1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyNoAliasScopeDomination( 119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121 "scopes are not dominating")); 122 123 namespace llvm { 124 125 struct VerifierSupport { 126 raw_ostream *OS; 127 const Module &M; 128 ModuleSlotTracker MST; 129 Triple TT; 130 const DataLayout &DL; 131 LLVMContext &Context; 132 133 /// Track the brokenness of the module while recursively visiting. 134 bool Broken = false; 135 /// Broken debug info can be "recovered" from by stripping the debug info. 136 bool BrokenDebugInfo = false; 137 /// Whether to treat broken debug info as an error. 138 bool TreatBrokenDebugInfoAsError = true; 139 140 explicit VerifierSupport(raw_ostream *OS, const Module &M) 141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 142 Context(M.getContext()) {} 143 144 private: 145 void Write(const Module *M) { 146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 147 } 148 149 void Write(const Value *V) { 150 if (V) 151 Write(*V); 152 } 153 154 void Write(const Value &V) { 155 if (isa<Instruction>(V)) { 156 V.print(*OS, MST); 157 *OS << '\n'; 158 } else { 159 V.printAsOperand(*OS, true, MST); 160 *OS << '\n'; 161 } 162 } 163 164 void Write(const Metadata *MD) { 165 if (!MD) 166 return; 167 MD->print(*OS, MST, &M); 168 *OS << '\n'; 169 } 170 171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 172 Write(MD.get()); 173 } 174 175 void Write(const NamedMDNode *NMD) { 176 if (!NMD) 177 return; 178 NMD->print(*OS, MST); 179 *OS << '\n'; 180 } 181 182 void Write(Type *T) { 183 if (!T) 184 return; 185 *OS << ' ' << *T; 186 } 187 188 void Write(const Comdat *C) { 189 if (!C) 190 return; 191 *OS << *C; 192 } 193 194 void Write(const APInt *AI) { 195 if (!AI) 196 return; 197 *OS << *AI << '\n'; 198 } 199 200 void Write(const unsigned i) { *OS << i << '\n'; } 201 202 template <typename T> void Write(ArrayRef<T> Vs) { 203 for (const T &V : Vs) 204 Write(V); 205 } 206 207 template <typename T1, typename... Ts> 208 void WriteTs(const T1 &V1, const Ts &... Vs) { 209 Write(V1); 210 WriteTs(Vs...); 211 } 212 213 template <typename... Ts> void WriteTs() {} 214 215 public: 216 /// A check failed, so printout out the condition and the message. 217 /// 218 /// This provides a nice place to put a breakpoint if you want to see why 219 /// something is not correct. 220 void CheckFailed(const Twine &Message) { 221 if (OS) 222 *OS << Message << '\n'; 223 Broken = true; 224 } 225 226 /// A check failed (with values to print). 227 /// 228 /// This calls the Message-only version so that the above is easier to set a 229 /// breakpoint on. 230 template <typename T1, typename... Ts> 231 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 232 CheckFailed(Message); 233 if (OS) 234 WriteTs(V1, Vs...); 235 } 236 237 /// A debug info check failed. 238 void DebugInfoCheckFailed(const Twine &Message) { 239 if (OS) 240 *OS << Message << '\n'; 241 Broken |= TreatBrokenDebugInfoAsError; 242 BrokenDebugInfo = true; 243 } 244 245 /// A debug info check failed (with values to print). 246 template <typename T1, typename... Ts> 247 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 248 const Ts &... Vs) { 249 DebugInfoCheckFailed(Message); 250 if (OS) 251 WriteTs(V1, Vs...); 252 } 253 }; 254 255 } // namespace llvm 256 257 namespace { 258 259 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 260 friend class InstVisitor<Verifier>; 261 262 DominatorTree DT; 263 264 /// When verifying a basic block, keep track of all of the 265 /// instructions we have seen so far. 266 /// 267 /// This allows us to do efficient dominance checks for the case when an 268 /// instruction has an operand that is an instruction in the same block. 269 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 270 271 /// Keep track of the metadata nodes that have been checked already. 272 SmallPtrSet<const Metadata *, 32> MDNodes; 273 274 /// Keep track which DISubprogram is attached to which function. 275 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 276 277 /// Track all DICompileUnits visited. 278 SmallPtrSet<const Metadata *, 2> CUVisited; 279 280 /// The result type for a landingpad. 281 Type *LandingPadResultTy; 282 283 /// Whether we've seen a call to @llvm.localescape in this function 284 /// already. 285 bool SawFrameEscape; 286 287 /// Whether the current function has a DISubprogram attached to it. 288 bool HasDebugInfo = false; 289 290 /// The current source language. 291 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 292 293 /// Whether source was present on the first DIFile encountered in each CU. 294 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 295 296 /// Stores the count of how many objects were passed to llvm.localescape for a 297 /// given function and the largest index passed to llvm.localrecover. 298 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 299 300 // Maps catchswitches and cleanuppads that unwind to siblings to the 301 // terminators that indicate the unwind, used to detect cycles therein. 302 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 303 304 /// Cache of constants visited in search of ConstantExprs. 305 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 306 307 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 308 SmallVector<const Function *, 4> DeoptimizeDeclarations; 309 310 // Verify that this GlobalValue is only used in this module. 311 // This map is used to avoid visiting uses twice. We can arrive at a user 312 // twice, if they have multiple operands. In particular for very large 313 // constant expressions, we can arrive at a particular user many times. 314 SmallPtrSet<const Value *, 32> GlobalValueVisited; 315 316 // Keeps track of duplicate function argument debug info. 317 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 318 319 TBAAVerifier TBAAVerifyHelper; 320 321 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 322 323 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 324 325 public: 326 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 327 const Module &M) 328 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 329 SawFrameEscape(false), TBAAVerifyHelper(this) { 330 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 331 } 332 333 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 334 335 bool verify(const Function &F) { 336 assert(F.getParent() == &M && 337 "An instance of this class only works with a specific module!"); 338 339 // First ensure the function is well-enough formed to compute dominance 340 // information, and directly compute a dominance tree. We don't rely on the 341 // pass manager to provide this as it isolates us from a potentially 342 // out-of-date dominator tree and makes it significantly more complex to run 343 // this code outside of a pass manager. 344 // FIXME: It's really gross that we have to cast away constness here. 345 if (!F.empty()) 346 DT.recalculate(const_cast<Function &>(F)); 347 348 for (const BasicBlock &BB : F) { 349 if (!BB.empty() && BB.back().isTerminator()) 350 continue; 351 352 if (OS) { 353 *OS << "Basic Block in function '" << F.getName() 354 << "' does not have terminator!\n"; 355 BB.printAsOperand(*OS, true, MST); 356 *OS << "\n"; 357 } 358 return false; 359 } 360 361 Broken = false; 362 // FIXME: We strip const here because the inst visitor strips const. 363 visit(const_cast<Function &>(F)); 364 verifySiblingFuncletUnwinds(); 365 InstsInThisBlock.clear(); 366 DebugFnArgs.clear(); 367 LandingPadResultTy = nullptr; 368 SawFrameEscape = false; 369 SiblingFuncletInfo.clear(); 370 verifyNoAliasScopeDecl(); 371 NoAliasScopeDecls.clear(); 372 373 return !Broken; 374 } 375 376 /// Verify the module that this instance of \c Verifier was initialized with. 377 bool verify() { 378 Broken = false; 379 380 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 381 for (const Function &F : M) 382 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 383 DeoptimizeDeclarations.push_back(&F); 384 385 // Now that we've visited every function, verify that we never asked to 386 // recover a frame index that wasn't escaped. 387 verifyFrameRecoverIndices(); 388 for (const GlobalVariable &GV : M.globals()) 389 visitGlobalVariable(GV); 390 391 for (const GlobalAlias &GA : M.aliases()) 392 visitGlobalAlias(GA); 393 394 for (const NamedMDNode &NMD : M.named_metadata()) 395 visitNamedMDNode(NMD); 396 397 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 398 visitComdat(SMEC.getValue()); 399 400 visitModuleFlags(M); 401 visitModuleIdents(M); 402 visitModuleCommandLines(M); 403 404 verifyCompileUnits(); 405 406 verifyDeoptimizeCallingConvs(); 407 DISubprogramAttachments.clear(); 408 return !Broken; 409 } 410 411 private: 412 /// Whether a metadata node is allowed to be, or contain, a DILocation. 413 enum class AreDebugLocsAllowed { No, Yes }; 414 415 // Verification methods... 416 void visitGlobalValue(const GlobalValue &GV); 417 void visitGlobalVariable(const GlobalVariable &GV); 418 void visitGlobalAlias(const GlobalAlias &GA); 419 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 420 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 421 const GlobalAlias &A, const Constant &C); 422 void visitNamedMDNode(const NamedMDNode &NMD); 423 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 424 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 425 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 426 void visitComdat(const Comdat &C); 427 void visitModuleIdents(const Module &M); 428 void visitModuleCommandLines(const Module &M); 429 void visitModuleFlags(const Module &M); 430 void visitModuleFlag(const MDNode *Op, 431 DenseMap<const MDString *, const MDNode *> &SeenIDs, 432 SmallVectorImpl<const MDNode *> &Requirements); 433 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 434 void visitFunction(const Function &F); 435 void visitBasicBlock(BasicBlock &BB); 436 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 437 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 438 void visitProfMetadata(Instruction &I, MDNode *MD); 439 void visitAnnotationMetadata(MDNode *Annotation); 440 441 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 442 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 443 #include "llvm/IR/Metadata.def" 444 void visitDIScope(const DIScope &N); 445 void visitDIVariable(const DIVariable &N); 446 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 447 void visitDITemplateParameter(const DITemplateParameter &N); 448 449 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 450 451 // InstVisitor overrides... 452 using InstVisitor<Verifier>::visit; 453 void visit(Instruction &I); 454 455 void visitTruncInst(TruncInst &I); 456 void visitZExtInst(ZExtInst &I); 457 void visitSExtInst(SExtInst &I); 458 void visitFPTruncInst(FPTruncInst &I); 459 void visitFPExtInst(FPExtInst &I); 460 void visitFPToUIInst(FPToUIInst &I); 461 void visitFPToSIInst(FPToSIInst &I); 462 void visitUIToFPInst(UIToFPInst &I); 463 void visitSIToFPInst(SIToFPInst &I); 464 void visitIntToPtrInst(IntToPtrInst &I); 465 void visitPtrToIntInst(PtrToIntInst &I); 466 void visitBitCastInst(BitCastInst &I); 467 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 468 void visitPHINode(PHINode &PN); 469 void visitCallBase(CallBase &Call); 470 void visitUnaryOperator(UnaryOperator &U); 471 void visitBinaryOperator(BinaryOperator &B); 472 void visitICmpInst(ICmpInst &IC); 473 void visitFCmpInst(FCmpInst &FC); 474 void visitExtractElementInst(ExtractElementInst &EI); 475 void visitInsertElementInst(InsertElementInst &EI); 476 void visitShuffleVectorInst(ShuffleVectorInst &EI); 477 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 478 void visitCallInst(CallInst &CI); 479 void visitInvokeInst(InvokeInst &II); 480 void visitGetElementPtrInst(GetElementPtrInst &GEP); 481 void visitLoadInst(LoadInst &LI); 482 void visitStoreInst(StoreInst &SI); 483 void verifyDominatesUse(Instruction &I, unsigned i); 484 void visitInstruction(Instruction &I); 485 void visitTerminator(Instruction &I); 486 void visitBranchInst(BranchInst &BI); 487 void visitReturnInst(ReturnInst &RI); 488 void visitSwitchInst(SwitchInst &SI); 489 void visitIndirectBrInst(IndirectBrInst &BI); 490 void visitCallBrInst(CallBrInst &CBI); 491 void visitSelectInst(SelectInst &SI); 492 void visitUserOp1(Instruction &I); 493 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 494 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 495 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 496 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 497 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 498 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 499 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 500 void visitFenceInst(FenceInst &FI); 501 void visitAllocaInst(AllocaInst &AI); 502 void visitExtractValueInst(ExtractValueInst &EVI); 503 void visitInsertValueInst(InsertValueInst &IVI); 504 void visitEHPadPredecessors(Instruction &I); 505 void visitLandingPadInst(LandingPadInst &LPI); 506 void visitResumeInst(ResumeInst &RI); 507 void visitCatchPadInst(CatchPadInst &CPI); 508 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 509 void visitCleanupPadInst(CleanupPadInst &CPI); 510 void visitFuncletPadInst(FuncletPadInst &FPI); 511 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 512 void visitCleanupReturnInst(CleanupReturnInst &CRI); 513 514 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 515 void verifySwiftErrorValue(const Value *SwiftErrorVal); 516 void verifyMustTailCall(CallInst &CI); 517 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 518 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 519 const Value *V); 520 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 521 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 522 const Value *V, bool IsIntrinsic); 523 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 524 525 void visitConstantExprsRecursively(const Constant *EntryC); 526 void visitConstantExpr(const ConstantExpr *CE); 527 void verifyStatepoint(const CallBase &Call); 528 void verifyFrameRecoverIndices(); 529 void verifySiblingFuncletUnwinds(); 530 531 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 532 template <typename ValueOrMetadata> 533 void verifyFragmentExpression(const DIVariable &V, 534 DIExpression::FragmentInfo Fragment, 535 ValueOrMetadata *Desc); 536 void verifyFnArgs(const DbgVariableIntrinsic &I); 537 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 538 539 /// Module-level debug info verification... 540 void verifyCompileUnits(); 541 542 /// Module-level verification that all @llvm.experimental.deoptimize 543 /// declarations share the same calling convention. 544 void verifyDeoptimizeCallingConvs(); 545 546 /// Verify all-or-nothing property of DIFile source attribute within a CU. 547 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 548 549 /// Verify the llvm.experimental.noalias.scope.decl declarations 550 void verifyNoAliasScopeDecl(); 551 }; 552 553 } // end anonymous namespace 554 555 /// We know that cond should be true, if not print an error message. 556 #define Assert(C, ...) \ 557 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 558 559 /// We know that a debug info condition should be true, if not print 560 /// an error message. 561 #define AssertDI(C, ...) \ 562 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 563 564 void Verifier::visit(Instruction &I) { 565 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 566 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 567 InstVisitor<Verifier>::visit(I); 568 } 569 570 // Helper to recursively iterate over indirect users. By 571 // returning false, the callback can ask to stop recursing 572 // further. 573 static void forEachUser(const Value *User, 574 SmallPtrSet<const Value *, 32> &Visited, 575 llvm::function_ref<bool(const Value *)> Callback) { 576 if (!Visited.insert(User).second) 577 return; 578 for (const Value *TheNextUser : User->materialized_users()) 579 if (Callback(TheNextUser)) 580 forEachUser(TheNextUser, Visited, Callback); 581 } 582 583 void Verifier::visitGlobalValue(const GlobalValue &GV) { 584 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 585 "Global is external, but doesn't have external or weak linkage!", &GV); 586 587 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 588 Assert(GO->getAlignment() <= Value::MaximumAlignment, 589 "huge alignment values are unsupported", GO); 590 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 591 "Only global variables can have appending linkage!", &GV); 592 593 if (GV.hasAppendingLinkage()) { 594 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 595 Assert(GVar && GVar->getValueType()->isArrayTy(), 596 "Only global arrays can have appending linkage!", GVar); 597 } 598 599 if (GV.isDeclarationForLinker()) 600 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 601 602 if (GV.hasDLLImportStorageClass()) { 603 Assert(!GV.isDSOLocal(), 604 "GlobalValue with DLLImport Storage is dso_local!", &GV); 605 606 Assert((GV.isDeclaration() && 607 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 608 GV.hasAvailableExternallyLinkage(), 609 "Global is marked as dllimport, but not external", &GV); 610 } 611 612 if (GV.isImplicitDSOLocal()) 613 Assert(GV.isDSOLocal(), 614 "GlobalValue with local linkage or non-default " 615 "visibility must be dso_local!", 616 &GV); 617 618 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 619 if (const Instruction *I = dyn_cast<Instruction>(V)) { 620 if (!I->getParent() || !I->getParent()->getParent()) 621 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 622 I); 623 else if (I->getParent()->getParent()->getParent() != &M) 624 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 625 I->getParent()->getParent(), 626 I->getParent()->getParent()->getParent()); 627 return false; 628 } else if (const Function *F = dyn_cast<Function>(V)) { 629 if (F->getParent() != &M) 630 CheckFailed("Global is used by function in a different module", &GV, &M, 631 F, F->getParent()); 632 return false; 633 } 634 return true; 635 }); 636 } 637 638 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 639 if (GV.hasInitializer()) { 640 Assert(GV.getInitializer()->getType() == GV.getValueType(), 641 "Global variable initializer type does not match global " 642 "variable type!", 643 &GV); 644 // If the global has common linkage, it must have a zero initializer and 645 // cannot be constant. 646 if (GV.hasCommonLinkage()) { 647 Assert(GV.getInitializer()->isNullValue(), 648 "'common' global must have a zero initializer!", &GV); 649 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 650 &GV); 651 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 652 } 653 } 654 655 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 656 GV.getName() == "llvm.global_dtors")) { 657 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 658 "invalid linkage for intrinsic global variable", &GV); 659 // Don't worry about emitting an error for it not being an array, 660 // visitGlobalValue will complain on appending non-array. 661 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 662 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 663 PointerType *FuncPtrTy = 664 FunctionType::get(Type::getVoidTy(Context), false)-> 665 getPointerTo(DL.getProgramAddressSpace()); 666 Assert(STy && 667 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 668 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 669 STy->getTypeAtIndex(1) == FuncPtrTy, 670 "wrong type for intrinsic global variable", &GV); 671 Assert(STy->getNumElements() == 3, 672 "the third field of the element type is mandatory, " 673 "specify i8* null to migrate from the obsoleted 2-field form"); 674 Type *ETy = STy->getTypeAtIndex(2); 675 Assert(ETy->isPointerTy() && 676 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 677 "wrong type for intrinsic global variable", &GV); 678 } 679 } 680 681 if (GV.hasName() && (GV.getName() == "llvm.used" || 682 GV.getName() == "llvm.compiler.used")) { 683 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 684 "invalid linkage for intrinsic global variable", &GV); 685 Type *GVType = GV.getValueType(); 686 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 687 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 688 Assert(PTy, "wrong type for intrinsic global variable", &GV); 689 if (GV.hasInitializer()) { 690 const Constant *Init = GV.getInitializer(); 691 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 692 Assert(InitArray, "wrong initalizer for intrinsic global variable", 693 Init); 694 for (Value *Op : InitArray->operands()) { 695 Value *V = Op->stripPointerCasts(); 696 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 697 isa<GlobalAlias>(V), 698 "invalid llvm.used member", V); 699 Assert(V->hasName(), "members of llvm.used must be named", V); 700 } 701 } 702 } 703 } 704 705 // Visit any debug info attachments. 706 SmallVector<MDNode *, 1> MDs; 707 GV.getMetadata(LLVMContext::MD_dbg, MDs); 708 for (auto *MD : MDs) { 709 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 710 visitDIGlobalVariableExpression(*GVE); 711 else 712 AssertDI(false, "!dbg attachment of global variable must be a " 713 "DIGlobalVariableExpression"); 714 } 715 716 // Scalable vectors cannot be global variables, since we don't know 717 // the runtime size. If the global is an array containing scalable vectors, 718 // that will be caught by the isValidElementType methods in StructType or 719 // ArrayType instead. 720 Assert(!isa<ScalableVectorType>(GV.getValueType()), 721 "Globals cannot contain scalable vectors", &GV); 722 723 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 724 Assert(!STy->containsScalableVectorType(), 725 "Globals cannot contain scalable vectors", &GV); 726 727 if (!GV.hasInitializer()) { 728 visitGlobalValue(GV); 729 return; 730 } 731 732 // Walk any aggregate initializers looking for bitcasts between address spaces 733 visitConstantExprsRecursively(GV.getInitializer()); 734 735 visitGlobalValue(GV); 736 } 737 738 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 739 SmallPtrSet<const GlobalAlias*, 4> Visited; 740 Visited.insert(&GA); 741 visitAliaseeSubExpr(Visited, GA, C); 742 } 743 744 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 745 const GlobalAlias &GA, const Constant &C) { 746 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 747 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 748 &GA); 749 750 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 751 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 752 753 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 754 &GA); 755 } else { 756 // Only continue verifying subexpressions of GlobalAliases. 757 // Do not recurse into global initializers. 758 return; 759 } 760 } 761 762 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 763 visitConstantExprsRecursively(CE); 764 765 for (const Use &U : C.operands()) { 766 Value *V = &*U; 767 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 768 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 769 else if (const auto *C2 = dyn_cast<Constant>(V)) 770 visitAliaseeSubExpr(Visited, GA, *C2); 771 } 772 } 773 774 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 775 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 776 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 777 "weak_odr, or external linkage!", 778 &GA); 779 const Constant *Aliasee = GA.getAliasee(); 780 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 781 Assert(GA.getType() == Aliasee->getType(), 782 "Alias and aliasee types should match!", &GA); 783 784 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 785 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 786 787 visitAliaseeSubExpr(GA, *Aliasee); 788 789 visitGlobalValue(GA); 790 } 791 792 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 793 // There used to be various other llvm.dbg.* nodes, but we don't support 794 // upgrading them and we want to reserve the namespace for future uses. 795 if (NMD.getName().startswith("llvm.dbg.")) 796 AssertDI(NMD.getName() == "llvm.dbg.cu", 797 "unrecognized named metadata node in the llvm.dbg namespace", 798 &NMD); 799 for (const MDNode *MD : NMD.operands()) { 800 if (NMD.getName() == "llvm.dbg.cu") 801 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 802 803 if (!MD) 804 continue; 805 806 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 807 } 808 } 809 810 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 811 // Only visit each node once. Metadata can be mutually recursive, so this 812 // avoids infinite recursion here, as well as being an optimization. 813 if (!MDNodes.insert(&MD).second) 814 return; 815 816 switch (MD.getMetadataID()) { 817 default: 818 llvm_unreachable("Invalid MDNode subclass"); 819 case Metadata::MDTupleKind: 820 break; 821 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 822 case Metadata::CLASS##Kind: \ 823 visit##CLASS(cast<CLASS>(MD)); \ 824 break; 825 #include "llvm/IR/Metadata.def" 826 } 827 828 for (const Metadata *Op : MD.operands()) { 829 if (!Op) 830 continue; 831 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 832 &MD, Op); 833 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 834 "DILocation not allowed within this metadata node", &MD, Op); 835 if (auto *N = dyn_cast<MDNode>(Op)) { 836 visitMDNode(*N, AllowLocs); 837 continue; 838 } 839 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 840 visitValueAsMetadata(*V, nullptr); 841 continue; 842 } 843 } 844 845 // Check these last, so we diagnose problems in operands first. 846 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 847 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 848 } 849 850 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 851 Assert(MD.getValue(), "Expected valid value", &MD); 852 Assert(!MD.getValue()->getType()->isMetadataTy(), 853 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 854 855 auto *L = dyn_cast<LocalAsMetadata>(&MD); 856 if (!L) 857 return; 858 859 Assert(F, "function-local metadata used outside a function", L); 860 861 // If this was an instruction, bb, or argument, verify that it is in the 862 // function that we expect. 863 Function *ActualF = nullptr; 864 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 865 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 866 ActualF = I->getParent()->getParent(); 867 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 868 ActualF = BB->getParent(); 869 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 870 ActualF = A->getParent(); 871 assert(ActualF && "Unimplemented function local metadata case!"); 872 873 Assert(ActualF == F, "function-local metadata used in wrong function", L); 874 } 875 876 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 877 Metadata *MD = MDV.getMetadata(); 878 if (auto *N = dyn_cast<MDNode>(MD)) { 879 visitMDNode(*N, AreDebugLocsAllowed::No); 880 return; 881 } 882 883 // Only visit each node once. Metadata can be mutually recursive, so this 884 // avoids infinite recursion here, as well as being an optimization. 885 if (!MDNodes.insert(MD).second) 886 return; 887 888 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 889 visitValueAsMetadata(*V, F); 890 } 891 892 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 893 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 894 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 895 896 void Verifier::visitDILocation(const DILocation &N) { 897 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 898 "location requires a valid scope", &N, N.getRawScope()); 899 if (auto *IA = N.getRawInlinedAt()) 900 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 901 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 902 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 903 } 904 905 void Verifier::visitGenericDINode(const GenericDINode &N) { 906 AssertDI(N.getTag(), "invalid tag", &N); 907 } 908 909 void Verifier::visitDIScope(const DIScope &N) { 910 if (auto *F = N.getRawFile()) 911 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 912 } 913 914 void Verifier::visitDISubrange(const DISubrange &N) { 915 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 916 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 917 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 918 N.getRawUpperBound(), 919 "Subrange must contain count or upperBound", &N); 920 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 921 "Subrange can have any one of count or upperBound", &N); 922 AssertDI(!N.getRawCountNode() || N.getCount(), 923 "Count must either be a signed constant or a DIVariable", &N); 924 auto Count = N.getCount(); 925 AssertDI(!Count || !Count.is<ConstantInt *>() || 926 Count.get<ConstantInt *>()->getSExtValue() >= -1, 927 "invalid subrange count", &N); 928 auto *LBound = N.getRawLowerBound(); 929 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 930 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 931 "LowerBound must be signed constant or DIVariable or DIExpression", 932 &N); 933 auto *UBound = N.getRawUpperBound(); 934 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 935 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 936 "UpperBound must be signed constant or DIVariable or DIExpression", 937 &N); 938 auto *Stride = N.getRawStride(); 939 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 940 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 941 "Stride must be signed constant or DIVariable or DIExpression", &N); 942 } 943 944 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 945 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 946 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 947 "GenericSubrange must contain count or upperBound", &N); 948 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 949 "GenericSubrange can have any one of count or upperBound", &N); 950 auto *CBound = N.getRawCountNode(); 951 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 952 "Count must be signed constant or DIVariable or DIExpression", &N); 953 auto *LBound = N.getRawLowerBound(); 954 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 955 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 956 "LowerBound must be signed constant or DIVariable or DIExpression", 957 &N); 958 auto *UBound = N.getRawUpperBound(); 959 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 960 "UpperBound must be signed constant or DIVariable or DIExpression", 961 &N); 962 auto *Stride = N.getRawStride(); 963 AssertDI(Stride, "GenericSubrange must contain stride", &N); 964 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 965 "Stride must be signed constant or DIVariable or DIExpression", &N); 966 } 967 968 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 969 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 970 } 971 972 void Verifier::visitDIBasicType(const DIBasicType &N) { 973 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 974 N.getTag() == dwarf::DW_TAG_unspecified_type || 975 N.getTag() == dwarf::DW_TAG_string_type, 976 "invalid tag", &N); 977 } 978 979 void Verifier::visitDIStringType(const DIStringType &N) { 980 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 981 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 982 "has conflicting flags", &N); 983 } 984 985 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 986 // Common scope checks. 987 visitDIScope(N); 988 989 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 990 N.getTag() == dwarf::DW_TAG_pointer_type || 991 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 992 N.getTag() == dwarf::DW_TAG_reference_type || 993 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 994 N.getTag() == dwarf::DW_TAG_const_type || 995 N.getTag() == dwarf::DW_TAG_volatile_type || 996 N.getTag() == dwarf::DW_TAG_restrict_type || 997 N.getTag() == dwarf::DW_TAG_atomic_type || 998 N.getTag() == dwarf::DW_TAG_member || 999 N.getTag() == dwarf::DW_TAG_inheritance || 1000 N.getTag() == dwarf::DW_TAG_friend, 1001 "invalid tag", &N); 1002 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1003 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1004 N.getRawExtraData()); 1005 } 1006 1007 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1008 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1009 N.getRawBaseType()); 1010 1011 if (N.getDWARFAddressSpace()) { 1012 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1013 N.getTag() == dwarf::DW_TAG_reference_type || 1014 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1015 "DWARF address space only applies to pointer or reference types", 1016 &N); 1017 } 1018 } 1019 1020 /// Detect mutually exclusive flags. 1021 static bool hasConflictingReferenceFlags(unsigned Flags) { 1022 return ((Flags & DINode::FlagLValueReference) && 1023 (Flags & DINode::FlagRValueReference)) || 1024 ((Flags & DINode::FlagTypePassByValue) && 1025 (Flags & DINode::FlagTypePassByReference)); 1026 } 1027 1028 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1029 auto *Params = dyn_cast<MDTuple>(&RawParams); 1030 AssertDI(Params, "invalid template params", &N, &RawParams); 1031 for (Metadata *Op : Params->operands()) { 1032 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1033 &N, Params, Op); 1034 } 1035 } 1036 1037 void Verifier::visitDICompositeType(const DICompositeType &N) { 1038 // Common scope checks. 1039 visitDIScope(N); 1040 1041 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1042 N.getTag() == dwarf::DW_TAG_structure_type || 1043 N.getTag() == dwarf::DW_TAG_union_type || 1044 N.getTag() == dwarf::DW_TAG_enumeration_type || 1045 N.getTag() == dwarf::DW_TAG_class_type || 1046 N.getTag() == dwarf::DW_TAG_variant_part, 1047 "invalid tag", &N); 1048 1049 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1050 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1051 N.getRawBaseType()); 1052 1053 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1054 "invalid composite elements", &N, N.getRawElements()); 1055 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1056 N.getRawVTableHolder()); 1057 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1058 "invalid reference flags", &N); 1059 unsigned DIBlockByRefStruct = 1 << 4; 1060 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1061 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1062 1063 if (N.isVector()) { 1064 const DINodeArray Elements = N.getElements(); 1065 AssertDI(Elements.size() == 1 && 1066 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1067 "invalid vector, expected one element of type subrange", &N); 1068 } 1069 1070 if (auto *Params = N.getRawTemplateParams()) 1071 visitTemplateParams(N, *Params); 1072 1073 if (auto *D = N.getRawDiscriminator()) { 1074 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1075 "discriminator can only appear on variant part"); 1076 } 1077 1078 if (N.getRawDataLocation()) { 1079 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1080 "dataLocation can only appear in array type"); 1081 } 1082 1083 if (N.getRawAssociated()) { 1084 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1085 "associated can only appear in array type"); 1086 } 1087 1088 if (N.getRawAllocated()) { 1089 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1090 "allocated can only appear in array type"); 1091 } 1092 1093 if (N.getRawRank()) { 1094 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1095 "rank can only appear in array type"); 1096 } 1097 } 1098 1099 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1100 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1101 if (auto *Types = N.getRawTypeArray()) { 1102 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1103 for (Metadata *Ty : N.getTypeArray()->operands()) { 1104 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1105 } 1106 } 1107 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1108 "invalid reference flags", &N); 1109 } 1110 1111 void Verifier::visitDIFile(const DIFile &N) { 1112 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1113 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1114 if (Checksum) { 1115 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1116 "invalid checksum kind", &N); 1117 size_t Size; 1118 switch (Checksum->Kind) { 1119 case DIFile::CSK_MD5: 1120 Size = 32; 1121 break; 1122 case DIFile::CSK_SHA1: 1123 Size = 40; 1124 break; 1125 case DIFile::CSK_SHA256: 1126 Size = 64; 1127 break; 1128 } 1129 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1130 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1131 "invalid checksum", &N); 1132 } 1133 } 1134 1135 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1136 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1137 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1138 1139 // Don't bother verifying the compilation directory or producer string 1140 // as those could be empty. 1141 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1142 N.getRawFile()); 1143 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1144 N.getFile()); 1145 1146 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1147 1148 verifySourceDebugInfo(N, *N.getFile()); 1149 1150 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1151 "invalid emission kind", &N); 1152 1153 if (auto *Array = N.getRawEnumTypes()) { 1154 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1155 for (Metadata *Op : N.getEnumTypes()->operands()) { 1156 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1157 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1158 "invalid enum type", &N, N.getEnumTypes(), Op); 1159 } 1160 } 1161 if (auto *Array = N.getRawRetainedTypes()) { 1162 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1163 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1164 AssertDI(Op && (isa<DIType>(Op) || 1165 (isa<DISubprogram>(Op) && 1166 !cast<DISubprogram>(Op)->isDefinition())), 1167 "invalid retained type", &N, Op); 1168 } 1169 } 1170 if (auto *Array = N.getRawGlobalVariables()) { 1171 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1172 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1173 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1174 "invalid global variable ref", &N, Op); 1175 } 1176 } 1177 if (auto *Array = N.getRawImportedEntities()) { 1178 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1179 for (Metadata *Op : N.getImportedEntities()->operands()) { 1180 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1181 &N, Op); 1182 } 1183 } 1184 if (auto *Array = N.getRawMacros()) { 1185 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1186 for (Metadata *Op : N.getMacros()->operands()) { 1187 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1188 } 1189 } 1190 CUVisited.insert(&N); 1191 } 1192 1193 void Verifier::visitDISubprogram(const DISubprogram &N) { 1194 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1195 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1196 if (auto *F = N.getRawFile()) 1197 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1198 else 1199 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1200 if (auto *T = N.getRawType()) 1201 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1202 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1203 N.getRawContainingType()); 1204 if (auto *Params = N.getRawTemplateParams()) 1205 visitTemplateParams(N, *Params); 1206 if (auto *S = N.getRawDeclaration()) 1207 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1208 "invalid subprogram declaration", &N, S); 1209 if (auto *RawNode = N.getRawRetainedNodes()) { 1210 auto *Node = dyn_cast<MDTuple>(RawNode); 1211 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1212 for (Metadata *Op : Node->operands()) { 1213 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1214 "invalid retained nodes, expected DILocalVariable or DILabel", 1215 &N, Node, Op); 1216 } 1217 } 1218 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1219 "invalid reference flags", &N); 1220 1221 auto *Unit = N.getRawUnit(); 1222 if (N.isDefinition()) { 1223 // Subprogram definitions (not part of the type hierarchy). 1224 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1225 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1226 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1227 if (N.getFile()) 1228 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1229 } else { 1230 // Subprogram declarations (part of the type hierarchy). 1231 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1232 } 1233 1234 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1235 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1236 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1237 for (Metadata *Op : ThrownTypes->operands()) 1238 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1239 Op); 1240 } 1241 1242 if (N.areAllCallsDescribed()) 1243 AssertDI(N.isDefinition(), 1244 "DIFlagAllCallsDescribed must be attached to a definition"); 1245 } 1246 1247 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1248 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1249 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1250 "invalid local scope", &N, N.getRawScope()); 1251 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1252 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1253 } 1254 1255 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1256 visitDILexicalBlockBase(N); 1257 1258 AssertDI(N.getLine() || !N.getColumn(), 1259 "cannot have column info without line info", &N); 1260 } 1261 1262 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1263 visitDILexicalBlockBase(N); 1264 } 1265 1266 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1267 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1268 if (auto *S = N.getRawScope()) 1269 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1270 if (auto *S = N.getRawDecl()) 1271 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1272 } 1273 1274 void Verifier::visitDINamespace(const DINamespace &N) { 1275 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1276 if (auto *S = N.getRawScope()) 1277 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1278 } 1279 1280 void Verifier::visitDIMacro(const DIMacro &N) { 1281 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1282 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1283 "invalid macinfo type", &N); 1284 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1285 if (!N.getValue().empty()) { 1286 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1287 } 1288 } 1289 1290 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1291 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1292 "invalid macinfo type", &N); 1293 if (auto *F = N.getRawFile()) 1294 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1295 1296 if (auto *Array = N.getRawElements()) { 1297 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1298 for (Metadata *Op : N.getElements()->operands()) { 1299 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1300 } 1301 } 1302 } 1303 1304 void Verifier::visitDIModule(const DIModule &N) { 1305 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1306 AssertDI(!N.getName().empty(), "anonymous module", &N); 1307 } 1308 1309 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1310 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1311 } 1312 1313 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1314 visitDITemplateParameter(N); 1315 1316 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1317 &N); 1318 } 1319 1320 void Verifier::visitDITemplateValueParameter( 1321 const DITemplateValueParameter &N) { 1322 visitDITemplateParameter(N); 1323 1324 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1325 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1326 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1327 "invalid tag", &N); 1328 } 1329 1330 void Verifier::visitDIVariable(const DIVariable &N) { 1331 if (auto *S = N.getRawScope()) 1332 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1333 if (auto *F = N.getRawFile()) 1334 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1335 } 1336 1337 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1338 // Checks common to all variables. 1339 visitDIVariable(N); 1340 1341 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1342 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1343 // Assert only if the global variable is not an extern 1344 if (N.isDefinition()) 1345 AssertDI(N.getType(), "missing global variable type", &N); 1346 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1347 AssertDI(isa<DIDerivedType>(Member), 1348 "invalid static data member declaration", &N, Member); 1349 } 1350 } 1351 1352 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1353 // Checks common to all variables. 1354 visitDIVariable(N); 1355 1356 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1357 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1358 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1359 "local variable requires a valid scope", &N, N.getRawScope()); 1360 if (auto Ty = N.getType()) 1361 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1362 } 1363 1364 void Verifier::visitDILabel(const DILabel &N) { 1365 if (auto *S = N.getRawScope()) 1366 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1367 if (auto *F = N.getRawFile()) 1368 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1369 1370 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1371 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1372 "label requires a valid scope", &N, N.getRawScope()); 1373 } 1374 1375 void Verifier::visitDIExpression(const DIExpression &N) { 1376 AssertDI(N.isValid(), "invalid expression", &N); 1377 } 1378 1379 void Verifier::visitDIGlobalVariableExpression( 1380 const DIGlobalVariableExpression &GVE) { 1381 AssertDI(GVE.getVariable(), "missing variable"); 1382 if (auto *Var = GVE.getVariable()) 1383 visitDIGlobalVariable(*Var); 1384 if (auto *Expr = GVE.getExpression()) { 1385 visitDIExpression(*Expr); 1386 if (auto Fragment = Expr->getFragmentInfo()) 1387 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1388 } 1389 } 1390 1391 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1392 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1393 if (auto *T = N.getRawType()) 1394 AssertDI(isType(T), "invalid type ref", &N, T); 1395 if (auto *F = N.getRawFile()) 1396 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1397 } 1398 1399 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1400 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1401 N.getTag() == dwarf::DW_TAG_imported_declaration, 1402 "invalid tag", &N); 1403 if (auto *S = N.getRawScope()) 1404 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1405 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1406 N.getRawEntity()); 1407 } 1408 1409 void Verifier::visitComdat(const Comdat &C) { 1410 // In COFF the Module is invalid if the GlobalValue has private linkage. 1411 // Entities with private linkage don't have entries in the symbol table. 1412 if (TT.isOSBinFormatCOFF()) 1413 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1414 Assert(!GV->hasPrivateLinkage(), 1415 "comdat global value has private linkage", GV); 1416 } 1417 1418 void Verifier::visitModuleIdents(const Module &M) { 1419 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1420 if (!Idents) 1421 return; 1422 1423 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1424 // Scan each llvm.ident entry and make sure that this requirement is met. 1425 for (const MDNode *N : Idents->operands()) { 1426 Assert(N->getNumOperands() == 1, 1427 "incorrect number of operands in llvm.ident metadata", N); 1428 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1429 ("invalid value for llvm.ident metadata entry operand" 1430 "(the operand should be a string)"), 1431 N->getOperand(0)); 1432 } 1433 } 1434 1435 void Verifier::visitModuleCommandLines(const Module &M) { 1436 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1437 if (!CommandLines) 1438 return; 1439 1440 // llvm.commandline takes a list of metadata entry. Each entry has only one 1441 // string. Scan each llvm.commandline entry and make sure that this 1442 // requirement is met. 1443 for (const MDNode *N : CommandLines->operands()) { 1444 Assert(N->getNumOperands() == 1, 1445 "incorrect number of operands in llvm.commandline metadata", N); 1446 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1447 ("invalid value for llvm.commandline metadata entry operand" 1448 "(the operand should be a string)"), 1449 N->getOperand(0)); 1450 } 1451 } 1452 1453 void Verifier::visitModuleFlags(const Module &M) { 1454 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1455 if (!Flags) return; 1456 1457 // Scan each flag, and track the flags and requirements. 1458 DenseMap<const MDString*, const MDNode*> SeenIDs; 1459 SmallVector<const MDNode*, 16> Requirements; 1460 for (const MDNode *MDN : Flags->operands()) 1461 visitModuleFlag(MDN, SeenIDs, Requirements); 1462 1463 // Validate that the requirements in the module are valid. 1464 for (const MDNode *Requirement : Requirements) { 1465 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1466 const Metadata *ReqValue = Requirement->getOperand(1); 1467 1468 const MDNode *Op = SeenIDs.lookup(Flag); 1469 if (!Op) { 1470 CheckFailed("invalid requirement on flag, flag is not present in module", 1471 Flag); 1472 continue; 1473 } 1474 1475 if (Op->getOperand(2) != ReqValue) { 1476 CheckFailed(("invalid requirement on flag, " 1477 "flag does not have the required value"), 1478 Flag); 1479 continue; 1480 } 1481 } 1482 } 1483 1484 void 1485 Verifier::visitModuleFlag(const MDNode *Op, 1486 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1487 SmallVectorImpl<const MDNode *> &Requirements) { 1488 // Each module flag should have three arguments, the merge behavior (a 1489 // constant int), the flag ID (an MDString), and the value. 1490 Assert(Op->getNumOperands() == 3, 1491 "incorrect number of operands in module flag", Op); 1492 Module::ModFlagBehavior MFB; 1493 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1494 Assert( 1495 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1496 "invalid behavior operand in module flag (expected constant integer)", 1497 Op->getOperand(0)); 1498 Assert(false, 1499 "invalid behavior operand in module flag (unexpected constant)", 1500 Op->getOperand(0)); 1501 } 1502 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1503 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1504 Op->getOperand(1)); 1505 1506 // Sanity check the values for behaviors with additional requirements. 1507 switch (MFB) { 1508 case Module::Error: 1509 case Module::Warning: 1510 case Module::Override: 1511 // These behavior types accept any value. 1512 break; 1513 1514 case Module::Max: { 1515 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1516 "invalid value for 'max' module flag (expected constant integer)", 1517 Op->getOperand(2)); 1518 break; 1519 } 1520 1521 case Module::Require: { 1522 // The value should itself be an MDNode with two operands, a flag ID (an 1523 // MDString), and a value. 1524 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1525 Assert(Value && Value->getNumOperands() == 2, 1526 "invalid value for 'require' module flag (expected metadata pair)", 1527 Op->getOperand(2)); 1528 Assert(isa<MDString>(Value->getOperand(0)), 1529 ("invalid value for 'require' module flag " 1530 "(first value operand should be a string)"), 1531 Value->getOperand(0)); 1532 1533 // Append it to the list of requirements, to check once all module flags are 1534 // scanned. 1535 Requirements.push_back(Value); 1536 break; 1537 } 1538 1539 case Module::Append: 1540 case Module::AppendUnique: { 1541 // These behavior types require the operand be an MDNode. 1542 Assert(isa<MDNode>(Op->getOperand(2)), 1543 "invalid value for 'append'-type module flag " 1544 "(expected a metadata node)", 1545 Op->getOperand(2)); 1546 break; 1547 } 1548 } 1549 1550 // Unless this is a "requires" flag, check the ID is unique. 1551 if (MFB != Module::Require) { 1552 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1553 Assert(Inserted, 1554 "module flag identifiers must be unique (or of 'require' type)", ID); 1555 } 1556 1557 if (ID->getString() == "wchar_size") { 1558 ConstantInt *Value 1559 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1560 Assert(Value, "wchar_size metadata requires constant integer argument"); 1561 } 1562 1563 if (ID->getString() == "Linker Options") { 1564 // If the llvm.linker.options named metadata exists, we assume that the 1565 // bitcode reader has upgraded the module flag. Otherwise the flag might 1566 // have been created by a client directly. 1567 Assert(M.getNamedMetadata("llvm.linker.options"), 1568 "'Linker Options' named metadata no longer supported"); 1569 } 1570 1571 if (ID->getString() == "SemanticInterposition") { 1572 ConstantInt *Value = 1573 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1574 Assert(Value, 1575 "SemanticInterposition metadata requires constant integer argument"); 1576 } 1577 1578 if (ID->getString() == "CG Profile") { 1579 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1580 visitModuleFlagCGProfileEntry(MDO); 1581 } 1582 } 1583 1584 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1585 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1586 if (!FuncMDO) 1587 return; 1588 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1589 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1590 "expected a Function or null", FuncMDO); 1591 }; 1592 auto Node = dyn_cast_or_null<MDNode>(MDO); 1593 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1594 CheckFunction(Node->getOperand(0)); 1595 CheckFunction(Node->getOperand(1)); 1596 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1597 Assert(Count && Count->getType()->isIntegerTy(), 1598 "expected an integer constant", Node->getOperand(2)); 1599 } 1600 1601 /// Return true if this attribute kind only applies to functions. 1602 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1603 switch (Kind) { 1604 case Attribute::NoMerge: 1605 case Attribute::NoReturn: 1606 case Attribute::NoSync: 1607 case Attribute::WillReturn: 1608 case Attribute::NoCallback: 1609 case Attribute::NoCfCheck: 1610 case Attribute::NoUnwind: 1611 case Attribute::NoInline: 1612 case Attribute::AlwaysInline: 1613 case Attribute::OptimizeForSize: 1614 case Attribute::StackProtect: 1615 case Attribute::StackProtectReq: 1616 case Attribute::StackProtectStrong: 1617 case Attribute::SafeStack: 1618 case Attribute::ShadowCallStack: 1619 case Attribute::NoRedZone: 1620 case Attribute::NoImplicitFloat: 1621 case Attribute::Naked: 1622 case Attribute::InlineHint: 1623 case Attribute::StackAlignment: 1624 case Attribute::UWTable: 1625 case Attribute::NonLazyBind: 1626 case Attribute::ReturnsTwice: 1627 case Attribute::SanitizeAddress: 1628 case Attribute::SanitizeHWAddress: 1629 case Attribute::SanitizeMemTag: 1630 case Attribute::SanitizeThread: 1631 case Attribute::SanitizeMemory: 1632 case Attribute::MinSize: 1633 case Attribute::NoDuplicate: 1634 case Attribute::Builtin: 1635 case Attribute::NoBuiltin: 1636 case Attribute::Cold: 1637 case Attribute::Hot: 1638 case Attribute::OptForFuzzing: 1639 case Attribute::OptimizeNone: 1640 case Attribute::JumpTable: 1641 case Attribute::Convergent: 1642 case Attribute::ArgMemOnly: 1643 case Attribute::NoRecurse: 1644 case Attribute::InaccessibleMemOnly: 1645 case Attribute::InaccessibleMemOrArgMemOnly: 1646 case Attribute::AllocSize: 1647 case Attribute::SpeculativeLoadHardening: 1648 case Attribute::Speculatable: 1649 case Attribute::StrictFP: 1650 case Attribute::NullPointerIsValid: 1651 case Attribute::MustProgress: 1652 case Attribute::NoProfile: 1653 return true; 1654 default: 1655 break; 1656 } 1657 return false; 1658 } 1659 1660 /// Return true if this is a function attribute that can also appear on 1661 /// arguments. 1662 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1663 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1664 Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1665 Kind == Attribute::Preallocated; 1666 } 1667 1668 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1669 const Value *V) { 1670 for (Attribute A : Attrs) { 1671 if (A.isStringAttribute()) 1672 continue; 1673 1674 if (A.isIntAttribute() != 1675 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1676 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1677 V); 1678 return; 1679 } 1680 1681 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1682 if (!IsFunction) { 1683 CheckFailed("Attribute '" + A.getAsString() + 1684 "' only applies to functions!", 1685 V); 1686 return; 1687 } 1688 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1689 CheckFailed("Attribute '" + A.getAsString() + 1690 "' does not apply to functions!", 1691 V); 1692 return; 1693 } 1694 } 1695 } 1696 1697 // VerifyParameterAttrs - Check the given attributes for an argument or return 1698 // value of the specified type. The value V is printed in error messages. 1699 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1700 const Value *V) { 1701 if (!Attrs.hasAttributes()) 1702 return; 1703 1704 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1705 1706 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1707 Assert(Attrs.getNumAttributes() == 1, 1708 "Attribute 'immarg' is incompatible with other attributes", V); 1709 } 1710 1711 // Check for mutually incompatible attributes. Only inreg is compatible with 1712 // sret. 1713 unsigned AttrCount = 0; 1714 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1715 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1716 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1717 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1718 Attrs.hasAttribute(Attribute::InReg); 1719 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1720 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1721 Assert(AttrCount <= 1, 1722 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1723 "'byref', and 'sret' are incompatible!", 1724 V); 1725 1726 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1727 Attrs.hasAttribute(Attribute::ReadOnly)), 1728 "Attributes " 1729 "'inalloca and readonly' are incompatible!", 1730 V); 1731 1732 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1733 Attrs.hasAttribute(Attribute::Returned)), 1734 "Attributes " 1735 "'sret and returned' are incompatible!", 1736 V); 1737 1738 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1739 Attrs.hasAttribute(Attribute::SExt)), 1740 "Attributes " 1741 "'zeroext and signext' are incompatible!", 1742 V); 1743 1744 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1745 Attrs.hasAttribute(Attribute::ReadOnly)), 1746 "Attributes " 1747 "'readnone and readonly' are incompatible!", 1748 V); 1749 1750 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1751 Attrs.hasAttribute(Attribute::WriteOnly)), 1752 "Attributes " 1753 "'readnone and writeonly' are incompatible!", 1754 V); 1755 1756 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1757 Attrs.hasAttribute(Attribute::WriteOnly)), 1758 "Attributes " 1759 "'readonly and writeonly' are incompatible!", 1760 V); 1761 1762 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1763 Attrs.hasAttribute(Attribute::AlwaysInline)), 1764 "Attributes " 1765 "'noinline and alwaysinline' are incompatible!", 1766 V); 1767 1768 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1769 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1770 "Wrong types for attribute: " + 1771 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1772 V); 1773 1774 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1775 SmallPtrSet<Type*, 4> Visited; 1776 if (!PTy->getElementType()->isSized(&Visited)) { 1777 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1778 !Attrs.hasAttribute(Attribute::ByRef) && 1779 !Attrs.hasAttribute(Attribute::InAlloca) && 1780 !Attrs.hasAttribute(Attribute::Preallocated), 1781 "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not " 1782 "support unsized types!", 1783 V); 1784 } 1785 if (!isa<PointerType>(PTy->getElementType())) 1786 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1787 "Attribute 'swifterror' only applies to parameters " 1788 "with pointer to pointer type!", 1789 V); 1790 1791 if (Attrs.hasAttribute(Attribute::ByRef)) { 1792 Assert(Attrs.getByRefType() == PTy->getElementType(), 1793 "Attribute 'byref' type does not match parameter!", V); 1794 } 1795 1796 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1797 Assert(Attrs.getByValType() == PTy->getElementType(), 1798 "Attribute 'byval' type does not match parameter!", V); 1799 } 1800 1801 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1802 Assert(Attrs.getPreallocatedType() == PTy->getElementType(), 1803 "Attribute 'preallocated' type does not match parameter!", V); 1804 } 1805 } else { 1806 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1807 "Attribute 'byval' only applies to parameters with pointer type!", 1808 V); 1809 Assert(!Attrs.hasAttribute(Attribute::ByRef), 1810 "Attribute 'byref' only applies to parameters with pointer type!", 1811 V); 1812 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1813 "Attribute 'swifterror' only applies to parameters " 1814 "with pointer type!", 1815 V); 1816 } 1817 } 1818 1819 // Check parameter attributes against a function type. 1820 // The value V is printed in error messages. 1821 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1822 const Value *V, bool IsIntrinsic) { 1823 if (Attrs.isEmpty()) 1824 return; 1825 1826 bool SawNest = false; 1827 bool SawReturned = false; 1828 bool SawSRet = false; 1829 bool SawSwiftSelf = false; 1830 bool SawSwiftError = false; 1831 1832 // Verify return value attributes. 1833 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1834 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1835 !RetAttrs.hasAttribute(Attribute::Nest) && 1836 !RetAttrs.hasAttribute(Attribute::StructRet) && 1837 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1838 !RetAttrs.hasAttribute(Attribute::NoFree) && 1839 !RetAttrs.hasAttribute(Attribute::Returned) && 1840 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1841 !RetAttrs.hasAttribute(Attribute::Preallocated) && 1842 !RetAttrs.hasAttribute(Attribute::ByRef) && 1843 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1844 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1845 "Attributes 'byval', 'inalloca', 'preallocated', 'byref', " 1846 "'nest', 'sret', 'nocapture', 'nofree', " 1847 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1848 "values!", 1849 V); 1850 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1851 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1852 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1853 "Attribute '" + RetAttrs.getAsString() + 1854 "' does not apply to function returns", 1855 V); 1856 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1857 1858 // Verify parameter attributes. 1859 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1860 Type *Ty = FT->getParamType(i); 1861 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1862 1863 if (!IsIntrinsic) { 1864 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1865 "immarg attribute only applies to intrinsics",V); 1866 } 1867 1868 verifyParameterAttrs(ArgAttrs, Ty, V); 1869 1870 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1871 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1872 SawNest = true; 1873 } 1874 1875 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1876 Assert(!SawReturned, "More than one parameter has attribute returned!", 1877 V); 1878 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1879 "Incompatible argument and return types for 'returned' attribute", 1880 V); 1881 SawReturned = true; 1882 } 1883 1884 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1885 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1886 Assert(i == 0 || i == 1, 1887 "Attribute 'sret' is not on first or second parameter!", V); 1888 SawSRet = true; 1889 } 1890 1891 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1892 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1893 SawSwiftSelf = true; 1894 } 1895 1896 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1897 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1898 V); 1899 SawSwiftError = true; 1900 } 1901 1902 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1903 Assert(i == FT->getNumParams() - 1, 1904 "inalloca isn't on the last parameter!", V); 1905 } 1906 } 1907 1908 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1909 return; 1910 1911 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1912 1913 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1914 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1915 "Attributes 'readnone and readonly' are incompatible!", V); 1916 1917 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1918 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1919 "Attributes 'readnone and writeonly' are incompatible!", V); 1920 1921 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1922 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1923 "Attributes 'readonly and writeonly' are incompatible!", V); 1924 1925 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1926 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1927 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1928 "incompatible!", 1929 V); 1930 1931 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1932 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1933 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1934 1935 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1936 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1937 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1938 1939 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1940 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1941 "Attribute 'optnone' requires 'noinline'!", V); 1942 1943 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1944 "Attributes 'optsize and optnone' are incompatible!", V); 1945 1946 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1947 "Attributes 'minsize and optnone' are incompatible!", V); 1948 } 1949 1950 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1951 const GlobalValue *GV = cast<GlobalValue>(V); 1952 Assert(GV->hasGlobalUnnamedAddr(), 1953 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1954 } 1955 1956 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1957 std::pair<unsigned, Optional<unsigned>> Args = 1958 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1959 1960 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1961 if (ParamNo >= FT->getNumParams()) { 1962 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1963 return false; 1964 } 1965 1966 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1967 CheckFailed("'allocsize' " + Name + 1968 " argument must refer to an integer parameter", 1969 V); 1970 return false; 1971 } 1972 1973 return true; 1974 }; 1975 1976 if (!CheckParam("element size", Args.first)) 1977 return; 1978 1979 if (Args.second && !CheckParam("number of elements", *Args.second)) 1980 return; 1981 } 1982 1983 if (Attrs.hasFnAttribute("frame-pointer")) { 1984 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1985 "frame-pointer").getValueAsString(); 1986 if (FP != "all" && FP != "non-leaf" && FP != "none") 1987 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1988 } 1989 1990 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 1991 StringRef S = Attrs 1992 .getAttribute(AttributeList::FunctionIndex, 1993 "patchable-function-prefix") 1994 .getValueAsString(); 1995 unsigned N; 1996 if (S.getAsInteger(10, N)) 1997 CheckFailed( 1998 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 1999 } 2000 if (Attrs.hasFnAttribute("patchable-function-entry")) { 2001 StringRef S = Attrs 2002 .getAttribute(AttributeList::FunctionIndex, 2003 "patchable-function-entry") 2004 .getValueAsString(); 2005 unsigned N; 2006 if (S.getAsInteger(10, N)) 2007 CheckFailed( 2008 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 2009 } 2010 } 2011 2012 void Verifier::verifyFunctionMetadata( 2013 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2014 for (const auto &Pair : MDs) { 2015 if (Pair.first == LLVMContext::MD_prof) { 2016 MDNode *MD = Pair.second; 2017 Assert(MD->getNumOperands() >= 2, 2018 "!prof annotations should have no less than 2 operands", MD); 2019 2020 // Check first operand. 2021 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2022 MD); 2023 Assert(isa<MDString>(MD->getOperand(0)), 2024 "expected string with name of the !prof annotation", MD); 2025 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2026 StringRef ProfName = MDS->getString(); 2027 Assert(ProfName.equals("function_entry_count") || 2028 ProfName.equals("synthetic_function_entry_count"), 2029 "first operand should be 'function_entry_count'" 2030 " or 'synthetic_function_entry_count'", 2031 MD); 2032 2033 // Check second operand. 2034 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2035 MD); 2036 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2037 "expected integer argument to function_entry_count", MD); 2038 } 2039 } 2040 } 2041 2042 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2043 if (!ConstantExprVisited.insert(EntryC).second) 2044 return; 2045 2046 SmallVector<const Constant *, 16> Stack; 2047 Stack.push_back(EntryC); 2048 2049 while (!Stack.empty()) { 2050 const Constant *C = Stack.pop_back_val(); 2051 2052 // Check this constant expression. 2053 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2054 visitConstantExpr(CE); 2055 2056 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2057 // Global Values get visited separately, but we do need to make sure 2058 // that the global value is in the correct module 2059 Assert(GV->getParent() == &M, "Referencing global in another module!", 2060 EntryC, &M, GV, GV->getParent()); 2061 continue; 2062 } 2063 2064 // Visit all sub-expressions. 2065 for (const Use &U : C->operands()) { 2066 const auto *OpC = dyn_cast<Constant>(U); 2067 if (!OpC) 2068 continue; 2069 if (!ConstantExprVisited.insert(OpC).second) 2070 continue; 2071 Stack.push_back(OpC); 2072 } 2073 } 2074 } 2075 2076 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2077 if (CE->getOpcode() == Instruction::BitCast) 2078 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2079 CE->getType()), 2080 "Invalid bitcast", CE); 2081 2082 if (CE->getOpcode() == Instruction::IntToPtr || 2083 CE->getOpcode() == Instruction::PtrToInt) { 2084 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 2085 ? CE->getType() 2086 : CE->getOperand(0)->getType(); 2087 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 2088 ? "inttoptr not supported for non-integral pointers" 2089 : "ptrtoint not supported for non-integral pointers"; 2090 Assert( 2091 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 2092 Msg); 2093 } 2094 } 2095 2096 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2097 // There shouldn't be more attribute sets than there are parameters plus the 2098 // function and return value. 2099 return Attrs.getNumAttrSets() <= Params + 2; 2100 } 2101 2102 /// Verify that statepoint intrinsic is well formed. 2103 void Verifier::verifyStatepoint(const CallBase &Call) { 2104 assert(Call.getCalledFunction() && 2105 Call.getCalledFunction()->getIntrinsicID() == 2106 Intrinsic::experimental_gc_statepoint); 2107 2108 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2109 !Call.onlyAccessesArgMemory(), 2110 "gc.statepoint must read and write all memory to preserve " 2111 "reordering restrictions required by safepoint semantics", 2112 Call); 2113 2114 const int64_t NumPatchBytes = 2115 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2116 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2117 Assert(NumPatchBytes >= 0, 2118 "gc.statepoint number of patchable bytes must be " 2119 "positive", 2120 Call); 2121 2122 const Value *Target = Call.getArgOperand(2); 2123 auto *PT = dyn_cast<PointerType>(Target->getType()); 2124 Assert(PT && PT->getElementType()->isFunctionTy(), 2125 "gc.statepoint callee must be of function pointer type", Call, Target); 2126 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2127 2128 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2129 Assert(NumCallArgs >= 0, 2130 "gc.statepoint number of arguments to underlying call " 2131 "must be positive", 2132 Call); 2133 const int NumParams = (int)TargetFuncType->getNumParams(); 2134 if (TargetFuncType->isVarArg()) { 2135 Assert(NumCallArgs >= NumParams, 2136 "gc.statepoint mismatch in number of vararg call args", Call); 2137 2138 // TODO: Remove this limitation 2139 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2140 "gc.statepoint doesn't support wrapping non-void " 2141 "vararg functions yet", 2142 Call); 2143 } else 2144 Assert(NumCallArgs == NumParams, 2145 "gc.statepoint mismatch in number of call args", Call); 2146 2147 const uint64_t Flags 2148 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2149 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2150 "unknown flag used in gc.statepoint flags argument", Call); 2151 2152 // Verify that the types of the call parameter arguments match 2153 // the type of the wrapped callee. 2154 AttributeList Attrs = Call.getAttributes(); 2155 for (int i = 0; i < NumParams; i++) { 2156 Type *ParamType = TargetFuncType->getParamType(i); 2157 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2158 Assert(ArgType == ParamType, 2159 "gc.statepoint call argument does not match wrapped " 2160 "function type", 2161 Call); 2162 2163 if (TargetFuncType->isVarArg()) { 2164 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2165 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2166 "Attribute 'sret' cannot be used for vararg call arguments!", 2167 Call); 2168 } 2169 } 2170 2171 const int EndCallArgsInx = 4 + NumCallArgs; 2172 2173 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2174 Assert(isa<ConstantInt>(NumTransitionArgsV), 2175 "gc.statepoint number of transition arguments " 2176 "must be constant integer", 2177 Call); 2178 const int NumTransitionArgs = 2179 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2180 Assert(NumTransitionArgs == 0, 2181 "gc.statepoint w/inline transition bundle is deprecated", Call); 2182 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2183 2184 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2185 Assert(isa<ConstantInt>(NumDeoptArgsV), 2186 "gc.statepoint number of deoptimization arguments " 2187 "must be constant integer", 2188 Call); 2189 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2190 Assert(NumDeoptArgs == 0, 2191 "gc.statepoint w/inline deopt operands is deprecated", Call); 2192 2193 const int ExpectedNumArgs = 7 + NumCallArgs; 2194 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2195 "gc.statepoint too many arguments", Call); 2196 2197 // Check that the only uses of this gc.statepoint are gc.result or 2198 // gc.relocate calls which are tied to this statepoint and thus part 2199 // of the same statepoint sequence 2200 for (const User *U : Call.users()) { 2201 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2202 Assert(UserCall, "illegal use of statepoint token", Call, U); 2203 if (!UserCall) 2204 continue; 2205 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2206 "gc.result or gc.relocate are the only value uses " 2207 "of a gc.statepoint", 2208 Call, U); 2209 if (isa<GCResultInst>(UserCall)) { 2210 Assert(UserCall->getArgOperand(0) == &Call, 2211 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2212 } else if (isa<GCRelocateInst>(Call)) { 2213 Assert(UserCall->getArgOperand(0) == &Call, 2214 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2215 } 2216 } 2217 2218 // Note: It is legal for a single derived pointer to be listed multiple 2219 // times. It's non-optimal, but it is legal. It can also happen after 2220 // insertion if we strip a bitcast away. 2221 // Note: It is really tempting to check that each base is relocated and 2222 // that a derived pointer is never reused as a base pointer. This turns 2223 // out to be problematic since optimizations run after safepoint insertion 2224 // can recognize equality properties that the insertion logic doesn't know 2225 // about. See example statepoint.ll in the verifier subdirectory 2226 } 2227 2228 void Verifier::verifyFrameRecoverIndices() { 2229 for (auto &Counts : FrameEscapeInfo) { 2230 Function *F = Counts.first; 2231 unsigned EscapedObjectCount = Counts.second.first; 2232 unsigned MaxRecoveredIndex = Counts.second.second; 2233 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2234 "all indices passed to llvm.localrecover must be less than the " 2235 "number of arguments passed to llvm.localescape in the parent " 2236 "function", 2237 F); 2238 } 2239 } 2240 2241 static Instruction *getSuccPad(Instruction *Terminator) { 2242 BasicBlock *UnwindDest; 2243 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2244 UnwindDest = II->getUnwindDest(); 2245 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2246 UnwindDest = CSI->getUnwindDest(); 2247 else 2248 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2249 return UnwindDest->getFirstNonPHI(); 2250 } 2251 2252 void Verifier::verifySiblingFuncletUnwinds() { 2253 SmallPtrSet<Instruction *, 8> Visited; 2254 SmallPtrSet<Instruction *, 8> Active; 2255 for (const auto &Pair : SiblingFuncletInfo) { 2256 Instruction *PredPad = Pair.first; 2257 if (Visited.count(PredPad)) 2258 continue; 2259 Active.insert(PredPad); 2260 Instruction *Terminator = Pair.second; 2261 do { 2262 Instruction *SuccPad = getSuccPad(Terminator); 2263 if (Active.count(SuccPad)) { 2264 // Found a cycle; report error 2265 Instruction *CyclePad = SuccPad; 2266 SmallVector<Instruction *, 8> CycleNodes; 2267 do { 2268 CycleNodes.push_back(CyclePad); 2269 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2270 if (CycleTerminator != CyclePad) 2271 CycleNodes.push_back(CycleTerminator); 2272 CyclePad = getSuccPad(CycleTerminator); 2273 } while (CyclePad != SuccPad); 2274 Assert(false, "EH pads can't handle each other's exceptions", 2275 ArrayRef<Instruction *>(CycleNodes)); 2276 } 2277 // Don't re-walk a node we've already checked 2278 if (!Visited.insert(SuccPad).second) 2279 break; 2280 // Walk to this successor if it has a map entry. 2281 PredPad = SuccPad; 2282 auto TermI = SiblingFuncletInfo.find(PredPad); 2283 if (TermI == SiblingFuncletInfo.end()) 2284 break; 2285 Terminator = TermI->second; 2286 Active.insert(PredPad); 2287 } while (true); 2288 // Each node only has one successor, so we've walked all the active 2289 // nodes' successors. 2290 Active.clear(); 2291 } 2292 } 2293 2294 // visitFunction - Verify that a function is ok. 2295 // 2296 void Verifier::visitFunction(const Function &F) { 2297 visitGlobalValue(F); 2298 2299 // Check function arguments. 2300 FunctionType *FT = F.getFunctionType(); 2301 unsigned NumArgs = F.arg_size(); 2302 2303 Assert(&Context == &F.getContext(), 2304 "Function context does not match Module context!", &F); 2305 2306 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2307 Assert(FT->getNumParams() == NumArgs, 2308 "# formal arguments must match # of arguments for function type!", &F, 2309 FT); 2310 Assert(F.getReturnType()->isFirstClassType() || 2311 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2312 "Functions cannot return aggregate values!", &F); 2313 2314 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2315 "Invalid struct return type!", &F); 2316 2317 AttributeList Attrs = F.getAttributes(); 2318 2319 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2320 "Attribute after last parameter!", &F); 2321 2322 bool isLLVMdotName = F.getName().size() >= 5 && 2323 F.getName().substr(0, 5) == "llvm."; 2324 2325 // Check function attributes. 2326 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2327 2328 // On function declarations/definitions, we do not support the builtin 2329 // attribute. We do not check this in VerifyFunctionAttrs since that is 2330 // checking for Attributes that can/can not ever be on functions. 2331 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2332 "Attribute 'builtin' can only be applied to a callsite.", &F); 2333 2334 // Check that this function meets the restrictions on this calling convention. 2335 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2336 // restrictions can be lifted. 2337 switch (F.getCallingConv()) { 2338 default: 2339 case CallingConv::C: 2340 break; 2341 case CallingConv::X86_INTR: { 2342 Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal), 2343 "Calling convention parameter requires byval", &F); 2344 break; 2345 } 2346 case CallingConv::AMDGPU_KERNEL: 2347 case CallingConv::SPIR_KERNEL: 2348 Assert(F.getReturnType()->isVoidTy(), 2349 "Calling convention requires void return type", &F); 2350 LLVM_FALLTHROUGH; 2351 case CallingConv::AMDGPU_VS: 2352 case CallingConv::AMDGPU_HS: 2353 case CallingConv::AMDGPU_GS: 2354 case CallingConv::AMDGPU_PS: 2355 case CallingConv::AMDGPU_CS: 2356 Assert(!F.hasStructRetAttr(), 2357 "Calling convention does not allow sret", &F); 2358 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2359 const unsigned StackAS = DL.getAllocaAddrSpace(); 2360 unsigned i = 0; 2361 for (const Argument &Arg : F.args()) { 2362 Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal), 2363 "Calling convention disallows byval", &F); 2364 Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated), 2365 "Calling convention disallows preallocated", &F); 2366 Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca), 2367 "Calling convention disallows inalloca", &F); 2368 2369 if (Attrs.hasParamAttribute(i, Attribute::ByRef)) { 2370 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2371 // value here. 2372 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2373 "Calling convention disallows stack byref", &F); 2374 } 2375 2376 ++i; 2377 } 2378 } 2379 2380 LLVM_FALLTHROUGH; 2381 case CallingConv::Fast: 2382 case CallingConv::Cold: 2383 case CallingConv::Intel_OCL_BI: 2384 case CallingConv::PTX_Kernel: 2385 case CallingConv::PTX_Device: 2386 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2387 "perfect forwarding!", 2388 &F); 2389 break; 2390 } 2391 2392 // Check that the argument values match the function type for this function... 2393 unsigned i = 0; 2394 for (const Argument &Arg : F.args()) { 2395 Assert(Arg.getType() == FT->getParamType(i), 2396 "Argument value does not match function argument type!", &Arg, 2397 FT->getParamType(i)); 2398 Assert(Arg.getType()->isFirstClassType(), 2399 "Function arguments must have first-class types!", &Arg); 2400 if (!isLLVMdotName) { 2401 Assert(!Arg.getType()->isMetadataTy(), 2402 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2403 Assert(!Arg.getType()->isTokenTy(), 2404 "Function takes token but isn't an intrinsic", &Arg, &F); 2405 } 2406 2407 // Check that swifterror argument is only used by loads and stores. 2408 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2409 verifySwiftErrorValue(&Arg); 2410 } 2411 ++i; 2412 } 2413 2414 if (!isLLVMdotName) 2415 Assert(!F.getReturnType()->isTokenTy(), 2416 "Functions returns a token but isn't an intrinsic", &F); 2417 2418 // Get the function metadata attachments. 2419 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2420 F.getAllMetadata(MDs); 2421 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2422 verifyFunctionMetadata(MDs); 2423 2424 // Check validity of the personality function 2425 if (F.hasPersonalityFn()) { 2426 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2427 if (Per) 2428 Assert(Per->getParent() == F.getParent(), 2429 "Referencing personality function in another module!", 2430 &F, F.getParent(), Per, Per->getParent()); 2431 } 2432 2433 if (F.isMaterializable()) { 2434 // Function has a body somewhere we can't see. 2435 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2436 MDs.empty() ? nullptr : MDs.front().second); 2437 } else if (F.isDeclaration()) { 2438 for (const auto &I : MDs) { 2439 // This is used for call site debug information. 2440 AssertDI(I.first != LLVMContext::MD_dbg || 2441 !cast<DISubprogram>(I.second)->isDistinct(), 2442 "function declaration may only have a unique !dbg attachment", 2443 &F); 2444 Assert(I.first != LLVMContext::MD_prof, 2445 "function declaration may not have a !prof attachment", &F); 2446 2447 // Verify the metadata itself. 2448 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2449 } 2450 Assert(!F.hasPersonalityFn(), 2451 "Function declaration shouldn't have a personality routine", &F); 2452 } else { 2453 // Verify that this function (which has a body) is not named "llvm.*". It 2454 // is not legal to define intrinsics. 2455 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2456 2457 // Check the entry node 2458 const BasicBlock *Entry = &F.getEntryBlock(); 2459 Assert(pred_empty(Entry), 2460 "Entry block to function must not have predecessors!", Entry); 2461 2462 // The address of the entry block cannot be taken, unless it is dead. 2463 if (Entry->hasAddressTaken()) { 2464 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2465 "blockaddress may not be used with the entry block!", Entry); 2466 } 2467 2468 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2469 // Visit metadata attachments. 2470 for (const auto &I : MDs) { 2471 // Verify that the attachment is legal. 2472 auto AllowLocs = AreDebugLocsAllowed::No; 2473 switch (I.first) { 2474 default: 2475 break; 2476 case LLVMContext::MD_dbg: { 2477 ++NumDebugAttachments; 2478 AssertDI(NumDebugAttachments == 1, 2479 "function must have a single !dbg attachment", &F, I.second); 2480 AssertDI(isa<DISubprogram>(I.second), 2481 "function !dbg attachment must be a subprogram", &F, I.second); 2482 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2483 "function definition may only have a distinct !dbg attachment", 2484 &F); 2485 2486 auto *SP = cast<DISubprogram>(I.second); 2487 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2488 AssertDI(!AttachedTo || AttachedTo == &F, 2489 "DISubprogram attached to more than one function", SP, &F); 2490 AttachedTo = &F; 2491 AllowLocs = AreDebugLocsAllowed::Yes; 2492 break; 2493 } 2494 case LLVMContext::MD_prof: 2495 ++NumProfAttachments; 2496 Assert(NumProfAttachments == 1, 2497 "function must have a single !prof attachment", &F, I.second); 2498 break; 2499 } 2500 2501 // Verify the metadata itself. 2502 visitMDNode(*I.second, AllowLocs); 2503 } 2504 } 2505 2506 // If this function is actually an intrinsic, verify that it is only used in 2507 // direct call/invokes, never having its "address taken". 2508 // Only do this if the module is materialized, otherwise we don't have all the 2509 // uses. 2510 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2511 const User *U; 2512 if (F.hasAddressTaken(&U)) 2513 Assert(false, "Invalid user of intrinsic instruction!", U); 2514 } 2515 2516 auto *N = F.getSubprogram(); 2517 HasDebugInfo = (N != nullptr); 2518 if (!HasDebugInfo) 2519 return; 2520 2521 // Check that all !dbg attachments lead to back to N. 2522 // 2523 // FIXME: Check this incrementally while visiting !dbg attachments. 2524 // FIXME: Only check when N is the canonical subprogram for F. 2525 SmallPtrSet<const MDNode *, 32> Seen; 2526 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2527 // Be careful about using DILocation here since we might be dealing with 2528 // broken code (this is the Verifier after all). 2529 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2530 if (!DL) 2531 return; 2532 if (!Seen.insert(DL).second) 2533 return; 2534 2535 Metadata *Parent = DL->getRawScope(); 2536 AssertDI(Parent && isa<DILocalScope>(Parent), 2537 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2538 Parent); 2539 2540 DILocalScope *Scope = DL->getInlinedAtScope(); 2541 Assert(Scope, "Failed to find DILocalScope", DL); 2542 2543 if (!Seen.insert(Scope).second) 2544 return; 2545 2546 DISubprogram *SP = Scope->getSubprogram(); 2547 2548 // Scope and SP could be the same MDNode and we don't want to skip 2549 // validation in that case 2550 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2551 return; 2552 2553 AssertDI(SP->describes(&F), 2554 "!dbg attachment points at wrong subprogram for function", N, &F, 2555 &I, DL, Scope, SP); 2556 }; 2557 for (auto &BB : F) 2558 for (auto &I : BB) { 2559 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2560 // The llvm.loop annotations also contain two DILocations. 2561 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2562 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2563 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2564 if (BrokenDebugInfo) 2565 return; 2566 } 2567 } 2568 2569 // verifyBasicBlock - Verify that a basic block is well formed... 2570 // 2571 void Verifier::visitBasicBlock(BasicBlock &BB) { 2572 InstsInThisBlock.clear(); 2573 2574 // Ensure that basic blocks have terminators! 2575 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2576 2577 // Check constraints that this basic block imposes on all of the PHI nodes in 2578 // it. 2579 if (isa<PHINode>(BB.front())) { 2580 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2581 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2582 llvm::sort(Preds); 2583 for (const PHINode &PN : BB.phis()) { 2584 Assert(PN.getNumIncomingValues() == Preds.size(), 2585 "PHINode should have one entry for each predecessor of its " 2586 "parent basic block!", 2587 &PN); 2588 2589 // Get and sort all incoming values in the PHI node... 2590 Values.clear(); 2591 Values.reserve(PN.getNumIncomingValues()); 2592 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2593 Values.push_back( 2594 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2595 llvm::sort(Values); 2596 2597 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2598 // Check to make sure that if there is more than one entry for a 2599 // particular basic block in this PHI node, that the incoming values are 2600 // all identical. 2601 // 2602 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2603 Values[i].second == Values[i - 1].second, 2604 "PHI node has multiple entries for the same basic block with " 2605 "different incoming values!", 2606 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2607 2608 // Check to make sure that the predecessors and PHI node entries are 2609 // matched up. 2610 Assert(Values[i].first == Preds[i], 2611 "PHI node entries do not match predecessors!", &PN, 2612 Values[i].first, Preds[i]); 2613 } 2614 } 2615 } 2616 2617 // Check that all instructions have their parent pointers set up correctly. 2618 for (auto &I : BB) 2619 { 2620 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2621 } 2622 } 2623 2624 void Verifier::visitTerminator(Instruction &I) { 2625 // Ensure that terminators only exist at the end of the basic block. 2626 Assert(&I == I.getParent()->getTerminator(), 2627 "Terminator found in the middle of a basic block!", I.getParent()); 2628 visitInstruction(I); 2629 } 2630 2631 void Verifier::visitBranchInst(BranchInst &BI) { 2632 if (BI.isConditional()) { 2633 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2634 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2635 } 2636 visitTerminator(BI); 2637 } 2638 2639 void Verifier::visitReturnInst(ReturnInst &RI) { 2640 Function *F = RI.getParent()->getParent(); 2641 unsigned N = RI.getNumOperands(); 2642 if (F->getReturnType()->isVoidTy()) 2643 Assert(N == 0, 2644 "Found return instr that returns non-void in Function of void " 2645 "return type!", 2646 &RI, F->getReturnType()); 2647 else 2648 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2649 "Function return type does not match operand " 2650 "type of return inst!", 2651 &RI, F->getReturnType()); 2652 2653 // Check to make sure that the return value has necessary properties for 2654 // terminators... 2655 visitTerminator(RI); 2656 } 2657 2658 void Verifier::visitSwitchInst(SwitchInst &SI) { 2659 // Check to make sure that all of the constants in the switch instruction 2660 // have the same type as the switched-on value. 2661 Type *SwitchTy = SI.getCondition()->getType(); 2662 SmallPtrSet<ConstantInt*, 32> Constants; 2663 for (auto &Case : SI.cases()) { 2664 Assert(Case.getCaseValue()->getType() == SwitchTy, 2665 "Switch constants must all be same type as switch value!", &SI); 2666 Assert(Constants.insert(Case.getCaseValue()).second, 2667 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2668 } 2669 2670 visitTerminator(SI); 2671 } 2672 2673 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2674 Assert(BI.getAddress()->getType()->isPointerTy(), 2675 "Indirectbr operand must have pointer type!", &BI); 2676 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2677 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2678 "Indirectbr destinations must all have pointer type!", &BI); 2679 2680 visitTerminator(BI); 2681 } 2682 2683 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2684 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2685 &CBI); 2686 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2687 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2688 "Callbr successors must all have pointer type!", &CBI); 2689 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2690 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2691 "Using an unescaped label as a callbr argument!", &CBI); 2692 if (isa<BasicBlock>(CBI.getOperand(i))) 2693 for (unsigned j = i + 1; j != e; ++j) 2694 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2695 "Duplicate callbr destination!", &CBI); 2696 } 2697 { 2698 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2699 for (Value *V : CBI.args()) 2700 if (auto *BA = dyn_cast<BlockAddress>(V)) 2701 ArgBBs.insert(BA->getBasicBlock()); 2702 for (BasicBlock *BB : CBI.getIndirectDests()) 2703 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2704 } 2705 2706 visitTerminator(CBI); 2707 } 2708 2709 void Verifier::visitSelectInst(SelectInst &SI) { 2710 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2711 SI.getOperand(2)), 2712 "Invalid operands for select instruction!", &SI); 2713 2714 Assert(SI.getTrueValue()->getType() == SI.getType(), 2715 "Select values must have same type as select instruction!", &SI); 2716 visitInstruction(SI); 2717 } 2718 2719 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2720 /// a pass, if any exist, it's an error. 2721 /// 2722 void Verifier::visitUserOp1(Instruction &I) { 2723 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2724 } 2725 2726 void Verifier::visitTruncInst(TruncInst &I) { 2727 // Get the source and destination types 2728 Type *SrcTy = I.getOperand(0)->getType(); 2729 Type *DestTy = I.getType(); 2730 2731 // Get the size of the types in bits, we'll need this later 2732 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2733 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2734 2735 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2736 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2737 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2738 "trunc source and destination must both be a vector or neither", &I); 2739 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2740 2741 visitInstruction(I); 2742 } 2743 2744 void Verifier::visitZExtInst(ZExtInst &I) { 2745 // Get the source and destination types 2746 Type *SrcTy = I.getOperand(0)->getType(); 2747 Type *DestTy = I.getType(); 2748 2749 // Get the size of the types in bits, we'll need this later 2750 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2751 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2752 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2753 "zext source and destination must both be a vector or neither", &I); 2754 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2755 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2756 2757 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2758 2759 visitInstruction(I); 2760 } 2761 2762 void Verifier::visitSExtInst(SExtInst &I) { 2763 // Get the source and destination types 2764 Type *SrcTy = I.getOperand(0)->getType(); 2765 Type *DestTy = I.getType(); 2766 2767 // Get the size of the types in bits, we'll need this later 2768 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2769 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2770 2771 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2772 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2773 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2774 "sext source and destination must both be a vector or neither", &I); 2775 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2776 2777 visitInstruction(I); 2778 } 2779 2780 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2781 // Get the source and destination types 2782 Type *SrcTy = I.getOperand(0)->getType(); 2783 Type *DestTy = I.getType(); 2784 // Get the size of the types in bits, we'll need this later 2785 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2786 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2787 2788 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2789 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2790 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2791 "fptrunc source and destination must both be a vector or neither", &I); 2792 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2793 2794 visitInstruction(I); 2795 } 2796 2797 void Verifier::visitFPExtInst(FPExtInst &I) { 2798 // Get the source and destination types 2799 Type *SrcTy = I.getOperand(0)->getType(); 2800 Type *DestTy = I.getType(); 2801 2802 // Get the size of the types in bits, we'll need this later 2803 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2804 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2805 2806 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2807 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2808 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2809 "fpext source and destination must both be a vector or neither", &I); 2810 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2811 2812 visitInstruction(I); 2813 } 2814 2815 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2816 // Get the source and destination types 2817 Type *SrcTy = I.getOperand(0)->getType(); 2818 Type *DestTy = I.getType(); 2819 2820 bool SrcVec = SrcTy->isVectorTy(); 2821 bool DstVec = DestTy->isVectorTy(); 2822 2823 Assert(SrcVec == DstVec, 2824 "UIToFP source and dest must both be vector or scalar", &I); 2825 Assert(SrcTy->isIntOrIntVectorTy(), 2826 "UIToFP source must be integer or integer vector", &I); 2827 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2828 &I); 2829 2830 if (SrcVec && DstVec) 2831 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2832 cast<VectorType>(DestTy)->getElementCount(), 2833 "UIToFP source and dest vector length mismatch", &I); 2834 2835 visitInstruction(I); 2836 } 2837 2838 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2839 // Get the source and destination types 2840 Type *SrcTy = I.getOperand(0)->getType(); 2841 Type *DestTy = I.getType(); 2842 2843 bool SrcVec = SrcTy->isVectorTy(); 2844 bool DstVec = DestTy->isVectorTy(); 2845 2846 Assert(SrcVec == DstVec, 2847 "SIToFP source and dest must both be vector or scalar", &I); 2848 Assert(SrcTy->isIntOrIntVectorTy(), 2849 "SIToFP source must be integer or integer vector", &I); 2850 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2851 &I); 2852 2853 if (SrcVec && DstVec) 2854 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2855 cast<VectorType>(DestTy)->getElementCount(), 2856 "SIToFP source and dest vector length mismatch", &I); 2857 2858 visitInstruction(I); 2859 } 2860 2861 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2862 // Get the source and destination types 2863 Type *SrcTy = I.getOperand(0)->getType(); 2864 Type *DestTy = I.getType(); 2865 2866 bool SrcVec = SrcTy->isVectorTy(); 2867 bool DstVec = DestTy->isVectorTy(); 2868 2869 Assert(SrcVec == DstVec, 2870 "FPToUI source and dest must both be vector or scalar", &I); 2871 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2872 &I); 2873 Assert(DestTy->isIntOrIntVectorTy(), 2874 "FPToUI result must be integer or integer vector", &I); 2875 2876 if (SrcVec && DstVec) 2877 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2878 cast<VectorType>(DestTy)->getElementCount(), 2879 "FPToUI source and dest vector length mismatch", &I); 2880 2881 visitInstruction(I); 2882 } 2883 2884 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2885 // Get the source and destination types 2886 Type *SrcTy = I.getOperand(0)->getType(); 2887 Type *DestTy = I.getType(); 2888 2889 bool SrcVec = SrcTy->isVectorTy(); 2890 bool DstVec = DestTy->isVectorTy(); 2891 2892 Assert(SrcVec == DstVec, 2893 "FPToSI source and dest must both be vector or scalar", &I); 2894 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2895 &I); 2896 Assert(DestTy->isIntOrIntVectorTy(), 2897 "FPToSI result must be integer or integer vector", &I); 2898 2899 if (SrcVec && DstVec) 2900 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2901 cast<VectorType>(DestTy)->getElementCount(), 2902 "FPToSI source and dest vector length mismatch", &I); 2903 2904 visitInstruction(I); 2905 } 2906 2907 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2908 // Get the source and destination types 2909 Type *SrcTy = I.getOperand(0)->getType(); 2910 Type *DestTy = I.getType(); 2911 2912 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2913 2914 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2915 Assert(!DL.isNonIntegralPointerType(PTy), 2916 "ptrtoint not supported for non-integral pointers"); 2917 2918 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2919 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2920 &I); 2921 2922 if (SrcTy->isVectorTy()) { 2923 auto *VSrc = cast<VectorType>(SrcTy); 2924 auto *VDest = cast<VectorType>(DestTy); 2925 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2926 "PtrToInt Vector width mismatch", &I); 2927 } 2928 2929 visitInstruction(I); 2930 } 2931 2932 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2933 // Get the source and destination types 2934 Type *SrcTy = I.getOperand(0)->getType(); 2935 Type *DestTy = I.getType(); 2936 2937 Assert(SrcTy->isIntOrIntVectorTy(), 2938 "IntToPtr source must be an integral", &I); 2939 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2940 2941 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2942 Assert(!DL.isNonIntegralPointerType(PTy), 2943 "inttoptr not supported for non-integral pointers"); 2944 2945 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2946 &I); 2947 if (SrcTy->isVectorTy()) { 2948 auto *VSrc = cast<VectorType>(SrcTy); 2949 auto *VDest = cast<VectorType>(DestTy); 2950 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2951 "IntToPtr Vector width mismatch", &I); 2952 } 2953 visitInstruction(I); 2954 } 2955 2956 void Verifier::visitBitCastInst(BitCastInst &I) { 2957 Assert( 2958 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2959 "Invalid bitcast", &I); 2960 visitInstruction(I); 2961 } 2962 2963 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2964 Type *SrcTy = I.getOperand(0)->getType(); 2965 Type *DestTy = I.getType(); 2966 2967 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2968 &I); 2969 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2970 &I); 2971 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2972 "AddrSpaceCast must be between different address spaces", &I); 2973 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 2974 Assert(SrcVTy->getElementCount() == 2975 cast<VectorType>(DestTy)->getElementCount(), 2976 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2977 visitInstruction(I); 2978 } 2979 2980 /// visitPHINode - Ensure that a PHI node is well formed. 2981 /// 2982 void Verifier::visitPHINode(PHINode &PN) { 2983 // Ensure that the PHI nodes are all grouped together at the top of the block. 2984 // This can be tested by checking whether the instruction before this is 2985 // either nonexistent (because this is begin()) or is a PHI node. If not, 2986 // then there is some other instruction before a PHI. 2987 Assert(&PN == &PN.getParent()->front() || 2988 isa<PHINode>(--BasicBlock::iterator(&PN)), 2989 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2990 2991 // Check that a PHI doesn't yield a Token. 2992 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2993 2994 // Check that all of the values of the PHI node have the same type as the 2995 // result, and that the incoming blocks are really basic blocks. 2996 for (Value *IncValue : PN.incoming_values()) { 2997 Assert(PN.getType() == IncValue->getType(), 2998 "PHI node operands are not the same type as the result!", &PN); 2999 } 3000 3001 // All other PHI node constraints are checked in the visitBasicBlock method. 3002 3003 visitInstruction(PN); 3004 } 3005 3006 void Verifier::visitCallBase(CallBase &Call) { 3007 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 3008 "Called function must be a pointer!", Call); 3009 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3010 3011 Assert(FPTy->getElementType()->isFunctionTy(), 3012 "Called function is not pointer to function type!", Call); 3013 3014 Assert(FPTy->getElementType() == Call.getFunctionType(), 3015 "Called function is not the same type as the call!", Call); 3016 3017 FunctionType *FTy = Call.getFunctionType(); 3018 3019 // Verify that the correct number of arguments are being passed 3020 if (FTy->isVarArg()) 3021 Assert(Call.arg_size() >= FTy->getNumParams(), 3022 "Called function requires more parameters than were provided!", 3023 Call); 3024 else 3025 Assert(Call.arg_size() == FTy->getNumParams(), 3026 "Incorrect number of arguments passed to called function!", Call); 3027 3028 // Verify that all arguments to the call match the function type. 3029 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3030 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3031 "Call parameter type does not match function signature!", 3032 Call.getArgOperand(i), FTy->getParamType(i), Call); 3033 3034 AttributeList Attrs = Call.getAttributes(); 3035 3036 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3037 "Attribute after last parameter!", Call); 3038 3039 bool IsIntrinsic = Call.getCalledFunction() && 3040 Call.getCalledFunction()->getName().startswith("llvm."); 3041 3042 Function *Callee = 3043 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3044 3045 if (Attrs.hasFnAttribute(Attribute::Speculatable)) { 3046 // Don't allow speculatable on call sites, unless the underlying function 3047 // declaration is also speculatable. 3048 Assert(Callee && Callee->isSpeculatable(), 3049 "speculatable attribute may not apply to call sites", Call); 3050 } 3051 3052 if (Attrs.hasFnAttribute(Attribute::Preallocated)) { 3053 Assert(Call.getCalledFunction()->getIntrinsicID() == 3054 Intrinsic::call_preallocated_arg, 3055 "preallocated as a call site attribute can only be on " 3056 "llvm.call.preallocated.arg"); 3057 } 3058 3059 // Verify call attributes. 3060 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3061 3062 // Conservatively check the inalloca argument. 3063 // We have a bug if we can find that there is an underlying alloca without 3064 // inalloca. 3065 if (Call.hasInAllocaArgument()) { 3066 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3067 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3068 Assert(AI->isUsedWithInAlloca(), 3069 "inalloca argument for call has mismatched alloca", AI, Call); 3070 } 3071 3072 // For each argument of the callsite, if it has the swifterror argument, 3073 // make sure the underlying alloca/parameter it comes from has a swifterror as 3074 // well. 3075 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3076 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3077 Value *SwiftErrorArg = Call.getArgOperand(i); 3078 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3079 Assert(AI->isSwiftError(), 3080 "swifterror argument for call has mismatched alloca", AI, Call); 3081 continue; 3082 } 3083 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3084 Assert(ArgI, 3085 "swifterror argument should come from an alloca or parameter", 3086 SwiftErrorArg, Call); 3087 Assert(ArgI->hasSwiftErrorAttr(), 3088 "swifterror argument for call has mismatched parameter", ArgI, 3089 Call); 3090 } 3091 3092 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 3093 // Don't allow immarg on call sites, unless the underlying declaration 3094 // also has the matching immarg. 3095 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3096 "immarg may not apply only to call sites", 3097 Call.getArgOperand(i), Call); 3098 } 3099 3100 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3101 Value *ArgVal = Call.getArgOperand(i); 3102 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3103 "immarg operand has non-immediate parameter", ArgVal, Call); 3104 } 3105 3106 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3107 Value *ArgVal = Call.getArgOperand(i); 3108 bool hasOB = 3109 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3110 bool isMustTail = Call.isMustTailCall(); 3111 Assert(hasOB != isMustTail, 3112 "preallocated operand either requires a preallocated bundle or " 3113 "the call to be musttail (but not both)", 3114 ArgVal, Call); 3115 } 3116 } 3117 3118 if (FTy->isVarArg()) { 3119 // FIXME? is 'nest' even legal here? 3120 bool SawNest = false; 3121 bool SawReturned = false; 3122 3123 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3124 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3125 SawNest = true; 3126 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3127 SawReturned = true; 3128 } 3129 3130 // Check attributes on the varargs part. 3131 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3132 Type *Ty = Call.getArgOperand(Idx)->getType(); 3133 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3134 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3135 3136 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3137 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3138 SawNest = true; 3139 } 3140 3141 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3142 Assert(!SawReturned, "More than one parameter has attribute returned!", 3143 Call); 3144 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3145 "Incompatible argument and return types for 'returned' " 3146 "attribute", 3147 Call); 3148 SawReturned = true; 3149 } 3150 3151 // Statepoint intrinsic is vararg but the wrapped function may be not. 3152 // Allow sret here and check the wrapped function in verifyStatepoint. 3153 if (!Call.getCalledFunction() || 3154 Call.getCalledFunction()->getIntrinsicID() != 3155 Intrinsic::experimental_gc_statepoint) 3156 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3157 "Attribute 'sret' cannot be used for vararg call arguments!", 3158 Call); 3159 3160 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3161 Assert(Idx == Call.arg_size() - 1, 3162 "inalloca isn't on the last argument!", Call); 3163 } 3164 } 3165 3166 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3167 if (!IsIntrinsic) { 3168 for (Type *ParamTy : FTy->params()) { 3169 Assert(!ParamTy->isMetadataTy(), 3170 "Function has metadata parameter but isn't an intrinsic", Call); 3171 Assert(!ParamTy->isTokenTy(), 3172 "Function has token parameter but isn't an intrinsic", Call); 3173 } 3174 } 3175 3176 // Verify that indirect calls don't return tokens. 3177 if (!Call.getCalledFunction()) 3178 Assert(!FTy->getReturnType()->isTokenTy(), 3179 "Return type cannot be token for indirect call!"); 3180 3181 if (Function *F = Call.getCalledFunction()) 3182 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3183 visitIntrinsicCall(ID, Call); 3184 3185 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3186 // most one "gc-transition", at most one "cfguardtarget", 3187 // and at most one "preallocated" operand bundle. 3188 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3189 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3190 FoundPreallocatedBundle = false, FoundGCLiveBundle = false;; 3191 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3192 OperandBundleUse BU = Call.getOperandBundleAt(i); 3193 uint32_t Tag = BU.getTagID(); 3194 if (Tag == LLVMContext::OB_deopt) { 3195 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3196 FoundDeoptBundle = true; 3197 } else if (Tag == LLVMContext::OB_gc_transition) { 3198 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3199 Call); 3200 FoundGCTransitionBundle = true; 3201 } else if (Tag == LLVMContext::OB_funclet) { 3202 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3203 FoundFuncletBundle = true; 3204 Assert(BU.Inputs.size() == 1, 3205 "Expected exactly one funclet bundle operand", Call); 3206 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3207 "Funclet bundle operands should correspond to a FuncletPadInst", 3208 Call); 3209 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3210 Assert(!FoundCFGuardTargetBundle, 3211 "Multiple CFGuardTarget operand bundles", Call); 3212 FoundCFGuardTargetBundle = true; 3213 Assert(BU.Inputs.size() == 1, 3214 "Expected exactly one cfguardtarget bundle operand", Call); 3215 } else if (Tag == LLVMContext::OB_preallocated) { 3216 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3217 Call); 3218 FoundPreallocatedBundle = true; 3219 Assert(BU.Inputs.size() == 1, 3220 "Expected exactly one preallocated bundle operand", Call); 3221 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3222 Assert(Input && 3223 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3224 "\"preallocated\" argument must be a token from " 3225 "llvm.call.preallocated.setup", 3226 Call); 3227 } else if (Tag == LLVMContext::OB_gc_live) { 3228 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3229 Call); 3230 FoundGCLiveBundle = true; 3231 } 3232 } 3233 3234 // Verify that each inlinable callsite of a debug-info-bearing function in a 3235 // debug-info-bearing function has a debug location attached to it. Failure to 3236 // do so causes assertion failures when the inliner sets up inline scope info. 3237 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3238 Call.getCalledFunction()->getSubprogram()) 3239 AssertDI(Call.getDebugLoc(), 3240 "inlinable function call in a function with " 3241 "debug info must have a !dbg location", 3242 Call); 3243 3244 visitInstruction(Call); 3245 } 3246 3247 /// Two types are "congruent" if they are identical, or if they are both pointer 3248 /// types with different pointee types and the same address space. 3249 static bool isTypeCongruent(Type *L, Type *R) { 3250 if (L == R) 3251 return true; 3252 PointerType *PL = dyn_cast<PointerType>(L); 3253 PointerType *PR = dyn_cast<PointerType>(R); 3254 if (!PL || !PR) 3255 return false; 3256 return PL->getAddressSpace() == PR->getAddressSpace(); 3257 } 3258 3259 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3260 static const Attribute::AttrKind ABIAttrs[] = { 3261 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3262 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError, 3263 Attribute::Preallocated, Attribute::ByRef}; 3264 AttrBuilder Copy; 3265 for (auto AK : ABIAttrs) { 3266 if (Attrs.hasParamAttribute(I, AK)) 3267 Copy.addAttribute(AK); 3268 } 3269 3270 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3271 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3272 (Attrs.hasParamAttribute(I, Attribute::ByVal) || 3273 Attrs.hasParamAttribute(I, Attribute::ByRef))) 3274 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3275 return Copy; 3276 } 3277 3278 void Verifier::verifyMustTailCall(CallInst &CI) { 3279 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3280 3281 // - The caller and callee prototypes must match. Pointer types of 3282 // parameters or return types may differ in pointee type, but not 3283 // address space. 3284 Function *F = CI.getParent()->getParent(); 3285 FunctionType *CallerTy = F->getFunctionType(); 3286 FunctionType *CalleeTy = CI.getFunctionType(); 3287 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3288 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3289 "cannot guarantee tail call due to mismatched parameter counts", 3290 &CI); 3291 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3292 Assert( 3293 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3294 "cannot guarantee tail call due to mismatched parameter types", &CI); 3295 } 3296 } 3297 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3298 "cannot guarantee tail call due to mismatched varargs", &CI); 3299 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3300 "cannot guarantee tail call due to mismatched return types", &CI); 3301 3302 // - The calling conventions of the caller and callee must match. 3303 Assert(F->getCallingConv() == CI.getCallingConv(), 3304 "cannot guarantee tail call due to mismatched calling conv", &CI); 3305 3306 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3307 // returned, preallocated, and inalloca, must match. 3308 AttributeList CallerAttrs = F->getAttributes(); 3309 AttributeList CalleeAttrs = CI.getAttributes(); 3310 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3311 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3312 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3313 Assert(CallerABIAttrs == CalleeABIAttrs, 3314 "cannot guarantee tail call due to mismatched ABI impacting " 3315 "function attributes", 3316 &CI, CI.getOperand(I)); 3317 } 3318 3319 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3320 // or a pointer bitcast followed by a ret instruction. 3321 // - The ret instruction must return the (possibly bitcasted) value 3322 // produced by the call or void. 3323 Value *RetVal = &CI; 3324 Instruction *Next = CI.getNextNode(); 3325 3326 // Handle the optional bitcast. 3327 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3328 Assert(BI->getOperand(0) == RetVal, 3329 "bitcast following musttail call must use the call", BI); 3330 RetVal = BI; 3331 Next = BI->getNextNode(); 3332 } 3333 3334 // Check the return. 3335 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3336 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3337 &CI); 3338 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3339 "musttail call result must be returned", Ret); 3340 } 3341 3342 void Verifier::visitCallInst(CallInst &CI) { 3343 visitCallBase(CI); 3344 3345 if (CI.isMustTailCall()) 3346 verifyMustTailCall(CI); 3347 } 3348 3349 void Verifier::visitInvokeInst(InvokeInst &II) { 3350 visitCallBase(II); 3351 3352 // Verify that the first non-PHI instruction of the unwind destination is an 3353 // exception handling instruction. 3354 Assert( 3355 II.getUnwindDest()->isEHPad(), 3356 "The unwind destination does not have an exception handling instruction!", 3357 &II); 3358 3359 visitTerminator(II); 3360 } 3361 3362 /// visitUnaryOperator - Check the argument to the unary operator. 3363 /// 3364 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3365 Assert(U.getType() == U.getOperand(0)->getType(), 3366 "Unary operators must have same type for" 3367 "operands and result!", 3368 &U); 3369 3370 switch (U.getOpcode()) { 3371 // Check that floating-point arithmetic operators are only used with 3372 // floating-point operands. 3373 case Instruction::FNeg: 3374 Assert(U.getType()->isFPOrFPVectorTy(), 3375 "FNeg operator only works with float types!", &U); 3376 break; 3377 default: 3378 llvm_unreachable("Unknown UnaryOperator opcode!"); 3379 } 3380 3381 visitInstruction(U); 3382 } 3383 3384 /// visitBinaryOperator - Check that both arguments to the binary operator are 3385 /// of the same type! 3386 /// 3387 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3388 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3389 "Both operands to a binary operator are not of the same type!", &B); 3390 3391 switch (B.getOpcode()) { 3392 // Check that integer arithmetic operators are only used with 3393 // integral operands. 3394 case Instruction::Add: 3395 case Instruction::Sub: 3396 case Instruction::Mul: 3397 case Instruction::SDiv: 3398 case Instruction::UDiv: 3399 case Instruction::SRem: 3400 case Instruction::URem: 3401 Assert(B.getType()->isIntOrIntVectorTy(), 3402 "Integer arithmetic operators only work with integral types!", &B); 3403 Assert(B.getType() == B.getOperand(0)->getType(), 3404 "Integer arithmetic operators must have same type " 3405 "for operands and result!", 3406 &B); 3407 break; 3408 // Check that floating-point arithmetic operators are only used with 3409 // floating-point operands. 3410 case Instruction::FAdd: 3411 case Instruction::FSub: 3412 case Instruction::FMul: 3413 case Instruction::FDiv: 3414 case Instruction::FRem: 3415 Assert(B.getType()->isFPOrFPVectorTy(), 3416 "Floating-point arithmetic operators only work with " 3417 "floating-point types!", 3418 &B); 3419 Assert(B.getType() == B.getOperand(0)->getType(), 3420 "Floating-point arithmetic operators must have same type " 3421 "for operands and result!", 3422 &B); 3423 break; 3424 // Check that logical operators are only used with integral operands. 3425 case Instruction::And: 3426 case Instruction::Or: 3427 case Instruction::Xor: 3428 Assert(B.getType()->isIntOrIntVectorTy(), 3429 "Logical operators only work with integral types!", &B); 3430 Assert(B.getType() == B.getOperand(0)->getType(), 3431 "Logical operators must have same type for operands and result!", 3432 &B); 3433 break; 3434 case Instruction::Shl: 3435 case Instruction::LShr: 3436 case Instruction::AShr: 3437 Assert(B.getType()->isIntOrIntVectorTy(), 3438 "Shifts only work with integral types!", &B); 3439 Assert(B.getType() == B.getOperand(0)->getType(), 3440 "Shift return type must be same as operands!", &B); 3441 break; 3442 default: 3443 llvm_unreachable("Unknown BinaryOperator opcode!"); 3444 } 3445 3446 visitInstruction(B); 3447 } 3448 3449 void Verifier::visitICmpInst(ICmpInst &IC) { 3450 // Check that the operands are the same type 3451 Type *Op0Ty = IC.getOperand(0)->getType(); 3452 Type *Op1Ty = IC.getOperand(1)->getType(); 3453 Assert(Op0Ty == Op1Ty, 3454 "Both operands to ICmp instruction are not of the same type!", &IC); 3455 // Check that the operands are the right type 3456 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3457 "Invalid operand types for ICmp instruction", &IC); 3458 // Check that the predicate is valid. 3459 Assert(IC.isIntPredicate(), 3460 "Invalid predicate in ICmp instruction!", &IC); 3461 3462 visitInstruction(IC); 3463 } 3464 3465 void Verifier::visitFCmpInst(FCmpInst &FC) { 3466 // Check that the operands are the same type 3467 Type *Op0Ty = FC.getOperand(0)->getType(); 3468 Type *Op1Ty = FC.getOperand(1)->getType(); 3469 Assert(Op0Ty == Op1Ty, 3470 "Both operands to FCmp instruction are not of the same type!", &FC); 3471 // Check that the operands are the right type 3472 Assert(Op0Ty->isFPOrFPVectorTy(), 3473 "Invalid operand types for FCmp instruction", &FC); 3474 // Check that the predicate is valid. 3475 Assert(FC.isFPPredicate(), 3476 "Invalid predicate in FCmp instruction!", &FC); 3477 3478 visitInstruction(FC); 3479 } 3480 3481 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3482 Assert( 3483 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3484 "Invalid extractelement operands!", &EI); 3485 visitInstruction(EI); 3486 } 3487 3488 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3489 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3490 IE.getOperand(2)), 3491 "Invalid insertelement operands!", &IE); 3492 visitInstruction(IE); 3493 } 3494 3495 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3496 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3497 SV.getShuffleMask()), 3498 "Invalid shufflevector operands!", &SV); 3499 visitInstruction(SV); 3500 } 3501 3502 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3503 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3504 3505 Assert(isa<PointerType>(TargetTy), 3506 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3507 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3508 3509 SmallVector<Value *, 16> Idxs(GEP.indices()); 3510 Assert(all_of( 3511 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3512 "GEP indexes must be integers", &GEP); 3513 Type *ElTy = 3514 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3515 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3516 3517 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3518 GEP.getResultElementType() == ElTy, 3519 "GEP is not of right type for indices!", &GEP, ElTy); 3520 3521 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3522 // Additional checks for vector GEPs. 3523 ElementCount GEPWidth = GEPVTy->getElementCount(); 3524 if (GEP.getPointerOperandType()->isVectorTy()) 3525 Assert( 3526 GEPWidth == 3527 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3528 "Vector GEP result width doesn't match operand's", &GEP); 3529 for (Value *Idx : Idxs) { 3530 Type *IndexTy = Idx->getType(); 3531 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3532 ElementCount IndexWidth = IndexVTy->getElementCount(); 3533 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3534 } 3535 Assert(IndexTy->isIntOrIntVectorTy(), 3536 "All GEP indices should be of integer type"); 3537 } 3538 } 3539 3540 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3541 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3542 "GEP address space doesn't match type", &GEP); 3543 } 3544 3545 visitInstruction(GEP); 3546 } 3547 3548 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3549 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3550 } 3551 3552 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3553 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3554 "precondition violation"); 3555 3556 unsigned NumOperands = Range->getNumOperands(); 3557 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3558 unsigned NumRanges = NumOperands / 2; 3559 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3560 3561 ConstantRange LastRange(1, true); // Dummy initial value 3562 for (unsigned i = 0; i < NumRanges; ++i) { 3563 ConstantInt *Low = 3564 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3565 Assert(Low, "The lower limit must be an integer!", Low); 3566 ConstantInt *High = 3567 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3568 Assert(High, "The upper limit must be an integer!", High); 3569 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3570 "Range types must match instruction type!", &I); 3571 3572 APInt HighV = High->getValue(); 3573 APInt LowV = Low->getValue(); 3574 ConstantRange CurRange(LowV, HighV); 3575 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3576 "Range must not be empty!", Range); 3577 if (i != 0) { 3578 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3579 "Intervals are overlapping", Range); 3580 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3581 Range); 3582 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3583 Range); 3584 } 3585 LastRange = ConstantRange(LowV, HighV); 3586 } 3587 if (NumRanges > 2) { 3588 APInt FirstLow = 3589 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3590 APInt FirstHigh = 3591 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3592 ConstantRange FirstRange(FirstLow, FirstHigh); 3593 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3594 "Intervals are overlapping", Range); 3595 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3596 Range); 3597 } 3598 } 3599 3600 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3601 unsigned Size = DL.getTypeSizeInBits(Ty); 3602 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3603 Assert(!(Size & (Size - 1)), 3604 "atomic memory access' operand must have a power-of-two size", Ty, I); 3605 } 3606 3607 void Verifier::visitLoadInst(LoadInst &LI) { 3608 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3609 Assert(PTy, "Load operand must be a pointer.", &LI); 3610 Type *ElTy = LI.getType(); 3611 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3612 "huge alignment values are unsupported", &LI); 3613 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3614 if (LI.isAtomic()) { 3615 Assert(LI.getOrdering() != AtomicOrdering::Release && 3616 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3617 "Load cannot have Release ordering", &LI); 3618 Assert(LI.getAlignment() != 0, 3619 "Atomic load must specify explicit alignment", &LI); 3620 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3621 "atomic load operand must have integer, pointer, or floating point " 3622 "type!", 3623 ElTy, &LI); 3624 checkAtomicMemAccessSize(ElTy, &LI); 3625 } else { 3626 Assert(LI.getSyncScopeID() == SyncScope::System, 3627 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3628 } 3629 3630 visitInstruction(LI); 3631 } 3632 3633 void Verifier::visitStoreInst(StoreInst &SI) { 3634 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3635 Assert(PTy, "Store operand must be a pointer.", &SI); 3636 Type *ElTy = PTy->getElementType(); 3637 Assert(ElTy == SI.getOperand(0)->getType(), 3638 "Stored value type does not match pointer operand type!", &SI, ElTy); 3639 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3640 "huge alignment values are unsupported", &SI); 3641 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3642 if (SI.isAtomic()) { 3643 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3644 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3645 "Store cannot have Acquire ordering", &SI); 3646 Assert(SI.getAlignment() != 0, 3647 "Atomic store must specify explicit alignment", &SI); 3648 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3649 "atomic store operand must have integer, pointer, or floating point " 3650 "type!", 3651 ElTy, &SI); 3652 checkAtomicMemAccessSize(ElTy, &SI); 3653 } else { 3654 Assert(SI.getSyncScopeID() == SyncScope::System, 3655 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3656 } 3657 visitInstruction(SI); 3658 } 3659 3660 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3661 void Verifier::verifySwiftErrorCall(CallBase &Call, 3662 const Value *SwiftErrorVal) { 3663 unsigned Idx = 0; 3664 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3665 if (*I == SwiftErrorVal) { 3666 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3667 "swifterror value when used in a callsite should be marked " 3668 "with swifterror attribute", 3669 SwiftErrorVal, Call); 3670 } 3671 } 3672 } 3673 3674 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3675 // Check that swifterror value is only used by loads, stores, or as 3676 // a swifterror argument. 3677 for (const User *U : SwiftErrorVal->users()) { 3678 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3679 isa<InvokeInst>(U), 3680 "swifterror value can only be loaded and stored from, or " 3681 "as a swifterror argument!", 3682 SwiftErrorVal, U); 3683 // If it is used by a store, check it is the second operand. 3684 if (auto StoreI = dyn_cast<StoreInst>(U)) 3685 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3686 "swifterror value should be the second operand when used " 3687 "by stores", SwiftErrorVal, U); 3688 if (auto *Call = dyn_cast<CallBase>(U)) 3689 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3690 } 3691 } 3692 3693 void Verifier::visitAllocaInst(AllocaInst &AI) { 3694 SmallPtrSet<Type*, 4> Visited; 3695 PointerType *PTy = AI.getType(); 3696 // TODO: Relax this restriction? 3697 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3698 "Allocation instruction pointer not in the stack address space!", 3699 &AI); 3700 Assert(AI.getAllocatedType()->isSized(&Visited), 3701 "Cannot allocate unsized type", &AI); 3702 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3703 "Alloca array size must have integer type", &AI); 3704 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3705 "huge alignment values are unsupported", &AI); 3706 3707 if (AI.isSwiftError()) { 3708 verifySwiftErrorValue(&AI); 3709 } 3710 3711 visitInstruction(AI); 3712 } 3713 3714 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3715 3716 // FIXME: more conditions??? 3717 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3718 "cmpxchg instructions must be atomic.", &CXI); 3719 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3720 "cmpxchg instructions must be atomic.", &CXI); 3721 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3722 "cmpxchg instructions cannot be unordered.", &CXI); 3723 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3724 "cmpxchg instructions cannot be unordered.", &CXI); 3725 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3726 "cmpxchg instructions failure argument shall be no stronger than the " 3727 "success argument", 3728 &CXI); 3729 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3730 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3731 "cmpxchg failure ordering cannot include release semantics", &CXI); 3732 3733 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3734 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3735 Type *ElTy = PTy->getElementType(); 3736 Assert(ElTy->isIntOrPtrTy(), 3737 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3738 checkAtomicMemAccessSize(ElTy, &CXI); 3739 Assert(ElTy == CXI.getOperand(1)->getType(), 3740 "Expected value type does not match pointer operand type!", &CXI, 3741 ElTy); 3742 Assert(ElTy == CXI.getOperand(2)->getType(), 3743 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3744 visitInstruction(CXI); 3745 } 3746 3747 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3748 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3749 "atomicrmw instructions must be atomic.", &RMWI); 3750 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3751 "atomicrmw instructions cannot be unordered.", &RMWI); 3752 auto Op = RMWI.getOperation(); 3753 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3754 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3755 Type *ElTy = PTy->getElementType(); 3756 if (Op == AtomicRMWInst::Xchg) { 3757 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3758 AtomicRMWInst::getOperationName(Op) + 3759 " operand must have integer or floating point type!", 3760 &RMWI, ElTy); 3761 } else if (AtomicRMWInst::isFPOperation(Op)) { 3762 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3763 AtomicRMWInst::getOperationName(Op) + 3764 " operand must have floating point type!", 3765 &RMWI, ElTy); 3766 } else { 3767 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3768 AtomicRMWInst::getOperationName(Op) + 3769 " operand must have integer type!", 3770 &RMWI, ElTy); 3771 } 3772 checkAtomicMemAccessSize(ElTy, &RMWI); 3773 Assert(ElTy == RMWI.getOperand(1)->getType(), 3774 "Argument value type does not match pointer operand type!", &RMWI, 3775 ElTy); 3776 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3777 "Invalid binary operation!", &RMWI); 3778 visitInstruction(RMWI); 3779 } 3780 3781 void Verifier::visitFenceInst(FenceInst &FI) { 3782 const AtomicOrdering Ordering = FI.getOrdering(); 3783 Assert(Ordering == AtomicOrdering::Acquire || 3784 Ordering == AtomicOrdering::Release || 3785 Ordering == AtomicOrdering::AcquireRelease || 3786 Ordering == AtomicOrdering::SequentiallyConsistent, 3787 "fence instructions may only have acquire, release, acq_rel, or " 3788 "seq_cst ordering.", 3789 &FI); 3790 visitInstruction(FI); 3791 } 3792 3793 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3794 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3795 EVI.getIndices()) == EVI.getType(), 3796 "Invalid ExtractValueInst operands!", &EVI); 3797 3798 visitInstruction(EVI); 3799 } 3800 3801 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3802 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3803 IVI.getIndices()) == 3804 IVI.getOperand(1)->getType(), 3805 "Invalid InsertValueInst operands!", &IVI); 3806 3807 visitInstruction(IVI); 3808 } 3809 3810 static Value *getParentPad(Value *EHPad) { 3811 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3812 return FPI->getParentPad(); 3813 3814 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3815 } 3816 3817 void Verifier::visitEHPadPredecessors(Instruction &I) { 3818 assert(I.isEHPad()); 3819 3820 BasicBlock *BB = I.getParent(); 3821 Function *F = BB->getParent(); 3822 3823 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3824 3825 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3826 // The landingpad instruction defines its parent as a landing pad block. The 3827 // landing pad block may be branched to only by the unwind edge of an 3828 // invoke. 3829 for (BasicBlock *PredBB : predecessors(BB)) { 3830 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3831 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3832 "Block containing LandingPadInst must be jumped to " 3833 "only by the unwind edge of an invoke.", 3834 LPI); 3835 } 3836 return; 3837 } 3838 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3839 if (!pred_empty(BB)) 3840 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3841 "Block containg CatchPadInst must be jumped to " 3842 "only by its catchswitch.", 3843 CPI); 3844 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3845 "Catchswitch cannot unwind to one of its catchpads", 3846 CPI->getCatchSwitch(), CPI); 3847 return; 3848 } 3849 3850 // Verify that each pred has a legal terminator with a legal to/from EH 3851 // pad relationship. 3852 Instruction *ToPad = &I; 3853 Value *ToPadParent = getParentPad(ToPad); 3854 for (BasicBlock *PredBB : predecessors(BB)) { 3855 Instruction *TI = PredBB->getTerminator(); 3856 Value *FromPad; 3857 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3858 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3859 "EH pad must be jumped to via an unwind edge", ToPad, II); 3860 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3861 FromPad = Bundle->Inputs[0]; 3862 else 3863 FromPad = ConstantTokenNone::get(II->getContext()); 3864 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3865 FromPad = CRI->getOperand(0); 3866 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3867 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3868 FromPad = CSI; 3869 } else { 3870 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3871 } 3872 3873 // The edge may exit from zero or more nested pads. 3874 SmallSet<Value *, 8> Seen; 3875 for (;; FromPad = getParentPad(FromPad)) { 3876 Assert(FromPad != ToPad, 3877 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3878 if (FromPad == ToPadParent) { 3879 // This is a legal unwind edge. 3880 break; 3881 } 3882 Assert(!isa<ConstantTokenNone>(FromPad), 3883 "A single unwind edge may only enter one EH pad", TI); 3884 Assert(Seen.insert(FromPad).second, 3885 "EH pad jumps through a cycle of pads", FromPad); 3886 } 3887 } 3888 } 3889 3890 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3891 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3892 // isn't a cleanup. 3893 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3894 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3895 3896 visitEHPadPredecessors(LPI); 3897 3898 if (!LandingPadResultTy) 3899 LandingPadResultTy = LPI.getType(); 3900 else 3901 Assert(LandingPadResultTy == LPI.getType(), 3902 "The landingpad instruction should have a consistent result type " 3903 "inside a function.", 3904 &LPI); 3905 3906 Function *F = LPI.getParent()->getParent(); 3907 Assert(F->hasPersonalityFn(), 3908 "LandingPadInst needs to be in a function with a personality.", &LPI); 3909 3910 // The landingpad instruction must be the first non-PHI instruction in the 3911 // block. 3912 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3913 "LandingPadInst not the first non-PHI instruction in the block.", 3914 &LPI); 3915 3916 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3917 Constant *Clause = LPI.getClause(i); 3918 if (LPI.isCatch(i)) { 3919 Assert(isa<PointerType>(Clause->getType()), 3920 "Catch operand does not have pointer type!", &LPI); 3921 } else { 3922 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3923 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3924 "Filter operand is not an array of constants!", &LPI); 3925 } 3926 } 3927 3928 visitInstruction(LPI); 3929 } 3930 3931 void Verifier::visitResumeInst(ResumeInst &RI) { 3932 Assert(RI.getFunction()->hasPersonalityFn(), 3933 "ResumeInst needs to be in a function with a personality.", &RI); 3934 3935 if (!LandingPadResultTy) 3936 LandingPadResultTy = RI.getValue()->getType(); 3937 else 3938 Assert(LandingPadResultTy == RI.getValue()->getType(), 3939 "The resume instruction should have a consistent result type " 3940 "inside a function.", 3941 &RI); 3942 3943 visitTerminator(RI); 3944 } 3945 3946 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3947 BasicBlock *BB = CPI.getParent(); 3948 3949 Function *F = BB->getParent(); 3950 Assert(F->hasPersonalityFn(), 3951 "CatchPadInst needs to be in a function with a personality.", &CPI); 3952 3953 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3954 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3955 CPI.getParentPad()); 3956 3957 // The catchpad instruction must be the first non-PHI instruction in the 3958 // block. 3959 Assert(BB->getFirstNonPHI() == &CPI, 3960 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3961 3962 visitEHPadPredecessors(CPI); 3963 visitFuncletPadInst(CPI); 3964 } 3965 3966 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3967 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3968 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3969 CatchReturn.getOperand(0)); 3970 3971 visitTerminator(CatchReturn); 3972 } 3973 3974 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3975 BasicBlock *BB = CPI.getParent(); 3976 3977 Function *F = BB->getParent(); 3978 Assert(F->hasPersonalityFn(), 3979 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3980 3981 // The cleanuppad instruction must be the first non-PHI instruction in the 3982 // block. 3983 Assert(BB->getFirstNonPHI() == &CPI, 3984 "CleanupPadInst not the first non-PHI instruction in the block.", 3985 &CPI); 3986 3987 auto *ParentPad = CPI.getParentPad(); 3988 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3989 "CleanupPadInst has an invalid parent.", &CPI); 3990 3991 visitEHPadPredecessors(CPI); 3992 visitFuncletPadInst(CPI); 3993 } 3994 3995 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3996 User *FirstUser = nullptr; 3997 Value *FirstUnwindPad = nullptr; 3998 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3999 SmallSet<FuncletPadInst *, 8> Seen; 4000 4001 while (!Worklist.empty()) { 4002 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4003 Assert(Seen.insert(CurrentPad).second, 4004 "FuncletPadInst must not be nested within itself", CurrentPad); 4005 Value *UnresolvedAncestorPad = nullptr; 4006 for (User *U : CurrentPad->users()) { 4007 BasicBlock *UnwindDest; 4008 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4009 UnwindDest = CRI->getUnwindDest(); 4010 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4011 // We allow catchswitch unwind to caller to nest 4012 // within an outer pad that unwinds somewhere else, 4013 // because catchswitch doesn't have a nounwind variant. 4014 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4015 if (CSI->unwindsToCaller()) 4016 continue; 4017 UnwindDest = CSI->getUnwindDest(); 4018 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4019 UnwindDest = II->getUnwindDest(); 4020 } else if (isa<CallInst>(U)) { 4021 // Calls which don't unwind may be found inside funclet 4022 // pads that unwind somewhere else. We don't *require* 4023 // such calls to be annotated nounwind. 4024 continue; 4025 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4026 // The unwind dest for a cleanup can only be found by 4027 // recursive search. Add it to the worklist, and we'll 4028 // search for its first use that determines where it unwinds. 4029 Worklist.push_back(CPI); 4030 continue; 4031 } else { 4032 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4033 continue; 4034 } 4035 4036 Value *UnwindPad; 4037 bool ExitsFPI; 4038 if (UnwindDest) { 4039 UnwindPad = UnwindDest->getFirstNonPHI(); 4040 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4041 continue; 4042 Value *UnwindParent = getParentPad(UnwindPad); 4043 // Ignore unwind edges that don't exit CurrentPad. 4044 if (UnwindParent == CurrentPad) 4045 continue; 4046 // Determine whether the original funclet pad is exited, 4047 // and if we are scanning nested pads determine how many 4048 // of them are exited so we can stop searching their 4049 // children. 4050 Value *ExitedPad = CurrentPad; 4051 ExitsFPI = false; 4052 do { 4053 if (ExitedPad == &FPI) { 4054 ExitsFPI = true; 4055 // Now we can resolve any ancestors of CurrentPad up to 4056 // FPI, but not including FPI since we need to make sure 4057 // to check all direct users of FPI for consistency. 4058 UnresolvedAncestorPad = &FPI; 4059 break; 4060 } 4061 Value *ExitedParent = getParentPad(ExitedPad); 4062 if (ExitedParent == UnwindParent) { 4063 // ExitedPad is the ancestor-most pad which this unwind 4064 // edge exits, so we can resolve up to it, meaning that 4065 // ExitedParent is the first ancestor still unresolved. 4066 UnresolvedAncestorPad = ExitedParent; 4067 break; 4068 } 4069 ExitedPad = ExitedParent; 4070 } while (!isa<ConstantTokenNone>(ExitedPad)); 4071 } else { 4072 // Unwinding to caller exits all pads. 4073 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4074 ExitsFPI = true; 4075 UnresolvedAncestorPad = &FPI; 4076 } 4077 4078 if (ExitsFPI) { 4079 // This unwind edge exits FPI. Make sure it agrees with other 4080 // such edges. 4081 if (FirstUser) { 4082 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4083 "pad must have the same unwind " 4084 "dest", 4085 &FPI, U, FirstUser); 4086 } else { 4087 FirstUser = U; 4088 FirstUnwindPad = UnwindPad; 4089 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4090 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4091 getParentPad(UnwindPad) == getParentPad(&FPI)) 4092 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4093 } 4094 } 4095 // Make sure we visit all uses of FPI, but for nested pads stop as 4096 // soon as we know where they unwind to. 4097 if (CurrentPad != &FPI) 4098 break; 4099 } 4100 if (UnresolvedAncestorPad) { 4101 if (CurrentPad == UnresolvedAncestorPad) { 4102 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4103 // we've found an unwind edge that exits it, because we need to verify 4104 // all direct uses of FPI. 4105 assert(CurrentPad == &FPI); 4106 continue; 4107 } 4108 // Pop off the worklist any nested pads that we've found an unwind 4109 // destination for. The pads on the worklist are the uncles, 4110 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4111 // for all ancestors of CurrentPad up to but not including 4112 // UnresolvedAncestorPad. 4113 Value *ResolvedPad = CurrentPad; 4114 while (!Worklist.empty()) { 4115 Value *UnclePad = Worklist.back(); 4116 Value *AncestorPad = getParentPad(UnclePad); 4117 // Walk ResolvedPad up the ancestor list until we either find the 4118 // uncle's parent or the last resolved ancestor. 4119 while (ResolvedPad != AncestorPad) { 4120 Value *ResolvedParent = getParentPad(ResolvedPad); 4121 if (ResolvedParent == UnresolvedAncestorPad) { 4122 break; 4123 } 4124 ResolvedPad = ResolvedParent; 4125 } 4126 // If the resolved ancestor search didn't find the uncle's parent, 4127 // then the uncle is not yet resolved. 4128 if (ResolvedPad != AncestorPad) 4129 break; 4130 // This uncle is resolved, so pop it from the worklist. 4131 Worklist.pop_back(); 4132 } 4133 } 4134 } 4135 4136 if (FirstUnwindPad) { 4137 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4138 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4139 Value *SwitchUnwindPad; 4140 if (SwitchUnwindDest) 4141 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4142 else 4143 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4144 Assert(SwitchUnwindPad == FirstUnwindPad, 4145 "Unwind edges out of a catch must have the same unwind dest as " 4146 "the parent catchswitch", 4147 &FPI, FirstUser, CatchSwitch); 4148 } 4149 } 4150 4151 visitInstruction(FPI); 4152 } 4153 4154 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4155 BasicBlock *BB = CatchSwitch.getParent(); 4156 4157 Function *F = BB->getParent(); 4158 Assert(F->hasPersonalityFn(), 4159 "CatchSwitchInst needs to be in a function with a personality.", 4160 &CatchSwitch); 4161 4162 // The catchswitch instruction must be the first non-PHI instruction in the 4163 // block. 4164 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4165 "CatchSwitchInst not the first non-PHI instruction in the block.", 4166 &CatchSwitch); 4167 4168 auto *ParentPad = CatchSwitch.getParentPad(); 4169 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4170 "CatchSwitchInst has an invalid parent.", ParentPad); 4171 4172 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4173 Instruction *I = UnwindDest->getFirstNonPHI(); 4174 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4175 "CatchSwitchInst must unwind to an EH block which is not a " 4176 "landingpad.", 4177 &CatchSwitch); 4178 4179 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4180 if (getParentPad(I) == ParentPad) 4181 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4182 } 4183 4184 Assert(CatchSwitch.getNumHandlers() != 0, 4185 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4186 4187 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4188 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4189 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4190 } 4191 4192 visitEHPadPredecessors(CatchSwitch); 4193 visitTerminator(CatchSwitch); 4194 } 4195 4196 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4197 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4198 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4199 CRI.getOperand(0)); 4200 4201 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4202 Instruction *I = UnwindDest->getFirstNonPHI(); 4203 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4204 "CleanupReturnInst must unwind to an EH block which is not a " 4205 "landingpad.", 4206 &CRI); 4207 } 4208 4209 visitTerminator(CRI); 4210 } 4211 4212 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4213 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4214 // If the we have an invalid invoke, don't try to compute the dominance. 4215 // We already reject it in the invoke specific checks and the dominance 4216 // computation doesn't handle multiple edges. 4217 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4218 if (II->getNormalDest() == II->getUnwindDest()) 4219 return; 4220 } 4221 4222 // Quick check whether the def has already been encountered in the same block. 4223 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4224 // uses are defined to happen on the incoming edge, not at the instruction. 4225 // 4226 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4227 // wrapping an SSA value, assert that we've already encountered it. See 4228 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4229 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4230 return; 4231 4232 const Use &U = I.getOperandUse(i); 4233 Assert(DT.dominates(Op, U), 4234 "Instruction does not dominate all uses!", Op, &I); 4235 } 4236 4237 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4238 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4239 "apply only to pointer types", &I); 4240 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4241 "dereferenceable, dereferenceable_or_null apply only to load" 4242 " and inttoptr instructions, use attributes for calls or invokes", &I); 4243 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4244 "take one operand!", &I); 4245 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4246 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4247 "dereferenceable_or_null metadata value must be an i64!", &I); 4248 } 4249 4250 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4251 Assert(MD->getNumOperands() >= 2, 4252 "!prof annotations should have no less than 2 operands", MD); 4253 4254 // Check first operand. 4255 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4256 Assert(isa<MDString>(MD->getOperand(0)), 4257 "expected string with name of the !prof annotation", MD); 4258 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4259 StringRef ProfName = MDS->getString(); 4260 4261 // Check consistency of !prof branch_weights metadata. 4262 if (ProfName.equals("branch_weights")) { 4263 if (isa<InvokeInst>(&I)) { 4264 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4265 "Wrong number of InvokeInst branch_weights operands", MD); 4266 } else { 4267 unsigned ExpectedNumOperands = 0; 4268 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4269 ExpectedNumOperands = BI->getNumSuccessors(); 4270 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4271 ExpectedNumOperands = SI->getNumSuccessors(); 4272 else if (isa<CallInst>(&I)) 4273 ExpectedNumOperands = 1; 4274 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4275 ExpectedNumOperands = IBI->getNumDestinations(); 4276 else if (isa<SelectInst>(&I)) 4277 ExpectedNumOperands = 2; 4278 else 4279 CheckFailed("!prof branch_weights are not allowed for this instruction", 4280 MD); 4281 4282 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4283 "Wrong number of operands", MD); 4284 } 4285 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4286 auto &MDO = MD->getOperand(i); 4287 Assert(MDO, "second operand should not be null", MD); 4288 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4289 "!prof brunch_weights operand is not a const int"); 4290 } 4291 } 4292 } 4293 4294 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4295 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4296 Assert(Annotation->getNumOperands() >= 1, 4297 "annotation must have at least one operand"); 4298 for (const MDOperand &Op : Annotation->operands()) 4299 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4300 } 4301 4302 /// verifyInstruction - Verify that an instruction is well formed. 4303 /// 4304 void Verifier::visitInstruction(Instruction &I) { 4305 BasicBlock *BB = I.getParent(); 4306 Assert(BB, "Instruction not embedded in basic block!", &I); 4307 4308 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4309 for (User *U : I.users()) { 4310 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4311 "Only PHI nodes may reference their own value!", &I); 4312 } 4313 } 4314 4315 // Check that void typed values don't have names 4316 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4317 "Instruction has a name, but provides a void value!", &I); 4318 4319 // Check that the return value of the instruction is either void or a legal 4320 // value type. 4321 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4322 "Instruction returns a non-scalar type!", &I); 4323 4324 // Check that the instruction doesn't produce metadata. Calls are already 4325 // checked against the callee type. 4326 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4327 "Invalid use of metadata!", &I); 4328 4329 // Check that all uses of the instruction, if they are instructions 4330 // themselves, actually have parent basic blocks. If the use is not an 4331 // instruction, it is an error! 4332 for (Use &U : I.uses()) { 4333 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4334 Assert(Used->getParent() != nullptr, 4335 "Instruction referencing" 4336 " instruction not embedded in a basic block!", 4337 &I, Used); 4338 else { 4339 CheckFailed("Use of instruction is not an instruction!", U); 4340 return; 4341 } 4342 } 4343 4344 // Get a pointer to the call base of the instruction if it is some form of 4345 // call. 4346 const CallBase *CBI = dyn_cast<CallBase>(&I); 4347 4348 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4349 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4350 4351 // Check to make sure that only first-class-values are operands to 4352 // instructions. 4353 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4354 Assert(false, "Instruction operands must be first-class values!", &I); 4355 } 4356 4357 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4358 // Check to make sure that the "address of" an intrinsic function is never 4359 // taken. 4360 Assert(!F->isIntrinsic() || 4361 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4362 "Cannot take the address of an intrinsic!", &I); 4363 Assert( 4364 !F->isIntrinsic() || isa<CallInst>(I) || 4365 F->getIntrinsicID() == Intrinsic::donothing || 4366 F->getIntrinsicID() == Intrinsic::coro_resume || 4367 F->getIntrinsicID() == Intrinsic::coro_destroy || 4368 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4369 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4370 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4371 F->getIntrinsicID() == Intrinsic::wasm_rethrow, 4372 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4373 "statepoint, coro_resume or coro_destroy", 4374 &I); 4375 Assert(F->getParent() == &M, "Referencing function in another module!", 4376 &I, &M, F, F->getParent()); 4377 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4378 Assert(OpBB->getParent() == BB->getParent(), 4379 "Referring to a basic block in another function!", &I); 4380 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4381 Assert(OpArg->getParent() == BB->getParent(), 4382 "Referring to an argument in another function!", &I); 4383 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4384 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4385 &M, GV, GV->getParent()); 4386 } else if (isa<Instruction>(I.getOperand(i))) { 4387 verifyDominatesUse(I, i); 4388 } else if (isa<InlineAsm>(I.getOperand(i))) { 4389 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4390 "Cannot take the address of an inline asm!", &I); 4391 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4392 if (CE->getType()->isPtrOrPtrVectorTy() || 4393 !DL.getNonIntegralAddressSpaces().empty()) { 4394 // If we have a ConstantExpr pointer, we need to see if it came from an 4395 // illegal bitcast. If the datalayout string specifies non-integral 4396 // address spaces then we also need to check for illegal ptrtoint and 4397 // inttoptr expressions. 4398 visitConstantExprsRecursively(CE); 4399 } 4400 } 4401 } 4402 4403 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4404 Assert(I.getType()->isFPOrFPVectorTy(), 4405 "fpmath requires a floating point result!", &I); 4406 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4407 if (ConstantFP *CFP0 = 4408 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4409 const APFloat &Accuracy = CFP0->getValueAPF(); 4410 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4411 "fpmath accuracy must have float type", &I); 4412 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4413 "fpmath accuracy not a positive number!", &I); 4414 } else { 4415 Assert(false, "invalid fpmath accuracy!", &I); 4416 } 4417 } 4418 4419 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4420 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4421 "Ranges are only for loads, calls and invokes!", &I); 4422 visitRangeMetadata(I, Range, I.getType()); 4423 } 4424 4425 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4426 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4427 &I); 4428 Assert(isa<LoadInst>(I), 4429 "nonnull applies only to load instructions, use attributes" 4430 " for calls or invokes", 4431 &I); 4432 } 4433 4434 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4435 visitDereferenceableMetadata(I, MD); 4436 4437 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4438 visitDereferenceableMetadata(I, MD); 4439 4440 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4441 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4442 4443 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4444 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4445 &I); 4446 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4447 "use attributes for calls or invokes", &I); 4448 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4449 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4450 Assert(CI && CI->getType()->isIntegerTy(64), 4451 "align metadata value must be an i64!", &I); 4452 uint64_t Align = CI->getZExtValue(); 4453 Assert(isPowerOf2_64(Align), 4454 "align metadata value must be a power of 2!", &I); 4455 Assert(Align <= Value::MaximumAlignment, 4456 "alignment is larger that implementation defined limit", &I); 4457 } 4458 4459 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4460 visitProfMetadata(I, MD); 4461 4462 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4463 visitAnnotationMetadata(Annotation); 4464 4465 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4466 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4467 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4468 } 4469 4470 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4471 verifyFragmentExpression(*DII); 4472 verifyNotEntryValue(*DII); 4473 } 4474 4475 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4476 I.getAllMetadata(MDs); 4477 for (auto Attachment : MDs) { 4478 unsigned Kind = Attachment.first; 4479 auto AllowLocs = 4480 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4481 ? AreDebugLocsAllowed::Yes 4482 : AreDebugLocsAllowed::No; 4483 visitMDNode(*Attachment.second, AllowLocs); 4484 } 4485 4486 InstsInThisBlock.insert(&I); 4487 } 4488 4489 /// Allow intrinsics to be verified in different ways. 4490 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4491 Function *IF = Call.getCalledFunction(); 4492 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4493 IF); 4494 4495 // Verify that the intrinsic prototype lines up with what the .td files 4496 // describe. 4497 FunctionType *IFTy = IF->getFunctionType(); 4498 bool IsVarArg = IFTy->isVarArg(); 4499 4500 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4501 getIntrinsicInfoTableEntries(ID, Table); 4502 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4503 4504 // Walk the descriptors to extract overloaded types. 4505 SmallVector<Type *, 4> ArgTys; 4506 Intrinsic::MatchIntrinsicTypesResult Res = 4507 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4508 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4509 "Intrinsic has incorrect return type!", IF); 4510 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4511 "Intrinsic has incorrect argument type!", IF); 4512 4513 // Verify if the intrinsic call matches the vararg property. 4514 if (IsVarArg) 4515 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4516 "Intrinsic was not defined with variable arguments!", IF); 4517 else 4518 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4519 "Callsite was not defined with variable arguments!", IF); 4520 4521 // All descriptors should be absorbed by now. 4522 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4523 4524 // Now that we have the intrinsic ID and the actual argument types (and we 4525 // know they are legal for the intrinsic!) get the intrinsic name through the 4526 // usual means. This allows us to verify the mangling of argument types into 4527 // the name. 4528 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4529 Assert(ExpectedName == IF->getName(), 4530 "Intrinsic name not mangled correctly for type arguments! " 4531 "Should be: " + 4532 ExpectedName, 4533 IF); 4534 4535 // If the intrinsic takes MDNode arguments, verify that they are either global 4536 // or are local to *this* function. 4537 for (Value *V : Call.args()) 4538 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4539 visitMetadataAsValue(*MD, Call.getCaller()); 4540 4541 switch (ID) { 4542 default: 4543 break; 4544 case Intrinsic::assume: { 4545 for (auto &Elem : Call.bundle_op_infos()) { 4546 Assert(Elem.Tag->getKey() == "ignore" || 4547 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4548 "tags must be valid attribute names"); 4549 Attribute::AttrKind Kind = 4550 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4551 unsigned ArgCount = Elem.End - Elem.Begin; 4552 if (Kind == Attribute::Alignment) { 4553 Assert(ArgCount <= 3 && ArgCount >= 2, 4554 "alignment assumptions should have 2 or 3 arguments"); 4555 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4556 "first argument should be a pointer"); 4557 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4558 "second argument should be an integer"); 4559 if (ArgCount == 3) 4560 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4561 "third argument should be an integer if present"); 4562 return; 4563 } 4564 Assert(ArgCount <= 2, "to many arguments"); 4565 if (Kind == Attribute::None) 4566 break; 4567 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4568 Assert(ArgCount == 2, "this attribute should have 2 arguments"); 4569 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4570 "the second argument should be a constant integral value"); 4571 } else if (isFuncOnlyAttr(Kind)) { 4572 Assert((ArgCount) == 0, "this attribute has no argument"); 4573 } else if (!isFuncOrArgAttr(Kind)) { 4574 Assert((ArgCount) == 1, "this attribute should have one argument"); 4575 } 4576 } 4577 break; 4578 } 4579 case Intrinsic::coro_id: { 4580 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4581 if (isa<ConstantPointerNull>(InfoArg)) 4582 break; 4583 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4584 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4585 "info argument of llvm.coro.begin must refer to an initialized " 4586 "constant"); 4587 Constant *Init = GV->getInitializer(); 4588 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4589 "info argument of llvm.coro.begin must refer to either a struct or " 4590 "an array"); 4591 break; 4592 } 4593 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4594 case Intrinsic::INTRINSIC: 4595 #include "llvm/IR/ConstrainedOps.def" 4596 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4597 break; 4598 case Intrinsic::dbg_declare: // llvm.dbg.declare 4599 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4600 "invalid llvm.dbg.declare intrinsic call 1", Call); 4601 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4602 break; 4603 case Intrinsic::dbg_addr: // llvm.dbg.addr 4604 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4605 break; 4606 case Intrinsic::dbg_value: // llvm.dbg.value 4607 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4608 break; 4609 case Intrinsic::dbg_label: // llvm.dbg.label 4610 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4611 break; 4612 case Intrinsic::memcpy: 4613 case Intrinsic::memcpy_inline: 4614 case Intrinsic::memmove: 4615 case Intrinsic::memset: { 4616 const auto *MI = cast<MemIntrinsic>(&Call); 4617 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4618 return Alignment == 0 || isPowerOf2_32(Alignment); 4619 }; 4620 Assert(IsValidAlignment(MI->getDestAlignment()), 4621 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4622 Call); 4623 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4624 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4625 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4626 Call); 4627 } 4628 4629 break; 4630 } 4631 case Intrinsic::memcpy_element_unordered_atomic: 4632 case Intrinsic::memmove_element_unordered_atomic: 4633 case Intrinsic::memset_element_unordered_atomic: { 4634 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4635 4636 ConstantInt *ElementSizeCI = 4637 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4638 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4639 Assert(ElementSizeVal.isPowerOf2(), 4640 "element size of the element-wise atomic memory intrinsic " 4641 "must be a power of 2", 4642 Call); 4643 4644 auto IsValidAlignment = [&](uint64_t Alignment) { 4645 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4646 }; 4647 uint64_t DstAlignment = AMI->getDestAlignment(); 4648 Assert(IsValidAlignment(DstAlignment), 4649 "incorrect alignment of the destination argument", Call); 4650 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4651 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4652 Assert(IsValidAlignment(SrcAlignment), 4653 "incorrect alignment of the source argument", Call); 4654 } 4655 break; 4656 } 4657 case Intrinsic::call_preallocated_setup: { 4658 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4659 Assert(NumArgs != nullptr, 4660 "llvm.call.preallocated.setup argument must be a constant"); 4661 bool FoundCall = false; 4662 for (User *U : Call.users()) { 4663 auto *UseCall = dyn_cast<CallBase>(U); 4664 Assert(UseCall != nullptr, 4665 "Uses of llvm.call.preallocated.setup must be calls"); 4666 const Function *Fn = UseCall->getCalledFunction(); 4667 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4668 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4669 Assert(AllocArgIndex != nullptr, 4670 "llvm.call.preallocated.alloc arg index must be a constant"); 4671 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4672 Assert(AllocArgIndexInt.sge(0) && 4673 AllocArgIndexInt.slt(NumArgs->getValue()), 4674 "llvm.call.preallocated.alloc arg index must be between 0 and " 4675 "corresponding " 4676 "llvm.call.preallocated.setup's argument count"); 4677 } else if (Fn && Fn->getIntrinsicID() == 4678 Intrinsic::call_preallocated_teardown) { 4679 // nothing to do 4680 } else { 4681 Assert(!FoundCall, "Can have at most one call corresponding to a " 4682 "llvm.call.preallocated.setup"); 4683 FoundCall = true; 4684 size_t NumPreallocatedArgs = 0; 4685 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4686 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4687 ++NumPreallocatedArgs; 4688 } 4689 } 4690 Assert(NumPreallocatedArgs != 0, 4691 "cannot use preallocated intrinsics on a call without " 4692 "preallocated arguments"); 4693 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4694 "llvm.call.preallocated.setup arg size must be equal to number " 4695 "of preallocated arguments " 4696 "at call site", 4697 Call, *UseCall); 4698 // getOperandBundle() cannot be called if more than one of the operand 4699 // bundle exists. There is already a check elsewhere for this, so skip 4700 // here if we see more than one. 4701 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4702 1) { 4703 return; 4704 } 4705 auto PreallocatedBundle = 4706 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4707 Assert(PreallocatedBundle, 4708 "Use of llvm.call.preallocated.setup outside intrinsics " 4709 "must be in \"preallocated\" operand bundle"); 4710 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4711 "preallocated bundle must have token from corresponding " 4712 "llvm.call.preallocated.setup"); 4713 } 4714 } 4715 break; 4716 } 4717 case Intrinsic::call_preallocated_arg: { 4718 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4719 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4720 Intrinsic::call_preallocated_setup, 4721 "llvm.call.preallocated.arg token argument must be a " 4722 "llvm.call.preallocated.setup"); 4723 Assert(Call.hasFnAttr(Attribute::Preallocated), 4724 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4725 "call site attribute"); 4726 break; 4727 } 4728 case Intrinsic::call_preallocated_teardown: { 4729 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4730 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4731 Intrinsic::call_preallocated_setup, 4732 "llvm.call.preallocated.teardown token argument must be a " 4733 "llvm.call.preallocated.setup"); 4734 break; 4735 } 4736 case Intrinsic::gcroot: 4737 case Intrinsic::gcwrite: 4738 case Intrinsic::gcread: 4739 if (ID == Intrinsic::gcroot) { 4740 AllocaInst *AI = 4741 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4742 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4743 Assert(isa<Constant>(Call.getArgOperand(1)), 4744 "llvm.gcroot parameter #2 must be a constant.", Call); 4745 if (!AI->getAllocatedType()->isPointerTy()) { 4746 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4747 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4748 "or argument #2 must be a non-null constant.", 4749 Call); 4750 } 4751 } 4752 4753 Assert(Call.getParent()->getParent()->hasGC(), 4754 "Enclosing function does not use GC.", Call); 4755 break; 4756 case Intrinsic::init_trampoline: 4757 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4758 "llvm.init_trampoline parameter #2 must resolve to a function.", 4759 Call); 4760 break; 4761 case Intrinsic::prefetch: 4762 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4763 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4764 "invalid arguments to llvm.prefetch", Call); 4765 break; 4766 case Intrinsic::stackprotector: 4767 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4768 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4769 break; 4770 case Intrinsic::localescape: { 4771 BasicBlock *BB = Call.getParent(); 4772 Assert(BB == &BB->getParent()->front(), 4773 "llvm.localescape used outside of entry block", Call); 4774 Assert(!SawFrameEscape, 4775 "multiple calls to llvm.localescape in one function", Call); 4776 for (Value *Arg : Call.args()) { 4777 if (isa<ConstantPointerNull>(Arg)) 4778 continue; // Null values are allowed as placeholders. 4779 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4780 Assert(AI && AI->isStaticAlloca(), 4781 "llvm.localescape only accepts static allocas", Call); 4782 } 4783 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4784 SawFrameEscape = true; 4785 break; 4786 } 4787 case Intrinsic::localrecover: { 4788 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4789 Function *Fn = dyn_cast<Function>(FnArg); 4790 Assert(Fn && !Fn->isDeclaration(), 4791 "llvm.localrecover first " 4792 "argument must be function defined in this module", 4793 Call); 4794 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4795 auto &Entry = FrameEscapeInfo[Fn]; 4796 Entry.second = unsigned( 4797 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4798 break; 4799 } 4800 4801 case Intrinsic::experimental_gc_statepoint: 4802 if (auto *CI = dyn_cast<CallInst>(&Call)) 4803 Assert(!CI->isInlineAsm(), 4804 "gc.statepoint support for inline assembly unimplemented", CI); 4805 Assert(Call.getParent()->getParent()->hasGC(), 4806 "Enclosing function does not use GC.", Call); 4807 4808 verifyStatepoint(Call); 4809 break; 4810 case Intrinsic::experimental_gc_result: { 4811 Assert(Call.getParent()->getParent()->hasGC(), 4812 "Enclosing function does not use GC.", Call); 4813 // Are we tied to a statepoint properly? 4814 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4815 const Function *StatepointFn = 4816 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4817 Assert(StatepointFn && StatepointFn->isDeclaration() && 4818 StatepointFn->getIntrinsicID() == 4819 Intrinsic::experimental_gc_statepoint, 4820 "gc.result operand #1 must be from a statepoint", Call, 4821 Call.getArgOperand(0)); 4822 4823 // Assert that result type matches wrapped callee. 4824 const Value *Target = StatepointCall->getArgOperand(2); 4825 auto *PT = cast<PointerType>(Target->getType()); 4826 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4827 Assert(Call.getType() == TargetFuncType->getReturnType(), 4828 "gc.result result type does not match wrapped callee", Call); 4829 break; 4830 } 4831 case Intrinsic::experimental_gc_relocate: { 4832 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4833 4834 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4835 "gc.relocate must return a pointer or a vector of pointers", Call); 4836 4837 // Check that this relocate is correctly tied to the statepoint 4838 4839 // This is case for relocate on the unwinding path of an invoke statepoint 4840 if (LandingPadInst *LandingPad = 4841 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4842 4843 const BasicBlock *InvokeBB = 4844 LandingPad->getParent()->getUniquePredecessor(); 4845 4846 // Landingpad relocates should have only one predecessor with invoke 4847 // statepoint terminator 4848 Assert(InvokeBB, "safepoints should have unique landingpads", 4849 LandingPad->getParent()); 4850 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4851 InvokeBB); 4852 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4853 "gc relocate should be linked to a statepoint", InvokeBB); 4854 } else { 4855 // In all other cases relocate should be tied to the statepoint directly. 4856 // This covers relocates on a normal return path of invoke statepoint and 4857 // relocates of a call statepoint. 4858 auto Token = Call.getArgOperand(0); 4859 Assert(isa<GCStatepointInst>(Token), 4860 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4861 } 4862 4863 // Verify rest of the relocate arguments. 4864 const CallBase &StatepointCall = 4865 *cast<GCRelocateInst>(Call).getStatepoint(); 4866 4867 // Both the base and derived must be piped through the safepoint. 4868 Value *Base = Call.getArgOperand(1); 4869 Assert(isa<ConstantInt>(Base), 4870 "gc.relocate operand #2 must be integer offset", Call); 4871 4872 Value *Derived = Call.getArgOperand(2); 4873 Assert(isa<ConstantInt>(Derived), 4874 "gc.relocate operand #3 must be integer offset", Call); 4875 4876 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4877 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4878 4879 // Check the bounds 4880 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4881 Assert(BaseIndex < Opt->Inputs.size(), 4882 "gc.relocate: statepoint base index out of bounds", Call); 4883 Assert(DerivedIndex < Opt->Inputs.size(), 4884 "gc.relocate: statepoint derived index out of bounds", Call); 4885 } 4886 4887 // Relocated value must be either a pointer type or vector-of-pointer type, 4888 // but gc_relocate does not need to return the same pointer type as the 4889 // relocated pointer. It can be casted to the correct type later if it's 4890 // desired. However, they must have the same address space and 'vectorness' 4891 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4892 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4893 "gc.relocate: relocated value must be a gc pointer", Call); 4894 4895 auto ResultType = Call.getType(); 4896 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4897 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4898 "gc.relocate: vector relocates to vector and pointer to pointer", 4899 Call); 4900 Assert( 4901 ResultType->getPointerAddressSpace() == 4902 DerivedType->getPointerAddressSpace(), 4903 "gc.relocate: relocating a pointer shouldn't change its address space", 4904 Call); 4905 break; 4906 } 4907 case Intrinsic::eh_exceptioncode: 4908 case Intrinsic::eh_exceptionpointer: { 4909 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4910 "eh.exceptionpointer argument must be a catchpad", Call); 4911 break; 4912 } 4913 case Intrinsic::get_active_lane_mask: { 4914 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4915 "vector", Call); 4916 auto *ElemTy = Call.getType()->getScalarType(); 4917 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4918 "i1", Call); 4919 break; 4920 } 4921 case Intrinsic::masked_load: { 4922 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4923 Call); 4924 4925 Value *Ptr = Call.getArgOperand(0); 4926 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4927 Value *Mask = Call.getArgOperand(2); 4928 Value *PassThru = Call.getArgOperand(3); 4929 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4930 Call); 4931 Assert(Alignment->getValue().isPowerOf2(), 4932 "masked_load: alignment must be a power of 2", Call); 4933 4934 // DataTy is the overloaded type 4935 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4936 Assert(DataTy == Call.getType(), 4937 "masked_load: return must match pointer type", Call); 4938 Assert(PassThru->getType() == DataTy, 4939 "masked_load: pass through and data type must match", Call); 4940 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4941 cast<VectorType>(DataTy)->getElementCount(), 4942 "masked_load: vector mask must be same length as data", Call); 4943 break; 4944 } 4945 case Intrinsic::masked_store: { 4946 Value *Val = Call.getArgOperand(0); 4947 Value *Ptr = Call.getArgOperand(1); 4948 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4949 Value *Mask = Call.getArgOperand(3); 4950 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4951 Call); 4952 Assert(Alignment->getValue().isPowerOf2(), 4953 "masked_store: alignment must be a power of 2", Call); 4954 4955 // DataTy is the overloaded type 4956 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4957 Assert(DataTy == Val->getType(), 4958 "masked_store: storee must match pointer type", Call); 4959 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4960 cast<VectorType>(DataTy)->getElementCount(), 4961 "masked_store: vector mask must be same length as data", Call); 4962 break; 4963 } 4964 4965 case Intrinsic::masked_gather: { 4966 const APInt &Alignment = 4967 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 4968 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4969 "masked_gather: alignment must be 0 or a power of 2", Call); 4970 break; 4971 } 4972 case Intrinsic::masked_scatter: { 4973 const APInt &Alignment = 4974 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 4975 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4976 "masked_scatter: alignment must be 0 or a power of 2", Call); 4977 break; 4978 } 4979 4980 case Intrinsic::experimental_guard: { 4981 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4982 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4983 "experimental_guard must have exactly one " 4984 "\"deopt\" operand bundle"); 4985 break; 4986 } 4987 4988 case Intrinsic::experimental_deoptimize: { 4989 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4990 Call); 4991 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4992 "experimental_deoptimize must have exactly one " 4993 "\"deopt\" operand bundle"); 4994 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4995 "experimental_deoptimize return type must match caller return type"); 4996 4997 if (isa<CallInst>(Call)) { 4998 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4999 Assert(RI, 5000 "calls to experimental_deoptimize must be followed by a return"); 5001 5002 if (!Call.getType()->isVoidTy() && RI) 5003 Assert(RI->getReturnValue() == &Call, 5004 "calls to experimental_deoptimize must be followed by a return " 5005 "of the value computed by experimental_deoptimize"); 5006 } 5007 5008 break; 5009 } 5010 case Intrinsic::sadd_sat: 5011 case Intrinsic::uadd_sat: 5012 case Intrinsic::ssub_sat: 5013 case Intrinsic::usub_sat: 5014 case Intrinsic::sshl_sat: 5015 case Intrinsic::ushl_sat: { 5016 Value *Op1 = Call.getArgOperand(0); 5017 Value *Op2 = Call.getArgOperand(1); 5018 Assert(Op1->getType()->isIntOrIntVectorTy(), 5019 "first operand of [us][add|sub|shl]_sat must be an int type or " 5020 "vector of ints"); 5021 Assert(Op2->getType()->isIntOrIntVectorTy(), 5022 "second operand of [us][add|sub|shl]_sat must be an int type or " 5023 "vector of ints"); 5024 break; 5025 } 5026 case Intrinsic::smul_fix: 5027 case Intrinsic::smul_fix_sat: 5028 case Intrinsic::umul_fix: 5029 case Intrinsic::umul_fix_sat: 5030 case Intrinsic::sdiv_fix: 5031 case Intrinsic::sdiv_fix_sat: 5032 case Intrinsic::udiv_fix: 5033 case Intrinsic::udiv_fix_sat: { 5034 Value *Op1 = Call.getArgOperand(0); 5035 Value *Op2 = Call.getArgOperand(1); 5036 Assert(Op1->getType()->isIntOrIntVectorTy(), 5037 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5038 "vector of ints"); 5039 Assert(Op2->getType()->isIntOrIntVectorTy(), 5040 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5041 "vector of ints"); 5042 5043 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5044 Assert(Op3->getType()->getBitWidth() <= 32, 5045 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5046 5047 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5048 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5049 Assert( 5050 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5051 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5052 "the operands"); 5053 } else { 5054 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5055 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5056 "to the width of the operands"); 5057 } 5058 break; 5059 } 5060 case Intrinsic::lround: 5061 case Intrinsic::llround: 5062 case Intrinsic::lrint: 5063 case Intrinsic::llrint: { 5064 Type *ValTy = Call.getArgOperand(0)->getType(); 5065 Type *ResultTy = Call.getType(); 5066 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5067 "Intrinsic does not support vectors", &Call); 5068 break; 5069 } 5070 case Intrinsic::bswap: { 5071 Type *Ty = Call.getType(); 5072 unsigned Size = Ty->getScalarSizeInBits(); 5073 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5074 break; 5075 } 5076 case Intrinsic::invariant_start: { 5077 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5078 Assert(InvariantSize && 5079 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5080 "invariant_start parameter must be -1, 0 or a positive number", 5081 &Call); 5082 break; 5083 } 5084 case Intrinsic::matrix_multiply: 5085 case Intrinsic::matrix_transpose: 5086 case Intrinsic::matrix_column_major_load: 5087 case Intrinsic::matrix_column_major_store: { 5088 Function *IF = Call.getCalledFunction(); 5089 ConstantInt *Stride = nullptr; 5090 ConstantInt *NumRows; 5091 ConstantInt *NumColumns; 5092 VectorType *ResultTy; 5093 Type *Op0ElemTy = nullptr; 5094 Type *Op1ElemTy = nullptr; 5095 switch (ID) { 5096 case Intrinsic::matrix_multiply: 5097 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5098 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5099 ResultTy = cast<VectorType>(Call.getType()); 5100 Op0ElemTy = 5101 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5102 Op1ElemTy = 5103 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5104 break; 5105 case Intrinsic::matrix_transpose: 5106 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5107 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5108 ResultTy = cast<VectorType>(Call.getType()); 5109 Op0ElemTy = 5110 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5111 break; 5112 case Intrinsic::matrix_column_major_load: 5113 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5114 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5115 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5116 ResultTy = cast<VectorType>(Call.getType()); 5117 Op0ElemTy = 5118 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5119 break; 5120 case Intrinsic::matrix_column_major_store: 5121 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5122 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5123 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5124 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5125 Op0ElemTy = 5126 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5127 Op1ElemTy = 5128 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5129 break; 5130 default: 5131 llvm_unreachable("unexpected intrinsic"); 5132 } 5133 5134 Assert(ResultTy->getElementType()->isIntegerTy() || 5135 ResultTy->getElementType()->isFloatingPointTy(), 5136 "Result type must be an integer or floating-point type!", IF); 5137 5138 Assert(ResultTy->getElementType() == Op0ElemTy, 5139 "Vector element type mismatch of the result and first operand " 5140 "vector!", IF); 5141 5142 if (Op1ElemTy) 5143 Assert(ResultTy->getElementType() == Op1ElemTy, 5144 "Vector element type mismatch of the result and second operand " 5145 "vector!", IF); 5146 5147 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5148 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5149 "Result of a matrix operation does not fit in the returned vector!"); 5150 5151 if (Stride) 5152 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5153 "Stride must be greater or equal than the number of rows!", IF); 5154 5155 break; 5156 } 5157 case Intrinsic::experimental_vector_insert: { 5158 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5159 VectorType *SubVecTy = cast<VectorType>(Call.getArgOperand(1)->getType()); 5160 5161 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5162 "experimental_vector_insert parameters must have the same element " 5163 "type.", 5164 &Call); 5165 break; 5166 } 5167 case Intrinsic::experimental_vector_extract: { 5168 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5169 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5170 5171 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5172 "experimental_vector_extract result must have the same element " 5173 "type as the input vector.", 5174 &Call); 5175 break; 5176 } 5177 case Intrinsic::experimental_noalias_scope_decl: { 5178 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5179 break; 5180 } 5181 }; 5182 } 5183 5184 /// Carefully grab the subprogram from a local scope. 5185 /// 5186 /// This carefully grabs the subprogram from a local scope, avoiding the 5187 /// built-in assertions that would typically fire. 5188 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5189 if (!LocalScope) 5190 return nullptr; 5191 5192 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5193 return SP; 5194 5195 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5196 return getSubprogram(LB->getRawScope()); 5197 5198 // Just return null; broken scope chains are checked elsewhere. 5199 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5200 return nullptr; 5201 } 5202 5203 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5204 unsigned NumOperands; 5205 bool HasRoundingMD; 5206 switch (FPI.getIntrinsicID()) { 5207 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5208 case Intrinsic::INTRINSIC: \ 5209 NumOperands = NARG; \ 5210 HasRoundingMD = ROUND_MODE; \ 5211 break; 5212 #include "llvm/IR/ConstrainedOps.def" 5213 default: 5214 llvm_unreachable("Invalid constrained FP intrinsic!"); 5215 } 5216 NumOperands += (1 + HasRoundingMD); 5217 // Compare intrinsics carry an extra predicate metadata operand. 5218 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5219 NumOperands += 1; 5220 Assert((FPI.getNumArgOperands() == NumOperands), 5221 "invalid arguments for constrained FP intrinsic", &FPI); 5222 5223 switch (FPI.getIntrinsicID()) { 5224 case Intrinsic::experimental_constrained_lrint: 5225 case Intrinsic::experimental_constrained_llrint: { 5226 Type *ValTy = FPI.getArgOperand(0)->getType(); 5227 Type *ResultTy = FPI.getType(); 5228 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5229 "Intrinsic does not support vectors", &FPI); 5230 } 5231 break; 5232 5233 case Intrinsic::experimental_constrained_lround: 5234 case Intrinsic::experimental_constrained_llround: { 5235 Type *ValTy = FPI.getArgOperand(0)->getType(); 5236 Type *ResultTy = FPI.getType(); 5237 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5238 "Intrinsic does not support vectors", &FPI); 5239 break; 5240 } 5241 5242 case Intrinsic::experimental_constrained_fcmp: 5243 case Intrinsic::experimental_constrained_fcmps: { 5244 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5245 Assert(CmpInst::isFPPredicate(Pred), 5246 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5247 break; 5248 } 5249 5250 case Intrinsic::experimental_constrained_fptosi: 5251 case Intrinsic::experimental_constrained_fptoui: { 5252 Value *Operand = FPI.getArgOperand(0); 5253 uint64_t NumSrcElem = 0; 5254 Assert(Operand->getType()->isFPOrFPVectorTy(), 5255 "Intrinsic first argument must be floating point", &FPI); 5256 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5257 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5258 } 5259 5260 Operand = &FPI; 5261 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5262 "Intrinsic first argument and result disagree on vector use", &FPI); 5263 Assert(Operand->getType()->isIntOrIntVectorTy(), 5264 "Intrinsic result must be an integer", &FPI); 5265 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5266 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5267 "Intrinsic first argument and result vector lengths must be equal", 5268 &FPI); 5269 } 5270 } 5271 break; 5272 5273 case Intrinsic::experimental_constrained_sitofp: 5274 case Intrinsic::experimental_constrained_uitofp: { 5275 Value *Operand = FPI.getArgOperand(0); 5276 uint64_t NumSrcElem = 0; 5277 Assert(Operand->getType()->isIntOrIntVectorTy(), 5278 "Intrinsic first argument must be integer", &FPI); 5279 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5280 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5281 } 5282 5283 Operand = &FPI; 5284 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5285 "Intrinsic first argument and result disagree on vector use", &FPI); 5286 Assert(Operand->getType()->isFPOrFPVectorTy(), 5287 "Intrinsic result must be a floating point", &FPI); 5288 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5289 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5290 "Intrinsic first argument and result vector lengths must be equal", 5291 &FPI); 5292 } 5293 } break; 5294 5295 case Intrinsic::experimental_constrained_fptrunc: 5296 case Intrinsic::experimental_constrained_fpext: { 5297 Value *Operand = FPI.getArgOperand(0); 5298 Type *OperandTy = Operand->getType(); 5299 Value *Result = &FPI; 5300 Type *ResultTy = Result->getType(); 5301 Assert(OperandTy->isFPOrFPVectorTy(), 5302 "Intrinsic first argument must be FP or FP vector", &FPI); 5303 Assert(ResultTy->isFPOrFPVectorTy(), 5304 "Intrinsic result must be FP or FP vector", &FPI); 5305 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5306 "Intrinsic first argument and result disagree on vector use", &FPI); 5307 if (OperandTy->isVectorTy()) { 5308 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5309 cast<FixedVectorType>(ResultTy)->getNumElements(), 5310 "Intrinsic first argument and result vector lengths must be equal", 5311 &FPI); 5312 } 5313 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5314 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5315 "Intrinsic first argument's type must be larger than result type", 5316 &FPI); 5317 } else { 5318 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5319 "Intrinsic first argument's type must be smaller than result type", 5320 &FPI); 5321 } 5322 } 5323 break; 5324 5325 default: 5326 break; 5327 } 5328 5329 // If a non-metadata argument is passed in a metadata slot then the 5330 // error will be caught earlier when the incorrect argument doesn't 5331 // match the specification in the intrinsic call table. Thus, no 5332 // argument type check is needed here. 5333 5334 Assert(FPI.getExceptionBehavior().hasValue(), 5335 "invalid exception behavior argument", &FPI); 5336 if (HasRoundingMD) { 5337 Assert(FPI.getRoundingMode().hasValue(), 5338 "invalid rounding mode argument", &FPI); 5339 } 5340 } 5341 5342 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5343 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 5344 AssertDI(isa<ValueAsMetadata>(MD) || 5345 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5346 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5347 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5348 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5349 DII.getRawVariable()); 5350 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5351 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5352 DII.getRawExpression()); 5353 5354 // Ignore broken !dbg attachments; they're checked elsewhere. 5355 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5356 if (!isa<DILocation>(N)) 5357 return; 5358 5359 BasicBlock *BB = DII.getParent(); 5360 Function *F = BB ? BB->getParent() : nullptr; 5361 5362 // The scopes for variables and !dbg attachments must agree. 5363 DILocalVariable *Var = DII.getVariable(); 5364 DILocation *Loc = DII.getDebugLoc(); 5365 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5366 &DII, BB, F); 5367 5368 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5369 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5370 if (!VarSP || !LocSP) 5371 return; // Broken scope chains are checked elsewhere. 5372 5373 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5374 " variable and !dbg attachment", 5375 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5376 Loc->getScope()->getSubprogram()); 5377 5378 // This check is redundant with one in visitLocalVariable(). 5379 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5380 Var->getRawType()); 5381 verifyFnArgs(DII); 5382 } 5383 5384 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5385 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5386 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5387 DLI.getRawLabel()); 5388 5389 // Ignore broken !dbg attachments; they're checked elsewhere. 5390 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5391 if (!isa<DILocation>(N)) 5392 return; 5393 5394 BasicBlock *BB = DLI.getParent(); 5395 Function *F = BB ? BB->getParent() : nullptr; 5396 5397 // The scopes for variables and !dbg attachments must agree. 5398 DILabel *Label = DLI.getLabel(); 5399 DILocation *Loc = DLI.getDebugLoc(); 5400 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5401 &DLI, BB, F); 5402 5403 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5404 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5405 if (!LabelSP || !LocSP) 5406 return; 5407 5408 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5409 " label and !dbg attachment", 5410 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5411 Loc->getScope()->getSubprogram()); 5412 } 5413 5414 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5415 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5416 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5417 5418 // We don't know whether this intrinsic verified correctly. 5419 if (!V || !E || !E->isValid()) 5420 return; 5421 5422 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5423 auto Fragment = E->getFragmentInfo(); 5424 if (!Fragment) 5425 return; 5426 5427 // The frontend helps out GDB by emitting the members of local anonymous 5428 // unions as artificial local variables with shared storage. When SROA splits 5429 // the storage for artificial local variables that are smaller than the entire 5430 // union, the overhang piece will be outside of the allotted space for the 5431 // variable and this check fails. 5432 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5433 if (V->isArtificial()) 5434 return; 5435 5436 verifyFragmentExpression(*V, *Fragment, &I); 5437 } 5438 5439 template <typename ValueOrMetadata> 5440 void Verifier::verifyFragmentExpression(const DIVariable &V, 5441 DIExpression::FragmentInfo Fragment, 5442 ValueOrMetadata *Desc) { 5443 // If there's no size, the type is broken, but that should be checked 5444 // elsewhere. 5445 auto VarSize = V.getSizeInBits(); 5446 if (!VarSize) 5447 return; 5448 5449 unsigned FragSize = Fragment.SizeInBits; 5450 unsigned FragOffset = Fragment.OffsetInBits; 5451 AssertDI(FragSize + FragOffset <= *VarSize, 5452 "fragment is larger than or outside of variable", Desc, &V); 5453 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5454 } 5455 5456 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5457 // This function does not take the scope of noninlined function arguments into 5458 // account. Don't run it if current function is nodebug, because it may 5459 // contain inlined debug intrinsics. 5460 if (!HasDebugInfo) 5461 return; 5462 5463 // For performance reasons only check non-inlined ones. 5464 if (I.getDebugLoc()->getInlinedAt()) 5465 return; 5466 5467 DILocalVariable *Var = I.getVariable(); 5468 AssertDI(Var, "dbg intrinsic without variable"); 5469 5470 unsigned ArgNo = Var->getArg(); 5471 if (!ArgNo) 5472 return; 5473 5474 // Verify there are no duplicate function argument debug info entries. 5475 // These will cause hard-to-debug assertions in the DWARF backend. 5476 if (DebugFnArgs.size() < ArgNo) 5477 DebugFnArgs.resize(ArgNo, nullptr); 5478 5479 auto *Prev = DebugFnArgs[ArgNo - 1]; 5480 DebugFnArgs[ArgNo - 1] = Var; 5481 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5482 Prev, Var); 5483 } 5484 5485 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5486 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5487 5488 // We don't know whether this intrinsic verified correctly. 5489 if (!E || !E->isValid()) 5490 return; 5491 5492 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5493 } 5494 5495 void Verifier::verifyCompileUnits() { 5496 // When more than one Module is imported into the same context, such as during 5497 // an LTO build before linking the modules, ODR type uniquing may cause types 5498 // to point to a different CU. This check does not make sense in this case. 5499 if (M.getContext().isODRUniquingDebugTypes()) 5500 return; 5501 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5502 SmallPtrSet<const Metadata *, 2> Listed; 5503 if (CUs) 5504 Listed.insert(CUs->op_begin(), CUs->op_end()); 5505 for (auto *CU : CUVisited) 5506 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5507 CUVisited.clear(); 5508 } 5509 5510 void Verifier::verifyDeoptimizeCallingConvs() { 5511 if (DeoptimizeDeclarations.empty()) 5512 return; 5513 5514 const Function *First = DeoptimizeDeclarations[0]; 5515 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5516 Assert(First->getCallingConv() == F->getCallingConv(), 5517 "All llvm.experimental.deoptimize declarations must have the same " 5518 "calling convention", 5519 First, F); 5520 } 5521 } 5522 5523 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5524 bool HasSource = F.getSource().hasValue(); 5525 if (!HasSourceDebugInfo.count(&U)) 5526 HasSourceDebugInfo[&U] = HasSource; 5527 AssertDI(HasSource == HasSourceDebugInfo[&U], 5528 "inconsistent use of embedded source"); 5529 } 5530 5531 void Verifier::verifyNoAliasScopeDecl() { 5532 if (NoAliasScopeDecls.empty()) 5533 return; 5534 5535 // only a single scope must be declared at a time. 5536 for (auto *II : NoAliasScopeDecls) { 5537 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5538 "Not a llvm.experimental.noalias.scope.decl ?"); 5539 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5540 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5541 Assert(ScopeListMV != nullptr, 5542 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5543 "argument", 5544 II); 5545 5546 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5547 Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5548 II); 5549 Assert(ScopeListMD->getNumOperands() == 1, 5550 "!id.scope.list must point to a list with a single scope", II); 5551 } 5552 5553 // Only check the domination rule when requested. Once all passes have been 5554 // adapted this option can go away. 5555 if (!VerifyNoAliasScopeDomination) 5556 return; 5557 5558 // Now sort the intrinsics based on the scope MDNode so that declarations of 5559 // the same scopes are next to each other. 5560 auto GetScope = [](IntrinsicInst *II) { 5561 const auto *ScopeListMV = cast<MetadataAsValue>( 5562 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5563 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5564 }; 5565 5566 // We are sorting on MDNode pointers here. For valid input IR this is ok. 5567 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5568 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5569 return GetScope(Lhs) < GetScope(Rhs); 5570 }; 5571 5572 llvm::sort(NoAliasScopeDecls, Compare); 5573 5574 // Go over the intrinsics and check that for the same scope, they are not 5575 // dominating each other. 5576 auto ItCurrent = NoAliasScopeDecls.begin(); 5577 while (ItCurrent != NoAliasScopeDecls.end()) { 5578 auto CurScope = GetScope(*ItCurrent); 5579 auto ItNext = ItCurrent; 5580 do { 5581 ++ItNext; 5582 } while (ItNext != NoAliasScopeDecls.end() && 5583 GetScope(*ItNext) == CurScope); 5584 5585 // [ItCurrent, ItNext) represents the declarations for the same scope. 5586 // Ensure they are not dominating each other.. but only if it is not too 5587 // expensive. 5588 if (ItNext - ItCurrent < 32) 5589 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5590 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5591 if (I != J) 5592 Assert(!DT.dominates(I, J), 5593 "llvm.experimental.noalias.scope.decl dominates another one " 5594 "with the same scope", 5595 I); 5596 ItCurrent = ItNext; 5597 } 5598 } 5599 5600 //===----------------------------------------------------------------------===// 5601 // Implement the public interfaces to this file... 5602 //===----------------------------------------------------------------------===// 5603 5604 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5605 Function &F = const_cast<Function &>(f); 5606 5607 // Don't use a raw_null_ostream. Printing IR is expensive. 5608 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5609 5610 // Note that this function's return value is inverted from what you would 5611 // expect of a function called "verify". 5612 return !V.verify(F); 5613 } 5614 5615 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5616 bool *BrokenDebugInfo) { 5617 // Don't use a raw_null_ostream. Printing IR is expensive. 5618 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5619 5620 bool Broken = false; 5621 for (const Function &F : M) 5622 Broken |= !V.verify(F); 5623 5624 Broken |= !V.verify(); 5625 if (BrokenDebugInfo) 5626 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5627 // Note that this function's return value is inverted from what you would 5628 // expect of a function called "verify". 5629 return Broken; 5630 } 5631 5632 namespace { 5633 5634 struct VerifierLegacyPass : public FunctionPass { 5635 static char ID; 5636 5637 std::unique_ptr<Verifier> V; 5638 bool FatalErrors = true; 5639 5640 VerifierLegacyPass() : FunctionPass(ID) { 5641 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5642 } 5643 explicit VerifierLegacyPass(bool FatalErrors) 5644 : FunctionPass(ID), 5645 FatalErrors(FatalErrors) { 5646 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5647 } 5648 5649 bool doInitialization(Module &M) override { 5650 V = std::make_unique<Verifier>( 5651 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5652 return false; 5653 } 5654 5655 bool runOnFunction(Function &F) override { 5656 if (!V->verify(F) && FatalErrors) { 5657 errs() << "in function " << F.getName() << '\n'; 5658 report_fatal_error("Broken function found, compilation aborted!"); 5659 } 5660 return false; 5661 } 5662 5663 bool doFinalization(Module &M) override { 5664 bool HasErrors = false; 5665 for (Function &F : M) 5666 if (F.isDeclaration()) 5667 HasErrors |= !V->verify(F); 5668 5669 HasErrors |= !V->verify(); 5670 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5671 report_fatal_error("Broken module found, compilation aborted!"); 5672 return false; 5673 } 5674 5675 void getAnalysisUsage(AnalysisUsage &AU) const override { 5676 AU.setPreservesAll(); 5677 } 5678 }; 5679 5680 } // end anonymous namespace 5681 5682 /// Helper to issue failure from the TBAA verification 5683 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5684 if (Diagnostic) 5685 return Diagnostic->CheckFailed(Args...); 5686 } 5687 5688 #define AssertTBAA(C, ...) \ 5689 do { \ 5690 if (!(C)) { \ 5691 CheckFailed(__VA_ARGS__); \ 5692 return false; \ 5693 } \ 5694 } while (false) 5695 5696 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5697 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5698 /// struct-type node describing an aggregate data structure (like a struct). 5699 TBAAVerifier::TBAABaseNodeSummary 5700 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5701 bool IsNewFormat) { 5702 if (BaseNode->getNumOperands() < 2) { 5703 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5704 return {true, ~0u}; 5705 } 5706 5707 auto Itr = TBAABaseNodes.find(BaseNode); 5708 if (Itr != TBAABaseNodes.end()) 5709 return Itr->second; 5710 5711 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5712 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5713 (void)InsertResult; 5714 assert(InsertResult.second && "We just checked!"); 5715 return Result; 5716 } 5717 5718 TBAAVerifier::TBAABaseNodeSummary 5719 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5720 bool IsNewFormat) { 5721 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5722 5723 if (BaseNode->getNumOperands() == 2) { 5724 // Scalar nodes can only be accessed at offset 0. 5725 return isValidScalarTBAANode(BaseNode) 5726 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5727 : InvalidNode; 5728 } 5729 5730 if (IsNewFormat) { 5731 if (BaseNode->getNumOperands() % 3 != 0) { 5732 CheckFailed("Access tag nodes must have the number of operands that is a " 5733 "multiple of 3!", BaseNode); 5734 return InvalidNode; 5735 } 5736 } else { 5737 if (BaseNode->getNumOperands() % 2 != 1) { 5738 CheckFailed("Struct tag nodes must have an odd number of operands!", 5739 BaseNode); 5740 return InvalidNode; 5741 } 5742 } 5743 5744 // Check the type size field. 5745 if (IsNewFormat) { 5746 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5747 BaseNode->getOperand(1)); 5748 if (!TypeSizeNode) { 5749 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5750 return InvalidNode; 5751 } 5752 } 5753 5754 // Check the type name field. In the new format it can be anything. 5755 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5756 CheckFailed("Struct tag nodes have a string as their first operand", 5757 BaseNode); 5758 return InvalidNode; 5759 } 5760 5761 bool Failed = false; 5762 5763 Optional<APInt> PrevOffset; 5764 unsigned BitWidth = ~0u; 5765 5766 // We've already checked that BaseNode is not a degenerate root node with one 5767 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5768 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5769 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5770 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5771 Idx += NumOpsPerField) { 5772 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5773 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5774 if (!isa<MDNode>(FieldTy)) { 5775 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5776 Failed = true; 5777 continue; 5778 } 5779 5780 auto *OffsetEntryCI = 5781 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5782 if (!OffsetEntryCI) { 5783 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5784 Failed = true; 5785 continue; 5786 } 5787 5788 if (BitWidth == ~0u) 5789 BitWidth = OffsetEntryCI->getBitWidth(); 5790 5791 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5792 CheckFailed( 5793 "Bitwidth between the offsets and struct type entries must match", &I, 5794 BaseNode); 5795 Failed = true; 5796 continue; 5797 } 5798 5799 // NB! As far as I can tell, we generate a non-strictly increasing offset 5800 // sequence only from structs that have zero size bit fields. When 5801 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5802 // pick the field lexically the latest in struct type metadata node. This 5803 // mirrors the actual behavior of the alias analysis implementation. 5804 bool IsAscending = 5805 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5806 5807 if (!IsAscending) { 5808 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5809 Failed = true; 5810 } 5811 5812 PrevOffset = OffsetEntryCI->getValue(); 5813 5814 if (IsNewFormat) { 5815 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5816 BaseNode->getOperand(Idx + 2)); 5817 if (!MemberSizeNode) { 5818 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5819 Failed = true; 5820 continue; 5821 } 5822 } 5823 } 5824 5825 return Failed ? InvalidNode 5826 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5827 } 5828 5829 static bool IsRootTBAANode(const MDNode *MD) { 5830 return MD->getNumOperands() < 2; 5831 } 5832 5833 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5834 SmallPtrSetImpl<const MDNode *> &Visited) { 5835 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5836 return false; 5837 5838 if (!isa<MDString>(MD->getOperand(0))) 5839 return false; 5840 5841 if (MD->getNumOperands() == 3) { 5842 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5843 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5844 return false; 5845 } 5846 5847 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5848 return Parent && Visited.insert(Parent).second && 5849 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5850 } 5851 5852 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5853 auto ResultIt = TBAAScalarNodes.find(MD); 5854 if (ResultIt != TBAAScalarNodes.end()) 5855 return ResultIt->second; 5856 5857 SmallPtrSet<const MDNode *, 4> Visited; 5858 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5859 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5860 (void)InsertResult; 5861 assert(InsertResult.second && "Just checked!"); 5862 5863 return Result; 5864 } 5865 5866 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5867 /// Offset in place to be the offset within the field node returned. 5868 /// 5869 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5870 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5871 const MDNode *BaseNode, 5872 APInt &Offset, 5873 bool IsNewFormat) { 5874 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5875 5876 // Scalar nodes have only one possible "field" -- their parent in the access 5877 // hierarchy. Offset must be zero at this point, but our caller is supposed 5878 // to Assert that. 5879 if (BaseNode->getNumOperands() == 2) 5880 return cast<MDNode>(BaseNode->getOperand(1)); 5881 5882 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5883 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5884 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5885 Idx += NumOpsPerField) { 5886 auto *OffsetEntryCI = 5887 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5888 if (OffsetEntryCI->getValue().ugt(Offset)) { 5889 if (Idx == FirstFieldOpNo) { 5890 CheckFailed("Could not find TBAA parent in struct type node", &I, 5891 BaseNode, &Offset); 5892 return nullptr; 5893 } 5894 5895 unsigned PrevIdx = Idx - NumOpsPerField; 5896 auto *PrevOffsetEntryCI = 5897 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5898 Offset -= PrevOffsetEntryCI->getValue(); 5899 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5900 } 5901 } 5902 5903 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5904 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5905 BaseNode->getOperand(LastIdx + 1)); 5906 Offset -= LastOffsetEntryCI->getValue(); 5907 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5908 } 5909 5910 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5911 if (!Type || Type->getNumOperands() < 3) 5912 return false; 5913 5914 // In the new format type nodes shall have a reference to the parent type as 5915 // its first operand. 5916 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5917 if (!Parent) 5918 return false; 5919 5920 return true; 5921 } 5922 5923 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5924 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5925 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5926 isa<AtomicCmpXchgInst>(I), 5927 "This instruction shall not have a TBAA access tag!", &I); 5928 5929 bool IsStructPathTBAA = 5930 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5931 5932 AssertTBAA( 5933 IsStructPathTBAA, 5934 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5935 5936 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5937 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5938 5939 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5940 5941 if (IsNewFormat) { 5942 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5943 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5944 } else { 5945 AssertTBAA(MD->getNumOperands() < 5, 5946 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5947 } 5948 5949 // Check the access size field. 5950 if (IsNewFormat) { 5951 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5952 MD->getOperand(3)); 5953 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5954 } 5955 5956 // Check the immutability flag. 5957 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5958 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5959 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5960 MD->getOperand(ImmutabilityFlagOpNo)); 5961 AssertTBAA(IsImmutableCI, 5962 "Immutability tag on struct tag metadata must be a constant", 5963 &I, MD); 5964 AssertTBAA( 5965 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5966 "Immutability part of the struct tag metadata must be either 0 or 1", 5967 &I, MD); 5968 } 5969 5970 AssertTBAA(BaseNode && AccessType, 5971 "Malformed struct tag metadata: base and access-type " 5972 "should be non-null and point to Metadata nodes", 5973 &I, MD, BaseNode, AccessType); 5974 5975 if (!IsNewFormat) { 5976 AssertTBAA(isValidScalarTBAANode(AccessType), 5977 "Access type node must be a valid scalar type", &I, MD, 5978 AccessType); 5979 } 5980 5981 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5982 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5983 5984 APInt Offset = OffsetCI->getValue(); 5985 bool SeenAccessTypeInPath = false; 5986 5987 SmallPtrSet<MDNode *, 4> StructPath; 5988 5989 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5990 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5991 IsNewFormat)) { 5992 if (!StructPath.insert(BaseNode).second) { 5993 CheckFailed("Cycle detected in struct path", &I, MD); 5994 return false; 5995 } 5996 5997 bool Invalid; 5998 unsigned BaseNodeBitWidth; 5999 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6000 IsNewFormat); 6001 6002 // If the base node is invalid in itself, then we've already printed all the 6003 // errors we wanted to print. 6004 if (Invalid) 6005 return false; 6006 6007 SeenAccessTypeInPath |= BaseNode == AccessType; 6008 6009 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6010 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6011 &I, MD, &Offset); 6012 6013 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6014 (BaseNodeBitWidth == 0 && Offset == 0) || 6015 (IsNewFormat && BaseNodeBitWidth == ~0u), 6016 "Access bit-width not the same as description bit-width", &I, MD, 6017 BaseNodeBitWidth, Offset.getBitWidth()); 6018 6019 if (IsNewFormat && SeenAccessTypeInPath) 6020 break; 6021 } 6022 6023 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 6024 &I, MD); 6025 return true; 6026 } 6027 6028 char VerifierLegacyPass::ID = 0; 6029 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6030 6031 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6032 return new VerifierLegacyPass(FatalErrors); 6033 } 6034 6035 AnalysisKey VerifierAnalysis::Key; 6036 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6037 ModuleAnalysisManager &) { 6038 Result Res; 6039 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6040 return Res; 6041 } 6042 6043 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6044 FunctionAnalysisManager &) { 6045 return { llvm::verifyFunction(F, &dbgs()), false }; 6046 } 6047 6048 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6049 auto Res = AM.getResult<VerifierAnalysis>(M); 6050 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6051 report_fatal_error("Broken module found, compilation aborted!"); 6052 6053 return PreservedAnalyses::all(); 6054 } 6055 6056 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6057 auto res = AM.getResult<VerifierAnalysis>(F); 6058 if (res.IRBroken && FatalErrors) 6059 report_fatal_error("Broken function found, compilation aborted!"); 6060 6061 return PreservedAnalyses::all(); 6062 } 6063