3620   // Verify that callee and callsite agree on whether to use pointer auth.
3621   Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3622         "Direct call cannot have a ptrauth bundle", Call);
3623 
3624   // Verify that each inlinable callsite of a debug-info-bearing function in a
3625   // debug-info-bearing function has a debug location attached to it. Failure to
3626   // do so causes assertion failures when the inliner sets up inline scope info
3627   // (Interposable functions are not inlinable, neither are functions without
3628   //  definitions.)
3629   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3630       !Call.getCalledFunction()->isInterposable() &&
3631       !Call.getCalledFunction()->isDeclaration() &&
3632       Call.getCalledFunction()->getSubprogram())
3633     CheckDI(Call.getDebugLoc(),
3634             "inlinable function call in a function with "
3635             "debug info must have a !dbg location",
3636             Call);
3637 
3638   if (Call.isInlineAsm())
3639     verifyInlineAsmCall(Call);
3640 
3641   ConvergenceVerifyHelper.visit(Call);
3642 
3643   visitInstruction(Call);
3644 }
3645 
3646 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3647                                          StringRef Context) {
3648   Check(!Attrs.contains(Attribute::InAlloca),
3649         Twine("inalloca attribute not allowed in ") + Context);
3650   Check(!Attrs.contains(Attribute::InReg),
3651         Twine("inreg attribute not allowed in ") + Context);
3652   Check(!Attrs.contains(Attribute::SwiftError),
3653         Twine("swifterror attribute not allowed in ") + Context);
3654   Check(!Attrs.contains(Attribute::Preallocated),
3655         Twine("preallocated attribute not allowed in ") + Context);
3656   Check(!Attrs.contains(Attribute::ByRef),
3657         Twine("byref attribute not allowed in ") + Context);
3658 }
3659 
3660 /// Two types are "congruent" if they are identical, or if they are both pointer
3661 /// types with different pointee types and the same address space.
3662 static bool isTypeCongruent(Type *L, Type *R) {
3663   if (L == R)
3664     return true;
3665   PointerType *PL = dyn_cast<PointerType>(L);
3666   PointerType *PR = dyn_cast<PointerType>(R);
3667   if (!PL || !PR)
3668     return false;
3669   return PL->getAddressSpace() == PR->getAddressSpace();
3670 }
3671 
3672 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3673   static const Attribute::AttrKind ABIAttrs[] = {
3674       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3675       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3676       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3677       Attribute::ByRef};
3678   AttrBuilder Copy(C);
3679   for (auto AK : ABIAttrs) {
3680     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3681     if (Attr.isValid())
3682       Copy.addAttribute(Attr);
3683   }
3684 
3685   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3686   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3687       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3688        Attrs.hasParamAttr(I, Attribute::ByRef)))
3689     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3690   return Copy;
3691 }
3692 
3693 void Verifier::verifyMustTailCall(CallInst &CI) {
3694   Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3695 
3696   Function *F = CI.getParent()->getParent();
3697   FunctionType *CallerTy = F->getFunctionType();
3698   FunctionType *CalleeTy = CI.getFunctionType();
3699   Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3700         "cannot guarantee tail call due to mismatched varargs", &CI);
3701   Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3702         "cannot guarantee tail call due to mismatched return types", &CI);
3703 
3704   // - The calling conventions of the caller and callee must match.
3705   Check(F->getCallingConv() == CI.getCallingConv(),
3706         "cannot guarantee tail call due to mismatched calling conv", &CI);
3707 
3708   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3709   //   or a pointer bitcast followed by a ret instruction.
3710   // - The ret instruction must return the (possibly bitcasted) value
3711   //   produced by the call or void.
3712   Value *RetVal = &CI;
3713   Instruction *Next = CI.getNextNode();
3714 
3715   // Handle the optional bitcast.
3716   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3717     Check(BI->getOperand(0) == RetVal,
3718           "bitcast following musttail call must use the call", BI);
3719     RetVal = BI;
3720     Next = BI->getNextNode();
3721   }
3722 
3723   // Check the return.
3724   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3725   Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3726   Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3727             isa<UndefValue>(Ret->getReturnValue()),
3728         "musttail call result must be returned", Ret);
3729 
3730   AttributeList CallerAttrs = F->getAttributes();
3731   AttributeList CalleeAttrs = CI.getAttributes();
3732   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3733       CI.getCallingConv() == CallingConv::Tail) {
3734     StringRef CCName =
3735         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3736 
3737     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3738     //   are allowed in swifttailcc call
3739     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3740       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3741       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3742       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3743     }
3744     for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3745       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3746       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3747       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3748     }
3749     // - Varargs functions are not allowed
3750     Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3751                                      " tail call for varargs function");
3752     return;
3753   }
3754 
3755   // - The caller and callee prototypes must match.  Pointer types of
3756   //   parameters or return types may differ in pointee type, but not
3757   //   address space.
3758   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3759     Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3760           "cannot guarantee tail call due to mismatched parameter counts", &CI);
3761     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3762       Check(
3763           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3764           "cannot guarantee tail call due to mismatched parameter types", &CI);
3765     }
3766   }
3767 
3768   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3769   //   returned, preallocated, and inalloca, must match.
3770   for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3771     AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3772     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3773     Check(CallerABIAttrs == CalleeABIAttrs,
3774           "cannot guarantee tail call due to mismatched ABI impacting "
3775           "function attributes",
3776           &CI, CI.getOperand(I));
3777   }
3778 }
3779 
3780 void Verifier::visitCallInst(CallInst &CI) {
3781   visitCallBase(CI);
3782 
3783   if (CI.isMustTailCall())
3784     verifyMustTailCall(CI);
3785 }
3786 
3787 void Verifier::visitInvokeInst(InvokeInst &II) {
3788   visitCallBase(II);
3789 
3790   // Verify that the first non-PHI instruction of the unwind destination is an
3791   // exception handling instruction.
3792   Check(
3793       II.getUnwindDest()->isEHPad(),
3794       "The unwind destination does not have an exception handling instruction!",
3795       &II);
3796 
3797   visitTerminator(II);
3798 }
3799 
3800 /// visitUnaryOperator - Check the argument to the unary operator.
3801 ///
3802 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3803   Check(U.getType() == U.getOperand(0)->getType(),
3804         "Unary operators must have same type for"
3805         "operands and result!",
3806         &U);
3807 
3808   switch (U.getOpcode()) {
3809   // Check that floating-point arithmetic operators are only used with
3810   // floating-point operands.
3811   case Instruction::FNeg:
3812     Check(U.getType()->isFPOrFPVectorTy(),
3813           "FNeg operator only works with float types!", &U);
3814     break;
3815   default:
3816     llvm_unreachable("Unknown UnaryOperator opcode!");
3817   }
3818 
3819   visitInstruction(U);
3820 }
3821 
3822 /// visitBinaryOperator - Check that both arguments to the binary operator are
3823 /// of the same type!
3824 ///
3825 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3826   Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3827         "Both operands to a binary operator are not of the same type!", &B);
3828 
3829   switch (B.getOpcode()) {
3830   // Check that integer arithmetic operators are only used with
3831   // integral operands.
3832   case Instruction::Add:
3833   case Instruction::Sub:
3834   case Instruction::Mul:
3835   case Instruction::SDiv:
3836   case Instruction::UDiv:
3837   case Instruction::SRem:
3838   case Instruction::URem:
3839     Check(B.getType()->isIntOrIntVectorTy(),
3840           "Integer arithmetic operators only work with integral types!", &B);
3841     Check(B.getType() == B.getOperand(0)->getType(),
3842           "Integer arithmetic operators must have same type "
3843           "for operands and result!",
3844           &B);
3845     break;
3846   // Check that floating-point arithmetic operators are only used with
3847   // floating-point operands.
3848   case Instruction::FAdd:
3849   case Instruction::FSub:
3850   case Instruction::FMul:
3851   case Instruction::FDiv:
3852   case Instruction::FRem:
3853     Check(B.getType()->isFPOrFPVectorTy(),
3854           "Floating-point arithmetic operators only work with "
3855           "floating-point types!",
3856           &B);
3857     Check(B.getType() == B.getOperand(0)->getType(),
3858           "Floating-point arithmetic operators must have same type "
3859           "for operands and result!",
3860           &B);
3861     break;
3862   // Check that logical operators are only used with integral operands.
3863   case Instruction::And:
3864   case Instruction::Or:
3865   case Instruction::Xor:
3866     Check(B.getType()->isIntOrIntVectorTy(),
3867           "Logical operators only work with integral types!", &B);
3868     Check(B.getType() == B.getOperand(0)->getType(),
3869           "Logical operators must have same type for operands and result!", &B);
3870     break;
3871   case Instruction::Shl:
3872   case Instruction::LShr:
3873   case Instruction::AShr:
3874     Check(B.getType()->isIntOrIntVectorTy(),
3875           "Shifts only work with integral types!", &B);
3876     Check(B.getType() == B.getOperand(0)->getType(),
3877           "Shift return type must be same as operands!", &B);
3878     break;
3879   default:
3880     llvm_unreachable("Unknown BinaryOperator opcode!");
3881   }
3882 
3883   visitInstruction(B);
3884 }
3885 
3886 void Verifier::visitICmpInst(ICmpInst &IC) {
3887   // Check that the operands are the same type
3888   Type *Op0Ty = IC.getOperand(0)->getType();
3889   Type *Op1Ty = IC.getOperand(1)->getType();
3890   Check(Op0Ty == Op1Ty,
3891         "Both operands to ICmp instruction are not of the same type!", &IC);
3892   // Check that the operands are the right type
3893   Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3894         "Invalid operand types for ICmp instruction", &IC);
3895   // Check that the predicate is valid.
3896   Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
3897 
3898   visitInstruction(IC);
3899 }
3900 
3901 void Verifier::visitFCmpInst(FCmpInst &FC) {
3902   // Check that the operands are the same type
3903   Type *Op0Ty = FC.getOperand(0)->getType();
3904   Type *Op1Ty = FC.getOperand(1)->getType();
3905   Check(Op0Ty == Op1Ty,
3906         "Both operands to FCmp instruction are not of the same type!", &FC);
3907   // Check that the operands are the right type
3908   Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
3909         &FC);
3910   // Check that the predicate is valid.
3911   Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
3912 
3913   visitInstruction(FC);
3914 }
3915 
3916 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3917   Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3918         "Invalid extractelement operands!", &EI);
3919   visitInstruction(EI);
3920 }
3921 
3922 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3923   Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3924                                            IE.getOperand(2)),
3925         "Invalid insertelement operands!", &IE);
3926   visitInstruction(IE);
3927 }
3928 
3929 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3930   Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3931                                            SV.getShuffleMask()),
3932         "Invalid shufflevector operands!", &SV);
3933   visitInstruction(SV);
3934 }
3935 
3936 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3937   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3938 
3939   Check(isa<PointerType>(TargetTy),
3940         "GEP base pointer is not a vector or a vector of pointers", &GEP);
3941   Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3942 
3943   if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) {
3944     SmallPtrSet<Type *, 4> Visited;
3945     Check(!STy->containsScalableVectorType(&Visited),
3946           "getelementptr cannot target structure that contains scalable vector"
3947           "type",
3948           &GEP);
3949   }
3950 
3951   SmallVector<Value *, 16> Idxs(GEP.indices());
3952   Check(
3953       all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
3954       "GEP indexes must be integers", &GEP);
3955   Type *ElTy =
3956       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3957   Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3958 
3959   Check(GEP.getType()->isPtrOrPtrVectorTy() &&
3960             GEP.getResultElementType() == ElTy,
3961         "GEP is not of right type for indices!", &GEP, ElTy);
3962 
3963   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3964     // Additional checks for vector GEPs.
3965     ElementCount GEPWidth = GEPVTy->getElementCount();
3966     if (GEP.getPointerOperandType()->isVectorTy())
3967       Check(
3968           GEPWidth ==
3969               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3970           "Vector GEP result width doesn't match operand's", &GEP);
3971     for (Value *Idx : Idxs) {
3972       Type *IndexTy = Idx->getType();
3973       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3974         ElementCount IndexWidth = IndexVTy->getElementCount();
3975         Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3976       }
3977       Check(IndexTy->isIntOrIntVectorTy(),
3978             "All GEP indices should be of integer type");
3979     }
3980   }
3981 
3982   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3983     Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
3984           "GEP address space doesn't match type", &GEP);
3985   }
3986 
3987   visitInstruction(GEP);
3988 }
3989 
3990 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3991   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3992 }
3993 
3994 /// Verify !range and !absolute_symbol metadata. These have the same
3995 /// restrictions, except !absolute_symbol allows the full set.
3996 void Verifier::verifyRangeMetadata(const Value &I, const MDNode *Range,
3997                                    Type *Ty, bool IsAbsoluteSymbol) {
3998   unsigned NumOperands = Range->getNumOperands();
3999   Check(NumOperands % 2 == 0, "Unfinished range!", Range);
4000   unsigned NumRanges = NumOperands / 2;
4001   Check(NumRanges >= 1, "It should have at least one range!", Range);
4002 
4003   ConstantRange LastRange(1, true); // Dummy initial value
4004   for (unsigned i = 0; i < NumRanges; ++i) {
4005     ConstantInt *Low =
4006         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
4007     Check(Low, "The lower limit must be an integer!", Low);
4008     ConstantInt *High =
4009         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
4010     Check(High, "The upper limit must be an integer!", High);
4011     Check(High->getType() == Low->getType() &&
4012           High->getType() == Ty->getScalarType(),
4013           "Range types must match instruction type!", &I);
4014 
4015     APInt HighV = High->getValue();
4016     APInt LowV = Low->getValue();
4017 
4018     // ConstantRange asserts if the ranges are the same except for the min/max
4019     // value. Leave the cases it tolerates for the empty range error below.
4020     Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
4021           "The upper and lower limits cannot be the same value", &I);
4022 
4023     ConstantRange CurRange(LowV, HighV);
4024     Check(!CurRange.isEmptySet() && (IsAbsoluteSymbol || !CurRange.isFullSet()),
4025           "Range must not be empty!", Range);
4026     if (i != 0) {
4027       Check(CurRange.intersectWith(LastRange).isEmptySet(),
4028             "Intervals are overlapping", Range);
4029       Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
4030             Range);
4031       Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
4032             Range);
4033     }
4034     LastRange = ConstantRange(LowV, HighV);
4035   }
4036   if (NumRanges > 2) {
4037     APInt FirstLow =
4038         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
4039     APInt FirstHigh =
4040         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
4041     ConstantRange FirstRange(FirstLow, FirstHigh);
4042     Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4043           "Intervals are overlapping", Range);
4044     Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
4045           Range);
4046   }
4047 }
4048 
4049 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
4050   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
4051          "precondition violation");
4052   verifyRangeMetadata(I, Range, Ty, false);
4053 }
4054 
4055 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
4056   unsigned Size = DL.getTypeSizeInBits(Ty);
4057   Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
4058   Check(!(Size & (Size - 1)),
4059         "atomic memory access' operand must have a power-of-two size", Ty, I);
4060 }
4061 
4062 void Verifier::visitLoadInst(LoadInst &LI) {
4063   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
4064   Check(PTy, "Load operand must be a pointer.", &LI);
4065   Type *ElTy = LI.getType();
4066   if (MaybeAlign A = LI.getAlign()) {
4067     Check(A->value() <= Value::MaximumAlignment,
4068           "huge alignment values are unsupported", &LI);
4069   }
4070   Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
4071   if (LI.isAtomic()) {
4072     Check(LI.getOrdering() != AtomicOrdering::Release &&
4073               LI.getOrdering() != AtomicOrdering::AcquireRelease,
4074           "Load cannot have Release ordering", &LI);
4075     Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4076           "atomic load operand must have integer, pointer, or floating point "
4077           "type!",
4078           ElTy, &LI);
4079     checkAtomicMemAccessSize(ElTy, &LI);
4080   } else {
4081     Check(LI.getSyncScopeID() == SyncScope::System,
4082           "Non-atomic load cannot have SynchronizationScope specified", &LI);
4083   }
4084 
4085   visitInstruction(LI);
4086 }
4087 
4088 void Verifier::visitStoreInst(StoreInst &SI) {
4089   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
4090   Check(PTy, "Store operand must be a pointer.", &SI);
4091   Type *ElTy = SI.getOperand(0)->getType();
4092   if (MaybeAlign A = SI.getAlign()) {
4093     Check(A->value() <= Value::MaximumAlignment,
4094           "huge alignment values are unsupported", &SI);
4095   }
4096   Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
4097   if (SI.isAtomic()) {
4098     Check(SI.getOrdering() != AtomicOrdering::Acquire &&
4099               SI.getOrdering() != AtomicOrdering::AcquireRelease,
4100           "Store cannot have Acquire ordering", &SI);
4101     Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4102           "atomic store operand must have integer, pointer, or floating point "
4103           "type!",
4104           ElTy, &SI);
4105     checkAtomicMemAccessSize(ElTy, &SI);
4106   } else {
4107     Check(SI.getSyncScopeID() == SyncScope::System,
4108           "Non-atomic store cannot have SynchronizationScope specified", &SI);
4109   }
4110   visitInstruction(SI);
4111 }
4112 
4113 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
4114 void Verifier::verifySwiftErrorCall(CallBase &Call,
4115                                     const Value *SwiftErrorVal) {
4116   for (const auto &I : llvm::enumerate(Call.args())) {
4117     if (I.value() == SwiftErrorVal) {
4118       Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
4119             "swifterror value when used in a callsite should be marked "
4120             "with swifterror attribute",
4121             SwiftErrorVal, Call);
4122     }
4123   }
4124 }
4125 
4126 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
4127   // Check that swifterror value is only used by loads, stores, or as
4128   // a swifterror argument.
4129   for (const User *U : SwiftErrorVal->users()) {
4130     Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4131               isa<InvokeInst>(U),
4132           "swifterror value can only be loaded and stored from, or "
4133           "as a swifterror argument!",
4134           SwiftErrorVal, U);
4135     // If it is used by a store, check it is the second operand.
4136     if (auto StoreI = dyn_cast<StoreInst>(U))
4137       Check(StoreI->getOperand(1) == SwiftErrorVal,
4138             "swifterror value should be the second operand when used "
4139             "by stores",
4140             SwiftErrorVal, U);
4141     if (auto *Call = dyn_cast<CallBase>(U))
4142       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
4143   }
4144 }
4145 
4146 void Verifier::visitAllocaInst(AllocaInst &AI) {
4147   SmallPtrSet<Type*, 4> Visited;
4148   Check(AI.getAllocatedType()->isSized(&Visited),
4149         "Cannot allocate unsized type", &AI);
4150   Check(AI.getArraySize()->getType()->isIntegerTy(),
4151         "Alloca array size must have integer type", &AI);
4152   if (MaybeAlign A = AI.getAlign()) {
4153     Check(A->value() <= Value::MaximumAlignment,
4154           "huge alignment values are unsupported", &AI);
4155   }
4156 
4157   if (AI.isSwiftError()) {
4158     Check(AI.getAllocatedType()->isPointerTy(),
4159           "swifterror alloca must have pointer type", &AI);
4160     Check(!AI.isArrayAllocation(),
4161           "swifterror alloca must not be array allocation", &AI);
4162     verifySwiftErrorValue(&AI);
4163   }
4164 
4165   visitInstruction(AI);
4166 }
4167 
4168 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4169   Type *ElTy = CXI.getOperand(1)->getType();
4170   Check(ElTy->isIntOrPtrTy(),
4171         "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4172   checkAtomicMemAccessSize(ElTy, &CXI);
4173   visitInstruction(CXI);
4174 }
4175 
4176 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4177   Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4178         "atomicrmw instructions cannot be unordered.", &RMWI);
4179   auto Op = RMWI.getOperation();
4180   Type *ElTy = RMWI.getOperand(1)->getType();
4181   if (Op == AtomicRMWInst::Xchg) {
4182     Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4183               ElTy->isPointerTy(),
4184           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4185               " operand must have integer or floating point type!",
4186           &RMWI, ElTy);
4187   } else if (AtomicRMWInst::isFPOperation(Op)) {
4188     Check(ElTy->isFloatingPointTy(),
4189           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4190               " operand must have floating point type!",
4191           &RMWI, ElTy);
4192   } else {
4193     Check(ElTy->isIntegerTy(),
4194           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4195               " operand must have integer type!",
4196           &RMWI, ElTy);
4197   }
4198   checkAtomicMemAccessSize(ElTy, &RMWI);
4199   Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4200         "Invalid binary operation!", &RMWI);
4201   visitInstruction(RMWI);
4202 }
4203 
4204 void Verifier::visitFenceInst(FenceInst &FI) {
4205   const AtomicOrdering Ordering = FI.getOrdering();
4206   Check(Ordering == AtomicOrdering::Acquire ||
4207             Ordering == AtomicOrdering::Release ||
4208             Ordering == AtomicOrdering::AcquireRelease ||
4209             Ordering == AtomicOrdering::SequentiallyConsistent,
4210         "fence instructions may only have acquire, release, acq_rel, or "
4211         "seq_cst ordering.",
4212         &FI);
4213   visitInstruction(FI);
4214 }
4215 
4216 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4217   Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4218                                          EVI.getIndices()) == EVI.getType(),
4219         "Invalid ExtractValueInst operands!", &EVI);
4220 
4221   visitInstruction(EVI);
4222 }
4223 
4224 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4225   Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4226                                          IVI.getIndices()) ==
4227             IVI.getOperand(1)->getType(),
4228         "Invalid InsertValueInst operands!", &IVI);
4229 
4230   visitInstruction(IVI);
4231 }
4232 
4233 static Value *getParentPad(Value *EHPad) {
4234   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4235     return FPI->getParentPad();
4236 
4237   return cast<CatchSwitchInst>(EHPad)->getParentPad();
4238 }
4239 
4240 void Verifier::visitEHPadPredecessors(Instruction &I) {
4241   assert(I.isEHPad());
4242 
4243   BasicBlock *BB = I.getParent();
4244   Function *F = BB->getParent();
4245 
4246   Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4247 
4248   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4249     // The landingpad instruction defines its parent as a landing pad block. The
4250     // landing pad block may be branched to only by the unwind edge of an
4251     // invoke.
4252     for (BasicBlock *PredBB : predecessors(BB)) {
4253       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4254       Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4255             "Block containing LandingPadInst must be jumped to "
4256             "only by the unwind edge of an invoke.",
4257             LPI);
4258     }
4259     return;
4260   }
4261   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4262     if (!pred_empty(BB))
4263       Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4264             "Block containg CatchPadInst must be jumped to "
4265             "only by its catchswitch.",
4266             CPI);
4267     Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4268           "Catchswitch cannot unwind to one of its catchpads",
4269           CPI->getCatchSwitch(), CPI);
4270     return;
4271   }
4272 
4273   // Verify that each pred has a legal terminator with a legal to/from EH
4274   // pad relationship.
4275   Instruction *ToPad = &I;
4276   Value *ToPadParent = getParentPad(ToPad);
4277   for (BasicBlock *PredBB : predecessors(BB)) {
4278     Instruction *TI = PredBB->getTerminator();
4279     Value *FromPad;
4280     if (auto *II = dyn_cast<InvokeInst>(TI)) {
4281       Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4282             "EH pad must be jumped to via an unwind edge", ToPad, II);
4283       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4284         FromPad = Bundle->Inputs[0];
4285       else
4286         FromPad = ConstantTokenNone::get(II->getContext());
4287     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4288       FromPad = CRI->getOperand(0);
4289       Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4290     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4291       FromPad = CSI;
4292     } else {
4293       Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4294     }
4295 
4296     // The edge may exit from zero or more nested pads.
4297     SmallSet<Value *, 8> Seen;
4298     for (;; FromPad = getParentPad(FromPad)) {
4299       Check(FromPad != ToPad,
4300             "EH pad cannot handle exceptions raised within it", FromPad, TI);
4301       if (FromPad == ToPadParent) {
4302         // This is a legal unwind edge.
4303         break;
4304       }
4305       Check(!isa<ConstantTokenNone>(FromPad),
4306             "A single unwind edge may only enter one EH pad", TI);
4307       Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4308             FromPad);
4309 
4310       // This will be diagnosed on the corresponding instruction already. We
4311       // need the extra check here to make sure getParentPad() works.
4312       Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4313             "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4314     }
4315   }
4316 }
4317 
4318 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4319   // The landingpad instruction is ill-formed if it doesn't have any clauses and
4320   // isn't a cleanup.
4321   Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4322         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4323 
4324   visitEHPadPredecessors(LPI);
4325 
4326   if (!LandingPadResultTy)
4327     LandingPadResultTy = LPI.getType();
4328   else
4329     Check(LandingPadResultTy == LPI.getType(),
4330           "The landingpad instruction should have a consistent result type "
4331           "inside a function.",
4332           &LPI);
4333 
4334   Function *F = LPI.getParent()->getParent();
4335   Check(F->hasPersonalityFn(),
4336         "LandingPadInst needs to be in a function with a personality.", &LPI);
4337 
4338   // The landingpad instruction must be the first non-PHI instruction in the
4339   // block.
4340   Check(LPI.getParent()->getLandingPadInst() == &LPI,
4341         "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4342 
4343   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4344     Constant *Clause = LPI.getClause(i);
4345     if (LPI.isCatch(i)) {
4346       Check(isa<PointerType>(Clause->getType()),
4347             "Catch operand does not have pointer type!", &LPI);
4348     } else {
4349       Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4350       Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4351             "Filter operand is not an array of constants!", &LPI);
4352     }
4353   }
4354 
4355   visitInstruction(LPI);
4356 }
4357 
4358 void Verifier::visitResumeInst(ResumeInst &RI) {
4359   Check(RI.getFunction()->hasPersonalityFn(),
4360         "ResumeInst needs to be in a function with a personality.", &RI);
4361 
4362   if (!LandingPadResultTy)
4363     LandingPadResultTy = RI.getValue()->getType();
4364   else
4365     Check(LandingPadResultTy == RI.getValue()->getType(),
4366           "The resume instruction should have a consistent result type "
4367           "inside a function.",
4368           &RI);
4369 
4370   visitTerminator(RI);
4371 }
4372 
4373 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4374   BasicBlock *BB = CPI.getParent();
4375 
4376   Function *F = BB->getParent();
4377   Check(F->hasPersonalityFn(),
4378         "CatchPadInst needs to be in a function with a personality.", &CPI);
4379 
4380   Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4381         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4382         CPI.getParentPad());
4383 
4384   // The catchpad instruction must be the first non-PHI instruction in the
4385   // block.
4386   Check(BB->getFirstNonPHI() == &CPI,
4387         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4388 
4389   visitEHPadPredecessors(CPI);
4390   visitFuncletPadInst(CPI);
4391 }
4392 
4393 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4394   Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4395         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4396         CatchReturn.getOperand(0));
4397 
4398   visitTerminator(CatchReturn);
4399 }
4400 
4401 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4402   BasicBlock *BB = CPI.getParent();
4403 
4404   Function *F = BB->getParent();
4405   Check(F->hasPersonalityFn(),
4406         "CleanupPadInst needs to be in a function with a personality.", &CPI);
4407 
4408   // The cleanuppad instruction must be the first non-PHI instruction in the
4409   // block.
4410   Check(BB->getFirstNonPHI() == &CPI,
4411         "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4412 
4413   auto *ParentPad = CPI.getParentPad();
4414   Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4415         "CleanupPadInst has an invalid parent.", &CPI);
4416 
4417   visitEHPadPredecessors(CPI);
4418   visitFuncletPadInst(CPI);
4419 }
4420 
4421 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4422   User *FirstUser = nullptr;
4423   Value *FirstUnwindPad = nullptr;
4424   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4425   SmallSet<FuncletPadInst *, 8> Seen;
4426 
4427   while (!Worklist.empty()) {
4428     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4429     Check(Seen.insert(CurrentPad).second,
4430           "FuncletPadInst must not be nested within itself", CurrentPad);
4431     Value *UnresolvedAncestorPad = nullptr;
4432     for (User *U : CurrentPad->users()) {
4433       BasicBlock *UnwindDest;
4434       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4435         UnwindDest = CRI->getUnwindDest();
4436       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4437         // We allow catchswitch unwind to caller to nest
4438         // within an outer pad that unwinds somewhere else,
4439         // because catchswitch doesn't have a nounwind variant.
4440         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4441         if (CSI->unwindsToCaller())
4442           continue;
4443         UnwindDest = CSI->getUnwindDest();
4444       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4445         UnwindDest = II->getUnwindDest();
4446       } else if (isa<CallInst>(U)) {
4447         // Calls which don't unwind may be found inside funclet
4448         // pads that unwind somewhere else.  We don't *require*
4449         // such calls to be annotated nounwind.
4450         continue;
4451       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4452         // The unwind dest for a cleanup can only be found by
4453         // recursive search.  Add it to the worklist, and we'll
4454         // search for its first use that determines where it unwinds.
4455         Worklist.push_back(CPI);
4456         continue;
4457       } else {
4458         Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4459         continue;
4460       }
4461 
4462       Value *UnwindPad;
4463       bool ExitsFPI;
4464       if (UnwindDest) {
4465         UnwindPad = UnwindDest->getFirstNonPHI();
4466         if (!cast<Instruction>(UnwindPad)->isEHPad())
4467           continue;
4468         Value *UnwindParent = getParentPad(UnwindPad);
4469         // Ignore unwind edges that don't exit CurrentPad.
4470         if (UnwindParent == CurrentPad)
4471           continue;
4472         // Determine whether the original funclet pad is exited,
4473         // and if we are scanning nested pads determine how many
4474         // of them are exited so we can stop searching their
4475         // children.
4476         Value *ExitedPad = CurrentPad;
4477         ExitsFPI = false;
4478         do {
4479           if (ExitedPad == &FPI) {
4480             ExitsFPI = true;
4481             // Now we can resolve any ancestors of CurrentPad up to
4482             // FPI, but not including FPI since we need to make sure
4483             // to check all direct users of FPI for consistency.
4484             UnresolvedAncestorPad = &FPI;
4485             break;
4486           }
4487           Value *ExitedParent = getParentPad(ExitedPad);
4488           if (ExitedParent == UnwindParent) {
4489             // ExitedPad is the ancestor-most pad which this unwind
4490             // edge exits, so we can resolve up to it, meaning that
4491             // ExitedParent is the first ancestor still unresolved.
4492             UnresolvedAncestorPad = ExitedParent;
4493             break;
4494           }
4495           ExitedPad = ExitedParent;
4496         } while (!isa<ConstantTokenNone>(ExitedPad));
4497       } else {
4498         // Unwinding to caller exits all pads.
4499         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4500         ExitsFPI = true;
4501         UnresolvedAncestorPad = &FPI;
4502       }
4503 
4504       if (ExitsFPI) {
4505         // This unwind edge exits FPI.  Make sure it agrees with other
4506         // such edges.
4507         if (FirstUser) {
4508           Check(UnwindPad == FirstUnwindPad,
4509                 "Unwind edges out of a funclet "
4510                 "pad must have the same unwind "
4511                 "dest",
4512                 &FPI, U, FirstUser);
4513         } else {
4514           FirstUser = U;
4515           FirstUnwindPad = UnwindPad;
4516           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4517           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4518               getParentPad(UnwindPad) == getParentPad(&FPI))
4519             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4520         }
4521       }
4522       // Make sure we visit all uses of FPI, but for nested pads stop as
4523       // soon as we know where they unwind to.
4524       if (CurrentPad != &FPI)
4525         break;
4526     }
4527     if (UnresolvedAncestorPad) {
4528       if (CurrentPad == UnresolvedAncestorPad) {
4529         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4530         // we've found an unwind edge that exits it, because we need to verify
4531         // all direct uses of FPI.
4532         assert(CurrentPad == &FPI);
4533         continue;
4534       }
4535       // Pop off the worklist any nested pads that we've found an unwind
4536       // destination for.  The pads on the worklist are the uncles,
4537       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4538       // for all ancestors of CurrentPad up to but not including
4539       // UnresolvedAncestorPad.
4540       Value *ResolvedPad = CurrentPad;
4541       while (!Worklist.empty()) {
4542         Value *UnclePad = Worklist.back();
4543         Value *AncestorPad = getParentPad(UnclePad);
4544         // Walk ResolvedPad up the ancestor list until we either find the
4545         // uncle's parent or the last resolved ancestor.
4546         while (ResolvedPad != AncestorPad) {
4547           Value *ResolvedParent = getParentPad(ResolvedPad);
4548           if (ResolvedParent == UnresolvedAncestorPad) {
4549             break;
4550           }
4551           ResolvedPad = ResolvedParent;
4552         }
4553         // If the resolved ancestor search didn't find the uncle's parent,
4554         // then the uncle is not yet resolved.
4555         if (ResolvedPad != AncestorPad)
4556           break;
4557         // This uncle is resolved, so pop it from the worklist.
4558         Worklist.pop_back();
4559       }
4560     }
4561   }
4562 
4563   if (FirstUnwindPad) {
4564     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4565       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4566       Value *SwitchUnwindPad;
4567       if (SwitchUnwindDest)
4568         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4569       else
4570         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4571       Check(SwitchUnwindPad == FirstUnwindPad,
4572             "Unwind edges out of a catch must have the same unwind dest as "
4573             "the parent catchswitch",
4574             &FPI, FirstUser, CatchSwitch);
4575     }
4576   }
4577 
4578   visitInstruction(FPI);
4579 }
4580 
4581 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4582   BasicBlock *BB = CatchSwitch.getParent();
4583 
4584   Function *F = BB->getParent();
4585   Check(F->hasPersonalityFn(),
4586         "CatchSwitchInst needs to be in a function with a personality.",
4587         &CatchSwitch);
4588 
4589   // The catchswitch instruction must be the first non-PHI instruction in the
4590   // block.
4591   Check(BB->getFirstNonPHI() == &CatchSwitch,
4592         "CatchSwitchInst not the first non-PHI instruction in the block.",
4593         &CatchSwitch);
4594 
4595   auto *ParentPad = CatchSwitch.getParentPad();
4596   Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4597         "CatchSwitchInst has an invalid parent.", ParentPad);
4598 
4599   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4600     Instruction *I = UnwindDest->getFirstNonPHI();
4601     Check(I->isEHPad() && !isa<LandingPadInst>(I),
4602           "CatchSwitchInst must unwind to an EH block which is not a "
4603           "landingpad.",
4604           &CatchSwitch);
4605 
4606     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4607     if (getParentPad(I) == ParentPad)
4608       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4609   }
4610 
4611   Check(CatchSwitch.getNumHandlers() != 0,
4612         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4613 
4614   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4615     Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4616           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4617   }
4618 
4619   visitEHPadPredecessors(CatchSwitch);
4620   visitTerminator(CatchSwitch);
4621 }
4622 
4623 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4624   Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4625         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4626         CRI.getOperand(0));
4627 
4628   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4629     Instruction *I = UnwindDest->getFirstNonPHI();
4630     Check(I->isEHPad() && !isa<LandingPadInst>(I),
4631           "CleanupReturnInst must unwind to an EH block which is not a "
4632           "landingpad.",
4633           &CRI);
4634   }
4635 
4636   visitTerminator(CRI);
4637 }
4638 
4639 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4640   Instruction *Op = cast<Instruction>(I.getOperand(i));
4641   // If the we have an invalid invoke, don't try to compute the dominance.
4642   // We already reject it in the invoke specific checks and the dominance
4643   // computation doesn't handle multiple edges.
4644   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4645     if (II->getNormalDest() == II->getUnwindDest())
4646       return;
4647   }
4648 
4649   // Quick check whether the def has already been encountered in the same block.
4650   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4651   // uses are defined to happen on the incoming edge, not at the instruction.
4652   //
4653   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4654   // wrapping an SSA value, assert that we've already encountered it.  See
4655   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4656   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4657     return;
4658 
4659   const Use &U = I.getOperandUse(i);
4660   Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4661 }
4662 
4663 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4664   Check(I.getType()->isPointerTy(),
4665         "dereferenceable, dereferenceable_or_null "
4666         "apply only to pointer types",
4667         &I);
4668   Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4669         "dereferenceable, dereferenceable_or_null apply only to load"
4670         " and inttoptr instructions, use attributes for calls or invokes",
4671         &I);
4672   Check(MD->getNumOperands() == 1,
4673         "dereferenceable, dereferenceable_or_null "
4674         "take one operand!",
4675         &I);
4676   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4677   Check(CI && CI->getType()->isIntegerTy(64),
4678         "dereferenceable, "
4679         "dereferenceable_or_null metadata value must be an i64!",
4680         &I);
4681 }
4682 
4683 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4684   Check(MD->getNumOperands() >= 2,
4685         "!prof annotations should have no less than 2 operands", MD);
4686 
4687   // Check first operand.
4688   Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4689   Check(isa<MDString>(MD->getOperand(0)),
4690         "expected string with name of the !prof annotation", MD);
4691   MDString *MDS = cast<MDString>(MD->getOperand(0));
4692   StringRef ProfName = MDS->getString();
4693 
4694   // Check consistency of !prof branch_weights metadata.
4695   if (ProfName.equals("branch_weights")) {
4696     if (isa<InvokeInst>(&I)) {
4697       Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4698             "Wrong number of InvokeInst branch_weights operands", MD);
4699     } else {
4700       unsigned ExpectedNumOperands = 0;
4701       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4702         ExpectedNumOperands = BI->getNumSuccessors();
4703       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4704         ExpectedNumOperands = SI->getNumSuccessors();
4705       else if (isa<CallInst>(&I))
4706         ExpectedNumOperands = 1;
4707       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4708         ExpectedNumOperands = IBI->getNumDestinations();
4709       else if (isa<SelectInst>(&I))
4710         ExpectedNumOperands = 2;
4711       else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
4712         ExpectedNumOperands = CI->getNumSuccessors();
4713       else
4714         CheckFailed("!prof branch_weights are not allowed for this instruction",
4715                     MD);
4716 
4717       Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
4718             "Wrong number of operands", MD);
4719     }
4720     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4721       auto &MDO = MD->getOperand(i);
4722       Check(MDO, "second operand should not be null", MD);
4723       Check(mdconst::dyn_extract<ConstantInt>(MDO),
4724             "!prof brunch_weights operand is not a const int");
4725     }
4726   }
4727 }
4728 
4729 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4730   assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4731   bool ExpectedInstTy =
4732       isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
4733   CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4734           I, MD);
4735   // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4736   // only be found as DbgAssignIntrinsic operands.
4737   if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4738     for (auto *User : AsValue->users()) {
4739       CheckDI(isa<DbgAssignIntrinsic>(User),
4740               "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4741               MD, User);
4742       // All of the dbg.assign intrinsics should be in the same function as I.
4743       if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
4744         CheckDI(DAI->getFunction() == I.getFunction(),
4745                 "dbg.assign not in same function as inst", DAI, &I);
4746     }
4747   }
4748   for (DPValue *DPV : cast<DIAssignID>(MD)->getAllDPValueUsers()) {
4749     CheckDI(DPV->isDbgAssign(),
4750             "!DIAssignID should only be used by Assign DPVs.", MD, DPV);
4751     CheckDI(DPV->getFunction() == I.getFunction(),
4752             "DPVAssign not in same function as inst", DPV, &I);
4753   }
4754 }
4755 
4756 void Verifier::visitCallStackMetadata(MDNode *MD) {
4757   // Call stack metadata should consist of a list of at least 1 constant int
4758   // (representing a hash of the location).
4759   Check(MD->getNumOperands() >= 1,
4760         "call stack metadata should have at least 1 operand", MD);
4761 
4762   for (const auto &Op : MD->operands())
4763     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4764           "call stack metadata operand should be constant integer", Op);
4765 }
4766 
4767 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4768   Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4769   Check(MD->getNumOperands() >= 1,
4770         "!memprof annotations should have at least 1 metadata operand "
4771         "(MemInfoBlock)",
4772         MD);
4773 
4774   // Check each MIB
4775   for (auto &MIBOp : MD->operands()) {
4776     MDNode *MIB = dyn_cast<MDNode>(MIBOp);
4777     // The first operand of an MIB should be the call stack metadata.
4778     // There rest of the operands should be MDString tags, and there should be
4779     // at least one.
4780     Check(MIB->getNumOperands() >= 2,
4781           "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
4782 
4783     // Check call stack metadata (first operand).
4784     Check(MIB->getOperand(0) != nullptr,
4785           "!memprof MemInfoBlock first operand should not be null", MIB);
4786     Check(isa<MDNode>(MIB->getOperand(0)),
4787           "!memprof MemInfoBlock first operand should be an MDNode", MIB);
4788     MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
4789     visitCallStackMetadata(StackMD);
4790 
4791     // Check that remaining operands are MDString.
4792     Check(llvm::all_of(llvm::drop_begin(MIB->operands()),
4793                        [](const MDOperand &Op) { return isa<MDString>(Op); }),
4794           "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB);
4795   }
4796 }
4797 
4798 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
4799   Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
4800   // Verify the partial callstack annotated from memprof profiles. This callsite
4801   // is a part of a profiled allocation callstack.
4802   visitCallStackMetadata(MD);
4803 }
4804 
4805 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4806   Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4807   Check(Annotation->getNumOperands() >= 1,
4808         "annotation must have at least one operand");
4809   for (const MDOperand &Op : Annotation->operands()) {
4810     bool TupleOfStrings =
4811         isa<MDTuple>(Op.get()) &&
4812         all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) {
4813           return isa<MDString>(Annotation.get());
4814         });
4815     Check(isa<MDString>(Op.get()) || TupleOfStrings,
4816           "operands must be a string or a tuple of strings");
4817   }
4818 }
4819 
4820 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4821   unsigned NumOps = MD->getNumOperands();
4822   Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4823         MD);
4824   Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4825         "first scope operand must be self-referential or string", MD);
4826   if (NumOps == 3)
4827     Check(isa<MDString>(MD->getOperand(2)),
4828           "third scope operand must be string (if used)", MD);
4829 
4830   MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4831   Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4832 
4833   unsigned NumDomainOps = Domain->getNumOperands();
4834   Check(NumDomainOps >= 1 && NumDomainOps <= 2,
4835         "domain must have one or two operands", Domain);
4836   Check(Domain->getOperand(0).get() == Domain ||
4837             isa<MDString>(Domain->getOperand(0)),
4838         "first domain operand must be self-referential or string", Domain);
4839   if (NumDomainOps == 2)
4840     Check(isa<MDString>(Domain->getOperand(1)),
4841           "second domain operand must be string (if used)", Domain);
4842 }
4843 
4844 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4845   for (const MDOperand &Op : MD->operands()) {
4846     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4847     Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4848     visitAliasScopeMetadata(OpMD);
4849   }
4850 }
4851 
4852 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4853   auto IsValidAccessScope = [](const MDNode *MD) {
4854     return MD->getNumOperands() == 0 && MD->isDistinct();
4855   };
4856 
4857   // It must be either an access scope itself...
4858   if (IsValidAccessScope(MD))
4859     return;
4860 
4861   // ...or a list of access scopes.
4862   for (const MDOperand &Op : MD->operands()) {
4863     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4864     Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4865     Check(IsValidAccessScope(OpMD),
4866           "Access scope list contains invalid access scope", MD);
4867   }
4868 }
4869 
4870 /// verifyInstruction - Verify that an instruction is well formed.
4871 ///
4872 void Verifier::visitInstruction(Instruction &I) {
4873   BasicBlock *BB = I.getParent();
4874   Check(BB, "Instruction not embedded in basic block!", &I);
4875 
4876   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4877     for (User *U : I.users()) {
4878       Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
4879             "Only PHI nodes may reference their own value!", &I);
4880     }
4881   }
4882 
4883   // Check that void typed values don't have names
4884   Check(!I.getType()->isVoidTy() || !I.hasName(),
4885         "Instruction has a name, but provides a void value!", &I);
4886 
4887   // Check that the return value of the instruction is either void or a legal
4888   // value type.
4889   Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4890         "Instruction returns a non-scalar type!", &I);
4891 
4892   // Check that the instruction doesn't produce metadata. Calls are already
4893   // checked against the callee type.
4894   Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4895         "Invalid use of metadata!", &I);
4896 
4897   // Check that all uses of the instruction, if they are instructions
4898   // themselves, actually have parent basic blocks.  If the use is not an
4899   // instruction, it is an error!
4900   for (Use &U : I.uses()) {
4901     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4902       Check(Used->getParent() != nullptr,
4903             "Instruction referencing"
4904             " instruction not embedded in a basic block!",
4905             &I, Used);
4906     else {
4907       CheckFailed("Use of instruction is not an instruction!", U);
4908       return;
4909     }
4910   }
4911 
4912   // Get a pointer to the call base of the instruction if it is some form of
4913   // call.
4914   const CallBase *CBI = dyn_cast<CallBase>(&I);
4915 
4916   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4917     Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4918 
4919     // Check to make sure that only first-class-values are operands to
4920     // instructions.
4921     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4922       Check(false, "Instruction operands must be first-class values!", &I);
4923     }
4924 
4925     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4926       // This code checks whether the function is used as the operand of a
4927       // clang_arc_attachedcall operand bundle.
4928       auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4929                                       int Idx) {
4930         return CBI && CBI->isOperandBundleOfType(
4931                           LLVMContext::OB_clang_arc_attachedcall, Idx);
4932       };
4933 
4934       // Check to make sure that the "address of" an intrinsic function is never
4935       // taken. Ignore cases where the address of the intrinsic function is used
4936       // as the argument of operand bundle "clang.arc.attachedcall" as those
4937       // cases are handled in verifyAttachedCallBundle.
4938       Check((!F->isIntrinsic() ||
4939              (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4940              IsAttachedCallOperand(F, CBI, i)),
4941             "Cannot take the address of an intrinsic!", &I);
4942       Check(!F->isIntrinsic() || isa<CallInst>(I) ||
4943                 F->getIntrinsicID() == Intrinsic::donothing ||
4944                 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4945                 F->getIntrinsicID() == Intrinsic::seh_try_end ||
4946                 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4947                 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4948                 F->getIntrinsicID() == Intrinsic::coro_resume ||
4949                 F->getIntrinsicID() == Intrinsic::coro_destroy ||
4950                 F->getIntrinsicID() ==
4951                     Intrinsic::experimental_patchpoint_void ||
4952                 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4953                 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4954                 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4955                 IsAttachedCallOperand(F, CBI, i),
4956             "Cannot invoke an intrinsic other than donothing, patchpoint, "
4957             "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4958             &I);
4959       Check(F->getParent() == &M, "Referencing function in another module!", &I,
4960             &M, F, F->getParent());
4961     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4962       Check(OpBB->getParent() == BB->getParent(),
4963             "Referring to a basic block in another function!", &I);
4964     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4965       Check(OpArg->getParent() == BB->getParent(),
4966             "Referring to an argument in another function!", &I);
4967     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4968       Check(GV->getParent() == &M, "Referencing global in another module!", &I,
4969             &M, GV, GV->getParent());
4970     } else if (isa<Instruction>(I.getOperand(i))) {
4971       verifyDominatesUse(I, i);
4972     } else if (isa<InlineAsm>(I.getOperand(i))) {
4973       Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4974             "Cannot take the address of an inline asm!", &I);
4975     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4976       if (CE->getType()->isPtrOrPtrVectorTy()) {
4977         // If we have a ConstantExpr pointer, we need to see if it came from an
4978         // illegal bitcast.
4979         visitConstantExprsRecursively(CE);
4980       }
4981     }
4982   }
4983 
4984   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4985     Check(I.getType()->isFPOrFPVectorTy(),
4986           "fpmath requires a floating point result!", &I);
4987     Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4988     if (ConstantFP *CFP0 =
4989             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4990       const APFloat &Accuracy = CFP0->getValueAPF();
4991       Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4992             "fpmath accuracy must have float type", &I);
4993       Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4994             "fpmath accuracy not a positive number!", &I);
4995     } else {
4996       Check(false, "invalid fpmath accuracy!", &I);
4997     }
4998   }
4999 
5000   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
5001     Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
5002           "Ranges are only for loads, calls and invokes!", &I);
5003     visitRangeMetadata(I, Range, I.getType());
5004   }
5005 
5006   if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
5007     Check(isa<LoadInst>(I) || isa<StoreInst>(I),
5008           "invariant.group metadata is only for loads and stores", &I);
5009   }
5010 
5011   if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
5012     Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
5013           &I);
5014     Check(isa<LoadInst>(I),
5015           "nonnull applies only to load instructions, use attributes"
5016           " for calls or invokes",
5017           &I);
5018     Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
5019   }
5020 
5021   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
5022     visitDereferenceableMetadata(I, MD);
5023 
5024   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
5025     visitDereferenceableMetadata(I, MD);
5026 
5027   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
5028     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
5029 
5030   if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
5031     visitAliasScopeListMetadata(MD);
5032   if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
5033     visitAliasScopeListMetadata(MD);
5034 
5035   if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
5036     visitAccessGroupMetadata(MD);
5037 
5038   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
5039     Check(I.getType()->isPointerTy(), "align applies only to pointer types",
5040           &I);
5041     Check(isa<LoadInst>(I),
5042           "align applies only to load instructions, "
5043           "use attributes for calls or invokes",
5044           &I);
5045     Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
5046     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
5047     Check(CI && CI->getType()->isIntegerTy(64),
5048           "align metadata value must be an i64!", &I);
5049     uint64_t Align = CI->getZExtValue();
5050     Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
5051           &I);
5052     Check(Align <= Value::MaximumAlignment,
5053           "alignment is larger that implementation defined limit", &I);
5054   }
5055 
5056   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
5057     visitProfMetadata(I, MD);
5058 
5059   if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
5060     visitMemProfMetadata(I, MD);
5061 
5062   if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
5063     visitCallsiteMetadata(I, MD);
5064 
5065   if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
5066     visitDIAssignIDMetadata(I, MD);
5067 
5068   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
5069     visitAnnotationMetadata(Annotation);
5070 
5071   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
5072     CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
5073     visitMDNode(*N, AreDebugLocsAllowed::Yes);
5074   }
5075 
5076   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
5077     verifyFragmentExpression(*DII);
5078     verifyNotEntryValue(*DII);
5079   }
5080 
5081   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
5082   I.getAllMetadata(MDs);
5083   for (auto Attachment : MDs) {
5084     unsigned Kind = Attachment.first;
5085     auto AllowLocs =
5086         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
5087             ? AreDebugLocsAllowed::Yes
5088             : AreDebugLocsAllowed::No;
5089     visitMDNode(*Attachment.second, AllowLocs);
5090   }
5091 
5092   InstsInThisBlock.insert(&I);
5093 }
5094 
5095 /// Allow intrinsics to be verified in different ways.
5096 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
5097   Function *IF = Call.getCalledFunction();
5098   Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
5099         IF);
5100 
5101   // Verify that the intrinsic prototype lines up with what the .td files
5102   // describe.
5103   FunctionType *IFTy = IF->getFunctionType();
5104   bool IsVarArg = IFTy->isVarArg();
5105 
5106   SmallVector<Intrinsic::IITDescriptor, 8> Table;
5107   getIntrinsicInfoTableEntries(ID, Table);
5108   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
5109 
5110   // Walk the descriptors to extract overloaded types.
5111   SmallVector<Type *, 4> ArgTys;
5112   Intrinsic::MatchIntrinsicTypesResult Res =
5113       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
5114   Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
5115         "Intrinsic has incorrect return type!", IF);
5116   Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
5117         "Intrinsic has incorrect argument type!", IF);
5118 
5119   // Verify if the intrinsic call matches the vararg property.
5120   if (IsVarArg)
5121     Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5122           "Intrinsic was not defined with variable arguments!", IF);
5123   else
5124     Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5125           "Callsite was not defined with variable arguments!", IF);
5126 
5127   // All descriptors should be absorbed by now.
5128   Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
5129 
5130   // Now that we have the intrinsic ID and the actual argument types (and we
5131   // know they are legal for the intrinsic!) get the intrinsic name through the
5132   // usual means.  This allows us to verify the mangling of argument types into
5133   // the name.
5134   const std::string ExpectedName =
5135       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
5136   Check(ExpectedName == IF->getName(),
5137         "Intrinsic name not mangled correctly for type arguments! "
5138         "Should be: " +
5139             ExpectedName,
5140         IF);
5141 
5142   // If the intrinsic takes MDNode arguments, verify that they are either global
5143   // or are local to *this* function.
5144   for (Value *V : Call.args()) {
5145     if (auto *MD = dyn_cast<MetadataAsValue>(V))
5146       visitMetadataAsValue(*MD, Call.getCaller());
5147     if (auto *Const = dyn_cast<Constant>(V))
5148       Check(!Const->getType()->isX86_AMXTy(),
5149             "const x86_amx is not allowed in argument!");
5150   }
5151 
5152   switch (ID) {
5153   default:
5154     break;
5155   case Intrinsic::assume: {
5156     for (auto &Elem : Call.bundle_op_infos()) {
5157       unsigned ArgCount = Elem.End - Elem.Begin;
5158       // Separate storage assumptions are special insofar as they're the only
5159       // operand bundles allowed on assumes that aren't parameter attributes.
5160       if (Elem.Tag->getKey() == "separate_storage") {
5161         Check(ArgCount == 2,
5162               "separate_storage assumptions should have 2 arguments", Call);
5163         Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
5164                   Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
5165               "arguments to separate_storage assumptions should be pointers",
5166               Call);
5167         return;
5168       }
5169       Check(Elem.Tag->getKey() == "ignore" ||
5170                 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5171             "tags must be valid attribute names", Call);
5172       Attribute::AttrKind Kind =
5173           Attribute::getAttrKindFromName(Elem.Tag->getKey());
5174       if (Kind == Attribute::Alignment) {
5175         Check(ArgCount <= 3 && ArgCount >= 2,
5176               "alignment assumptions should have 2 or 3 arguments", Call);
5177         Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
5178               "first argument should be a pointer", Call);
5179         Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
5180               "second argument should be an integer", Call);
5181         if (ArgCount == 3)
5182           Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5183                 "third argument should be an integer if present", Call);
5184         return;
5185       }
5186       Check(ArgCount <= 2, "too many arguments", Call);
5187       if (Kind == Attribute::None)
5188         break;
5189       if (Attribute::isIntAttrKind(Kind)) {
5190         Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5191         Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5192               "the second argument should be a constant integral value", Call);
5193       } else if (Attribute::canUseAsParamAttr(Kind)) {
5194         Check((ArgCount) == 1, "this attribute should have one argument", Call);
5195       } else if (Attribute::canUseAsFnAttr(Kind)) {
5196         Check((ArgCount) == 0, "this attribute has no argument", Call);
5197       }
5198     }
5199     break;
5200   }
5201   case Intrinsic::coro_id: {
5202     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
5203     if (isa<ConstantPointerNull>(InfoArg))
5204       break;
5205     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5206     Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5207           "info argument of llvm.coro.id must refer to an initialized "
5208           "constant");
5209     Constant *Init = GV->getInitializer();
5210     Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5211           "info argument of llvm.coro.id must refer to either a struct or "
5212           "an array");
5213     break;
5214   }
5215   case Intrinsic::is_fpclass: {
5216     const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
5217     Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
5218           "unsupported bits for llvm.is.fpclass test mask");
5219     break;
5220   }
5221   case Intrinsic::fptrunc_round: {
5222     // Check the rounding mode
5223     Metadata *MD = nullptr;
5224     auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
5225     if (MAV)
5226       MD = MAV->getMetadata();
5227 
5228     Check(MD != nullptr, "missing rounding mode argument", Call);
5229 
5230     Check(isa<MDString>(MD),
5231           ("invalid value for llvm.fptrunc.round metadata operand"
5232            " (the operand should be a string)"),
5233           MD);
5234 
5235     std::optional<RoundingMode> RoundMode =
5236         convertStrToRoundingMode(cast<MDString>(MD)->getString());
5237     Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5238           "unsupported rounding mode argument", Call);
5239     break;
5240   }
5241 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5242 #include "llvm/IR/VPIntrinsics.def"
5243     visitVPIntrinsic(cast<VPIntrinsic>(Call));
5244     break;
5245 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
5246   case Intrinsic::INTRINSIC:
5247 #include "llvm/IR/ConstrainedOps.def"
5248     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5249     break;
5250   case Intrinsic::dbg_declare: // llvm.dbg.declare
5251     Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5252           "invalid llvm.dbg.declare intrinsic call 1", Call);
5253     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
5254     break;
5255   case Intrinsic::dbg_value: // llvm.dbg.value
5256     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
5257     break;
5258   case Intrinsic::dbg_assign: // llvm.dbg.assign
5259     visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
5260     break;
5261   case Intrinsic::dbg_label: // llvm.dbg.label
5262     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
5263     break;
5264   case Intrinsic::memcpy:
5265   case Intrinsic::memcpy_inline:
5266   case Intrinsic::memmove:
5267   case Intrinsic::memset:
5268   case Intrinsic::memset_inline: {
5269     break;
5270   }
5271   case Intrinsic::memcpy_element_unordered_atomic:
5272   case Intrinsic::memmove_element_unordered_atomic:
5273   case Intrinsic::memset_element_unordered_atomic: {
5274     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5275 
5276     ConstantInt *ElementSizeCI =
5277         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5278     const APInt &ElementSizeVal = ElementSizeCI->getValue();
5279     Check(ElementSizeVal.isPowerOf2(),
5280           "element size of the element-wise atomic memory intrinsic "
5281           "must be a power of 2",
5282           Call);
5283 
5284     auto IsValidAlignment = [&](MaybeAlign Alignment) {
5285       return Alignment && ElementSizeVal.ule(Alignment->value());
5286     };
5287     Check(IsValidAlignment(AMI->getDestAlign()),
5288           "incorrect alignment of the destination argument", Call);
5289     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5290       Check(IsValidAlignment(AMT->getSourceAlign()),
5291             "incorrect alignment of the source argument", Call);
5292     }
5293     break;
5294   }
5295   case Intrinsic::call_preallocated_setup: {
5296     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5297     Check(NumArgs != nullptr,
5298           "llvm.call.preallocated.setup argument must be a constant");
5299     bool FoundCall = false;
5300     for (User *U : Call.users()) {
5301       auto *UseCall = dyn_cast<CallBase>(U);
5302       Check(UseCall != nullptr,
5303             "Uses of llvm.call.preallocated.setup must be calls");
5304       const Function *Fn = UseCall->getCalledFunction();
5305       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5306         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5307         Check(AllocArgIndex != nullptr,
5308               "llvm.call.preallocated.alloc arg index must be a constant");
5309         auto AllocArgIndexInt = AllocArgIndex->getValue();
5310         Check(AllocArgIndexInt.sge(0) &&
5311                   AllocArgIndexInt.slt(NumArgs->getValue()),
5312               "llvm.call.preallocated.alloc arg index must be between 0 and "
5313               "corresponding "
5314               "llvm.call.preallocated.setup's argument count");
5315       } else if (Fn && Fn->getIntrinsicID() ==
5316                            Intrinsic::call_preallocated_teardown) {
5317         // nothing to do
5318       } else {
5319         Check(!FoundCall, "Can have at most one call corresponding to a "
5320                           "llvm.call.preallocated.setup");
5321         FoundCall = true;
5322         size_t NumPreallocatedArgs = 0;
5323         for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5324           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5325             ++NumPreallocatedArgs;
5326           }
5327         }
5328         Check(NumPreallocatedArgs != 0,
5329               "cannot use preallocated intrinsics on a call without "
5330               "preallocated arguments");
5331         Check(NumArgs->equalsInt(NumPreallocatedArgs),
5332               "llvm.call.preallocated.setup arg size must be equal to number "
5333               "of preallocated arguments "
5334               "at call site",
5335               Call, *UseCall);
5336         // getOperandBundle() cannot be called if more than one of the operand
5337         // bundle exists. There is already a check elsewhere for this, so skip
5338         // here if we see more than one.
5339         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5340             1) {
5341           return;
5342         }
5343         auto PreallocatedBundle =
5344             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5345         Check(PreallocatedBundle,
5346               "Use of llvm.call.preallocated.setup outside intrinsics "
5347               "must be in \"preallocated\" operand bundle");
5348         Check(PreallocatedBundle->Inputs.front().get() == &Call,
5349               "preallocated bundle must have token from corresponding "
5350               "llvm.call.preallocated.setup");
5351       }
5352     }
5353     break;
5354   }
5355   case Intrinsic::call_preallocated_arg: {
5356     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5357     Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5358                        Intrinsic::call_preallocated_setup,
5359           "llvm.call.preallocated.arg token argument must be a "
5360           "llvm.call.preallocated.setup");
5361     Check(Call.hasFnAttr(Attribute::Preallocated),
5362           "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5363           "call site attribute");
5364     break;
5365   }
5366   case Intrinsic::call_preallocated_teardown: {
5367     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5368     Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5369                        Intrinsic::call_preallocated_setup,
5370           "llvm.call.preallocated.teardown token argument must be a "
5371           "llvm.call.preallocated.setup");
5372     break;
5373   }
5374   case Intrinsic::gcroot:
5375   case Intrinsic::gcwrite:
5376   case Intrinsic::gcread:
5377     if (ID == Intrinsic::gcroot) {
5378       AllocaInst *AI =
5379           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5380       Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5381       Check(isa<Constant>(Call.getArgOperand(1)),
5382             "llvm.gcroot parameter #2 must be a constant.", Call);
5383       if (!AI->getAllocatedType()->isPointerTy()) {
5384         Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5385               "llvm.gcroot parameter #1 must either be a pointer alloca, "
5386               "or argument #2 must be a non-null constant.",
5387               Call);
5388       }
5389     }
5390 
5391     Check(Call.getParent()->getParent()->hasGC(),
5392           "Enclosing function does not use GC.", Call);
5393     break;
5394   case Intrinsic::init_trampoline:
5395     Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5396           "llvm.init_trampoline parameter #2 must resolve to a function.",
5397           Call);
5398     break;
5399   case Intrinsic::prefetch:
5400     Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5401           "rw argument to llvm.prefetch must be 0-1", Call);
5402     Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5403           "locality argument to llvm.prefetch must be 0-3", Call);
5404     Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5405           "cache type argument to llvm.prefetch must be 0-1", Call);
5406     break;
5407   case Intrinsic::stackprotector:
5408     Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5409           "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5410     break;
5411   case Intrinsic::localescape: {
5412     BasicBlock *BB = Call.getParent();
5413     Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5414           Call);
5415     Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5416           Call);
5417     for (Value *Arg : Call.args()) {
5418       if (isa<ConstantPointerNull>(Arg))
5419         continue; // Null values are allowed as placeholders.
5420       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5421       Check(AI && AI->isStaticAlloca(),
5422             "llvm.localescape only accepts static allocas", Call);
5423     }
5424     FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5425     SawFrameEscape = true;
5426     break;
5427   }
5428   case Intrinsic::localrecover: {
5429     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5430     Function *Fn = dyn_cast<Function>(FnArg);
5431     Check(Fn && !Fn->isDeclaration(),
5432           "llvm.localrecover first "
5433           "argument must be function defined in this module",
5434           Call);
5435     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5436     auto &Entry = FrameEscapeInfo[Fn];
5437     Entry.second = unsigned(
5438         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5439     break;
5440   }
5441 
5442   case Intrinsic::experimental_gc_statepoint:
5443     if (auto *CI = dyn_cast<CallInst>(&Call))
5444       Check(!CI->isInlineAsm(),
5445             "gc.statepoint support for inline assembly unimplemented", CI);
5446     Check(Call.getParent()->getParent()->hasGC(),
5447           "Enclosing function does not use GC.", Call);
5448 
5449     verifyStatepoint(Call);
5450     break;
5451   case Intrinsic::experimental_gc_result: {
5452     Check(Call.getParent()->getParent()->hasGC(),
5453           "Enclosing function does not use GC.", Call);
5454 
5455     auto *Statepoint = Call.getArgOperand(0);
5456     if (isa<UndefValue>(Statepoint))
5457       break;
5458 
5459     // Are we tied to a statepoint properly?
5460     const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5461     const Function *StatepointFn =
5462         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5463     Check(StatepointFn && StatepointFn->isDeclaration() &&
5464               StatepointFn->getIntrinsicID() ==
5465                   Intrinsic::experimental_gc_statepoint,
5466           "gc.result operand #1 must be from a statepoint", Call,
5467           Call.getArgOperand(0));
5468 
5469     // Check that result type matches wrapped callee.
5470     auto *TargetFuncType =
5471         cast<FunctionType>(StatepointCall->getParamElementType(2));
5472     Check(Call.getType() == TargetFuncType->getReturnType(),
5473           "gc.result result type does not match wrapped callee", Call);
5474     break;
5475   }
5476   case Intrinsic::experimental_gc_relocate: {
5477     Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5478 
5479     Check(isa<PointerType>(Call.getType()->getScalarType()),
5480           "gc.relocate must return a pointer or a vector of pointers", Call);
5481 
5482     // Check that this relocate is correctly tied to the statepoint
5483 
5484     // This is case for relocate on the unwinding path of an invoke statepoint
5485     if (LandingPadInst *LandingPad =
5486             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5487 
5488       const BasicBlock *InvokeBB =
5489           LandingPad->getParent()->getUniquePredecessor();
5490 
5491       // Landingpad relocates should have only one predecessor with invoke
5492       // statepoint terminator
5493       Check(InvokeBB, "safepoints should have unique landingpads",
5494             LandingPad->getParent());
5495       Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5496             InvokeBB);
5497       Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5498             "gc relocate should be linked to a statepoint", InvokeBB);
5499     } else {
5500       // In all other cases relocate should be tied to the statepoint directly.
5501       // This covers relocates on a normal return path of invoke statepoint and
5502       // relocates of a call statepoint.
5503       auto *Token = Call.getArgOperand(0);
5504       Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5505             "gc relocate is incorrectly tied to the statepoint", Call, Token);
5506     }
5507 
5508     // Verify rest of the relocate arguments.
5509     const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5510 
5511     // Both the base and derived must be piped through the safepoint.
5512     Value *Base = Call.getArgOperand(1);
5513     Check(isa<ConstantInt>(Base),
5514           "gc.relocate operand #2 must be integer offset", Call);
5515 
5516     Value *Derived = Call.getArgOperand(2);
5517     Check(isa<ConstantInt>(Derived),
5518           "gc.relocate operand #3 must be integer offset", Call);
5519 
5520     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5521     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5522 
5523     // Check the bounds
5524     if (isa<UndefValue>(StatepointCall))
5525       break;
5526     if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5527                        .getOperandBundle(LLVMContext::OB_gc_live)) {
5528       Check(BaseIndex < Opt->Inputs.size(),
5529             "gc.relocate: statepoint base index out of bounds", Call);
5530       Check(DerivedIndex < Opt->Inputs.size(),
5531             "gc.relocate: statepoint derived index out of bounds", Call);
5532     }
5533 
5534     // Relocated value must be either a pointer type or vector-of-pointer type,
5535     // but gc_relocate does not need to return the same pointer type as the
5536     // relocated pointer. It can be casted to the correct type later if it's
5537     // desired. However, they must have the same address space and 'vectorness'
5538     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5539     auto *ResultType = Call.getType();
5540     auto *DerivedType = Relocate.getDerivedPtr()->getType();
5541     auto *BaseType = Relocate.getBasePtr()->getType();
5542 
5543     Check(BaseType->isPtrOrPtrVectorTy(),
5544           "gc.relocate: relocated value must be a pointer", Call);
5545     Check(DerivedType->isPtrOrPtrVectorTy(),
5546           "gc.relocate: relocated value must be a pointer", Call);
5547 
5548     Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5549           "gc.relocate: vector relocates to vector and pointer to pointer",
5550           Call);
5551     Check(
5552         ResultType->getPointerAddressSpace() ==
5553             DerivedType->getPointerAddressSpace(),
5554         "gc.relocate: relocating a pointer shouldn't change its address space",
5555         Call);
5556 
5557     auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
5558     Check(GC, "gc.relocate: calling function must have GCStrategy",
5559           Call.getFunction());
5560     if (GC) {
5561       auto isGCPtr = [&GC](Type *PTy) {
5562         return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
5563       };
5564       Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5565       Check(isGCPtr(BaseType),
5566             "gc.relocate: relocated value must be a gc pointer", Call);
5567       Check(isGCPtr(DerivedType),
5568             "gc.relocate: relocated value must be a gc pointer", Call);
5569     }
5570     break;
5571   }
5572   case Intrinsic::eh_exceptioncode:
5573   case Intrinsic::eh_exceptionpointer: {
5574     Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5575           "eh.exceptionpointer argument must be a catchpad", Call);
5576     break;
5577   }
5578   case Intrinsic::get_active_lane_mask: {
5579     Check(Call.getType()->isVectorTy(),
5580           "get_active_lane_mask: must return a "
5581           "vector",
5582           Call);
5583     auto *ElemTy = Call.getType()->getScalarType();
5584     Check(ElemTy->isIntegerTy(1),
5585           "get_active_lane_mask: element type is not "
5586           "i1",
5587           Call);
5588     break;
5589   }
5590   case Intrinsic::experimental_get_vector_length: {
5591     ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1));
5592     Check(!VF->isNegative() && !VF->isZero(),
5593           "get_vector_length: VF must be positive", Call);
5594     break;
5595   }
5596   case Intrinsic::masked_load: {
5597     Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5598           Call);
5599 
5600     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5601     Value *Mask = Call.getArgOperand(2);
5602     Value *PassThru = Call.getArgOperand(3);
5603     Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5604           Call);
5605     Check(Alignment->getValue().isPowerOf2(),
5606           "masked_load: alignment must be a power of 2", Call);
5607     Check(PassThru->getType() == Call.getType(),
5608           "masked_load: pass through and return type must match", Call);
5609     Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5610               cast<VectorType>(Call.getType())->getElementCount(),
5611           "masked_load: vector mask must be same length as return", Call);
5612     break;
5613   }
5614   case Intrinsic::masked_store: {
5615     Value *Val = Call.getArgOperand(0);
5616     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5617     Value *Mask = Call.getArgOperand(3);
5618     Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5619           Call);
5620     Check(Alignment->getValue().isPowerOf2(),
5621           "masked_store: alignment must be a power of 2", Call);
5622     Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5623               cast<VectorType>(Val->getType())->getElementCount(),
5624           "masked_store: vector mask must be same length as value", Call);
5625     break;
5626   }
5627 
5628   case Intrinsic::masked_gather: {
5629     const APInt &Alignment =
5630         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5631     Check(Alignment.isZero() || Alignment.isPowerOf2(),
5632           "masked_gather: alignment must be 0 or a power of 2", Call);
5633     break;
5634   }
5635   case Intrinsic::masked_scatter: {
5636     const APInt &Alignment =
5637         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5638     Check(Alignment.isZero() || Alignment.isPowerOf2(),
5639           "masked_scatter: alignment must be 0 or a power of 2", Call);
5640     break;
5641   }
5642 
5643   case Intrinsic::experimental_guard: {
5644     Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5645     Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5646           "experimental_guard must have exactly one "
5647           "\"deopt\" operand bundle");
5648     break;
5649   }
5650 
5651   case Intrinsic::experimental_deoptimize: {
5652     Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5653           Call);
5654     Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5655           "experimental_deoptimize must have exactly one "
5656           "\"deopt\" operand bundle");
5657     Check(Call.getType() == Call.getFunction()->getReturnType(),
5658           "experimental_deoptimize return type must match caller return type");
5659 
5660     if (isa<CallInst>(Call)) {
5661       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5662       Check(RI,
5663             "calls to experimental_deoptimize must be followed by a return");
5664 
5665       if (!Call.getType()->isVoidTy() && RI)
5666         Check(RI->getReturnValue() == &Call,
5667               "calls to experimental_deoptimize must be followed by a return "
5668               "of the value computed by experimental_deoptimize");
5669     }
5670 
5671     break;
5672   }
5673   case Intrinsic::vector_reduce_and:
5674   case Intrinsic::vector_reduce_or:
5675   case Intrinsic::vector_reduce_xor:
5676   case Intrinsic::vector_reduce_add:
5677   case Intrinsic::vector_reduce_mul:
5678   case Intrinsic::vector_reduce_smax:
5679   case Intrinsic::vector_reduce_smin:
5680   case Intrinsic::vector_reduce_umax:
5681   case Intrinsic::vector_reduce_umin: {
5682     Type *ArgTy = Call.getArgOperand(0)->getType();
5683     Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5684           "Intrinsic has incorrect argument type!");
5685     break;
5686   }
5687   case Intrinsic::vector_reduce_fmax:
5688   case Intrinsic::vector_reduce_fmin: {
5689     Type *ArgTy = Call.getArgOperand(0)->getType();
5690     Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5691           "Intrinsic has incorrect argument type!");
5692     break;
5693   }
5694   case Intrinsic::vector_reduce_fadd:
5695   case Intrinsic::vector_reduce_fmul: {
5696     // Unlike the other reductions, the first argument is a start value. The
5697     // second argument is the vector to be reduced.
5698     Type *ArgTy = Call.getArgOperand(1)->getType();
5699     Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5700           "Intrinsic has incorrect argument type!");
5701     break;
5702   }
5703   case Intrinsic::smul_fix:
5704   case Intrinsic::smul_fix_sat:
5705   case Intrinsic::umul_fix:
5706   case Intrinsic::umul_fix_sat:
5707   case Intrinsic::sdiv_fix:
5708   case Intrinsic::sdiv_fix_sat:
5709   case Intrinsic::udiv_fix:
5710   case Intrinsic::udiv_fix_sat: {
5711     Value *Op1 = Call.getArgOperand(0);
5712     Value *Op2 = Call.getArgOperand(1);
5713     Check(Op1->getType()->isIntOrIntVectorTy(),
5714           "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5715           "vector of ints");
5716     Check(Op2->getType()->isIntOrIntVectorTy(),
5717           "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5718           "vector of ints");
5719 
5720     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5721     Check(Op3->getType()->isIntegerTy(),
5722           "third operand of [us][mul|div]_fix[_sat] must be an int type");
5723     Check(Op3->getBitWidth() <= 32,
5724           "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
5725 
5726     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5727         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5728       Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5729             "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5730             "the operands");
5731     } else {
5732       Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5733             "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5734             "to the width of the operands");
5735     }
5736     break;
5737   }
5738   case Intrinsic::lrint:
5739   case Intrinsic::llrint: {
5740     Type *ValTy = Call.getArgOperand(0)->getType();
5741     Type *ResultTy = Call.getType();
5742     Check(
5743         ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(),
5744         "llvm.lrint, llvm.llrint: argument must be floating-point or vector "
5745         "of floating-points, and result must be integer or vector of integers",
5746         &Call);
5747     Check(ValTy->isVectorTy() == ResultTy->isVectorTy(),
5748           "llvm.lrint, llvm.llrint: argument and result disagree on vector use",
5749           &Call);
5750     if (ValTy->isVectorTy()) {
5751       Check(cast<VectorType>(ValTy)->getElementCount() ==
5752                 cast<VectorType>(ResultTy)->getElementCount(),
5753             "llvm.lrint, llvm.llrint: argument must be same length as result",
5754             &Call);
5755     }
5756     break;
5757   }
5758   case Intrinsic::lround:
5759   case Intrinsic::llround: {
5760     Type *ValTy = Call.getArgOperand(0)->getType();
5761     Type *ResultTy = Call.getType();
5762     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5763           "Intrinsic does not support vectors", &Call);
5764     break;
5765   }
5766   case Intrinsic::bswap: {
5767     Type *Ty = Call.getType();
5768     unsigned Size = Ty->getScalarSizeInBits();
5769     Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5770     break;
5771   }
5772   case Intrinsic::invariant_start: {
5773     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5774     Check(InvariantSize &&
5775               (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5776           "invariant_start parameter must be -1, 0 or a positive number",
5777           &Call);
5778     break;
5779   }
5780   case Intrinsic::matrix_multiply:
5781   case Intrinsic::matrix_transpose:
5782   case Intrinsic::matrix_column_major_load:
5783   case Intrinsic::matrix_column_major_store: {
5784     Function *IF = Call.getCalledFunction();
5785     ConstantInt *Stride = nullptr;
5786     ConstantInt *NumRows;
5787     ConstantInt *NumColumns;
5788     VectorType *ResultTy;
5789     Type *Op0ElemTy = nullptr;
5790     Type *Op1ElemTy = nullptr;
5791     switch (ID) {
5792     case Intrinsic::matrix_multiply: {
5793       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5794       ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3));
5795       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5796       Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType())
5797                     ->getNumElements() ==
5798                 NumRows->getZExtValue() * N->getZExtValue(),
5799             "First argument of a matrix operation does not match specified "
5800             "shape!");
5801       Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType())
5802                     ->getNumElements() ==
5803                 N->getZExtValue() * NumColumns->getZExtValue(),
5804             "Second argument of a matrix operation does not match specified "
5805             "shape!");
5806 
5807       ResultTy = cast<VectorType>(Call.getType());
5808       Op0ElemTy =
5809           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5810       Op1ElemTy =
5811           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5812       break;
5813     }
5814     case Intrinsic::matrix_transpose:
5815       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5816       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5817       ResultTy = cast<VectorType>(Call.getType());
5818       Op0ElemTy =
5819           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5820       break;
5821     case Intrinsic::matrix_column_major_load: {
5822       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5823       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5824       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5825       ResultTy = cast<VectorType>(Call.getType());
5826       break;
5827     }
5828     case Intrinsic::matrix_column_major_store: {
5829       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5830       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5831       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5832       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5833       Op0ElemTy =
5834           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5835       break;
5836     }
5837     default:
5838       llvm_unreachable("unexpected intrinsic");
5839     }
5840 
5841     Check(ResultTy->getElementType()->isIntegerTy() ||
5842               ResultTy->getElementType()->isFloatingPointTy(),
5843           "Result type must be an integer or floating-point type!", IF);
5844 
5845     if (Op0ElemTy)
5846       Check(ResultTy->getElementType() == Op0ElemTy,
5847             "Vector element type mismatch of the result and first operand "
5848             "vector!",
5849             IF);
5850 
5851     if (Op1ElemTy)
5852       Check(ResultTy->getElementType() == Op1ElemTy,
5853             "Vector element type mismatch of the result and second operand "
5854             "vector!",
5855             IF);
5856 
5857     Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5858               NumRows->getZExtValue() * NumColumns->getZExtValue(),
5859           "Result of a matrix operation does not fit in the returned vector!");
5860 
5861     if (Stride)
5862       Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
5863             "Stride must be greater or equal than the number of rows!", IF);
5864 
5865     break;
5866   }
5867   case Intrinsic::experimental_vector_splice: {
5868     VectorType *VecTy = cast<VectorType>(Call.getType());
5869     int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5870     int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5871     if (Call.getParent() && Call.getParent()->getParent()) {
5872       AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5873       if (Attrs.hasFnAttr(Attribute::VScaleRange))
5874         KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5875     }
5876     Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5877               (Idx >= 0 && Idx < KnownMinNumElements),
5878           "The splice index exceeds the range [-VL, VL-1] where VL is the "
5879           "known minimum number of elements in the vector. For scalable "
5880           "vectors the minimum number of elements is determined from "
5881           "vscale_range.",
5882           &Call);
5883     break;
5884   }
5885   case Intrinsic::experimental_stepvector: {
5886     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5887     Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5888               VecTy->getScalarSizeInBits() >= 8,
5889           "experimental_stepvector only supported for vectors of integers "
5890           "with a bitwidth of at least 8.",
5891           &Call);
5892     break;
5893   }
5894   case Intrinsic::vector_insert: {
5895     Value *Vec = Call.getArgOperand(0);
5896     Value *SubVec = Call.getArgOperand(1);
5897     Value *Idx = Call.getArgOperand(2);
5898     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5899 
5900     VectorType *VecTy = cast<VectorType>(Vec->getType());
5901     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5902 
5903     ElementCount VecEC = VecTy->getElementCount();
5904     ElementCount SubVecEC = SubVecTy->getElementCount();
5905     Check(VecTy->getElementType() == SubVecTy->getElementType(),
5906           "vector_insert parameters must have the same element "
5907           "type.",
5908           &Call);
5909     Check(IdxN % SubVecEC.getKnownMinValue() == 0,
5910           "vector_insert index must be a constant multiple of "
5911           "the subvector's known minimum vector length.");
5912 
5913     // If this insertion is not the 'mixed' case where a fixed vector is
5914     // inserted into a scalable vector, ensure that the insertion of the
5915     // subvector does not overrun the parent vector.
5916     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5917       Check(IdxN < VecEC.getKnownMinValue() &&
5918                 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5919             "subvector operand of vector_insert would overrun the "
5920             "vector being inserted into.");
5921     }
5922     break;
5923   }
5924   case Intrinsic::vector_extract: {
5925     Value *Vec = Call.getArgOperand(0);
5926     Value *Idx = Call.getArgOperand(1);
5927     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5928 
5929     VectorType *ResultTy = cast<VectorType>(Call.getType());
5930     VectorType *VecTy = cast<VectorType>(Vec->getType());
5931 
5932     ElementCount VecEC = VecTy->getElementCount();
5933     ElementCount ResultEC = ResultTy->getElementCount();
5934 
5935     Check(ResultTy->getElementType() == VecTy->getElementType(),
5936           "vector_extract result must have the same element "
5937           "type as the input vector.",
5938           &Call);
5939     Check(IdxN % ResultEC.getKnownMinValue() == 0,
5940           "vector_extract index must be a constant multiple of "
5941           "the result type's known minimum vector length.");
5942 
5943     // If this extraction is not the 'mixed' case where a fixed vector is
5944     // extracted from a scalable vector, ensure that the extraction does not
5945     // overrun the parent vector.
5946     if (VecEC.isScalable() == ResultEC.isScalable()) {
5947       Check(IdxN < VecEC.getKnownMinValue() &&
5948                 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5949             "vector_extract would overrun.");
5950     }
5951     break;
5952   }
5953   case Intrinsic::experimental_noalias_scope_decl: {
5954     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5955     break;
5956   }
5957   case Intrinsic::preserve_array_access_index:
5958   case Intrinsic::preserve_struct_access_index:
5959   case Intrinsic::aarch64_ldaxr:
5960   case Intrinsic::aarch64_ldxr:
5961   case Intrinsic::arm_ldaex:
5962   case Intrinsic::arm_ldrex: {
5963     Type *ElemTy = Call.getParamElementType(0);
5964     Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
5965           &Call);
5966     break;
5967   }
5968   case Intrinsic::aarch64_stlxr:
5969   case Intrinsic::aarch64_stxr:
5970   case Intrinsic::arm_stlex:
5971   case Intrinsic::arm_strex: {
5972     Type *ElemTy = Call.getAttributes().getParamElementType(1);
5973     Check(ElemTy,
5974           "Intrinsic requires elementtype attribute on second argument.",
5975           &Call);
5976     break;
5977   }
5978   case Intrinsic::aarch64_prefetch: {
5979     Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5980           "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5981     Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5982           "target argument to llvm.aarch64.prefetch must be 0-3", Call);
5983     Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5984           "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5985     Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
5986           "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5987     break;
5988   }
5989   case Intrinsic::callbr_landingpad: {
5990     const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0));
5991     Check(CBR, "intrinstic requires callbr operand", &Call);
5992     if (!CBR)
5993       break;
5994 
5995     const BasicBlock *LandingPadBB = Call.getParent();
5996     const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor();
5997     if (!PredBB) {
5998       CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call);
5999       break;
6000     }
6001     if (!isa<CallBrInst>(PredBB->getTerminator())) {
6002       CheckFailed("Intrinsic must have corresponding callbr in predecessor",
6003                   &Call);
6004       break;
6005     }
6006     Check(llvm::any_of(CBR->getIndirectDests(),
6007                        [LandingPadBB](const BasicBlock *IndDest) {
6008                          return IndDest == LandingPadBB;
6009                        }),
6010           "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6011           "block in indirect destination list",
6012           &Call);
6013     const Instruction &First = *LandingPadBB->begin();
6014     Check(&First == &Call, "No other instructions may proceed intrinsic",
6015           &Call);
6016     break;
6017   }
6018   case Intrinsic::amdgcn_cs_chain: {
6019     auto CallerCC = Call.getCaller()->getCallingConv();
6020     switch (CallerCC) {
6021     case CallingConv::AMDGPU_CS:
6022     case CallingConv::AMDGPU_CS_Chain:
6023     case CallingConv::AMDGPU_CS_ChainPreserve:
6024       break;
6025     default:
6026       CheckFailed("Intrinsic can only be used from functions with the "
6027                   "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6028                   "calling conventions",
6029                   &Call);
6030       break;
6031     }
6032 
6033     Check(Call.paramHasAttr(2, Attribute::InReg),
6034           "SGPR arguments must have the `inreg` attribute", &Call);
6035     Check(!Call.paramHasAttr(3, Attribute::InReg),
6036           "VGPR arguments must not have the `inreg` attribute", &Call);
6037     break;
6038   }
6039   case Intrinsic::amdgcn_set_inactive_chain_arg: {
6040     auto CallerCC = Call.getCaller()->getCallingConv();
6041     switch (CallerCC) {
6042     case CallingConv::AMDGPU_CS_Chain:
6043     case CallingConv::AMDGPU_CS_ChainPreserve:
6044       break;
6045     default:
6046       CheckFailed("Intrinsic can only be used from functions with the "
6047                   "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6048                   "calling conventions",
6049                   &Call);
6050       break;
6051     }
6052 
6053     unsigned InactiveIdx = 1;
6054     Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg),
6055           "Value for inactive lanes must not have the `inreg` attribute",
6056           &Call);
6057     Check(isa<Argument>(Call.getArgOperand(InactiveIdx)),
6058           "Value for inactive lanes must be a function argument", &Call);
6059     Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(),
6060           "Value for inactive lanes must be a VGPR function argument", &Call);
6061     break;
6062   }
6063   case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6064   case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6065     Value *V = Call.getArgOperand(0);
6066     unsigned RegCount = cast<ConstantInt>(V)->getZExtValue();
6067     Check(RegCount % 8 == 0,
6068           "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6069     Check((RegCount >= 24 && RegCount <= 256),
6070           "reg_count argument to nvvm.setmaxnreg must be within [24, 256]");
6071     break;
6072   }
6073   case Intrinsic::experimental_convergence_entry:
6074     LLVM_FALLTHROUGH;
6075   case Intrinsic::experimental_convergence_anchor:
6076     break;
6077   case Intrinsic::experimental_convergence_loop:
6078     break;
6079   case Intrinsic::ptrmask: {
6080     Type *Ty0 = Call.getArgOperand(0)->getType();
6081     Type *Ty1 = Call.getArgOperand(1)->getType();
6082     Check(Ty0->isPtrOrPtrVectorTy(),
6083           "llvm.ptrmask intrinsic first argument must be pointer or vector "
6084           "of pointers",
6085           &Call);
6086     Check(
6087         Ty0->isVectorTy() == Ty1->isVectorTy(),
6088         "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6089         &Call);
6090     if (Ty0->isVectorTy())
6091       Check(cast<VectorType>(Ty0)->getElementCount() ==
6092                 cast<VectorType>(Ty1)->getElementCount(),
6093             "llvm.ptrmask intrinsic arguments must have the same number of "
6094             "elements",
6095             &Call);
6096     Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(),
6097           "llvm.ptrmask intrinsic second argument bitwidth must match "
6098           "pointer index type size of first argument",
6099           &Call);
6100     break;
6101   }
6102   };
6103 
6104   // Verify that there aren't any unmediated control transfers between funclets.
6105   if (IntrinsicInst::mayLowerToFunctionCall(ID)) {
6106     Function *F = Call.getParent()->getParent();
6107     if (F->hasPersonalityFn() &&
6108         isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) {
6109       // Run EH funclet coloring on-demand and cache results for other intrinsic
6110       // calls in this function
6111       if (BlockEHFuncletColors.empty())
6112         BlockEHFuncletColors = colorEHFunclets(*F);
6113 
6114       // Check for catch-/cleanup-pad in first funclet block
6115       bool InEHFunclet = false;
6116       BasicBlock *CallBB = Call.getParent();
6117       const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second;
6118       assert(CV.size() > 0 && "Uncolored block");
6119       for (BasicBlock *ColorFirstBB : CV)
6120         if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI()))
6121           InEHFunclet = true;
6122 
6123       // Check for funclet operand bundle
6124       bool HasToken = false;
6125       for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I)
6126         if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet)
6127           HasToken = true;
6128 
6129       // This would cause silent code truncation in WinEHPrepare
6130       if (InEHFunclet)
6131         Check(HasToken, "Missing funclet token on intrinsic call", &Call);
6132     }
6133   }
6134 }
6135 
6136 /// Carefully grab the subprogram from a local scope.
6137 ///
6138 /// This carefully grabs the subprogram from a local scope, avoiding the
6139 /// built-in assertions that would typically fire.
6140 static DISubprogram *getSubprogram(Metadata *LocalScope) {
6141   if (!LocalScope)
6142     return nullptr;
6143 
6144   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
6145     return SP;
6146 
6147   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
6148     return getSubprogram(LB->getRawScope());
6149 
6150   // Just return null; broken scope chains are checked elsewhere.
6151   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
6152   return nullptr;
6153 }
6154 
6155 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
6156   if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
6157     auto *RetTy = cast<VectorType>(VPCast->getType());
6158     auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
6159     Check(RetTy->getElementCount() == ValTy->getElementCount(),
6160           "VP cast intrinsic first argument and result vector lengths must be "
6161           "equal",
6162           *VPCast);
6163 
6164     switch (VPCast->getIntrinsicID()) {
6165     default:
6166       llvm_unreachable("Unknown VP cast intrinsic");
6167     case Intrinsic::vp_trunc:
6168       Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6169             "llvm.vp.trunc intrinsic first argument and result element type "
6170             "must be integer",
6171             *VPCast);
6172       Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6173             "llvm.vp.trunc intrinsic the bit size of first argument must be "
6174             "larger than the bit size of the return type",
6175             *VPCast);
6176       break;
6177     case Intrinsic::vp_zext:
6178     case Intrinsic::vp_sext:
6179       Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6180             "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6181             "element type must be integer",
6182             *VPCast);
6183       Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6184             "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6185             "argument must be smaller than the bit size of the return type",
6186             *VPCast);
6187       break;
6188     case Intrinsic::vp_fptoui:
6189     case Intrinsic::vp_fptosi:
6190       Check(
6191           RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
6192           "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element "
6193           "type must be floating-point and result element type must be integer",
6194           *VPCast);
6195       break;
6196     case Intrinsic::vp_uitofp:
6197     case Intrinsic::vp_sitofp:
6198       Check(
6199           RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
6200           "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6201           "type must be integer and result element type must be floating-point",
6202           *VPCast);
6203       break;
6204     case Intrinsic::vp_fptrunc:
6205       Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6206             "llvm.vp.fptrunc intrinsic first argument and result element type "
6207             "must be floating-point",
6208             *VPCast);
6209       Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6210             "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6211             "larger than the bit size of the return type",
6212             *VPCast);
6213       break;
6214     case Intrinsic::vp_fpext:
6215       Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6216             "llvm.vp.fpext intrinsic first argument and result element type "
6217             "must be floating-point",
6218             *VPCast);
6219       Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6220             "llvm.vp.fpext intrinsic the bit size of first argument must be "
6221             "smaller than the bit size of the return type",
6222             *VPCast);
6223       break;
6224     case Intrinsic::vp_ptrtoint:
6225       Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
6226             "llvm.vp.ptrtoint intrinsic first argument element type must be "
6227             "pointer and result element type must be integer",
6228             *VPCast);
6229       break;
6230     case Intrinsic::vp_inttoptr:
6231       Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
6232             "llvm.vp.inttoptr intrinsic first argument element type must be "
6233             "integer and result element type must be pointer",
6234             *VPCast);
6235       break;
6236     }
6237   }
6238   if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
6239     auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6240     Check(CmpInst::isFPPredicate(Pred),
6241           "invalid predicate for VP FP comparison intrinsic", &VPI);
6242   }
6243   if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
6244     auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6245     Check(CmpInst::isIntPredicate(Pred),
6246           "invalid predicate for VP integer comparison intrinsic", &VPI);
6247   }
6248   if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) {
6249     auto TestMask = cast<ConstantInt>(VPI.getOperand(1));
6250     Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
6251           "unsupported bits for llvm.vp.is.fpclass test mask");
6252   }
6253 }
6254 
6255 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
6256   unsigned NumOperands;
6257   bool HasRoundingMD;
6258   switch (FPI.getIntrinsicID()) {
6259 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6260   case Intrinsic::INTRINSIC:                                                   \
6261     NumOperands = NARG;                                                        \
6262     HasRoundingMD = ROUND_MODE;                                                \
6263     break;
6264 #include "llvm/IR/ConstrainedOps.def"
6265   default:
6266     llvm_unreachable("Invalid constrained FP intrinsic!");
6267   }
6268   NumOperands += (1 + HasRoundingMD);
6269   // Compare intrinsics carry an extra predicate metadata operand.
6270   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
6271     NumOperands += 1;
6272   Check((FPI.arg_size() == NumOperands),
6273         "invalid arguments for constrained FP intrinsic", &FPI);
6274 
6275   switch (FPI.getIntrinsicID()) {
6276   case Intrinsic::experimental_constrained_lrint:
6277   case Intrinsic::experimental_constrained_llrint: {
6278     Type *ValTy = FPI.getArgOperand(0)->getType();
6279     Type *ResultTy = FPI.getType();
6280     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6281           "Intrinsic does not support vectors", &FPI);
6282   }
6283     break;
6284 
6285   case Intrinsic::experimental_constrained_lround:
6286   case Intrinsic::experimental_constrained_llround: {
6287     Type *ValTy = FPI.getArgOperand(0)->getType();
6288     Type *ResultTy = FPI.getType();
6289     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6290           "Intrinsic does not support vectors", &FPI);
6291     break;
6292   }
6293 
6294   case Intrinsic::experimental_constrained_fcmp:
6295   case Intrinsic::experimental_constrained_fcmps: {
6296     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
6297     Check(CmpInst::isFPPredicate(Pred),
6298           "invalid predicate for constrained FP comparison intrinsic", &FPI);
6299     break;
6300   }
6301 
6302   case Intrinsic::experimental_constrained_fptosi:
6303   case Intrinsic::experimental_constrained_fptoui: {
6304     Value *Operand = FPI.getArgOperand(0);
6305     ElementCount SrcEC;
6306     Check(Operand->getType()->isFPOrFPVectorTy(),
6307           "Intrinsic first argument must be floating point", &FPI);
6308     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6309       SrcEC = cast<VectorType>(OperandT)->getElementCount();
6310     }
6311 
6312     Operand = &FPI;
6313     Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6314           "Intrinsic first argument and result disagree on vector use", &FPI);
6315     Check(Operand->getType()->isIntOrIntVectorTy(),
6316           "Intrinsic result must be an integer", &FPI);
6317     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6318       Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6319             "Intrinsic first argument and result vector lengths must be equal",
6320             &FPI);
6321     }
6322   }
6323     break;
6324 
6325   case Intrinsic::experimental_constrained_sitofp:
6326   case Intrinsic::experimental_constrained_uitofp: {
6327     Value *Operand = FPI.getArgOperand(0);
6328     ElementCount SrcEC;
6329     Check(Operand->getType()->isIntOrIntVectorTy(),
6330           "Intrinsic first argument must be integer", &FPI);
6331     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6332       SrcEC = cast<VectorType>(OperandT)->getElementCount();
6333     }
6334 
6335     Operand = &FPI;
6336     Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6337           "Intrinsic first argument and result disagree on vector use", &FPI);
6338     Check(Operand->getType()->isFPOrFPVectorTy(),
6339           "Intrinsic result must be a floating point", &FPI);
6340     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6341       Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6342             "Intrinsic first argument and result vector lengths must be equal",
6343             &FPI);
6344     }
6345   } break;
6346 
6347   case Intrinsic::experimental_constrained_fptrunc:
6348   case Intrinsic::experimental_constrained_fpext: {
6349     Value *Operand = FPI.getArgOperand(0);
6350     Type *OperandTy = Operand->getType();
6351     Value *Result = &FPI;
6352     Type *ResultTy = Result->getType();
6353     Check(OperandTy->isFPOrFPVectorTy(),
6354           "Intrinsic first argument must be FP or FP vector", &FPI);
6355     Check(ResultTy->isFPOrFPVectorTy(),
6356           "Intrinsic result must be FP or FP vector", &FPI);
6357     Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6358           "Intrinsic first argument and result disagree on vector use", &FPI);
6359     if (OperandTy->isVectorTy()) {
6360       Check(cast<VectorType>(OperandTy)->getElementCount() ==
6361                 cast<VectorType>(ResultTy)->getElementCount(),
6362             "Intrinsic first argument and result vector lengths must be equal",
6363             &FPI);
6364     }
6365     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6366       Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6367             "Intrinsic first argument's type must be larger than result type",
6368             &FPI);
6369     } else {
6370       Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6371             "Intrinsic first argument's type must be smaller than result type",
6372             &FPI);
6373     }
6374   }
6375     break;
6376 
6377   default:
6378     break;
6379   }
6380 
6381   // If a non-metadata argument is passed in a metadata slot then the
6382   // error will be caught earlier when the incorrect argument doesn't
6383   // match the specification in the intrinsic call table. Thus, no
6384   // argument type check is needed here.
6385 
6386   Check(FPI.getExceptionBehavior().has_value(),
6387         "invalid exception behavior argument", &FPI);
6388   if (HasRoundingMD) {
6389     Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6390           &FPI);
6391   }
6392 }
6393 
6394 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6395   auto *MD = DII.getRawLocation();
6396   CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6397               (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6398           "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6399   CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6400           "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6401           DII.getRawVariable());
6402   CheckDI(isa<DIExpression>(DII.getRawExpression()),
6403           "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6404           DII.getRawExpression());
6405 
6406   if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6407     CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6408             "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6409             DAI->getRawAssignID());
6410     const auto *RawAddr = DAI->getRawAddress();
6411     CheckDI(
6412         isa<ValueAsMetadata>(RawAddr) ||
6413             (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6414         "invalid llvm.dbg.assign intrinsic address", &DII,
6415         DAI->getRawAddress());
6416     CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6417             "invalid llvm.dbg.assign intrinsic address expression", &DII,
6418             DAI->getRawAddressExpression());
6419     // All of the linked instructions should be in the same function as DII.
6420     for (Instruction *I : at::getAssignmentInsts(DAI))
6421       CheckDI(DAI->getFunction() == I->getFunction(),
6422               "inst not in same function as dbg.assign", I, DAI);
6423   }
6424 
6425   // Ignore broken !dbg attachments; they're checked elsewhere.
6426   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6427     if (!isa<DILocation>(N))
6428       return;
6429 
6430   BasicBlock *BB = DII.getParent();
6431   Function *F = BB ? BB->getParent() : nullptr;
6432 
6433   // The scopes for variables and !dbg attachments must agree.
6434   DILocalVariable *Var = DII.getVariable();
6435   DILocation *Loc = DII.getDebugLoc();
6436   CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6437           &DII, BB, F);
6438 
6439   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6440   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6441   if (!VarSP || !LocSP)
6442     return; // Broken scope chains are checked elsewhere.
6443 
6444   CheckDI(VarSP == LocSP,
6445           "mismatched subprogram between llvm.dbg." + Kind +
6446               " variable and !dbg attachment",
6447           &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6448           Loc->getScope()->getSubprogram());
6449 
6450   // This check is redundant with one in visitLocalVariable().
6451   CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6452           Var->getRawType());
6453   verifyFnArgs(DII);
6454 }
6455 
6456 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6457   CheckDI(isa<DILabel>(DLI.getRawLabel()),
6458           "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6459           DLI.getRawLabel());
6460 
6461   // Ignore broken !dbg attachments; they're checked elsewhere.
6462   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6463     if (!isa<DILocation>(N))
6464       return;
6465 
6466   BasicBlock *BB = DLI.getParent();
6467   Function *F = BB ? BB->getParent() : nullptr;
6468 
6469   // The scopes for variables and !dbg attachments must agree.
6470   DILabel *Label = DLI.getLabel();
6471   DILocation *Loc = DLI.getDebugLoc();
6472   Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6473         BB, F);
6474 
6475   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6476   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6477   if (!LabelSP || !LocSP)
6478     return;
6479 
6480   CheckDI(LabelSP == LocSP,
6481           "mismatched subprogram between llvm.dbg." + Kind +
6482               " label and !dbg attachment",
6483           &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6484           Loc->getScope()->getSubprogram());
6485 }
6486 
6487 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
6488   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
6489   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6490 
6491   // We don't know whether this intrinsic verified correctly.
6492   if (!V || !E || !E->isValid())
6493     return;
6494 
6495   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6496   auto Fragment = E->getFragmentInfo();
6497   if (!Fragment)
6498     return;
6499 
6500   // The frontend helps out GDB by emitting the members of local anonymous
6501   // unions as artificial local variables with shared storage. When SROA splits
6502   // the storage for artificial local variables that are smaller than the entire
6503   // union, the overhang piece will be outside of the allotted space for the
6504   // variable and this check fails.
6505   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6506   if (V->isArtificial())
6507     return;
6508 
6509   verifyFragmentExpression(*V, *Fragment, &I);
6510 }
6511 
6512 template <typename ValueOrMetadata>
6513 void Verifier::verifyFragmentExpression(const DIVariable &V,
6514                                         DIExpression::FragmentInfo Fragment,
6515                                         ValueOrMetadata *Desc) {
6516   // If there's no size, the type is broken, but that should be checked
6517   // elsewhere.
6518   auto VarSize = V.getSizeInBits();
6519   if (!VarSize)
6520     return;
6521 
6522   unsigned FragSize = Fragment.SizeInBits;
6523   unsigned FragOffset = Fragment.OffsetInBits;
6524   CheckDI(FragSize + FragOffset <= *VarSize,
6525           "fragment is larger than or outside of variable", Desc, &V);
6526   CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
6527 }
6528 
6529 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
6530   // This function does not take the scope of noninlined function arguments into
6531   // account. Don't run it if current function is nodebug, because it may
6532   // contain inlined debug intrinsics.
6533   if (!HasDebugInfo)
6534     return;
6535 
6536   // For performance reasons only check non-inlined ones.
6537   if (I.getDebugLoc()->getInlinedAt())
6538     return;
6539 
6540   DILocalVariable *Var = I.getVariable();
6541   CheckDI(Var, "dbg intrinsic without variable");
6542 
6543   unsigned ArgNo = Var->getArg();
6544   if (!ArgNo)
6545     return;
6546 
6547   // Verify there are no duplicate function argument debug info entries.
6548   // These will cause hard-to-debug assertions in the DWARF backend.
6549   if (DebugFnArgs.size() < ArgNo)
6550     DebugFnArgs.resize(ArgNo, nullptr);
6551 
6552   auto *Prev = DebugFnArgs[ArgNo - 1];
6553   DebugFnArgs[ArgNo - 1] = Var;
6554   CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
6555           Prev, Var);
6556 }
6557 
6558 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
6559   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6560 
6561   // We don't know whether this intrinsic verified correctly.
6562   if (!E || !E->isValid())
6563     return;
6564 
6565   if (isa<ValueAsMetadata>(I.getRawLocation())) {
6566     Value *VarValue = I.getVariableLocationOp(0);
6567     if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
6568       return;
6569     // We allow EntryValues for swift async arguments, as they have an
6570     // ABI-guarantee to be turned into a specific register.
6571     if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
6572         ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
6573       return;
6574   }
6575 
6576   CheckDI(!E->isEntryValue(),
6577           "Entry values are only allowed in MIR unless they target a "
6578           "swiftasync Argument",
6579           &I);
6580 }
6581 
6582 void Verifier::verifyCompileUnits() {
6583   // When more than one Module is imported into the same context, such as during
6584   // an LTO build before linking the modules, ODR type uniquing may cause types
6585   // to point to a different CU. This check does not make sense in this case.
6586   if (M.getContext().isODRUniquingDebugTypes())
6587     return;
6588   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
6589   SmallPtrSet<const Metadata *, 2> Listed;
6590   if (CUs)
6591     Listed.insert(CUs->op_begin(), CUs->op_end());
6592   for (const auto *CU : CUVisited)
6593     CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
6594   CUVisited.clear();
6595 }
6596 
6597 void Verifier::verifyDeoptimizeCallingConvs() {
6598   if (DeoptimizeDeclarations.empty())
6599     return;
6600 
6601   const Function *First = DeoptimizeDeclarations[0];
6602   for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
6603     Check(First->getCallingConv() == F->getCallingConv(),
6604           "All llvm.experimental.deoptimize declarations must have the same "
6605           "calling convention",
6606           First, F);
6607   }
6608 }
6609 
6610 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
6611                                         const OperandBundleUse &BU) {
6612   FunctionType *FTy = Call.getFunctionType();
6613 
6614   Check((FTy->getReturnType()->isPointerTy() ||
6615          (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
6616         "a call with operand bundle \"clang.arc.attachedcall\" must call a "
6617         "function returning a pointer or a non-returning function that has a "
6618         "void return type",
6619         Call);
6620 
6621   Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
6622         "operand bundle \"clang.arc.attachedcall\" requires one function as "
6623         "an argument",
6624         Call);
6625 
6626   auto *Fn = cast<Function>(BU.Inputs.front());
6627   Intrinsic::ID IID = Fn->getIntrinsicID();
6628 
6629   if (IID) {
6630     Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
6631            IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
6632           "invalid function argument", Call);
6633   } else {
6634     StringRef FnName = Fn->getName();
6635     Check((FnName == "objc_retainAutoreleasedReturnValue" ||
6636            FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
6637           "invalid function argument", Call);
6638   }
6639 }
6640 
6641 void Verifier::verifyNoAliasScopeDecl() {
6642   if (NoAliasScopeDecls.empty())
6643     return;
6644 
6645   // only a single scope must be declared at a time.
6646   for (auto *II : NoAliasScopeDecls) {
6647     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
6648            "Not a llvm.experimental.noalias.scope.decl ?");
6649     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
6650         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6651     Check(ScopeListMV != nullptr,
6652           "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
6653           "argument",
6654           II);
6655 
6656     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
6657     Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
6658     Check(ScopeListMD->getNumOperands() == 1,
6659           "!id.scope.list must point to a list with a single scope", II);
6660     visitAliasScopeListMetadata(ScopeListMD);
6661   }
6662 
6663   // Only check the domination rule when requested. Once all passes have been
6664   // adapted this option can go away.
6665   if (!VerifyNoAliasScopeDomination)
6666     return;
6667 
6668   // Now sort the intrinsics based on the scope MDNode so that declarations of
6669   // the same scopes are next to each other.
6670   auto GetScope = [](IntrinsicInst *II) {
6671     const auto *ScopeListMV = cast<MetadataAsValue>(
6672         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6673     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
6674   };
6675 
6676   // We are sorting on MDNode pointers here. For valid input IR this is ok.
6677   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
6678   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
6679     return GetScope(Lhs) < GetScope(Rhs);
6680   };
6681 
6682   llvm::sort(NoAliasScopeDecls, Compare);
6683 
6684   // Go over the intrinsics and check that for the same scope, they are not
6685   // dominating each other.
6686   auto ItCurrent = NoAliasScopeDecls.begin();
6687   while (ItCurrent != NoAliasScopeDecls.end()) {
6688     auto CurScope = GetScope(*ItCurrent);
6689     auto ItNext = ItCurrent;
6690     do {
6691       ++ItNext;
6692     } while (ItNext != NoAliasScopeDecls.end() &&
6693              GetScope(*ItNext) == CurScope);
6694 
6695     // [ItCurrent, ItNext) represents the declarations for the same scope.
6696     // Ensure they are not dominating each other.. but only if it is not too
6697     // expensive.
6698     if (ItNext - ItCurrent < 32)
6699       for (auto *I : llvm::make_range(ItCurrent, ItNext))
6700         for (auto *J : llvm::make_range(ItCurrent, ItNext))
6701           if (I != J)
6702             Check(!DT.dominates(I, J),
6703                   "llvm.experimental.noalias.scope.decl dominates another one "
6704                   "with the same scope",
6705                   I);
6706     ItCurrent = ItNext;
6707   }
6708 }
6709 
6710 //===----------------------------------------------------------------------===//
6711 //  Implement the public interfaces to this file...
6712 //===----------------------------------------------------------------------===//
6713 
6714 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
6715   Function &F = const_cast<Function &>(f);
6716 
6717   // Don't use a raw_null_ostream.  Printing IR is expensive.
6718   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
6719 
6720   // Note that this function's return value is inverted from what you would
6721   // expect of a function called "verify".
6722   return !V.verify(F);
6723 }
6724 
6725 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
6726                         bool *BrokenDebugInfo) {
6727   // Don't use a raw_null_ostream.  Printing IR is expensive.
6728   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
6729 
6730   bool Broken = false;
6731   for (const Function &F : M)
6732     Broken |= !V.verify(F);
6733 
6734   Broken |= !V.verify();
6735   if (BrokenDebugInfo)
6736     *BrokenDebugInfo = V.hasBrokenDebugInfo();
6737   // Note that this function's return value is inverted from what you would
6738   // expect of a function called "verify".
6739   return Broken;
6740 }
6741 
6742 namespace {
6743 
6744 struct VerifierLegacyPass : public FunctionPass {
6745   static char ID;
6746 
6747   std::unique_ptr<Verifier> V;
6748   bool FatalErrors = true;
6749 
6750   VerifierLegacyPass() : FunctionPass(ID) {
6751     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6752   }
6753   explicit VerifierLegacyPass(bool FatalErrors)
6754       : FunctionPass(ID),
6755         FatalErrors(FatalErrors) {
6756     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6757   }
6758 
6759   bool doInitialization(Module &M) override {
6760     V = std::make_unique<Verifier>(
6761         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
6762     return false;
6763   }
6764 
6765   bool runOnFunction(Function &F) override {
6766     if (!V->verify(F) && FatalErrors) {
6767       errs() << "in function " << F.getName() << '\n';
6768       report_fatal_error("Broken function found, compilation aborted!");
6769     }
6770     return false;
6771   }
6772 
6773   bool doFinalization(Module &M) override {
6774     bool HasErrors = false;
6775     for (Function &F : M)
6776       if (F.isDeclaration())
6777         HasErrors |= !V->verify(F);
6778 
6779     HasErrors |= !V->verify();
6780     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
6781       report_fatal_error("Broken module found, compilation aborted!");
6782     return false;
6783   }
6784 
6785   void getAnalysisUsage(AnalysisUsage &AU) const override {
6786     AU.setPreservesAll();
6787   }
6788 };
6789 
6790 } // end anonymous namespace
6791 
6792 /// Helper to issue failure from the TBAA verification
6793 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
6794   if (Diagnostic)
6795     return Diagnostic->CheckFailed(Args...);
6796 }
6797 
6798 #define CheckTBAA(C, ...)                                                      \
6799   do {                                                                         \
6800     if (!(C)) {                                                                \
6801       CheckFailed(__VA_ARGS__);                                                \
6802       return false;                                                            \
6803     }                                                                          \
6804   } while (false)
6805 
6806 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
6807 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
6808 /// struct-type node describing an aggregate data structure (like a struct).
6809 TBAAVerifier::TBAABaseNodeSummary
6810 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6811                                  bool IsNewFormat) {
6812   if (BaseNode->getNumOperands() < 2) {
6813     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6814     return {true, ~0u};
6815   }
6816 
6817   auto Itr = TBAABaseNodes.find(BaseNode);
6818   if (Itr != TBAABaseNodes.end())
6819     return Itr->second;
6820 
6821   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6822   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6823   (void)InsertResult;
6824   assert(InsertResult.second && "We just checked!");
6825   return Result;
6826 }
6827 
6828 TBAAVerifier::TBAABaseNodeSummary
6829 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6830                                      bool IsNewFormat) {
6831   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6832 
6833   if (BaseNode->getNumOperands() == 2) {
6834     // Scalar nodes can only be accessed at offset 0.
6835     return isValidScalarTBAANode(BaseNode)
6836                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6837                : InvalidNode;
6838   }
6839 
6840   if (IsNewFormat) {
6841     if (BaseNode->getNumOperands() % 3 != 0) {
6842       CheckFailed("Access tag nodes must have the number of operands that is a "
6843                   "multiple of 3!", BaseNode);
6844       return InvalidNode;
6845     }
6846   } else {
6847     if (BaseNode->getNumOperands() % 2 != 1) {
6848       CheckFailed("Struct tag nodes must have an odd number of operands!",
6849                   BaseNode);
6850       return InvalidNode;
6851     }
6852   }
6853 
6854   // Check the type size field.
6855   if (IsNewFormat) {
6856     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6857         BaseNode->getOperand(1));
6858     if (!TypeSizeNode) {
6859       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6860       return InvalidNode;
6861     }
6862   }
6863 
6864   // Check the type name field. In the new format it can be anything.
6865   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6866     CheckFailed("Struct tag nodes have a string as their first operand",
6867                 BaseNode);
6868     return InvalidNode;
6869   }
6870 
6871   bool Failed = false;
6872 
6873   std::optional<APInt> PrevOffset;
6874   unsigned BitWidth = ~0u;
6875 
6876   // We've already checked that BaseNode is not a degenerate root node with one
6877   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6878   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6879   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6880   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6881            Idx += NumOpsPerField) {
6882     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6883     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6884     if (!isa<MDNode>(FieldTy)) {
6885       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6886       Failed = true;
6887       continue;
6888     }
6889 
6890     auto *OffsetEntryCI =
6891         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6892     if (!OffsetEntryCI) {
6893       CheckFailed("Offset entries must be constants!", &I, BaseNode);
6894       Failed = true;
6895       continue;
6896     }
6897 
6898     if (BitWidth == ~0u)
6899       BitWidth = OffsetEntryCI->getBitWidth();
6900 
6901     if (OffsetEntryCI->getBitWidth() != BitWidth) {
6902       CheckFailed(
6903           "Bitwidth between the offsets and struct type entries must match", &I,
6904           BaseNode);
6905       Failed = true;
6906       continue;
6907     }
6908 
6909     // NB! As far as I can tell, we generate a non-strictly increasing offset
6910     // sequence only from structs that have zero size bit fields.  When
6911     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6912     // pick the field lexically the latest in struct type metadata node.  This
6913     // mirrors the actual behavior of the alias analysis implementation.
6914     bool IsAscending =
6915         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6916 
6917     if (!IsAscending) {
6918       CheckFailed("Offsets must be increasing!", &I, BaseNode);
6919       Failed = true;
6920     }
6921 
6922     PrevOffset = OffsetEntryCI->getValue();
6923 
6924     if (IsNewFormat) {
6925       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6926           BaseNode->getOperand(Idx + 2));
6927       if (!MemberSizeNode) {
6928         CheckFailed("Member size entries must be constants!", &I, BaseNode);
6929         Failed = true;
6930         continue;
6931       }
6932     }
6933   }
6934 
6935   return Failed ? InvalidNode
6936                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6937 }
6938 
6939 static bool IsRootTBAANode(const MDNode *MD) {
6940   return MD->getNumOperands() < 2;
6941 }
6942 
6943 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6944                                  SmallPtrSetImpl<const MDNode *> &Visited) {
6945   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6946     return false;
6947 
6948   if (!isa<MDString>(MD->getOperand(0)))
6949     return false;
6950 
6951   if (MD->getNumOperands() == 3) {
6952     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6953     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6954       return false;
6955   }
6956 
6957   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6958   return Parent && Visited.insert(Parent).second &&
6959          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6960 }
6961 
6962 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6963   auto ResultIt = TBAAScalarNodes.find(MD);
6964   if (ResultIt != TBAAScalarNodes.end())
6965     return ResultIt->second;
6966 
6967   SmallPtrSet<const MDNode *, 4> Visited;
6968   bool Result = IsScalarTBAANodeImpl(MD, Visited);
6969   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6970   (void)InsertResult;
6971   assert(InsertResult.second && "Just checked!");
6972 
6973   return Result;
6974 }
6975 
6976 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
6977 /// Offset in place to be the offset within the field node returned.
6978 ///
6979 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6980 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6981                                                    const MDNode *BaseNode,
6982                                                    APInt &Offset,
6983                                                    bool IsNewFormat) {
6984   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6985 
6986   // Scalar nodes have only one possible "field" -- their parent in the access
6987   // hierarchy.  Offset must be zero at this point, but our caller is supposed
6988   // to check that.
6989   if (BaseNode->getNumOperands() == 2)
6990     return cast<MDNode>(BaseNode->getOperand(1));
6991 
6992   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6993   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6994   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6995            Idx += NumOpsPerField) {
6996     auto *OffsetEntryCI =
6997         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6998     if (OffsetEntryCI->getValue().ugt(Offset)) {
6999       if (Idx == FirstFieldOpNo) {
7000         CheckFailed("Could not find TBAA parent in struct type node", &I,
7001                     BaseNode, &Offset);
7002         return nullptr;
7003       }
7004 
7005       unsigned PrevIdx = Idx - NumOpsPerField;
7006       auto *PrevOffsetEntryCI =
7007           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
7008       Offset -= PrevOffsetEntryCI->getValue();
7009       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
7010     }
7011   }
7012 
7013   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
7014   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
7015       BaseNode->getOperand(LastIdx + 1));
7016   Offset -= LastOffsetEntryCI->getValue();
7017   return cast<MDNode>(BaseNode->getOperand(LastIdx));
7018 }
7019 
7020 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
7021   if (!Type || Type->getNumOperands() < 3)
7022     return false;
7023 
7024   // In the new format type nodes shall have a reference to the parent type as
7025   // its first operand.
7026   return isa_and_nonnull<MDNode>(Type->getOperand(0));
7027 }
7028 
7029 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
7030   CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
7031             &I, MD);
7032 
7033   CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
7034                 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
7035                 isa<AtomicCmpXchgInst>(I),
7036             "This instruction shall not have a TBAA access tag!", &I);
7037 
7038   bool IsStructPathTBAA =
7039       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
7040 
7041   CheckTBAA(IsStructPathTBAA,
7042             "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7043             &I);
7044 
7045   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
7046   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
7047 
7048   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
7049 
7050   if (IsNewFormat) {
7051     CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
7052               "Access tag metadata must have either 4 or 5 operands", &I, MD);
7053   } else {
7054     CheckTBAA(MD->getNumOperands() < 5,
7055               "Struct tag metadata must have either 3 or 4 operands", &I, MD);
7056   }
7057 
7058   // Check the access size field.
7059   if (IsNewFormat) {
7060     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7061         MD->getOperand(3));
7062     CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
7063   }
7064 
7065   // Check the immutability flag.
7066   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
7067   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
7068     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
7069         MD->getOperand(ImmutabilityFlagOpNo));
7070     CheckTBAA(IsImmutableCI,
7071               "Immutability tag on struct tag metadata must be a constant", &I,
7072               MD);
7073     CheckTBAA(
7074         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
7075         "Immutability part of the struct tag metadata must be either 0 or 1",
7076         &I, MD);
7077   }
7078 
7079   CheckTBAA(BaseNode && AccessType,
7080             "Malformed struct tag metadata: base and access-type "
7081             "should be non-null and point to Metadata nodes",
7082             &I, MD, BaseNode, AccessType);
7083 
7084   if (!IsNewFormat) {
7085     CheckTBAA(isValidScalarTBAANode(AccessType),
7086               "Access type node must be a valid scalar type", &I, MD,
7087               AccessType);
7088   }
7089 
7090   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
7091   CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
7092 
7093   APInt Offset = OffsetCI->getValue();
7094   bool SeenAccessTypeInPath = false;
7095 
7096   SmallPtrSet<MDNode *, 4> StructPath;
7097 
7098   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
7099        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
7100                                                IsNewFormat)) {
7101     if (!StructPath.insert(BaseNode).second) {
7102       CheckFailed("Cycle detected in struct path", &I, MD);
7103       return false;
7104     }
7105 
7106     bool Invalid;
7107     unsigned BaseNodeBitWidth;
7108     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
7109                                                              IsNewFormat);
7110 
7111     // If the base node is invalid in itself, then we've already printed all the
7112     // errors we wanted to print.
7113     if (Invalid)
7114       return false;
7115 
7116     SeenAccessTypeInPath |= BaseNode == AccessType;
7117 
7118     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
7119       CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
7120                 &I, MD, &Offset);
7121 
7122     CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
7123                   (BaseNodeBitWidth == 0 && Offset == 0) ||
7124                   (IsNewFormat && BaseNodeBitWidth == ~0u),
7125               "Access bit-width not the same as description bit-width", &I, MD,
7126               BaseNodeBitWidth, Offset.getBitWidth());
7127 
7128     if (IsNewFormat && SeenAccessTypeInPath)
7129       break;
7130   }
7131 
7132   CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
7133             MD);
7134   return true;
7135 }
7136 
7137 char VerifierLegacyPass::ID = 0;
7138 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
7139 
7140 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
7141   return new VerifierLegacyPass(FatalErrors);
7142 }
7143 
7144 AnalysisKey VerifierAnalysis::Key;
7145 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
7146                                                ModuleAnalysisManager &) {
7147   Result Res;
7148   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
7149   return Res;
7150 }
7151 
7152 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
7153                                                FunctionAnalysisManager &) {
7154   return { llvm::verifyFunction(F, &dbgs()), false };
7155 }
7156 
7157 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
7158   auto Res = AM.getResult<VerifierAnalysis>(M);
7159   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
7160     report_fatal_error("Broken module found, compilation aborted!");
7161 
7162   return PreservedAnalyses::all();
7163 }
7164 
7165 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
7166   auto res = AM.getResult<VerifierAnalysis>(F);
7167   if (res.IRBroken && FatalErrors)
7168     report_fatal_error("Broken function found, compilation aborted!");
7169 
7170   return PreservedAnalyses::all();
7171 }
7172