1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 Triple TT; 125 const DataLayout &DL; 126 LLVMContext &Context; 127 128 /// Track the brokenness of the module while recursively visiting. 129 bool Broken = false; 130 /// Broken debug info can be "recovered" from by stripping the debug info. 131 bool BrokenDebugInfo = false; 132 /// Whether to treat broken debug info as an error. 133 bool TreatBrokenDebugInfoAsError = true; 134 135 explicit VerifierSupport(raw_ostream *OS, const Module &M) 136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 137 Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (V) 146 Write(*V); 147 } 148 149 void Write(const Value &V) { 150 if (isa<Instruction>(V)) { 151 V.print(*OS, MST); 152 *OS << '\n'; 153 } else { 154 V.printAsOperand(*OS, true, MST); 155 *OS << '\n'; 156 } 157 } 158 159 void Write(const Metadata *MD) { 160 if (!MD) 161 return; 162 MD->print(*OS, MST, &M); 163 *OS << '\n'; 164 } 165 166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 167 Write(MD.get()); 168 } 169 170 void Write(const NamedMDNode *NMD) { 171 if (!NMD) 172 return; 173 NMD->print(*OS, MST); 174 *OS << '\n'; 175 } 176 177 void Write(Type *T) { 178 if (!T) 179 return; 180 *OS << ' ' << *T; 181 } 182 183 void Write(const Comdat *C) { 184 if (!C) 185 return; 186 *OS << *C; 187 } 188 189 void Write(const APInt *AI) { 190 if (!AI) 191 return; 192 *OS << *AI << '\n'; 193 } 194 195 void Write(const unsigned i) { *OS << i << '\n'; } 196 197 template <typename T> void Write(ArrayRef<T> Vs) { 198 for (const T &V : Vs) 199 Write(V); 200 } 201 202 template <typename T1, typename... Ts> 203 void WriteTs(const T1 &V1, const Ts &... Vs) { 204 Write(V1); 205 WriteTs(Vs...); 206 } 207 208 template <typename... Ts> void WriteTs() {} 209 210 public: 211 /// A check failed, so printout out the condition and the message. 212 /// 213 /// This provides a nice place to put a breakpoint if you want to see why 214 /// something is not correct. 215 void CheckFailed(const Twine &Message) { 216 if (OS) 217 *OS << Message << '\n'; 218 Broken = true; 219 } 220 221 /// A check failed (with values to print). 222 /// 223 /// This calls the Message-only version so that the above is easier to set a 224 /// breakpoint on. 225 template <typename T1, typename... Ts> 226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 227 CheckFailed(Message); 228 if (OS) 229 WriteTs(V1, Vs...); 230 } 231 232 /// A debug info check failed. 233 void DebugInfoCheckFailed(const Twine &Message) { 234 if (OS) 235 *OS << Message << '\n'; 236 Broken |= TreatBrokenDebugInfoAsError; 237 BrokenDebugInfo = true; 238 } 239 240 /// A debug info check failed (with values to print). 241 template <typename T1, typename... Ts> 242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 243 const Ts &... Vs) { 244 DebugInfoCheckFailed(Message); 245 if (OS) 246 WriteTs(V1, Vs...); 247 } 248 }; 249 250 } // namespace llvm 251 252 namespace { 253 254 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 255 friend class InstVisitor<Verifier>; 256 257 DominatorTree DT; 258 259 /// When verifying a basic block, keep track of all of the 260 /// instructions we have seen so far. 261 /// 262 /// This allows us to do efficient dominance checks for the case when an 263 /// instruction has an operand that is an instruction in the same block. 264 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 265 266 /// Keep track of the metadata nodes that have been checked already. 267 SmallPtrSet<const Metadata *, 32> MDNodes; 268 269 /// Keep track which DISubprogram is attached to which function. 270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 271 272 /// Track all DICompileUnits visited. 273 SmallPtrSet<const Metadata *, 2> CUVisited; 274 275 /// The result type for a landingpad. 276 Type *LandingPadResultTy; 277 278 /// Whether we've seen a call to @llvm.localescape in this function 279 /// already. 280 bool SawFrameEscape; 281 282 /// Whether the current function has a DISubprogram attached to it. 283 bool HasDebugInfo = false; 284 285 /// Whether source was present on the first DIFile encountered in each CU. 286 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 287 288 /// Stores the count of how many objects were passed to llvm.localescape for a 289 /// given function and the largest index passed to llvm.localrecover. 290 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 291 292 // Maps catchswitches and cleanuppads that unwind to siblings to the 293 // terminators that indicate the unwind, used to detect cycles therein. 294 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 295 296 /// Cache of constants visited in search of ConstantExprs. 297 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 298 299 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 300 SmallVector<const Function *, 4> DeoptimizeDeclarations; 301 302 // Verify that this GlobalValue is only used in this module. 303 // This map is used to avoid visiting uses twice. We can arrive at a user 304 // twice, if they have multiple operands. In particular for very large 305 // constant expressions, we can arrive at a particular user many times. 306 SmallPtrSet<const Value *, 32> GlobalValueVisited; 307 308 // Keeps track of duplicate function argument debug info. 309 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 310 311 TBAAVerifier TBAAVerifyHelper; 312 313 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 314 315 public: 316 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 317 const Module &M) 318 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 319 SawFrameEscape(false), TBAAVerifyHelper(this) { 320 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 321 } 322 323 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 324 325 bool verify(const Function &F) { 326 assert(F.getParent() == &M && 327 "An instance of this class only works with a specific module!"); 328 329 // First ensure the function is well-enough formed to compute dominance 330 // information, and directly compute a dominance tree. We don't rely on the 331 // pass manager to provide this as it isolates us from a potentially 332 // out-of-date dominator tree and makes it significantly more complex to run 333 // this code outside of a pass manager. 334 // FIXME: It's really gross that we have to cast away constness here. 335 if (!F.empty()) 336 DT.recalculate(const_cast<Function &>(F)); 337 338 for (const BasicBlock &BB : F) { 339 if (!BB.empty() && BB.back().isTerminator()) 340 continue; 341 342 if (OS) { 343 *OS << "Basic Block in function '" << F.getName() 344 << "' does not have terminator!\n"; 345 BB.printAsOperand(*OS, true, MST); 346 *OS << "\n"; 347 } 348 return false; 349 } 350 351 Broken = false; 352 // FIXME: We strip const here because the inst visitor strips const. 353 visit(const_cast<Function &>(F)); 354 verifySiblingFuncletUnwinds(); 355 InstsInThisBlock.clear(); 356 DebugFnArgs.clear(); 357 LandingPadResultTy = nullptr; 358 SawFrameEscape = false; 359 SiblingFuncletInfo.clear(); 360 361 return !Broken; 362 } 363 364 /// Verify the module that this instance of \c Verifier was initialized with. 365 bool verify() { 366 Broken = false; 367 368 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 369 for (const Function &F : M) 370 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 371 DeoptimizeDeclarations.push_back(&F); 372 373 // Now that we've visited every function, verify that we never asked to 374 // recover a frame index that wasn't escaped. 375 verifyFrameRecoverIndices(); 376 for (const GlobalVariable &GV : M.globals()) 377 visitGlobalVariable(GV); 378 379 for (const GlobalAlias &GA : M.aliases()) 380 visitGlobalAlias(GA); 381 382 for (const NamedMDNode &NMD : M.named_metadata()) 383 visitNamedMDNode(NMD); 384 385 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 386 visitComdat(SMEC.getValue()); 387 388 visitModuleFlags(M); 389 visitModuleIdents(M); 390 visitModuleCommandLines(M); 391 392 verifyCompileUnits(); 393 394 verifyDeoptimizeCallingConvs(); 395 DISubprogramAttachments.clear(); 396 return !Broken; 397 } 398 399 private: 400 // Verification methods... 401 void visitGlobalValue(const GlobalValue &GV); 402 void visitGlobalVariable(const GlobalVariable &GV); 403 void visitGlobalAlias(const GlobalAlias &GA); 404 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 405 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 406 const GlobalAlias &A, const Constant &C); 407 void visitNamedMDNode(const NamedMDNode &NMD); 408 void visitMDNode(const MDNode &MD); 409 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 410 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 411 void visitComdat(const Comdat &C); 412 void visitModuleIdents(const Module &M); 413 void visitModuleCommandLines(const Module &M); 414 void visitModuleFlags(const Module &M); 415 void visitModuleFlag(const MDNode *Op, 416 DenseMap<const MDString *, const MDNode *> &SeenIDs, 417 SmallVectorImpl<const MDNode *> &Requirements); 418 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 419 void visitFunction(const Function &F); 420 void visitBasicBlock(BasicBlock &BB); 421 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 422 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 423 void visitProfMetadata(Instruction &I, MDNode *MD); 424 425 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 426 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 427 #include "llvm/IR/Metadata.def" 428 void visitDIScope(const DIScope &N); 429 void visitDIVariable(const DIVariable &N); 430 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 431 void visitDITemplateParameter(const DITemplateParameter &N); 432 433 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 434 435 // InstVisitor overrides... 436 using InstVisitor<Verifier>::visit; 437 void visit(Instruction &I); 438 439 void visitTruncInst(TruncInst &I); 440 void visitZExtInst(ZExtInst &I); 441 void visitSExtInst(SExtInst &I); 442 void visitFPTruncInst(FPTruncInst &I); 443 void visitFPExtInst(FPExtInst &I); 444 void visitFPToUIInst(FPToUIInst &I); 445 void visitFPToSIInst(FPToSIInst &I); 446 void visitUIToFPInst(UIToFPInst &I); 447 void visitSIToFPInst(SIToFPInst &I); 448 void visitIntToPtrInst(IntToPtrInst &I); 449 void visitPtrToIntInst(PtrToIntInst &I); 450 void visitBitCastInst(BitCastInst &I); 451 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 452 void visitPHINode(PHINode &PN); 453 void visitCallBase(CallBase &Call); 454 void visitUnaryOperator(UnaryOperator &U); 455 void visitBinaryOperator(BinaryOperator &B); 456 void visitICmpInst(ICmpInst &IC); 457 void visitFCmpInst(FCmpInst &FC); 458 void visitExtractElementInst(ExtractElementInst &EI); 459 void visitInsertElementInst(InsertElementInst &EI); 460 void visitShuffleVectorInst(ShuffleVectorInst &EI); 461 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 462 void visitCallInst(CallInst &CI); 463 void visitInvokeInst(InvokeInst &II); 464 void visitGetElementPtrInst(GetElementPtrInst &GEP); 465 void visitLoadInst(LoadInst &LI); 466 void visitStoreInst(StoreInst &SI); 467 void verifyDominatesUse(Instruction &I, unsigned i); 468 void visitInstruction(Instruction &I); 469 void visitTerminator(Instruction &I); 470 void visitBranchInst(BranchInst &BI); 471 void visitReturnInst(ReturnInst &RI); 472 void visitSwitchInst(SwitchInst &SI); 473 void visitIndirectBrInst(IndirectBrInst &BI); 474 void visitCallBrInst(CallBrInst &CBI); 475 void visitSelectInst(SelectInst &SI); 476 void visitUserOp1(Instruction &I); 477 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 478 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 479 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 480 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 481 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 482 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 483 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 484 void visitFenceInst(FenceInst &FI); 485 void visitAllocaInst(AllocaInst &AI); 486 void visitExtractValueInst(ExtractValueInst &EVI); 487 void visitInsertValueInst(InsertValueInst &IVI); 488 void visitEHPadPredecessors(Instruction &I); 489 void visitLandingPadInst(LandingPadInst &LPI); 490 void visitResumeInst(ResumeInst &RI); 491 void visitCatchPadInst(CatchPadInst &CPI); 492 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 493 void visitCleanupPadInst(CleanupPadInst &CPI); 494 void visitFuncletPadInst(FuncletPadInst &FPI); 495 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 496 void visitCleanupReturnInst(CleanupReturnInst &CRI); 497 498 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 499 void verifySwiftErrorValue(const Value *SwiftErrorVal); 500 void verifyMustTailCall(CallInst &CI); 501 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 502 unsigned ArgNo, std::string &Suffix); 503 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 504 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 505 const Value *V); 506 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 507 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 508 const Value *V, bool IsIntrinsic); 509 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 510 511 void visitConstantExprsRecursively(const Constant *EntryC); 512 void visitConstantExpr(const ConstantExpr *CE); 513 void verifyStatepoint(const CallBase &Call); 514 void verifyFrameRecoverIndices(); 515 void verifySiblingFuncletUnwinds(); 516 517 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 518 template <typename ValueOrMetadata> 519 void verifyFragmentExpression(const DIVariable &V, 520 DIExpression::FragmentInfo Fragment, 521 ValueOrMetadata *Desc); 522 void verifyFnArgs(const DbgVariableIntrinsic &I); 523 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 524 525 /// Module-level debug info verification... 526 void verifyCompileUnits(); 527 528 /// Module-level verification that all @llvm.experimental.deoptimize 529 /// declarations share the same calling convention. 530 void verifyDeoptimizeCallingConvs(); 531 532 /// Verify all-or-nothing property of DIFile source attribute within a CU. 533 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 534 }; 535 536 } // end anonymous namespace 537 538 /// We know that cond should be true, if not print an error message. 539 #define Assert(C, ...) \ 540 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 541 542 /// We know that a debug info condition should be true, if not print 543 /// an error message. 544 #define AssertDI(C, ...) \ 545 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 546 547 void Verifier::visit(Instruction &I) { 548 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 549 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 550 InstVisitor<Verifier>::visit(I); 551 } 552 553 // Helper to recursively iterate over indirect users. By 554 // returning false, the callback can ask to stop recursing 555 // further. 556 static void forEachUser(const Value *User, 557 SmallPtrSet<const Value *, 32> &Visited, 558 llvm::function_ref<bool(const Value *)> Callback) { 559 if (!Visited.insert(User).second) 560 return; 561 for (const Value *TheNextUser : User->materialized_users()) 562 if (Callback(TheNextUser)) 563 forEachUser(TheNextUser, Visited, Callback); 564 } 565 566 void Verifier::visitGlobalValue(const GlobalValue &GV) { 567 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 568 "Global is external, but doesn't have external or weak linkage!", &GV); 569 570 Assert(GV.getAlignment() <= Value::MaximumAlignment, 571 "huge alignment values are unsupported", &GV); 572 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 573 "Only global variables can have appending linkage!", &GV); 574 575 if (GV.hasAppendingLinkage()) { 576 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 577 Assert(GVar && GVar->getValueType()->isArrayTy(), 578 "Only global arrays can have appending linkage!", GVar); 579 } 580 581 if (GV.isDeclarationForLinker()) 582 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 583 584 if (GV.hasDLLImportStorageClass()) { 585 Assert(!GV.isDSOLocal(), 586 "GlobalValue with DLLImport Storage is dso_local!", &GV); 587 588 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 589 GV.hasAvailableExternallyLinkage(), 590 "Global is marked as dllimport, but not external", &GV); 591 } 592 593 if (GV.hasLocalLinkage()) 594 Assert(GV.isDSOLocal(), 595 "GlobalValue with private or internal linkage must be dso_local!", 596 &GV); 597 598 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 599 Assert(GV.isDSOLocal(), 600 "GlobalValue with non default visibility must be dso_local!", &GV); 601 602 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 603 if (const Instruction *I = dyn_cast<Instruction>(V)) { 604 if (!I->getParent() || !I->getParent()->getParent()) 605 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 606 I); 607 else if (I->getParent()->getParent()->getParent() != &M) 608 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 609 I->getParent()->getParent(), 610 I->getParent()->getParent()->getParent()); 611 return false; 612 } else if (const Function *F = dyn_cast<Function>(V)) { 613 if (F->getParent() != &M) 614 CheckFailed("Global is used by function in a different module", &GV, &M, 615 F, F->getParent()); 616 return false; 617 } 618 return true; 619 }); 620 } 621 622 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 623 if (GV.hasInitializer()) { 624 Assert(GV.getInitializer()->getType() == GV.getValueType(), 625 "Global variable initializer type does not match global " 626 "variable type!", 627 &GV); 628 // If the global has common linkage, it must have a zero initializer and 629 // cannot be constant. 630 if (GV.hasCommonLinkage()) { 631 Assert(GV.getInitializer()->isNullValue(), 632 "'common' global must have a zero initializer!", &GV); 633 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 634 &GV); 635 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 636 } 637 } 638 639 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 640 GV.getName() == "llvm.global_dtors")) { 641 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 642 "invalid linkage for intrinsic global variable", &GV); 643 // Don't worry about emitting an error for it not being an array, 644 // visitGlobalValue will complain on appending non-array. 645 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 646 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 647 PointerType *FuncPtrTy = 648 FunctionType::get(Type::getVoidTy(Context), false)-> 649 getPointerTo(DL.getProgramAddressSpace()); 650 Assert(STy && 651 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 652 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 653 STy->getTypeAtIndex(1) == FuncPtrTy, 654 "wrong type for intrinsic global variable", &GV); 655 Assert(STy->getNumElements() == 3, 656 "the third field of the element type is mandatory, " 657 "specify i8* null to migrate from the obsoleted 2-field form"); 658 Type *ETy = STy->getTypeAtIndex(2); 659 Assert(ETy->isPointerTy() && 660 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 661 "wrong type for intrinsic global variable", &GV); 662 } 663 } 664 665 if (GV.hasName() && (GV.getName() == "llvm.used" || 666 GV.getName() == "llvm.compiler.used")) { 667 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 668 "invalid linkage for intrinsic global variable", &GV); 669 Type *GVType = GV.getValueType(); 670 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 671 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 672 Assert(PTy, "wrong type for intrinsic global variable", &GV); 673 if (GV.hasInitializer()) { 674 const Constant *Init = GV.getInitializer(); 675 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 676 Assert(InitArray, "wrong initalizer for intrinsic global variable", 677 Init); 678 for (Value *Op : InitArray->operands()) { 679 Value *V = Op->stripPointerCasts(); 680 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 681 isa<GlobalAlias>(V), 682 "invalid llvm.used member", V); 683 Assert(V->hasName(), "members of llvm.used must be named", V); 684 } 685 } 686 } 687 } 688 689 // Visit any debug info attachments. 690 SmallVector<MDNode *, 1> MDs; 691 GV.getMetadata(LLVMContext::MD_dbg, MDs); 692 for (auto *MD : MDs) { 693 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 694 visitDIGlobalVariableExpression(*GVE); 695 else 696 AssertDI(false, "!dbg attachment of global variable must be a " 697 "DIGlobalVariableExpression"); 698 } 699 700 // Scalable vectors cannot be global variables, since we don't know 701 // the runtime size. If the global is a struct or an array containing 702 // scalable vectors, that will be caught by the isValidElementType methods 703 // in StructType or ArrayType instead. 704 if (auto *VTy = dyn_cast<VectorType>(GV.getValueType())) 705 Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV); 706 707 if (!GV.hasInitializer()) { 708 visitGlobalValue(GV); 709 return; 710 } 711 712 // Walk any aggregate initializers looking for bitcasts between address spaces 713 visitConstantExprsRecursively(GV.getInitializer()); 714 715 visitGlobalValue(GV); 716 } 717 718 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 719 SmallPtrSet<const GlobalAlias*, 4> Visited; 720 Visited.insert(&GA); 721 visitAliaseeSubExpr(Visited, GA, C); 722 } 723 724 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 725 const GlobalAlias &GA, const Constant &C) { 726 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 727 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 728 &GA); 729 730 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 731 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 732 733 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 734 &GA); 735 } else { 736 // Only continue verifying subexpressions of GlobalAliases. 737 // Do not recurse into global initializers. 738 return; 739 } 740 } 741 742 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 743 visitConstantExprsRecursively(CE); 744 745 for (const Use &U : C.operands()) { 746 Value *V = &*U; 747 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 748 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 749 else if (const auto *C2 = dyn_cast<Constant>(V)) 750 visitAliaseeSubExpr(Visited, GA, *C2); 751 } 752 } 753 754 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 755 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 756 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 757 "weak_odr, or external linkage!", 758 &GA); 759 const Constant *Aliasee = GA.getAliasee(); 760 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 761 Assert(GA.getType() == Aliasee->getType(), 762 "Alias and aliasee types should match!", &GA); 763 764 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 765 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 766 767 visitAliaseeSubExpr(GA, *Aliasee); 768 769 visitGlobalValue(GA); 770 } 771 772 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 773 // There used to be various other llvm.dbg.* nodes, but we don't support 774 // upgrading them and we want to reserve the namespace for future uses. 775 if (NMD.getName().startswith("llvm.dbg.")) 776 AssertDI(NMD.getName() == "llvm.dbg.cu", 777 "unrecognized named metadata node in the llvm.dbg namespace", 778 &NMD); 779 for (const MDNode *MD : NMD.operands()) { 780 if (NMD.getName() == "llvm.dbg.cu") 781 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 782 783 if (!MD) 784 continue; 785 786 visitMDNode(*MD); 787 } 788 } 789 790 void Verifier::visitMDNode(const MDNode &MD) { 791 // Only visit each node once. Metadata can be mutually recursive, so this 792 // avoids infinite recursion here, as well as being an optimization. 793 if (!MDNodes.insert(&MD).second) 794 return; 795 796 switch (MD.getMetadataID()) { 797 default: 798 llvm_unreachable("Invalid MDNode subclass"); 799 case Metadata::MDTupleKind: 800 break; 801 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 802 case Metadata::CLASS##Kind: \ 803 visit##CLASS(cast<CLASS>(MD)); \ 804 break; 805 #include "llvm/IR/Metadata.def" 806 } 807 808 for (const Metadata *Op : MD.operands()) { 809 if (!Op) 810 continue; 811 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 812 &MD, Op); 813 if (auto *N = dyn_cast<MDNode>(Op)) { 814 visitMDNode(*N); 815 continue; 816 } 817 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 818 visitValueAsMetadata(*V, nullptr); 819 continue; 820 } 821 } 822 823 // Check these last, so we diagnose problems in operands first. 824 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 825 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 826 } 827 828 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 829 Assert(MD.getValue(), "Expected valid value", &MD); 830 Assert(!MD.getValue()->getType()->isMetadataTy(), 831 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 832 833 auto *L = dyn_cast<LocalAsMetadata>(&MD); 834 if (!L) 835 return; 836 837 Assert(F, "function-local metadata used outside a function", L); 838 839 // If this was an instruction, bb, or argument, verify that it is in the 840 // function that we expect. 841 Function *ActualF = nullptr; 842 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 843 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 844 ActualF = I->getParent()->getParent(); 845 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 846 ActualF = BB->getParent(); 847 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 848 ActualF = A->getParent(); 849 assert(ActualF && "Unimplemented function local metadata case!"); 850 851 Assert(ActualF == F, "function-local metadata used in wrong function", L); 852 } 853 854 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 855 Metadata *MD = MDV.getMetadata(); 856 if (auto *N = dyn_cast<MDNode>(MD)) { 857 visitMDNode(*N); 858 return; 859 } 860 861 // Only visit each node once. Metadata can be mutually recursive, so this 862 // avoids infinite recursion here, as well as being an optimization. 863 if (!MDNodes.insert(MD).second) 864 return; 865 866 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 867 visitValueAsMetadata(*V, F); 868 } 869 870 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 871 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 872 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 873 874 void Verifier::visitDILocation(const DILocation &N) { 875 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 876 "location requires a valid scope", &N, N.getRawScope()); 877 if (auto *IA = N.getRawInlinedAt()) 878 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 879 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 880 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 881 } 882 883 void Verifier::visitGenericDINode(const GenericDINode &N) { 884 AssertDI(N.getTag(), "invalid tag", &N); 885 } 886 887 void Verifier::visitDIScope(const DIScope &N) { 888 if (auto *F = N.getRawFile()) 889 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 890 } 891 892 void Verifier::visitDISubrange(const DISubrange &N) { 893 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 894 auto Count = N.getCount(); 895 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 896 &N); 897 AssertDI(!Count.is<ConstantInt*>() || 898 Count.get<ConstantInt*>()->getSExtValue() >= -1, 899 "invalid subrange count", &N); 900 } 901 902 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 903 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 904 } 905 906 void Verifier::visitDIBasicType(const DIBasicType &N) { 907 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 908 N.getTag() == dwarf::DW_TAG_unspecified_type, 909 "invalid tag", &N); 910 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 911 "has conflicting flags", &N); 912 } 913 914 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 915 // Common scope checks. 916 visitDIScope(N); 917 918 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 919 N.getTag() == dwarf::DW_TAG_pointer_type || 920 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 921 N.getTag() == dwarf::DW_TAG_reference_type || 922 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 923 N.getTag() == dwarf::DW_TAG_const_type || 924 N.getTag() == dwarf::DW_TAG_volatile_type || 925 N.getTag() == dwarf::DW_TAG_restrict_type || 926 N.getTag() == dwarf::DW_TAG_atomic_type || 927 N.getTag() == dwarf::DW_TAG_member || 928 N.getTag() == dwarf::DW_TAG_inheritance || 929 N.getTag() == dwarf::DW_TAG_friend, 930 "invalid tag", &N); 931 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 932 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 933 N.getRawExtraData()); 934 } 935 936 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 937 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 938 N.getRawBaseType()); 939 940 if (N.getDWARFAddressSpace()) { 941 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 942 N.getTag() == dwarf::DW_TAG_reference_type || 943 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 944 "DWARF address space only applies to pointer or reference types", 945 &N); 946 } 947 } 948 949 /// Detect mutually exclusive flags. 950 static bool hasConflictingReferenceFlags(unsigned Flags) { 951 return ((Flags & DINode::FlagLValueReference) && 952 (Flags & DINode::FlagRValueReference)) || 953 ((Flags & DINode::FlagTypePassByValue) && 954 (Flags & DINode::FlagTypePassByReference)); 955 } 956 957 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 958 auto *Params = dyn_cast<MDTuple>(&RawParams); 959 AssertDI(Params, "invalid template params", &N, &RawParams); 960 for (Metadata *Op : Params->operands()) { 961 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 962 &N, Params, Op); 963 } 964 } 965 966 void Verifier::visitDICompositeType(const DICompositeType &N) { 967 // Common scope checks. 968 visitDIScope(N); 969 970 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 971 N.getTag() == dwarf::DW_TAG_structure_type || 972 N.getTag() == dwarf::DW_TAG_union_type || 973 N.getTag() == dwarf::DW_TAG_enumeration_type || 974 N.getTag() == dwarf::DW_TAG_class_type || 975 N.getTag() == dwarf::DW_TAG_variant_part, 976 "invalid tag", &N); 977 978 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 979 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 980 N.getRawBaseType()); 981 982 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 983 "invalid composite elements", &N, N.getRawElements()); 984 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 985 N.getRawVTableHolder()); 986 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 987 "invalid reference flags", &N); 988 unsigned DIBlockByRefStruct = 1 << 4; 989 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 990 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 991 992 if (N.isVector()) { 993 const DINodeArray Elements = N.getElements(); 994 AssertDI(Elements.size() == 1 && 995 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 996 "invalid vector, expected one element of type subrange", &N); 997 } 998 999 if (auto *Params = N.getRawTemplateParams()) 1000 visitTemplateParams(N, *Params); 1001 1002 if (N.getTag() == dwarf::DW_TAG_class_type || 1003 N.getTag() == dwarf::DW_TAG_union_type) { 1004 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1005 "class/union requires a filename", &N, N.getFile()); 1006 } 1007 1008 if (auto *D = N.getRawDiscriminator()) { 1009 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1010 "discriminator can only appear on variant part"); 1011 } 1012 } 1013 1014 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1015 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1016 if (auto *Types = N.getRawTypeArray()) { 1017 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1018 for (Metadata *Ty : N.getTypeArray()->operands()) { 1019 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1020 } 1021 } 1022 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1023 "invalid reference flags", &N); 1024 } 1025 1026 void Verifier::visitDIFile(const DIFile &N) { 1027 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1028 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1029 if (Checksum) { 1030 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1031 "invalid checksum kind", &N); 1032 size_t Size; 1033 switch (Checksum->Kind) { 1034 case DIFile::CSK_MD5: 1035 Size = 32; 1036 break; 1037 case DIFile::CSK_SHA1: 1038 Size = 40; 1039 break; 1040 } 1041 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1042 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1043 "invalid checksum", &N); 1044 } 1045 } 1046 1047 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1048 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1049 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1050 1051 // Don't bother verifying the compilation directory or producer string 1052 // as those could be empty. 1053 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1054 N.getRawFile()); 1055 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1056 N.getFile()); 1057 1058 verifySourceDebugInfo(N, *N.getFile()); 1059 1060 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1061 "invalid emission kind", &N); 1062 1063 if (auto *Array = N.getRawEnumTypes()) { 1064 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1065 for (Metadata *Op : N.getEnumTypes()->operands()) { 1066 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1067 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1068 "invalid enum type", &N, N.getEnumTypes(), Op); 1069 } 1070 } 1071 if (auto *Array = N.getRawRetainedTypes()) { 1072 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1073 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1074 AssertDI(Op && (isa<DIType>(Op) || 1075 (isa<DISubprogram>(Op) && 1076 !cast<DISubprogram>(Op)->isDefinition())), 1077 "invalid retained type", &N, Op); 1078 } 1079 } 1080 if (auto *Array = N.getRawGlobalVariables()) { 1081 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1082 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1083 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1084 "invalid global variable ref", &N, Op); 1085 } 1086 } 1087 if (auto *Array = N.getRawImportedEntities()) { 1088 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1089 for (Metadata *Op : N.getImportedEntities()->operands()) { 1090 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1091 &N, Op); 1092 } 1093 } 1094 if (auto *Array = N.getRawMacros()) { 1095 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1096 for (Metadata *Op : N.getMacros()->operands()) { 1097 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1098 } 1099 } 1100 CUVisited.insert(&N); 1101 } 1102 1103 void Verifier::visitDISubprogram(const DISubprogram &N) { 1104 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1105 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1106 if (auto *F = N.getRawFile()) 1107 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1108 else 1109 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1110 if (auto *T = N.getRawType()) 1111 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1112 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1113 N.getRawContainingType()); 1114 if (auto *Params = N.getRawTemplateParams()) 1115 visitTemplateParams(N, *Params); 1116 if (auto *S = N.getRawDeclaration()) 1117 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1118 "invalid subprogram declaration", &N, S); 1119 if (auto *RawNode = N.getRawRetainedNodes()) { 1120 auto *Node = dyn_cast<MDTuple>(RawNode); 1121 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1122 for (Metadata *Op : Node->operands()) { 1123 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1124 "invalid retained nodes, expected DILocalVariable or DILabel", 1125 &N, Node, Op); 1126 } 1127 } 1128 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1129 "invalid reference flags", &N); 1130 1131 auto *Unit = N.getRawUnit(); 1132 if (N.isDefinition()) { 1133 // Subprogram definitions (not part of the type hierarchy). 1134 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1135 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1136 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1137 if (N.getFile()) 1138 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1139 } else { 1140 // Subprogram declarations (part of the type hierarchy). 1141 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1142 } 1143 1144 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1145 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1146 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1147 for (Metadata *Op : ThrownTypes->operands()) 1148 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1149 Op); 1150 } 1151 1152 if (N.areAllCallsDescribed()) 1153 AssertDI(N.isDefinition(), 1154 "DIFlagAllCallsDescribed must be attached to a definition"); 1155 } 1156 1157 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1158 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1159 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1160 "invalid local scope", &N, N.getRawScope()); 1161 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1162 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1163 } 1164 1165 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1166 visitDILexicalBlockBase(N); 1167 1168 AssertDI(N.getLine() || !N.getColumn(), 1169 "cannot have column info without line info", &N); 1170 } 1171 1172 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1173 visitDILexicalBlockBase(N); 1174 } 1175 1176 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1177 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1178 if (auto *S = N.getRawScope()) 1179 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1180 if (auto *S = N.getRawDecl()) 1181 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1182 } 1183 1184 void Verifier::visitDINamespace(const DINamespace &N) { 1185 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1186 if (auto *S = N.getRawScope()) 1187 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1188 } 1189 1190 void Verifier::visitDIMacro(const DIMacro &N) { 1191 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1192 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1193 "invalid macinfo type", &N); 1194 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1195 if (!N.getValue().empty()) { 1196 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1197 } 1198 } 1199 1200 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1201 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1202 "invalid macinfo type", &N); 1203 if (auto *F = N.getRawFile()) 1204 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1205 1206 if (auto *Array = N.getRawElements()) { 1207 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1208 for (Metadata *Op : N.getElements()->operands()) { 1209 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1210 } 1211 } 1212 } 1213 1214 void Verifier::visitDIModule(const DIModule &N) { 1215 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1216 AssertDI(!N.getName().empty(), "anonymous module", &N); 1217 } 1218 1219 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1220 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1221 } 1222 1223 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1224 visitDITemplateParameter(N); 1225 1226 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1227 &N); 1228 } 1229 1230 void Verifier::visitDITemplateValueParameter( 1231 const DITemplateValueParameter &N) { 1232 visitDITemplateParameter(N); 1233 1234 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1235 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1236 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1237 "invalid tag", &N); 1238 } 1239 1240 void Verifier::visitDIVariable(const DIVariable &N) { 1241 if (auto *S = N.getRawScope()) 1242 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1243 if (auto *F = N.getRawFile()) 1244 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1245 } 1246 1247 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1248 // Checks common to all variables. 1249 visitDIVariable(N); 1250 1251 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1252 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1253 AssertDI(N.getType(), "missing global variable type", &N); 1254 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1255 AssertDI(isa<DIDerivedType>(Member), 1256 "invalid static data member declaration", &N, Member); 1257 } 1258 } 1259 1260 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1261 // Checks common to all variables. 1262 visitDIVariable(N); 1263 1264 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1265 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1266 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1267 "local variable requires a valid scope", &N, N.getRawScope()); 1268 if (auto Ty = N.getType()) 1269 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1270 } 1271 1272 void Verifier::visitDILabel(const DILabel &N) { 1273 if (auto *S = N.getRawScope()) 1274 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1275 if (auto *F = N.getRawFile()) 1276 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1277 1278 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1279 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1280 "label requires a valid scope", &N, N.getRawScope()); 1281 } 1282 1283 void Verifier::visitDIExpression(const DIExpression &N) { 1284 AssertDI(N.isValid(), "invalid expression", &N); 1285 } 1286 1287 void Verifier::visitDIGlobalVariableExpression( 1288 const DIGlobalVariableExpression &GVE) { 1289 AssertDI(GVE.getVariable(), "missing variable"); 1290 if (auto *Var = GVE.getVariable()) 1291 visitDIGlobalVariable(*Var); 1292 if (auto *Expr = GVE.getExpression()) { 1293 visitDIExpression(*Expr); 1294 if (auto Fragment = Expr->getFragmentInfo()) 1295 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1296 } 1297 } 1298 1299 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1300 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1301 if (auto *T = N.getRawType()) 1302 AssertDI(isType(T), "invalid type ref", &N, T); 1303 if (auto *F = N.getRawFile()) 1304 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1305 } 1306 1307 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1308 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1309 N.getTag() == dwarf::DW_TAG_imported_declaration, 1310 "invalid tag", &N); 1311 if (auto *S = N.getRawScope()) 1312 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1313 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1314 N.getRawEntity()); 1315 } 1316 1317 void Verifier::visitComdat(const Comdat &C) { 1318 // In COFF the Module is invalid if the GlobalValue has private linkage. 1319 // Entities with private linkage don't have entries in the symbol table. 1320 if (TT.isOSBinFormatCOFF()) 1321 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1322 Assert(!GV->hasPrivateLinkage(), 1323 "comdat global value has private linkage", GV); 1324 } 1325 1326 void Verifier::visitModuleIdents(const Module &M) { 1327 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1328 if (!Idents) 1329 return; 1330 1331 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1332 // Scan each llvm.ident entry and make sure that this requirement is met. 1333 for (const MDNode *N : Idents->operands()) { 1334 Assert(N->getNumOperands() == 1, 1335 "incorrect number of operands in llvm.ident metadata", N); 1336 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1337 ("invalid value for llvm.ident metadata entry operand" 1338 "(the operand should be a string)"), 1339 N->getOperand(0)); 1340 } 1341 } 1342 1343 void Verifier::visitModuleCommandLines(const Module &M) { 1344 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1345 if (!CommandLines) 1346 return; 1347 1348 // llvm.commandline takes a list of metadata entry. Each entry has only one 1349 // string. Scan each llvm.commandline entry and make sure that this 1350 // requirement is met. 1351 for (const MDNode *N : CommandLines->operands()) { 1352 Assert(N->getNumOperands() == 1, 1353 "incorrect number of operands in llvm.commandline metadata", N); 1354 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1355 ("invalid value for llvm.commandline metadata entry operand" 1356 "(the operand should be a string)"), 1357 N->getOperand(0)); 1358 } 1359 } 1360 1361 void Verifier::visitModuleFlags(const Module &M) { 1362 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1363 if (!Flags) return; 1364 1365 // Scan each flag, and track the flags and requirements. 1366 DenseMap<const MDString*, const MDNode*> SeenIDs; 1367 SmallVector<const MDNode*, 16> Requirements; 1368 for (const MDNode *MDN : Flags->operands()) 1369 visitModuleFlag(MDN, SeenIDs, Requirements); 1370 1371 // Validate that the requirements in the module are valid. 1372 for (const MDNode *Requirement : Requirements) { 1373 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1374 const Metadata *ReqValue = Requirement->getOperand(1); 1375 1376 const MDNode *Op = SeenIDs.lookup(Flag); 1377 if (!Op) { 1378 CheckFailed("invalid requirement on flag, flag is not present in module", 1379 Flag); 1380 continue; 1381 } 1382 1383 if (Op->getOperand(2) != ReqValue) { 1384 CheckFailed(("invalid requirement on flag, " 1385 "flag does not have the required value"), 1386 Flag); 1387 continue; 1388 } 1389 } 1390 } 1391 1392 void 1393 Verifier::visitModuleFlag(const MDNode *Op, 1394 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1395 SmallVectorImpl<const MDNode *> &Requirements) { 1396 // Each module flag should have three arguments, the merge behavior (a 1397 // constant int), the flag ID (an MDString), and the value. 1398 Assert(Op->getNumOperands() == 3, 1399 "incorrect number of operands in module flag", Op); 1400 Module::ModFlagBehavior MFB; 1401 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1402 Assert( 1403 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1404 "invalid behavior operand in module flag (expected constant integer)", 1405 Op->getOperand(0)); 1406 Assert(false, 1407 "invalid behavior operand in module flag (unexpected constant)", 1408 Op->getOperand(0)); 1409 } 1410 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1411 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1412 Op->getOperand(1)); 1413 1414 // Sanity check the values for behaviors with additional requirements. 1415 switch (MFB) { 1416 case Module::Error: 1417 case Module::Warning: 1418 case Module::Override: 1419 // These behavior types accept any value. 1420 break; 1421 1422 case Module::Max: { 1423 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1424 "invalid value for 'max' module flag (expected constant integer)", 1425 Op->getOperand(2)); 1426 break; 1427 } 1428 1429 case Module::Require: { 1430 // The value should itself be an MDNode with two operands, a flag ID (an 1431 // MDString), and a value. 1432 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1433 Assert(Value && Value->getNumOperands() == 2, 1434 "invalid value for 'require' module flag (expected metadata pair)", 1435 Op->getOperand(2)); 1436 Assert(isa<MDString>(Value->getOperand(0)), 1437 ("invalid value for 'require' module flag " 1438 "(first value operand should be a string)"), 1439 Value->getOperand(0)); 1440 1441 // Append it to the list of requirements, to check once all module flags are 1442 // scanned. 1443 Requirements.push_back(Value); 1444 break; 1445 } 1446 1447 case Module::Append: 1448 case Module::AppendUnique: { 1449 // These behavior types require the operand be an MDNode. 1450 Assert(isa<MDNode>(Op->getOperand(2)), 1451 "invalid value for 'append'-type module flag " 1452 "(expected a metadata node)", 1453 Op->getOperand(2)); 1454 break; 1455 } 1456 } 1457 1458 // Unless this is a "requires" flag, check the ID is unique. 1459 if (MFB != Module::Require) { 1460 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1461 Assert(Inserted, 1462 "module flag identifiers must be unique (or of 'require' type)", ID); 1463 } 1464 1465 if (ID->getString() == "wchar_size") { 1466 ConstantInt *Value 1467 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1468 Assert(Value, "wchar_size metadata requires constant integer argument"); 1469 } 1470 1471 if (ID->getString() == "Linker Options") { 1472 // If the llvm.linker.options named metadata exists, we assume that the 1473 // bitcode reader has upgraded the module flag. Otherwise the flag might 1474 // have been created by a client directly. 1475 Assert(M.getNamedMetadata("llvm.linker.options"), 1476 "'Linker Options' named metadata no longer supported"); 1477 } 1478 1479 if (ID->getString() == "CG Profile") { 1480 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1481 visitModuleFlagCGProfileEntry(MDO); 1482 } 1483 } 1484 1485 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1486 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1487 if (!FuncMDO) 1488 return; 1489 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1490 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1491 FuncMDO); 1492 }; 1493 auto Node = dyn_cast_or_null<MDNode>(MDO); 1494 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1495 CheckFunction(Node->getOperand(0)); 1496 CheckFunction(Node->getOperand(1)); 1497 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1498 Assert(Count && Count->getType()->isIntegerTy(), 1499 "expected an integer constant", Node->getOperand(2)); 1500 } 1501 1502 /// Return true if this attribute kind only applies to functions. 1503 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1504 switch (Kind) { 1505 case Attribute::NoReturn: 1506 case Attribute::NoSync: 1507 case Attribute::WillReturn: 1508 case Attribute::NoCfCheck: 1509 case Attribute::NoUnwind: 1510 case Attribute::NoInline: 1511 case Attribute::AlwaysInline: 1512 case Attribute::OptimizeForSize: 1513 case Attribute::StackProtect: 1514 case Attribute::StackProtectReq: 1515 case Attribute::StackProtectStrong: 1516 case Attribute::SafeStack: 1517 case Attribute::ShadowCallStack: 1518 case Attribute::NoRedZone: 1519 case Attribute::NoImplicitFloat: 1520 case Attribute::Naked: 1521 case Attribute::InlineHint: 1522 case Attribute::StackAlignment: 1523 case Attribute::UWTable: 1524 case Attribute::NonLazyBind: 1525 case Attribute::ReturnsTwice: 1526 case Attribute::SanitizeAddress: 1527 case Attribute::SanitizeHWAddress: 1528 case Attribute::SanitizeMemTag: 1529 case Attribute::SanitizeThread: 1530 case Attribute::SanitizeMemory: 1531 case Attribute::MinSize: 1532 case Attribute::NoDuplicate: 1533 case Attribute::Builtin: 1534 case Attribute::NoBuiltin: 1535 case Attribute::Cold: 1536 case Attribute::OptForFuzzing: 1537 case Attribute::OptimizeNone: 1538 case Attribute::JumpTable: 1539 case Attribute::Convergent: 1540 case Attribute::ArgMemOnly: 1541 case Attribute::NoRecurse: 1542 case Attribute::InaccessibleMemOnly: 1543 case Attribute::InaccessibleMemOrArgMemOnly: 1544 case Attribute::AllocSize: 1545 case Attribute::SpeculativeLoadHardening: 1546 case Attribute::Speculatable: 1547 case Attribute::StrictFP: 1548 return true; 1549 default: 1550 break; 1551 } 1552 return false; 1553 } 1554 1555 /// Return true if this is a function attribute that can also appear on 1556 /// arguments. 1557 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1558 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1559 Kind == Attribute::ReadNone || Kind == Attribute::NoFree; 1560 } 1561 1562 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1563 const Value *V) { 1564 for (Attribute A : Attrs) { 1565 if (A.isStringAttribute()) 1566 continue; 1567 1568 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1569 if (!IsFunction) { 1570 CheckFailed("Attribute '" + A.getAsString() + 1571 "' only applies to functions!", 1572 V); 1573 return; 1574 } 1575 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1576 CheckFailed("Attribute '" + A.getAsString() + 1577 "' does not apply to functions!", 1578 V); 1579 return; 1580 } 1581 } 1582 } 1583 1584 // VerifyParameterAttrs - Check the given attributes for an argument or return 1585 // value of the specified type. The value V is printed in error messages. 1586 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1587 const Value *V) { 1588 if (!Attrs.hasAttributes()) 1589 return; 1590 1591 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1592 1593 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1594 Assert(Attrs.getNumAttributes() == 1, 1595 "Attribute 'immarg' is incompatible with other attributes", V); 1596 } 1597 1598 // Check for mutually incompatible attributes. Only inreg is compatible with 1599 // sret. 1600 unsigned AttrCount = 0; 1601 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1602 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1603 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1604 Attrs.hasAttribute(Attribute::InReg); 1605 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1606 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1607 "and 'sret' are incompatible!", 1608 V); 1609 1610 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1611 Attrs.hasAttribute(Attribute::ReadOnly)), 1612 "Attributes " 1613 "'inalloca and readonly' are incompatible!", 1614 V); 1615 1616 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1617 Attrs.hasAttribute(Attribute::Returned)), 1618 "Attributes " 1619 "'sret and returned' are incompatible!", 1620 V); 1621 1622 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1623 Attrs.hasAttribute(Attribute::SExt)), 1624 "Attributes " 1625 "'zeroext and signext' are incompatible!", 1626 V); 1627 1628 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1629 Attrs.hasAttribute(Attribute::ReadOnly)), 1630 "Attributes " 1631 "'readnone and readonly' are incompatible!", 1632 V); 1633 1634 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1635 Attrs.hasAttribute(Attribute::WriteOnly)), 1636 "Attributes " 1637 "'readnone and writeonly' are incompatible!", 1638 V); 1639 1640 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1641 Attrs.hasAttribute(Attribute::WriteOnly)), 1642 "Attributes " 1643 "'readonly and writeonly' are incompatible!", 1644 V); 1645 1646 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1647 Attrs.hasAttribute(Attribute::AlwaysInline)), 1648 "Attributes " 1649 "'noinline and alwaysinline' are incompatible!", 1650 V); 1651 1652 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1653 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1654 "Attribute 'byval' type does not match parameter!", V); 1655 } 1656 1657 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1658 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1659 "Wrong types for attribute: " + 1660 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1661 V); 1662 1663 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1664 SmallPtrSet<Type*, 4> Visited; 1665 if (!PTy->getElementType()->isSized(&Visited)) { 1666 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1667 !Attrs.hasAttribute(Attribute::InAlloca), 1668 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1669 V); 1670 } 1671 if (!isa<PointerType>(PTy->getElementType())) 1672 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1673 "Attribute 'swifterror' only applies to parameters " 1674 "with pointer to pointer type!", 1675 V); 1676 } else { 1677 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1678 "Attribute 'byval' only applies to parameters with pointer type!", 1679 V); 1680 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1681 "Attribute 'swifterror' only applies to parameters " 1682 "with pointer type!", 1683 V); 1684 } 1685 } 1686 1687 // Check parameter attributes against a function type. 1688 // The value V is printed in error messages. 1689 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1690 const Value *V, bool IsIntrinsic) { 1691 if (Attrs.isEmpty()) 1692 return; 1693 1694 bool SawNest = false; 1695 bool SawReturned = false; 1696 bool SawSRet = false; 1697 bool SawSwiftSelf = false; 1698 bool SawSwiftError = false; 1699 1700 // Verify return value attributes. 1701 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1702 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1703 !RetAttrs.hasAttribute(Attribute::Nest) && 1704 !RetAttrs.hasAttribute(Attribute::StructRet) && 1705 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1706 !RetAttrs.hasAttribute(Attribute::NoFree) && 1707 !RetAttrs.hasAttribute(Attribute::Returned) && 1708 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1709 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1710 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1711 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'" 1712 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1713 "values!", 1714 V); 1715 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1716 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1717 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1718 "Attribute '" + RetAttrs.getAsString() + 1719 "' does not apply to function returns", 1720 V); 1721 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1722 1723 // Verify parameter attributes. 1724 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1725 Type *Ty = FT->getParamType(i); 1726 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1727 1728 if (!IsIntrinsic) { 1729 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1730 "immarg attribute only applies to intrinsics",V); 1731 } 1732 1733 verifyParameterAttrs(ArgAttrs, Ty, V); 1734 1735 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1736 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1737 SawNest = true; 1738 } 1739 1740 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1741 Assert(!SawReturned, "More than one parameter has attribute returned!", 1742 V); 1743 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1744 "Incompatible argument and return types for 'returned' attribute", 1745 V); 1746 SawReturned = true; 1747 } 1748 1749 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1750 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1751 Assert(i == 0 || i == 1, 1752 "Attribute 'sret' is not on first or second parameter!", V); 1753 SawSRet = true; 1754 } 1755 1756 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1757 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1758 SawSwiftSelf = true; 1759 } 1760 1761 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1762 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1763 V); 1764 SawSwiftError = true; 1765 } 1766 1767 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1768 Assert(i == FT->getNumParams() - 1, 1769 "inalloca isn't on the last parameter!", V); 1770 } 1771 } 1772 1773 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1774 return; 1775 1776 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1777 1778 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1779 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1780 "Attributes 'readnone and readonly' are incompatible!", V); 1781 1782 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1783 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1784 "Attributes 'readnone and writeonly' are incompatible!", V); 1785 1786 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1787 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1788 "Attributes 'readonly and writeonly' are incompatible!", V); 1789 1790 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1791 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1792 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1793 "incompatible!", 1794 V); 1795 1796 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1797 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1798 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1799 1800 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1801 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1802 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1803 1804 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1805 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1806 "Attribute 'optnone' requires 'noinline'!", V); 1807 1808 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1809 "Attributes 'optsize and optnone' are incompatible!", V); 1810 1811 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1812 "Attributes 'minsize and optnone' are incompatible!", V); 1813 } 1814 1815 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1816 const GlobalValue *GV = cast<GlobalValue>(V); 1817 Assert(GV->hasGlobalUnnamedAddr(), 1818 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1819 } 1820 1821 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1822 std::pair<unsigned, Optional<unsigned>> Args = 1823 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1824 1825 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1826 if (ParamNo >= FT->getNumParams()) { 1827 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1828 return false; 1829 } 1830 1831 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1832 CheckFailed("'allocsize' " + Name + 1833 " argument must refer to an integer parameter", 1834 V); 1835 return false; 1836 } 1837 1838 return true; 1839 }; 1840 1841 if (!CheckParam("element size", Args.first)) 1842 return; 1843 1844 if (Args.second && !CheckParam("number of elements", *Args.second)) 1845 return; 1846 } 1847 1848 if (Attrs.hasFnAttribute("frame-pointer")) { 1849 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1850 "frame-pointer").getValueAsString(); 1851 if (FP != "all" && FP != "non-leaf" && FP != "none") 1852 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1853 } 1854 1855 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 1856 StringRef S = Attrs 1857 .getAttribute(AttributeList::FunctionIndex, 1858 "patchable-function-prefix") 1859 .getValueAsString(); 1860 unsigned N; 1861 if (S.getAsInteger(10, N)) 1862 CheckFailed( 1863 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 1864 } 1865 if (Attrs.hasFnAttribute("patchable-function-entry")) { 1866 StringRef S = Attrs 1867 .getAttribute(AttributeList::FunctionIndex, 1868 "patchable-function-entry") 1869 .getValueAsString(); 1870 unsigned N; 1871 if (S.getAsInteger(10, N)) 1872 CheckFailed( 1873 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 1874 } 1875 } 1876 1877 void Verifier::verifyFunctionMetadata( 1878 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1879 for (const auto &Pair : MDs) { 1880 if (Pair.first == LLVMContext::MD_prof) { 1881 MDNode *MD = Pair.second; 1882 Assert(MD->getNumOperands() >= 2, 1883 "!prof annotations should have no less than 2 operands", MD); 1884 1885 // Check first operand. 1886 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1887 MD); 1888 Assert(isa<MDString>(MD->getOperand(0)), 1889 "expected string with name of the !prof annotation", MD); 1890 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1891 StringRef ProfName = MDS->getString(); 1892 Assert(ProfName.equals("function_entry_count") || 1893 ProfName.equals("synthetic_function_entry_count"), 1894 "first operand should be 'function_entry_count'" 1895 " or 'synthetic_function_entry_count'", 1896 MD); 1897 1898 // Check second operand. 1899 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1900 MD); 1901 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1902 "expected integer argument to function_entry_count", MD); 1903 } 1904 } 1905 } 1906 1907 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1908 if (!ConstantExprVisited.insert(EntryC).second) 1909 return; 1910 1911 SmallVector<const Constant *, 16> Stack; 1912 Stack.push_back(EntryC); 1913 1914 while (!Stack.empty()) { 1915 const Constant *C = Stack.pop_back_val(); 1916 1917 // Check this constant expression. 1918 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1919 visitConstantExpr(CE); 1920 1921 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1922 // Global Values get visited separately, but we do need to make sure 1923 // that the global value is in the correct module 1924 Assert(GV->getParent() == &M, "Referencing global in another module!", 1925 EntryC, &M, GV, GV->getParent()); 1926 continue; 1927 } 1928 1929 // Visit all sub-expressions. 1930 for (const Use &U : C->operands()) { 1931 const auto *OpC = dyn_cast<Constant>(U); 1932 if (!OpC) 1933 continue; 1934 if (!ConstantExprVisited.insert(OpC).second) 1935 continue; 1936 Stack.push_back(OpC); 1937 } 1938 } 1939 } 1940 1941 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1942 if (CE->getOpcode() == Instruction::BitCast) 1943 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1944 CE->getType()), 1945 "Invalid bitcast", CE); 1946 1947 if (CE->getOpcode() == Instruction::IntToPtr || 1948 CE->getOpcode() == Instruction::PtrToInt) { 1949 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1950 ? CE->getType() 1951 : CE->getOperand(0)->getType(); 1952 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1953 ? "inttoptr not supported for non-integral pointers" 1954 : "ptrtoint not supported for non-integral pointers"; 1955 Assert( 1956 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1957 Msg); 1958 } 1959 } 1960 1961 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1962 // There shouldn't be more attribute sets than there are parameters plus the 1963 // function and return value. 1964 return Attrs.getNumAttrSets() <= Params + 2; 1965 } 1966 1967 /// Verify that statepoint intrinsic is well formed. 1968 void Verifier::verifyStatepoint(const CallBase &Call) { 1969 assert(Call.getCalledFunction() && 1970 Call.getCalledFunction()->getIntrinsicID() == 1971 Intrinsic::experimental_gc_statepoint); 1972 1973 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 1974 !Call.onlyAccessesArgMemory(), 1975 "gc.statepoint must read and write all memory to preserve " 1976 "reordering restrictions required by safepoint semantics", 1977 Call); 1978 1979 const int64_t NumPatchBytes = 1980 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 1981 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1982 Assert(NumPatchBytes >= 0, 1983 "gc.statepoint number of patchable bytes must be " 1984 "positive", 1985 Call); 1986 1987 const Value *Target = Call.getArgOperand(2); 1988 auto *PT = dyn_cast<PointerType>(Target->getType()); 1989 Assert(PT && PT->getElementType()->isFunctionTy(), 1990 "gc.statepoint callee must be of function pointer type", Call, Target); 1991 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1992 1993 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 1994 Assert(NumCallArgs >= 0, 1995 "gc.statepoint number of arguments to underlying call " 1996 "must be positive", 1997 Call); 1998 const int NumParams = (int)TargetFuncType->getNumParams(); 1999 if (TargetFuncType->isVarArg()) { 2000 Assert(NumCallArgs >= NumParams, 2001 "gc.statepoint mismatch in number of vararg call args", Call); 2002 2003 // TODO: Remove this limitation 2004 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2005 "gc.statepoint doesn't support wrapping non-void " 2006 "vararg functions yet", 2007 Call); 2008 } else 2009 Assert(NumCallArgs == NumParams, 2010 "gc.statepoint mismatch in number of call args", Call); 2011 2012 const uint64_t Flags 2013 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2014 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2015 "unknown flag used in gc.statepoint flags argument", Call); 2016 2017 // Verify that the types of the call parameter arguments match 2018 // the type of the wrapped callee. 2019 AttributeList Attrs = Call.getAttributes(); 2020 for (int i = 0; i < NumParams; i++) { 2021 Type *ParamType = TargetFuncType->getParamType(i); 2022 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2023 Assert(ArgType == ParamType, 2024 "gc.statepoint call argument does not match wrapped " 2025 "function type", 2026 Call); 2027 2028 if (TargetFuncType->isVarArg()) { 2029 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2030 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2031 "Attribute 'sret' cannot be used for vararg call arguments!", 2032 Call); 2033 } 2034 } 2035 2036 const int EndCallArgsInx = 4 + NumCallArgs; 2037 2038 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2039 Assert(isa<ConstantInt>(NumTransitionArgsV), 2040 "gc.statepoint number of transition arguments " 2041 "must be constant integer", 2042 Call); 2043 const int NumTransitionArgs = 2044 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2045 Assert(NumTransitionArgs >= 0, 2046 "gc.statepoint number of transition arguments must be positive", Call); 2047 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2048 2049 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2050 Assert(isa<ConstantInt>(NumDeoptArgsV), 2051 "gc.statepoint number of deoptimization arguments " 2052 "must be constant integer", 2053 Call); 2054 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2055 Assert(NumDeoptArgs >= 0, 2056 "gc.statepoint number of deoptimization arguments " 2057 "must be positive", 2058 Call); 2059 2060 const int ExpectedNumArgs = 2061 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2062 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2063 "gc.statepoint too few arguments according to length fields", Call); 2064 2065 // Check that the only uses of this gc.statepoint are gc.result or 2066 // gc.relocate calls which are tied to this statepoint and thus part 2067 // of the same statepoint sequence 2068 for (const User *U : Call.users()) { 2069 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2070 Assert(UserCall, "illegal use of statepoint token", Call, U); 2071 if (!UserCall) 2072 continue; 2073 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2074 "gc.result or gc.relocate are the only value uses " 2075 "of a gc.statepoint", 2076 Call, U); 2077 if (isa<GCResultInst>(UserCall)) { 2078 Assert(UserCall->getArgOperand(0) == &Call, 2079 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2080 } else if (isa<GCRelocateInst>(Call)) { 2081 Assert(UserCall->getArgOperand(0) == &Call, 2082 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2083 } 2084 } 2085 2086 // Note: It is legal for a single derived pointer to be listed multiple 2087 // times. It's non-optimal, but it is legal. It can also happen after 2088 // insertion if we strip a bitcast away. 2089 // Note: It is really tempting to check that each base is relocated and 2090 // that a derived pointer is never reused as a base pointer. This turns 2091 // out to be problematic since optimizations run after safepoint insertion 2092 // can recognize equality properties that the insertion logic doesn't know 2093 // about. See example statepoint.ll in the verifier subdirectory 2094 } 2095 2096 void Verifier::verifyFrameRecoverIndices() { 2097 for (auto &Counts : FrameEscapeInfo) { 2098 Function *F = Counts.first; 2099 unsigned EscapedObjectCount = Counts.second.first; 2100 unsigned MaxRecoveredIndex = Counts.second.second; 2101 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2102 "all indices passed to llvm.localrecover must be less than the " 2103 "number of arguments passed to llvm.localescape in the parent " 2104 "function", 2105 F); 2106 } 2107 } 2108 2109 static Instruction *getSuccPad(Instruction *Terminator) { 2110 BasicBlock *UnwindDest; 2111 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2112 UnwindDest = II->getUnwindDest(); 2113 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2114 UnwindDest = CSI->getUnwindDest(); 2115 else 2116 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2117 return UnwindDest->getFirstNonPHI(); 2118 } 2119 2120 void Verifier::verifySiblingFuncletUnwinds() { 2121 SmallPtrSet<Instruction *, 8> Visited; 2122 SmallPtrSet<Instruction *, 8> Active; 2123 for (const auto &Pair : SiblingFuncletInfo) { 2124 Instruction *PredPad = Pair.first; 2125 if (Visited.count(PredPad)) 2126 continue; 2127 Active.insert(PredPad); 2128 Instruction *Terminator = Pair.second; 2129 do { 2130 Instruction *SuccPad = getSuccPad(Terminator); 2131 if (Active.count(SuccPad)) { 2132 // Found a cycle; report error 2133 Instruction *CyclePad = SuccPad; 2134 SmallVector<Instruction *, 8> CycleNodes; 2135 do { 2136 CycleNodes.push_back(CyclePad); 2137 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2138 if (CycleTerminator != CyclePad) 2139 CycleNodes.push_back(CycleTerminator); 2140 CyclePad = getSuccPad(CycleTerminator); 2141 } while (CyclePad != SuccPad); 2142 Assert(false, "EH pads can't handle each other's exceptions", 2143 ArrayRef<Instruction *>(CycleNodes)); 2144 } 2145 // Don't re-walk a node we've already checked 2146 if (!Visited.insert(SuccPad).second) 2147 break; 2148 // Walk to this successor if it has a map entry. 2149 PredPad = SuccPad; 2150 auto TermI = SiblingFuncletInfo.find(PredPad); 2151 if (TermI == SiblingFuncletInfo.end()) 2152 break; 2153 Terminator = TermI->second; 2154 Active.insert(PredPad); 2155 } while (true); 2156 // Each node only has one successor, so we've walked all the active 2157 // nodes' successors. 2158 Active.clear(); 2159 } 2160 } 2161 2162 // visitFunction - Verify that a function is ok. 2163 // 2164 void Verifier::visitFunction(const Function &F) { 2165 visitGlobalValue(F); 2166 2167 // Check function arguments. 2168 FunctionType *FT = F.getFunctionType(); 2169 unsigned NumArgs = F.arg_size(); 2170 2171 Assert(&Context == &F.getContext(), 2172 "Function context does not match Module context!", &F); 2173 2174 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2175 Assert(FT->getNumParams() == NumArgs, 2176 "# formal arguments must match # of arguments for function type!", &F, 2177 FT); 2178 Assert(F.getReturnType()->isFirstClassType() || 2179 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2180 "Functions cannot return aggregate values!", &F); 2181 2182 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2183 "Invalid struct return type!", &F); 2184 2185 AttributeList Attrs = F.getAttributes(); 2186 2187 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2188 "Attribute after last parameter!", &F); 2189 2190 bool isLLVMdotName = F.getName().size() >= 5 && 2191 F.getName().substr(0, 5) == "llvm."; 2192 2193 // Check function attributes. 2194 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2195 2196 // On function declarations/definitions, we do not support the builtin 2197 // attribute. We do not check this in VerifyFunctionAttrs since that is 2198 // checking for Attributes that can/can not ever be on functions. 2199 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2200 "Attribute 'builtin' can only be applied to a callsite.", &F); 2201 2202 // Check that this function meets the restrictions on this calling convention. 2203 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2204 // restrictions can be lifted. 2205 switch (F.getCallingConv()) { 2206 default: 2207 case CallingConv::C: 2208 break; 2209 case CallingConv::AMDGPU_KERNEL: 2210 case CallingConv::SPIR_KERNEL: 2211 Assert(F.getReturnType()->isVoidTy(), 2212 "Calling convention requires void return type", &F); 2213 LLVM_FALLTHROUGH; 2214 case CallingConv::AMDGPU_VS: 2215 case CallingConv::AMDGPU_HS: 2216 case CallingConv::AMDGPU_GS: 2217 case CallingConv::AMDGPU_PS: 2218 case CallingConv::AMDGPU_CS: 2219 Assert(!F.hasStructRetAttr(), 2220 "Calling convention does not allow sret", &F); 2221 LLVM_FALLTHROUGH; 2222 case CallingConv::Fast: 2223 case CallingConv::Cold: 2224 case CallingConv::Intel_OCL_BI: 2225 case CallingConv::PTX_Kernel: 2226 case CallingConv::PTX_Device: 2227 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2228 "perfect forwarding!", 2229 &F); 2230 break; 2231 } 2232 2233 // Check that the argument values match the function type for this function... 2234 unsigned i = 0; 2235 for (const Argument &Arg : F.args()) { 2236 Assert(Arg.getType() == FT->getParamType(i), 2237 "Argument value does not match function argument type!", &Arg, 2238 FT->getParamType(i)); 2239 Assert(Arg.getType()->isFirstClassType(), 2240 "Function arguments must have first-class types!", &Arg); 2241 if (!isLLVMdotName) { 2242 Assert(!Arg.getType()->isMetadataTy(), 2243 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2244 Assert(!Arg.getType()->isTokenTy(), 2245 "Function takes token but isn't an intrinsic", &Arg, &F); 2246 } 2247 2248 // Check that swifterror argument is only used by loads and stores. 2249 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2250 verifySwiftErrorValue(&Arg); 2251 } 2252 ++i; 2253 } 2254 2255 if (!isLLVMdotName) 2256 Assert(!F.getReturnType()->isTokenTy(), 2257 "Functions returns a token but isn't an intrinsic", &F); 2258 2259 // Get the function metadata attachments. 2260 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2261 F.getAllMetadata(MDs); 2262 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2263 verifyFunctionMetadata(MDs); 2264 2265 // Check validity of the personality function 2266 if (F.hasPersonalityFn()) { 2267 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2268 if (Per) 2269 Assert(Per->getParent() == F.getParent(), 2270 "Referencing personality function in another module!", 2271 &F, F.getParent(), Per, Per->getParent()); 2272 } 2273 2274 if (F.isMaterializable()) { 2275 // Function has a body somewhere we can't see. 2276 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2277 MDs.empty() ? nullptr : MDs.front().second); 2278 } else if (F.isDeclaration()) { 2279 for (const auto &I : MDs) { 2280 // This is used for call site debug information. 2281 AssertDI(I.first != LLVMContext::MD_dbg || 2282 !cast<DISubprogram>(I.second)->isDistinct(), 2283 "function declaration may only have a unique !dbg attachment", 2284 &F); 2285 Assert(I.first != LLVMContext::MD_prof, 2286 "function declaration may not have a !prof attachment", &F); 2287 2288 // Verify the metadata itself. 2289 visitMDNode(*I.second); 2290 } 2291 Assert(!F.hasPersonalityFn(), 2292 "Function declaration shouldn't have a personality routine", &F); 2293 } else { 2294 // Verify that this function (which has a body) is not named "llvm.*". It 2295 // is not legal to define intrinsics. 2296 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2297 2298 // Check the entry node 2299 const BasicBlock *Entry = &F.getEntryBlock(); 2300 Assert(pred_empty(Entry), 2301 "Entry block to function must not have predecessors!", Entry); 2302 2303 // The address of the entry block cannot be taken, unless it is dead. 2304 if (Entry->hasAddressTaken()) { 2305 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2306 "blockaddress may not be used with the entry block!", Entry); 2307 } 2308 2309 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2310 // Visit metadata attachments. 2311 for (const auto &I : MDs) { 2312 // Verify that the attachment is legal. 2313 switch (I.first) { 2314 default: 2315 break; 2316 case LLVMContext::MD_dbg: { 2317 ++NumDebugAttachments; 2318 AssertDI(NumDebugAttachments == 1, 2319 "function must have a single !dbg attachment", &F, I.second); 2320 AssertDI(isa<DISubprogram>(I.second), 2321 "function !dbg attachment must be a subprogram", &F, I.second); 2322 auto *SP = cast<DISubprogram>(I.second); 2323 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2324 AssertDI(!AttachedTo || AttachedTo == &F, 2325 "DISubprogram attached to more than one function", SP, &F); 2326 AttachedTo = &F; 2327 break; 2328 } 2329 case LLVMContext::MD_prof: 2330 ++NumProfAttachments; 2331 Assert(NumProfAttachments == 1, 2332 "function must have a single !prof attachment", &F, I.second); 2333 break; 2334 } 2335 2336 // Verify the metadata itself. 2337 visitMDNode(*I.second); 2338 } 2339 } 2340 2341 // If this function is actually an intrinsic, verify that it is only used in 2342 // direct call/invokes, never having its "address taken". 2343 // Only do this if the module is materialized, otherwise we don't have all the 2344 // uses. 2345 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2346 const User *U; 2347 if (F.hasAddressTaken(&U)) 2348 Assert(false, "Invalid user of intrinsic instruction!", U); 2349 } 2350 2351 auto *N = F.getSubprogram(); 2352 HasDebugInfo = (N != nullptr); 2353 if (!HasDebugInfo) 2354 return; 2355 2356 // Check that all !dbg attachments lead to back to N (or, at least, another 2357 // subprogram that describes the same function). 2358 // 2359 // FIXME: Check this incrementally while visiting !dbg attachments. 2360 // FIXME: Only check when N is the canonical subprogram for F. 2361 SmallPtrSet<const MDNode *, 32> Seen; 2362 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2363 // Be careful about using DILocation here since we might be dealing with 2364 // broken code (this is the Verifier after all). 2365 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2366 if (!DL) 2367 return; 2368 if (!Seen.insert(DL).second) 2369 return; 2370 2371 Metadata *Parent = DL->getRawScope(); 2372 AssertDI(Parent && isa<DILocalScope>(Parent), 2373 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2374 Parent); 2375 DILocalScope *Scope = DL->getInlinedAtScope(); 2376 if (Scope && !Seen.insert(Scope).second) 2377 return; 2378 2379 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2380 2381 // Scope and SP could be the same MDNode and we don't want to skip 2382 // validation in that case 2383 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2384 return; 2385 2386 // FIXME: Once N is canonical, check "SP == &N". 2387 AssertDI(SP->describes(&F), 2388 "!dbg attachment points at wrong subprogram for function", N, &F, 2389 &I, DL, Scope, SP); 2390 }; 2391 for (auto &BB : F) 2392 for (auto &I : BB) { 2393 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2394 // The llvm.loop annotations also contain two DILocations. 2395 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2396 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2397 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2398 if (BrokenDebugInfo) 2399 return; 2400 } 2401 } 2402 2403 // verifyBasicBlock - Verify that a basic block is well formed... 2404 // 2405 void Verifier::visitBasicBlock(BasicBlock &BB) { 2406 InstsInThisBlock.clear(); 2407 2408 // Ensure that basic blocks have terminators! 2409 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2410 2411 // Check constraints that this basic block imposes on all of the PHI nodes in 2412 // it. 2413 if (isa<PHINode>(BB.front())) { 2414 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2415 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2416 llvm::sort(Preds); 2417 for (const PHINode &PN : BB.phis()) { 2418 // Ensure that PHI nodes have at least one entry! 2419 Assert(PN.getNumIncomingValues() != 0, 2420 "PHI nodes must have at least one entry. If the block is dead, " 2421 "the PHI should be removed!", 2422 &PN); 2423 Assert(PN.getNumIncomingValues() == Preds.size(), 2424 "PHINode should have one entry for each predecessor of its " 2425 "parent basic block!", 2426 &PN); 2427 2428 // Get and sort all incoming values in the PHI node... 2429 Values.clear(); 2430 Values.reserve(PN.getNumIncomingValues()); 2431 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2432 Values.push_back( 2433 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2434 llvm::sort(Values); 2435 2436 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2437 // Check to make sure that if there is more than one entry for a 2438 // particular basic block in this PHI node, that the incoming values are 2439 // all identical. 2440 // 2441 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2442 Values[i].second == Values[i - 1].second, 2443 "PHI node has multiple entries for the same basic block with " 2444 "different incoming values!", 2445 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2446 2447 // Check to make sure that the predecessors and PHI node entries are 2448 // matched up. 2449 Assert(Values[i].first == Preds[i], 2450 "PHI node entries do not match predecessors!", &PN, 2451 Values[i].first, Preds[i]); 2452 } 2453 } 2454 } 2455 2456 // Check that all instructions have their parent pointers set up correctly. 2457 for (auto &I : BB) 2458 { 2459 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2460 } 2461 } 2462 2463 void Verifier::visitTerminator(Instruction &I) { 2464 // Ensure that terminators only exist at the end of the basic block. 2465 Assert(&I == I.getParent()->getTerminator(), 2466 "Terminator found in the middle of a basic block!", I.getParent()); 2467 visitInstruction(I); 2468 } 2469 2470 void Verifier::visitBranchInst(BranchInst &BI) { 2471 if (BI.isConditional()) { 2472 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2473 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2474 } 2475 visitTerminator(BI); 2476 } 2477 2478 void Verifier::visitReturnInst(ReturnInst &RI) { 2479 Function *F = RI.getParent()->getParent(); 2480 unsigned N = RI.getNumOperands(); 2481 if (F->getReturnType()->isVoidTy()) 2482 Assert(N == 0, 2483 "Found return instr that returns non-void in Function of void " 2484 "return type!", 2485 &RI, F->getReturnType()); 2486 else 2487 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2488 "Function return type does not match operand " 2489 "type of return inst!", 2490 &RI, F->getReturnType()); 2491 2492 // Check to make sure that the return value has necessary properties for 2493 // terminators... 2494 visitTerminator(RI); 2495 } 2496 2497 void Verifier::visitSwitchInst(SwitchInst &SI) { 2498 // Check to make sure that all of the constants in the switch instruction 2499 // have the same type as the switched-on value. 2500 Type *SwitchTy = SI.getCondition()->getType(); 2501 SmallPtrSet<ConstantInt*, 32> Constants; 2502 for (auto &Case : SI.cases()) { 2503 Assert(Case.getCaseValue()->getType() == SwitchTy, 2504 "Switch constants must all be same type as switch value!", &SI); 2505 Assert(Constants.insert(Case.getCaseValue()).second, 2506 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2507 } 2508 2509 visitTerminator(SI); 2510 } 2511 2512 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2513 Assert(BI.getAddress()->getType()->isPointerTy(), 2514 "Indirectbr operand must have pointer type!", &BI); 2515 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2516 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2517 "Indirectbr destinations must all have pointer type!", &BI); 2518 2519 visitTerminator(BI); 2520 } 2521 2522 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2523 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2524 &CBI); 2525 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", 2526 &CBI); 2527 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2528 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2529 "Callbr successors must all have pointer type!", &CBI); 2530 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2531 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2532 "Using an unescaped label as a callbr argument!", &CBI); 2533 if (isa<BasicBlock>(CBI.getOperand(i))) 2534 for (unsigned j = i + 1; j != e; ++j) 2535 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2536 "Duplicate callbr destination!", &CBI); 2537 } 2538 { 2539 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2540 for (Value *V : CBI.args()) 2541 if (auto *BA = dyn_cast<BlockAddress>(V)) 2542 ArgBBs.insert(BA->getBasicBlock()); 2543 for (BasicBlock *BB : CBI.getIndirectDests()) 2544 Assert(ArgBBs.find(BB) != ArgBBs.end(), 2545 "Indirect label missing from arglist.", &CBI); 2546 } 2547 2548 visitTerminator(CBI); 2549 } 2550 2551 void Verifier::visitSelectInst(SelectInst &SI) { 2552 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2553 SI.getOperand(2)), 2554 "Invalid operands for select instruction!", &SI); 2555 2556 Assert(SI.getTrueValue()->getType() == SI.getType(), 2557 "Select values must have same type as select instruction!", &SI); 2558 visitInstruction(SI); 2559 } 2560 2561 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2562 /// a pass, if any exist, it's an error. 2563 /// 2564 void Verifier::visitUserOp1(Instruction &I) { 2565 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2566 } 2567 2568 void Verifier::visitTruncInst(TruncInst &I) { 2569 // Get the source and destination types 2570 Type *SrcTy = I.getOperand(0)->getType(); 2571 Type *DestTy = I.getType(); 2572 2573 // Get the size of the types in bits, we'll need this later 2574 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2575 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2576 2577 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2578 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2579 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2580 "trunc source and destination must both be a vector or neither", &I); 2581 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2582 2583 visitInstruction(I); 2584 } 2585 2586 void Verifier::visitZExtInst(ZExtInst &I) { 2587 // Get the source and destination types 2588 Type *SrcTy = I.getOperand(0)->getType(); 2589 Type *DestTy = I.getType(); 2590 2591 // Get the size of the types in bits, we'll need this later 2592 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2593 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2594 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2595 "zext source and destination must both be a vector or neither", &I); 2596 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2597 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2598 2599 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2600 2601 visitInstruction(I); 2602 } 2603 2604 void Verifier::visitSExtInst(SExtInst &I) { 2605 // Get the source and destination types 2606 Type *SrcTy = I.getOperand(0)->getType(); 2607 Type *DestTy = I.getType(); 2608 2609 // Get the size of the types in bits, we'll need this later 2610 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2611 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2612 2613 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2614 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2615 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2616 "sext source and destination must both be a vector or neither", &I); 2617 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2618 2619 visitInstruction(I); 2620 } 2621 2622 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2623 // Get the source and destination types 2624 Type *SrcTy = I.getOperand(0)->getType(); 2625 Type *DestTy = I.getType(); 2626 // Get the size of the types in bits, we'll need this later 2627 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2628 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2629 2630 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2631 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2632 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2633 "fptrunc source and destination must both be a vector or neither", &I); 2634 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2635 2636 visitInstruction(I); 2637 } 2638 2639 void Verifier::visitFPExtInst(FPExtInst &I) { 2640 // Get the source and destination types 2641 Type *SrcTy = I.getOperand(0)->getType(); 2642 Type *DestTy = I.getType(); 2643 2644 // Get the size of the types in bits, we'll need this later 2645 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2646 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2647 2648 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2649 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2650 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2651 "fpext source and destination must both be a vector or neither", &I); 2652 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2653 2654 visitInstruction(I); 2655 } 2656 2657 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2658 // Get the source and destination types 2659 Type *SrcTy = I.getOperand(0)->getType(); 2660 Type *DestTy = I.getType(); 2661 2662 bool SrcVec = SrcTy->isVectorTy(); 2663 bool DstVec = DestTy->isVectorTy(); 2664 2665 Assert(SrcVec == DstVec, 2666 "UIToFP source and dest must both be vector or scalar", &I); 2667 Assert(SrcTy->isIntOrIntVectorTy(), 2668 "UIToFP source must be integer or integer vector", &I); 2669 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2670 &I); 2671 2672 if (SrcVec && DstVec) 2673 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2674 cast<VectorType>(DestTy)->getNumElements(), 2675 "UIToFP source and dest vector length mismatch", &I); 2676 2677 visitInstruction(I); 2678 } 2679 2680 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2681 // Get the source and destination types 2682 Type *SrcTy = I.getOperand(0)->getType(); 2683 Type *DestTy = I.getType(); 2684 2685 bool SrcVec = SrcTy->isVectorTy(); 2686 bool DstVec = DestTy->isVectorTy(); 2687 2688 Assert(SrcVec == DstVec, 2689 "SIToFP source and dest must both be vector or scalar", &I); 2690 Assert(SrcTy->isIntOrIntVectorTy(), 2691 "SIToFP source must be integer or integer vector", &I); 2692 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2693 &I); 2694 2695 if (SrcVec && DstVec) 2696 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2697 cast<VectorType>(DestTy)->getNumElements(), 2698 "SIToFP source and dest vector length mismatch", &I); 2699 2700 visitInstruction(I); 2701 } 2702 2703 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2704 // Get the source and destination types 2705 Type *SrcTy = I.getOperand(0)->getType(); 2706 Type *DestTy = I.getType(); 2707 2708 bool SrcVec = SrcTy->isVectorTy(); 2709 bool DstVec = DestTy->isVectorTy(); 2710 2711 Assert(SrcVec == DstVec, 2712 "FPToUI source and dest must both be vector or scalar", &I); 2713 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2714 &I); 2715 Assert(DestTy->isIntOrIntVectorTy(), 2716 "FPToUI result must be integer or integer vector", &I); 2717 2718 if (SrcVec && DstVec) 2719 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2720 cast<VectorType>(DestTy)->getNumElements(), 2721 "FPToUI source and dest vector length mismatch", &I); 2722 2723 visitInstruction(I); 2724 } 2725 2726 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2727 // Get the source and destination types 2728 Type *SrcTy = I.getOperand(0)->getType(); 2729 Type *DestTy = I.getType(); 2730 2731 bool SrcVec = SrcTy->isVectorTy(); 2732 bool DstVec = DestTy->isVectorTy(); 2733 2734 Assert(SrcVec == DstVec, 2735 "FPToSI source and dest must both be vector or scalar", &I); 2736 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2737 &I); 2738 Assert(DestTy->isIntOrIntVectorTy(), 2739 "FPToSI result must be integer or integer vector", &I); 2740 2741 if (SrcVec && DstVec) 2742 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2743 cast<VectorType>(DestTy)->getNumElements(), 2744 "FPToSI source and dest vector length mismatch", &I); 2745 2746 visitInstruction(I); 2747 } 2748 2749 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2750 // Get the source and destination types 2751 Type *SrcTy = I.getOperand(0)->getType(); 2752 Type *DestTy = I.getType(); 2753 2754 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2755 2756 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2757 Assert(!DL.isNonIntegralPointerType(PTy), 2758 "ptrtoint not supported for non-integral pointers"); 2759 2760 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2761 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2762 &I); 2763 2764 if (SrcTy->isVectorTy()) { 2765 VectorType *VSrc = cast<VectorType>(SrcTy); 2766 VectorType *VDest = cast<VectorType>(DestTy); 2767 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2768 "PtrToInt Vector width mismatch", &I); 2769 } 2770 2771 visitInstruction(I); 2772 } 2773 2774 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2775 // Get the source and destination types 2776 Type *SrcTy = I.getOperand(0)->getType(); 2777 Type *DestTy = I.getType(); 2778 2779 Assert(SrcTy->isIntOrIntVectorTy(), 2780 "IntToPtr source must be an integral", &I); 2781 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2782 2783 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2784 Assert(!DL.isNonIntegralPointerType(PTy), 2785 "inttoptr not supported for non-integral pointers"); 2786 2787 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2788 &I); 2789 if (SrcTy->isVectorTy()) { 2790 VectorType *VSrc = cast<VectorType>(SrcTy); 2791 VectorType *VDest = cast<VectorType>(DestTy); 2792 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2793 "IntToPtr Vector width mismatch", &I); 2794 } 2795 visitInstruction(I); 2796 } 2797 2798 void Verifier::visitBitCastInst(BitCastInst &I) { 2799 Assert( 2800 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2801 "Invalid bitcast", &I); 2802 visitInstruction(I); 2803 } 2804 2805 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2806 Type *SrcTy = I.getOperand(0)->getType(); 2807 Type *DestTy = I.getType(); 2808 2809 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2810 &I); 2811 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2812 &I); 2813 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2814 "AddrSpaceCast must be between different address spaces", &I); 2815 if (SrcTy->isVectorTy()) 2816 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2817 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2818 visitInstruction(I); 2819 } 2820 2821 /// visitPHINode - Ensure that a PHI node is well formed. 2822 /// 2823 void Verifier::visitPHINode(PHINode &PN) { 2824 // Ensure that the PHI nodes are all grouped together at the top of the block. 2825 // This can be tested by checking whether the instruction before this is 2826 // either nonexistent (because this is begin()) or is a PHI node. If not, 2827 // then there is some other instruction before a PHI. 2828 Assert(&PN == &PN.getParent()->front() || 2829 isa<PHINode>(--BasicBlock::iterator(&PN)), 2830 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2831 2832 // Check that a PHI doesn't yield a Token. 2833 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2834 2835 // Check that all of the values of the PHI node have the same type as the 2836 // result, and that the incoming blocks are really basic blocks. 2837 for (Value *IncValue : PN.incoming_values()) { 2838 Assert(PN.getType() == IncValue->getType(), 2839 "PHI node operands are not the same type as the result!", &PN); 2840 } 2841 2842 // All other PHI node constraints are checked in the visitBasicBlock method. 2843 2844 visitInstruction(PN); 2845 } 2846 2847 void Verifier::visitCallBase(CallBase &Call) { 2848 Assert(Call.getCalledValue()->getType()->isPointerTy(), 2849 "Called function must be a pointer!", Call); 2850 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); 2851 2852 Assert(FPTy->getElementType()->isFunctionTy(), 2853 "Called function is not pointer to function type!", Call); 2854 2855 Assert(FPTy->getElementType() == Call.getFunctionType(), 2856 "Called function is not the same type as the call!", Call); 2857 2858 FunctionType *FTy = Call.getFunctionType(); 2859 2860 // Verify that the correct number of arguments are being passed 2861 if (FTy->isVarArg()) 2862 Assert(Call.arg_size() >= FTy->getNumParams(), 2863 "Called function requires more parameters than were provided!", 2864 Call); 2865 else 2866 Assert(Call.arg_size() == FTy->getNumParams(), 2867 "Incorrect number of arguments passed to called function!", Call); 2868 2869 // Verify that all arguments to the call match the function type. 2870 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2871 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2872 "Call parameter type does not match function signature!", 2873 Call.getArgOperand(i), FTy->getParamType(i), Call); 2874 2875 AttributeList Attrs = Call.getAttributes(); 2876 2877 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2878 "Attribute after last parameter!", Call); 2879 2880 bool IsIntrinsic = Call.getCalledFunction() && 2881 Call.getCalledFunction()->getName().startswith("llvm."); 2882 2883 Function *Callee 2884 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 2885 2886 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2887 // Don't allow speculatable on call sites, unless the underlying function 2888 // declaration is also speculatable. 2889 Assert(Callee && Callee->isSpeculatable(), 2890 "speculatable attribute may not apply to call sites", Call); 2891 } 2892 2893 // Verify call attributes. 2894 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2895 2896 // Conservatively check the inalloca argument. 2897 // We have a bug if we can find that there is an underlying alloca without 2898 // inalloca. 2899 if (Call.hasInAllocaArgument()) { 2900 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2901 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2902 Assert(AI->isUsedWithInAlloca(), 2903 "inalloca argument for call has mismatched alloca", AI, Call); 2904 } 2905 2906 // For each argument of the callsite, if it has the swifterror argument, 2907 // make sure the underlying alloca/parameter it comes from has a swifterror as 2908 // well. 2909 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2910 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2911 Value *SwiftErrorArg = Call.getArgOperand(i); 2912 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2913 Assert(AI->isSwiftError(), 2914 "swifterror argument for call has mismatched alloca", AI, Call); 2915 continue; 2916 } 2917 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2918 Assert(ArgI, 2919 "swifterror argument should come from an alloca or parameter", 2920 SwiftErrorArg, Call); 2921 Assert(ArgI->hasSwiftErrorAttr(), 2922 "swifterror argument for call has mismatched parameter", ArgI, 2923 Call); 2924 } 2925 2926 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 2927 // Don't allow immarg on call sites, unless the underlying declaration 2928 // also has the matching immarg. 2929 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 2930 "immarg may not apply only to call sites", 2931 Call.getArgOperand(i), Call); 2932 } 2933 2934 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 2935 Value *ArgVal = Call.getArgOperand(i); 2936 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 2937 "immarg operand has non-immediate parameter", ArgVal, Call); 2938 } 2939 } 2940 2941 if (FTy->isVarArg()) { 2942 // FIXME? is 'nest' even legal here? 2943 bool SawNest = false; 2944 bool SawReturned = false; 2945 2946 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2947 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2948 SawNest = true; 2949 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2950 SawReturned = true; 2951 } 2952 2953 // Check attributes on the varargs part. 2954 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 2955 Type *Ty = Call.getArgOperand(Idx)->getType(); 2956 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2957 verifyParameterAttrs(ArgAttrs, Ty, &Call); 2958 2959 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2960 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 2961 SawNest = true; 2962 } 2963 2964 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2965 Assert(!SawReturned, "More than one parameter has attribute returned!", 2966 Call); 2967 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2968 "Incompatible argument and return types for 'returned' " 2969 "attribute", 2970 Call); 2971 SawReturned = true; 2972 } 2973 2974 // Statepoint intrinsic is vararg but the wrapped function may be not. 2975 // Allow sret here and check the wrapped function in verifyStatepoint. 2976 if (!Call.getCalledFunction() || 2977 Call.getCalledFunction()->getIntrinsicID() != 2978 Intrinsic::experimental_gc_statepoint) 2979 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2980 "Attribute 'sret' cannot be used for vararg call arguments!", 2981 Call); 2982 2983 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2984 Assert(Idx == Call.arg_size() - 1, 2985 "inalloca isn't on the last argument!", Call); 2986 } 2987 } 2988 2989 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2990 if (!IsIntrinsic) { 2991 for (Type *ParamTy : FTy->params()) { 2992 Assert(!ParamTy->isMetadataTy(), 2993 "Function has metadata parameter but isn't an intrinsic", Call); 2994 Assert(!ParamTy->isTokenTy(), 2995 "Function has token parameter but isn't an intrinsic", Call); 2996 } 2997 } 2998 2999 // Verify that indirect calls don't return tokens. 3000 if (!Call.getCalledFunction()) 3001 Assert(!FTy->getReturnType()->isTokenTy(), 3002 "Return type cannot be token for indirect call!"); 3003 3004 if (Function *F = Call.getCalledFunction()) 3005 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3006 visitIntrinsicCall(ID, Call); 3007 3008 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3009 // most one "gc-transition", and at most one "cfguardtarget" operand bundle. 3010 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3011 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false; 3012 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3013 OperandBundleUse BU = Call.getOperandBundleAt(i); 3014 uint32_t Tag = BU.getTagID(); 3015 if (Tag == LLVMContext::OB_deopt) { 3016 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3017 FoundDeoptBundle = true; 3018 } else if (Tag == LLVMContext::OB_gc_transition) { 3019 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3020 Call); 3021 FoundGCTransitionBundle = true; 3022 } else if (Tag == LLVMContext::OB_funclet) { 3023 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3024 FoundFuncletBundle = true; 3025 Assert(BU.Inputs.size() == 1, 3026 "Expected exactly one funclet bundle operand", Call); 3027 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3028 "Funclet bundle operands should correspond to a FuncletPadInst", 3029 Call); 3030 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3031 Assert(!FoundCFGuardTargetBundle, 3032 "Multiple CFGuardTarget operand bundles", Call); 3033 FoundCFGuardTargetBundle = true; 3034 Assert(BU.Inputs.size() == 1, 3035 "Expected exactly one cfguardtarget bundle operand", Call); 3036 } 3037 } 3038 3039 // Verify that each inlinable callsite of a debug-info-bearing function in a 3040 // debug-info-bearing function has a debug location attached to it. Failure to 3041 // do so causes assertion failures when the inliner sets up inline scope info. 3042 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3043 Call.getCalledFunction()->getSubprogram()) 3044 AssertDI(Call.getDebugLoc(), 3045 "inlinable function call in a function with " 3046 "debug info must have a !dbg location", 3047 Call); 3048 3049 visitInstruction(Call); 3050 } 3051 3052 /// Two types are "congruent" if they are identical, or if they are both pointer 3053 /// types with different pointee types and the same address space. 3054 static bool isTypeCongruent(Type *L, Type *R) { 3055 if (L == R) 3056 return true; 3057 PointerType *PL = dyn_cast<PointerType>(L); 3058 PointerType *PR = dyn_cast<PointerType>(R); 3059 if (!PL || !PR) 3060 return false; 3061 return PL->getAddressSpace() == PR->getAddressSpace(); 3062 } 3063 3064 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3065 static const Attribute::AttrKind ABIAttrs[] = { 3066 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3067 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 3068 Attribute::SwiftError}; 3069 AttrBuilder Copy; 3070 for (auto AK : ABIAttrs) { 3071 if (Attrs.hasParamAttribute(I, AK)) 3072 Copy.addAttribute(AK); 3073 } 3074 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 3075 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3076 return Copy; 3077 } 3078 3079 void Verifier::verifyMustTailCall(CallInst &CI) { 3080 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3081 3082 // - The caller and callee prototypes must match. Pointer types of 3083 // parameters or return types may differ in pointee type, but not 3084 // address space. 3085 Function *F = CI.getParent()->getParent(); 3086 FunctionType *CallerTy = F->getFunctionType(); 3087 FunctionType *CalleeTy = CI.getFunctionType(); 3088 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3089 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3090 "cannot guarantee tail call due to mismatched parameter counts", 3091 &CI); 3092 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3093 Assert( 3094 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3095 "cannot guarantee tail call due to mismatched parameter types", &CI); 3096 } 3097 } 3098 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3099 "cannot guarantee tail call due to mismatched varargs", &CI); 3100 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3101 "cannot guarantee tail call due to mismatched return types", &CI); 3102 3103 // - The calling conventions of the caller and callee must match. 3104 Assert(F->getCallingConv() == CI.getCallingConv(), 3105 "cannot guarantee tail call due to mismatched calling conv", &CI); 3106 3107 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3108 // returned, and inalloca, must match. 3109 AttributeList CallerAttrs = F->getAttributes(); 3110 AttributeList CalleeAttrs = CI.getAttributes(); 3111 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3112 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3113 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3114 Assert(CallerABIAttrs == CalleeABIAttrs, 3115 "cannot guarantee tail call due to mismatched ABI impacting " 3116 "function attributes", 3117 &CI, CI.getOperand(I)); 3118 } 3119 3120 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3121 // or a pointer bitcast followed by a ret instruction. 3122 // - The ret instruction must return the (possibly bitcasted) value 3123 // produced by the call or void. 3124 Value *RetVal = &CI; 3125 Instruction *Next = CI.getNextNode(); 3126 3127 // Handle the optional bitcast. 3128 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3129 Assert(BI->getOperand(0) == RetVal, 3130 "bitcast following musttail call must use the call", BI); 3131 RetVal = BI; 3132 Next = BI->getNextNode(); 3133 } 3134 3135 // Check the return. 3136 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3137 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3138 &CI); 3139 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3140 "musttail call result must be returned", Ret); 3141 } 3142 3143 void Verifier::visitCallInst(CallInst &CI) { 3144 visitCallBase(CI); 3145 3146 if (CI.isMustTailCall()) 3147 verifyMustTailCall(CI); 3148 } 3149 3150 void Verifier::visitInvokeInst(InvokeInst &II) { 3151 visitCallBase(II); 3152 3153 // Verify that the first non-PHI instruction of the unwind destination is an 3154 // exception handling instruction. 3155 Assert( 3156 II.getUnwindDest()->isEHPad(), 3157 "The unwind destination does not have an exception handling instruction!", 3158 &II); 3159 3160 visitTerminator(II); 3161 } 3162 3163 /// visitUnaryOperator - Check the argument to the unary operator. 3164 /// 3165 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3166 Assert(U.getType() == U.getOperand(0)->getType(), 3167 "Unary operators must have same type for" 3168 "operands and result!", 3169 &U); 3170 3171 switch (U.getOpcode()) { 3172 // Check that floating-point arithmetic operators are only used with 3173 // floating-point operands. 3174 case Instruction::FNeg: 3175 Assert(U.getType()->isFPOrFPVectorTy(), 3176 "FNeg operator only works with float types!", &U); 3177 break; 3178 default: 3179 llvm_unreachable("Unknown UnaryOperator opcode!"); 3180 } 3181 3182 visitInstruction(U); 3183 } 3184 3185 /// visitBinaryOperator - Check that both arguments to the binary operator are 3186 /// of the same type! 3187 /// 3188 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3189 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3190 "Both operands to a binary operator are not of the same type!", &B); 3191 3192 switch (B.getOpcode()) { 3193 // Check that integer arithmetic operators are only used with 3194 // integral operands. 3195 case Instruction::Add: 3196 case Instruction::Sub: 3197 case Instruction::Mul: 3198 case Instruction::SDiv: 3199 case Instruction::UDiv: 3200 case Instruction::SRem: 3201 case Instruction::URem: 3202 Assert(B.getType()->isIntOrIntVectorTy(), 3203 "Integer arithmetic operators only work with integral types!", &B); 3204 Assert(B.getType() == B.getOperand(0)->getType(), 3205 "Integer arithmetic operators must have same type " 3206 "for operands and result!", 3207 &B); 3208 break; 3209 // Check that floating-point arithmetic operators are only used with 3210 // floating-point operands. 3211 case Instruction::FAdd: 3212 case Instruction::FSub: 3213 case Instruction::FMul: 3214 case Instruction::FDiv: 3215 case Instruction::FRem: 3216 Assert(B.getType()->isFPOrFPVectorTy(), 3217 "Floating-point arithmetic operators only work with " 3218 "floating-point types!", 3219 &B); 3220 Assert(B.getType() == B.getOperand(0)->getType(), 3221 "Floating-point arithmetic operators must have same type " 3222 "for operands and result!", 3223 &B); 3224 break; 3225 // Check that logical operators are only used with integral operands. 3226 case Instruction::And: 3227 case Instruction::Or: 3228 case Instruction::Xor: 3229 Assert(B.getType()->isIntOrIntVectorTy(), 3230 "Logical operators only work with integral types!", &B); 3231 Assert(B.getType() == B.getOperand(0)->getType(), 3232 "Logical operators must have same type for operands and result!", 3233 &B); 3234 break; 3235 case Instruction::Shl: 3236 case Instruction::LShr: 3237 case Instruction::AShr: 3238 Assert(B.getType()->isIntOrIntVectorTy(), 3239 "Shifts only work with integral types!", &B); 3240 Assert(B.getType() == B.getOperand(0)->getType(), 3241 "Shift return type must be same as operands!", &B); 3242 break; 3243 default: 3244 llvm_unreachable("Unknown BinaryOperator opcode!"); 3245 } 3246 3247 visitInstruction(B); 3248 } 3249 3250 void Verifier::visitICmpInst(ICmpInst &IC) { 3251 // Check that the operands are the same type 3252 Type *Op0Ty = IC.getOperand(0)->getType(); 3253 Type *Op1Ty = IC.getOperand(1)->getType(); 3254 Assert(Op0Ty == Op1Ty, 3255 "Both operands to ICmp instruction are not of the same type!", &IC); 3256 // Check that the operands are the right type 3257 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3258 "Invalid operand types for ICmp instruction", &IC); 3259 // Check that the predicate is valid. 3260 Assert(IC.isIntPredicate(), 3261 "Invalid predicate in ICmp instruction!", &IC); 3262 3263 visitInstruction(IC); 3264 } 3265 3266 void Verifier::visitFCmpInst(FCmpInst &FC) { 3267 // Check that the operands are the same type 3268 Type *Op0Ty = FC.getOperand(0)->getType(); 3269 Type *Op1Ty = FC.getOperand(1)->getType(); 3270 Assert(Op0Ty == Op1Ty, 3271 "Both operands to FCmp instruction are not of the same type!", &FC); 3272 // Check that the operands are the right type 3273 Assert(Op0Ty->isFPOrFPVectorTy(), 3274 "Invalid operand types for FCmp instruction", &FC); 3275 // Check that the predicate is valid. 3276 Assert(FC.isFPPredicate(), 3277 "Invalid predicate in FCmp instruction!", &FC); 3278 3279 visitInstruction(FC); 3280 } 3281 3282 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3283 Assert( 3284 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3285 "Invalid extractelement operands!", &EI); 3286 visitInstruction(EI); 3287 } 3288 3289 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3290 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3291 IE.getOperand(2)), 3292 "Invalid insertelement operands!", &IE); 3293 visitInstruction(IE); 3294 } 3295 3296 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3297 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3298 SV.getOperand(2)), 3299 "Invalid shufflevector operands!", &SV); 3300 visitInstruction(SV); 3301 } 3302 3303 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3304 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3305 3306 Assert(isa<PointerType>(TargetTy), 3307 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3308 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3309 3310 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3311 Assert(all_of( 3312 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3313 "GEP indexes must be integers", &GEP); 3314 Type *ElTy = 3315 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3316 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3317 3318 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3319 GEP.getResultElementType() == ElTy, 3320 "GEP is not of right type for indices!", &GEP, ElTy); 3321 3322 if (GEP.getType()->isVectorTy()) { 3323 // Additional checks for vector GEPs. 3324 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3325 if (GEP.getPointerOperandType()->isVectorTy()) 3326 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3327 "Vector GEP result width doesn't match operand's", &GEP); 3328 for (Value *Idx : Idxs) { 3329 Type *IndexTy = Idx->getType(); 3330 if (IndexTy->isVectorTy()) { 3331 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3332 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3333 } 3334 Assert(IndexTy->isIntOrIntVectorTy(), 3335 "All GEP indices should be of integer type"); 3336 } 3337 } 3338 3339 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3340 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3341 "GEP address space doesn't match type", &GEP); 3342 } 3343 3344 visitInstruction(GEP); 3345 } 3346 3347 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3348 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3349 } 3350 3351 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3352 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3353 "precondition violation"); 3354 3355 unsigned NumOperands = Range->getNumOperands(); 3356 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3357 unsigned NumRanges = NumOperands / 2; 3358 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3359 3360 ConstantRange LastRange(1, true); // Dummy initial value 3361 for (unsigned i = 0; i < NumRanges; ++i) { 3362 ConstantInt *Low = 3363 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3364 Assert(Low, "The lower limit must be an integer!", Low); 3365 ConstantInt *High = 3366 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3367 Assert(High, "The upper limit must be an integer!", High); 3368 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3369 "Range types must match instruction type!", &I); 3370 3371 APInt HighV = High->getValue(); 3372 APInt LowV = Low->getValue(); 3373 ConstantRange CurRange(LowV, HighV); 3374 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3375 "Range must not be empty!", Range); 3376 if (i != 0) { 3377 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3378 "Intervals are overlapping", Range); 3379 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3380 Range); 3381 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3382 Range); 3383 } 3384 LastRange = ConstantRange(LowV, HighV); 3385 } 3386 if (NumRanges > 2) { 3387 APInt FirstLow = 3388 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3389 APInt FirstHigh = 3390 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3391 ConstantRange FirstRange(FirstLow, FirstHigh); 3392 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3393 "Intervals are overlapping", Range); 3394 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3395 Range); 3396 } 3397 } 3398 3399 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3400 unsigned Size = DL.getTypeSizeInBits(Ty); 3401 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3402 Assert(!(Size & (Size - 1)), 3403 "atomic memory access' operand must have a power-of-two size", Ty, I); 3404 } 3405 3406 void Verifier::visitLoadInst(LoadInst &LI) { 3407 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3408 Assert(PTy, "Load operand must be a pointer.", &LI); 3409 Type *ElTy = LI.getType(); 3410 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3411 "huge alignment values are unsupported", &LI); 3412 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3413 if (LI.isAtomic()) { 3414 Assert(LI.getOrdering() != AtomicOrdering::Release && 3415 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3416 "Load cannot have Release ordering", &LI); 3417 Assert(LI.getAlignment() != 0, 3418 "Atomic load must specify explicit alignment", &LI); 3419 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3420 "atomic load operand must have integer, pointer, or floating point " 3421 "type!", 3422 ElTy, &LI); 3423 checkAtomicMemAccessSize(ElTy, &LI); 3424 } else { 3425 Assert(LI.getSyncScopeID() == SyncScope::System, 3426 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3427 } 3428 3429 visitInstruction(LI); 3430 } 3431 3432 void Verifier::visitStoreInst(StoreInst &SI) { 3433 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3434 Assert(PTy, "Store operand must be a pointer.", &SI); 3435 Type *ElTy = PTy->getElementType(); 3436 Assert(ElTy == SI.getOperand(0)->getType(), 3437 "Stored value type does not match pointer operand type!", &SI, ElTy); 3438 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3439 "huge alignment values are unsupported", &SI); 3440 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3441 if (SI.isAtomic()) { 3442 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3443 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3444 "Store cannot have Acquire ordering", &SI); 3445 Assert(SI.getAlignment() != 0, 3446 "Atomic store must specify explicit alignment", &SI); 3447 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3448 "atomic store operand must have integer, pointer, or floating point " 3449 "type!", 3450 ElTy, &SI); 3451 checkAtomicMemAccessSize(ElTy, &SI); 3452 } else { 3453 Assert(SI.getSyncScopeID() == SyncScope::System, 3454 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3455 } 3456 visitInstruction(SI); 3457 } 3458 3459 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3460 void Verifier::verifySwiftErrorCall(CallBase &Call, 3461 const Value *SwiftErrorVal) { 3462 unsigned Idx = 0; 3463 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3464 if (*I == SwiftErrorVal) { 3465 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3466 "swifterror value when used in a callsite should be marked " 3467 "with swifterror attribute", 3468 SwiftErrorVal, Call); 3469 } 3470 } 3471 } 3472 3473 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3474 // Check that swifterror value is only used by loads, stores, or as 3475 // a swifterror argument. 3476 for (const User *U : SwiftErrorVal->users()) { 3477 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3478 isa<InvokeInst>(U), 3479 "swifterror value can only be loaded and stored from, or " 3480 "as a swifterror argument!", 3481 SwiftErrorVal, U); 3482 // If it is used by a store, check it is the second operand. 3483 if (auto StoreI = dyn_cast<StoreInst>(U)) 3484 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3485 "swifterror value should be the second operand when used " 3486 "by stores", SwiftErrorVal, U); 3487 if (auto *Call = dyn_cast<CallBase>(U)) 3488 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3489 } 3490 } 3491 3492 void Verifier::visitAllocaInst(AllocaInst &AI) { 3493 SmallPtrSet<Type*, 4> Visited; 3494 PointerType *PTy = AI.getType(); 3495 // TODO: Relax this restriction? 3496 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3497 "Allocation instruction pointer not in the stack address space!", 3498 &AI); 3499 Assert(AI.getAllocatedType()->isSized(&Visited), 3500 "Cannot allocate unsized type", &AI); 3501 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3502 "Alloca array size must have integer type", &AI); 3503 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3504 "huge alignment values are unsupported", &AI); 3505 3506 if (AI.isSwiftError()) { 3507 verifySwiftErrorValue(&AI); 3508 } 3509 3510 visitInstruction(AI); 3511 } 3512 3513 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3514 3515 // FIXME: more conditions??? 3516 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3517 "cmpxchg instructions must be atomic.", &CXI); 3518 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3519 "cmpxchg instructions must be atomic.", &CXI); 3520 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3521 "cmpxchg instructions cannot be unordered.", &CXI); 3522 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3523 "cmpxchg instructions cannot be unordered.", &CXI); 3524 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3525 "cmpxchg instructions failure argument shall be no stronger than the " 3526 "success argument", 3527 &CXI); 3528 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3529 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3530 "cmpxchg failure ordering cannot include release semantics", &CXI); 3531 3532 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3533 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3534 Type *ElTy = PTy->getElementType(); 3535 Assert(ElTy->isIntOrPtrTy(), 3536 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3537 checkAtomicMemAccessSize(ElTy, &CXI); 3538 Assert(ElTy == CXI.getOperand(1)->getType(), 3539 "Expected value type does not match pointer operand type!", &CXI, 3540 ElTy); 3541 Assert(ElTy == CXI.getOperand(2)->getType(), 3542 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3543 visitInstruction(CXI); 3544 } 3545 3546 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3547 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3548 "atomicrmw instructions must be atomic.", &RMWI); 3549 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3550 "atomicrmw instructions cannot be unordered.", &RMWI); 3551 auto Op = RMWI.getOperation(); 3552 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3553 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3554 Type *ElTy = PTy->getElementType(); 3555 if (Op == AtomicRMWInst::Xchg) { 3556 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3557 AtomicRMWInst::getOperationName(Op) + 3558 " operand must have integer or floating point type!", 3559 &RMWI, ElTy); 3560 } else if (AtomicRMWInst::isFPOperation(Op)) { 3561 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3562 AtomicRMWInst::getOperationName(Op) + 3563 " operand must have floating point type!", 3564 &RMWI, ElTy); 3565 } else { 3566 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3567 AtomicRMWInst::getOperationName(Op) + 3568 " operand must have integer type!", 3569 &RMWI, ElTy); 3570 } 3571 checkAtomicMemAccessSize(ElTy, &RMWI); 3572 Assert(ElTy == RMWI.getOperand(1)->getType(), 3573 "Argument value type does not match pointer operand type!", &RMWI, 3574 ElTy); 3575 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3576 "Invalid binary operation!", &RMWI); 3577 visitInstruction(RMWI); 3578 } 3579 3580 void Verifier::visitFenceInst(FenceInst &FI) { 3581 const AtomicOrdering Ordering = FI.getOrdering(); 3582 Assert(Ordering == AtomicOrdering::Acquire || 3583 Ordering == AtomicOrdering::Release || 3584 Ordering == AtomicOrdering::AcquireRelease || 3585 Ordering == AtomicOrdering::SequentiallyConsistent, 3586 "fence instructions may only have acquire, release, acq_rel, or " 3587 "seq_cst ordering.", 3588 &FI); 3589 visitInstruction(FI); 3590 } 3591 3592 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3593 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3594 EVI.getIndices()) == EVI.getType(), 3595 "Invalid ExtractValueInst operands!", &EVI); 3596 3597 visitInstruction(EVI); 3598 } 3599 3600 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3601 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3602 IVI.getIndices()) == 3603 IVI.getOperand(1)->getType(), 3604 "Invalid InsertValueInst operands!", &IVI); 3605 3606 visitInstruction(IVI); 3607 } 3608 3609 static Value *getParentPad(Value *EHPad) { 3610 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3611 return FPI->getParentPad(); 3612 3613 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3614 } 3615 3616 void Verifier::visitEHPadPredecessors(Instruction &I) { 3617 assert(I.isEHPad()); 3618 3619 BasicBlock *BB = I.getParent(); 3620 Function *F = BB->getParent(); 3621 3622 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3623 3624 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3625 // The landingpad instruction defines its parent as a landing pad block. The 3626 // landing pad block may be branched to only by the unwind edge of an 3627 // invoke. 3628 for (BasicBlock *PredBB : predecessors(BB)) { 3629 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3630 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3631 "Block containing LandingPadInst must be jumped to " 3632 "only by the unwind edge of an invoke.", 3633 LPI); 3634 } 3635 return; 3636 } 3637 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3638 if (!pred_empty(BB)) 3639 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3640 "Block containg CatchPadInst must be jumped to " 3641 "only by its catchswitch.", 3642 CPI); 3643 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3644 "Catchswitch cannot unwind to one of its catchpads", 3645 CPI->getCatchSwitch(), CPI); 3646 return; 3647 } 3648 3649 // Verify that each pred has a legal terminator with a legal to/from EH 3650 // pad relationship. 3651 Instruction *ToPad = &I; 3652 Value *ToPadParent = getParentPad(ToPad); 3653 for (BasicBlock *PredBB : predecessors(BB)) { 3654 Instruction *TI = PredBB->getTerminator(); 3655 Value *FromPad; 3656 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3657 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3658 "EH pad must be jumped to via an unwind edge", ToPad, II); 3659 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3660 FromPad = Bundle->Inputs[0]; 3661 else 3662 FromPad = ConstantTokenNone::get(II->getContext()); 3663 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3664 FromPad = CRI->getOperand(0); 3665 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3666 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3667 FromPad = CSI; 3668 } else { 3669 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3670 } 3671 3672 // The edge may exit from zero or more nested pads. 3673 SmallSet<Value *, 8> Seen; 3674 for (;; FromPad = getParentPad(FromPad)) { 3675 Assert(FromPad != ToPad, 3676 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3677 if (FromPad == ToPadParent) { 3678 // This is a legal unwind edge. 3679 break; 3680 } 3681 Assert(!isa<ConstantTokenNone>(FromPad), 3682 "A single unwind edge may only enter one EH pad", TI); 3683 Assert(Seen.insert(FromPad).second, 3684 "EH pad jumps through a cycle of pads", FromPad); 3685 } 3686 } 3687 } 3688 3689 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3690 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3691 // isn't a cleanup. 3692 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3693 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3694 3695 visitEHPadPredecessors(LPI); 3696 3697 if (!LandingPadResultTy) 3698 LandingPadResultTy = LPI.getType(); 3699 else 3700 Assert(LandingPadResultTy == LPI.getType(), 3701 "The landingpad instruction should have a consistent result type " 3702 "inside a function.", 3703 &LPI); 3704 3705 Function *F = LPI.getParent()->getParent(); 3706 Assert(F->hasPersonalityFn(), 3707 "LandingPadInst needs to be in a function with a personality.", &LPI); 3708 3709 // The landingpad instruction must be the first non-PHI instruction in the 3710 // block. 3711 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3712 "LandingPadInst not the first non-PHI instruction in the block.", 3713 &LPI); 3714 3715 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3716 Constant *Clause = LPI.getClause(i); 3717 if (LPI.isCatch(i)) { 3718 Assert(isa<PointerType>(Clause->getType()), 3719 "Catch operand does not have pointer type!", &LPI); 3720 } else { 3721 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3722 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3723 "Filter operand is not an array of constants!", &LPI); 3724 } 3725 } 3726 3727 visitInstruction(LPI); 3728 } 3729 3730 void Verifier::visitResumeInst(ResumeInst &RI) { 3731 Assert(RI.getFunction()->hasPersonalityFn(), 3732 "ResumeInst needs to be in a function with a personality.", &RI); 3733 3734 if (!LandingPadResultTy) 3735 LandingPadResultTy = RI.getValue()->getType(); 3736 else 3737 Assert(LandingPadResultTy == RI.getValue()->getType(), 3738 "The resume instruction should have a consistent result type " 3739 "inside a function.", 3740 &RI); 3741 3742 visitTerminator(RI); 3743 } 3744 3745 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3746 BasicBlock *BB = CPI.getParent(); 3747 3748 Function *F = BB->getParent(); 3749 Assert(F->hasPersonalityFn(), 3750 "CatchPadInst needs to be in a function with a personality.", &CPI); 3751 3752 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3753 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3754 CPI.getParentPad()); 3755 3756 // The catchpad instruction must be the first non-PHI instruction in the 3757 // block. 3758 Assert(BB->getFirstNonPHI() == &CPI, 3759 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3760 3761 visitEHPadPredecessors(CPI); 3762 visitFuncletPadInst(CPI); 3763 } 3764 3765 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3766 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3767 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3768 CatchReturn.getOperand(0)); 3769 3770 visitTerminator(CatchReturn); 3771 } 3772 3773 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3774 BasicBlock *BB = CPI.getParent(); 3775 3776 Function *F = BB->getParent(); 3777 Assert(F->hasPersonalityFn(), 3778 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3779 3780 // The cleanuppad instruction must be the first non-PHI instruction in the 3781 // block. 3782 Assert(BB->getFirstNonPHI() == &CPI, 3783 "CleanupPadInst not the first non-PHI instruction in the block.", 3784 &CPI); 3785 3786 auto *ParentPad = CPI.getParentPad(); 3787 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3788 "CleanupPadInst has an invalid parent.", &CPI); 3789 3790 visitEHPadPredecessors(CPI); 3791 visitFuncletPadInst(CPI); 3792 } 3793 3794 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3795 User *FirstUser = nullptr; 3796 Value *FirstUnwindPad = nullptr; 3797 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3798 SmallSet<FuncletPadInst *, 8> Seen; 3799 3800 while (!Worklist.empty()) { 3801 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3802 Assert(Seen.insert(CurrentPad).second, 3803 "FuncletPadInst must not be nested within itself", CurrentPad); 3804 Value *UnresolvedAncestorPad = nullptr; 3805 for (User *U : CurrentPad->users()) { 3806 BasicBlock *UnwindDest; 3807 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3808 UnwindDest = CRI->getUnwindDest(); 3809 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3810 // We allow catchswitch unwind to caller to nest 3811 // within an outer pad that unwinds somewhere else, 3812 // because catchswitch doesn't have a nounwind variant. 3813 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3814 if (CSI->unwindsToCaller()) 3815 continue; 3816 UnwindDest = CSI->getUnwindDest(); 3817 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3818 UnwindDest = II->getUnwindDest(); 3819 } else if (isa<CallInst>(U)) { 3820 // Calls which don't unwind may be found inside funclet 3821 // pads that unwind somewhere else. We don't *require* 3822 // such calls to be annotated nounwind. 3823 continue; 3824 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3825 // The unwind dest for a cleanup can only be found by 3826 // recursive search. Add it to the worklist, and we'll 3827 // search for its first use that determines where it unwinds. 3828 Worklist.push_back(CPI); 3829 continue; 3830 } else { 3831 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3832 continue; 3833 } 3834 3835 Value *UnwindPad; 3836 bool ExitsFPI; 3837 if (UnwindDest) { 3838 UnwindPad = UnwindDest->getFirstNonPHI(); 3839 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3840 continue; 3841 Value *UnwindParent = getParentPad(UnwindPad); 3842 // Ignore unwind edges that don't exit CurrentPad. 3843 if (UnwindParent == CurrentPad) 3844 continue; 3845 // Determine whether the original funclet pad is exited, 3846 // and if we are scanning nested pads determine how many 3847 // of them are exited so we can stop searching their 3848 // children. 3849 Value *ExitedPad = CurrentPad; 3850 ExitsFPI = false; 3851 do { 3852 if (ExitedPad == &FPI) { 3853 ExitsFPI = true; 3854 // Now we can resolve any ancestors of CurrentPad up to 3855 // FPI, but not including FPI since we need to make sure 3856 // to check all direct users of FPI for consistency. 3857 UnresolvedAncestorPad = &FPI; 3858 break; 3859 } 3860 Value *ExitedParent = getParentPad(ExitedPad); 3861 if (ExitedParent == UnwindParent) { 3862 // ExitedPad is the ancestor-most pad which this unwind 3863 // edge exits, so we can resolve up to it, meaning that 3864 // ExitedParent is the first ancestor still unresolved. 3865 UnresolvedAncestorPad = ExitedParent; 3866 break; 3867 } 3868 ExitedPad = ExitedParent; 3869 } while (!isa<ConstantTokenNone>(ExitedPad)); 3870 } else { 3871 // Unwinding to caller exits all pads. 3872 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3873 ExitsFPI = true; 3874 UnresolvedAncestorPad = &FPI; 3875 } 3876 3877 if (ExitsFPI) { 3878 // This unwind edge exits FPI. Make sure it agrees with other 3879 // such edges. 3880 if (FirstUser) { 3881 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3882 "pad must have the same unwind " 3883 "dest", 3884 &FPI, U, FirstUser); 3885 } else { 3886 FirstUser = U; 3887 FirstUnwindPad = UnwindPad; 3888 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3889 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3890 getParentPad(UnwindPad) == getParentPad(&FPI)) 3891 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3892 } 3893 } 3894 // Make sure we visit all uses of FPI, but for nested pads stop as 3895 // soon as we know where they unwind to. 3896 if (CurrentPad != &FPI) 3897 break; 3898 } 3899 if (UnresolvedAncestorPad) { 3900 if (CurrentPad == UnresolvedAncestorPad) { 3901 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3902 // we've found an unwind edge that exits it, because we need to verify 3903 // all direct uses of FPI. 3904 assert(CurrentPad == &FPI); 3905 continue; 3906 } 3907 // Pop off the worklist any nested pads that we've found an unwind 3908 // destination for. The pads on the worklist are the uncles, 3909 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3910 // for all ancestors of CurrentPad up to but not including 3911 // UnresolvedAncestorPad. 3912 Value *ResolvedPad = CurrentPad; 3913 while (!Worklist.empty()) { 3914 Value *UnclePad = Worklist.back(); 3915 Value *AncestorPad = getParentPad(UnclePad); 3916 // Walk ResolvedPad up the ancestor list until we either find the 3917 // uncle's parent or the last resolved ancestor. 3918 while (ResolvedPad != AncestorPad) { 3919 Value *ResolvedParent = getParentPad(ResolvedPad); 3920 if (ResolvedParent == UnresolvedAncestorPad) { 3921 break; 3922 } 3923 ResolvedPad = ResolvedParent; 3924 } 3925 // If the resolved ancestor search didn't find the uncle's parent, 3926 // then the uncle is not yet resolved. 3927 if (ResolvedPad != AncestorPad) 3928 break; 3929 // This uncle is resolved, so pop it from the worklist. 3930 Worklist.pop_back(); 3931 } 3932 } 3933 } 3934 3935 if (FirstUnwindPad) { 3936 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3937 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3938 Value *SwitchUnwindPad; 3939 if (SwitchUnwindDest) 3940 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3941 else 3942 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3943 Assert(SwitchUnwindPad == FirstUnwindPad, 3944 "Unwind edges out of a catch must have the same unwind dest as " 3945 "the parent catchswitch", 3946 &FPI, FirstUser, CatchSwitch); 3947 } 3948 } 3949 3950 visitInstruction(FPI); 3951 } 3952 3953 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3954 BasicBlock *BB = CatchSwitch.getParent(); 3955 3956 Function *F = BB->getParent(); 3957 Assert(F->hasPersonalityFn(), 3958 "CatchSwitchInst needs to be in a function with a personality.", 3959 &CatchSwitch); 3960 3961 // The catchswitch instruction must be the first non-PHI instruction in the 3962 // block. 3963 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3964 "CatchSwitchInst not the first non-PHI instruction in the block.", 3965 &CatchSwitch); 3966 3967 auto *ParentPad = CatchSwitch.getParentPad(); 3968 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3969 "CatchSwitchInst has an invalid parent.", ParentPad); 3970 3971 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3972 Instruction *I = UnwindDest->getFirstNonPHI(); 3973 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3974 "CatchSwitchInst must unwind to an EH block which is not a " 3975 "landingpad.", 3976 &CatchSwitch); 3977 3978 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3979 if (getParentPad(I) == ParentPad) 3980 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3981 } 3982 3983 Assert(CatchSwitch.getNumHandlers() != 0, 3984 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3985 3986 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3987 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3988 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3989 } 3990 3991 visitEHPadPredecessors(CatchSwitch); 3992 visitTerminator(CatchSwitch); 3993 } 3994 3995 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3996 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3997 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3998 CRI.getOperand(0)); 3999 4000 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4001 Instruction *I = UnwindDest->getFirstNonPHI(); 4002 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4003 "CleanupReturnInst must unwind to an EH block which is not a " 4004 "landingpad.", 4005 &CRI); 4006 } 4007 4008 visitTerminator(CRI); 4009 } 4010 4011 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4012 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4013 // If the we have an invalid invoke, don't try to compute the dominance. 4014 // We already reject it in the invoke specific checks and the dominance 4015 // computation doesn't handle multiple edges. 4016 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4017 if (II->getNormalDest() == II->getUnwindDest()) 4018 return; 4019 } 4020 4021 // Quick check whether the def has already been encountered in the same block. 4022 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4023 // uses are defined to happen on the incoming edge, not at the instruction. 4024 // 4025 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4026 // wrapping an SSA value, assert that we've already encountered it. See 4027 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4028 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4029 return; 4030 4031 const Use &U = I.getOperandUse(i); 4032 Assert(DT.dominates(Op, U), 4033 "Instruction does not dominate all uses!", Op, &I); 4034 } 4035 4036 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4037 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4038 "apply only to pointer types", &I); 4039 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4040 "dereferenceable, dereferenceable_or_null apply only to load" 4041 " and inttoptr instructions, use attributes for calls or invokes", &I); 4042 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4043 "take one operand!", &I); 4044 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4045 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4046 "dereferenceable_or_null metadata value must be an i64!", &I); 4047 } 4048 4049 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4050 Assert(MD->getNumOperands() >= 2, 4051 "!prof annotations should have no less than 2 operands", MD); 4052 4053 // Check first operand. 4054 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4055 Assert(isa<MDString>(MD->getOperand(0)), 4056 "expected string with name of the !prof annotation", MD); 4057 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4058 StringRef ProfName = MDS->getString(); 4059 4060 // Check consistency of !prof branch_weights metadata. 4061 if (ProfName.equals("branch_weights")) { 4062 unsigned ExpectedNumOperands = 0; 4063 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4064 ExpectedNumOperands = BI->getNumSuccessors(); 4065 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4066 ExpectedNumOperands = SI->getNumSuccessors(); 4067 else if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) 4068 ExpectedNumOperands = 1; 4069 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4070 ExpectedNumOperands = IBI->getNumDestinations(); 4071 else if (isa<SelectInst>(&I)) 4072 ExpectedNumOperands = 2; 4073 else 4074 CheckFailed("!prof branch_weights are not allowed for this instruction", 4075 MD); 4076 4077 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4078 "Wrong number of operands", MD); 4079 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4080 auto &MDO = MD->getOperand(i); 4081 Assert(MDO, "second operand should not be null", MD); 4082 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4083 "!prof brunch_weights operand is not a const int"); 4084 } 4085 } 4086 } 4087 4088 /// verifyInstruction - Verify that an instruction is well formed. 4089 /// 4090 void Verifier::visitInstruction(Instruction &I) { 4091 BasicBlock *BB = I.getParent(); 4092 Assert(BB, "Instruction not embedded in basic block!", &I); 4093 4094 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4095 for (User *U : I.users()) { 4096 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4097 "Only PHI nodes may reference their own value!", &I); 4098 } 4099 } 4100 4101 // Check that void typed values don't have names 4102 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4103 "Instruction has a name, but provides a void value!", &I); 4104 4105 // Check that the return value of the instruction is either void or a legal 4106 // value type. 4107 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4108 "Instruction returns a non-scalar type!", &I); 4109 4110 // Check that the instruction doesn't produce metadata. Calls are already 4111 // checked against the callee type. 4112 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4113 "Invalid use of metadata!", &I); 4114 4115 // Check that all uses of the instruction, if they are instructions 4116 // themselves, actually have parent basic blocks. If the use is not an 4117 // instruction, it is an error! 4118 for (Use &U : I.uses()) { 4119 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4120 Assert(Used->getParent() != nullptr, 4121 "Instruction referencing" 4122 " instruction not embedded in a basic block!", 4123 &I, Used); 4124 else { 4125 CheckFailed("Use of instruction is not an instruction!", U); 4126 return; 4127 } 4128 } 4129 4130 // Get a pointer to the call base of the instruction if it is some form of 4131 // call. 4132 const CallBase *CBI = dyn_cast<CallBase>(&I); 4133 4134 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4135 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4136 4137 // Check to make sure that only first-class-values are operands to 4138 // instructions. 4139 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4140 Assert(false, "Instruction operands must be first-class values!", &I); 4141 } 4142 4143 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4144 // Check to make sure that the "address of" an intrinsic function is never 4145 // taken. 4146 Assert(!F->isIntrinsic() || 4147 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4148 "Cannot take the address of an intrinsic!", &I); 4149 Assert( 4150 !F->isIntrinsic() || isa<CallInst>(I) || 4151 F->getIntrinsicID() == Intrinsic::donothing || 4152 F->getIntrinsicID() == Intrinsic::coro_resume || 4153 F->getIntrinsicID() == Intrinsic::coro_destroy || 4154 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4155 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4156 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4157 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4158 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4159 "statepoint, coro_resume or coro_destroy", 4160 &I); 4161 Assert(F->getParent() == &M, "Referencing function in another module!", 4162 &I, &M, F, F->getParent()); 4163 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4164 Assert(OpBB->getParent() == BB->getParent(), 4165 "Referring to a basic block in another function!", &I); 4166 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4167 Assert(OpArg->getParent() == BB->getParent(), 4168 "Referring to an argument in another function!", &I); 4169 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4170 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4171 &M, GV, GV->getParent()); 4172 } else if (isa<Instruction>(I.getOperand(i))) { 4173 verifyDominatesUse(I, i); 4174 } else if (isa<InlineAsm>(I.getOperand(i))) { 4175 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4176 "Cannot take the address of an inline asm!", &I); 4177 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4178 if (CE->getType()->isPtrOrPtrVectorTy() || 4179 !DL.getNonIntegralAddressSpaces().empty()) { 4180 // If we have a ConstantExpr pointer, we need to see if it came from an 4181 // illegal bitcast. If the datalayout string specifies non-integral 4182 // address spaces then we also need to check for illegal ptrtoint and 4183 // inttoptr expressions. 4184 visitConstantExprsRecursively(CE); 4185 } 4186 } 4187 } 4188 4189 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4190 Assert(I.getType()->isFPOrFPVectorTy(), 4191 "fpmath requires a floating point result!", &I); 4192 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4193 if (ConstantFP *CFP0 = 4194 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4195 const APFloat &Accuracy = CFP0->getValueAPF(); 4196 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4197 "fpmath accuracy must have float type", &I); 4198 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4199 "fpmath accuracy not a positive number!", &I); 4200 } else { 4201 Assert(false, "invalid fpmath accuracy!", &I); 4202 } 4203 } 4204 4205 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4206 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4207 "Ranges are only for loads, calls and invokes!", &I); 4208 visitRangeMetadata(I, Range, I.getType()); 4209 } 4210 4211 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4212 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4213 &I); 4214 Assert(isa<LoadInst>(I), 4215 "nonnull applies only to load instructions, use attributes" 4216 " for calls or invokes", 4217 &I); 4218 } 4219 4220 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4221 visitDereferenceableMetadata(I, MD); 4222 4223 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4224 visitDereferenceableMetadata(I, MD); 4225 4226 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4227 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4228 4229 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4230 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4231 &I); 4232 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4233 "use attributes for calls or invokes", &I); 4234 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4235 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4236 Assert(CI && CI->getType()->isIntegerTy(64), 4237 "align metadata value must be an i64!", &I); 4238 uint64_t Align = CI->getZExtValue(); 4239 Assert(isPowerOf2_64(Align), 4240 "align metadata value must be a power of 2!", &I); 4241 Assert(Align <= Value::MaximumAlignment, 4242 "alignment is larger that implementation defined limit", &I); 4243 } 4244 4245 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4246 visitProfMetadata(I, MD); 4247 4248 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4249 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4250 visitMDNode(*N); 4251 } 4252 4253 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4254 verifyFragmentExpression(*DII); 4255 verifyNotEntryValue(*DII); 4256 } 4257 4258 InstsInThisBlock.insert(&I); 4259 } 4260 4261 /// Allow intrinsics to be verified in different ways. 4262 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4263 Function *IF = Call.getCalledFunction(); 4264 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4265 IF); 4266 4267 // Verify that the intrinsic prototype lines up with what the .td files 4268 // describe. 4269 FunctionType *IFTy = IF->getFunctionType(); 4270 bool IsVarArg = IFTy->isVarArg(); 4271 4272 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4273 getIntrinsicInfoTableEntries(ID, Table); 4274 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4275 4276 // Walk the descriptors to extract overloaded types. 4277 SmallVector<Type *, 4> ArgTys; 4278 Intrinsic::MatchIntrinsicTypesResult Res = 4279 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4280 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4281 "Intrinsic has incorrect return type!", IF); 4282 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4283 "Intrinsic has incorrect argument type!", IF); 4284 4285 // Verify if the intrinsic call matches the vararg property. 4286 if (IsVarArg) 4287 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4288 "Intrinsic was not defined with variable arguments!", IF); 4289 else 4290 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4291 "Callsite was not defined with variable arguments!", IF); 4292 4293 // All descriptors should be absorbed by now. 4294 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4295 4296 // Now that we have the intrinsic ID and the actual argument types (and we 4297 // know they are legal for the intrinsic!) get the intrinsic name through the 4298 // usual means. This allows us to verify the mangling of argument types into 4299 // the name. 4300 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4301 Assert(ExpectedName == IF->getName(), 4302 "Intrinsic name not mangled correctly for type arguments! " 4303 "Should be: " + 4304 ExpectedName, 4305 IF); 4306 4307 // If the intrinsic takes MDNode arguments, verify that they are either global 4308 // or are local to *this* function. 4309 for (Value *V : Call.args()) 4310 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4311 visitMetadataAsValue(*MD, Call.getCaller()); 4312 4313 switch (ID) { 4314 default: 4315 break; 4316 case Intrinsic::coro_id: { 4317 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4318 if (isa<ConstantPointerNull>(InfoArg)) 4319 break; 4320 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4321 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4322 "info argument of llvm.coro.begin must refer to an initialized " 4323 "constant"); 4324 Constant *Init = GV->getInitializer(); 4325 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4326 "info argument of llvm.coro.begin must refer to either a struct or " 4327 "an array"); 4328 break; 4329 } 4330 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC, DAGN) \ 4331 case Intrinsic::INTRINSIC: 4332 #include "llvm/IR/ConstrainedOps.def" 4333 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4334 break; 4335 case Intrinsic::dbg_declare: // llvm.dbg.declare 4336 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4337 "invalid llvm.dbg.declare intrinsic call 1", Call); 4338 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4339 break; 4340 case Intrinsic::dbg_addr: // llvm.dbg.addr 4341 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4342 break; 4343 case Intrinsic::dbg_value: // llvm.dbg.value 4344 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4345 break; 4346 case Intrinsic::dbg_label: // llvm.dbg.label 4347 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4348 break; 4349 case Intrinsic::memcpy: 4350 case Intrinsic::memmove: 4351 case Intrinsic::memset: { 4352 const auto *MI = cast<MemIntrinsic>(&Call); 4353 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4354 return Alignment == 0 || isPowerOf2_32(Alignment); 4355 }; 4356 Assert(IsValidAlignment(MI->getDestAlignment()), 4357 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4358 Call); 4359 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4360 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4361 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4362 Call); 4363 } 4364 4365 break; 4366 } 4367 case Intrinsic::memcpy_element_unordered_atomic: 4368 case Intrinsic::memmove_element_unordered_atomic: 4369 case Intrinsic::memset_element_unordered_atomic: { 4370 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4371 4372 ConstantInt *ElementSizeCI = 4373 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4374 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4375 Assert(ElementSizeVal.isPowerOf2(), 4376 "element size of the element-wise atomic memory intrinsic " 4377 "must be a power of 2", 4378 Call); 4379 4380 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4381 uint64_t Length = LengthCI->getZExtValue(); 4382 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4383 Assert((Length % ElementSize) == 0, 4384 "constant length must be a multiple of the element size in the " 4385 "element-wise atomic memory intrinsic", 4386 Call); 4387 } 4388 4389 auto IsValidAlignment = [&](uint64_t Alignment) { 4390 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4391 }; 4392 uint64_t DstAlignment = AMI->getDestAlignment(); 4393 Assert(IsValidAlignment(DstAlignment), 4394 "incorrect alignment of the destination argument", Call); 4395 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4396 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4397 Assert(IsValidAlignment(SrcAlignment), 4398 "incorrect alignment of the source argument", Call); 4399 } 4400 break; 4401 } 4402 case Intrinsic::gcroot: 4403 case Intrinsic::gcwrite: 4404 case Intrinsic::gcread: 4405 if (ID == Intrinsic::gcroot) { 4406 AllocaInst *AI = 4407 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4408 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4409 Assert(isa<Constant>(Call.getArgOperand(1)), 4410 "llvm.gcroot parameter #2 must be a constant.", Call); 4411 if (!AI->getAllocatedType()->isPointerTy()) { 4412 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4413 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4414 "or argument #2 must be a non-null constant.", 4415 Call); 4416 } 4417 } 4418 4419 Assert(Call.getParent()->getParent()->hasGC(), 4420 "Enclosing function does not use GC.", Call); 4421 break; 4422 case Intrinsic::init_trampoline: 4423 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4424 "llvm.init_trampoline parameter #2 must resolve to a function.", 4425 Call); 4426 break; 4427 case Intrinsic::prefetch: 4428 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4429 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4430 "invalid arguments to llvm.prefetch", Call); 4431 break; 4432 case Intrinsic::stackprotector: 4433 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4434 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4435 break; 4436 case Intrinsic::localescape: { 4437 BasicBlock *BB = Call.getParent(); 4438 Assert(BB == &BB->getParent()->front(), 4439 "llvm.localescape used outside of entry block", Call); 4440 Assert(!SawFrameEscape, 4441 "multiple calls to llvm.localescape in one function", Call); 4442 for (Value *Arg : Call.args()) { 4443 if (isa<ConstantPointerNull>(Arg)) 4444 continue; // Null values are allowed as placeholders. 4445 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4446 Assert(AI && AI->isStaticAlloca(), 4447 "llvm.localescape only accepts static allocas", Call); 4448 } 4449 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4450 SawFrameEscape = true; 4451 break; 4452 } 4453 case Intrinsic::localrecover: { 4454 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4455 Function *Fn = dyn_cast<Function>(FnArg); 4456 Assert(Fn && !Fn->isDeclaration(), 4457 "llvm.localrecover first " 4458 "argument must be function defined in this module", 4459 Call); 4460 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4461 auto &Entry = FrameEscapeInfo[Fn]; 4462 Entry.second = unsigned( 4463 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4464 break; 4465 } 4466 4467 case Intrinsic::experimental_gc_statepoint: 4468 if (auto *CI = dyn_cast<CallInst>(&Call)) 4469 Assert(!CI->isInlineAsm(), 4470 "gc.statepoint support for inline assembly unimplemented", CI); 4471 Assert(Call.getParent()->getParent()->hasGC(), 4472 "Enclosing function does not use GC.", Call); 4473 4474 verifyStatepoint(Call); 4475 break; 4476 case Intrinsic::experimental_gc_result: { 4477 Assert(Call.getParent()->getParent()->hasGC(), 4478 "Enclosing function does not use GC.", Call); 4479 // Are we tied to a statepoint properly? 4480 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4481 const Function *StatepointFn = 4482 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4483 Assert(StatepointFn && StatepointFn->isDeclaration() && 4484 StatepointFn->getIntrinsicID() == 4485 Intrinsic::experimental_gc_statepoint, 4486 "gc.result operand #1 must be from a statepoint", Call, 4487 Call.getArgOperand(0)); 4488 4489 // Assert that result type matches wrapped callee. 4490 const Value *Target = StatepointCall->getArgOperand(2); 4491 auto *PT = cast<PointerType>(Target->getType()); 4492 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4493 Assert(Call.getType() == TargetFuncType->getReturnType(), 4494 "gc.result result type does not match wrapped callee", Call); 4495 break; 4496 } 4497 case Intrinsic::experimental_gc_relocate: { 4498 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4499 4500 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4501 "gc.relocate must return a pointer or a vector of pointers", Call); 4502 4503 // Check that this relocate is correctly tied to the statepoint 4504 4505 // This is case for relocate on the unwinding path of an invoke statepoint 4506 if (LandingPadInst *LandingPad = 4507 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4508 4509 const BasicBlock *InvokeBB = 4510 LandingPad->getParent()->getUniquePredecessor(); 4511 4512 // Landingpad relocates should have only one predecessor with invoke 4513 // statepoint terminator 4514 Assert(InvokeBB, "safepoints should have unique landingpads", 4515 LandingPad->getParent()); 4516 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4517 InvokeBB); 4518 Assert(isStatepoint(InvokeBB->getTerminator()), 4519 "gc relocate should be linked to a statepoint", InvokeBB); 4520 } else { 4521 // In all other cases relocate should be tied to the statepoint directly. 4522 // This covers relocates on a normal return path of invoke statepoint and 4523 // relocates of a call statepoint. 4524 auto Token = Call.getArgOperand(0); 4525 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4526 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4527 } 4528 4529 // Verify rest of the relocate arguments. 4530 const CallBase &StatepointCall = 4531 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4532 4533 // Both the base and derived must be piped through the safepoint. 4534 Value *Base = Call.getArgOperand(1); 4535 Assert(isa<ConstantInt>(Base), 4536 "gc.relocate operand #2 must be integer offset", Call); 4537 4538 Value *Derived = Call.getArgOperand(2); 4539 Assert(isa<ConstantInt>(Derived), 4540 "gc.relocate operand #3 must be integer offset", Call); 4541 4542 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4543 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4544 // Check the bounds 4545 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4546 "gc.relocate: statepoint base index out of bounds", Call); 4547 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4548 "gc.relocate: statepoint derived index out of bounds", Call); 4549 4550 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4551 // section of the statepoint's argument. 4552 Assert(StatepointCall.arg_size() > 0, 4553 "gc.statepoint: insufficient arguments"); 4554 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4555 "gc.statement: number of call arguments must be constant integer"); 4556 const unsigned NumCallArgs = 4557 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4558 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4559 "gc.statepoint: mismatch in number of call arguments"); 4560 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4561 "gc.statepoint: number of transition arguments must be " 4562 "a constant integer"); 4563 const int NumTransitionArgs = 4564 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4565 ->getZExtValue(); 4566 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4567 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4568 "gc.statepoint: number of deoptimization arguments must be " 4569 "a constant integer"); 4570 const int NumDeoptArgs = 4571 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4572 ->getZExtValue(); 4573 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4574 const int GCParamArgsEnd = StatepointCall.arg_size(); 4575 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4576 "gc.relocate: statepoint base index doesn't fall within the " 4577 "'gc parameters' section of the statepoint call", 4578 Call); 4579 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4580 "gc.relocate: statepoint derived index doesn't fall within the " 4581 "'gc parameters' section of the statepoint call", 4582 Call); 4583 4584 // Relocated value must be either a pointer type or vector-of-pointer type, 4585 // but gc_relocate does not need to return the same pointer type as the 4586 // relocated pointer. It can be casted to the correct type later if it's 4587 // desired. However, they must have the same address space and 'vectorness' 4588 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4589 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4590 "gc.relocate: relocated value must be a gc pointer", Call); 4591 4592 auto ResultType = Call.getType(); 4593 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4594 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4595 "gc.relocate: vector relocates to vector and pointer to pointer", 4596 Call); 4597 Assert( 4598 ResultType->getPointerAddressSpace() == 4599 DerivedType->getPointerAddressSpace(), 4600 "gc.relocate: relocating a pointer shouldn't change its address space", 4601 Call); 4602 break; 4603 } 4604 case Intrinsic::eh_exceptioncode: 4605 case Intrinsic::eh_exceptionpointer: { 4606 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4607 "eh.exceptionpointer argument must be a catchpad", Call); 4608 break; 4609 } 4610 case Intrinsic::masked_load: { 4611 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4612 Call); 4613 4614 Value *Ptr = Call.getArgOperand(0); 4615 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4616 Value *Mask = Call.getArgOperand(2); 4617 Value *PassThru = Call.getArgOperand(3); 4618 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4619 Call); 4620 Assert(Alignment->getValue().isPowerOf2(), 4621 "masked_load: alignment must be a power of 2", Call); 4622 4623 // DataTy is the overloaded type 4624 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4625 Assert(DataTy == Call.getType(), 4626 "masked_load: return must match pointer type", Call); 4627 Assert(PassThru->getType() == DataTy, 4628 "masked_load: pass through and data type must match", Call); 4629 Assert(Mask->getType()->getVectorNumElements() == 4630 DataTy->getVectorNumElements(), 4631 "masked_load: vector mask must be same length as data", Call); 4632 break; 4633 } 4634 case Intrinsic::masked_store: { 4635 Value *Val = Call.getArgOperand(0); 4636 Value *Ptr = Call.getArgOperand(1); 4637 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4638 Value *Mask = Call.getArgOperand(3); 4639 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4640 Call); 4641 Assert(Alignment->getValue().isPowerOf2(), 4642 "masked_store: alignment must be a power of 2", Call); 4643 4644 // DataTy is the overloaded type 4645 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4646 Assert(DataTy == Val->getType(), 4647 "masked_store: storee must match pointer type", Call); 4648 Assert(Mask->getType()->getVectorNumElements() == 4649 DataTy->getVectorNumElements(), 4650 "masked_store: vector mask must be same length as data", Call); 4651 break; 4652 } 4653 4654 case Intrinsic::experimental_guard: { 4655 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4656 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4657 "experimental_guard must have exactly one " 4658 "\"deopt\" operand bundle"); 4659 break; 4660 } 4661 4662 case Intrinsic::experimental_deoptimize: { 4663 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4664 Call); 4665 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4666 "experimental_deoptimize must have exactly one " 4667 "\"deopt\" operand bundle"); 4668 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4669 "experimental_deoptimize return type must match caller return type"); 4670 4671 if (isa<CallInst>(Call)) { 4672 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4673 Assert(RI, 4674 "calls to experimental_deoptimize must be followed by a return"); 4675 4676 if (!Call.getType()->isVoidTy() && RI) 4677 Assert(RI->getReturnValue() == &Call, 4678 "calls to experimental_deoptimize must be followed by a return " 4679 "of the value computed by experimental_deoptimize"); 4680 } 4681 4682 break; 4683 } 4684 case Intrinsic::sadd_sat: 4685 case Intrinsic::uadd_sat: 4686 case Intrinsic::ssub_sat: 4687 case Intrinsic::usub_sat: { 4688 Value *Op1 = Call.getArgOperand(0); 4689 Value *Op2 = Call.getArgOperand(1); 4690 Assert(Op1->getType()->isIntOrIntVectorTy(), 4691 "first operand of [us][add|sub]_sat must be an int type or vector " 4692 "of ints"); 4693 Assert(Op2->getType()->isIntOrIntVectorTy(), 4694 "second operand of [us][add|sub]_sat must be an int type or vector " 4695 "of ints"); 4696 break; 4697 } 4698 case Intrinsic::smul_fix: 4699 case Intrinsic::smul_fix_sat: 4700 case Intrinsic::umul_fix: 4701 case Intrinsic::umul_fix_sat: 4702 case Intrinsic::sdiv_fix: 4703 case Intrinsic::udiv_fix: { 4704 Value *Op1 = Call.getArgOperand(0); 4705 Value *Op2 = Call.getArgOperand(1); 4706 Assert(Op1->getType()->isIntOrIntVectorTy(), 4707 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 4708 "vector of ints"); 4709 Assert(Op2->getType()->isIntOrIntVectorTy(), 4710 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 4711 "vector of ints"); 4712 4713 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4714 Assert(Op3->getType()->getBitWidth() <= 32, 4715 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 4716 4717 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 4718 ID == Intrinsic::sdiv_fix) { 4719 Assert( 4720 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4721 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 4722 "the operands"); 4723 } else { 4724 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4725 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 4726 "to the width of the operands"); 4727 } 4728 break; 4729 } 4730 case Intrinsic::lround: 4731 case Intrinsic::llround: 4732 case Intrinsic::lrint: 4733 case Intrinsic::llrint: { 4734 Type *ValTy = Call.getArgOperand(0)->getType(); 4735 Type *ResultTy = Call.getType(); 4736 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4737 "Intrinsic does not support vectors", &Call); 4738 break; 4739 } 4740 }; 4741 } 4742 4743 /// Carefully grab the subprogram from a local scope. 4744 /// 4745 /// This carefully grabs the subprogram from a local scope, avoiding the 4746 /// built-in assertions that would typically fire. 4747 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4748 if (!LocalScope) 4749 return nullptr; 4750 4751 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4752 return SP; 4753 4754 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4755 return getSubprogram(LB->getRawScope()); 4756 4757 // Just return null; broken scope chains are checked elsewhere. 4758 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4759 return nullptr; 4760 } 4761 4762 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4763 unsigned NumOperands; 4764 bool HasRoundingMD; 4765 switch (FPI.getIntrinsicID()) { 4766 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 4767 case Intrinsic::INTRINSIC: \ 4768 NumOperands = NARG; \ 4769 HasRoundingMD = ROUND_MODE; \ 4770 break; 4771 #include "llvm/IR/ConstrainedOps.def" 4772 default: 4773 llvm_unreachable("Invalid constrained FP intrinsic!"); 4774 } 4775 NumOperands += (1 + HasRoundingMD); 4776 // Compare intrinsics carry an extra predicate metadata operand. 4777 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 4778 NumOperands += 1; 4779 Assert((FPI.getNumArgOperands() == NumOperands), 4780 "invalid arguments for constrained FP intrinsic", &FPI); 4781 4782 switch (FPI.getIntrinsicID()) { 4783 case Intrinsic::experimental_constrained_lrint: 4784 case Intrinsic::experimental_constrained_llrint: { 4785 Type *ValTy = FPI.getArgOperand(0)->getType(); 4786 Type *ResultTy = FPI.getType(); 4787 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4788 "Intrinsic does not support vectors", &FPI); 4789 } 4790 break; 4791 4792 case Intrinsic::experimental_constrained_lround: 4793 case Intrinsic::experimental_constrained_llround: { 4794 Type *ValTy = FPI.getArgOperand(0)->getType(); 4795 Type *ResultTy = FPI.getType(); 4796 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4797 "Intrinsic does not support vectors", &FPI); 4798 break; 4799 } 4800 4801 case Intrinsic::experimental_constrained_fcmp: 4802 case Intrinsic::experimental_constrained_fcmps: { 4803 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 4804 Assert(CmpInst::isFPPredicate(Pred), 4805 "invalid predicate for constrained FP comparison intrinsic", &FPI); 4806 break; 4807 } 4808 4809 case Intrinsic::experimental_constrained_fptosi: 4810 case Intrinsic::experimental_constrained_fptoui: { 4811 Value *Operand = FPI.getArgOperand(0); 4812 uint64_t NumSrcElem = 0; 4813 Assert(Operand->getType()->isFPOrFPVectorTy(), 4814 "Intrinsic first argument must be floating point", &FPI); 4815 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4816 NumSrcElem = OperandT->getNumElements(); 4817 } 4818 4819 Operand = &FPI; 4820 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 4821 "Intrinsic first argument and result disagree on vector use", &FPI); 4822 Assert(Operand->getType()->isIntOrIntVectorTy(), 4823 "Intrinsic result must be an integer", &FPI); 4824 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4825 Assert(NumSrcElem == OperandT->getNumElements(), 4826 "Intrinsic first argument and result vector lengths must be equal", 4827 &FPI); 4828 } 4829 } 4830 break; 4831 4832 case Intrinsic::experimental_constrained_sitofp: 4833 case Intrinsic::experimental_constrained_uitofp: { 4834 Value *Operand = FPI.getArgOperand(0); 4835 uint64_t NumSrcElem = 0; 4836 Assert(Operand->getType()->isIntOrIntVectorTy(), 4837 "Intrinsic first argument must be integer", &FPI); 4838 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4839 NumSrcElem = OperandT->getNumElements(); 4840 } 4841 4842 Operand = &FPI; 4843 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 4844 "Intrinsic first argument and result disagree on vector use", &FPI); 4845 Assert(Operand->getType()->isFPOrFPVectorTy(), 4846 "Intrinsic result must be a floating point", &FPI); 4847 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4848 Assert(NumSrcElem == OperandT->getNumElements(), 4849 "Intrinsic first argument and result vector lengths must be equal", 4850 &FPI); 4851 } 4852 } break; 4853 4854 case Intrinsic::experimental_constrained_fptrunc: 4855 case Intrinsic::experimental_constrained_fpext: { 4856 Value *Operand = FPI.getArgOperand(0); 4857 Type *OperandTy = Operand->getType(); 4858 Value *Result = &FPI; 4859 Type *ResultTy = Result->getType(); 4860 Assert(OperandTy->isFPOrFPVectorTy(), 4861 "Intrinsic first argument must be FP or FP vector", &FPI); 4862 Assert(ResultTy->isFPOrFPVectorTy(), 4863 "Intrinsic result must be FP or FP vector", &FPI); 4864 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 4865 "Intrinsic first argument and result disagree on vector use", &FPI); 4866 if (OperandTy->isVectorTy()) { 4867 auto *OperandVecTy = cast<VectorType>(OperandTy); 4868 auto *ResultVecTy = cast<VectorType>(ResultTy); 4869 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 4870 "Intrinsic first argument and result vector lengths must be equal", 4871 &FPI); 4872 } 4873 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4874 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 4875 "Intrinsic first argument's type must be larger than result type", 4876 &FPI); 4877 } else { 4878 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 4879 "Intrinsic first argument's type must be smaller than result type", 4880 &FPI); 4881 } 4882 } 4883 break; 4884 4885 default: 4886 break; 4887 } 4888 4889 // If a non-metadata argument is passed in a metadata slot then the 4890 // error will be caught earlier when the incorrect argument doesn't 4891 // match the specification in the intrinsic call table. Thus, no 4892 // argument type check is needed here. 4893 4894 Assert(FPI.getExceptionBehavior().hasValue(), 4895 "invalid exception behavior argument", &FPI); 4896 if (HasRoundingMD) { 4897 Assert(FPI.getRoundingMode().hasValue(), 4898 "invalid rounding mode argument", &FPI); 4899 } 4900 } 4901 4902 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4903 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4904 AssertDI(isa<ValueAsMetadata>(MD) || 4905 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4906 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4907 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4908 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4909 DII.getRawVariable()); 4910 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4911 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4912 DII.getRawExpression()); 4913 4914 // Ignore broken !dbg attachments; they're checked elsewhere. 4915 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4916 if (!isa<DILocation>(N)) 4917 return; 4918 4919 BasicBlock *BB = DII.getParent(); 4920 Function *F = BB ? BB->getParent() : nullptr; 4921 4922 // The scopes for variables and !dbg attachments must agree. 4923 DILocalVariable *Var = DII.getVariable(); 4924 DILocation *Loc = DII.getDebugLoc(); 4925 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4926 &DII, BB, F); 4927 4928 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4929 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4930 if (!VarSP || !LocSP) 4931 return; // Broken scope chains are checked elsewhere. 4932 4933 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4934 " variable and !dbg attachment", 4935 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4936 Loc->getScope()->getSubprogram()); 4937 4938 // This check is redundant with one in visitLocalVariable(). 4939 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4940 Var->getRawType()); 4941 verifyFnArgs(DII); 4942 } 4943 4944 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4945 AssertDI(isa<DILabel>(DLI.getRawLabel()), 4946 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4947 DLI.getRawLabel()); 4948 4949 // Ignore broken !dbg attachments; they're checked elsewhere. 4950 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4951 if (!isa<DILocation>(N)) 4952 return; 4953 4954 BasicBlock *BB = DLI.getParent(); 4955 Function *F = BB ? BB->getParent() : nullptr; 4956 4957 // The scopes for variables and !dbg attachments must agree. 4958 DILabel *Label = DLI.getLabel(); 4959 DILocation *Loc = DLI.getDebugLoc(); 4960 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4961 &DLI, BB, F); 4962 4963 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4964 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4965 if (!LabelSP || !LocSP) 4966 return; 4967 4968 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4969 " label and !dbg attachment", 4970 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4971 Loc->getScope()->getSubprogram()); 4972 } 4973 4974 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 4975 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4976 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4977 4978 // We don't know whether this intrinsic verified correctly. 4979 if (!V || !E || !E->isValid()) 4980 return; 4981 4982 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4983 auto Fragment = E->getFragmentInfo(); 4984 if (!Fragment) 4985 return; 4986 4987 // The frontend helps out GDB by emitting the members of local anonymous 4988 // unions as artificial local variables with shared storage. When SROA splits 4989 // the storage for artificial local variables that are smaller than the entire 4990 // union, the overhang piece will be outside of the allotted space for the 4991 // variable and this check fails. 4992 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4993 if (V->isArtificial()) 4994 return; 4995 4996 verifyFragmentExpression(*V, *Fragment, &I); 4997 } 4998 4999 template <typename ValueOrMetadata> 5000 void Verifier::verifyFragmentExpression(const DIVariable &V, 5001 DIExpression::FragmentInfo Fragment, 5002 ValueOrMetadata *Desc) { 5003 // If there's no size, the type is broken, but that should be checked 5004 // elsewhere. 5005 auto VarSize = V.getSizeInBits(); 5006 if (!VarSize) 5007 return; 5008 5009 unsigned FragSize = Fragment.SizeInBits; 5010 unsigned FragOffset = Fragment.OffsetInBits; 5011 AssertDI(FragSize + FragOffset <= *VarSize, 5012 "fragment is larger than or outside of variable", Desc, &V); 5013 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5014 } 5015 5016 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5017 // This function does not take the scope of noninlined function arguments into 5018 // account. Don't run it if current function is nodebug, because it may 5019 // contain inlined debug intrinsics. 5020 if (!HasDebugInfo) 5021 return; 5022 5023 // For performance reasons only check non-inlined ones. 5024 if (I.getDebugLoc()->getInlinedAt()) 5025 return; 5026 5027 DILocalVariable *Var = I.getVariable(); 5028 AssertDI(Var, "dbg intrinsic without variable"); 5029 5030 unsigned ArgNo = Var->getArg(); 5031 if (!ArgNo) 5032 return; 5033 5034 // Verify there are no duplicate function argument debug info entries. 5035 // These will cause hard-to-debug assertions in the DWARF backend. 5036 if (DebugFnArgs.size() < ArgNo) 5037 DebugFnArgs.resize(ArgNo, nullptr); 5038 5039 auto *Prev = DebugFnArgs[ArgNo - 1]; 5040 DebugFnArgs[ArgNo - 1] = Var; 5041 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5042 Prev, Var); 5043 } 5044 5045 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5046 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5047 5048 // We don't know whether this intrinsic verified correctly. 5049 if (!E || !E->isValid()) 5050 return; 5051 5052 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5053 } 5054 5055 void Verifier::verifyCompileUnits() { 5056 // When more than one Module is imported into the same context, such as during 5057 // an LTO build before linking the modules, ODR type uniquing may cause types 5058 // to point to a different CU. This check does not make sense in this case. 5059 if (M.getContext().isODRUniquingDebugTypes()) 5060 return; 5061 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5062 SmallPtrSet<const Metadata *, 2> Listed; 5063 if (CUs) 5064 Listed.insert(CUs->op_begin(), CUs->op_end()); 5065 for (auto *CU : CUVisited) 5066 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5067 CUVisited.clear(); 5068 } 5069 5070 void Verifier::verifyDeoptimizeCallingConvs() { 5071 if (DeoptimizeDeclarations.empty()) 5072 return; 5073 5074 const Function *First = DeoptimizeDeclarations[0]; 5075 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5076 Assert(First->getCallingConv() == F->getCallingConv(), 5077 "All llvm.experimental.deoptimize declarations must have the same " 5078 "calling convention", 5079 First, F); 5080 } 5081 } 5082 5083 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5084 bool HasSource = F.getSource().hasValue(); 5085 if (!HasSourceDebugInfo.count(&U)) 5086 HasSourceDebugInfo[&U] = HasSource; 5087 AssertDI(HasSource == HasSourceDebugInfo[&U], 5088 "inconsistent use of embedded source"); 5089 } 5090 5091 //===----------------------------------------------------------------------===// 5092 // Implement the public interfaces to this file... 5093 //===----------------------------------------------------------------------===// 5094 5095 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5096 Function &F = const_cast<Function &>(f); 5097 5098 // Don't use a raw_null_ostream. Printing IR is expensive. 5099 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5100 5101 // Note that this function's return value is inverted from what you would 5102 // expect of a function called "verify". 5103 return !V.verify(F); 5104 } 5105 5106 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5107 bool *BrokenDebugInfo) { 5108 // Don't use a raw_null_ostream. Printing IR is expensive. 5109 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5110 5111 bool Broken = false; 5112 for (const Function &F : M) 5113 Broken |= !V.verify(F); 5114 5115 Broken |= !V.verify(); 5116 if (BrokenDebugInfo) 5117 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5118 // Note that this function's return value is inverted from what you would 5119 // expect of a function called "verify". 5120 return Broken; 5121 } 5122 5123 namespace { 5124 5125 struct VerifierLegacyPass : public FunctionPass { 5126 static char ID; 5127 5128 std::unique_ptr<Verifier> V; 5129 bool FatalErrors = true; 5130 5131 VerifierLegacyPass() : FunctionPass(ID) { 5132 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5133 } 5134 explicit VerifierLegacyPass(bool FatalErrors) 5135 : FunctionPass(ID), 5136 FatalErrors(FatalErrors) { 5137 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5138 } 5139 5140 bool doInitialization(Module &M) override { 5141 V = std::make_unique<Verifier>( 5142 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5143 return false; 5144 } 5145 5146 bool runOnFunction(Function &F) override { 5147 if (!V->verify(F) && FatalErrors) { 5148 errs() << "in function " << F.getName() << '\n'; 5149 report_fatal_error("Broken function found, compilation aborted!"); 5150 } 5151 return false; 5152 } 5153 5154 bool doFinalization(Module &M) override { 5155 bool HasErrors = false; 5156 for (Function &F : M) 5157 if (F.isDeclaration()) 5158 HasErrors |= !V->verify(F); 5159 5160 HasErrors |= !V->verify(); 5161 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5162 report_fatal_error("Broken module found, compilation aborted!"); 5163 return false; 5164 } 5165 5166 void getAnalysisUsage(AnalysisUsage &AU) const override { 5167 AU.setPreservesAll(); 5168 } 5169 }; 5170 5171 } // end anonymous namespace 5172 5173 /// Helper to issue failure from the TBAA verification 5174 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5175 if (Diagnostic) 5176 return Diagnostic->CheckFailed(Args...); 5177 } 5178 5179 #define AssertTBAA(C, ...) \ 5180 do { \ 5181 if (!(C)) { \ 5182 CheckFailed(__VA_ARGS__); \ 5183 return false; \ 5184 } \ 5185 } while (false) 5186 5187 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5188 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5189 /// struct-type node describing an aggregate data structure (like a struct). 5190 TBAAVerifier::TBAABaseNodeSummary 5191 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5192 bool IsNewFormat) { 5193 if (BaseNode->getNumOperands() < 2) { 5194 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5195 return {true, ~0u}; 5196 } 5197 5198 auto Itr = TBAABaseNodes.find(BaseNode); 5199 if (Itr != TBAABaseNodes.end()) 5200 return Itr->second; 5201 5202 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5203 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5204 (void)InsertResult; 5205 assert(InsertResult.second && "We just checked!"); 5206 return Result; 5207 } 5208 5209 TBAAVerifier::TBAABaseNodeSummary 5210 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5211 bool IsNewFormat) { 5212 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5213 5214 if (BaseNode->getNumOperands() == 2) { 5215 // Scalar nodes can only be accessed at offset 0. 5216 return isValidScalarTBAANode(BaseNode) 5217 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5218 : InvalidNode; 5219 } 5220 5221 if (IsNewFormat) { 5222 if (BaseNode->getNumOperands() % 3 != 0) { 5223 CheckFailed("Access tag nodes must have the number of operands that is a " 5224 "multiple of 3!", BaseNode); 5225 return InvalidNode; 5226 } 5227 } else { 5228 if (BaseNode->getNumOperands() % 2 != 1) { 5229 CheckFailed("Struct tag nodes must have an odd number of operands!", 5230 BaseNode); 5231 return InvalidNode; 5232 } 5233 } 5234 5235 // Check the type size field. 5236 if (IsNewFormat) { 5237 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5238 BaseNode->getOperand(1)); 5239 if (!TypeSizeNode) { 5240 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5241 return InvalidNode; 5242 } 5243 } 5244 5245 // Check the type name field. In the new format it can be anything. 5246 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5247 CheckFailed("Struct tag nodes have a string as their first operand", 5248 BaseNode); 5249 return InvalidNode; 5250 } 5251 5252 bool Failed = false; 5253 5254 Optional<APInt> PrevOffset; 5255 unsigned BitWidth = ~0u; 5256 5257 // We've already checked that BaseNode is not a degenerate root node with one 5258 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5259 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5260 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5261 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5262 Idx += NumOpsPerField) { 5263 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5264 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5265 if (!isa<MDNode>(FieldTy)) { 5266 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5267 Failed = true; 5268 continue; 5269 } 5270 5271 auto *OffsetEntryCI = 5272 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5273 if (!OffsetEntryCI) { 5274 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5275 Failed = true; 5276 continue; 5277 } 5278 5279 if (BitWidth == ~0u) 5280 BitWidth = OffsetEntryCI->getBitWidth(); 5281 5282 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5283 CheckFailed( 5284 "Bitwidth between the offsets and struct type entries must match", &I, 5285 BaseNode); 5286 Failed = true; 5287 continue; 5288 } 5289 5290 // NB! As far as I can tell, we generate a non-strictly increasing offset 5291 // sequence only from structs that have zero size bit fields. When 5292 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5293 // pick the field lexically the latest in struct type metadata node. This 5294 // mirrors the actual behavior of the alias analysis implementation. 5295 bool IsAscending = 5296 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5297 5298 if (!IsAscending) { 5299 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5300 Failed = true; 5301 } 5302 5303 PrevOffset = OffsetEntryCI->getValue(); 5304 5305 if (IsNewFormat) { 5306 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5307 BaseNode->getOperand(Idx + 2)); 5308 if (!MemberSizeNode) { 5309 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5310 Failed = true; 5311 continue; 5312 } 5313 } 5314 } 5315 5316 return Failed ? InvalidNode 5317 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5318 } 5319 5320 static bool IsRootTBAANode(const MDNode *MD) { 5321 return MD->getNumOperands() < 2; 5322 } 5323 5324 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5325 SmallPtrSetImpl<const MDNode *> &Visited) { 5326 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5327 return false; 5328 5329 if (!isa<MDString>(MD->getOperand(0))) 5330 return false; 5331 5332 if (MD->getNumOperands() == 3) { 5333 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5334 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5335 return false; 5336 } 5337 5338 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5339 return Parent && Visited.insert(Parent).second && 5340 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5341 } 5342 5343 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5344 auto ResultIt = TBAAScalarNodes.find(MD); 5345 if (ResultIt != TBAAScalarNodes.end()) 5346 return ResultIt->second; 5347 5348 SmallPtrSet<const MDNode *, 4> Visited; 5349 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5350 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5351 (void)InsertResult; 5352 assert(InsertResult.second && "Just checked!"); 5353 5354 return Result; 5355 } 5356 5357 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5358 /// Offset in place to be the offset within the field node returned. 5359 /// 5360 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5361 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5362 const MDNode *BaseNode, 5363 APInt &Offset, 5364 bool IsNewFormat) { 5365 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5366 5367 // Scalar nodes have only one possible "field" -- their parent in the access 5368 // hierarchy. Offset must be zero at this point, but our caller is supposed 5369 // to Assert that. 5370 if (BaseNode->getNumOperands() == 2) 5371 return cast<MDNode>(BaseNode->getOperand(1)); 5372 5373 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5374 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5375 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5376 Idx += NumOpsPerField) { 5377 auto *OffsetEntryCI = 5378 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5379 if (OffsetEntryCI->getValue().ugt(Offset)) { 5380 if (Idx == FirstFieldOpNo) { 5381 CheckFailed("Could not find TBAA parent in struct type node", &I, 5382 BaseNode, &Offset); 5383 return nullptr; 5384 } 5385 5386 unsigned PrevIdx = Idx - NumOpsPerField; 5387 auto *PrevOffsetEntryCI = 5388 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5389 Offset -= PrevOffsetEntryCI->getValue(); 5390 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5391 } 5392 } 5393 5394 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5395 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5396 BaseNode->getOperand(LastIdx + 1)); 5397 Offset -= LastOffsetEntryCI->getValue(); 5398 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5399 } 5400 5401 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5402 if (!Type || Type->getNumOperands() < 3) 5403 return false; 5404 5405 // In the new format type nodes shall have a reference to the parent type as 5406 // its first operand. 5407 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5408 if (!Parent) 5409 return false; 5410 5411 return true; 5412 } 5413 5414 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5415 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5416 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5417 isa<AtomicCmpXchgInst>(I), 5418 "This instruction shall not have a TBAA access tag!", &I); 5419 5420 bool IsStructPathTBAA = 5421 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5422 5423 AssertTBAA( 5424 IsStructPathTBAA, 5425 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5426 5427 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5428 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5429 5430 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5431 5432 if (IsNewFormat) { 5433 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5434 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5435 } else { 5436 AssertTBAA(MD->getNumOperands() < 5, 5437 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5438 } 5439 5440 // Check the access size field. 5441 if (IsNewFormat) { 5442 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5443 MD->getOperand(3)); 5444 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5445 } 5446 5447 // Check the immutability flag. 5448 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5449 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5450 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5451 MD->getOperand(ImmutabilityFlagOpNo)); 5452 AssertTBAA(IsImmutableCI, 5453 "Immutability tag on struct tag metadata must be a constant", 5454 &I, MD); 5455 AssertTBAA( 5456 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5457 "Immutability part of the struct tag metadata must be either 0 or 1", 5458 &I, MD); 5459 } 5460 5461 AssertTBAA(BaseNode && AccessType, 5462 "Malformed struct tag metadata: base and access-type " 5463 "should be non-null and point to Metadata nodes", 5464 &I, MD, BaseNode, AccessType); 5465 5466 if (!IsNewFormat) { 5467 AssertTBAA(isValidScalarTBAANode(AccessType), 5468 "Access type node must be a valid scalar type", &I, MD, 5469 AccessType); 5470 } 5471 5472 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5473 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5474 5475 APInt Offset = OffsetCI->getValue(); 5476 bool SeenAccessTypeInPath = false; 5477 5478 SmallPtrSet<MDNode *, 4> StructPath; 5479 5480 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5481 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5482 IsNewFormat)) { 5483 if (!StructPath.insert(BaseNode).second) { 5484 CheckFailed("Cycle detected in struct path", &I, MD); 5485 return false; 5486 } 5487 5488 bool Invalid; 5489 unsigned BaseNodeBitWidth; 5490 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5491 IsNewFormat); 5492 5493 // If the base node is invalid in itself, then we've already printed all the 5494 // errors we wanted to print. 5495 if (Invalid) 5496 return false; 5497 5498 SeenAccessTypeInPath |= BaseNode == AccessType; 5499 5500 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5501 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5502 &I, MD, &Offset); 5503 5504 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5505 (BaseNodeBitWidth == 0 && Offset == 0) || 5506 (IsNewFormat && BaseNodeBitWidth == ~0u), 5507 "Access bit-width not the same as description bit-width", &I, MD, 5508 BaseNodeBitWidth, Offset.getBitWidth()); 5509 5510 if (IsNewFormat && SeenAccessTypeInPath) 5511 break; 5512 } 5513 5514 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5515 &I, MD); 5516 return true; 5517 } 5518 5519 char VerifierLegacyPass::ID = 0; 5520 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5521 5522 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5523 return new VerifierLegacyPass(FatalErrors); 5524 } 5525 5526 AnalysisKey VerifierAnalysis::Key; 5527 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5528 ModuleAnalysisManager &) { 5529 Result Res; 5530 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5531 return Res; 5532 } 5533 5534 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5535 FunctionAnalysisManager &) { 5536 return { llvm::verifyFunction(F, &dbgs()), false }; 5537 } 5538 5539 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5540 auto Res = AM.getResult<VerifierAnalysis>(M); 5541 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5542 report_fatal_error("Broken module found, compilation aborted!"); 5543 5544 return PreservedAnalyses::all(); 5545 } 5546 5547 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5548 auto res = AM.getResult<VerifierAnalysis>(F); 5549 if (res.IRBroken && FatalErrors) 5550 report_fatal_error("Broken function found, compilation aborted!"); 5551 5552 return PreservedAnalyses::all(); 5553 } 5554