1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // basic correctness checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * All basic blocks should only end with terminator insts, not contain them 27 // * The entry node to a function must not have predecessors 28 // * All Instructions must be embedded into a basic block 29 // * Functions cannot take a void-typed parameter 30 // * Verify that a function's argument list agrees with it's declared type. 31 // * It is illegal to specify a name for a void value. 32 // * It is illegal to have a internal global value with no initializer 33 // * It is illegal to have a ret instruction that returns a value that does not 34 // agree with the function return value type. 35 // * Function call argument types match the function prototype 36 // * A landing pad is defined by a landingpad instruction, and can be jumped to 37 // only by the unwind edge of an invoke instruction. 38 // * A landingpad instruction must be the first non-PHI instruction in the 39 // block. 40 // * Landingpad instructions must be in a function with a personality function. 41 // * Convergence control intrinsics are introduced in ConvergentOperations.rst. 42 // The applied restrictions are too numerous to list here. 43 // * The convergence entry intrinsic and the loop heart must be the first 44 // non-PHI instruction in their respective block. This does not conflict with 45 // the landing pads, since these two kinds cannot occur in the same block. 46 // * All other things that are tested by asserts spread about the code... 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/IR/Verifier.h" 51 #include "llvm/ADT/APFloat.h" 52 #include "llvm/ADT/APInt.h" 53 #include "llvm/ADT/ArrayRef.h" 54 #include "llvm/ADT/DenseMap.h" 55 #include "llvm/ADT/MapVector.h" 56 #include "llvm/ADT/PostOrderIterator.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallPtrSet.h" 59 #include "llvm/ADT/SmallSet.h" 60 #include "llvm/ADT/SmallVector.h" 61 #include "llvm/ADT/StringExtras.h" 62 #include "llvm/ADT/StringMap.h" 63 #include "llvm/ADT/StringRef.h" 64 #include "llvm/ADT/Twine.h" 65 #include "llvm/BinaryFormat/Dwarf.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/AttributeMask.h" 68 #include "llvm/IR/Attributes.h" 69 #include "llvm/IR/BasicBlock.h" 70 #include "llvm/IR/CFG.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Comdat.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/ConvergenceVerifier.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfo.h" 79 #include "llvm/IR/DebugInfoMetadata.h" 80 #include "llvm/IR/DebugLoc.h" 81 #include "llvm/IR/DerivedTypes.h" 82 #include "llvm/IR/Dominators.h" 83 #include "llvm/IR/EHPersonalities.h" 84 #include "llvm/IR/Function.h" 85 #include "llvm/IR/GCStrategy.h" 86 #include "llvm/IR/GlobalAlias.h" 87 #include "llvm/IR/GlobalValue.h" 88 #include "llvm/IR/GlobalVariable.h" 89 #include "llvm/IR/InlineAsm.h" 90 #include "llvm/IR/InstVisitor.h" 91 #include "llvm/IR/InstrTypes.h" 92 #include "llvm/IR/Instruction.h" 93 #include "llvm/IR/Instructions.h" 94 #include "llvm/IR/IntrinsicInst.h" 95 #include "llvm/IR/Intrinsics.h" 96 #include "llvm/IR/IntrinsicsAArch64.h" 97 #include "llvm/IR/IntrinsicsAMDGPU.h" 98 #include "llvm/IR/IntrinsicsARM.h" 99 #include "llvm/IR/IntrinsicsNVPTX.h" 100 #include "llvm/IR/IntrinsicsWebAssembly.h" 101 #include "llvm/IR/LLVMContext.h" 102 #include "llvm/IR/Metadata.h" 103 #include "llvm/IR/Module.h" 104 #include "llvm/IR/ModuleSlotTracker.h" 105 #include "llvm/IR/PassManager.h" 106 #include "llvm/IR/Statepoint.h" 107 #include "llvm/IR/Type.h" 108 #include "llvm/IR/Use.h" 109 #include "llvm/IR/User.h" 110 #include "llvm/IR/VFABIDemangler.h" 111 #include "llvm/IR/Value.h" 112 #include "llvm/InitializePasses.h" 113 #include "llvm/Pass.h" 114 #include "llvm/Support/AtomicOrdering.h" 115 #include "llvm/Support/Casting.h" 116 #include "llvm/Support/CommandLine.h" 117 #include "llvm/Support/ErrorHandling.h" 118 #include "llvm/Support/MathExtras.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include <algorithm> 121 #include <cassert> 122 #include <cstdint> 123 #include <memory> 124 #include <optional> 125 #include <string> 126 #include <utility> 127 128 using namespace llvm; 129 130 static cl::opt<bool> VerifyNoAliasScopeDomination( 131 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 132 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 133 "scopes are not dominating")); 134 135 namespace llvm { 136 137 struct VerifierSupport { 138 raw_ostream *OS; 139 const Module &M; 140 ModuleSlotTracker MST; 141 Triple TT; 142 const DataLayout &DL; 143 LLVMContext &Context; 144 145 /// Track the brokenness of the module while recursively visiting. 146 bool Broken = false; 147 /// Broken debug info can be "recovered" from by stripping the debug info. 148 bool BrokenDebugInfo = false; 149 /// Whether to treat broken debug info as an error. 150 bool TreatBrokenDebugInfoAsError = true; 151 152 explicit VerifierSupport(raw_ostream *OS, const Module &M) 153 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 154 Context(M.getContext()) {} 155 156 private: 157 void Write(const Module *M) { 158 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 159 } 160 161 void Write(const Value *V) { 162 if (V) 163 Write(*V); 164 } 165 166 void Write(const Value &V) { 167 if (isa<Instruction>(V)) { 168 V.print(*OS, MST); 169 *OS << '\n'; 170 } else { 171 V.printAsOperand(*OS, true, MST); 172 *OS << '\n'; 173 } 174 } 175 176 void Write(const DPValue *V) { 177 if (V) 178 V->print(*OS, MST, false); 179 } 180 181 void Write(const Metadata *MD) { 182 if (!MD) 183 return; 184 MD->print(*OS, MST, &M); 185 *OS << '\n'; 186 } 187 188 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 189 Write(MD.get()); 190 } 191 192 void Write(const NamedMDNode *NMD) { 193 if (!NMD) 194 return; 195 NMD->print(*OS, MST); 196 *OS << '\n'; 197 } 198 199 void Write(Type *T) { 200 if (!T) 201 return; 202 *OS << ' ' << *T; 203 } 204 205 void Write(const Comdat *C) { 206 if (!C) 207 return; 208 *OS << *C; 209 } 210 211 void Write(const APInt *AI) { 212 if (!AI) 213 return; 214 *OS << *AI << '\n'; 215 } 216 217 void Write(const unsigned i) { *OS << i << '\n'; } 218 219 // NOLINTNEXTLINE(readability-identifier-naming) 220 void Write(const Attribute *A) { 221 if (!A) 222 return; 223 *OS << A->getAsString() << '\n'; 224 } 225 226 // NOLINTNEXTLINE(readability-identifier-naming) 227 void Write(const AttributeSet *AS) { 228 if (!AS) 229 return; 230 *OS << AS->getAsString() << '\n'; 231 } 232 233 // NOLINTNEXTLINE(readability-identifier-naming) 234 void Write(const AttributeList *AL) { 235 if (!AL) 236 return; 237 AL->print(*OS); 238 } 239 240 void Write(Printable P) { *OS << P << '\n'; } 241 242 template <typename T> void Write(ArrayRef<T> Vs) { 243 for (const T &V : Vs) 244 Write(V); 245 } 246 247 template <typename T1, typename... Ts> 248 void WriteTs(const T1 &V1, const Ts &... Vs) { 249 Write(V1); 250 WriteTs(Vs...); 251 } 252 253 template <typename... Ts> void WriteTs() {} 254 255 public: 256 /// A check failed, so printout out the condition and the message. 257 /// 258 /// This provides a nice place to put a breakpoint if you want to see why 259 /// something is not correct. 260 void CheckFailed(const Twine &Message) { 261 if (OS) 262 *OS << Message << '\n'; 263 Broken = true; 264 } 265 266 /// A check failed (with values to print). 267 /// 268 /// This calls the Message-only version so that the above is easier to set a 269 /// breakpoint on. 270 template <typename T1, typename... Ts> 271 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 272 CheckFailed(Message); 273 if (OS) 274 WriteTs(V1, Vs...); 275 } 276 277 /// A debug info check failed. 278 void DebugInfoCheckFailed(const Twine &Message) { 279 if (OS) 280 *OS << Message << '\n'; 281 Broken |= TreatBrokenDebugInfoAsError; 282 BrokenDebugInfo = true; 283 } 284 285 /// A debug info check failed (with values to print). 286 template <typename T1, typename... Ts> 287 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 288 const Ts &... Vs) { 289 DebugInfoCheckFailed(Message); 290 if (OS) 291 WriteTs(V1, Vs...); 292 } 293 }; 294 295 } // namespace llvm 296 297 namespace { 298 299 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 300 friend class InstVisitor<Verifier>; 301 302 // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so 303 // the alignment size should not exceed 2^15. Since encode(Align) 304 // would plus the shift value by 1, the alignment size should 305 // not exceed 2^14, otherwise it can NOT be properly lowered 306 // in backend. 307 static constexpr unsigned ParamMaxAlignment = 1 << 14; 308 DominatorTree DT; 309 310 /// When verifying a basic block, keep track of all of the 311 /// instructions we have seen so far. 312 /// 313 /// This allows us to do efficient dominance checks for the case when an 314 /// instruction has an operand that is an instruction in the same block. 315 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 316 317 /// Keep track of the metadata nodes that have been checked already. 318 SmallPtrSet<const Metadata *, 32> MDNodes; 319 320 /// Keep track which DISubprogram is attached to which function. 321 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 322 323 /// Track all DICompileUnits visited. 324 SmallPtrSet<const Metadata *, 2> CUVisited; 325 326 /// The result type for a landingpad. 327 Type *LandingPadResultTy; 328 329 /// Whether we've seen a call to @llvm.localescape in this function 330 /// already. 331 bool SawFrameEscape; 332 333 /// Whether the current function has a DISubprogram attached to it. 334 bool HasDebugInfo = false; 335 336 /// The current source language. 337 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 338 339 /// Stores the count of how many objects were passed to llvm.localescape for a 340 /// given function and the largest index passed to llvm.localrecover. 341 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 342 343 // Maps catchswitches and cleanuppads that unwind to siblings to the 344 // terminators that indicate the unwind, used to detect cycles therein. 345 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 346 347 /// Cache which blocks are in which funclet, if an EH funclet personality is 348 /// in use. Otherwise empty. 349 DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors; 350 351 /// Cache of constants visited in search of ConstantExprs. 352 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 353 354 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 355 SmallVector<const Function *, 4> DeoptimizeDeclarations; 356 357 /// Cache of attribute lists verified. 358 SmallPtrSet<const void *, 32> AttributeListsVisited; 359 360 // Verify that this GlobalValue is only used in this module. 361 // This map is used to avoid visiting uses twice. We can arrive at a user 362 // twice, if they have multiple operands. In particular for very large 363 // constant expressions, we can arrive at a particular user many times. 364 SmallPtrSet<const Value *, 32> GlobalValueVisited; 365 366 // Keeps track of duplicate function argument debug info. 367 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 368 369 TBAAVerifier TBAAVerifyHelper; 370 ConvergenceVerifier ConvergenceVerifyHelper; 371 372 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 373 374 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 375 376 public: 377 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 378 const Module &M) 379 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 380 SawFrameEscape(false), TBAAVerifyHelper(this) { 381 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 382 } 383 384 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 385 386 bool verify(const Function &F) { 387 assert(F.getParent() == &M && 388 "An instance of this class only works with a specific module!"); 389 390 // First ensure the function is well-enough formed to compute dominance 391 // information, and directly compute a dominance tree. We don't rely on the 392 // pass manager to provide this as it isolates us from a potentially 393 // out-of-date dominator tree and makes it significantly more complex to run 394 // this code outside of a pass manager. 395 // FIXME: It's really gross that we have to cast away constness here. 396 if (!F.empty()) 397 DT.recalculate(const_cast<Function &>(F)); 398 399 for (const BasicBlock &BB : F) { 400 if (!BB.empty() && BB.back().isTerminator()) 401 continue; 402 403 if (OS) { 404 *OS << "Basic Block in function '" << F.getName() 405 << "' does not have terminator!\n"; 406 BB.printAsOperand(*OS, true, MST); 407 *OS << "\n"; 408 } 409 return false; 410 } 411 412 auto FailureCB = [this](const Twine &Message) { 413 this->CheckFailed(Message); 414 }; 415 ConvergenceVerifyHelper.initialize(OS, FailureCB, F); 416 417 Broken = false; 418 // FIXME: We strip const here because the inst visitor strips const. 419 visit(const_cast<Function &>(F)); 420 verifySiblingFuncletUnwinds(); 421 422 if (ConvergenceVerifyHelper.sawTokens()) 423 ConvergenceVerifyHelper.verify(DT); 424 425 InstsInThisBlock.clear(); 426 DebugFnArgs.clear(); 427 LandingPadResultTy = nullptr; 428 SawFrameEscape = false; 429 SiblingFuncletInfo.clear(); 430 verifyNoAliasScopeDecl(); 431 NoAliasScopeDecls.clear(); 432 433 return !Broken; 434 } 435 436 /// Verify the module that this instance of \c Verifier was initialized with. 437 bool verify() { 438 Broken = false; 439 440 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 441 for (const Function &F : M) 442 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 443 DeoptimizeDeclarations.push_back(&F); 444 445 // Now that we've visited every function, verify that we never asked to 446 // recover a frame index that wasn't escaped. 447 verifyFrameRecoverIndices(); 448 for (const GlobalVariable &GV : M.globals()) 449 visitGlobalVariable(GV); 450 451 for (const GlobalAlias &GA : M.aliases()) 452 visitGlobalAlias(GA); 453 454 for (const GlobalIFunc &GI : M.ifuncs()) 455 visitGlobalIFunc(GI); 456 457 for (const NamedMDNode &NMD : M.named_metadata()) 458 visitNamedMDNode(NMD); 459 460 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 461 visitComdat(SMEC.getValue()); 462 463 visitModuleFlags(); 464 visitModuleIdents(); 465 visitModuleCommandLines(); 466 467 verifyCompileUnits(); 468 469 verifyDeoptimizeCallingConvs(); 470 DISubprogramAttachments.clear(); 471 return !Broken; 472 } 473 474 private: 475 /// Whether a metadata node is allowed to be, or contain, a DILocation. 476 enum class AreDebugLocsAllowed { No, Yes }; 477 478 // Verification methods... 479 void visitGlobalValue(const GlobalValue &GV); 480 void visitGlobalVariable(const GlobalVariable &GV); 481 void visitGlobalAlias(const GlobalAlias &GA); 482 void visitGlobalIFunc(const GlobalIFunc &GI); 483 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 484 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 485 const GlobalAlias &A, const Constant &C); 486 void visitNamedMDNode(const NamedMDNode &NMD); 487 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 488 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 489 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 490 void visitDIArgList(const DIArgList &AL, Function *F); 491 void visitComdat(const Comdat &C); 492 void visitModuleIdents(); 493 void visitModuleCommandLines(); 494 void visitModuleFlags(); 495 void visitModuleFlag(const MDNode *Op, 496 DenseMap<const MDString *, const MDNode *> &SeenIDs, 497 SmallVectorImpl<const MDNode *> &Requirements); 498 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 499 void visitFunction(const Function &F); 500 void visitBasicBlock(BasicBlock &BB); 501 void verifyRangeMetadata(const Value &V, const MDNode *Range, Type *Ty, 502 bool IsAbsoluteSymbol); 503 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 504 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 505 void visitProfMetadata(Instruction &I, MDNode *MD); 506 void visitCallStackMetadata(MDNode *MD); 507 void visitMemProfMetadata(Instruction &I, MDNode *MD); 508 void visitCallsiteMetadata(Instruction &I, MDNode *MD); 509 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD); 510 void visitAnnotationMetadata(MDNode *Annotation); 511 void visitAliasScopeMetadata(const MDNode *MD); 512 void visitAliasScopeListMetadata(const MDNode *MD); 513 void visitAccessGroupMetadata(const MDNode *MD); 514 515 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 516 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 517 #include "llvm/IR/Metadata.def" 518 void visitDIScope(const DIScope &N); 519 void visitDIVariable(const DIVariable &N); 520 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 521 void visitDITemplateParameter(const DITemplateParameter &N); 522 523 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 524 525 // InstVisitor overrides... 526 using InstVisitor<Verifier>::visit; 527 void visit(Instruction &I); 528 529 void visitTruncInst(TruncInst &I); 530 void visitZExtInst(ZExtInst &I); 531 void visitSExtInst(SExtInst &I); 532 void visitFPTruncInst(FPTruncInst &I); 533 void visitFPExtInst(FPExtInst &I); 534 void visitFPToUIInst(FPToUIInst &I); 535 void visitFPToSIInst(FPToSIInst &I); 536 void visitUIToFPInst(UIToFPInst &I); 537 void visitSIToFPInst(SIToFPInst &I); 538 void visitIntToPtrInst(IntToPtrInst &I); 539 void visitPtrToIntInst(PtrToIntInst &I); 540 void visitBitCastInst(BitCastInst &I); 541 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 542 void visitPHINode(PHINode &PN); 543 void visitCallBase(CallBase &Call); 544 void visitUnaryOperator(UnaryOperator &U); 545 void visitBinaryOperator(BinaryOperator &B); 546 void visitICmpInst(ICmpInst &IC); 547 void visitFCmpInst(FCmpInst &FC); 548 void visitExtractElementInst(ExtractElementInst &EI); 549 void visitInsertElementInst(InsertElementInst &EI); 550 void visitShuffleVectorInst(ShuffleVectorInst &EI); 551 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 552 void visitCallInst(CallInst &CI); 553 void visitInvokeInst(InvokeInst &II); 554 void visitGetElementPtrInst(GetElementPtrInst &GEP); 555 void visitLoadInst(LoadInst &LI); 556 void visitStoreInst(StoreInst &SI); 557 void verifyDominatesUse(Instruction &I, unsigned i); 558 void visitInstruction(Instruction &I); 559 void visitTerminator(Instruction &I); 560 void visitBranchInst(BranchInst &BI); 561 void visitReturnInst(ReturnInst &RI); 562 void visitSwitchInst(SwitchInst &SI); 563 void visitIndirectBrInst(IndirectBrInst &BI); 564 void visitCallBrInst(CallBrInst &CBI); 565 void visitSelectInst(SelectInst &SI); 566 void visitUserOp1(Instruction &I); 567 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 568 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 569 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 570 void visitVPIntrinsic(VPIntrinsic &VPI); 571 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 572 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 573 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 574 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 575 void visitFenceInst(FenceInst &FI); 576 void visitAllocaInst(AllocaInst &AI); 577 void visitExtractValueInst(ExtractValueInst &EVI); 578 void visitInsertValueInst(InsertValueInst &IVI); 579 void visitEHPadPredecessors(Instruction &I); 580 void visitLandingPadInst(LandingPadInst &LPI); 581 void visitResumeInst(ResumeInst &RI); 582 void visitCatchPadInst(CatchPadInst &CPI); 583 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 584 void visitCleanupPadInst(CleanupPadInst &CPI); 585 void visitFuncletPadInst(FuncletPadInst &FPI); 586 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 587 void visitCleanupReturnInst(CleanupReturnInst &CRI); 588 589 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 590 void verifySwiftErrorValue(const Value *SwiftErrorVal); 591 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context); 592 void verifyMustTailCall(CallInst &CI); 593 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 594 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 595 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 596 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 597 const Value *V); 598 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 599 const Value *V, bool IsIntrinsic, bool IsInlineAsm); 600 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 601 602 void visitConstantExprsRecursively(const Constant *EntryC); 603 void visitConstantExpr(const ConstantExpr *CE); 604 void verifyInlineAsmCall(const CallBase &Call); 605 void verifyStatepoint(const CallBase &Call); 606 void verifyFrameRecoverIndices(); 607 void verifySiblingFuncletUnwinds(); 608 609 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 610 template <typename ValueOrMetadata> 611 void verifyFragmentExpression(const DIVariable &V, 612 DIExpression::FragmentInfo Fragment, 613 ValueOrMetadata *Desc); 614 void verifyFnArgs(const DbgVariableIntrinsic &I); 615 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 616 617 /// Module-level debug info verification... 618 void verifyCompileUnits(); 619 620 /// Module-level verification that all @llvm.experimental.deoptimize 621 /// declarations share the same calling convention. 622 void verifyDeoptimizeCallingConvs(); 623 624 void verifyAttachedCallBundle(const CallBase &Call, 625 const OperandBundleUse &BU); 626 627 /// Verify the llvm.experimental.noalias.scope.decl declarations 628 void verifyNoAliasScopeDecl(); 629 }; 630 631 } // end anonymous namespace 632 633 /// We know that cond should be true, if not print an error message. 634 #define Check(C, ...) \ 635 do { \ 636 if (!(C)) { \ 637 CheckFailed(__VA_ARGS__); \ 638 return; \ 639 } \ 640 } while (false) 641 642 /// We know that a debug info condition should be true, if not print 643 /// an error message. 644 #define CheckDI(C, ...) \ 645 do { \ 646 if (!(C)) { \ 647 DebugInfoCheckFailed(__VA_ARGS__); \ 648 return; \ 649 } \ 650 } while (false) 651 652 void Verifier::visit(Instruction &I) { 653 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 654 Check(I.getOperand(i) != nullptr, "Operand is null", &I); 655 InstVisitor<Verifier>::visit(I); 656 } 657 658 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further. 659 static void forEachUser(const Value *User, 660 SmallPtrSet<const Value *, 32> &Visited, 661 llvm::function_ref<bool(const Value *)> Callback) { 662 if (!Visited.insert(User).second) 663 return; 664 665 SmallVector<const Value *> WorkList; 666 append_range(WorkList, User->materialized_users()); 667 while (!WorkList.empty()) { 668 const Value *Cur = WorkList.pop_back_val(); 669 if (!Visited.insert(Cur).second) 670 continue; 671 if (Callback(Cur)) 672 append_range(WorkList, Cur->materialized_users()); 673 } 674 } 675 676 void Verifier::visitGlobalValue(const GlobalValue &GV) { 677 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 678 "Global is external, but doesn't have external or weak linkage!", &GV); 679 680 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) { 681 682 if (MaybeAlign A = GO->getAlign()) { 683 Check(A->value() <= Value::MaximumAlignment, 684 "huge alignment values are unsupported", GO); 685 } 686 687 if (const MDNode *Associated = 688 GO->getMetadata(LLVMContext::MD_associated)) { 689 Check(Associated->getNumOperands() == 1, 690 "associated metadata must have one operand", &GV, Associated); 691 const Metadata *Op = Associated->getOperand(0).get(); 692 Check(Op, "associated metadata must have a global value", GO, Associated); 693 694 const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op); 695 Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated); 696 if (VM) { 697 Check(isa<PointerType>(VM->getValue()->getType()), 698 "associated value must be pointer typed", GV, Associated); 699 700 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases(); 701 Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped), 702 "associated metadata must point to a GlobalObject", GO, Stripped); 703 Check(Stripped != GO, 704 "global values should not associate to themselves", GO, 705 Associated); 706 } 707 } 708 709 // FIXME: Why is getMetadata on GlobalValue protected? 710 if (const MDNode *AbsoluteSymbol = 711 GO->getMetadata(LLVMContext::MD_absolute_symbol)) { 712 verifyRangeMetadata(*GO, AbsoluteSymbol, DL.getIntPtrType(GO->getType()), 713 true); 714 } 715 } 716 717 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 718 "Only global variables can have appending linkage!", &GV); 719 720 if (GV.hasAppendingLinkage()) { 721 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 722 Check(GVar && GVar->getValueType()->isArrayTy(), 723 "Only global arrays can have appending linkage!", GVar); 724 } 725 726 if (GV.isDeclarationForLinker()) 727 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 728 729 if (GV.hasDLLExportStorageClass()) { 730 Check(!GV.hasHiddenVisibility(), 731 "dllexport GlobalValue must have default or protected visibility", 732 &GV); 733 } 734 if (GV.hasDLLImportStorageClass()) { 735 Check(GV.hasDefaultVisibility(), 736 "dllimport GlobalValue must have default visibility", &GV); 737 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!", 738 &GV); 739 740 Check((GV.isDeclaration() && 741 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 742 GV.hasAvailableExternallyLinkage(), 743 "Global is marked as dllimport, but not external", &GV); 744 } 745 746 if (GV.isImplicitDSOLocal()) 747 Check(GV.isDSOLocal(), 748 "GlobalValue with local linkage or non-default " 749 "visibility must be dso_local!", 750 &GV); 751 752 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 753 if (const Instruction *I = dyn_cast<Instruction>(V)) { 754 if (!I->getParent() || !I->getParent()->getParent()) 755 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 756 I); 757 else if (I->getParent()->getParent()->getParent() != &M) 758 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 759 I->getParent()->getParent(), 760 I->getParent()->getParent()->getParent()); 761 return false; 762 } else if (const Function *F = dyn_cast<Function>(V)) { 763 if (F->getParent() != &M) 764 CheckFailed("Global is used by function in a different module", &GV, &M, 765 F, F->getParent()); 766 return false; 767 } 768 return true; 769 }); 770 } 771 772 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 773 if (GV.hasInitializer()) { 774 Check(GV.getInitializer()->getType() == GV.getValueType(), 775 "Global variable initializer type does not match global " 776 "variable type!", 777 &GV); 778 // If the global has common linkage, it must have a zero initializer and 779 // cannot be constant. 780 if (GV.hasCommonLinkage()) { 781 Check(GV.getInitializer()->isNullValue(), 782 "'common' global must have a zero initializer!", &GV); 783 Check(!GV.isConstant(), "'common' global may not be marked constant!", 784 &GV); 785 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 786 } 787 } 788 789 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 790 GV.getName() == "llvm.global_dtors")) { 791 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), 792 "invalid linkage for intrinsic global variable", &GV); 793 Check(GV.materialized_use_empty(), 794 "invalid uses of intrinsic global variable", &GV); 795 796 // Don't worry about emitting an error for it not being an array, 797 // visitGlobalValue will complain on appending non-array. 798 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 799 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 800 PointerType *FuncPtrTy = 801 PointerType::get(Context, DL.getProgramAddressSpace()); 802 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 803 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 804 STy->getTypeAtIndex(1) == FuncPtrTy, 805 "wrong type for intrinsic global variable", &GV); 806 Check(STy->getNumElements() == 3, 807 "the third field of the element type is mandatory, " 808 "specify ptr null to migrate from the obsoleted 2-field form"); 809 Type *ETy = STy->getTypeAtIndex(2); 810 Check(ETy->isPointerTy(), "wrong type for intrinsic global variable", 811 &GV); 812 } 813 } 814 815 if (GV.hasName() && (GV.getName() == "llvm.used" || 816 GV.getName() == "llvm.compiler.used")) { 817 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), 818 "invalid linkage for intrinsic global variable", &GV); 819 Check(GV.materialized_use_empty(), 820 "invalid uses of intrinsic global variable", &GV); 821 822 Type *GVType = GV.getValueType(); 823 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 824 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 825 Check(PTy, "wrong type for intrinsic global variable", &GV); 826 if (GV.hasInitializer()) { 827 const Constant *Init = GV.getInitializer(); 828 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 829 Check(InitArray, "wrong initalizer for intrinsic global variable", 830 Init); 831 for (Value *Op : InitArray->operands()) { 832 Value *V = Op->stripPointerCasts(); 833 Check(isa<GlobalVariable>(V) || isa<Function>(V) || 834 isa<GlobalAlias>(V), 835 Twine("invalid ") + GV.getName() + " member", V); 836 Check(V->hasName(), 837 Twine("members of ") + GV.getName() + " must be named", V); 838 } 839 } 840 } 841 } 842 843 // Visit any debug info attachments. 844 SmallVector<MDNode *, 1> MDs; 845 GV.getMetadata(LLVMContext::MD_dbg, MDs); 846 for (auto *MD : MDs) { 847 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 848 visitDIGlobalVariableExpression(*GVE); 849 else 850 CheckDI(false, "!dbg attachment of global variable must be a " 851 "DIGlobalVariableExpression"); 852 } 853 854 // Scalable vectors cannot be global variables, since we don't know 855 // the runtime size. 856 Check(!GV.getValueType()->isScalableTy(), 857 "Globals cannot contain scalable types", &GV); 858 859 // Check if it's a target extension type that disallows being used as a 860 // global. 861 if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType())) 862 Check(TTy->hasProperty(TargetExtType::CanBeGlobal), 863 "Global @" + GV.getName() + " has illegal target extension type", 864 TTy); 865 866 if (!GV.hasInitializer()) { 867 visitGlobalValue(GV); 868 return; 869 } 870 871 // Walk any aggregate initializers looking for bitcasts between address spaces 872 visitConstantExprsRecursively(GV.getInitializer()); 873 874 visitGlobalValue(GV); 875 } 876 877 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 878 SmallPtrSet<const GlobalAlias*, 4> Visited; 879 Visited.insert(&GA); 880 visitAliaseeSubExpr(Visited, GA, C); 881 } 882 883 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 884 const GlobalAlias &GA, const Constant &C) { 885 if (GA.hasAvailableExternallyLinkage()) { 886 Check(isa<GlobalValue>(C) && 887 cast<GlobalValue>(C).hasAvailableExternallyLinkage(), 888 "available_externally alias must point to available_externally " 889 "global value", 890 &GA); 891 } 892 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 893 if (!GA.hasAvailableExternallyLinkage()) { 894 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition", 895 &GA); 896 } 897 898 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 899 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 900 901 Check(!GA2->isInterposable(), 902 "Alias cannot point to an interposable alias", &GA); 903 } else { 904 // Only continue verifying subexpressions of GlobalAliases. 905 // Do not recurse into global initializers. 906 return; 907 } 908 } 909 910 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 911 visitConstantExprsRecursively(CE); 912 913 for (const Use &U : C.operands()) { 914 Value *V = &*U; 915 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 916 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 917 else if (const auto *C2 = dyn_cast<Constant>(V)) 918 visitAliaseeSubExpr(Visited, GA, *C2); 919 } 920 } 921 922 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 923 Check(GlobalAlias::isValidLinkage(GA.getLinkage()), 924 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 925 "weak_odr, external, or available_externally linkage!", 926 &GA); 927 const Constant *Aliasee = GA.getAliasee(); 928 Check(Aliasee, "Aliasee cannot be NULL!", &GA); 929 Check(GA.getType() == Aliasee->getType(), 930 "Alias and aliasee types should match!", &GA); 931 932 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 933 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 934 935 visitAliaseeSubExpr(GA, *Aliasee); 936 937 visitGlobalValue(GA); 938 } 939 940 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { 941 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()), 942 "IFunc should have private, internal, linkonce, weak, linkonce_odr, " 943 "weak_odr, or external linkage!", 944 &GI); 945 // Pierce through ConstantExprs and GlobalAliases and check that the resolver 946 // is a Function definition. 947 const Function *Resolver = GI.getResolverFunction(); 948 Check(Resolver, "IFunc must have a Function resolver", &GI); 949 Check(!Resolver->isDeclarationForLinker(), 950 "IFunc resolver must be a definition", &GI); 951 952 // Check that the immediate resolver operand (prior to any bitcasts) has the 953 // correct type. 954 const Type *ResolverTy = GI.getResolver()->getType(); 955 956 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()), 957 "IFunc resolver must return a pointer", &GI); 958 959 const Type *ResolverFuncTy = 960 GlobalIFunc::getResolverFunctionType(GI.getValueType()); 961 Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()), 962 "IFunc resolver has incorrect type", &GI); 963 } 964 965 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 966 // There used to be various other llvm.dbg.* nodes, but we don't support 967 // upgrading them and we want to reserve the namespace for future uses. 968 if (NMD.getName().starts_with("llvm.dbg.")) 969 CheckDI(NMD.getName() == "llvm.dbg.cu", 970 "unrecognized named metadata node in the llvm.dbg namespace", &NMD); 971 for (const MDNode *MD : NMD.operands()) { 972 if (NMD.getName() == "llvm.dbg.cu") 973 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 974 975 if (!MD) 976 continue; 977 978 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 979 } 980 } 981 982 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 983 // Only visit each node once. Metadata can be mutually recursive, so this 984 // avoids infinite recursion here, as well as being an optimization. 985 if (!MDNodes.insert(&MD).second) 986 return; 987 988 Check(&MD.getContext() == &Context, 989 "MDNode context does not match Module context!", &MD); 990 991 switch (MD.getMetadataID()) { 992 default: 993 llvm_unreachable("Invalid MDNode subclass"); 994 case Metadata::MDTupleKind: 995 break; 996 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 997 case Metadata::CLASS##Kind: \ 998 visit##CLASS(cast<CLASS>(MD)); \ 999 break; 1000 #include "llvm/IR/Metadata.def" 1001 } 1002 1003 for (const Metadata *Op : MD.operands()) { 1004 if (!Op) 1005 continue; 1006 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 1007 &MD, Op); 1008 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 1009 "DILocation not allowed within this metadata node", &MD, Op); 1010 if (auto *N = dyn_cast<MDNode>(Op)) { 1011 visitMDNode(*N, AllowLocs); 1012 continue; 1013 } 1014 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 1015 visitValueAsMetadata(*V, nullptr); 1016 continue; 1017 } 1018 } 1019 1020 // Check these last, so we diagnose problems in operands first. 1021 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD); 1022 Check(MD.isResolved(), "All nodes should be resolved!", &MD); 1023 } 1024 1025 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 1026 Check(MD.getValue(), "Expected valid value", &MD); 1027 Check(!MD.getValue()->getType()->isMetadataTy(), 1028 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 1029 1030 auto *L = dyn_cast<LocalAsMetadata>(&MD); 1031 if (!L) 1032 return; 1033 1034 Check(F, "function-local metadata used outside a function", L); 1035 1036 // If this was an instruction, bb, or argument, verify that it is in the 1037 // function that we expect. 1038 Function *ActualF = nullptr; 1039 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 1040 Check(I->getParent(), "function-local metadata not in basic block", L, I); 1041 ActualF = I->getParent()->getParent(); 1042 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 1043 ActualF = BB->getParent(); 1044 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 1045 ActualF = A->getParent(); 1046 assert(ActualF && "Unimplemented function local metadata case!"); 1047 1048 Check(ActualF == F, "function-local metadata used in wrong function", L); 1049 } 1050 1051 void Verifier::visitDIArgList(const DIArgList &AL, Function *F) { 1052 for (const ValueAsMetadata *VAM : AL.getArgs()) 1053 visitValueAsMetadata(*VAM, F); 1054 } 1055 1056 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 1057 Metadata *MD = MDV.getMetadata(); 1058 if (auto *N = dyn_cast<MDNode>(MD)) { 1059 visitMDNode(*N, AreDebugLocsAllowed::No); 1060 return; 1061 } 1062 1063 // Only visit each node once. Metadata can be mutually recursive, so this 1064 // avoids infinite recursion here, as well as being an optimization. 1065 if (!MDNodes.insert(MD).second) 1066 return; 1067 1068 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 1069 visitValueAsMetadata(*V, F); 1070 1071 if (auto *AL = dyn_cast<DIArgList>(MD)) 1072 visitDIArgList(*AL, F); 1073 } 1074 1075 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 1076 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 1077 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 1078 1079 void Verifier::visitDILocation(const DILocation &N) { 1080 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1081 "location requires a valid scope", &N, N.getRawScope()); 1082 if (auto *IA = N.getRawInlinedAt()) 1083 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 1084 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1085 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1086 } 1087 1088 void Verifier::visitGenericDINode(const GenericDINode &N) { 1089 CheckDI(N.getTag(), "invalid tag", &N); 1090 } 1091 1092 void Verifier::visitDIScope(const DIScope &N) { 1093 if (auto *F = N.getRawFile()) 1094 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1095 } 1096 1097 void Verifier::visitDISubrange(const DISubrange &N) { 1098 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 1099 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 1100 CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 1101 N.getRawUpperBound(), 1102 "Subrange must contain count or upperBound", &N); 1103 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1104 "Subrange can have any one of count or upperBound", &N); 1105 auto *CBound = N.getRawCountNode(); 1106 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) || 1107 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1108 "Count must be signed constant or DIVariable or DIExpression", &N); 1109 auto Count = N.getCount(); 1110 CheckDI(!Count || !isa<ConstantInt *>(Count) || 1111 cast<ConstantInt *>(Count)->getSExtValue() >= -1, 1112 "invalid subrange count", &N); 1113 auto *LBound = N.getRawLowerBound(); 1114 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) || 1115 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1116 "LowerBound must be signed constant or DIVariable or DIExpression", 1117 &N); 1118 auto *UBound = N.getRawUpperBound(); 1119 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) || 1120 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1121 "UpperBound must be signed constant or DIVariable or DIExpression", 1122 &N); 1123 auto *Stride = N.getRawStride(); 1124 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) || 1125 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1126 "Stride must be signed constant or DIVariable or DIExpression", &N); 1127 } 1128 1129 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 1130 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 1131 CheckDI(N.getRawCountNode() || N.getRawUpperBound(), 1132 "GenericSubrange must contain count or upperBound", &N); 1133 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1134 "GenericSubrange can have any one of count or upperBound", &N); 1135 auto *CBound = N.getRawCountNode(); 1136 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1137 "Count must be signed constant or DIVariable or DIExpression", &N); 1138 auto *LBound = N.getRawLowerBound(); 1139 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N); 1140 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1141 "LowerBound must be signed constant or DIVariable or DIExpression", 1142 &N); 1143 auto *UBound = N.getRawUpperBound(); 1144 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1145 "UpperBound must be signed constant or DIVariable or DIExpression", 1146 &N); 1147 auto *Stride = N.getRawStride(); 1148 CheckDI(Stride, "GenericSubrange must contain stride", &N); 1149 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1150 "Stride must be signed constant or DIVariable or DIExpression", &N); 1151 } 1152 1153 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1154 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1155 } 1156 1157 void Verifier::visitDIBasicType(const DIBasicType &N) { 1158 CheckDI(N.getTag() == dwarf::DW_TAG_base_type || 1159 N.getTag() == dwarf::DW_TAG_unspecified_type || 1160 N.getTag() == dwarf::DW_TAG_string_type, 1161 "invalid tag", &N); 1162 } 1163 1164 void Verifier::visitDIStringType(const DIStringType &N) { 1165 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1166 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags", 1167 &N); 1168 } 1169 1170 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1171 // Common scope checks. 1172 visitDIScope(N); 1173 1174 CheckDI(N.getTag() == dwarf::DW_TAG_typedef || 1175 N.getTag() == dwarf::DW_TAG_pointer_type || 1176 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1177 N.getTag() == dwarf::DW_TAG_reference_type || 1178 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1179 N.getTag() == dwarf::DW_TAG_const_type || 1180 N.getTag() == dwarf::DW_TAG_immutable_type || 1181 N.getTag() == dwarf::DW_TAG_volatile_type || 1182 N.getTag() == dwarf::DW_TAG_restrict_type || 1183 N.getTag() == dwarf::DW_TAG_atomic_type || 1184 N.getTag() == dwarf::DW_TAG_member || 1185 (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) || 1186 N.getTag() == dwarf::DW_TAG_inheritance || 1187 N.getTag() == dwarf::DW_TAG_friend || 1188 N.getTag() == dwarf::DW_TAG_set_type, 1189 "invalid tag", &N); 1190 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1191 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1192 N.getRawExtraData()); 1193 } 1194 1195 if (N.getTag() == dwarf::DW_TAG_set_type) { 1196 if (auto *T = N.getRawBaseType()) { 1197 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1198 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1199 CheckDI( 1200 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1201 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1202 Basic->getEncoding() == dwarf::DW_ATE_signed || 1203 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1204 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1205 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1206 "invalid set base type", &N, T); 1207 } 1208 } 1209 1210 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1211 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, 1212 N.getRawBaseType()); 1213 1214 if (N.getDWARFAddressSpace()) { 1215 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1216 N.getTag() == dwarf::DW_TAG_reference_type || 1217 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1218 "DWARF address space only applies to pointer or reference types", 1219 &N); 1220 } 1221 } 1222 1223 /// Detect mutually exclusive flags. 1224 static bool hasConflictingReferenceFlags(unsigned Flags) { 1225 return ((Flags & DINode::FlagLValueReference) && 1226 (Flags & DINode::FlagRValueReference)) || 1227 ((Flags & DINode::FlagTypePassByValue) && 1228 (Flags & DINode::FlagTypePassByReference)); 1229 } 1230 1231 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1232 auto *Params = dyn_cast<MDTuple>(&RawParams); 1233 CheckDI(Params, "invalid template params", &N, &RawParams); 1234 for (Metadata *Op : Params->operands()) { 1235 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1236 &N, Params, Op); 1237 } 1238 } 1239 1240 void Verifier::visitDICompositeType(const DICompositeType &N) { 1241 // Common scope checks. 1242 visitDIScope(N); 1243 1244 CheckDI(N.getTag() == dwarf::DW_TAG_array_type || 1245 N.getTag() == dwarf::DW_TAG_structure_type || 1246 N.getTag() == dwarf::DW_TAG_union_type || 1247 N.getTag() == dwarf::DW_TAG_enumeration_type || 1248 N.getTag() == dwarf::DW_TAG_class_type || 1249 N.getTag() == dwarf::DW_TAG_variant_part || 1250 N.getTag() == dwarf::DW_TAG_namelist, 1251 "invalid tag", &N); 1252 1253 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1254 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, 1255 N.getRawBaseType()); 1256 1257 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1258 "invalid composite elements", &N, N.getRawElements()); 1259 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1260 N.getRawVTableHolder()); 1261 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1262 "invalid reference flags", &N); 1263 unsigned DIBlockByRefStruct = 1 << 4; 1264 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0, 1265 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1266 1267 if (N.isVector()) { 1268 const DINodeArray Elements = N.getElements(); 1269 CheckDI(Elements.size() == 1 && 1270 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1271 "invalid vector, expected one element of type subrange", &N); 1272 } 1273 1274 if (auto *Params = N.getRawTemplateParams()) 1275 visitTemplateParams(N, *Params); 1276 1277 if (auto *D = N.getRawDiscriminator()) { 1278 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1279 "discriminator can only appear on variant part"); 1280 } 1281 1282 if (N.getRawDataLocation()) { 1283 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1284 "dataLocation can only appear in array type"); 1285 } 1286 1287 if (N.getRawAssociated()) { 1288 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1289 "associated can only appear in array type"); 1290 } 1291 1292 if (N.getRawAllocated()) { 1293 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1294 "allocated can only appear in array type"); 1295 } 1296 1297 if (N.getRawRank()) { 1298 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1299 "rank can only appear in array type"); 1300 } 1301 1302 if (N.getTag() == dwarf::DW_TAG_array_type) { 1303 CheckDI(N.getRawBaseType(), "array types must have a base type", &N); 1304 } 1305 } 1306 1307 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1308 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1309 if (auto *Types = N.getRawTypeArray()) { 1310 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1311 for (Metadata *Ty : N.getTypeArray()->operands()) { 1312 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1313 } 1314 } 1315 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1316 "invalid reference flags", &N); 1317 } 1318 1319 void Verifier::visitDIFile(const DIFile &N) { 1320 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1321 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1322 if (Checksum) { 1323 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1324 "invalid checksum kind", &N); 1325 size_t Size; 1326 switch (Checksum->Kind) { 1327 case DIFile::CSK_MD5: 1328 Size = 32; 1329 break; 1330 case DIFile::CSK_SHA1: 1331 Size = 40; 1332 break; 1333 case DIFile::CSK_SHA256: 1334 Size = 64; 1335 break; 1336 } 1337 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1338 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1339 "invalid checksum", &N); 1340 } 1341 } 1342 1343 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1344 CheckDI(N.isDistinct(), "compile units must be distinct", &N); 1345 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1346 1347 // Don't bother verifying the compilation directory or producer string 1348 // as those could be empty. 1349 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1350 N.getRawFile()); 1351 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1352 N.getFile()); 1353 1354 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1355 1356 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1357 "invalid emission kind", &N); 1358 1359 if (auto *Array = N.getRawEnumTypes()) { 1360 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1361 for (Metadata *Op : N.getEnumTypes()->operands()) { 1362 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1363 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1364 "invalid enum type", &N, N.getEnumTypes(), Op); 1365 } 1366 } 1367 if (auto *Array = N.getRawRetainedTypes()) { 1368 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1369 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1370 CheckDI( 1371 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) && 1372 !cast<DISubprogram>(Op)->isDefinition())), 1373 "invalid retained type", &N, Op); 1374 } 1375 } 1376 if (auto *Array = N.getRawGlobalVariables()) { 1377 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1378 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1379 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1380 "invalid global variable ref", &N, Op); 1381 } 1382 } 1383 if (auto *Array = N.getRawImportedEntities()) { 1384 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1385 for (Metadata *Op : N.getImportedEntities()->operands()) { 1386 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1387 &N, Op); 1388 } 1389 } 1390 if (auto *Array = N.getRawMacros()) { 1391 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1392 for (Metadata *Op : N.getMacros()->operands()) { 1393 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1394 } 1395 } 1396 CUVisited.insert(&N); 1397 } 1398 1399 void Verifier::visitDISubprogram(const DISubprogram &N) { 1400 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1401 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1402 if (auto *F = N.getRawFile()) 1403 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1404 else 1405 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1406 if (auto *T = N.getRawType()) 1407 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1408 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1409 N.getRawContainingType()); 1410 if (auto *Params = N.getRawTemplateParams()) 1411 visitTemplateParams(N, *Params); 1412 if (auto *S = N.getRawDeclaration()) 1413 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1414 "invalid subprogram declaration", &N, S); 1415 if (auto *RawNode = N.getRawRetainedNodes()) { 1416 auto *Node = dyn_cast<MDTuple>(RawNode); 1417 CheckDI(Node, "invalid retained nodes list", &N, RawNode); 1418 for (Metadata *Op : Node->operands()) { 1419 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) || 1420 isa<DIImportedEntity>(Op)), 1421 "invalid retained nodes, expected DILocalVariable, DILabel or " 1422 "DIImportedEntity", 1423 &N, Node, Op); 1424 } 1425 } 1426 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1427 "invalid reference flags", &N); 1428 1429 auto *Unit = N.getRawUnit(); 1430 if (N.isDefinition()) { 1431 // Subprogram definitions (not part of the type hierarchy). 1432 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1433 CheckDI(Unit, "subprogram definitions must have a compile unit", &N); 1434 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1435 // There's no good way to cross the CU boundary to insert a nested 1436 // DISubprogram definition in one CU into a type defined in another CU. 1437 auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope()); 1438 if (CT && CT->getRawIdentifier() && 1439 M.getContext().isODRUniquingDebugTypes()) 1440 CheckDI(N.getDeclaration(), 1441 "definition subprograms cannot be nested within DICompositeType " 1442 "when enabling ODR", 1443 &N); 1444 } else { 1445 // Subprogram declarations (part of the type hierarchy). 1446 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1447 CheckDI(!N.getRawDeclaration(), 1448 "subprogram declaration must not have a declaration field"); 1449 } 1450 1451 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1452 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1453 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1454 for (Metadata *Op : ThrownTypes->operands()) 1455 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1456 Op); 1457 } 1458 1459 if (N.areAllCallsDescribed()) 1460 CheckDI(N.isDefinition(), 1461 "DIFlagAllCallsDescribed must be attached to a definition"); 1462 } 1463 1464 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1465 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1466 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1467 "invalid local scope", &N, N.getRawScope()); 1468 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1469 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1470 } 1471 1472 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1473 visitDILexicalBlockBase(N); 1474 1475 CheckDI(N.getLine() || !N.getColumn(), 1476 "cannot have column info without line info", &N); 1477 } 1478 1479 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1480 visitDILexicalBlockBase(N); 1481 } 1482 1483 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1484 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1485 if (auto *S = N.getRawScope()) 1486 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1487 if (auto *S = N.getRawDecl()) 1488 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1489 } 1490 1491 void Verifier::visitDINamespace(const DINamespace &N) { 1492 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1493 if (auto *S = N.getRawScope()) 1494 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1495 } 1496 1497 void Verifier::visitDIMacro(const DIMacro &N) { 1498 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1499 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1500 "invalid macinfo type", &N); 1501 CheckDI(!N.getName().empty(), "anonymous macro", &N); 1502 if (!N.getValue().empty()) { 1503 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1504 } 1505 } 1506 1507 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1508 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1509 "invalid macinfo type", &N); 1510 if (auto *F = N.getRawFile()) 1511 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1512 1513 if (auto *Array = N.getRawElements()) { 1514 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1515 for (Metadata *Op : N.getElements()->operands()) { 1516 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1517 } 1518 } 1519 } 1520 1521 void Verifier::visitDIModule(const DIModule &N) { 1522 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1523 CheckDI(!N.getName().empty(), "anonymous module", &N); 1524 } 1525 1526 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1527 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1528 } 1529 1530 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1531 visitDITemplateParameter(N); 1532 1533 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1534 &N); 1535 } 1536 1537 void Verifier::visitDITemplateValueParameter( 1538 const DITemplateValueParameter &N) { 1539 visitDITemplateParameter(N); 1540 1541 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1542 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1543 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1544 "invalid tag", &N); 1545 } 1546 1547 void Verifier::visitDIVariable(const DIVariable &N) { 1548 if (auto *S = N.getRawScope()) 1549 CheckDI(isa<DIScope>(S), "invalid scope", &N, S); 1550 if (auto *F = N.getRawFile()) 1551 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1552 } 1553 1554 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1555 // Checks common to all variables. 1556 visitDIVariable(N); 1557 1558 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1559 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1560 // Check only if the global variable is not an extern 1561 if (N.isDefinition()) 1562 CheckDI(N.getType(), "missing global variable type", &N); 1563 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1564 CheckDI(isa<DIDerivedType>(Member), 1565 "invalid static data member declaration", &N, Member); 1566 } 1567 } 1568 1569 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1570 // Checks common to all variables. 1571 visitDIVariable(N); 1572 1573 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1574 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1575 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1576 "local variable requires a valid scope", &N, N.getRawScope()); 1577 if (auto Ty = N.getType()) 1578 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1579 } 1580 1581 void Verifier::visitDIAssignID(const DIAssignID &N) { 1582 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N); 1583 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N); 1584 } 1585 1586 void Verifier::visitDILabel(const DILabel &N) { 1587 if (auto *S = N.getRawScope()) 1588 CheckDI(isa<DIScope>(S), "invalid scope", &N, S); 1589 if (auto *F = N.getRawFile()) 1590 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1591 1592 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1593 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1594 "label requires a valid scope", &N, N.getRawScope()); 1595 } 1596 1597 void Verifier::visitDIExpression(const DIExpression &N) { 1598 CheckDI(N.isValid(), "invalid expression", &N); 1599 } 1600 1601 void Verifier::visitDIGlobalVariableExpression( 1602 const DIGlobalVariableExpression &GVE) { 1603 CheckDI(GVE.getVariable(), "missing variable"); 1604 if (auto *Var = GVE.getVariable()) 1605 visitDIGlobalVariable(*Var); 1606 if (auto *Expr = GVE.getExpression()) { 1607 visitDIExpression(*Expr); 1608 if (auto Fragment = Expr->getFragmentInfo()) 1609 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1610 } 1611 } 1612 1613 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1614 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1615 if (auto *T = N.getRawType()) 1616 CheckDI(isType(T), "invalid type ref", &N, T); 1617 if (auto *F = N.getRawFile()) 1618 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1619 } 1620 1621 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1622 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module || 1623 N.getTag() == dwarf::DW_TAG_imported_declaration, 1624 "invalid tag", &N); 1625 if (auto *S = N.getRawScope()) 1626 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1627 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1628 N.getRawEntity()); 1629 } 1630 1631 void Verifier::visitComdat(const Comdat &C) { 1632 // In COFF the Module is invalid if the GlobalValue has private linkage. 1633 // Entities with private linkage don't have entries in the symbol table. 1634 if (TT.isOSBinFormatCOFF()) 1635 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1636 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1637 GV); 1638 } 1639 1640 void Verifier::visitModuleIdents() { 1641 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1642 if (!Idents) 1643 return; 1644 1645 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1646 // Scan each llvm.ident entry and make sure that this requirement is met. 1647 for (const MDNode *N : Idents->operands()) { 1648 Check(N->getNumOperands() == 1, 1649 "incorrect number of operands in llvm.ident metadata", N); 1650 Check(dyn_cast_or_null<MDString>(N->getOperand(0)), 1651 ("invalid value for llvm.ident metadata entry operand" 1652 "(the operand should be a string)"), 1653 N->getOperand(0)); 1654 } 1655 } 1656 1657 void Verifier::visitModuleCommandLines() { 1658 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1659 if (!CommandLines) 1660 return; 1661 1662 // llvm.commandline takes a list of metadata entry. Each entry has only one 1663 // string. Scan each llvm.commandline entry and make sure that this 1664 // requirement is met. 1665 for (const MDNode *N : CommandLines->operands()) { 1666 Check(N->getNumOperands() == 1, 1667 "incorrect number of operands in llvm.commandline metadata", N); 1668 Check(dyn_cast_or_null<MDString>(N->getOperand(0)), 1669 ("invalid value for llvm.commandline metadata entry operand" 1670 "(the operand should be a string)"), 1671 N->getOperand(0)); 1672 } 1673 } 1674 1675 void Verifier::visitModuleFlags() { 1676 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1677 if (!Flags) return; 1678 1679 // Scan each flag, and track the flags and requirements. 1680 DenseMap<const MDString*, const MDNode*> SeenIDs; 1681 SmallVector<const MDNode*, 16> Requirements; 1682 for (const MDNode *MDN : Flags->operands()) 1683 visitModuleFlag(MDN, SeenIDs, Requirements); 1684 1685 // Validate that the requirements in the module are valid. 1686 for (const MDNode *Requirement : Requirements) { 1687 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1688 const Metadata *ReqValue = Requirement->getOperand(1); 1689 1690 const MDNode *Op = SeenIDs.lookup(Flag); 1691 if (!Op) { 1692 CheckFailed("invalid requirement on flag, flag is not present in module", 1693 Flag); 1694 continue; 1695 } 1696 1697 if (Op->getOperand(2) != ReqValue) { 1698 CheckFailed(("invalid requirement on flag, " 1699 "flag does not have the required value"), 1700 Flag); 1701 continue; 1702 } 1703 } 1704 } 1705 1706 void 1707 Verifier::visitModuleFlag(const MDNode *Op, 1708 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1709 SmallVectorImpl<const MDNode *> &Requirements) { 1710 // Each module flag should have three arguments, the merge behavior (a 1711 // constant int), the flag ID (an MDString), and the value. 1712 Check(Op->getNumOperands() == 3, 1713 "incorrect number of operands in module flag", Op); 1714 Module::ModFlagBehavior MFB; 1715 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1716 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1717 "invalid behavior operand in module flag (expected constant integer)", 1718 Op->getOperand(0)); 1719 Check(false, 1720 "invalid behavior operand in module flag (unexpected constant)", 1721 Op->getOperand(0)); 1722 } 1723 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1724 Check(ID, "invalid ID operand in module flag (expected metadata string)", 1725 Op->getOperand(1)); 1726 1727 // Check the values for behaviors with additional requirements. 1728 switch (MFB) { 1729 case Module::Error: 1730 case Module::Warning: 1731 case Module::Override: 1732 // These behavior types accept any value. 1733 break; 1734 1735 case Module::Min: { 1736 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1737 Check(V && V->getValue().isNonNegative(), 1738 "invalid value for 'min' module flag (expected constant non-negative " 1739 "integer)", 1740 Op->getOperand(2)); 1741 break; 1742 } 1743 1744 case Module::Max: { 1745 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1746 "invalid value for 'max' module flag (expected constant integer)", 1747 Op->getOperand(2)); 1748 break; 1749 } 1750 1751 case Module::Require: { 1752 // The value should itself be an MDNode with two operands, a flag ID (an 1753 // MDString), and a value. 1754 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1755 Check(Value && Value->getNumOperands() == 2, 1756 "invalid value for 'require' module flag (expected metadata pair)", 1757 Op->getOperand(2)); 1758 Check(isa<MDString>(Value->getOperand(0)), 1759 ("invalid value for 'require' module flag " 1760 "(first value operand should be a string)"), 1761 Value->getOperand(0)); 1762 1763 // Append it to the list of requirements, to check once all module flags are 1764 // scanned. 1765 Requirements.push_back(Value); 1766 break; 1767 } 1768 1769 case Module::Append: 1770 case Module::AppendUnique: { 1771 // These behavior types require the operand be an MDNode. 1772 Check(isa<MDNode>(Op->getOperand(2)), 1773 "invalid value for 'append'-type module flag " 1774 "(expected a metadata node)", 1775 Op->getOperand(2)); 1776 break; 1777 } 1778 } 1779 1780 // Unless this is a "requires" flag, check the ID is unique. 1781 if (MFB != Module::Require) { 1782 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1783 Check(Inserted, 1784 "module flag identifiers must be unique (or of 'require' type)", ID); 1785 } 1786 1787 if (ID->getString() == "wchar_size") { 1788 ConstantInt *Value 1789 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1790 Check(Value, "wchar_size metadata requires constant integer argument"); 1791 } 1792 1793 if (ID->getString() == "Linker Options") { 1794 // If the llvm.linker.options named metadata exists, we assume that the 1795 // bitcode reader has upgraded the module flag. Otherwise the flag might 1796 // have been created by a client directly. 1797 Check(M.getNamedMetadata("llvm.linker.options"), 1798 "'Linker Options' named metadata no longer supported"); 1799 } 1800 1801 if (ID->getString() == "SemanticInterposition") { 1802 ConstantInt *Value = 1803 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1804 Check(Value, 1805 "SemanticInterposition metadata requires constant integer argument"); 1806 } 1807 1808 if (ID->getString() == "CG Profile") { 1809 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1810 visitModuleFlagCGProfileEntry(MDO); 1811 } 1812 } 1813 1814 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1815 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1816 if (!FuncMDO) 1817 return; 1818 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1819 Check(F && isa<Function>(F->getValue()->stripPointerCasts()), 1820 "expected a Function or null", FuncMDO); 1821 }; 1822 auto Node = dyn_cast_or_null<MDNode>(MDO); 1823 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1824 CheckFunction(Node->getOperand(0)); 1825 CheckFunction(Node->getOperand(1)); 1826 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1827 Check(Count && Count->getType()->isIntegerTy(), 1828 "expected an integer constant", Node->getOperand(2)); 1829 } 1830 1831 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1832 for (Attribute A : Attrs) { 1833 1834 if (A.isStringAttribute()) { 1835 #define GET_ATTR_NAMES 1836 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1837 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1838 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1839 auto V = A.getValueAsString(); \ 1840 if (!(V.empty() || V == "true" || V == "false")) \ 1841 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1842 ""); \ 1843 } 1844 1845 #include "llvm/IR/Attributes.inc" 1846 continue; 1847 } 1848 1849 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1850 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1851 V); 1852 return; 1853 } 1854 } 1855 } 1856 1857 // VerifyParameterAttrs - Check the given attributes for an argument or return 1858 // value of the specified type. The value V is printed in error messages. 1859 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1860 const Value *V) { 1861 if (!Attrs.hasAttributes()) 1862 return; 1863 1864 verifyAttributeTypes(Attrs, V); 1865 1866 for (Attribute Attr : Attrs) 1867 Check(Attr.isStringAttribute() || 1868 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1869 "Attribute '" + Attr.getAsString() + "' does not apply to parameters", 1870 V); 1871 1872 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1873 Check(Attrs.getNumAttributes() == 1, 1874 "Attribute 'immarg' is incompatible with other attributes", V); 1875 } 1876 1877 // Check for mutually incompatible attributes. Only inreg is compatible with 1878 // sret. 1879 unsigned AttrCount = 0; 1880 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1881 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1882 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1883 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1884 Attrs.hasAttribute(Attribute::InReg); 1885 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1886 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1887 Check(AttrCount <= 1, 1888 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1889 "'byref', and 'sret' are incompatible!", 1890 V); 1891 1892 Check(!(Attrs.hasAttribute(Attribute::InAlloca) && 1893 Attrs.hasAttribute(Attribute::ReadOnly)), 1894 "Attributes " 1895 "'inalloca and readonly' are incompatible!", 1896 V); 1897 1898 Check(!(Attrs.hasAttribute(Attribute::StructRet) && 1899 Attrs.hasAttribute(Attribute::Returned)), 1900 "Attributes " 1901 "'sret and returned' are incompatible!", 1902 V); 1903 1904 Check(!(Attrs.hasAttribute(Attribute::ZExt) && 1905 Attrs.hasAttribute(Attribute::SExt)), 1906 "Attributes " 1907 "'zeroext and signext' are incompatible!", 1908 V); 1909 1910 Check(!(Attrs.hasAttribute(Attribute::ReadNone) && 1911 Attrs.hasAttribute(Attribute::ReadOnly)), 1912 "Attributes " 1913 "'readnone and readonly' are incompatible!", 1914 V); 1915 1916 Check(!(Attrs.hasAttribute(Attribute::ReadNone) && 1917 Attrs.hasAttribute(Attribute::WriteOnly)), 1918 "Attributes " 1919 "'readnone and writeonly' are incompatible!", 1920 V); 1921 1922 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1923 Attrs.hasAttribute(Attribute::WriteOnly)), 1924 "Attributes " 1925 "'readonly and writeonly' are incompatible!", 1926 V); 1927 1928 Check(!(Attrs.hasAttribute(Attribute::NoInline) && 1929 Attrs.hasAttribute(Attribute::AlwaysInline)), 1930 "Attributes " 1931 "'noinline and alwaysinline' are incompatible!", 1932 V); 1933 1934 Check(!(Attrs.hasAttribute(Attribute::Writable) && 1935 Attrs.hasAttribute(Attribute::ReadNone)), 1936 "Attributes writable and readnone are incompatible!", V); 1937 1938 Check(!(Attrs.hasAttribute(Attribute::Writable) && 1939 Attrs.hasAttribute(Attribute::ReadOnly)), 1940 "Attributes writable and readonly are incompatible!", V); 1941 1942 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1943 for (Attribute Attr : Attrs) { 1944 if (!Attr.isStringAttribute() && 1945 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1946 CheckFailed("Attribute '" + Attr.getAsString() + 1947 "' applied to incompatible type!", V); 1948 return; 1949 } 1950 } 1951 1952 if (isa<PointerType>(Ty)) { 1953 if (Attrs.hasAttribute(Attribute::ByVal)) { 1954 if (Attrs.hasAttribute(Attribute::Alignment)) { 1955 Align AttrAlign = Attrs.getAlignment().valueOrOne(); 1956 Align MaxAlign(ParamMaxAlignment); 1957 Check(AttrAlign <= MaxAlign, 1958 "Attribute 'align' exceed the max size 2^14", V); 1959 } 1960 SmallPtrSet<Type *, 4> Visited; 1961 Check(Attrs.getByValType()->isSized(&Visited), 1962 "Attribute 'byval' does not support unsized types!", V); 1963 } 1964 if (Attrs.hasAttribute(Attribute::ByRef)) { 1965 SmallPtrSet<Type *, 4> Visited; 1966 Check(Attrs.getByRefType()->isSized(&Visited), 1967 "Attribute 'byref' does not support unsized types!", V); 1968 } 1969 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1970 SmallPtrSet<Type *, 4> Visited; 1971 Check(Attrs.getInAllocaType()->isSized(&Visited), 1972 "Attribute 'inalloca' does not support unsized types!", V); 1973 } 1974 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1975 SmallPtrSet<Type *, 4> Visited; 1976 Check(Attrs.getPreallocatedType()->isSized(&Visited), 1977 "Attribute 'preallocated' does not support unsized types!", V); 1978 } 1979 } 1980 1981 if (Attrs.hasAttribute(Attribute::NoFPClass)) { 1982 uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt(); 1983 Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set", 1984 V); 1985 Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0, 1986 "Invalid value for 'nofpclass' test mask", V); 1987 } 1988 } 1989 1990 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1991 const Value *V) { 1992 if (Attrs.hasFnAttr(Attr)) { 1993 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 1994 unsigned N; 1995 if (S.getAsInteger(10, N)) 1996 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 1997 } 1998 } 1999 2000 // Check parameter attributes against a function type. 2001 // The value V is printed in error messages. 2002 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 2003 const Value *V, bool IsIntrinsic, 2004 bool IsInlineAsm) { 2005 if (Attrs.isEmpty()) 2006 return; 2007 2008 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 2009 Check(Attrs.hasParentContext(Context), 2010 "Attribute list does not match Module context!", &Attrs, V); 2011 for (const auto &AttrSet : Attrs) { 2012 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 2013 "Attribute set does not match Module context!", &AttrSet, V); 2014 for (const auto &A : AttrSet) { 2015 Check(A.hasParentContext(Context), 2016 "Attribute does not match Module context!", &A, V); 2017 } 2018 } 2019 } 2020 2021 bool SawNest = false; 2022 bool SawReturned = false; 2023 bool SawSRet = false; 2024 bool SawSwiftSelf = false; 2025 bool SawSwiftAsync = false; 2026 bool SawSwiftError = false; 2027 2028 // Verify return value attributes. 2029 AttributeSet RetAttrs = Attrs.getRetAttrs(); 2030 for (Attribute RetAttr : RetAttrs) 2031 Check(RetAttr.isStringAttribute() || 2032 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 2033 "Attribute '" + RetAttr.getAsString() + 2034 "' does not apply to function return values", 2035 V); 2036 2037 unsigned MaxParameterWidth = 0; 2038 auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) { 2039 if (Ty->isVectorTy()) { 2040 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 2041 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue(); 2042 if (Size > MaxParameterWidth) 2043 MaxParameterWidth = Size; 2044 } 2045 } 2046 }; 2047 GetMaxParameterWidth(FT->getReturnType()); 2048 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 2049 2050 // Verify parameter attributes. 2051 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 2052 Type *Ty = FT->getParamType(i); 2053 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 2054 2055 if (!IsIntrinsic) { 2056 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg), 2057 "immarg attribute only applies to intrinsics", V); 2058 if (!IsInlineAsm) 2059 Check(!ArgAttrs.hasAttribute(Attribute::ElementType), 2060 "Attribute 'elementtype' can only be applied to intrinsics" 2061 " and inline asm.", 2062 V); 2063 } 2064 2065 verifyParameterAttrs(ArgAttrs, Ty, V); 2066 GetMaxParameterWidth(Ty); 2067 2068 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2069 Check(!SawNest, "More than one parameter has attribute nest!", V); 2070 SawNest = true; 2071 } 2072 2073 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2074 Check(!SawReturned, "More than one parameter has attribute returned!", V); 2075 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 2076 "Incompatible argument and return types for 'returned' attribute", 2077 V); 2078 SawReturned = true; 2079 } 2080 2081 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 2082 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 2083 Check(i == 0 || i == 1, 2084 "Attribute 'sret' is not on first or second parameter!", V); 2085 SawSRet = true; 2086 } 2087 2088 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 2089 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 2090 SawSwiftSelf = true; 2091 } 2092 2093 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 2094 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 2095 SawSwiftAsync = true; 2096 } 2097 2098 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 2099 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V); 2100 SawSwiftError = true; 2101 } 2102 2103 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 2104 Check(i == FT->getNumParams() - 1, 2105 "inalloca isn't on the last parameter!", V); 2106 } 2107 } 2108 2109 if (!Attrs.hasFnAttrs()) 2110 return; 2111 2112 verifyAttributeTypes(Attrs.getFnAttrs(), V); 2113 for (Attribute FnAttr : Attrs.getFnAttrs()) 2114 Check(FnAttr.isStringAttribute() || 2115 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 2116 "Attribute '" + FnAttr.getAsString() + 2117 "' does not apply to functions!", 2118 V); 2119 2120 Check(!(Attrs.hasFnAttr(Attribute::NoInline) && 2121 Attrs.hasFnAttr(Attribute::AlwaysInline)), 2122 "Attributes 'noinline and alwaysinline' are incompatible!", V); 2123 2124 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 2125 Check(Attrs.hasFnAttr(Attribute::NoInline), 2126 "Attribute 'optnone' requires 'noinline'!", V); 2127 2128 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2129 "Attributes 'optsize and optnone' are incompatible!", V); 2130 2131 Check(!Attrs.hasFnAttr(Attribute::MinSize), 2132 "Attributes 'minsize and optnone' are incompatible!", V); 2133 2134 Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging), 2135 "Attributes 'optdebug and optnone' are incompatible!", V); 2136 } 2137 2138 if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) { 2139 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2140 "Attributes 'optsize and optdebug' are incompatible!", V); 2141 2142 Check(!Attrs.hasFnAttr(Attribute::MinSize), 2143 "Attributes 'minsize and optdebug' are incompatible!", V); 2144 } 2145 2146 Check(!Attrs.hasAttrSomewhere(Attribute::Writable) || 2147 isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)), 2148 "Attribute writable and memory without argmem: write are incompatible!", 2149 V); 2150 2151 if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) { 2152 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"), 2153 "Attributes 'aarch64_pstate_sm_enabled and " 2154 "aarch64_pstate_sm_compatible' are incompatible!", 2155 V); 2156 } 2157 2158 if (Attrs.hasFnAttr("aarch64_pstate_za_new")) { 2159 Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"), 2160 "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' " 2161 "are incompatible!", 2162 V); 2163 2164 Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"), 2165 "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' " 2166 "are incompatible!", 2167 V); 2168 } 2169 2170 Check( 2171 (Attrs.hasFnAttr("aarch64_new_zt0") + Attrs.hasFnAttr("aarch64_in_zt0") + 2172 Attrs.hasFnAttr("aarch64_inout_zt0") + 2173 Attrs.hasFnAttr("aarch64_out_zt0") + 2174 Attrs.hasFnAttr("aarch64_preserves_zt0")) <= 1, 2175 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', " 2176 "'aarch64_inout_zt0' and 'aarch64_preserves_zt0' are mutually exclusive", 2177 V); 2178 2179 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 2180 const GlobalValue *GV = cast<GlobalValue>(V); 2181 Check(GV->hasGlobalUnnamedAddr(), 2182 "Attribute 'jumptable' requires 'unnamed_addr'", V); 2183 } 2184 2185 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) { 2186 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 2187 if (ParamNo >= FT->getNumParams()) { 2188 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 2189 return false; 2190 } 2191 2192 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2193 CheckFailed("'allocsize' " + Name + 2194 " argument must refer to an integer parameter", 2195 V); 2196 return false; 2197 } 2198 2199 return true; 2200 }; 2201 2202 if (!CheckParam("element size", Args->first)) 2203 return; 2204 2205 if (Args->second && !CheckParam("number of elements", *Args->second)) 2206 return; 2207 } 2208 2209 if (Attrs.hasFnAttr(Attribute::AllocKind)) { 2210 AllocFnKind K = Attrs.getAllocKind(); 2211 AllocFnKind Type = 2212 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free); 2213 if (!is_contained( 2214 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free}, 2215 Type)) 2216 CheckFailed( 2217 "'allockind()' requires exactly one of alloc, realloc, and free"); 2218 if ((Type == AllocFnKind::Free) && 2219 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed | 2220 AllocFnKind::Aligned)) != AllocFnKind::Unknown)) 2221 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, " 2222 "or aligned modifiers."); 2223 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed; 2224 if ((K & ZeroedUninit) == ZeroedUninit) 2225 CheckFailed("'allockind()' can't be both zeroed and uninitialized"); 2226 } 2227 2228 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2229 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin(); 2230 if (VScaleMin == 0) 2231 CheckFailed("'vscale_range' minimum must be greater than 0", V); 2232 else if (!isPowerOf2_32(VScaleMin)) 2233 CheckFailed("'vscale_range' minimum must be power-of-two value", V); 2234 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax(); 2235 if (VScaleMax && VScaleMin > VScaleMax) 2236 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2237 else if (VScaleMax && !isPowerOf2_32(*VScaleMax)) 2238 CheckFailed("'vscale_range' maximum must be power-of-two value", V); 2239 } 2240 2241 if (Attrs.hasFnAttr("frame-pointer")) { 2242 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2243 if (FP != "all" && FP != "non-leaf" && FP != "none") 2244 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2245 } 2246 2247 // Check EVEX512 feature. 2248 if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") && 2249 TT.isX86()) { 2250 StringRef TF = Attrs.getFnAttr("target-features").getValueAsString(); 2251 Check(!TF.contains("+avx512f") || !TF.contains("-evex512"), 2252 "512-bit vector arguments require 'evex512' for AVX512", V); 2253 } 2254 2255 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2256 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2257 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2258 2259 if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) { 2260 StringRef S = A.getValueAsString(); 2261 if (S != "none" && S != "all" && S != "non-leaf") 2262 CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V); 2263 } 2264 2265 if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) { 2266 StringRef S = A.getValueAsString(); 2267 if (S != "a_key" && S != "b_key") 2268 CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S, 2269 V); 2270 } 2271 2272 if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) { 2273 StringRef S = A.getValueAsString(); 2274 if (S != "true" && S != "false") 2275 CheckFailed( 2276 "invalid value for 'branch-target-enforcement' attribute: " + S, V); 2277 } 2278 2279 if (auto A = Attrs.getFnAttr("vector-function-abi-variant"); A.isValid()) { 2280 StringRef S = A.getValueAsString(); 2281 const std::optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, FT); 2282 if (!Info) 2283 CheckFailed("invalid name for a VFABI variant: " + S, V); 2284 } 2285 } 2286 2287 void Verifier::verifyFunctionMetadata( 2288 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2289 for (const auto &Pair : MDs) { 2290 if (Pair.first == LLVMContext::MD_prof) { 2291 MDNode *MD = Pair.second; 2292 Check(MD->getNumOperands() >= 2, 2293 "!prof annotations should have no less than 2 operands", MD); 2294 2295 // Check first operand. 2296 Check(MD->getOperand(0) != nullptr, "first operand should not be null", 2297 MD); 2298 Check(isa<MDString>(MD->getOperand(0)), 2299 "expected string with name of the !prof annotation", MD); 2300 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2301 StringRef ProfName = MDS->getString(); 2302 Check(ProfName.equals("function_entry_count") || 2303 ProfName.equals("synthetic_function_entry_count"), 2304 "first operand should be 'function_entry_count'" 2305 " or 'synthetic_function_entry_count'", 2306 MD); 2307 2308 // Check second operand. 2309 Check(MD->getOperand(1) != nullptr, "second operand should not be null", 2310 MD); 2311 Check(isa<ConstantAsMetadata>(MD->getOperand(1)), 2312 "expected integer argument to function_entry_count", MD); 2313 } else if (Pair.first == LLVMContext::MD_kcfi_type) { 2314 MDNode *MD = Pair.second; 2315 Check(MD->getNumOperands() == 1, 2316 "!kcfi_type must have exactly one operand", MD); 2317 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null", 2318 MD); 2319 Check(isa<ConstantAsMetadata>(MD->getOperand(0)), 2320 "expected a constant operand for !kcfi_type", MD); 2321 Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue(); 2322 Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()), 2323 "expected a constant integer operand for !kcfi_type", MD); 2324 Check(cast<ConstantInt>(C)->getBitWidth() == 32, 2325 "expected a 32-bit integer constant operand for !kcfi_type", MD); 2326 } 2327 } 2328 } 2329 2330 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2331 if (!ConstantExprVisited.insert(EntryC).second) 2332 return; 2333 2334 SmallVector<const Constant *, 16> Stack; 2335 Stack.push_back(EntryC); 2336 2337 while (!Stack.empty()) { 2338 const Constant *C = Stack.pop_back_val(); 2339 2340 // Check this constant expression. 2341 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2342 visitConstantExpr(CE); 2343 2344 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2345 // Global Values get visited separately, but we do need to make sure 2346 // that the global value is in the correct module 2347 Check(GV->getParent() == &M, "Referencing global in another module!", 2348 EntryC, &M, GV, GV->getParent()); 2349 continue; 2350 } 2351 2352 // Visit all sub-expressions. 2353 for (const Use &U : C->operands()) { 2354 const auto *OpC = dyn_cast<Constant>(U); 2355 if (!OpC) 2356 continue; 2357 if (!ConstantExprVisited.insert(OpC).second) 2358 continue; 2359 Stack.push_back(OpC); 2360 } 2361 } 2362 } 2363 2364 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2365 if (CE->getOpcode() == Instruction::BitCast) 2366 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2367 CE->getType()), 2368 "Invalid bitcast", CE); 2369 } 2370 2371 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2372 // There shouldn't be more attribute sets than there are parameters plus the 2373 // function and return value. 2374 return Attrs.getNumAttrSets() <= Params + 2; 2375 } 2376 2377 void Verifier::verifyInlineAsmCall(const CallBase &Call) { 2378 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 2379 unsigned ArgNo = 0; 2380 unsigned LabelNo = 0; 2381 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2382 if (CI.Type == InlineAsm::isLabel) { 2383 ++LabelNo; 2384 continue; 2385 } 2386 2387 // Only deal with constraints that correspond to call arguments. 2388 if (!CI.hasArg()) 2389 continue; 2390 2391 if (CI.isIndirect) { 2392 const Value *Arg = Call.getArgOperand(ArgNo); 2393 Check(Arg->getType()->isPointerTy(), 2394 "Operand for indirect constraint must have pointer type", &Call); 2395 2396 Check(Call.getParamElementType(ArgNo), 2397 "Operand for indirect constraint must have elementtype attribute", 2398 &Call); 2399 } else { 2400 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType), 2401 "Elementtype attribute can only be applied for indirect " 2402 "constraints", 2403 &Call); 2404 } 2405 2406 ArgNo++; 2407 } 2408 2409 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) { 2410 Check(LabelNo == CallBr->getNumIndirectDests(), 2411 "Number of label constraints does not match number of callbr dests", 2412 &Call); 2413 } else { 2414 Check(LabelNo == 0, "Label constraints can only be used with callbr", 2415 &Call); 2416 } 2417 } 2418 2419 /// Verify that statepoint intrinsic is well formed. 2420 void Verifier::verifyStatepoint(const CallBase &Call) { 2421 assert(Call.getCalledFunction() && 2422 Call.getCalledFunction()->getIntrinsicID() == 2423 Intrinsic::experimental_gc_statepoint); 2424 2425 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2426 !Call.onlyAccessesArgMemory(), 2427 "gc.statepoint must read and write all memory to preserve " 2428 "reordering restrictions required by safepoint semantics", 2429 Call); 2430 2431 const int64_t NumPatchBytes = 2432 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2433 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2434 Check(NumPatchBytes >= 0, 2435 "gc.statepoint number of patchable bytes must be " 2436 "positive", 2437 Call); 2438 2439 Type *TargetElemType = Call.getParamElementType(2); 2440 Check(TargetElemType, 2441 "gc.statepoint callee argument must have elementtype attribute", Call); 2442 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType); 2443 Check(TargetFuncType, 2444 "gc.statepoint callee elementtype must be function type", Call); 2445 2446 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2447 Check(NumCallArgs >= 0, 2448 "gc.statepoint number of arguments to underlying call " 2449 "must be positive", 2450 Call); 2451 const int NumParams = (int)TargetFuncType->getNumParams(); 2452 if (TargetFuncType->isVarArg()) { 2453 Check(NumCallArgs >= NumParams, 2454 "gc.statepoint mismatch in number of vararg call args", Call); 2455 2456 // TODO: Remove this limitation 2457 Check(TargetFuncType->getReturnType()->isVoidTy(), 2458 "gc.statepoint doesn't support wrapping non-void " 2459 "vararg functions yet", 2460 Call); 2461 } else 2462 Check(NumCallArgs == NumParams, 2463 "gc.statepoint mismatch in number of call args", Call); 2464 2465 const uint64_t Flags 2466 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2467 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2468 "unknown flag used in gc.statepoint flags argument", Call); 2469 2470 // Verify that the types of the call parameter arguments match 2471 // the type of the wrapped callee. 2472 AttributeList Attrs = Call.getAttributes(); 2473 for (int i = 0; i < NumParams; i++) { 2474 Type *ParamType = TargetFuncType->getParamType(i); 2475 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2476 Check(ArgType == ParamType, 2477 "gc.statepoint call argument does not match wrapped " 2478 "function type", 2479 Call); 2480 2481 if (TargetFuncType->isVarArg()) { 2482 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2483 Check(!ArgAttrs.hasAttribute(Attribute::StructRet), 2484 "Attribute 'sret' cannot be used for vararg call arguments!", Call); 2485 } 2486 } 2487 2488 const int EndCallArgsInx = 4 + NumCallArgs; 2489 2490 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2491 Check(isa<ConstantInt>(NumTransitionArgsV), 2492 "gc.statepoint number of transition arguments " 2493 "must be constant integer", 2494 Call); 2495 const int NumTransitionArgs = 2496 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2497 Check(NumTransitionArgs == 0, 2498 "gc.statepoint w/inline transition bundle is deprecated", Call); 2499 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2500 2501 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2502 Check(isa<ConstantInt>(NumDeoptArgsV), 2503 "gc.statepoint number of deoptimization arguments " 2504 "must be constant integer", 2505 Call); 2506 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2507 Check(NumDeoptArgs == 0, 2508 "gc.statepoint w/inline deopt operands is deprecated", Call); 2509 2510 const int ExpectedNumArgs = 7 + NumCallArgs; 2511 Check(ExpectedNumArgs == (int)Call.arg_size(), 2512 "gc.statepoint too many arguments", Call); 2513 2514 // Check that the only uses of this gc.statepoint are gc.result or 2515 // gc.relocate calls which are tied to this statepoint and thus part 2516 // of the same statepoint sequence 2517 for (const User *U : Call.users()) { 2518 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2519 Check(UserCall, "illegal use of statepoint token", Call, U); 2520 if (!UserCall) 2521 continue; 2522 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2523 "gc.result or gc.relocate are the only value uses " 2524 "of a gc.statepoint", 2525 Call, U); 2526 if (isa<GCResultInst>(UserCall)) { 2527 Check(UserCall->getArgOperand(0) == &Call, 2528 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2529 } else if (isa<GCRelocateInst>(Call)) { 2530 Check(UserCall->getArgOperand(0) == &Call, 2531 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2532 } 2533 } 2534 2535 // Note: It is legal for a single derived pointer to be listed multiple 2536 // times. It's non-optimal, but it is legal. It can also happen after 2537 // insertion if we strip a bitcast away. 2538 // Note: It is really tempting to check that each base is relocated and 2539 // that a derived pointer is never reused as a base pointer. This turns 2540 // out to be problematic since optimizations run after safepoint insertion 2541 // can recognize equality properties that the insertion logic doesn't know 2542 // about. See example statepoint.ll in the verifier subdirectory 2543 } 2544 2545 void Verifier::verifyFrameRecoverIndices() { 2546 for (auto &Counts : FrameEscapeInfo) { 2547 Function *F = Counts.first; 2548 unsigned EscapedObjectCount = Counts.second.first; 2549 unsigned MaxRecoveredIndex = Counts.second.second; 2550 Check(MaxRecoveredIndex <= EscapedObjectCount, 2551 "all indices passed to llvm.localrecover must be less than the " 2552 "number of arguments passed to llvm.localescape in the parent " 2553 "function", 2554 F); 2555 } 2556 } 2557 2558 static Instruction *getSuccPad(Instruction *Terminator) { 2559 BasicBlock *UnwindDest; 2560 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2561 UnwindDest = II->getUnwindDest(); 2562 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2563 UnwindDest = CSI->getUnwindDest(); 2564 else 2565 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2566 return UnwindDest->getFirstNonPHI(); 2567 } 2568 2569 void Verifier::verifySiblingFuncletUnwinds() { 2570 SmallPtrSet<Instruction *, 8> Visited; 2571 SmallPtrSet<Instruction *, 8> Active; 2572 for (const auto &Pair : SiblingFuncletInfo) { 2573 Instruction *PredPad = Pair.first; 2574 if (Visited.count(PredPad)) 2575 continue; 2576 Active.insert(PredPad); 2577 Instruction *Terminator = Pair.second; 2578 do { 2579 Instruction *SuccPad = getSuccPad(Terminator); 2580 if (Active.count(SuccPad)) { 2581 // Found a cycle; report error 2582 Instruction *CyclePad = SuccPad; 2583 SmallVector<Instruction *, 8> CycleNodes; 2584 do { 2585 CycleNodes.push_back(CyclePad); 2586 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2587 if (CycleTerminator != CyclePad) 2588 CycleNodes.push_back(CycleTerminator); 2589 CyclePad = getSuccPad(CycleTerminator); 2590 } while (CyclePad != SuccPad); 2591 Check(false, "EH pads can't handle each other's exceptions", 2592 ArrayRef<Instruction *>(CycleNodes)); 2593 } 2594 // Don't re-walk a node we've already checked 2595 if (!Visited.insert(SuccPad).second) 2596 break; 2597 // Walk to this successor if it has a map entry. 2598 PredPad = SuccPad; 2599 auto TermI = SiblingFuncletInfo.find(PredPad); 2600 if (TermI == SiblingFuncletInfo.end()) 2601 break; 2602 Terminator = TermI->second; 2603 Active.insert(PredPad); 2604 } while (true); 2605 // Each node only has one successor, so we've walked all the active 2606 // nodes' successors. 2607 Active.clear(); 2608 } 2609 } 2610 2611 // visitFunction - Verify that a function is ok. 2612 // 2613 void Verifier::visitFunction(const Function &F) { 2614 visitGlobalValue(F); 2615 2616 // Check function arguments. 2617 FunctionType *FT = F.getFunctionType(); 2618 unsigned NumArgs = F.arg_size(); 2619 2620 Check(&Context == &F.getContext(), 2621 "Function context does not match Module context!", &F); 2622 2623 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2624 Check(FT->getNumParams() == NumArgs, 2625 "# formal arguments must match # of arguments for function type!", &F, 2626 FT); 2627 Check(F.getReturnType()->isFirstClassType() || 2628 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2629 "Functions cannot return aggregate values!", &F); 2630 2631 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2632 "Invalid struct return type!", &F); 2633 2634 AttributeList Attrs = F.getAttributes(); 2635 2636 Check(verifyAttributeCount(Attrs, FT->getNumParams()), 2637 "Attribute after last parameter!", &F); 2638 2639 bool IsIntrinsic = F.isIntrinsic(); 2640 2641 // Check function attributes. 2642 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false); 2643 2644 // On function declarations/definitions, we do not support the builtin 2645 // attribute. We do not check this in VerifyFunctionAttrs since that is 2646 // checking for Attributes that can/can not ever be on functions. 2647 Check(!Attrs.hasFnAttr(Attribute::Builtin), 2648 "Attribute 'builtin' can only be applied to a callsite.", &F); 2649 2650 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2651 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2652 2653 // Check that this function meets the restrictions on this calling convention. 2654 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2655 // restrictions can be lifted. 2656 switch (F.getCallingConv()) { 2657 default: 2658 case CallingConv::C: 2659 break; 2660 case CallingConv::X86_INTR: { 2661 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2662 "Calling convention parameter requires byval", &F); 2663 break; 2664 } 2665 case CallingConv::AMDGPU_KERNEL: 2666 case CallingConv::SPIR_KERNEL: 2667 case CallingConv::AMDGPU_CS_Chain: 2668 case CallingConv::AMDGPU_CS_ChainPreserve: 2669 Check(F.getReturnType()->isVoidTy(), 2670 "Calling convention requires void return type", &F); 2671 [[fallthrough]]; 2672 case CallingConv::AMDGPU_VS: 2673 case CallingConv::AMDGPU_HS: 2674 case CallingConv::AMDGPU_GS: 2675 case CallingConv::AMDGPU_PS: 2676 case CallingConv::AMDGPU_CS: 2677 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F); 2678 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2679 const unsigned StackAS = DL.getAllocaAddrSpace(); 2680 unsigned i = 0; 2681 for (const Argument &Arg : F.args()) { 2682 Check(!Attrs.hasParamAttr(i, Attribute::ByVal), 2683 "Calling convention disallows byval", &F); 2684 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2685 "Calling convention disallows preallocated", &F); 2686 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2687 "Calling convention disallows inalloca", &F); 2688 2689 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2690 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2691 // value here. 2692 Check(Arg.getType()->getPointerAddressSpace() != StackAS, 2693 "Calling convention disallows stack byref", &F); 2694 } 2695 2696 ++i; 2697 } 2698 } 2699 2700 [[fallthrough]]; 2701 case CallingConv::Fast: 2702 case CallingConv::Cold: 2703 case CallingConv::Intel_OCL_BI: 2704 case CallingConv::PTX_Kernel: 2705 case CallingConv::PTX_Device: 2706 Check(!F.isVarArg(), 2707 "Calling convention does not support varargs or " 2708 "perfect forwarding!", 2709 &F); 2710 break; 2711 } 2712 2713 // Check that the argument values match the function type for this function... 2714 unsigned i = 0; 2715 for (const Argument &Arg : F.args()) { 2716 Check(Arg.getType() == FT->getParamType(i), 2717 "Argument value does not match function argument type!", &Arg, 2718 FT->getParamType(i)); 2719 Check(Arg.getType()->isFirstClassType(), 2720 "Function arguments must have first-class types!", &Arg); 2721 if (!IsIntrinsic) { 2722 Check(!Arg.getType()->isMetadataTy(), 2723 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2724 Check(!Arg.getType()->isTokenTy(), 2725 "Function takes token but isn't an intrinsic", &Arg, &F); 2726 Check(!Arg.getType()->isX86_AMXTy(), 2727 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2728 } 2729 2730 // Check that swifterror argument is only used by loads and stores. 2731 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2732 verifySwiftErrorValue(&Arg); 2733 } 2734 ++i; 2735 } 2736 2737 if (!IsIntrinsic) { 2738 Check(!F.getReturnType()->isTokenTy(), 2739 "Function returns a token but isn't an intrinsic", &F); 2740 Check(!F.getReturnType()->isX86_AMXTy(), 2741 "Function returns a x86_amx but isn't an intrinsic", &F); 2742 } 2743 2744 // Get the function metadata attachments. 2745 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2746 F.getAllMetadata(MDs); 2747 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2748 verifyFunctionMetadata(MDs); 2749 2750 // Check validity of the personality function 2751 if (F.hasPersonalityFn()) { 2752 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2753 if (Per) 2754 Check(Per->getParent() == F.getParent(), 2755 "Referencing personality function in another module!", &F, 2756 F.getParent(), Per, Per->getParent()); 2757 } 2758 2759 // EH funclet coloring can be expensive, recompute on-demand 2760 BlockEHFuncletColors.clear(); 2761 2762 if (F.isMaterializable()) { 2763 // Function has a body somewhere we can't see. 2764 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2765 MDs.empty() ? nullptr : MDs.front().second); 2766 } else if (F.isDeclaration()) { 2767 for (const auto &I : MDs) { 2768 // This is used for call site debug information. 2769 CheckDI(I.first != LLVMContext::MD_dbg || 2770 !cast<DISubprogram>(I.second)->isDistinct(), 2771 "function declaration may only have a unique !dbg attachment", 2772 &F); 2773 Check(I.first != LLVMContext::MD_prof, 2774 "function declaration may not have a !prof attachment", &F); 2775 2776 // Verify the metadata itself. 2777 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2778 } 2779 Check(!F.hasPersonalityFn(), 2780 "Function declaration shouldn't have a personality routine", &F); 2781 } else { 2782 // Verify that this function (which has a body) is not named "llvm.*". It 2783 // is not legal to define intrinsics. 2784 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2785 2786 // Check the entry node 2787 const BasicBlock *Entry = &F.getEntryBlock(); 2788 Check(pred_empty(Entry), 2789 "Entry block to function must not have predecessors!", Entry); 2790 2791 // The address of the entry block cannot be taken, unless it is dead. 2792 if (Entry->hasAddressTaken()) { 2793 Check(!BlockAddress::lookup(Entry)->isConstantUsed(), 2794 "blockaddress may not be used with the entry block!", Entry); 2795 } 2796 2797 unsigned NumDebugAttachments = 0, NumProfAttachments = 0, 2798 NumKCFIAttachments = 0; 2799 // Visit metadata attachments. 2800 for (const auto &I : MDs) { 2801 // Verify that the attachment is legal. 2802 auto AllowLocs = AreDebugLocsAllowed::No; 2803 switch (I.first) { 2804 default: 2805 break; 2806 case LLVMContext::MD_dbg: { 2807 ++NumDebugAttachments; 2808 CheckDI(NumDebugAttachments == 1, 2809 "function must have a single !dbg attachment", &F, I.second); 2810 CheckDI(isa<DISubprogram>(I.second), 2811 "function !dbg attachment must be a subprogram", &F, I.second); 2812 CheckDI(cast<DISubprogram>(I.second)->isDistinct(), 2813 "function definition may only have a distinct !dbg attachment", 2814 &F); 2815 2816 auto *SP = cast<DISubprogram>(I.second); 2817 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2818 CheckDI(!AttachedTo || AttachedTo == &F, 2819 "DISubprogram attached to more than one function", SP, &F); 2820 AttachedTo = &F; 2821 AllowLocs = AreDebugLocsAllowed::Yes; 2822 break; 2823 } 2824 case LLVMContext::MD_prof: 2825 ++NumProfAttachments; 2826 Check(NumProfAttachments == 1, 2827 "function must have a single !prof attachment", &F, I.second); 2828 break; 2829 case LLVMContext::MD_kcfi_type: 2830 ++NumKCFIAttachments; 2831 Check(NumKCFIAttachments == 1, 2832 "function must have a single !kcfi_type attachment", &F, 2833 I.second); 2834 break; 2835 } 2836 2837 // Verify the metadata itself. 2838 visitMDNode(*I.second, AllowLocs); 2839 } 2840 } 2841 2842 // If this function is actually an intrinsic, verify that it is only used in 2843 // direct call/invokes, never having its "address taken". 2844 // Only do this if the module is materialized, otherwise we don't have all the 2845 // uses. 2846 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2847 const User *U; 2848 if (F.hasAddressTaken(&U, false, true, false, 2849 /*IgnoreARCAttachedCall=*/true)) 2850 Check(false, "Invalid user of intrinsic instruction!", U); 2851 } 2852 2853 // Check intrinsics' signatures. 2854 switch (F.getIntrinsicID()) { 2855 case Intrinsic::experimental_gc_get_pointer_base: { 2856 FunctionType *FT = F.getFunctionType(); 2857 Check(FT->getNumParams() == 1, "wrong number of parameters", F); 2858 Check(isa<PointerType>(F.getReturnType()), 2859 "gc.get.pointer.base must return a pointer", F); 2860 Check(FT->getParamType(0) == F.getReturnType(), 2861 "gc.get.pointer.base operand and result must be of the same type", F); 2862 break; 2863 } 2864 case Intrinsic::experimental_gc_get_pointer_offset: { 2865 FunctionType *FT = F.getFunctionType(); 2866 Check(FT->getNumParams() == 1, "wrong number of parameters", F); 2867 Check(isa<PointerType>(FT->getParamType(0)), 2868 "gc.get.pointer.offset operand must be a pointer", F); 2869 Check(F.getReturnType()->isIntegerTy(), 2870 "gc.get.pointer.offset must return integer", F); 2871 break; 2872 } 2873 } 2874 2875 auto *N = F.getSubprogram(); 2876 HasDebugInfo = (N != nullptr); 2877 if (!HasDebugInfo) 2878 return; 2879 2880 // Check that all !dbg attachments lead to back to N. 2881 // 2882 // FIXME: Check this incrementally while visiting !dbg attachments. 2883 // FIXME: Only check when N is the canonical subprogram for F. 2884 SmallPtrSet<const MDNode *, 32> Seen; 2885 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2886 // Be careful about using DILocation here since we might be dealing with 2887 // broken code (this is the Verifier after all). 2888 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2889 if (!DL) 2890 return; 2891 if (!Seen.insert(DL).second) 2892 return; 2893 2894 Metadata *Parent = DL->getRawScope(); 2895 CheckDI(Parent && isa<DILocalScope>(Parent), 2896 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent); 2897 2898 DILocalScope *Scope = DL->getInlinedAtScope(); 2899 Check(Scope, "Failed to find DILocalScope", DL); 2900 2901 if (!Seen.insert(Scope).second) 2902 return; 2903 2904 DISubprogram *SP = Scope->getSubprogram(); 2905 2906 // Scope and SP could be the same MDNode and we don't want to skip 2907 // validation in that case 2908 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2909 return; 2910 2911 CheckDI(SP->describes(&F), 2912 "!dbg attachment points at wrong subprogram for function", N, &F, 2913 &I, DL, Scope, SP); 2914 }; 2915 for (auto &BB : F) 2916 for (auto &I : BB) { 2917 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2918 // The llvm.loop annotations also contain two DILocations. 2919 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2920 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2921 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2922 if (BrokenDebugInfo) 2923 return; 2924 } 2925 } 2926 2927 // verifyBasicBlock - Verify that a basic block is well formed... 2928 // 2929 void Verifier::visitBasicBlock(BasicBlock &BB) { 2930 InstsInThisBlock.clear(); 2931 ConvergenceVerifyHelper.visit(BB); 2932 2933 // Ensure that basic blocks have terminators! 2934 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2935 2936 // Check constraints that this basic block imposes on all of the PHI nodes in 2937 // it. 2938 if (isa<PHINode>(BB.front())) { 2939 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2940 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2941 llvm::sort(Preds); 2942 for (const PHINode &PN : BB.phis()) { 2943 Check(PN.getNumIncomingValues() == Preds.size(), 2944 "PHINode should have one entry for each predecessor of its " 2945 "parent basic block!", 2946 &PN); 2947 2948 // Get and sort all incoming values in the PHI node... 2949 Values.clear(); 2950 Values.reserve(PN.getNumIncomingValues()); 2951 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2952 Values.push_back( 2953 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2954 llvm::sort(Values); 2955 2956 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2957 // Check to make sure that if there is more than one entry for a 2958 // particular basic block in this PHI node, that the incoming values are 2959 // all identical. 2960 // 2961 Check(i == 0 || Values[i].first != Values[i - 1].first || 2962 Values[i].second == Values[i - 1].second, 2963 "PHI node has multiple entries for the same basic block with " 2964 "different incoming values!", 2965 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2966 2967 // Check to make sure that the predecessors and PHI node entries are 2968 // matched up. 2969 Check(Values[i].first == Preds[i], 2970 "PHI node entries do not match predecessors!", &PN, 2971 Values[i].first, Preds[i]); 2972 } 2973 } 2974 } 2975 2976 // Check that all instructions have their parent pointers set up correctly. 2977 for (auto &I : BB) 2978 { 2979 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2980 } 2981 2982 // Confirm that no issues arise from the debug program. 2983 if (BB.IsNewDbgInfoFormat) { 2984 // Configure the validate function to not fire assertions, instead print 2985 // errors and return true if there's a problem. 2986 bool RetVal = BB.validateDbgValues(false, true, OS); 2987 Check(!RetVal, "Invalid configuration of new-debug-info data found"); 2988 } 2989 } 2990 2991 void Verifier::visitTerminator(Instruction &I) { 2992 // Ensure that terminators only exist at the end of the basic block. 2993 Check(&I == I.getParent()->getTerminator(), 2994 "Terminator found in the middle of a basic block!", I.getParent()); 2995 visitInstruction(I); 2996 } 2997 2998 void Verifier::visitBranchInst(BranchInst &BI) { 2999 if (BI.isConditional()) { 3000 Check(BI.getCondition()->getType()->isIntegerTy(1), 3001 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 3002 } 3003 visitTerminator(BI); 3004 } 3005 3006 void Verifier::visitReturnInst(ReturnInst &RI) { 3007 Function *F = RI.getParent()->getParent(); 3008 unsigned N = RI.getNumOperands(); 3009 if (F->getReturnType()->isVoidTy()) 3010 Check(N == 0, 3011 "Found return instr that returns non-void in Function of void " 3012 "return type!", 3013 &RI, F->getReturnType()); 3014 else 3015 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 3016 "Function return type does not match operand " 3017 "type of return inst!", 3018 &RI, F->getReturnType()); 3019 3020 // Check to make sure that the return value has necessary properties for 3021 // terminators... 3022 visitTerminator(RI); 3023 } 3024 3025 void Verifier::visitSwitchInst(SwitchInst &SI) { 3026 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 3027 // Check to make sure that all of the constants in the switch instruction 3028 // have the same type as the switched-on value. 3029 Type *SwitchTy = SI.getCondition()->getType(); 3030 SmallPtrSet<ConstantInt*, 32> Constants; 3031 for (auto &Case : SI.cases()) { 3032 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)), 3033 "Case value is not a constant integer.", &SI); 3034 Check(Case.getCaseValue()->getType() == SwitchTy, 3035 "Switch constants must all be same type as switch value!", &SI); 3036 Check(Constants.insert(Case.getCaseValue()).second, 3037 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 3038 } 3039 3040 visitTerminator(SI); 3041 } 3042 3043 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 3044 Check(BI.getAddress()->getType()->isPointerTy(), 3045 "Indirectbr operand must have pointer type!", &BI); 3046 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 3047 Check(BI.getDestination(i)->getType()->isLabelTy(), 3048 "Indirectbr destinations must all have pointer type!", &BI); 3049 3050 visitTerminator(BI); 3051 } 3052 3053 void Verifier::visitCallBrInst(CallBrInst &CBI) { 3054 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI); 3055 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 3056 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 3057 3058 verifyInlineAsmCall(CBI); 3059 visitTerminator(CBI); 3060 } 3061 3062 void Verifier::visitSelectInst(SelectInst &SI) { 3063 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 3064 SI.getOperand(2)), 3065 "Invalid operands for select instruction!", &SI); 3066 3067 Check(SI.getTrueValue()->getType() == SI.getType(), 3068 "Select values must have same type as select instruction!", &SI); 3069 visitInstruction(SI); 3070 } 3071 3072 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 3073 /// a pass, if any exist, it's an error. 3074 /// 3075 void Verifier::visitUserOp1(Instruction &I) { 3076 Check(false, "User-defined operators should not live outside of a pass!", &I); 3077 } 3078 3079 void Verifier::visitTruncInst(TruncInst &I) { 3080 // Get the source and destination types 3081 Type *SrcTy = I.getOperand(0)->getType(); 3082 Type *DestTy = I.getType(); 3083 3084 // Get the size of the types in bits, we'll need this later 3085 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3086 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3087 3088 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 3089 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 3090 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3091 "trunc source and destination must both be a vector or neither", &I); 3092 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 3093 3094 visitInstruction(I); 3095 } 3096 3097 void Verifier::visitZExtInst(ZExtInst &I) { 3098 // Get the source and destination types 3099 Type *SrcTy = I.getOperand(0)->getType(); 3100 Type *DestTy = I.getType(); 3101 3102 // Get the size of the types in bits, we'll need this later 3103 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 3104 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 3105 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3106 "zext source and destination must both be a vector or neither", &I); 3107 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3108 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3109 3110 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 3111 3112 visitInstruction(I); 3113 } 3114 3115 void Verifier::visitSExtInst(SExtInst &I) { 3116 // Get the source and destination types 3117 Type *SrcTy = I.getOperand(0)->getType(); 3118 Type *DestTy = I.getType(); 3119 3120 // Get the size of the types in bits, we'll need this later 3121 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3122 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3123 3124 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 3125 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 3126 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3127 "sext source and destination must both be a vector or neither", &I); 3128 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 3129 3130 visitInstruction(I); 3131 } 3132 3133 void Verifier::visitFPTruncInst(FPTruncInst &I) { 3134 // Get the source and destination types 3135 Type *SrcTy = I.getOperand(0)->getType(); 3136 Type *DestTy = I.getType(); 3137 // Get the size of the types in bits, we'll need this later 3138 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3139 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3140 3141 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 3142 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 3143 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3144 "fptrunc source and destination must both be a vector or neither", &I); 3145 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 3146 3147 visitInstruction(I); 3148 } 3149 3150 void Verifier::visitFPExtInst(FPExtInst &I) { 3151 // Get the source and destination types 3152 Type *SrcTy = I.getOperand(0)->getType(); 3153 Type *DestTy = I.getType(); 3154 3155 // Get the size of the types in bits, we'll need this later 3156 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3157 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3158 3159 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 3160 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 3161 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3162 "fpext source and destination must both be a vector or neither", &I); 3163 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 3164 3165 visitInstruction(I); 3166 } 3167 3168 void Verifier::visitUIToFPInst(UIToFPInst &I) { 3169 // Get the source and destination types 3170 Type *SrcTy = I.getOperand(0)->getType(); 3171 Type *DestTy = I.getType(); 3172 3173 bool SrcVec = SrcTy->isVectorTy(); 3174 bool DstVec = DestTy->isVectorTy(); 3175 3176 Check(SrcVec == DstVec, 3177 "UIToFP source and dest must both be vector or scalar", &I); 3178 Check(SrcTy->isIntOrIntVectorTy(), 3179 "UIToFP source must be integer or integer vector", &I); 3180 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 3181 &I); 3182 3183 if (SrcVec && DstVec) 3184 Check(cast<VectorType>(SrcTy)->getElementCount() == 3185 cast<VectorType>(DestTy)->getElementCount(), 3186 "UIToFP source and dest vector length mismatch", &I); 3187 3188 visitInstruction(I); 3189 } 3190 3191 void Verifier::visitSIToFPInst(SIToFPInst &I) { 3192 // Get the source and destination types 3193 Type *SrcTy = I.getOperand(0)->getType(); 3194 Type *DestTy = I.getType(); 3195 3196 bool SrcVec = SrcTy->isVectorTy(); 3197 bool DstVec = DestTy->isVectorTy(); 3198 3199 Check(SrcVec == DstVec, 3200 "SIToFP source and dest must both be vector or scalar", &I); 3201 Check(SrcTy->isIntOrIntVectorTy(), 3202 "SIToFP source must be integer or integer vector", &I); 3203 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 3204 &I); 3205 3206 if (SrcVec && DstVec) 3207 Check(cast<VectorType>(SrcTy)->getElementCount() == 3208 cast<VectorType>(DestTy)->getElementCount(), 3209 "SIToFP source and dest vector length mismatch", &I); 3210 3211 visitInstruction(I); 3212 } 3213 3214 void Verifier::visitFPToUIInst(FPToUIInst &I) { 3215 // Get the source and destination types 3216 Type *SrcTy = I.getOperand(0)->getType(); 3217 Type *DestTy = I.getType(); 3218 3219 bool SrcVec = SrcTy->isVectorTy(); 3220 bool DstVec = DestTy->isVectorTy(); 3221 3222 Check(SrcVec == DstVec, 3223 "FPToUI source and dest must both be vector or scalar", &I); 3224 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I); 3225 Check(DestTy->isIntOrIntVectorTy(), 3226 "FPToUI result must be integer or integer vector", &I); 3227 3228 if (SrcVec && DstVec) 3229 Check(cast<VectorType>(SrcTy)->getElementCount() == 3230 cast<VectorType>(DestTy)->getElementCount(), 3231 "FPToUI source and dest vector length mismatch", &I); 3232 3233 visitInstruction(I); 3234 } 3235 3236 void Verifier::visitFPToSIInst(FPToSIInst &I) { 3237 // Get the source and destination types 3238 Type *SrcTy = I.getOperand(0)->getType(); 3239 Type *DestTy = I.getType(); 3240 3241 bool SrcVec = SrcTy->isVectorTy(); 3242 bool DstVec = DestTy->isVectorTy(); 3243 3244 Check(SrcVec == DstVec, 3245 "FPToSI source and dest must both be vector or scalar", &I); 3246 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I); 3247 Check(DestTy->isIntOrIntVectorTy(), 3248 "FPToSI result must be integer or integer vector", &I); 3249 3250 if (SrcVec && DstVec) 3251 Check(cast<VectorType>(SrcTy)->getElementCount() == 3252 cast<VectorType>(DestTy)->getElementCount(), 3253 "FPToSI source and dest vector length mismatch", &I); 3254 3255 visitInstruction(I); 3256 } 3257 3258 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 3259 // Get the source and destination types 3260 Type *SrcTy = I.getOperand(0)->getType(); 3261 Type *DestTy = I.getType(); 3262 3263 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 3264 3265 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 3266 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 3267 &I); 3268 3269 if (SrcTy->isVectorTy()) { 3270 auto *VSrc = cast<VectorType>(SrcTy); 3271 auto *VDest = cast<VectorType>(DestTy); 3272 Check(VSrc->getElementCount() == VDest->getElementCount(), 3273 "PtrToInt Vector width mismatch", &I); 3274 } 3275 3276 visitInstruction(I); 3277 } 3278 3279 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 3280 // Get the source and destination types 3281 Type *SrcTy = I.getOperand(0)->getType(); 3282 Type *DestTy = I.getType(); 3283 3284 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I); 3285 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 3286 3287 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 3288 &I); 3289 if (SrcTy->isVectorTy()) { 3290 auto *VSrc = cast<VectorType>(SrcTy); 3291 auto *VDest = cast<VectorType>(DestTy); 3292 Check(VSrc->getElementCount() == VDest->getElementCount(), 3293 "IntToPtr Vector width mismatch", &I); 3294 } 3295 visitInstruction(I); 3296 } 3297 3298 void Verifier::visitBitCastInst(BitCastInst &I) { 3299 Check( 3300 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3301 "Invalid bitcast", &I); 3302 visitInstruction(I); 3303 } 3304 3305 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3306 Type *SrcTy = I.getOperand(0)->getType(); 3307 Type *DestTy = I.getType(); 3308 3309 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3310 &I); 3311 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3312 &I); 3313 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3314 "AddrSpaceCast must be between different address spaces", &I); 3315 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3316 Check(SrcVTy->getElementCount() == 3317 cast<VectorType>(DestTy)->getElementCount(), 3318 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3319 visitInstruction(I); 3320 } 3321 3322 /// visitPHINode - Ensure that a PHI node is well formed. 3323 /// 3324 void Verifier::visitPHINode(PHINode &PN) { 3325 // Ensure that the PHI nodes are all grouped together at the top of the block. 3326 // This can be tested by checking whether the instruction before this is 3327 // either nonexistent (because this is begin()) or is a PHI node. If not, 3328 // then there is some other instruction before a PHI. 3329 Check(&PN == &PN.getParent()->front() || 3330 isa<PHINode>(--BasicBlock::iterator(&PN)), 3331 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3332 3333 // Check that a PHI doesn't yield a Token. 3334 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3335 3336 // Check that all of the values of the PHI node have the same type as the 3337 // result, and that the incoming blocks are really basic blocks. 3338 for (Value *IncValue : PN.incoming_values()) { 3339 Check(PN.getType() == IncValue->getType(), 3340 "PHI node operands are not the same type as the result!", &PN); 3341 } 3342 3343 // All other PHI node constraints are checked in the visitBasicBlock method. 3344 3345 visitInstruction(PN); 3346 } 3347 3348 void Verifier::visitCallBase(CallBase &Call) { 3349 Check(Call.getCalledOperand()->getType()->isPointerTy(), 3350 "Called function must be a pointer!", Call); 3351 FunctionType *FTy = Call.getFunctionType(); 3352 3353 // Verify that the correct number of arguments are being passed 3354 if (FTy->isVarArg()) 3355 Check(Call.arg_size() >= FTy->getNumParams(), 3356 "Called function requires more parameters than were provided!", Call); 3357 else 3358 Check(Call.arg_size() == FTy->getNumParams(), 3359 "Incorrect number of arguments passed to called function!", Call); 3360 3361 // Verify that all arguments to the call match the function type. 3362 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3363 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3364 "Call parameter type does not match function signature!", 3365 Call.getArgOperand(i), FTy->getParamType(i), Call); 3366 3367 AttributeList Attrs = Call.getAttributes(); 3368 3369 Check(verifyAttributeCount(Attrs, Call.arg_size()), 3370 "Attribute after last parameter!", Call); 3371 3372 Function *Callee = 3373 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3374 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3375 if (IsIntrinsic) 3376 Check(Callee->getValueType() == FTy, 3377 "Intrinsic called with incompatible signature", Call); 3378 3379 // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling 3380 // convention. 3381 auto CC = Call.getCallingConv(); 3382 Check(CC != CallingConv::AMDGPU_CS_Chain && 3383 CC != CallingConv::AMDGPU_CS_ChainPreserve, 3384 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions " 3385 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.", 3386 Call); 3387 3388 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) { 3389 if (!Ty->isSized()) 3390 return; 3391 Align ABIAlign = DL.getABITypeAlign(Ty); 3392 Align MaxAlign(ParamMaxAlignment); 3393 Check(ABIAlign <= MaxAlign, 3394 "Incorrect alignment of " + Message + " to called function!", Call); 3395 }; 3396 3397 if (!IsIntrinsic) { 3398 VerifyTypeAlign(FTy->getReturnType(), "return type"); 3399 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3400 Type *Ty = FTy->getParamType(i); 3401 VerifyTypeAlign(Ty, "argument passed"); 3402 } 3403 } 3404 3405 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3406 // Don't allow speculatable on call sites, unless the underlying function 3407 // declaration is also speculatable. 3408 Check(Callee && Callee->isSpeculatable(), 3409 "speculatable attribute may not apply to call sites", Call); 3410 } 3411 3412 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3413 Check(Call.getCalledFunction()->getIntrinsicID() == 3414 Intrinsic::call_preallocated_arg, 3415 "preallocated as a call site attribute can only be on " 3416 "llvm.call.preallocated.arg"); 3417 } 3418 3419 // Verify call attributes. 3420 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm()); 3421 3422 // Conservatively check the inalloca argument. 3423 // We have a bug if we can find that there is an underlying alloca without 3424 // inalloca. 3425 if (Call.hasInAllocaArgument()) { 3426 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3427 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3428 Check(AI->isUsedWithInAlloca(), 3429 "inalloca argument for call has mismatched alloca", AI, Call); 3430 } 3431 3432 // For each argument of the callsite, if it has the swifterror argument, 3433 // make sure the underlying alloca/parameter it comes from has a swifterror as 3434 // well. 3435 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3436 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3437 Value *SwiftErrorArg = Call.getArgOperand(i); 3438 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3439 Check(AI->isSwiftError(), 3440 "swifterror argument for call has mismatched alloca", AI, Call); 3441 continue; 3442 } 3443 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3444 Check(ArgI, "swifterror argument should come from an alloca or parameter", 3445 SwiftErrorArg, Call); 3446 Check(ArgI->hasSwiftErrorAttr(), 3447 "swifterror argument for call has mismatched parameter", ArgI, 3448 Call); 3449 } 3450 3451 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3452 // Don't allow immarg on call sites, unless the underlying declaration 3453 // also has the matching immarg. 3454 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3455 "immarg may not apply only to call sites", Call.getArgOperand(i), 3456 Call); 3457 } 3458 3459 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3460 Value *ArgVal = Call.getArgOperand(i); 3461 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3462 "immarg operand has non-immediate parameter", ArgVal, Call); 3463 } 3464 3465 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3466 Value *ArgVal = Call.getArgOperand(i); 3467 bool hasOB = 3468 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3469 bool isMustTail = Call.isMustTailCall(); 3470 Check(hasOB != isMustTail, 3471 "preallocated operand either requires a preallocated bundle or " 3472 "the call to be musttail (but not both)", 3473 ArgVal, Call); 3474 } 3475 } 3476 3477 if (FTy->isVarArg()) { 3478 // FIXME? is 'nest' even legal here? 3479 bool SawNest = false; 3480 bool SawReturned = false; 3481 3482 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3483 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3484 SawNest = true; 3485 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3486 SawReturned = true; 3487 } 3488 3489 // Check attributes on the varargs part. 3490 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3491 Type *Ty = Call.getArgOperand(Idx)->getType(); 3492 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3493 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3494 3495 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3496 Check(!SawNest, "More than one parameter has attribute nest!", Call); 3497 SawNest = true; 3498 } 3499 3500 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3501 Check(!SawReturned, "More than one parameter has attribute returned!", 3502 Call); 3503 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3504 "Incompatible argument and return types for 'returned' " 3505 "attribute", 3506 Call); 3507 SawReturned = true; 3508 } 3509 3510 // Statepoint intrinsic is vararg but the wrapped function may be not. 3511 // Allow sret here and check the wrapped function in verifyStatepoint. 3512 if (!Call.getCalledFunction() || 3513 Call.getCalledFunction()->getIntrinsicID() != 3514 Intrinsic::experimental_gc_statepoint) 3515 Check(!ArgAttrs.hasAttribute(Attribute::StructRet), 3516 "Attribute 'sret' cannot be used for vararg call arguments!", 3517 Call); 3518 3519 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3520 Check(Idx == Call.arg_size() - 1, 3521 "inalloca isn't on the last argument!", Call); 3522 } 3523 } 3524 3525 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3526 if (!IsIntrinsic) { 3527 for (Type *ParamTy : FTy->params()) { 3528 Check(!ParamTy->isMetadataTy(), 3529 "Function has metadata parameter but isn't an intrinsic", Call); 3530 Check(!ParamTy->isTokenTy(), 3531 "Function has token parameter but isn't an intrinsic", Call); 3532 } 3533 } 3534 3535 // Verify that indirect calls don't return tokens. 3536 if (!Call.getCalledFunction()) { 3537 Check(!FTy->getReturnType()->isTokenTy(), 3538 "Return type cannot be token for indirect call!"); 3539 Check(!FTy->getReturnType()->isX86_AMXTy(), 3540 "Return type cannot be x86_amx for indirect call!"); 3541 } 3542 3543 if (Function *F = Call.getCalledFunction()) 3544 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3545 visitIntrinsicCall(ID, Call); 3546 3547 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3548 // most one "gc-transition", at most one "cfguardtarget", at most one 3549 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle. 3550 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3551 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3552 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3553 FoundPtrauthBundle = false, FoundKCFIBundle = false, 3554 FoundAttachedCallBundle = false; 3555 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3556 OperandBundleUse BU = Call.getOperandBundleAt(i); 3557 uint32_t Tag = BU.getTagID(); 3558 if (Tag == LLVMContext::OB_deopt) { 3559 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3560 FoundDeoptBundle = true; 3561 } else if (Tag == LLVMContext::OB_gc_transition) { 3562 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3563 Call); 3564 FoundGCTransitionBundle = true; 3565 } else if (Tag == LLVMContext::OB_funclet) { 3566 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3567 FoundFuncletBundle = true; 3568 Check(BU.Inputs.size() == 1, 3569 "Expected exactly one funclet bundle operand", Call); 3570 Check(isa<FuncletPadInst>(BU.Inputs.front()), 3571 "Funclet bundle operands should correspond to a FuncletPadInst", 3572 Call); 3573 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3574 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles", 3575 Call); 3576 FoundCFGuardTargetBundle = true; 3577 Check(BU.Inputs.size() == 1, 3578 "Expected exactly one cfguardtarget bundle operand", Call); 3579 } else if (Tag == LLVMContext::OB_ptrauth) { 3580 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call); 3581 FoundPtrauthBundle = true; 3582 Check(BU.Inputs.size() == 2, 3583 "Expected exactly two ptrauth bundle operands", Call); 3584 Check(isa<ConstantInt>(BU.Inputs[0]) && 3585 BU.Inputs[0]->getType()->isIntegerTy(32), 3586 "Ptrauth bundle key operand must be an i32 constant", Call); 3587 Check(BU.Inputs[1]->getType()->isIntegerTy(64), 3588 "Ptrauth bundle discriminator operand must be an i64", Call); 3589 } else if (Tag == LLVMContext::OB_kcfi) { 3590 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call); 3591 FoundKCFIBundle = true; 3592 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand", 3593 Call); 3594 Check(isa<ConstantInt>(BU.Inputs[0]) && 3595 BU.Inputs[0]->getType()->isIntegerTy(32), 3596 "Kcfi bundle operand must be an i32 constant", Call); 3597 } else if (Tag == LLVMContext::OB_preallocated) { 3598 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3599 Call); 3600 FoundPreallocatedBundle = true; 3601 Check(BU.Inputs.size() == 1, 3602 "Expected exactly one preallocated bundle operand", Call); 3603 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3604 Check(Input && 3605 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3606 "\"preallocated\" argument must be a token from " 3607 "llvm.call.preallocated.setup", 3608 Call); 3609 } else if (Tag == LLVMContext::OB_gc_live) { 3610 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call); 3611 FoundGCLiveBundle = true; 3612 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3613 Check(!FoundAttachedCallBundle, 3614 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3615 FoundAttachedCallBundle = true; 3616 verifyAttachedCallBundle(Call, BU); 3617 } 3618 } 3619 3620 // Verify that callee and callsite agree on whether to use pointer auth. 3621 Check(!(Call.getCalledFunction() && FoundPtrauthBundle), 3622 "Direct call cannot have a ptrauth bundle", Call); 3623 3624 // Verify that each inlinable callsite of a debug-info-bearing function in a 3625 // debug-info-bearing function has a debug location attached to it. Failure to 3626 // do so causes assertion failures when the inliner sets up inline scope info 3627 // (Interposable functions are not inlinable, neither are functions without 3628 // definitions.) 3629 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3630 !Call.getCalledFunction()->isInterposable() && 3631 !Call.getCalledFunction()->isDeclaration() && 3632 Call.getCalledFunction()->getSubprogram()) 3633 CheckDI(Call.getDebugLoc(), 3634 "inlinable function call in a function with " 3635 "debug info must have a !dbg location", 3636 Call); 3637 3638 if (Call.isInlineAsm()) 3639 verifyInlineAsmCall(Call); 3640 3641 ConvergenceVerifyHelper.visit(Call); 3642 3643 visitInstruction(Call); 3644 } 3645 3646 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, 3647 StringRef Context) { 3648 Check(!Attrs.contains(Attribute::InAlloca), 3649 Twine("inalloca attribute not allowed in ") + Context); 3650 Check(!Attrs.contains(Attribute::InReg), 3651 Twine("inreg attribute not allowed in ") + Context); 3652 Check(!Attrs.contains(Attribute::SwiftError), 3653 Twine("swifterror attribute not allowed in ") + Context); 3654 Check(!Attrs.contains(Attribute::Preallocated), 3655 Twine("preallocated attribute not allowed in ") + Context); 3656 Check(!Attrs.contains(Attribute::ByRef), 3657 Twine("byref attribute not allowed in ") + Context); 3658 } 3659 3660 /// Two types are "congruent" if they are identical, or if they are both pointer 3661 /// types with different pointee types and the same address space. 3662 static bool isTypeCongruent(Type *L, Type *R) { 3663 if (L == R) 3664 return true; 3665 PointerType *PL = dyn_cast<PointerType>(L); 3666 PointerType *PR = dyn_cast<PointerType>(R); 3667 if (!PL || !PR) 3668 return false; 3669 return PL->getAddressSpace() == PR->getAddressSpace(); 3670 } 3671 3672 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) { 3673 static const Attribute::AttrKind ABIAttrs[] = { 3674 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3675 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3676 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3677 Attribute::ByRef}; 3678 AttrBuilder Copy(C); 3679 for (auto AK : ABIAttrs) { 3680 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3681 if (Attr.isValid()) 3682 Copy.addAttribute(Attr); 3683 } 3684 3685 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3686 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3687 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3688 Attrs.hasParamAttr(I, Attribute::ByRef))) 3689 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3690 return Copy; 3691 } 3692 3693 void Verifier::verifyMustTailCall(CallInst &CI) { 3694 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3695 3696 Function *F = CI.getParent()->getParent(); 3697 FunctionType *CallerTy = F->getFunctionType(); 3698 FunctionType *CalleeTy = CI.getFunctionType(); 3699 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3700 "cannot guarantee tail call due to mismatched varargs", &CI); 3701 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3702 "cannot guarantee tail call due to mismatched return types", &CI); 3703 3704 // - The calling conventions of the caller and callee must match. 3705 Check(F->getCallingConv() == CI.getCallingConv(), 3706 "cannot guarantee tail call due to mismatched calling conv", &CI); 3707 3708 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3709 // or a pointer bitcast followed by a ret instruction. 3710 // - The ret instruction must return the (possibly bitcasted) value 3711 // produced by the call or void. 3712 Value *RetVal = &CI; 3713 Instruction *Next = CI.getNextNode(); 3714 3715 // Handle the optional bitcast. 3716 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3717 Check(BI->getOperand(0) == RetVal, 3718 "bitcast following musttail call must use the call", BI); 3719 RetVal = BI; 3720 Next = BI->getNextNode(); 3721 } 3722 3723 // Check the return. 3724 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3725 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI); 3726 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3727 isa<UndefValue>(Ret->getReturnValue()), 3728 "musttail call result must be returned", Ret); 3729 3730 AttributeList CallerAttrs = F->getAttributes(); 3731 AttributeList CalleeAttrs = CI.getAttributes(); 3732 if (CI.getCallingConv() == CallingConv::SwiftTail || 3733 CI.getCallingConv() == CallingConv::Tail) { 3734 StringRef CCName = 3735 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3736 3737 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3738 // are allowed in swifttailcc call 3739 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3740 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3741 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3742 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3743 } 3744 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3745 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3746 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3747 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3748 } 3749 // - Varargs functions are not allowed 3750 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3751 " tail call for varargs function"); 3752 return; 3753 } 3754 3755 // - The caller and callee prototypes must match. Pointer types of 3756 // parameters or return types may differ in pointee type, but not 3757 // address space. 3758 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3759 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3760 "cannot guarantee tail call due to mismatched parameter counts", &CI); 3761 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3762 Check( 3763 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3764 "cannot guarantee tail call due to mismatched parameter types", &CI); 3765 } 3766 } 3767 3768 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3769 // returned, preallocated, and inalloca, must match. 3770 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3771 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3772 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3773 Check(CallerABIAttrs == CalleeABIAttrs, 3774 "cannot guarantee tail call due to mismatched ABI impacting " 3775 "function attributes", 3776 &CI, CI.getOperand(I)); 3777 } 3778 } 3779 3780 void Verifier::visitCallInst(CallInst &CI) { 3781 visitCallBase(CI); 3782 3783 if (CI.isMustTailCall()) 3784 verifyMustTailCall(CI); 3785 } 3786 3787 void Verifier::visitInvokeInst(InvokeInst &II) { 3788 visitCallBase(II); 3789 3790 // Verify that the first non-PHI instruction of the unwind destination is an 3791 // exception handling instruction. 3792 Check( 3793 II.getUnwindDest()->isEHPad(), 3794 "The unwind destination does not have an exception handling instruction!", 3795 &II); 3796 3797 visitTerminator(II); 3798 } 3799 3800 /// visitUnaryOperator - Check the argument to the unary operator. 3801 /// 3802 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3803 Check(U.getType() == U.getOperand(0)->getType(), 3804 "Unary operators must have same type for" 3805 "operands and result!", 3806 &U); 3807 3808 switch (U.getOpcode()) { 3809 // Check that floating-point arithmetic operators are only used with 3810 // floating-point operands. 3811 case Instruction::FNeg: 3812 Check(U.getType()->isFPOrFPVectorTy(), 3813 "FNeg operator only works with float types!", &U); 3814 break; 3815 default: 3816 llvm_unreachable("Unknown UnaryOperator opcode!"); 3817 } 3818 3819 visitInstruction(U); 3820 } 3821 3822 /// visitBinaryOperator - Check that both arguments to the binary operator are 3823 /// of the same type! 3824 /// 3825 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3826 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3827 "Both operands to a binary operator are not of the same type!", &B); 3828 3829 switch (B.getOpcode()) { 3830 // Check that integer arithmetic operators are only used with 3831 // integral operands. 3832 case Instruction::Add: 3833 case Instruction::Sub: 3834 case Instruction::Mul: 3835 case Instruction::SDiv: 3836 case Instruction::UDiv: 3837 case Instruction::SRem: 3838 case Instruction::URem: 3839 Check(B.getType()->isIntOrIntVectorTy(), 3840 "Integer arithmetic operators only work with integral types!", &B); 3841 Check(B.getType() == B.getOperand(0)->getType(), 3842 "Integer arithmetic operators must have same type " 3843 "for operands and result!", 3844 &B); 3845 break; 3846 // Check that floating-point arithmetic operators are only used with 3847 // floating-point operands. 3848 case Instruction::FAdd: 3849 case Instruction::FSub: 3850 case Instruction::FMul: 3851 case Instruction::FDiv: 3852 case Instruction::FRem: 3853 Check(B.getType()->isFPOrFPVectorTy(), 3854 "Floating-point arithmetic operators only work with " 3855 "floating-point types!", 3856 &B); 3857 Check(B.getType() == B.getOperand(0)->getType(), 3858 "Floating-point arithmetic operators must have same type " 3859 "for operands and result!", 3860 &B); 3861 break; 3862 // Check that logical operators are only used with integral operands. 3863 case Instruction::And: 3864 case Instruction::Or: 3865 case Instruction::Xor: 3866 Check(B.getType()->isIntOrIntVectorTy(), 3867 "Logical operators only work with integral types!", &B); 3868 Check(B.getType() == B.getOperand(0)->getType(), 3869 "Logical operators must have same type for operands and result!", &B); 3870 break; 3871 case Instruction::Shl: 3872 case Instruction::LShr: 3873 case Instruction::AShr: 3874 Check(B.getType()->isIntOrIntVectorTy(), 3875 "Shifts only work with integral types!", &B); 3876 Check(B.getType() == B.getOperand(0)->getType(), 3877 "Shift return type must be same as operands!", &B); 3878 break; 3879 default: 3880 llvm_unreachable("Unknown BinaryOperator opcode!"); 3881 } 3882 3883 visitInstruction(B); 3884 } 3885 3886 void Verifier::visitICmpInst(ICmpInst &IC) { 3887 // Check that the operands are the same type 3888 Type *Op0Ty = IC.getOperand(0)->getType(); 3889 Type *Op1Ty = IC.getOperand(1)->getType(); 3890 Check(Op0Ty == Op1Ty, 3891 "Both operands to ICmp instruction are not of the same type!", &IC); 3892 // Check that the operands are the right type 3893 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3894 "Invalid operand types for ICmp instruction", &IC); 3895 // Check that the predicate is valid. 3896 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC); 3897 3898 visitInstruction(IC); 3899 } 3900 3901 void Verifier::visitFCmpInst(FCmpInst &FC) { 3902 // Check that the operands are the same type 3903 Type *Op0Ty = FC.getOperand(0)->getType(); 3904 Type *Op1Ty = FC.getOperand(1)->getType(); 3905 Check(Op0Ty == Op1Ty, 3906 "Both operands to FCmp instruction are not of the same type!", &FC); 3907 // Check that the operands are the right type 3908 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", 3909 &FC); 3910 // Check that the predicate is valid. 3911 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC); 3912 3913 visitInstruction(FC); 3914 } 3915 3916 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3917 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3918 "Invalid extractelement operands!", &EI); 3919 visitInstruction(EI); 3920 } 3921 3922 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3923 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3924 IE.getOperand(2)), 3925 "Invalid insertelement operands!", &IE); 3926 visitInstruction(IE); 3927 } 3928 3929 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3930 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3931 SV.getShuffleMask()), 3932 "Invalid shufflevector operands!", &SV); 3933 visitInstruction(SV); 3934 } 3935 3936 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3937 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3938 3939 Check(isa<PointerType>(TargetTy), 3940 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3941 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3942 3943 if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) { 3944 SmallPtrSet<Type *, 4> Visited; 3945 Check(!STy->containsScalableVectorType(&Visited), 3946 "getelementptr cannot target structure that contains scalable vector" 3947 "type", 3948 &GEP); 3949 } 3950 3951 SmallVector<Value *, 16> Idxs(GEP.indices()); 3952 Check( 3953 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }), 3954 "GEP indexes must be integers", &GEP); 3955 Type *ElTy = 3956 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3957 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3958 3959 Check(GEP.getType()->isPtrOrPtrVectorTy() && 3960 GEP.getResultElementType() == ElTy, 3961 "GEP is not of right type for indices!", &GEP, ElTy); 3962 3963 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3964 // Additional checks for vector GEPs. 3965 ElementCount GEPWidth = GEPVTy->getElementCount(); 3966 if (GEP.getPointerOperandType()->isVectorTy()) 3967 Check( 3968 GEPWidth == 3969 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3970 "Vector GEP result width doesn't match operand's", &GEP); 3971 for (Value *Idx : Idxs) { 3972 Type *IndexTy = Idx->getType(); 3973 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3974 ElementCount IndexWidth = IndexVTy->getElementCount(); 3975 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3976 } 3977 Check(IndexTy->isIntOrIntVectorTy(), 3978 "All GEP indices should be of integer type"); 3979 } 3980 } 3981 3982 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3983 Check(GEP.getAddressSpace() == PTy->getAddressSpace(), 3984 "GEP address space doesn't match type", &GEP); 3985 } 3986 3987 visitInstruction(GEP); 3988 } 3989 3990 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3991 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3992 } 3993 3994 /// Verify !range and !absolute_symbol metadata. These have the same 3995 /// restrictions, except !absolute_symbol allows the full set. 3996 void Verifier::verifyRangeMetadata(const Value &I, const MDNode *Range, 3997 Type *Ty, bool IsAbsoluteSymbol) { 3998 unsigned NumOperands = Range->getNumOperands(); 3999 Check(NumOperands % 2 == 0, "Unfinished range!", Range); 4000 unsigned NumRanges = NumOperands / 2; 4001 Check(NumRanges >= 1, "It should have at least one range!", Range); 4002 4003 ConstantRange LastRange(1, true); // Dummy initial value 4004 for (unsigned i = 0; i < NumRanges; ++i) { 4005 ConstantInt *Low = 4006 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 4007 Check(Low, "The lower limit must be an integer!", Low); 4008 ConstantInt *High = 4009 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 4010 Check(High, "The upper limit must be an integer!", High); 4011 Check(High->getType() == Low->getType() && 4012 High->getType() == Ty->getScalarType(), 4013 "Range types must match instruction type!", &I); 4014 4015 APInt HighV = High->getValue(); 4016 APInt LowV = Low->getValue(); 4017 4018 // ConstantRange asserts if the ranges are the same except for the min/max 4019 // value. Leave the cases it tolerates for the empty range error below. 4020 Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(), 4021 "The upper and lower limits cannot be the same value", &I); 4022 4023 ConstantRange CurRange(LowV, HighV); 4024 Check(!CurRange.isEmptySet() && (IsAbsoluteSymbol || !CurRange.isFullSet()), 4025 "Range must not be empty!", Range); 4026 if (i != 0) { 4027 Check(CurRange.intersectWith(LastRange).isEmptySet(), 4028 "Intervals are overlapping", Range); 4029 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 4030 Range); 4031 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 4032 Range); 4033 } 4034 LastRange = ConstantRange(LowV, HighV); 4035 } 4036 if (NumRanges > 2) { 4037 APInt FirstLow = 4038 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 4039 APInt FirstHigh = 4040 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 4041 ConstantRange FirstRange(FirstLow, FirstHigh); 4042 Check(FirstRange.intersectWith(LastRange).isEmptySet(), 4043 "Intervals are overlapping", Range); 4044 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 4045 Range); 4046 } 4047 } 4048 4049 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 4050 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 4051 "precondition violation"); 4052 verifyRangeMetadata(I, Range, Ty, false); 4053 } 4054 4055 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 4056 unsigned Size = DL.getTypeSizeInBits(Ty); 4057 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 4058 Check(!(Size & (Size - 1)), 4059 "atomic memory access' operand must have a power-of-two size", Ty, I); 4060 } 4061 4062 void Verifier::visitLoadInst(LoadInst &LI) { 4063 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 4064 Check(PTy, "Load operand must be a pointer.", &LI); 4065 Type *ElTy = LI.getType(); 4066 if (MaybeAlign A = LI.getAlign()) { 4067 Check(A->value() <= Value::MaximumAlignment, 4068 "huge alignment values are unsupported", &LI); 4069 } 4070 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI); 4071 if (LI.isAtomic()) { 4072 Check(LI.getOrdering() != AtomicOrdering::Release && 4073 LI.getOrdering() != AtomicOrdering::AcquireRelease, 4074 "Load cannot have Release ordering", &LI); 4075 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 4076 "atomic load operand must have integer, pointer, or floating point " 4077 "type!", 4078 ElTy, &LI); 4079 checkAtomicMemAccessSize(ElTy, &LI); 4080 } else { 4081 Check(LI.getSyncScopeID() == SyncScope::System, 4082 "Non-atomic load cannot have SynchronizationScope specified", &LI); 4083 } 4084 4085 visitInstruction(LI); 4086 } 4087 4088 void Verifier::visitStoreInst(StoreInst &SI) { 4089 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 4090 Check(PTy, "Store operand must be a pointer.", &SI); 4091 Type *ElTy = SI.getOperand(0)->getType(); 4092 if (MaybeAlign A = SI.getAlign()) { 4093 Check(A->value() <= Value::MaximumAlignment, 4094 "huge alignment values are unsupported", &SI); 4095 } 4096 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI); 4097 if (SI.isAtomic()) { 4098 Check(SI.getOrdering() != AtomicOrdering::Acquire && 4099 SI.getOrdering() != AtomicOrdering::AcquireRelease, 4100 "Store cannot have Acquire ordering", &SI); 4101 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 4102 "atomic store operand must have integer, pointer, or floating point " 4103 "type!", 4104 ElTy, &SI); 4105 checkAtomicMemAccessSize(ElTy, &SI); 4106 } else { 4107 Check(SI.getSyncScopeID() == SyncScope::System, 4108 "Non-atomic store cannot have SynchronizationScope specified", &SI); 4109 } 4110 visitInstruction(SI); 4111 } 4112 4113 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 4114 void Verifier::verifySwiftErrorCall(CallBase &Call, 4115 const Value *SwiftErrorVal) { 4116 for (const auto &I : llvm::enumerate(Call.args())) { 4117 if (I.value() == SwiftErrorVal) { 4118 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError), 4119 "swifterror value when used in a callsite should be marked " 4120 "with swifterror attribute", 4121 SwiftErrorVal, Call); 4122 } 4123 } 4124 } 4125 4126 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 4127 // Check that swifterror value is only used by loads, stores, or as 4128 // a swifterror argument. 4129 for (const User *U : SwiftErrorVal->users()) { 4130 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 4131 isa<InvokeInst>(U), 4132 "swifterror value can only be loaded and stored from, or " 4133 "as a swifterror argument!", 4134 SwiftErrorVal, U); 4135 // If it is used by a store, check it is the second operand. 4136 if (auto StoreI = dyn_cast<StoreInst>(U)) 4137 Check(StoreI->getOperand(1) == SwiftErrorVal, 4138 "swifterror value should be the second operand when used " 4139 "by stores", 4140 SwiftErrorVal, U); 4141 if (auto *Call = dyn_cast<CallBase>(U)) 4142 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 4143 } 4144 } 4145 4146 void Verifier::visitAllocaInst(AllocaInst &AI) { 4147 SmallPtrSet<Type*, 4> Visited; 4148 Check(AI.getAllocatedType()->isSized(&Visited), 4149 "Cannot allocate unsized type", &AI); 4150 Check(AI.getArraySize()->getType()->isIntegerTy(), 4151 "Alloca array size must have integer type", &AI); 4152 if (MaybeAlign A = AI.getAlign()) { 4153 Check(A->value() <= Value::MaximumAlignment, 4154 "huge alignment values are unsupported", &AI); 4155 } 4156 4157 if (AI.isSwiftError()) { 4158 Check(AI.getAllocatedType()->isPointerTy(), 4159 "swifterror alloca must have pointer type", &AI); 4160 Check(!AI.isArrayAllocation(), 4161 "swifterror alloca must not be array allocation", &AI); 4162 verifySwiftErrorValue(&AI); 4163 } 4164 4165 visitInstruction(AI); 4166 } 4167 4168 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 4169 Type *ElTy = CXI.getOperand(1)->getType(); 4170 Check(ElTy->isIntOrPtrTy(), 4171 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 4172 checkAtomicMemAccessSize(ElTy, &CXI); 4173 visitInstruction(CXI); 4174 } 4175 4176 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 4177 Check(RMWI.getOrdering() != AtomicOrdering::Unordered, 4178 "atomicrmw instructions cannot be unordered.", &RMWI); 4179 auto Op = RMWI.getOperation(); 4180 Type *ElTy = RMWI.getOperand(1)->getType(); 4181 if (Op == AtomicRMWInst::Xchg) { 4182 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() || 4183 ElTy->isPointerTy(), 4184 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4185 " operand must have integer or floating point type!", 4186 &RMWI, ElTy); 4187 } else if (AtomicRMWInst::isFPOperation(Op)) { 4188 Check(ElTy->isFloatingPointTy(), 4189 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4190 " operand must have floating point type!", 4191 &RMWI, ElTy); 4192 } else { 4193 Check(ElTy->isIntegerTy(), 4194 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4195 " operand must have integer type!", 4196 &RMWI, ElTy); 4197 } 4198 checkAtomicMemAccessSize(ElTy, &RMWI); 4199 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 4200 "Invalid binary operation!", &RMWI); 4201 visitInstruction(RMWI); 4202 } 4203 4204 void Verifier::visitFenceInst(FenceInst &FI) { 4205 const AtomicOrdering Ordering = FI.getOrdering(); 4206 Check(Ordering == AtomicOrdering::Acquire || 4207 Ordering == AtomicOrdering::Release || 4208 Ordering == AtomicOrdering::AcquireRelease || 4209 Ordering == AtomicOrdering::SequentiallyConsistent, 4210 "fence instructions may only have acquire, release, acq_rel, or " 4211 "seq_cst ordering.", 4212 &FI); 4213 visitInstruction(FI); 4214 } 4215 4216 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 4217 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 4218 EVI.getIndices()) == EVI.getType(), 4219 "Invalid ExtractValueInst operands!", &EVI); 4220 4221 visitInstruction(EVI); 4222 } 4223 4224 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 4225 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 4226 IVI.getIndices()) == 4227 IVI.getOperand(1)->getType(), 4228 "Invalid InsertValueInst operands!", &IVI); 4229 4230 visitInstruction(IVI); 4231 } 4232 4233 static Value *getParentPad(Value *EHPad) { 4234 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 4235 return FPI->getParentPad(); 4236 4237 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 4238 } 4239 4240 void Verifier::visitEHPadPredecessors(Instruction &I) { 4241 assert(I.isEHPad()); 4242 4243 BasicBlock *BB = I.getParent(); 4244 Function *F = BB->getParent(); 4245 4246 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 4247 4248 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 4249 // The landingpad instruction defines its parent as a landing pad block. The 4250 // landing pad block may be branched to only by the unwind edge of an 4251 // invoke. 4252 for (BasicBlock *PredBB : predecessors(BB)) { 4253 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 4254 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 4255 "Block containing LandingPadInst must be jumped to " 4256 "only by the unwind edge of an invoke.", 4257 LPI); 4258 } 4259 return; 4260 } 4261 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 4262 if (!pred_empty(BB)) 4263 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 4264 "Block containg CatchPadInst must be jumped to " 4265 "only by its catchswitch.", 4266 CPI); 4267 Check(BB != CPI->getCatchSwitch()->getUnwindDest(), 4268 "Catchswitch cannot unwind to one of its catchpads", 4269 CPI->getCatchSwitch(), CPI); 4270 return; 4271 } 4272 4273 // Verify that each pred has a legal terminator with a legal to/from EH 4274 // pad relationship. 4275 Instruction *ToPad = &I; 4276 Value *ToPadParent = getParentPad(ToPad); 4277 for (BasicBlock *PredBB : predecessors(BB)) { 4278 Instruction *TI = PredBB->getTerminator(); 4279 Value *FromPad; 4280 if (auto *II = dyn_cast<InvokeInst>(TI)) { 4281 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB, 4282 "EH pad must be jumped to via an unwind edge", ToPad, II); 4283 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 4284 FromPad = Bundle->Inputs[0]; 4285 else 4286 FromPad = ConstantTokenNone::get(II->getContext()); 4287 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4288 FromPad = CRI->getOperand(0); 4289 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 4290 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4291 FromPad = CSI; 4292 } else { 4293 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 4294 } 4295 4296 // The edge may exit from zero or more nested pads. 4297 SmallSet<Value *, 8> Seen; 4298 for (;; FromPad = getParentPad(FromPad)) { 4299 Check(FromPad != ToPad, 4300 "EH pad cannot handle exceptions raised within it", FromPad, TI); 4301 if (FromPad == ToPadParent) { 4302 // This is a legal unwind edge. 4303 break; 4304 } 4305 Check(!isa<ConstantTokenNone>(FromPad), 4306 "A single unwind edge may only enter one EH pad", TI); 4307 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads", 4308 FromPad); 4309 4310 // This will be diagnosed on the corresponding instruction already. We 4311 // need the extra check here to make sure getParentPad() works. 4312 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad), 4313 "Parent pad must be catchpad/cleanuppad/catchswitch", TI); 4314 } 4315 } 4316 } 4317 4318 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 4319 // The landingpad instruction is ill-formed if it doesn't have any clauses and 4320 // isn't a cleanup. 4321 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(), 4322 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 4323 4324 visitEHPadPredecessors(LPI); 4325 4326 if (!LandingPadResultTy) 4327 LandingPadResultTy = LPI.getType(); 4328 else 4329 Check(LandingPadResultTy == LPI.getType(), 4330 "The landingpad instruction should have a consistent result type " 4331 "inside a function.", 4332 &LPI); 4333 4334 Function *F = LPI.getParent()->getParent(); 4335 Check(F->hasPersonalityFn(), 4336 "LandingPadInst needs to be in a function with a personality.", &LPI); 4337 4338 // The landingpad instruction must be the first non-PHI instruction in the 4339 // block. 4340 Check(LPI.getParent()->getLandingPadInst() == &LPI, 4341 "LandingPadInst not the first non-PHI instruction in the block.", &LPI); 4342 4343 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 4344 Constant *Clause = LPI.getClause(i); 4345 if (LPI.isCatch(i)) { 4346 Check(isa<PointerType>(Clause->getType()), 4347 "Catch operand does not have pointer type!", &LPI); 4348 } else { 4349 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 4350 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 4351 "Filter operand is not an array of constants!", &LPI); 4352 } 4353 } 4354 4355 visitInstruction(LPI); 4356 } 4357 4358 void Verifier::visitResumeInst(ResumeInst &RI) { 4359 Check(RI.getFunction()->hasPersonalityFn(), 4360 "ResumeInst needs to be in a function with a personality.", &RI); 4361 4362 if (!LandingPadResultTy) 4363 LandingPadResultTy = RI.getValue()->getType(); 4364 else 4365 Check(LandingPadResultTy == RI.getValue()->getType(), 4366 "The resume instruction should have a consistent result type " 4367 "inside a function.", 4368 &RI); 4369 4370 visitTerminator(RI); 4371 } 4372 4373 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 4374 BasicBlock *BB = CPI.getParent(); 4375 4376 Function *F = BB->getParent(); 4377 Check(F->hasPersonalityFn(), 4378 "CatchPadInst needs to be in a function with a personality.", &CPI); 4379 4380 Check(isa<CatchSwitchInst>(CPI.getParentPad()), 4381 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4382 CPI.getParentPad()); 4383 4384 // The catchpad instruction must be the first non-PHI instruction in the 4385 // block. 4386 Check(BB->getFirstNonPHI() == &CPI, 4387 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4388 4389 visitEHPadPredecessors(CPI); 4390 visitFuncletPadInst(CPI); 4391 } 4392 4393 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4394 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4395 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4396 CatchReturn.getOperand(0)); 4397 4398 visitTerminator(CatchReturn); 4399 } 4400 4401 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4402 BasicBlock *BB = CPI.getParent(); 4403 4404 Function *F = BB->getParent(); 4405 Check(F->hasPersonalityFn(), 4406 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4407 4408 // The cleanuppad instruction must be the first non-PHI instruction in the 4409 // block. 4410 Check(BB->getFirstNonPHI() == &CPI, 4411 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI); 4412 4413 auto *ParentPad = CPI.getParentPad(); 4414 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4415 "CleanupPadInst has an invalid parent.", &CPI); 4416 4417 visitEHPadPredecessors(CPI); 4418 visitFuncletPadInst(CPI); 4419 } 4420 4421 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4422 User *FirstUser = nullptr; 4423 Value *FirstUnwindPad = nullptr; 4424 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4425 SmallSet<FuncletPadInst *, 8> Seen; 4426 4427 while (!Worklist.empty()) { 4428 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4429 Check(Seen.insert(CurrentPad).second, 4430 "FuncletPadInst must not be nested within itself", CurrentPad); 4431 Value *UnresolvedAncestorPad = nullptr; 4432 for (User *U : CurrentPad->users()) { 4433 BasicBlock *UnwindDest; 4434 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4435 UnwindDest = CRI->getUnwindDest(); 4436 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4437 // We allow catchswitch unwind to caller to nest 4438 // within an outer pad that unwinds somewhere else, 4439 // because catchswitch doesn't have a nounwind variant. 4440 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4441 if (CSI->unwindsToCaller()) 4442 continue; 4443 UnwindDest = CSI->getUnwindDest(); 4444 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4445 UnwindDest = II->getUnwindDest(); 4446 } else if (isa<CallInst>(U)) { 4447 // Calls which don't unwind may be found inside funclet 4448 // pads that unwind somewhere else. We don't *require* 4449 // such calls to be annotated nounwind. 4450 continue; 4451 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4452 // The unwind dest for a cleanup can only be found by 4453 // recursive search. Add it to the worklist, and we'll 4454 // search for its first use that determines where it unwinds. 4455 Worklist.push_back(CPI); 4456 continue; 4457 } else { 4458 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4459 continue; 4460 } 4461 4462 Value *UnwindPad; 4463 bool ExitsFPI; 4464 if (UnwindDest) { 4465 UnwindPad = UnwindDest->getFirstNonPHI(); 4466 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4467 continue; 4468 Value *UnwindParent = getParentPad(UnwindPad); 4469 // Ignore unwind edges that don't exit CurrentPad. 4470 if (UnwindParent == CurrentPad) 4471 continue; 4472 // Determine whether the original funclet pad is exited, 4473 // and if we are scanning nested pads determine how many 4474 // of them are exited so we can stop searching their 4475 // children. 4476 Value *ExitedPad = CurrentPad; 4477 ExitsFPI = false; 4478 do { 4479 if (ExitedPad == &FPI) { 4480 ExitsFPI = true; 4481 // Now we can resolve any ancestors of CurrentPad up to 4482 // FPI, but not including FPI since we need to make sure 4483 // to check all direct users of FPI for consistency. 4484 UnresolvedAncestorPad = &FPI; 4485 break; 4486 } 4487 Value *ExitedParent = getParentPad(ExitedPad); 4488 if (ExitedParent == UnwindParent) { 4489 // ExitedPad is the ancestor-most pad which this unwind 4490 // edge exits, so we can resolve up to it, meaning that 4491 // ExitedParent is the first ancestor still unresolved. 4492 UnresolvedAncestorPad = ExitedParent; 4493 break; 4494 } 4495 ExitedPad = ExitedParent; 4496 } while (!isa<ConstantTokenNone>(ExitedPad)); 4497 } else { 4498 // Unwinding to caller exits all pads. 4499 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4500 ExitsFPI = true; 4501 UnresolvedAncestorPad = &FPI; 4502 } 4503 4504 if (ExitsFPI) { 4505 // This unwind edge exits FPI. Make sure it agrees with other 4506 // such edges. 4507 if (FirstUser) { 4508 Check(UnwindPad == FirstUnwindPad, 4509 "Unwind edges out of a funclet " 4510 "pad must have the same unwind " 4511 "dest", 4512 &FPI, U, FirstUser); 4513 } else { 4514 FirstUser = U; 4515 FirstUnwindPad = UnwindPad; 4516 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4517 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4518 getParentPad(UnwindPad) == getParentPad(&FPI)) 4519 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4520 } 4521 } 4522 // Make sure we visit all uses of FPI, but for nested pads stop as 4523 // soon as we know where they unwind to. 4524 if (CurrentPad != &FPI) 4525 break; 4526 } 4527 if (UnresolvedAncestorPad) { 4528 if (CurrentPad == UnresolvedAncestorPad) { 4529 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4530 // we've found an unwind edge that exits it, because we need to verify 4531 // all direct uses of FPI. 4532 assert(CurrentPad == &FPI); 4533 continue; 4534 } 4535 // Pop off the worklist any nested pads that we've found an unwind 4536 // destination for. The pads on the worklist are the uncles, 4537 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4538 // for all ancestors of CurrentPad up to but not including 4539 // UnresolvedAncestorPad. 4540 Value *ResolvedPad = CurrentPad; 4541 while (!Worklist.empty()) { 4542 Value *UnclePad = Worklist.back(); 4543 Value *AncestorPad = getParentPad(UnclePad); 4544 // Walk ResolvedPad up the ancestor list until we either find the 4545 // uncle's parent or the last resolved ancestor. 4546 while (ResolvedPad != AncestorPad) { 4547 Value *ResolvedParent = getParentPad(ResolvedPad); 4548 if (ResolvedParent == UnresolvedAncestorPad) { 4549 break; 4550 } 4551 ResolvedPad = ResolvedParent; 4552 } 4553 // If the resolved ancestor search didn't find the uncle's parent, 4554 // then the uncle is not yet resolved. 4555 if (ResolvedPad != AncestorPad) 4556 break; 4557 // This uncle is resolved, so pop it from the worklist. 4558 Worklist.pop_back(); 4559 } 4560 } 4561 } 4562 4563 if (FirstUnwindPad) { 4564 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4565 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4566 Value *SwitchUnwindPad; 4567 if (SwitchUnwindDest) 4568 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4569 else 4570 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4571 Check(SwitchUnwindPad == FirstUnwindPad, 4572 "Unwind edges out of a catch must have the same unwind dest as " 4573 "the parent catchswitch", 4574 &FPI, FirstUser, CatchSwitch); 4575 } 4576 } 4577 4578 visitInstruction(FPI); 4579 } 4580 4581 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4582 BasicBlock *BB = CatchSwitch.getParent(); 4583 4584 Function *F = BB->getParent(); 4585 Check(F->hasPersonalityFn(), 4586 "CatchSwitchInst needs to be in a function with a personality.", 4587 &CatchSwitch); 4588 4589 // The catchswitch instruction must be the first non-PHI instruction in the 4590 // block. 4591 Check(BB->getFirstNonPHI() == &CatchSwitch, 4592 "CatchSwitchInst not the first non-PHI instruction in the block.", 4593 &CatchSwitch); 4594 4595 auto *ParentPad = CatchSwitch.getParentPad(); 4596 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4597 "CatchSwitchInst has an invalid parent.", ParentPad); 4598 4599 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4600 Instruction *I = UnwindDest->getFirstNonPHI(); 4601 Check(I->isEHPad() && !isa<LandingPadInst>(I), 4602 "CatchSwitchInst must unwind to an EH block which is not a " 4603 "landingpad.", 4604 &CatchSwitch); 4605 4606 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4607 if (getParentPad(I) == ParentPad) 4608 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4609 } 4610 4611 Check(CatchSwitch.getNumHandlers() != 0, 4612 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4613 4614 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4615 Check(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4616 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4617 } 4618 4619 visitEHPadPredecessors(CatchSwitch); 4620 visitTerminator(CatchSwitch); 4621 } 4622 4623 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4624 Check(isa<CleanupPadInst>(CRI.getOperand(0)), 4625 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4626 CRI.getOperand(0)); 4627 4628 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4629 Instruction *I = UnwindDest->getFirstNonPHI(); 4630 Check(I->isEHPad() && !isa<LandingPadInst>(I), 4631 "CleanupReturnInst must unwind to an EH block which is not a " 4632 "landingpad.", 4633 &CRI); 4634 } 4635 4636 visitTerminator(CRI); 4637 } 4638 4639 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4640 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4641 // If the we have an invalid invoke, don't try to compute the dominance. 4642 // We already reject it in the invoke specific checks and the dominance 4643 // computation doesn't handle multiple edges. 4644 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4645 if (II->getNormalDest() == II->getUnwindDest()) 4646 return; 4647 } 4648 4649 // Quick check whether the def has already been encountered in the same block. 4650 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4651 // uses are defined to happen on the incoming edge, not at the instruction. 4652 // 4653 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4654 // wrapping an SSA value, assert that we've already encountered it. See 4655 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4656 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4657 return; 4658 4659 const Use &U = I.getOperandUse(i); 4660 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I); 4661 } 4662 4663 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4664 Check(I.getType()->isPointerTy(), 4665 "dereferenceable, dereferenceable_or_null " 4666 "apply only to pointer types", 4667 &I); 4668 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4669 "dereferenceable, dereferenceable_or_null apply only to load" 4670 " and inttoptr instructions, use attributes for calls or invokes", 4671 &I); 4672 Check(MD->getNumOperands() == 1, 4673 "dereferenceable, dereferenceable_or_null " 4674 "take one operand!", 4675 &I); 4676 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4677 Check(CI && CI->getType()->isIntegerTy(64), 4678 "dereferenceable, " 4679 "dereferenceable_or_null metadata value must be an i64!", 4680 &I); 4681 } 4682 4683 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4684 Check(MD->getNumOperands() >= 2, 4685 "!prof annotations should have no less than 2 operands", MD); 4686 4687 // Check first operand. 4688 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4689 Check(isa<MDString>(MD->getOperand(0)), 4690 "expected string with name of the !prof annotation", MD); 4691 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4692 StringRef ProfName = MDS->getString(); 4693 4694 // Check consistency of !prof branch_weights metadata. 4695 if (ProfName.equals("branch_weights")) { 4696 if (isa<InvokeInst>(&I)) { 4697 Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4698 "Wrong number of InvokeInst branch_weights operands", MD); 4699 } else { 4700 unsigned ExpectedNumOperands = 0; 4701 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4702 ExpectedNumOperands = BI->getNumSuccessors(); 4703 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4704 ExpectedNumOperands = SI->getNumSuccessors(); 4705 else if (isa<CallInst>(&I)) 4706 ExpectedNumOperands = 1; 4707 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4708 ExpectedNumOperands = IBI->getNumDestinations(); 4709 else if (isa<SelectInst>(&I)) 4710 ExpectedNumOperands = 2; 4711 else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I)) 4712 ExpectedNumOperands = CI->getNumSuccessors(); 4713 else 4714 CheckFailed("!prof branch_weights are not allowed for this instruction", 4715 MD); 4716 4717 Check(MD->getNumOperands() == 1 + ExpectedNumOperands, 4718 "Wrong number of operands", MD); 4719 } 4720 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4721 auto &MDO = MD->getOperand(i); 4722 Check(MDO, "second operand should not be null", MD); 4723 Check(mdconst::dyn_extract<ConstantInt>(MDO), 4724 "!prof brunch_weights operand is not a const int"); 4725 } 4726 } 4727 } 4728 4729 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) { 4730 assert(I.hasMetadata(LLVMContext::MD_DIAssignID)); 4731 bool ExpectedInstTy = 4732 isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I); 4733 CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind", 4734 I, MD); 4735 // Iterate over the MetadataAsValue uses of the DIAssignID - these should 4736 // only be found as DbgAssignIntrinsic operands. 4737 if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) { 4738 for (auto *User : AsValue->users()) { 4739 CheckDI(isa<DbgAssignIntrinsic>(User), 4740 "!DIAssignID should only be used by llvm.dbg.assign intrinsics", 4741 MD, User); 4742 // All of the dbg.assign intrinsics should be in the same function as I. 4743 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User)) 4744 CheckDI(DAI->getFunction() == I.getFunction(), 4745 "dbg.assign not in same function as inst", DAI, &I); 4746 } 4747 } 4748 for (DPValue *DPV : cast<DIAssignID>(MD)->getAllDPValueUsers()) { 4749 CheckDI(DPV->isDbgAssign(), 4750 "!DIAssignID should only be used by Assign DPVs.", MD, DPV); 4751 CheckDI(DPV->getFunction() == I.getFunction(), 4752 "DPVAssign not in same function as inst", DPV, &I); 4753 } 4754 } 4755 4756 void Verifier::visitCallStackMetadata(MDNode *MD) { 4757 // Call stack metadata should consist of a list of at least 1 constant int 4758 // (representing a hash of the location). 4759 Check(MD->getNumOperands() >= 1, 4760 "call stack metadata should have at least 1 operand", MD); 4761 4762 for (const auto &Op : MD->operands()) 4763 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op), 4764 "call stack metadata operand should be constant integer", Op); 4765 } 4766 4767 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) { 4768 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I); 4769 Check(MD->getNumOperands() >= 1, 4770 "!memprof annotations should have at least 1 metadata operand " 4771 "(MemInfoBlock)", 4772 MD); 4773 4774 // Check each MIB 4775 for (auto &MIBOp : MD->operands()) { 4776 MDNode *MIB = dyn_cast<MDNode>(MIBOp); 4777 // The first operand of an MIB should be the call stack metadata. 4778 // There rest of the operands should be MDString tags, and there should be 4779 // at least one. 4780 Check(MIB->getNumOperands() >= 2, 4781 "Each !memprof MemInfoBlock should have at least 2 operands", MIB); 4782 4783 // Check call stack metadata (first operand). 4784 Check(MIB->getOperand(0) != nullptr, 4785 "!memprof MemInfoBlock first operand should not be null", MIB); 4786 Check(isa<MDNode>(MIB->getOperand(0)), 4787 "!memprof MemInfoBlock first operand should be an MDNode", MIB); 4788 MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0)); 4789 visitCallStackMetadata(StackMD); 4790 4791 // Check that remaining operands are MDString. 4792 Check(llvm::all_of(llvm::drop_begin(MIB->operands()), 4793 [](const MDOperand &Op) { return isa<MDString>(Op); }), 4794 "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB); 4795 } 4796 } 4797 4798 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) { 4799 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I); 4800 // Verify the partial callstack annotated from memprof profiles. This callsite 4801 // is a part of a profiled allocation callstack. 4802 visitCallStackMetadata(MD); 4803 } 4804 4805 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4806 Check(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4807 Check(Annotation->getNumOperands() >= 1, 4808 "annotation must have at least one operand"); 4809 for (const MDOperand &Op : Annotation->operands()) { 4810 bool TupleOfStrings = 4811 isa<MDTuple>(Op.get()) && 4812 all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) { 4813 return isa<MDString>(Annotation.get()); 4814 }); 4815 Check(isa<MDString>(Op.get()) || TupleOfStrings, 4816 "operands must be a string or a tuple of strings"); 4817 } 4818 } 4819 4820 void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 4821 unsigned NumOps = MD->getNumOperands(); 4822 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 4823 MD); 4824 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 4825 "first scope operand must be self-referential or string", MD); 4826 if (NumOps == 3) 4827 Check(isa<MDString>(MD->getOperand(2)), 4828 "third scope operand must be string (if used)", MD); 4829 4830 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 4831 Check(Domain != nullptr, "second scope operand must be MDNode", MD); 4832 4833 unsigned NumDomainOps = Domain->getNumOperands(); 4834 Check(NumDomainOps >= 1 && NumDomainOps <= 2, 4835 "domain must have one or two operands", Domain); 4836 Check(Domain->getOperand(0).get() == Domain || 4837 isa<MDString>(Domain->getOperand(0)), 4838 "first domain operand must be self-referential or string", Domain); 4839 if (NumDomainOps == 2) 4840 Check(isa<MDString>(Domain->getOperand(1)), 4841 "second domain operand must be string (if used)", Domain); 4842 } 4843 4844 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 4845 for (const MDOperand &Op : MD->operands()) { 4846 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4847 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD); 4848 visitAliasScopeMetadata(OpMD); 4849 } 4850 } 4851 4852 void Verifier::visitAccessGroupMetadata(const MDNode *MD) { 4853 auto IsValidAccessScope = [](const MDNode *MD) { 4854 return MD->getNumOperands() == 0 && MD->isDistinct(); 4855 }; 4856 4857 // It must be either an access scope itself... 4858 if (IsValidAccessScope(MD)) 4859 return; 4860 4861 // ...or a list of access scopes. 4862 for (const MDOperand &Op : MD->operands()) { 4863 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4864 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD); 4865 Check(IsValidAccessScope(OpMD), 4866 "Access scope list contains invalid access scope", MD); 4867 } 4868 } 4869 4870 /// verifyInstruction - Verify that an instruction is well formed. 4871 /// 4872 void Verifier::visitInstruction(Instruction &I) { 4873 BasicBlock *BB = I.getParent(); 4874 Check(BB, "Instruction not embedded in basic block!", &I); 4875 4876 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4877 for (User *U : I.users()) { 4878 Check(U != (User *)&I || !DT.isReachableFromEntry(BB), 4879 "Only PHI nodes may reference their own value!", &I); 4880 } 4881 } 4882 4883 // Check that void typed values don't have names 4884 Check(!I.getType()->isVoidTy() || !I.hasName(), 4885 "Instruction has a name, but provides a void value!", &I); 4886 4887 // Check that the return value of the instruction is either void or a legal 4888 // value type. 4889 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4890 "Instruction returns a non-scalar type!", &I); 4891 4892 // Check that the instruction doesn't produce metadata. Calls are already 4893 // checked against the callee type. 4894 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4895 "Invalid use of metadata!", &I); 4896 4897 // Check that all uses of the instruction, if they are instructions 4898 // themselves, actually have parent basic blocks. If the use is not an 4899 // instruction, it is an error! 4900 for (Use &U : I.uses()) { 4901 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4902 Check(Used->getParent() != nullptr, 4903 "Instruction referencing" 4904 " instruction not embedded in a basic block!", 4905 &I, Used); 4906 else { 4907 CheckFailed("Use of instruction is not an instruction!", U); 4908 return; 4909 } 4910 } 4911 4912 // Get a pointer to the call base of the instruction if it is some form of 4913 // call. 4914 const CallBase *CBI = dyn_cast<CallBase>(&I); 4915 4916 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4917 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4918 4919 // Check to make sure that only first-class-values are operands to 4920 // instructions. 4921 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4922 Check(false, "Instruction operands must be first-class values!", &I); 4923 } 4924 4925 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4926 // This code checks whether the function is used as the operand of a 4927 // clang_arc_attachedcall operand bundle. 4928 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 4929 int Idx) { 4930 return CBI && CBI->isOperandBundleOfType( 4931 LLVMContext::OB_clang_arc_attachedcall, Idx); 4932 }; 4933 4934 // Check to make sure that the "address of" an intrinsic function is never 4935 // taken. Ignore cases where the address of the intrinsic function is used 4936 // as the argument of operand bundle "clang.arc.attachedcall" as those 4937 // cases are handled in verifyAttachedCallBundle. 4938 Check((!F->isIntrinsic() || 4939 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 4940 IsAttachedCallOperand(F, CBI, i)), 4941 "Cannot take the address of an intrinsic!", &I); 4942 Check(!F->isIntrinsic() || isa<CallInst>(I) || 4943 F->getIntrinsicID() == Intrinsic::donothing || 4944 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4945 F->getIntrinsicID() == Intrinsic::seh_try_end || 4946 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4947 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4948 F->getIntrinsicID() == Intrinsic::coro_resume || 4949 F->getIntrinsicID() == Intrinsic::coro_destroy || 4950 F->getIntrinsicID() == 4951 Intrinsic::experimental_patchpoint_void || 4952 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4953 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4954 F->getIntrinsicID() == Intrinsic::wasm_rethrow || 4955 IsAttachedCallOperand(F, CBI, i), 4956 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4957 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 4958 &I); 4959 Check(F->getParent() == &M, "Referencing function in another module!", &I, 4960 &M, F, F->getParent()); 4961 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4962 Check(OpBB->getParent() == BB->getParent(), 4963 "Referring to a basic block in another function!", &I); 4964 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4965 Check(OpArg->getParent() == BB->getParent(), 4966 "Referring to an argument in another function!", &I); 4967 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4968 Check(GV->getParent() == &M, "Referencing global in another module!", &I, 4969 &M, GV, GV->getParent()); 4970 } else if (isa<Instruction>(I.getOperand(i))) { 4971 verifyDominatesUse(I, i); 4972 } else if (isa<InlineAsm>(I.getOperand(i))) { 4973 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4974 "Cannot take the address of an inline asm!", &I); 4975 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4976 if (CE->getType()->isPtrOrPtrVectorTy()) { 4977 // If we have a ConstantExpr pointer, we need to see if it came from an 4978 // illegal bitcast. 4979 visitConstantExprsRecursively(CE); 4980 } 4981 } 4982 } 4983 4984 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4985 Check(I.getType()->isFPOrFPVectorTy(), 4986 "fpmath requires a floating point result!", &I); 4987 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4988 if (ConstantFP *CFP0 = 4989 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4990 const APFloat &Accuracy = CFP0->getValueAPF(); 4991 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4992 "fpmath accuracy must have float type", &I); 4993 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4994 "fpmath accuracy not a positive number!", &I); 4995 } else { 4996 Check(false, "invalid fpmath accuracy!", &I); 4997 } 4998 } 4999 5000 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 5001 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 5002 "Ranges are only for loads, calls and invokes!", &I); 5003 visitRangeMetadata(I, Range, I.getType()); 5004 } 5005 5006 if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 5007 Check(isa<LoadInst>(I) || isa<StoreInst>(I), 5008 "invariant.group metadata is only for loads and stores", &I); 5009 } 5010 5011 if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) { 5012 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 5013 &I); 5014 Check(isa<LoadInst>(I), 5015 "nonnull applies only to load instructions, use attributes" 5016 " for calls or invokes", 5017 &I); 5018 Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I); 5019 } 5020 5021 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 5022 visitDereferenceableMetadata(I, MD); 5023 5024 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 5025 visitDereferenceableMetadata(I, MD); 5026 5027 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 5028 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 5029 5030 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 5031 visitAliasScopeListMetadata(MD); 5032 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 5033 visitAliasScopeListMetadata(MD); 5034 5035 if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group)) 5036 visitAccessGroupMetadata(MD); 5037 5038 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 5039 Check(I.getType()->isPointerTy(), "align applies only to pointer types", 5040 &I); 5041 Check(isa<LoadInst>(I), 5042 "align applies only to load instructions, " 5043 "use attributes for calls or invokes", 5044 &I); 5045 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 5046 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 5047 Check(CI && CI->getType()->isIntegerTy(64), 5048 "align metadata value must be an i64!", &I); 5049 uint64_t Align = CI->getZExtValue(); 5050 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!", 5051 &I); 5052 Check(Align <= Value::MaximumAlignment, 5053 "alignment is larger that implementation defined limit", &I); 5054 } 5055 5056 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 5057 visitProfMetadata(I, MD); 5058 5059 if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof)) 5060 visitMemProfMetadata(I, MD); 5061 5062 if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite)) 5063 visitCallsiteMetadata(I, MD); 5064 5065 if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID)) 5066 visitDIAssignIDMetadata(I, MD); 5067 5068 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 5069 visitAnnotationMetadata(Annotation); 5070 5071 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 5072 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 5073 visitMDNode(*N, AreDebugLocsAllowed::Yes); 5074 } 5075 5076 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 5077 verifyFragmentExpression(*DII); 5078 verifyNotEntryValue(*DII); 5079 } 5080 5081 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 5082 I.getAllMetadata(MDs); 5083 for (auto Attachment : MDs) { 5084 unsigned Kind = Attachment.first; 5085 auto AllowLocs = 5086 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 5087 ? AreDebugLocsAllowed::Yes 5088 : AreDebugLocsAllowed::No; 5089 visitMDNode(*Attachment.second, AllowLocs); 5090 } 5091 5092 InstsInThisBlock.insert(&I); 5093 } 5094 5095 /// Allow intrinsics to be verified in different ways. 5096 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 5097 Function *IF = Call.getCalledFunction(); 5098 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!", 5099 IF); 5100 5101 // Verify that the intrinsic prototype lines up with what the .td files 5102 // describe. 5103 FunctionType *IFTy = IF->getFunctionType(); 5104 bool IsVarArg = IFTy->isVarArg(); 5105 5106 SmallVector<Intrinsic::IITDescriptor, 8> Table; 5107 getIntrinsicInfoTableEntries(ID, Table); 5108 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 5109 5110 // Walk the descriptors to extract overloaded types. 5111 SmallVector<Type *, 4> ArgTys; 5112 Intrinsic::MatchIntrinsicTypesResult Res = 5113 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 5114 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 5115 "Intrinsic has incorrect return type!", IF); 5116 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 5117 "Intrinsic has incorrect argument type!", IF); 5118 5119 // Verify if the intrinsic call matches the vararg property. 5120 if (IsVarArg) 5121 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 5122 "Intrinsic was not defined with variable arguments!", IF); 5123 else 5124 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 5125 "Callsite was not defined with variable arguments!", IF); 5126 5127 // All descriptors should be absorbed by now. 5128 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF); 5129 5130 // Now that we have the intrinsic ID and the actual argument types (and we 5131 // know they are legal for the intrinsic!) get the intrinsic name through the 5132 // usual means. This allows us to verify the mangling of argument types into 5133 // the name. 5134 const std::string ExpectedName = 5135 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 5136 Check(ExpectedName == IF->getName(), 5137 "Intrinsic name not mangled correctly for type arguments! " 5138 "Should be: " + 5139 ExpectedName, 5140 IF); 5141 5142 // If the intrinsic takes MDNode arguments, verify that they are either global 5143 // or are local to *this* function. 5144 for (Value *V : Call.args()) { 5145 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 5146 visitMetadataAsValue(*MD, Call.getCaller()); 5147 if (auto *Const = dyn_cast<Constant>(V)) 5148 Check(!Const->getType()->isX86_AMXTy(), 5149 "const x86_amx is not allowed in argument!"); 5150 } 5151 5152 switch (ID) { 5153 default: 5154 break; 5155 case Intrinsic::assume: { 5156 for (auto &Elem : Call.bundle_op_infos()) { 5157 unsigned ArgCount = Elem.End - Elem.Begin; 5158 // Separate storage assumptions are special insofar as they're the only 5159 // operand bundles allowed on assumes that aren't parameter attributes. 5160 if (Elem.Tag->getKey() == "separate_storage") { 5161 Check(ArgCount == 2, 5162 "separate_storage assumptions should have 2 arguments", Call); 5163 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() && 5164 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(), 5165 "arguments to separate_storage assumptions should be pointers", 5166 Call); 5167 return; 5168 } 5169 Check(Elem.Tag->getKey() == "ignore" || 5170 Attribute::isExistingAttribute(Elem.Tag->getKey()), 5171 "tags must be valid attribute names", Call); 5172 Attribute::AttrKind Kind = 5173 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 5174 if (Kind == Attribute::Alignment) { 5175 Check(ArgCount <= 3 && ArgCount >= 2, 5176 "alignment assumptions should have 2 or 3 arguments", Call); 5177 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 5178 "first argument should be a pointer", Call); 5179 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 5180 "second argument should be an integer", Call); 5181 if (ArgCount == 3) 5182 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 5183 "third argument should be an integer if present", Call); 5184 return; 5185 } 5186 Check(ArgCount <= 2, "too many arguments", Call); 5187 if (Kind == Attribute::None) 5188 break; 5189 if (Attribute::isIntAttrKind(Kind)) { 5190 Check(ArgCount == 2, "this attribute should have 2 arguments", Call); 5191 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 5192 "the second argument should be a constant integral value", Call); 5193 } else if (Attribute::canUseAsParamAttr(Kind)) { 5194 Check((ArgCount) == 1, "this attribute should have one argument", Call); 5195 } else if (Attribute::canUseAsFnAttr(Kind)) { 5196 Check((ArgCount) == 0, "this attribute has no argument", Call); 5197 } 5198 } 5199 break; 5200 } 5201 case Intrinsic::coro_id: { 5202 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 5203 if (isa<ConstantPointerNull>(InfoArg)) 5204 break; 5205 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 5206 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 5207 "info argument of llvm.coro.id must refer to an initialized " 5208 "constant"); 5209 Constant *Init = GV->getInitializer(); 5210 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 5211 "info argument of llvm.coro.id must refer to either a struct or " 5212 "an array"); 5213 break; 5214 } 5215 case Intrinsic::is_fpclass: { 5216 const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1)); 5217 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0, 5218 "unsupported bits for llvm.is.fpclass test mask"); 5219 break; 5220 } 5221 case Intrinsic::fptrunc_round: { 5222 // Check the rounding mode 5223 Metadata *MD = nullptr; 5224 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1)); 5225 if (MAV) 5226 MD = MAV->getMetadata(); 5227 5228 Check(MD != nullptr, "missing rounding mode argument", Call); 5229 5230 Check(isa<MDString>(MD), 5231 ("invalid value for llvm.fptrunc.round metadata operand" 5232 " (the operand should be a string)"), 5233 MD); 5234 5235 std::optional<RoundingMode> RoundMode = 5236 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 5237 Check(RoundMode && *RoundMode != RoundingMode::Dynamic, 5238 "unsupported rounding mode argument", Call); 5239 break; 5240 } 5241 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 5242 #include "llvm/IR/VPIntrinsics.def" 5243 visitVPIntrinsic(cast<VPIntrinsic>(Call)); 5244 break; 5245 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 5246 case Intrinsic::INTRINSIC: 5247 #include "llvm/IR/ConstrainedOps.def" 5248 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 5249 break; 5250 case Intrinsic::dbg_declare: // llvm.dbg.declare 5251 Check(isa<MetadataAsValue>(Call.getArgOperand(0)), 5252 "invalid llvm.dbg.declare intrinsic call 1", Call); 5253 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 5254 break; 5255 case Intrinsic::dbg_value: // llvm.dbg.value 5256 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 5257 break; 5258 case Intrinsic::dbg_assign: // llvm.dbg.assign 5259 visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call)); 5260 break; 5261 case Intrinsic::dbg_label: // llvm.dbg.label 5262 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 5263 break; 5264 case Intrinsic::memcpy: 5265 case Intrinsic::memcpy_inline: 5266 case Intrinsic::memmove: 5267 case Intrinsic::memset: 5268 case Intrinsic::memset_inline: { 5269 break; 5270 } 5271 case Intrinsic::memcpy_element_unordered_atomic: 5272 case Intrinsic::memmove_element_unordered_atomic: 5273 case Intrinsic::memset_element_unordered_atomic: { 5274 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 5275 5276 ConstantInt *ElementSizeCI = 5277 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 5278 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 5279 Check(ElementSizeVal.isPowerOf2(), 5280 "element size of the element-wise atomic memory intrinsic " 5281 "must be a power of 2", 5282 Call); 5283 5284 auto IsValidAlignment = [&](MaybeAlign Alignment) { 5285 return Alignment && ElementSizeVal.ule(Alignment->value()); 5286 }; 5287 Check(IsValidAlignment(AMI->getDestAlign()), 5288 "incorrect alignment of the destination argument", Call); 5289 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 5290 Check(IsValidAlignment(AMT->getSourceAlign()), 5291 "incorrect alignment of the source argument", Call); 5292 } 5293 break; 5294 } 5295 case Intrinsic::call_preallocated_setup: { 5296 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5297 Check(NumArgs != nullptr, 5298 "llvm.call.preallocated.setup argument must be a constant"); 5299 bool FoundCall = false; 5300 for (User *U : Call.users()) { 5301 auto *UseCall = dyn_cast<CallBase>(U); 5302 Check(UseCall != nullptr, 5303 "Uses of llvm.call.preallocated.setup must be calls"); 5304 const Function *Fn = UseCall->getCalledFunction(); 5305 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 5306 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 5307 Check(AllocArgIndex != nullptr, 5308 "llvm.call.preallocated.alloc arg index must be a constant"); 5309 auto AllocArgIndexInt = AllocArgIndex->getValue(); 5310 Check(AllocArgIndexInt.sge(0) && 5311 AllocArgIndexInt.slt(NumArgs->getValue()), 5312 "llvm.call.preallocated.alloc arg index must be between 0 and " 5313 "corresponding " 5314 "llvm.call.preallocated.setup's argument count"); 5315 } else if (Fn && Fn->getIntrinsicID() == 5316 Intrinsic::call_preallocated_teardown) { 5317 // nothing to do 5318 } else { 5319 Check(!FoundCall, "Can have at most one call corresponding to a " 5320 "llvm.call.preallocated.setup"); 5321 FoundCall = true; 5322 size_t NumPreallocatedArgs = 0; 5323 for (unsigned i = 0; i < UseCall->arg_size(); i++) { 5324 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 5325 ++NumPreallocatedArgs; 5326 } 5327 } 5328 Check(NumPreallocatedArgs != 0, 5329 "cannot use preallocated intrinsics on a call without " 5330 "preallocated arguments"); 5331 Check(NumArgs->equalsInt(NumPreallocatedArgs), 5332 "llvm.call.preallocated.setup arg size must be equal to number " 5333 "of preallocated arguments " 5334 "at call site", 5335 Call, *UseCall); 5336 // getOperandBundle() cannot be called if more than one of the operand 5337 // bundle exists. There is already a check elsewhere for this, so skip 5338 // here if we see more than one. 5339 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 5340 1) { 5341 return; 5342 } 5343 auto PreallocatedBundle = 5344 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 5345 Check(PreallocatedBundle, 5346 "Use of llvm.call.preallocated.setup outside intrinsics " 5347 "must be in \"preallocated\" operand bundle"); 5348 Check(PreallocatedBundle->Inputs.front().get() == &Call, 5349 "preallocated bundle must have token from corresponding " 5350 "llvm.call.preallocated.setup"); 5351 } 5352 } 5353 break; 5354 } 5355 case Intrinsic::call_preallocated_arg: { 5356 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 5357 Check(Token && Token->getCalledFunction()->getIntrinsicID() == 5358 Intrinsic::call_preallocated_setup, 5359 "llvm.call.preallocated.arg token argument must be a " 5360 "llvm.call.preallocated.setup"); 5361 Check(Call.hasFnAttr(Attribute::Preallocated), 5362 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 5363 "call site attribute"); 5364 break; 5365 } 5366 case Intrinsic::call_preallocated_teardown: { 5367 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 5368 Check(Token && Token->getCalledFunction()->getIntrinsicID() == 5369 Intrinsic::call_preallocated_setup, 5370 "llvm.call.preallocated.teardown token argument must be a " 5371 "llvm.call.preallocated.setup"); 5372 break; 5373 } 5374 case Intrinsic::gcroot: 5375 case Intrinsic::gcwrite: 5376 case Intrinsic::gcread: 5377 if (ID == Intrinsic::gcroot) { 5378 AllocaInst *AI = 5379 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 5380 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 5381 Check(isa<Constant>(Call.getArgOperand(1)), 5382 "llvm.gcroot parameter #2 must be a constant.", Call); 5383 if (!AI->getAllocatedType()->isPointerTy()) { 5384 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 5385 "llvm.gcroot parameter #1 must either be a pointer alloca, " 5386 "or argument #2 must be a non-null constant.", 5387 Call); 5388 } 5389 } 5390 5391 Check(Call.getParent()->getParent()->hasGC(), 5392 "Enclosing function does not use GC.", Call); 5393 break; 5394 case Intrinsic::init_trampoline: 5395 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 5396 "llvm.init_trampoline parameter #2 must resolve to a function.", 5397 Call); 5398 break; 5399 case Intrinsic::prefetch: 5400 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2, 5401 "rw argument to llvm.prefetch must be 0-1", Call); 5402 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 5403 "locality argument to llvm.prefetch must be 0-3", Call); 5404 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2, 5405 "cache type argument to llvm.prefetch must be 0-1", Call); 5406 break; 5407 case Intrinsic::stackprotector: 5408 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 5409 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 5410 break; 5411 case Intrinsic::localescape: { 5412 BasicBlock *BB = Call.getParent(); 5413 Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block", 5414 Call); 5415 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function", 5416 Call); 5417 for (Value *Arg : Call.args()) { 5418 if (isa<ConstantPointerNull>(Arg)) 5419 continue; // Null values are allowed as placeholders. 5420 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 5421 Check(AI && AI->isStaticAlloca(), 5422 "llvm.localescape only accepts static allocas", Call); 5423 } 5424 FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 5425 SawFrameEscape = true; 5426 break; 5427 } 5428 case Intrinsic::localrecover: { 5429 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 5430 Function *Fn = dyn_cast<Function>(FnArg); 5431 Check(Fn && !Fn->isDeclaration(), 5432 "llvm.localrecover first " 5433 "argument must be function defined in this module", 5434 Call); 5435 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 5436 auto &Entry = FrameEscapeInfo[Fn]; 5437 Entry.second = unsigned( 5438 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 5439 break; 5440 } 5441 5442 case Intrinsic::experimental_gc_statepoint: 5443 if (auto *CI = dyn_cast<CallInst>(&Call)) 5444 Check(!CI->isInlineAsm(), 5445 "gc.statepoint support for inline assembly unimplemented", CI); 5446 Check(Call.getParent()->getParent()->hasGC(), 5447 "Enclosing function does not use GC.", Call); 5448 5449 verifyStatepoint(Call); 5450 break; 5451 case Intrinsic::experimental_gc_result: { 5452 Check(Call.getParent()->getParent()->hasGC(), 5453 "Enclosing function does not use GC.", Call); 5454 5455 auto *Statepoint = Call.getArgOperand(0); 5456 if (isa<UndefValue>(Statepoint)) 5457 break; 5458 5459 // Are we tied to a statepoint properly? 5460 const auto *StatepointCall = dyn_cast<CallBase>(Statepoint); 5461 const Function *StatepointFn = 5462 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 5463 Check(StatepointFn && StatepointFn->isDeclaration() && 5464 StatepointFn->getIntrinsicID() == 5465 Intrinsic::experimental_gc_statepoint, 5466 "gc.result operand #1 must be from a statepoint", Call, 5467 Call.getArgOperand(0)); 5468 5469 // Check that result type matches wrapped callee. 5470 auto *TargetFuncType = 5471 cast<FunctionType>(StatepointCall->getParamElementType(2)); 5472 Check(Call.getType() == TargetFuncType->getReturnType(), 5473 "gc.result result type does not match wrapped callee", Call); 5474 break; 5475 } 5476 case Intrinsic::experimental_gc_relocate: { 5477 Check(Call.arg_size() == 3, "wrong number of arguments", Call); 5478 5479 Check(isa<PointerType>(Call.getType()->getScalarType()), 5480 "gc.relocate must return a pointer or a vector of pointers", Call); 5481 5482 // Check that this relocate is correctly tied to the statepoint 5483 5484 // This is case for relocate on the unwinding path of an invoke statepoint 5485 if (LandingPadInst *LandingPad = 5486 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 5487 5488 const BasicBlock *InvokeBB = 5489 LandingPad->getParent()->getUniquePredecessor(); 5490 5491 // Landingpad relocates should have only one predecessor with invoke 5492 // statepoint terminator 5493 Check(InvokeBB, "safepoints should have unique landingpads", 5494 LandingPad->getParent()); 5495 Check(InvokeBB->getTerminator(), "safepoint block should be well formed", 5496 InvokeBB); 5497 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()), 5498 "gc relocate should be linked to a statepoint", InvokeBB); 5499 } else { 5500 // In all other cases relocate should be tied to the statepoint directly. 5501 // This covers relocates on a normal return path of invoke statepoint and 5502 // relocates of a call statepoint. 5503 auto *Token = Call.getArgOperand(0); 5504 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token), 5505 "gc relocate is incorrectly tied to the statepoint", Call, Token); 5506 } 5507 5508 // Verify rest of the relocate arguments. 5509 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint(); 5510 5511 // Both the base and derived must be piped through the safepoint. 5512 Value *Base = Call.getArgOperand(1); 5513 Check(isa<ConstantInt>(Base), 5514 "gc.relocate operand #2 must be integer offset", Call); 5515 5516 Value *Derived = Call.getArgOperand(2); 5517 Check(isa<ConstantInt>(Derived), 5518 "gc.relocate operand #3 must be integer offset", Call); 5519 5520 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 5521 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 5522 5523 // Check the bounds 5524 if (isa<UndefValue>(StatepointCall)) 5525 break; 5526 if (auto Opt = cast<GCStatepointInst>(StatepointCall) 5527 .getOperandBundle(LLVMContext::OB_gc_live)) { 5528 Check(BaseIndex < Opt->Inputs.size(), 5529 "gc.relocate: statepoint base index out of bounds", Call); 5530 Check(DerivedIndex < Opt->Inputs.size(), 5531 "gc.relocate: statepoint derived index out of bounds", Call); 5532 } 5533 5534 // Relocated value must be either a pointer type or vector-of-pointer type, 5535 // but gc_relocate does not need to return the same pointer type as the 5536 // relocated pointer. It can be casted to the correct type later if it's 5537 // desired. However, they must have the same address space and 'vectorness' 5538 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 5539 auto *ResultType = Call.getType(); 5540 auto *DerivedType = Relocate.getDerivedPtr()->getType(); 5541 auto *BaseType = Relocate.getBasePtr()->getType(); 5542 5543 Check(BaseType->isPtrOrPtrVectorTy(), 5544 "gc.relocate: relocated value must be a pointer", Call); 5545 Check(DerivedType->isPtrOrPtrVectorTy(), 5546 "gc.relocate: relocated value must be a pointer", Call); 5547 5548 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5549 "gc.relocate: vector relocates to vector and pointer to pointer", 5550 Call); 5551 Check( 5552 ResultType->getPointerAddressSpace() == 5553 DerivedType->getPointerAddressSpace(), 5554 "gc.relocate: relocating a pointer shouldn't change its address space", 5555 Call); 5556 5557 auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC()); 5558 Check(GC, "gc.relocate: calling function must have GCStrategy", 5559 Call.getFunction()); 5560 if (GC) { 5561 auto isGCPtr = [&GC](Type *PTy) { 5562 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true); 5563 }; 5564 Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call); 5565 Check(isGCPtr(BaseType), 5566 "gc.relocate: relocated value must be a gc pointer", Call); 5567 Check(isGCPtr(DerivedType), 5568 "gc.relocate: relocated value must be a gc pointer", Call); 5569 } 5570 break; 5571 } 5572 case Intrinsic::eh_exceptioncode: 5573 case Intrinsic::eh_exceptionpointer: { 5574 Check(isa<CatchPadInst>(Call.getArgOperand(0)), 5575 "eh.exceptionpointer argument must be a catchpad", Call); 5576 break; 5577 } 5578 case Intrinsic::get_active_lane_mask: { 5579 Check(Call.getType()->isVectorTy(), 5580 "get_active_lane_mask: must return a " 5581 "vector", 5582 Call); 5583 auto *ElemTy = Call.getType()->getScalarType(); 5584 Check(ElemTy->isIntegerTy(1), 5585 "get_active_lane_mask: element type is not " 5586 "i1", 5587 Call); 5588 break; 5589 } 5590 case Intrinsic::experimental_get_vector_length: { 5591 ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1)); 5592 Check(!VF->isNegative() && !VF->isZero(), 5593 "get_vector_length: VF must be positive", Call); 5594 break; 5595 } 5596 case Intrinsic::masked_load: { 5597 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5598 Call); 5599 5600 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5601 Value *Mask = Call.getArgOperand(2); 5602 Value *PassThru = Call.getArgOperand(3); 5603 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5604 Call); 5605 Check(Alignment->getValue().isPowerOf2(), 5606 "masked_load: alignment must be a power of 2", Call); 5607 Check(PassThru->getType() == Call.getType(), 5608 "masked_load: pass through and return type must match", Call); 5609 Check(cast<VectorType>(Mask->getType())->getElementCount() == 5610 cast<VectorType>(Call.getType())->getElementCount(), 5611 "masked_load: vector mask must be same length as return", Call); 5612 break; 5613 } 5614 case Intrinsic::masked_store: { 5615 Value *Val = Call.getArgOperand(0); 5616 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5617 Value *Mask = Call.getArgOperand(3); 5618 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5619 Call); 5620 Check(Alignment->getValue().isPowerOf2(), 5621 "masked_store: alignment must be a power of 2", Call); 5622 Check(cast<VectorType>(Mask->getType())->getElementCount() == 5623 cast<VectorType>(Val->getType())->getElementCount(), 5624 "masked_store: vector mask must be same length as value", Call); 5625 break; 5626 } 5627 5628 case Intrinsic::masked_gather: { 5629 const APInt &Alignment = 5630 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5631 Check(Alignment.isZero() || Alignment.isPowerOf2(), 5632 "masked_gather: alignment must be 0 or a power of 2", Call); 5633 break; 5634 } 5635 case Intrinsic::masked_scatter: { 5636 const APInt &Alignment = 5637 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5638 Check(Alignment.isZero() || Alignment.isPowerOf2(), 5639 "masked_scatter: alignment must be 0 or a power of 2", Call); 5640 break; 5641 } 5642 5643 case Intrinsic::experimental_guard: { 5644 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5645 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5646 "experimental_guard must have exactly one " 5647 "\"deopt\" operand bundle"); 5648 break; 5649 } 5650 5651 case Intrinsic::experimental_deoptimize: { 5652 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5653 Call); 5654 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5655 "experimental_deoptimize must have exactly one " 5656 "\"deopt\" operand bundle"); 5657 Check(Call.getType() == Call.getFunction()->getReturnType(), 5658 "experimental_deoptimize return type must match caller return type"); 5659 5660 if (isa<CallInst>(Call)) { 5661 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5662 Check(RI, 5663 "calls to experimental_deoptimize must be followed by a return"); 5664 5665 if (!Call.getType()->isVoidTy() && RI) 5666 Check(RI->getReturnValue() == &Call, 5667 "calls to experimental_deoptimize must be followed by a return " 5668 "of the value computed by experimental_deoptimize"); 5669 } 5670 5671 break; 5672 } 5673 case Intrinsic::vector_reduce_and: 5674 case Intrinsic::vector_reduce_or: 5675 case Intrinsic::vector_reduce_xor: 5676 case Intrinsic::vector_reduce_add: 5677 case Intrinsic::vector_reduce_mul: 5678 case Intrinsic::vector_reduce_smax: 5679 case Intrinsic::vector_reduce_smin: 5680 case Intrinsic::vector_reduce_umax: 5681 case Intrinsic::vector_reduce_umin: { 5682 Type *ArgTy = Call.getArgOperand(0)->getType(); 5683 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5684 "Intrinsic has incorrect argument type!"); 5685 break; 5686 } 5687 case Intrinsic::vector_reduce_fmax: 5688 case Intrinsic::vector_reduce_fmin: { 5689 Type *ArgTy = Call.getArgOperand(0)->getType(); 5690 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5691 "Intrinsic has incorrect argument type!"); 5692 break; 5693 } 5694 case Intrinsic::vector_reduce_fadd: 5695 case Intrinsic::vector_reduce_fmul: { 5696 // Unlike the other reductions, the first argument is a start value. The 5697 // second argument is the vector to be reduced. 5698 Type *ArgTy = Call.getArgOperand(1)->getType(); 5699 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5700 "Intrinsic has incorrect argument type!"); 5701 break; 5702 } 5703 case Intrinsic::smul_fix: 5704 case Intrinsic::smul_fix_sat: 5705 case Intrinsic::umul_fix: 5706 case Intrinsic::umul_fix_sat: 5707 case Intrinsic::sdiv_fix: 5708 case Intrinsic::sdiv_fix_sat: 5709 case Intrinsic::udiv_fix: 5710 case Intrinsic::udiv_fix_sat: { 5711 Value *Op1 = Call.getArgOperand(0); 5712 Value *Op2 = Call.getArgOperand(1); 5713 Check(Op1->getType()->isIntOrIntVectorTy(), 5714 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5715 "vector of ints"); 5716 Check(Op2->getType()->isIntOrIntVectorTy(), 5717 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5718 "vector of ints"); 5719 5720 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5721 Check(Op3->getType()->isIntegerTy(), 5722 "third operand of [us][mul|div]_fix[_sat] must be an int type"); 5723 Check(Op3->getBitWidth() <= 32, 5724 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5725 5726 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5727 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5728 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5729 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5730 "the operands"); 5731 } else { 5732 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5733 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5734 "to the width of the operands"); 5735 } 5736 break; 5737 } 5738 case Intrinsic::lrint: 5739 case Intrinsic::llrint: { 5740 Type *ValTy = Call.getArgOperand(0)->getType(); 5741 Type *ResultTy = Call.getType(); 5742 Check( 5743 ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(), 5744 "llvm.lrint, llvm.llrint: argument must be floating-point or vector " 5745 "of floating-points, and result must be integer or vector of integers", 5746 &Call); 5747 Check(ValTy->isVectorTy() == ResultTy->isVectorTy(), 5748 "llvm.lrint, llvm.llrint: argument and result disagree on vector use", 5749 &Call); 5750 if (ValTy->isVectorTy()) { 5751 Check(cast<VectorType>(ValTy)->getElementCount() == 5752 cast<VectorType>(ResultTy)->getElementCount(), 5753 "llvm.lrint, llvm.llrint: argument must be same length as result", 5754 &Call); 5755 } 5756 break; 5757 } 5758 case Intrinsic::lround: 5759 case Intrinsic::llround: { 5760 Type *ValTy = Call.getArgOperand(0)->getType(); 5761 Type *ResultTy = Call.getType(); 5762 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5763 "Intrinsic does not support vectors", &Call); 5764 break; 5765 } 5766 case Intrinsic::bswap: { 5767 Type *Ty = Call.getType(); 5768 unsigned Size = Ty->getScalarSizeInBits(); 5769 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5770 break; 5771 } 5772 case Intrinsic::invariant_start: { 5773 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5774 Check(InvariantSize && 5775 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5776 "invariant_start parameter must be -1, 0 or a positive number", 5777 &Call); 5778 break; 5779 } 5780 case Intrinsic::matrix_multiply: 5781 case Intrinsic::matrix_transpose: 5782 case Intrinsic::matrix_column_major_load: 5783 case Intrinsic::matrix_column_major_store: { 5784 Function *IF = Call.getCalledFunction(); 5785 ConstantInt *Stride = nullptr; 5786 ConstantInt *NumRows; 5787 ConstantInt *NumColumns; 5788 VectorType *ResultTy; 5789 Type *Op0ElemTy = nullptr; 5790 Type *Op1ElemTy = nullptr; 5791 switch (ID) { 5792 case Intrinsic::matrix_multiply: { 5793 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5794 ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3)); 5795 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5796 Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType()) 5797 ->getNumElements() == 5798 NumRows->getZExtValue() * N->getZExtValue(), 5799 "First argument of a matrix operation does not match specified " 5800 "shape!"); 5801 Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType()) 5802 ->getNumElements() == 5803 N->getZExtValue() * NumColumns->getZExtValue(), 5804 "Second argument of a matrix operation does not match specified " 5805 "shape!"); 5806 5807 ResultTy = cast<VectorType>(Call.getType()); 5808 Op0ElemTy = 5809 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5810 Op1ElemTy = 5811 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5812 break; 5813 } 5814 case Intrinsic::matrix_transpose: 5815 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5816 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5817 ResultTy = cast<VectorType>(Call.getType()); 5818 Op0ElemTy = 5819 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5820 break; 5821 case Intrinsic::matrix_column_major_load: { 5822 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5823 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5824 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5825 ResultTy = cast<VectorType>(Call.getType()); 5826 break; 5827 } 5828 case Intrinsic::matrix_column_major_store: { 5829 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5830 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5831 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5832 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5833 Op0ElemTy = 5834 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5835 break; 5836 } 5837 default: 5838 llvm_unreachable("unexpected intrinsic"); 5839 } 5840 5841 Check(ResultTy->getElementType()->isIntegerTy() || 5842 ResultTy->getElementType()->isFloatingPointTy(), 5843 "Result type must be an integer or floating-point type!", IF); 5844 5845 if (Op0ElemTy) 5846 Check(ResultTy->getElementType() == Op0ElemTy, 5847 "Vector element type mismatch of the result and first operand " 5848 "vector!", 5849 IF); 5850 5851 if (Op1ElemTy) 5852 Check(ResultTy->getElementType() == Op1ElemTy, 5853 "Vector element type mismatch of the result and second operand " 5854 "vector!", 5855 IF); 5856 5857 Check(cast<FixedVectorType>(ResultTy)->getNumElements() == 5858 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5859 "Result of a matrix operation does not fit in the returned vector!"); 5860 5861 if (Stride) 5862 Check(Stride->getZExtValue() >= NumRows->getZExtValue(), 5863 "Stride must be greater or equal than the number of rows!", IF); 5864 5865 break; 5866 } 5867 case Intrinsic::experimental_vector_splice: { 5868 VectorType *VecTy = cast<VectorType>(Call.getType()); 5869 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue(); 5870 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue(); 5871 if (Call.getParent() && Call.getParent()->getParent()) { 5872 AttributeList Attrs = Call.getParent()->getParent()->getAttributes(); 5873 if (Attrs.hasFnAttr(Attribute::VScaleRange)) 5874 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin(); 5875 } 5876 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) || 5877 (Idx >= 0 && Idx < KnownMinNumElements), 5878 "The splice index exceeds the range [-VL, VL-1] where VL is the " 5879 "known minimum number of elements in the vector. For scalable " 5880 "vectors the minimum number of elements is determined from " 5881 "vscale_range.", 5882 &Call); 5883 break; 5884 } 5885 case Intrinsic::experimental_stepvector: { 5886 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5887 Check(VecTy && VecTy->getScalarType()->isIntegerTy() && 5888 VecTy->getScalarSizeInBits() >= 8, 5889 "experimental_stepvector only supported for vectors of integers " 5890 "with a bitwidth of at least 8.", 5891 &Call); 5892 break; 5893 } 5894 case Intrinsic::vector_insert: { 5895 Value *Vec = Call.getArgOperand(0); 5896 Value *SubVec = Call.getArgOperand(1); 5897 Value *Idx = Call.getArgOperand(2); 5898 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5899 5900 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5901 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5902 5903 ElementCount VecEC = VecTy->getElementCount(); 5904 ElementCount SubVecEC = SubVecTy->getElementCount(); 5905 Check(VecTy->getElementType() == SubVecTy->getElementType(), 5906 "vector_insert parameters must have the same element " 5907 "type.", 5908 &Call); 5909 Check(IdxN % SubVecEC.getKnownMinValue() == 0, 5910 "vector_insert index must be a constant multiple of " 5911 "the subvector's known minimum vector length."); 5912 5913 // If this insertion is not the 'mixed' case where a fixed vector is 5914 // inserted into a scalable vector, ensure that the insertion of the 5915 // subvector does not overrun the parent vector. 5916 if (VecEC.isScalable() == SubVecEC.isScalable()) { 5917 Check(IdxN < VecEC.getKnownMinValue() && 5918 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5919 "subvector operand of vector_insert would overrun the " 5920 "vector being inserted into."); 5921 } 5922 break; 5923 } 5924 case Intrinsic::vector_extract: { 5925 Value *Vec = Call.getArgOperand(0); 5926 Value *Idx = Call.getArgOperand(1); 5927 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5928 5929 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5930 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5931 5932 ElementCount VecEC = VecTy->getElementCount(); 5933 ElementCount ResultEC = ResultTy->getElementCount(); 5934 5935 Check(ResultTy->getElementType() == VecTy->getElementType(), 5936 "vector_extract result must have the same element " 5937 "type as the input vector.", 5938 &Call); 5939 Check(IdxN % ResultEC.getKnownMinValue() == 0, 5940 "vector_extract index must be a constant multiple of " 5941 "the result type's known minimum vector length."); 5942 5943 // If this extraction is not the 'mixed' case where a fixed vector is 5944 // extracted from a scalable vector, ensure that the extraction does not 5945 // overrun the parent vector. 5946 if (VecEC.isScalable() == ResultEC.isScalable()) { 5947 Check(IdxN < VecEC.getKnownMinValue() && 5948 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5949 "vector_extract would overrun."); 5950 } 5951 break; 5952 } 5953 case Intrinsic::experimental_noalias_scope_decl: { 5954 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5955 break; 5956 } 5957 case Intrinsic::preserve_array_access_index: 5958 case Intrinsic::preserve_struct_access_index: 5959 case Intrinsic::aarch64_ldaxr: 5960 case Intrinsic::aarch64_ldxr: 5961 case Intrinsic::arm_ldaex: 5962 case Intrinsic::arm_ldrex: { 5963 Type *ElemTy = Call.getParamElementType(0); 5964 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.", 5965 &Call); 5966 break; 5967 } 5968 case Intrinsic::aarch64_stlxr: 5969 case Intrinsic::aarch64_stxr: 5970 case Intrinsic::arm_stlex: 5971 case Intrinsic::arm_strex: { 5972 Type *ElemTy = Call.getAttributes().getParamElementType(1); 5973 Check(ElemTy, 5974 "Intrinsic requires elementtype attribute on second argument.", 5975 &Call); 5976 break; 5977 } 5978 case Intrinsic::aarch64_prefetch: { 5979 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2, 5980 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call); 5981 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 5982 "target argument to llvm.aarch64.prefetch must be 0-3", Call); 5983 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2, 5984 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call); 5985 Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2, 5986 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call); 5987 break; 5988 } 5989 case Intrinsic::callbr_landingpad: { 5990 const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0)); 5991 Check(CBR, "intrinstic requires callbr operand", &Call); 5992 if (!CBR) 5993 break; 5994 5995 const BasicBlock *LandingPadBB = Call.getParent(); 5996 const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor(); 5997 if (!PredBB) { 5998 CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call); 5999 break; 6000 } 6001 if (!isa<CallBrInst>(PredBB->getTerminator())) { 6002 CheckFailed("Intrinsic must have corresponding callbr in predecessor", 6003 &Call); 6004 break; 6005 } 6006 Check(llvm::any_of(CBR->getIndirectDests(), 6007 [LandingPadBB](const BasicBlock *IndDest) { 6008 return IndDest == LandingPadBB; 6009 }), 6010 "Intrinsic's corresponding callbr must have intrinsic's parent basic " 6011 "block in indirect destination list", 6012 &Call); 6013 const Instruction &First = *LandingPadBB->begin(); 6014 Check(&First == &Call, "No other instructions may proceed intrinsic", 6015 &Call); 6016 break; 6017 } 6018 case Intrinsic::amdgcn_cs_chain: { 6019 auto CallerCC = Call.getCaller()->getCallingConv(); 6020 switch (CallerCC) { 6021 case CallingConv::AMDGPU_CS: 6022 case CallingConv::AMDGPU_CS_Chain: 6023 case CallingConv::AMDGPU_CS_ChainPreserve: 6024 break; 6025 default: 6026 CheckFailed("Intrinsic can only be used from functions with the " 6027 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve " 6028 "calling conventions", 6029 &Call); 6030 break; 6031 } 6032 6033 Check(Call.paramHasAttr(2, Attribute::InReg), 6034 "SGPR arguments must have the `inreg` attribute", &Call); 6035 Check(!Call.paramHasAttr(3, Attribute::InReg), 6036 "VGPR arguments must not have the `inreg` attribute", &Call); 6037 break; 6038 } 6039 case Intrinsic::amdgcn_set_inactive_chain_arg: { 6040 auto CallerCC = Call.getCaller()->getCallingConv(); 6041 switch (CallerCC) { 6042 case CallingConv::AMDGPU_CS_Chain: 6043 case CallingConv::AMDGPU_CS_ChainPreserve: 6044 break; 6045 default: 6046 CheckFailed("Intrinsic can only be used from functions with the " 6047 "amdgpu_cs_chain or amdgpu_cs_chain_preserve " 6048 "calling conventions", 6049 &Call); 6050 break; 6051 } 6052 6053 unsigned InactiveIdx = 1; 6054 Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg), 6055 "Value for inactive lanes must not have the `inreg` attribute", 6056 &Call); 6057 Check(isa<Argument>(Call.getArgOperand(InactiveIdx)), 6058 "Value for inactive lanes must be a function argument", &Call); 6059 Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(), 6060 "Value for inactive lanes must be a VGPR function argument", &Call); 6061 break; 6062 } 6063 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32: 6064 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: { 6065 Value *V = Call.getArgOperand(0); 6066 unsigned RegCount = cast<ConstantInt>(V)->getZExtValue(); 6067 Check(RegCount % 8 == 0, 6068 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8"); 6069 Check((RegCount >= 24 && RegCount <= 256), 6070 "reg_count argument to nvvm.setmaxnreg must be within [24, 256]"); 6071 break; 6072 } 6073 case Intrinsic::experimental_convergence_entry: 6074 LLVM_FALLTHROUGH; 6075 case Intrinsic::experimental_convergence_anchor: 6076 break; 6077 case Intrinsic::experimental_convergence_loop: 6078 break; 6079 case Intrinsic::ptrmask: { 6080 Type *Ty0 = Call.getArgOperand(0)->getType(); 6081 Type *Ty1 = Call.getArgOperand(1)->getType(); 6082 Check(Ty0->isPtrOrPtrVectorTy(), 6083 "llvm.ptrmask intrinsic first argument must be pointer or vector " 6084 "of pointers", 6085 &Call); 6086 Check( 6087 Ty0->isVectorTy() == Ty1->isVectorTy(), 6088 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors", 6089 &Call); 6090 if (Ty0->isVectorTy()) 6091 Check(cast<VectorType>(Ty0)->getElementCount() == 6092 cast<VectorType>(Ty1)->getElementCount(), 6093 "llvm.ptrmask intrinsic arguments must have the same number of " 6094 "elements", 6095 &Call); 6096 Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(), 6097 "llvm.ptrmask intrinsic second argument bitwidth must match " 6098 "pointer index type size of first argument", 6099 &Call); 6100 break; 6101 } 6102 }; 6103 6104 // Verify that there aren't any unmediated control transfers between funclets. 6105 if (IntrinsicInst::mayLowerToFunctionCall(ID)) { 6106 Function *F = Call.getParent()->getParent(); 6107 if (F->hasPersonalityFn() && 6108 isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) { 6109 // Run EH funclet coloring on-demand and cache results for other intrinsic 6110 // calls in this function 6111 if (BlockEHFuncletColors.empty()) 6112 BlockEHFuncletColors = colorEHFunclets(*F); 6113 6114 // Check for catch-/cleanup-pad in first funclet block 6115 bool InEHFunclet = false; 6116 BasicBlock *CallBB = Call.getParent(); 6117 const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second; 6118 assert(CV.size() > 0 && "Uncolored block"); 6119 for (BasicBlock *ColorFirstBB : CV) 6120 if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI())) 6121 InEHFunclet = true; 6122 6123 // Check for funclet operand bundle 6124 bool HasToken = false; 6125 for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I) 6126 if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet) 6127 HasToken = true; 6128 6129 // This would cause silent code truncation in WinEHPrepare 6130 if (InEHFunclet) 6131 Check(HasToken, "Missing funclet token on intrinsic call", &Call); 6132 } 6133 } 6134 } 6135 6136 /// Carefully grab the subprogram from a local scope. 6137 /// 6138 /// This carefully grabs the subprogram from a local scope, avoiding the 6139 /// built-in assertions that would typically fire. 6140 static DISubprogram *getSubprogram(Metadata *LocalScope) { 6141 if (!LocalScope) 6142 return nullptr; 6143 6144 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 6145 return SP; 6146 6147 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 6148 return getSubprogram(LB->getRawScope()); 6149 6150 // Just return null; broken scope chains are checked elsewhere. 6151 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 6152 return nullptr; 6153 } 6154 6155 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) { 6156 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) { 6157 auto *RetTy = cast<VectorType>(VPCast->getType()); 6158 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType()); 6159 Check(RetTy->getElementCount() == ValTy->getElementCount(), 6160 "VP cast intrinsic first argument and result vector lengths must be " 6161 "equal", 6162 *VPCast); 6163 6164 switch (VPCast->getIntrinsicID()) { 6165 default: 6166 llvm_unreachable("Unknown VP cast intrinsic"); 6167 case Intrinsic::vp_trunc: 6168 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), 6169 "llvm.vp.trunc intrinsic first argument and result element type " 6170 "must be integer", 6171 *VPCast); 6172 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), 6173 "llvm.vp.trunc intrinsic the bit size of first argument must be " 6174 "larger than the bit size of the return type", 6175 *VPCast); 6176 break; 6177 case Intrinsic::vp_zext: 6178 case Intrinsic::vp_sext: 6179 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), 6180 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result " 6181 "element type must be integer", 6182 *VPCast); 6183 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), 6184 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first " 6185 "argument must be smaller than the bit size of the return type", 6186 *VPCast); 6187 break; 6188 case Intrinsic::vp_fptoui: 6189 case Intrinsic::vp_fptosi: 6190 Check( 6191 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(), 6192 "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element " 6193 "type must be floating-point and result element type must be integer", 6194 *VPCast); 6195 break; 6196 case Intrinsic::vp_uitofp: 6197 case Intrinsic::vp_sitofp: 6198 Check( 6199 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(), 6200 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element " 6201 "type must be integer and result element type must be floating-point", 6202 *VPCast); 6203 break; 6204 case Intrinsic::vp_fptrunc: 6205 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), 6206 "llvm.vp.fptrunc intrinsic first argument and result element type " 6207 "must be floating-point", 6208 *VPCast); 6209 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), 6210 "llvm.vp.fptrunc intrinsic the bit size of first argument must be " 6211 "larger than the bit size of the return type", 6212 *VPCast); 6213 break; 6214 case Intrinsic::vp_fpext: 6215 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), 6216 "llvm.vp.fpext intrinsic first argument and result element type " 6217 "must be floating-point", 6218 *VPCast); 6219 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), 6220 "llvm.vp.fpext intrinsic the bit size of first argument must be " 6221 "smaller than the bit size of the return type", 6222 *VPCast); 6223 break; 6224 case Intrinsic::vp_ptrtoint: 6225 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(), 6226 "llvm.vp.ptrtoint intrinsic first argument element type must be " 6227 "pointer and result element type must be integer", 6228 *VPCast); 6229 break; 6230 case Intrinsic::vp_inttoptr: 6231 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(), 6232 "llvm.vp.inttoptr intrinsic first argument element type must be " 6233 "integer and result element type must be pointer", 6234 *VPCast); 6235 break; 6236 } 6237 } 6238 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) { 6239 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); 6240 Check(CmpInst::isFPPredicate(Pred), 6241 "invalid predicate for VP FP comparison intrinsic", &VPI); 6242 } 6243 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) { 6244 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); 6245 Check(CmpInst::isIntPredicate(Pred), 6246 "invalid predicate for VP integer comparison intrinsic", &VPI); 6247 } 6248 if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) { 6249 auto TestMask = cast<ConstantInt>(VPI.getOperand(1)); 6250 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0, 6251 "unsupported bits for llvm.vp.is.fpclass test mask"); 6252 } 6253 } 6254 6255 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 6256 unsigned NumOperands; 6257 bool HasRoundingMD; 6258 switch (FPI.getIntrinsicID()) { 6259 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6260 case Intrinsic::INTRINSIC: \ 6261 NumOperands = NARG; \ 6262 HasRoundingMD = ROUND_MODE; \ 6263 break; 6264 #include "llvm/IR/ConstrainedOps.def" 6265 default: 6266 llvm_unreachable("Invalid constrained FP intrinsic!"); 6267 } 6268 NumOperands += (1 + HasRoundingMD); 6269 // Compare intrinsics carry an extra predicate metadata operand. 6270 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 6271 NumOperands += 1; 6272 Check((FPI.arg_size() == NumOperands), 6273 "invalid arguments for constrained FP intrinsic", &FPI); 6274 6275 switch (FPI.getIntrinsicID()) { 6276 case Intrinsic::experimental_constrained_lrint: 6277 case Intrinsic::experimental_constrained_llrint: { 6278 Type *ValTy = FPI.getArgOperand(0)->getType(); 6279 Type *ResultTy = FPI.getType(); 6280 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 6281 "Intrinsic does not support vectors", &FPI); 6282 } 6283 break; 6284 6285 case Intrinsic::experimental_constrained_lround: 6286 case Intrinsic::experimental_constrained_llround: { 6287 Type *ValTy = FPI.getArgOperand(0)->getType(); 6288 Type *ResultTy = FPI.getType(); 6289 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 6290 "Intrinsic does not support vectors", &FPI); 6291 break; 6292 } 6293 6294 case Intrinsic::experimental_constrained_fcmp: 6295 case Intrinsic::experimental_constrained_fcmps: { 6296 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 6297 Check(CmpInst::isFPPredicate(Pred), 6298 "invalid predicate for constrained FP comparison intrinsic", &FPI); 6299 break; 6300 } 6301 6302 case Intrinsic::experimental_constrained_fptosi: 6303 case Intrinsic::experimental_constrained_fptoui: { 6304 Value *Operand = FPI.getArgOperand(0); 6305 ElementCount SrcEC; 6306 Check(Operand->getType()->isFPOrFPVectorTy(), 6307 "Intrinsic first argument must be floating point", &FPI); 6308 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6309 SrcEC = cast<VectorType>(OperandT)->getElementCount(); 6310 } 6311 6312 Operand = &FPI; 6313 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(), 6314 "Intrinsic first argument and result disagree on vector use", &FPI); 6315 Check(Operand->getType()->isIntOrIntVectorTy(), 6316 "Intrinsic result must be an integer", &FPI); 6317 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6318 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(), 6319 "Intrinsic first argument and result vector lengths must be equal", 6320 &FPI); 6321 } 6322 } 6323 break; 6324 6325 case Intrinsic::experimental_constrained_sitofp: 6326 case Intrinsic::experimental_constrained_uitofp: { 6327 Value *Operand = FPI.getArgOperand(0); 6328 ElementCount SrcEC; 6329 Check(Operand->getType()->isIntOrIntVectorTy(), 6330 "Intrinsic first argument must be integer", &FPI); 6331 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6332 SrcEC = cast<VectorType>(OperandT)->getElementCount(); 6333 } 6334 6335 Operand = &FPI; 6336 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(), 6337 "Intrinsic first argument and result disagree on vector use", &FPI); 6338 Check(Operand->getType()->isFPOrFPVectorTy(), 6339 "Intrinsic result must be a floating point", &FPI); 6340 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6341 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(), 6342 "Intrinsic first argument and result vector lengths must be equal", 6343 &FPI); 6344 } 6345 } break; 6346 6347 case Intrinsic::experimental_constrained_fptrunc: 6348 case Intrinsic::experimental_constrained_fpext: { 6349 Value *Operand = FPI.getArgOperand(0); 6350 Type *OperandTy = Operand->getType(); 6351 Value *Result = &FPI; 6352 Type *ResultTy = Result->getType(); 6353 Check(OperandTy->isFPOrFPVectorTy(), 6354 "Intrinsic first argument must be FP or FP vector", &FPI); 6355 Check(ResultTy->isFPOrFPVectorTy(), 6356 "Intrinsic result must be FP or FP vector", &FPI); 6357 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 6358 "Intrinsic first argument and result disagree on vector use", &FPI); 6359 if (OperandTy->isVectorTy()) { 6360 Check(cast<VectorType>(OperandTy)->getElementCount() == 6361 cast<VectorType>(ResultTy)->getElementCount(), 6362 "Intrinsic first argument and result vector lengths must be equal", 6363 &FPI); 6364 } 6365 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 6366 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 6367 "Intrinsic first argument's type must be larger than result type", 6368 &FPI); 6369 } else { 6370 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 6371 "Intrinsic first argument's type must be smaller than result type", 6372 &FPI); 6373 } 6374 } 6375 break; 6376 6377 default: 6378 break; 6379 } 6380 6381 // If a non-metadata argument is passed in a metadata slot then the 6382 // error will be caught earlier when the incorrect argument doesn't 6383 // match the specification in the intrinsic call table. Thus, no 6384 // argument type check is needed here. 6385 6386 Check(FPI.getExceptionBehavior().has_value(), 6387 "invalid exception behavior argument", &FPI); 6388 if (HasRoundingMD) { 6389 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument", 6390 &FPI); 6391 } 6392 } 6393 6394 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 6395 auto *MD = DII.getRawLocation(); 6396 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 6397 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 6398 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 6399 CheckDI(isa<DILocalVariable>(DII.getRawVariable()), 6400 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 6401 DII.getRawVariable()); 6402 CheckDI(isa<DIExpression>(DII.getRawExpression()), 6403 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 6404 DII.getRawExpression()); 6405 6406 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) { 6407 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()), 6408 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII, 6409 DAI->getRawAssignID()); 6410 const auto *RawAddr = DAI->getRawAddress(); 6411 CheckDI( 6412 isa<ValueAsMetadata>(RawAddr) || 6413 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()), 6414 "invalid llvm.dbg.assign intrinsic address", &DII, 6415 DAI->getRawAddress()); 6416 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()), 6417 "invalid llvm.dbg.assign intrinsic address expression", &DII, 6418 DAI->getRawAddressExpression()); 6419 // All of the linked instructions should be in the same function as DII. 6420 for (Instruction *I : at::getAssignmentInsts(DAI)) 6421 CheckDI(DAI->getFunction() == I->getFunction(), 6422 "inst not in same function as dbg.assign", I, DAI); 6423 } 6424 6425 // Ignore broken !dbg attachments; they're checked elsewhere. 6426 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 6427 if (!isa<DILocation>(N)) 6428 return; 6429 6430 BasicBlock *BB = DII.getParent(); 6431 Function *F = BB ? BB->getParent() : nullptr; 6432 6433 // The scopes for variables and !dbg attachments must agree. 6434 DILocalVariable *Var = DII.getVariable(); 6435 DILocation *Loc = DII.getDebugLoc(); 6436 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 6437 &DII, BB, F); 6438 6439 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 6440 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6441 if (!VarSP || !LocSP) 6442 return; // Broken scope chains are checked elsewhere. 6443 6444 CheckDI(VarSP == LocSP, 6445 "mismatched subprogram between llvm.dbg." + Kind + 6446 " variable and !dbg attachment", 6447 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 6448 Loc->getScope()->getSubprogram()); 6449 6450 // This check is redundant with one in visitLocalVariable(). 6451 CheckDI(isType(Var->getRawType()), "invalid type ref", Var, 6452 Var->getRawType()); 6453 verifyFnArgs(DII); 6454 } 6455 6456 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 6457 CheckDI(isa<DILabel>(DLI.getRawLabel()), 6458 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 6459 DLI.getRawLabel()); 6460 6461 // Ignore broken !dbg attachments; they're checked elsewhere. 6462 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 6463 if (!isa<DILocation>(N)) 6464 return; 6465 6466 BasicBlock *BB = DLI.getParent(); 6467 Function *F = BB ? BB->getParent() : nullptr; 6468 6469 // The scopes for variables and !dbg attachments must agree. 6470 DILabel *Label = DLI.getLabel(); 6471 DILocation *Loc = DLI.getDebugLoc(); 6472 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI, 6473 BB, F); 6474 6475 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 6476 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6477 if (!LabelSP || !LocSP) 6478 return; 6479 6480 CheckDI(LabelSP == LocSP, 6481 "mismatched subprogram between llvm.dbg." + Kind + 6482 " label and !dbg attachment", 6483 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 6484 Loc->getScope()->getSubprogram()); 6485 } 6486 6487 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 6488 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 6489 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 6490 6491 // We don't know whether this intrinsic verified correctly. 6492 if (!V || !E || !E->isValid()) 6493 return; 6494 6495 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 6496 auto Fragment = E->getFragmentInfo(); 6497 if (!Fragment) 6498 return; 6499 6500 // The frontend helps out GDB by emitting the members of local anonymous 6501 // unions as artificial local variables with shared storage. When SROA splits 6502 // the storage for artificial local variables that are smaller than the entire 6503 // union, the overhang piece will be outside of the allotted space for the 6504 // variable and this check fails. 6505 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 6506 if (V->isArtificial()) 6507 return; 6508 6509 verifyFragmentExpression(*V, *Fragment, &I); 6510 } 6511 6512 template <typename ValueOrMetadata> 6513 void Verifier::verifyFragmentExpression(const DIVariable &V, 6514 DIExpression::FragmentInfo Fragment, 6515 ValueOrMetadata *Desc) { 6516 // If there's no size, the type is broken, but that should be checked 6517 // elsewhere. 6518 auto VarSize = V.getSizeInBits(); 6519 if (!VarSize) 6520 return; 6521 6522 unsigned FragSize = Fragment.SizeInBits; 6523 unsigned FragOffset = Fragment.OffsetInBits; 6524 CheckDI(FragSize + FragOffset <= *VarSize, 6525 "fragment is larger than or outside of variable", Desc, &V); 6526 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 6527 } 6528 6529 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 6530 // This function does not take the scope of noninlined function arguments into 6531 // account. Don't run it if current function is nodebug, because it may 6532 // contain inlined debug intrinsics. 6533 if (!HasDebugInfo) 6534 return; 6535 6536 // For performance reasons only check non-inlined ones. 6537 if (I.getDebugLoc()->getInlinedAt()) 6538 return; 6539 6540 DILocalVariable *Var = I.getVariable(); 6541 CheckDI(Var, "dbg intrinsic without variable"); 6542 6543 unsigned ArgNo = Var->getArg(); 6544 if (!ArgNo) 6545 return; 6546 6547 // Verify there are no duplicate function argument debug info entries. 6548 // These will cause hard-to-debug assertions in the DWARF backend. 6549 if (DebugFnArgs.size() < ArgNo) 6550 DebugFnArgs.resize(ArgNo, nullptr); 6551 6552 auto *Prev = DebugFnArgs[ArgNo - 1]; 6553 DebugFnArgs[ArgNo - 1] = Var; 6554 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 6555 Prev, Var); 6556 } 6557 6558 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 6559 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 6560 6561 // We don't know whether this intrinsic verified correctly. 6562 if (!E || !E->isValid()) 6563 return; 6564 6565 if (isa<ValueAsMetadata>(I.getRawLocation())) { 6566 Value *VarValue = I.getVariableLocationOp(0); 6567 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue)) 6568 return; 6569 // We allow EntryValues for swift async arguments, as they have an 6570 // ABI-guarantee to be turned into a specific register. 6571 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue); 6572 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync)) 6573 return; 6574 } 6575 6576 CheckDI(!E->isEntryValue(), 6577 "Entry values are only allowed in MIR unless they target a " 6578 "swiftasync Argument", 6579 &I); 6580 } 6581 6582 void Verifier::verifyCompileUnits() { 6583 // When more than one Module is imported into the same context, such as during 6584 // an LTO build before linking the modules, ODR type uniquing may cause types 6585 // to point to a different CU. This check does not make sense in this case. 6586 if (M.getContext().isODRUniquingDebugTypes()) 6587 return; 6588 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 6589 SmallPtrSet<const Metadata *, 2> Listed; 6590 if (CUs) 6591 Listed.insert(CUs->op_begin(), CUs->op_end()); 6592 for (const auto *CU : CUVisited) 6593 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 6594 CUVisited.clear(); 6595 } 6596 6597 void Verifier::verifyDeoptimizeCallingConvs() { 6598 if (DeoptimizeDeclarations.empty()) 6599 return; 6600 6601 const Function *First = DeoptimizeDeclarations[0]; 6602 for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) { 6603 Check(First->getCallingConv() == F->getCallingConv(), 6604 "All llvm.experimental.deoptimize declarations must have the same " 6605 "calling convention", 6606 First, F); 6607 } 6608 } 6609 6610 void Verifier::verifyAttachedCallBundle(const CallBase &Call, 6611 const OperandBundleUse &BU) { 6612 FunctionType *FTy = Call.getFunctionType(); 6613 6614 Check((FTy->getReturnType()->isPointerTy() || 6615 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 6616 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 6617 "function returning a pointer or a non-returning function that has a " 6618 "void return type", 6619 Call); 6620 6621 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()), 6622 "operand bundle \"clang.arc.attachedcall\" requires one function as " 6623 "an argument", 6624 Call); 6625 6626 auto *Fn = cast<Function>(BU.Inputs.front()); 6627 Intrinsic::ID IID = Fn->getIntrinsicID(); 6628 6629 if (IID) { 6630 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 6631 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 6632 "invalid function argument", Call); 6633 } else { 6634 StringRef FnName = Fn->getName(); 6635 Check((FnName == "objc_retainAutoreleasedReturnValue" || 6636 FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 6637 "invalid function argument", Call); 6638 } 6639 } 6640 6641 void Verifier::verifyNoAliasScopeDecl() { 6642 if (NoAliasScopeDecls.empty()) 6643 return; 6644 6645 // only a single scope must be declared at a time. 6646 for (auto *II : NoAliasScopeDecls) { 6647 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 6648 "Not a llvm.experimental.noalias.scope.decl ?"); 6649 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 6650 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 6651 Check(ScopeListMV != nullptr, 6652 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 6653 "argument", 6654 II); 6655 6656 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 6657 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II); 6658 Check(ScopeListMD->getNumOperands() == 1, 6659 "!id.scope.list must point to a list with a single scope", II); 6660 visitAliasScopeListMetadata(ScopeListMD); 6661 } 6662 6663 // Only check the domination rule when requested. Once all passes have been 6664 // adapted this option can go away. 6665 if (!VerifyNoAliasScopeDomination) 6666 return; 6667 6668 // Now sort the intrinsics based on the scope MDNode so that declarations of 6669 // the same scopes are next to each other. 6670 auto GetScope = [](IntrinsicInst *II) { 6671 const auto *ScopeListMV = cast<MetadataAsValue>( 6672 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 6673 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 6674 }; 6675 6676 // We are sorting on MDNode pointers here. For valid input IR this is ok. 6677 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 6678 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 6679 return GetScope(Lhs) < GetScope(Rhs); 6680 }; 6681 6682 llvm::sort(NoAliasScopeDecls, Compare); 6683 6684 // Go over the intrinsics and check that for the same scope, they are not 6685 // dominating each other. 6686 auto ItCurrent = NoAliasScopeDecls.begin(); 6687 while (ItCurrent != NoAliasScopeDecls.end()) { 6688 auto CurScope = GetScope(*ItCurrent); 6689 auto ItNext = ItCurrent; 6690 do { 6691 ++ItNext; 6692 } while (ItNext != NoAliasScopeDecls.end() && 6693 GetScope(*ItNext) == CurScope); 6694 6695 // [ItCurrent, ItNext) represents the declarations for the same scope. 6696 // Ensure they are not dominating each other.. but only if it is not too 6697 // expensive. 6698 if (ItNext - ItCurrent < 32) 6699 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 6700 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 6701 if (I != J) 6702 Check(!DT.dominates(I, J), 6703 "llvm.experimental.noalias.scope.decl dominates another one " 6704 "with the same scope", 6705 I); 6706 ItCurrent = ItNext; 6707 } 6708 } 6709 6710 //===----------------------------------------------------------------------===// 6711 // Implement the public interfaces to this file... 6712 //===----------------------------------------------------------------------===// 6713 6714 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 6715 Function &F = const_cast<Function &>(f); 6716 6717 // Don't use a raw_null_ostream. Printing IR is expensive. 6718 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 6719 6720 // Note that this function's return value is inverted from what you would 6721 // expect of a function called "verify". 6722 return !V.verify(F); 6723 } 6724 6725 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 6726 bool *BrokenDebugInfo) { 6727 // Don't use a raw_null_ostream. Printing IR is expensive. 6728 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 6729 6730 bool Broken = false; 6731 for (const Function &F : M) 6732 Broken |= !V.verify(F); 6733 6734 Broken |= !V.verify(); 6735 if (BrokenDebugInfo) 6736 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 6737 // Note that this function's return value is inverted from what you would 6738 // expect of a function called "verify". 6739 return Broken; 6740 } 6741 6742 namespace { 6743 6744 struct VerifierLegacyPass : public FunctionPass { 6745 static char ID; 6746 6747 std::unique_ptr<Verifier> V; 6748 bool FatalErrors = true; 6749 6750 VerifierLegacyPass() : FunctionPass(ID) { 6751 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 6752 } 6753 explicit VerifierLegacyPass(bool FatalErrors) 6754 : FunctionPass(ID), 6755 FatalErrors(FatalErrors) { 6756 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 6757 } 6758 6759 bool doInitialization(Module &M) override { 6760 V = std::make_unique<Verifier>( 6761 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 6762 return false; 6763 } 6764 6765 bool runOnFunction(Function &F) override { 6766 if (!V->verify(F) && FatalErrors) { 6767 errs() << "in function " << F.getName() << '\n'; 6768 report_fatal_error("Broken function found, compilation aborted!"); 6769 } 6770 return false; 6771 } 6772 6773 bool doFinalization(Module &M) override { 6774 bool HasErrors = false; 6775 for (Function &F : M) 6776 if (F.isDeclaration()) 6777 HasErrors |= !V->verify(F); 6778 6779 HasErrors |= !V->verify(); 6780 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 6781 report_fatal_error("Broken module found, compilation aborted!"); 6782 return false; 6783 } 6784 6785 void getAnalysisUsage(AnalysisUsage &AU) const override { 6786 AU.setPreservesAll(); 6787 } 6788 }; 6789 6790 } // end anonymous namespace 6791 6792 /// Helper to issue failure from the TBAA verification 6793 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 6794 if (Diagnostic) 6795 return Diagnostic->CheckFailed(Args...); 6796 } 6797 6798 #define CheckTBAA(C, ...) \ 6799 do { \ 6800 if (!(C)) { \ 6801 CheckFailed(__VA_ARGS__); \ 6802 return false; \ 6803 } \ 6804 } while (false) 6805 6806 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 6807 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 6808 /// struct-type node describing an aggregate data structure (like a struct). 6809 TBAAVerifier::TBAABaseNodeSummary 6810 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 6811 bool IsNewFormat) { 6812 if (BaseNode->getNumOperands() < 2) { 6813 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 6814 return {true, ~0u}; 6815 } 6816 6817 auto Itr = TBAABaseNodes.find(BaseNode); 6818 if (Itr != TBAABaseNodes.end()) 6819 return Itr->second; 6820 6821 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 6822 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 6823 (void)InsertResult; 6824 assert(InsertResult.second && "We just checked!"); 6825 return Result; 6826 } 6827 6828 TBAAVerifier::TBAABaseNodeSummary 6829 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 6830 bool IsNewFormat) { 6831 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 6832 6833 if (BaseNode->getNumOperands() == 2) { 6834 // Scalar nodes can only be accessed at offset 0. 6835 return isValidScalarTBAANode(BaseNode) 6836 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 6837 : InvalidNode; 6838 } 6839 6840 if (IsNewFormat) { 6841 if (BaseNode->getNumOperands() % 3 != 0) { 6842 CheckFailed("Access tag nodes must have the number of operands that is a " 6843 "multiple of 3!", BaseNode); 6844 return InvalidNode; 6845 } 6846 } else { 6847 if (BaseNode->getNumOperands() % 2 != 1) { 6848 CheckFailed("Struct tag nodes must have an odd number of operands!", 6849 BaseNode); 6850 return InvalidNode; 6851 } 6852 } 6853 6854 // Check the type size field. 6855 if (IsNewFormat) { 6856 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6857 BaseNode->getOperand(1)); 6858 if (!TypeSizeNode) { 6859 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 6860 return InvalidNode; 6861 } 6862 } 6863 6864 // Check the type name field. In the new format it can be anything. 6865 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 6866 CheckFailed("Struct tag nodes have a string as their first operand", 6867 BaseNode); 6868 return InvalidNode; 6869 } 6870 6871 bool Failed = false; 6872 6873 std::optional<APInt> PrevOffset; 6874 unsigned BitWidth = ~0u; 6875 6876 // We've already checked that BaseNode is not a degenerate root node with one 6877 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 6878 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6879 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6880 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6881 Idx += NumOpsPerField) { 6882 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 6883 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 6884 if (!isa<MDNode>(FieldTy)) { 6885 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 6886 Failed = true; 6887 continue; 6888 } 6889 6890 auto *OffsetEntryCI = 6891 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 6892 if (!OffsetEntryCI) { 6893 CheckFailed("Offset entries must be constants!", &I, BaseNode); 6894 Failed = true; 6895 continue; 6896 } 6897 6898 if (BitWidth == ~0u) 6899 BitWidth = OffsetEntryCI->getBitWidth(); 6900 6901 if (OffsetEntryCI->getBitWidth() != BitWidth) { 6902 CheckFailed( 6903 "Bitwidth between the offsets and struct type entries must match", &I, 6904 BaseNode); 6905 Failed = true; 6906 continue; 6907 } 6908 6909 // NB! As far as I can tell, we generate a non-strictly increasing offset 6910 // sequence only from structs that have zero size bit fields. When 6911 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 6912 // pick the field lexically the latest in struct type metadata node. This 6913 // mirrors the actual behavior of the alias analysis implementation. 6914 bool IsAscending = 6915 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 6916 6917 if (!IsAscending) { 6918 CheckFailed("Offsets must be increasing!", &I, BaseNode); 6919 Failed = true; 6920 } 6921 6922 PrevOffset = OffsetEntryCI->getValue(); 6923 6924 if (IsNewFormat) { 6925 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6926 BaseNode->getOperand(Idx + 2)); 6927 if (!MemberSizeNode) { 6928 CheckFailed("Member size entries must be constants!", &I, BaseNode); 6929 Failed = true; 6930 continue; 6931 } 6932 } 6933 } 6934 6935 return Failed ? InvalidNode 6936 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 6937 } 6938 6939 static bool IsRootTBAANode(const MDNode *MD) { 6940 return MD->getNumOperands() < 2; 6941 } 6942 6943 static bool IsScalarTBAANodeImpl(const MDNode *MD, 6944 SmallPtrSetImpl<const MDNode *> &Visited) { 6945 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 6946 return false; 6947 6948 if (!isa<MDString>(MD->getOperand(0))) 6949 return false; 6950 6951 if (MD->getNumOperands() == 3) { 6952 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 6953 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 6954 return false; 6955 } 6956 6957 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6958 return Parent && Visited.insert(Parent).second && 6959 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 6960 } 6961 6962 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 6963 auto ResultIt = TBAAScalarNodes.find(MD); 6964 if (ResultIt != TBAAScalarNodes.end()) 6965 return ResultIt->second; 6966 6967 SmallPtrSet<const MDNode *, 4> Visited; 6968 bool Result = IsScalarTBAANodeImpl(MD, Visited); 6969 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 6970 (void)InsertResult; 6971 assert(InsertResult.second && "Just checked!"); 6972 6973 return Result; 6974 } 6975 6976 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 6977 /// Offset in place to be the offset within the field node returned. 6978 /// 6979 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 6980 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 6981 const MDNode *BaseNode, 6982 APInt &Offset, 6983 bool IsNewFormat) { 6984 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 6985 6986 // Scalar nodes have only one possible "field" -- their parent in the access 6987 // hierarchy. Offset must be zero at this point, but our caller is supposed 6988 // to check that. 6989 if (BaseNode->getNumOperands() == 2) 6990 return cast<MDNode>(BaseNode->getOperand(1)); 6991 6992 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6993 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6994 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6995 Idx += NumOpsPerField) { 6996 auto *OffsetEntryCI = 6997 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6998 if (OffsetEntryCI->getValue().ugt(Offset)) { 6999 if (Idx == FirstFieldOpNo) { 7000 CheckFailed("Could not find TBAA parent in struct type node", &I, 7001 BaseNode, &Offset); 7002 return nullptr; 7003 } 7004 7005 unsigned PrevIdx = Idx - NumOpsPerField; 7006 auto *PrevOffsetEntryCI = 7007 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 7008 Offset -= PrevOffsetEntryCI->getValue(); 7009 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 7010 } 7011 } 7012 7013 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 7014 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 7015 BaseNode->getOperand(LastIdx + 1)); 7016 Offset -= LastOffsetEntryCI->getValue(); 7017 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 7018 } 7019 7020 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 7021 if (!Type || Type->getNumOperands() < 3) 7022 return false; 7023 7024 // In the new format type nodes shall have a reference to the parent type as 7025 // its first operand. 7026 return isa_and_nonnull<MDNode>(Type->getOperand(0)); 7027 } 7028 7029 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 7030 CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands", 7031 &I, MD); 7032 7033 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 7034 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 7035 isa<AtomicCmpXchgInst>(I), 7036 "This instruction shall not have a TBAA access tag!", &I); 7037 7038 bool IsStructPathTBAA = 7039 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 7040 7041 CheckTBAA(IsStructPathTBAA, 7042 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", 7043 &I); 7044 7045 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 7046 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 7047 7048 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 7049 7050 if (IsNewFormat) { 7051 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 7052 "Access tag metadata must have either 4 or 5 operands", &I, MD); 7053 } else { 7054 CheckTBAA(MD->getNumOperands() < 5, 7055 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 7056 } 7057 7058 // Check the access size field. 7059 if (IsNewFormat) { 7060 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 7061 MD->getOperand(3)); 7062 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 7063 } 7064 7065 // Check the immutability flag. 7066 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 7067 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 7068 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 7069 MD->getOperand(ImmutabilityFlagOpNo)); 7070 CheckTBAA(IsImmutableCI, 7071 "Immutability tag on struct tag metadata must be a constant", &I, 7072 MD); 7073 CheckTBAA( 7074 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 7075 "Immutability part of the struct tag metadata must be either 0 or 1", 7076 &I, MD); 7077 } 7078 7079 CheckTBAA(BaseNode && AccessType, 7080 "Malformed struct tag metadata: base and access-type " 7081 "should be non-null and point to Metadata nodes", 7082 &I, MD, BaseNode, AccessType); 7083 7084 if (!IsNewFormat) { 7085 CheckTBAA(isValidScalarTBAANode(AccessType), 7086 "Access type node must be a valid scalar type", &I, MD, 7087 AccessType); 7088 } 7089 7090 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 7091 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 7092 7093 APInt Offset = OffsetCI->getValue(); 7094 bool SeenAccessTypeInPath = false; 7095 7096 SmallPtrSet<MDNode *, 4> StructPath; 7097 7098 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 7099 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 7100 IsNewFormat)) { 7101 if (!StructPath.insert(BaseNode).second) { 7102 CheckFailed("Cycle detected in struct path", &I, MD); 7103 return false; 7104 } 7105 7106 bool Invalid; 7107 unsigned BaseNodeBitWidth; 7108 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 7109 IsNewFormat); 7110 7111 // If the base node is invalid in itself, then we've already printed all the 7112 // errors we wanted to print. 7113 if (Invalid) 7114 return false; 7115 7116 SeenAccessTypeInPath |= BaseNode == AccessType; 7117 7118 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 7119 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access", 7120 &I, MD, &Offset); 7121 7122 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 7123 (BaseNodeBitWidth == 0 && Offset == 0) || 7124 (IsNewFormat && BaseNodeBitWidth == ~0u), 7125 "Access bit-width not the same as description bit-width", &I, MD, 7126 BaseNodeBitWidth, Offset.getBitWidth()); 7127 7128 if (IsNewFormat && SeenAccessTypeInPath) 7129 break; 7130 } 7131 7132 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I, 7133 MD); 7134 return true; 7135 } 7136 7137 char VerifierLegacyPass::ID = 0; 7138 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 7139 7140 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 7141 return new VerifierLegacyPass(FatalErrors); 7142 } 7143 7144 AnalysisKey VerifierAnalysis::Key; 7145 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 7146 ModuleAnalysisManager &) { 7147 Result Res; 7148 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 7149 return Res; 7150 } 7151 7152 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 7153 FunctionAnalysisManager &) { 7154 return { llvm::verifyFunction(F, &dbgs()), false }; 7155 } 7156 7157 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 7158 auto Res = AM.getResult<VerifierAnalysis>(M); 7159 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 7160 report_fatal_error("Broken module found, compilation aborted!"); 7161 7162 return PreservedAnalyses::all(); 7163 } 7164 7165 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 7166 auto res = AM.getResult<VerifierAnalysis>(F); 7167 if (res.IRBroken && FatalErrors) 7168 report_fatal_error("Broken function found, compilation aborted!"); 7169 7170 return PreservedAnalyses::all(); 7171 } 7172