xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Verifier.cpp (revision fe6060f10f634930ff71b7c50291ddc610da2475)
10b57cec5SDimitry Andric //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file defines the function verifier interface, that can be used for some
100b57cec5SDimitry Andric // sanity checking of input to the system.
110b57cec5SDimitry Andric //
120b57cec5SDimitry Andric // Note that this does not provide full `Java style' security and verifications,
130b57cec5SDimitry Andric // instead it just tries to ensure that code is well-formed.
140b57cec5SDimitry Andric //
150b57cec5SDimitry Andric //  * Both of a binary operator's parameters are of the same type
160b57cec5SDimitry Andric //  * Verify that the indices of mem access instructions match other operands
170b57cec5SDimitry Andric //  * Verify that arithmetic and other things are only performed on first-class
180b57cec5SDimitry Andric //    types.  Verify that shifts & logicals only happen on integrals f.e.
190b57cec5SDimitry Andric //  * All of the constants in a switch statement are of the correct type
200b57cec5SDimitry Andric //  * The code is in valid SSA form
210b57cec5SDimitry Andric //  * It should be illegal to put a label into any other type (like a structure)
220b57cec5SDimitry Andric //    or to return one. [except constant arrays!]
230b57cec5SDimitry Andric //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
240b57cec5SDimitry Andric //  * PHI nodes must have an entry for each predecessor, with no extras.
250b57cec5SDimitry Andric //  * PHI nodes must be the first thing in a basic block, all grouped together
260b57cec5SDimitry Andric //  * PHI nodes must have at least one entry
270b57cec5SDimitry Andric //  * All basic blocks should only end with terminator insts, not contain them
280b57cec5SDimitry Andric //  * The entry node to a function must not have predecessors
290b57cec5SDimitry Andric //  * All Instructions must be embedded into a basic block
300b57cec5SDimitry Andric //  * Functions cannot take a void-typed parameter
310b57cec5SDimitry Andric //  * Verify that a function's argument list agrees with it's declared type.
320b57cec5SDimitry Andric //  * It is illegal to specify a name for a void value.
330b57cec5SDimitry Andric //  * It is illegal to have a internal global value with no initializer
340b57cec5SDimitry Andric //  * It is illegal to have a ret instruction that returns a value that does not
350b57cec5SDimitry Andric //    agree with the function return value type.
360b57cec5SDimitry Andric //  * Function call argument types match the function prototype
370b57cec5SDimitry Andric //  * A landing pad is defined by a landingpad instruction, and can be jumped to
380b57cec5SDimitry Andric //    only by the unwind edge of an invoke instruction.
390b57cec5SDimitry Andric //  * A landingpad instruction must be the first non-PHI instruction in the
400b57cec5SDimitry Andric //    block.
410b57cec5SDimitry Andric //  * Landingpad instructions must be in a function with a personality function.
420b57cec5SDimitry Andric //  * All other things that are tested by asserts spread about the code...
430b57cec5SDimitry Andric //
440b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
450b57cec5SDimitry Andric 
460b57cec5SDimitry Andric #include "llvm/IR/Verifier.h"
470b57cec5SDimitry Andric #include "llvm/ADT/APFloat.h"
480b57cec5SDimitry Andric #include "llvm/ADT/APInt.h"
490b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h"
500b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
510b57cec5SDimitry Andric #include "llvm/ADT/MapVector.h"
520b57cec5SDimitry Andric #include "llvm/ADT/Optional.h"
530b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
540b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
550b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h"
560b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
570b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h"
580b57cec5SDimitry Andric #include "llvm/ADT/StringMap.h"
590b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h"
600b57cec5SDimitry Andric #include "llvm/ADT/Twine.h"
610b57cec5SDimitry Andric #include "llvm/ADT/ilist.h"
620b57cec5SDimitry Andric #include "llvm/BinaryFormat/Dwarf.h"
630b57cec5SDimitry Andric #include "llvm/IR/Argument.h"
640b57cec5SDimitry Andric #include "llvm/IR/Attributes.h"
650b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
660b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
670b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h"
680b57cec5SDimitry Andric #include "llvm/IR/Comdat.h"
690b57cec5SDimitry Andric #include "llvm/IR/Constant.h"
700b57cec5SDimitry Andric #include "llvm/IR/ConstantRange.h"
710b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
720b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
730b57cec5SDimitry Andric #include "llvm/IR/DebugInfo.h"
740b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h"
750b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h"
760b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
770b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
780b57cec5SDimitry Andric #include "llvm/IR/Function.h"
790b57cec5SDimitry Andric #include "llvm/IR/GlobalAlias.h"
800b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h"
810b57cec5SDimitry Andric #include "llvm/IR/GlobalVariable.h"
820b57cec5SDimitry Andric #include "llvm/IR/InlineAsm.h"
830b57cec5SDimitry Andric #include "llvm/IR/InstVisitor.h"
840b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
850b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
860b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
870b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
880b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h"
89480093f4SDimitry Andric #include "llvm/IR/IntrinsicsWebAssembly.h"
900b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h"
910b57cec5SDimitry Andric #include "llvm/IR/Metadata.h"
920b57cec5SDimitry Andric #include "llvm/IR/Module.h"
930b57cec5SDimitry Andric #include "llvm/IR/ModuleSlotTracker.h"
940b57cec5SDimitry Andric #include "llvm/IR/PassManager.h"
950b57cec5SDimitry Andric #include "llvm/IR/Statepoint.h"
960b57cec5SDimitry Andric #include "llvm/IR/Type.h"
970b57cec5SDimitry Andric #include "llvm/IR/Use.h"
980b57cec5SDimitry Andric #include "llvm/IR/User.h"
990b57cec5SDimitry Andric #include "llvm/IR/Value.h"
100480093f4SDimitry Andric #include "llvm/InitializePasses.h"
1010b57cec5SDimitry Andric #include "llvm/Pass.h"
1020b57cec5SDimitry Andric #include "llvm/Support/AtomicOrdering.h"
1030b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
1040b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
1050b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
1060b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
1070b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h"
1080b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
1090b57cec5SDimitry Andric #include <algorithm>
1100b57cec5SDimitry Andric #include <cassert>
1110b57cec5SDimitry Andric #include <cstdint>
1120b57cec5SDimitry Andric #include <memory>
1130b57cec5SDimitry Andric #include <string>
1140b57cec5SDimitry Andric #include <utility>
1150b57cec5SDimitry Andric 
1160b57cec5SDimitry Andric using namespace llvm;
1170b57cec5SDimitry Andric 
118e8d8bef9SDimitry Andric static cl::opt<bool> VerifyNoAliasScopeDomination(
119e8d8bef9SDimitry Andric     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120e8d8bef9SDimitry Andric     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121e8d8bef9SDimitry Andric              "scopes are not dominating"));
122e8d8bef9SDimitry Andric 
1230b57cec5SDimitry Andric namespace llvm {
1240b57cec5SDimitry Andric 
1250b57cec5SDimitry Andric struct VerifierSupport {
1260b57cec5SDimitry Andric   raw_ostream *OS;
1270b57cec5SDimitry Andric   const Module &M;
1280b57cec5SDimitry Andric   ModuleSlotTracker MST;
1298bcb0991SDimitry Andric   Triple TT;
1300b57cec5SDimitry Andric   const DataLayout &DL;
1310b57cec5SDimitry Andric   LLVMContext &Context;
1320b57cec5SDimitry Andric 
1330b57cec5SDimitry Andric   /// Track the brokenness of the module while recursively visiting.
1340b57cec5SDimitry Andric   bool Broken = false;
1350b57cec5SDimitry Andric   /// Broken debug info can be "recovered" from by stripping the debug info.
1360b57cec5SDimitry Andric   bool BrokenDebugInfo = false;
1370b57cec5SDimitry Andric   /// Whether to treat broken debug info as an error.
1380b57cec5SDimitry Andric   bool TreatBrokenDebugInfoAsError = true;
1390b57cec5SDimitry Andric 
1400b57cec5SDimitry Andric   explicit VerifierSupport(raw_ostream *OS, const Module &M)
1418bcb0991SDimitry Andric       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
1428bcb0991SDimitry Andric         Context(M.getContext()) {}
1430b57cec5SDimitry Andric 
1440b57cec5SDimitry Andric private:
1450b57cec5SDimitry Andric   void Write(const Module *M) {
1460b57cec5SDimitry Andric     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1470b57cec5SDimitry Andric   }
1480b57cec5SDimitry Andric 
1490b57cec5SDimitry Andric   void Write(const Value *V) {
1500b57cec5SDimitry Andric     if (V)
1510b57cec5SDimitry Andric       Write(*V);
1520b57cec5SDimitry Andric   }
1530b57cec5SDimitry Andric 
1540b57cec5SDimitry Andric   void Write(const Value &V) {
1550b57cec5SDimitry Andric     if (isa<Instruction>(V)) {
1560b57cec5SDimitry Andric       V.print(*OS, MST);
1570b57cec5SDimitry Andric       *OS << '\n';
1580b57cec5SDimitry Andric     } else {
1590b57cec5SDimitry Andric       V.printAsOperand(*OS, true, MST);
1600b57cec5SDimitry Andric       *OS << '\n';
1610b57cec5SDimitry Andric     }
1620b57cec5SDimitry Andric   }
1630b57cec5SDimitry Andric 
1640b57cec5SDimitry Andric   void Write(const Metadata *MD) {
1650b57cec5SDimitry Andric     if (!MD)
1660b57cec5SDimitry Andric       return;
1670b57cec5SDimitry Andric     MD->print(*OS, MST, &M);
1680b57cec5SDimitry Andric     *OS << '\n';
1690b57cec5SDimitry Andric   }
1700b57cec5SDimitry Andric 
1710b57cec5SDimitry Andric   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
1720b57cec5SDimitry Andric     Write(MD.get());
1730b57cec5SDimitry Andric   }
1740b57cec5SDimitry Andric 
1750b57cec5SDimitry Andric   void Write(const NamedMDNode *NMD) {
1760b57cec5SDimitry Andric     if (!NMD)
1770b57cec5SDimitry Andric       return;
1780b57cec5SDimitry Andric     NMD->print(*OS, MST);
1790b57cec5SDimitry Andric     *OS << '\n';
1800b57cec5SDimitry Andric   }
1810b57cec5SDimitry Andric 
1820b57cec5SDimitry Andric   void Write(Type *T) {
1830b57cec5SDimitry Andric     if (!T)
1840b57cec5SDimitry Andric       return;
1850b57cec5SDimitry Andric     *OS << ' ' << *T;
1860b57cec5SDimitry Andric   }
1870b57cec5SDimitry Andric 
1880b57cec5SDimitry Andric   void Write(const Comdat *C) {
1890b57cec5SDimitry Andric     if (!C)
1900b57cec5SDimitry Andric       return;
1910b57cec5SDimitry Andric     *OS << *C;
1920b57cec5SDimitry Andric   }
1930b57cec5SDimitry Andric 
1940b57cec5SDimitry Andric   void Write(const APInt *AI) {
1950b57cec5SDimitry Andric     if (!AI)
1960b57cec5SDimitry Andric       return;
1970b57cec5SDimitry Andric     *OS << *AI << '\n';
1980b57cec5SDimitry Andric   }
1990b57cec5SDimitry Andric 
2000b57cec5SDimitry Andric   void Write(const unsigned i) { *OS << i << '\n'; }
2010b57cec5SDimitry Andric 
202*fe6060f1SDimitry Andric   // NOLINTNEXTLINE(readability-identifier-naming)
203*fe6060f1SDimitry Andric   void Write(const Attribute *A) {
204*fe6060f1SDimitry Andric     if (!A)
205*fe6060f1SDimitry Andric       return;
206*fe6060f1SDimitry Andric     *OS << A->getAsString() << '\n';
207*fe6060f1SDimitry Andric   }
208*fe6060f1SDimitry Andric 
209*fe6060f1SDimitry Andric   // NOLINTNEXTLINE(readability-identifier-naming)
210*fe6060f1SDimitry Andric   void Write(const AttributeSet *AS) {
211*fe6060f1SDimitry Andric     if (!AS)
212*fe6060f1SDimitry Andric       return;
213*fe6060f1SDimitry Andric     *OS << AS->getAsString() << '\n';
214*fe6060f1SDimitry Andric   }
215*fe6060f1SDimitry Andric 
216*fe6060f1SDimitry Andric   // NOLINTNEXTLINE(readability-identifier-naming)
217*fe6060f1SDimitry Andric   void Write(const AttributeList *AL) {
218*fe6060f1SDimitry Andric     if (!AL)
219*fe6060f1SDimitry Andric       return;
220*fe6060f1SDimitry Andric     AL->print(*OS);
221*fe6060f1SDimitry Andric   }
222*fe6060f1SDimitry Andric 
2230b57cec5SDimitry Andric   template <typename T> void Write(ArrayRef<T> Vs) {
2240b57cec5SDimitry Andric     for (const T &V : Vs)
2250b57cec5SDimitry Andric       Write(V);
2260b57cec5SDimitry Andric   }
2270b57cec5SDimitry Andric 
2280b57cec5SDimitry Andric   template <typename T1, typename... Ts>
2290b57cec5SDimitry Andric   void WriteTs(const T1 &V1, const Ts &... Vs) {
2300b57cec5SDimitry Andric     Write(V1);
2310b57cec5SDimitry Andric     WriteTs(Vs...);
2320b57cec5SDimitry Andric   }
2330b57cec5SDimitry Andric 
2340b57cec5SDimitry Andric   template <typename... Ts> void WriteTs() {}
2350b57cec5SDimitry Andric 
2360b57cec5SDimitry Andric public:
2370b57cec5SDimitry Andric   /// A check failed, so printout out the condition and the message.
2380b57cec5SDimitry Andric   ///
2390b57cec5SDimitry Andric   /// This provides a nice place to put a breakpoint if you want to see why
2400b57cec5SDimitry Andric   /// something is not correct.
2410b57cec5SDimitry Andric   void CheckFailed(const Twine &Message) {
2420b57cec5SDimitry Andric     if (OS)
2430b57cec5SDimitry Andric       *OS << Message << '\n';
2440b57cec5SDimitry Andric     Broken = true;
2450b57cec5SDimitry Andric   }
2460b57cec5SDimitry Andric 
2470b57cec5SDimitry Andric   /// A check failed (with values to print).
2480b57cec5SDimitry Andric   ///
2490b57cec5SDimitry Andric   /// This calls the Message-only version so that the above is easier to set a
2500b57cec5SDimitry Andric   /// breakpoint on.
2510b57cec5SDimitry Andric   template <typename T1, typename... Ts>
2520b57cec5SDimitry Andric   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
2530b57cec5SDimitry Andric     CheckFailed(Message);
2540b57cec5SDimitry Andric     if (OS)
2550b57cec5SDimitry Andric       WriteTs(V1, Vs...);
2560b57cec5SDimitry Andric   }
2570b57cec5SDimitry Andric 
2580b57cec5SDimitry Andric   /// A debug info check failed.
2590b57cec5SDimitry Andric   void DebugInfoCheckFailed(const Twine &Message) {
2600b57cec5SDimitry Andric     if (OS)
2610b57cec5SDimitry Andric       *OS << Message << '\n';
2620b57cec5SDimitry Andric     Broken |= TreatBrokenDebugInfoAsError;
2630b57cec5SDimitry Andric     BrokenDebugInfo = true;
2640b57cec5SDimitry Andric   }
2650b57cec5SDimitry Andric 
2660b57cec5SDimitry Andric   /// A debug info check failed (with values to print).
2670b57cec5SDimitry Andric   template <typename T1, typename... Ts>
2680b57cec5SDimitry Andric   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
2690b57cec5SDimitry Andric                             const Ts &... Vs) {
2700b57cec5SDimitry Andric     DebugInfoCheckFailed(Message);
2710b57cec5SDimitry Andric     if (OS)
2720b57cec5SDimitry Andric       WriteTs(V1, Vs...);
2730b57cec5SDimitry Andric   }
2740b57cec5SDimitry Andric };
2750b57cec5SDimitry Andric 
2760b57cec5SDimitry Andric } // namespace llvm
2770b57cec5SDimitry Andric 
2780b57cec5SDimitry Andric namespace {
2790b57cec5SDimitry Andric 
2800b57cec5SDimitry Andric class Verifier : public InstVisitor<Verifier>, VerifierSupport {
2810b57cec5SDimitry Andric   friend class InstVisitor<Verifier>;
2820b57cec5SDimitry Andric 
2830b57cec5SDimitry Andric   DominatorTree DT;
2840b57cec5SDimitry Andric 
2850b57cec5SDimitry Andric   /// When verifying a basic block, keep track of all of the
2860b57cec5SDimitry Andric   /// instructions we have seen so far.
2870b57cec5SDimitry Andric   ///
2880b57cec5SDimitry Andric   /// This allows us to do efficient dominance checks for the case when an
2890b57cec5SDimitry Andric   /// instruction has an operand that is an instruction in the same block.
2900b57cec5SDimitry Andric   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
2910b57cec5SDimitry Andric 
2920b57cec5SDimitry Andric   /// Keep track of the metadata nodes that have been checked already.
2930b57cec5SDimitry Andric   SmallPtrSet<const Metadata *, 32> MDNodes;
2940b57cec5SDimitry Andric 
2950b57cec5SDimitry Andric   /// Keep track which DISubprogram is attached to which function.
2960b57cec5SDimitry Andric   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
2970b57cec5SDimitry Andric 
2980b57cec5SDimitry Andric   /// Track all DICompileUnits visited.
2990b57cec5SDimitry Andric   SmallPtrSet<const Metadata *, 2> CUVisited;
3000b57cec5SDimitry Andric 
3010b57cec5SDimitry Andric   /// The result type for a landingpad.
3020b57cec5SDimitry Andric   Type *LandingPadResultTy;
3030b57cec5SDimitry Andric 
3040b57cec5SDimitry Andric   /// Whether we've seen a call to @llvm.localescape in this function
3050b57cec5SDimitry Andric   /// already.
3060b57cec5SDimitry Andric   bool SawFrameEscape;
3070b57cec5SDimitry Andric 
3080b57cec5SDimitry Andric   /// Whether the current function has a DISubprogram attached to it.
3090b57cec5SDimitry Andric   bool HasDebugInfo = false;
3100b57cec5SDimitry Andric 
311e8d8bef9SDimitry Andric   /// The current source language.
312e8d8bef9SDimitry Andric   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
313e8d8bef9SDimitry Andric 
3140b57cec5SDimitry Andric   /// Whether source was present on the first DIFile encountered in each CU.
3150b57cec5SDimitry Andric   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
3160b57cec5SDimitry Andric 
3170b57cec5SDimitry Andric   /// Stores the count of how many objects were passed to llvm.localescape for a
3180b57cec5SDimitry Andric   /// given function and the largest index passed to llvm.localrecover.
3190b57cec5SDimitry Andric   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
3200b57cec5SDimitry Andric 
3210b57cec5SDimitry Andric   // Maps catchswitches and cleanuppads that unwind to siblings to the
3220b57cec5SDimitry Andric   // terminators that indicate the unwind, used to detect cycles therein.
3230b57cec5SDimitry Andric   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
3240b57cec5SDimitry Andric 
3250b57cec5SDimitry Andric   /// Cache of constants visited in search of ConstantExprs.
3260b57cec5SDimitry Andric   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
3270b57cec5SDimitry Andric 
3280b57cec5SDimitry Andric   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
3290b57cec5SDimitry Andric   SmallVector<const Function *, 4> DeoptimizeDeclarations;
3300b57cec5SDimitry Andric 
331*fe6060f1SDimitry Andric   /// Cache of attribute lists verified.
332*fe6060f1SDimitry Andric   SmallPtrSet<const void *, 32> AttributeListsVisited;
333*fe6060f1SDimitry Andric 
3340b57cec5SDimitry Andric   // Verify that this GlobalValue is only used in this module.
3350b57cec5SDimitry Andric   // This map is used to avoid visiting uses twice. We can arrive at a user
3360b57cec5SDimitry Andric   // twice, if they have multiple operands. In particular for very large
3370b57cec5SDimitry Andric   // constant expressions, we can arrive at a particular user many times.
3380b57cec5SDimitry Andric   SmallPtrSet<const Value *, 32> GlobalValueVisited;
3390b57cec5SDimitry Andric 
3400b57cec5SDimitry Andric   // Keeps track of duplicate function argument debug info.
3410b57cec5SDimitry Andric   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
3420b57cec5SDimitry Andric 
3430b57cec5SDimitry Andric   TBAAVerifier TBAAVerifyHelper;
3440b57cec5SDimitry Andric 
345e8d8bef9SDimitry Andric   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
346e8d8bef9SDimitry Andric 
3470b57cec5SDimitry Andric   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
3480b57cec5SDimitry Andric 
3490b57cec5SDimitry Andric public:
3500b57cec5SDimitry Andric   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
3510b57cec5SDimitry Andric                     const Module &M)
3520b57cec5SDimitry Andric       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
3530b57cec5SDimitry Andric         SawFrameEscape(false), TBAAVerifyHelper(this) {
3540b57cec5SDimitry Andric     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
3550b57cec5SDimitry Andric   }
3560b57cec5SDimitry Andric 
3570b57cec5SDimitry Andric   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
3580b57cec5SDimitry Andric 
3590b57cec5SDimitry Andric   bool verify(const Function &F) {
3600b57cec5SDimitry Andric     assert(F.getParent() == &M &&
3610b57cec5SDimitry Andric            "An instance of this class only works with a specific module!");
3620b57cec5SDimitry Andric 
3630b57cec5SDimitry Andric     // First ensure the function is well-enough formed to compute dominance
3640b57cec5SDimitry Andric     // information, and directly compute a dominance tree. We don't rely on the
3650b57cec5SDimitry Andric     // pass manager to provide this as it isolates us from a potentially
3660b57cec5SDimitry Andric     // out-of-date dominator tree and makes it significantly more complex to run
3670b57cec5SDimitry Andric     // this code outside of a pass manager.
3680b57cec5SDimitry Andric     // FIXME: It's really gross that we have to cast away constness here.
3690b57cec5SDimitry Andric     if (!F.empty())
3700b57cec5SDimitry Andric       DT.recalculate(const_cast<Function &>(F));
3710b57cec5SDimitry Andric 
3720b57cec5SDimitry Andric     for (const BasicBlock &BB : F) {
3730b57cec5SDimitry Andric       if (!BB.empty() && BB.back().isTerminator())
3740b57cec5SDimitry Andric         continue;
3750b57cec5SDimitry Andric 
3760b57cec5SDimitry Andric       if (OS) {
3770b57cec5SDimitry Andric         *OS << "Basic Block in function '" << F.getName()
3780b57cec5SDimitry Andric             << "' does not have terminator!\n";
3790b57cec5SDimitry Andric         BB.printAsOperand(*OS, true, MST);
3800b57cec5SDimitry Andric         *OS << "\n";
3810b57cec5SDimitry Andric       }
3820b57cec5SDimitry Andric       return false;
3830b57cec5SDimitry Andric     }
3840b57cec5SDimitry Andric 
3850b57cec5SDimitry Andric     Broken = false;
3860b57cec5SDimitry Andric     // FIXME: We strip const here because the inst visitor strips const.
3870b57cec5SDimitry Andric     visit(const_cast<Function &>(F));
3880b57cec5SDimitry Andric     verifySiblingFuncletUnwinds();
3890b57cec5SDimitry Andric     InstsInThisBlock.clear();
3900b57cec5SDimitry Andric     DebugFnArgs.clear();
3910b57cec5SDimitry Andric     LandingPadResultTy = nullptr;
3920b57cec5SDimitry Andric     SawFrameEscape = false;
3930b57cec5SDimitry Andric     SiblingFuncletInfo.clear();
394e8d8bef9SDimitry Andric     verifyNoAliasScopeDecl();
395e8d8bef9SDimitry Andric     NoAliasScopeDecls.clear();
3960b57cec5SDimitry Andric 
3970b57cec5SDimitry Andric     return !Broken;
3980b57cec5SDimitry Andric   }
3990b57cec5SDimitry Andric 
4000b57cec5SDimitry Andric   /// Verify the module that this instance of \c Verifier was initialized with.
4010b57cec5SDimitry Andric   bool verify() {
4020b57cec5SDimitry Andric     Broken = false;
4030b57cec5SDimitry Andric 
4040b57cec5SDimitry Andric     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
4050b57cec5SDimitry Andric     for (const Function &F : M)
4060b57cec5SDimitry Andric       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
4070b57cec5SDimitry Andric         DeoptimizeDeclarations.push_back(&F);
4080b57cec5SDimitry Andric 
4090b57cec5SDimitry Andric     // Now that we've visited every function, verify that we never asked to
4100b57cec5SDimitry Andric     // recover a frame index that wasn't escaped.
4110b57cec5SDimitry Andric     verifyFrameRecoverIndices();
4120b57cec5SDimitry Andric     for (const GlobalVariable &GV : M.globals())
4130b57cec5SDimitry Andric       visitGlobalVariable(GV);
4140b57cec5SDimitry Andric 
4150b57cec5SDimitry Andric     for (const GlobalAlias &GA : M.aliases())
4160b57cec5SDimitry Andric       visitGlobalAlias(GA);
4170b57cec5SDimitry Andric 
4180b57cec5SDimitry Andric     for (const NamedMDNode &NMD : M.named_metadata())
4190b57cec5SDimitry Andric       visitNamedMDNode(NMD);
4200b57cec5SDimitry Andric 
4210b57cec5SDimitry Andric     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
4220b57cec5SDimitry Andric       visitComdat(SMEC.getValue());
4230b57cec5SDimitry Andric 
4240b57cec5SDimitry Andric     visitModuleFlags(M);
4250b57cec5SDimitry Andric     visitModuleIdents(M);
4260b57cec5SDimitry Andric     visitModuleCommandLines(M);
4270b57cec5SDimitry Andric 
4280b57cec5SDimitry Andric     verifyCompileUnits();
4290b57cec5SDimitry Andric 
4300b57cec5SDimitry Andric     verifyDeoptimizeCallingConvs();
4310b57cec5SDimitry Andric     DISubprogramAttachments.clear();
4320b57cec5SDimitry Andric     return !Broken;
4330b57cec5SDimitry Andric   }
4340b57cec5SDimitry Andric 
4350b57cec5SDimitry Andric private:
4365ffd83dbSDimitry Andric   /// Whether a metadata node is allowed to be, or contain, a DILocation.
4375ffd83dbSDimitry Andric   enum class AreDebugLocsAllowed { No, Yes };
4385ffd83dbSDimitry Andric 
4390b57cec5SDimitry Andric   // Verification methods...
4400b57cec5SDimitry Andric   void visitGlobalValue(const GlobalValue &GV);
4410b57cec5SDimitry Andric   void visitGlobalVariable(const GlobalVariable &GV);
4420b57cec5SDimitry Andric   void visitGlobalAlias(const GlobalAlias &GA);
4430b57cec5SDimitry Andric   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
4440b57cec5SDimitry Andric   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
4450b57cec5SDimitry Andric                            const GlobalAlias &A, const Constant &C);
4460b57cec5SDimitry Andric   void visitNamedMDNode(const NamedMDNode &NMD);
4475ffd83dbSDimitry Andric   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
4480b57cec5SDimitry Andric   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
4490b57cec5SDimitry Andric   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
4500b57cec5SDimitry Andric   void visitComdat(const Comdat &C);
4510b57cec5SDimitry Andric   void visitModuleIdents(const Module &M);
4520b57cec5SDimitry Andric   void visitModuleCommandLines(const Module &M);
4530b57cec5SDimitry Andric   void visitModuleFlags(const Module &M);
4540b57cec5SDimitry Andric   void visitModuleFlag(const MDNode *Op,
4550b57cec5SDimitry Andric                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
4560b57cec5SDimitry Andric                        SmallVectorImpl<const MDNode *> &Requirements);
4570b57cec5SDimitry Andric   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
4580b57cec5SDimitry Andric   void visitFunction(const Function &F);
4590b57cec5SDimitry Andric   void visitBasicBlock(BasicBlock &BB);
4600b57cec5SDimitry Andric   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
4610b57cec5SDimitry Andric   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
4628bcb0991SDimitry Andric   void visitProfMetadata(Instruction &I, MDNode *MD);
463e8d8bef9SDimitry Andric   void visitAnnotationMetadata(MDNode *Annotation);
4640b57cec5SDimitry Andric 
4650b57cec5SDimitry Andric   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
4660b57cec5SDimitry Andric #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
4670b57cec5SDimitry Andric #include "llvm/IR/Metadata.def"
4680b57cec5SDimitry Andric   void visitDIScope(const DIScope &N);
4690b57cec5SDimitry Andric   void visitDIVariable(const DIVariable &N);
4700b57cec5SDimitry Andric   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
4710b57cec5SDimitry Andric   void visitDITemplateParameter(const DITemplateParameter &N);
4720b57cec5SDimitry Andric 
4730b57cec5SDimitry Andric   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
4740b57cec5SDimitry Andric 
4750b57cec5SDimitry Andric   // InstVisitor overrides...
4760b57cec5SDimitry Andric   using InstVisitor<Verifier>::visit;
4770b57cec5SDimitry Andric   void visit(Instruction &I);
4780b57cec5SDimitry Andric 
4790b57cec5SDimitry Andric   void visitTruncInst(TruncInst &I);
4800b57cec5SDimitry Andric   void visitZExtInst(ZExtInst &I);
4810b57cec5SDimitry Andric   void visitSExtInst(SExtInst &I);
4820b57cec5SDimitry Andric   void visitFPTruncInst(FPTruncInst &I);
4830b57cec5SDimitry Andric   void visitFPExtInst(FPExtInst &I);
4840b57cec5SDimitry Andric   void visitFPToUIInst(FPToUIInst &I);
4850b57cec5SDimitry Andric   void visitFPToSIInst(FPToSIInst &I);
4860b57cec5SDimitry Andric   void visitUIToFPInst(UIToFPInst &I);
4870b57cec5SDimitry Andric   void visitSIToFPInst(SIToFPInst &I);
4880b57cec5SDimitry Andric   void visitIntToPtrInst(IntToPtrInst &I);
4890b57cec5SDimitry Andric   void visitPtrToIntInst(PtrToIntInst &I);
4900b57cec5SDimitry Andric   void visitBitCastInst(BitCastInst &I);
4910b57cec5SDimitry Andric   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
4920b57cec5SDimitry Andric   void visitPHINode(PHINode &PN);
4930b57cec5SDimitry Andric   void visitCallBase(CallBase &Call);
4940b57cec5SDimitry Andric   void visitUnaryOperator(UnaryOperator &U);
4950b57cec5SDimitry Andric   void visitBinaryOperator(BinaryOperator &B);
4960b57cec5SDimitry Andric   void visitICmpInst(ICmpInst &IC);
4970b57cec5SDimitry Andric   void visitFCmpInst(FCmpInst &FC);
4980b57cec5SDimitry Andric   void visitExtractElementInst(ExtractElementInst &EI);
4990b57cec5SDimitry Andric   void visitInsertElementInst(InsertElementInst &EI);
5000b57cec5SDimitry Andric   void visitShuffleVectorInst(ShuffleVectorInst &EI);
5010b57cec5SDimitry Andric   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
5020b57cec5SDimitry Andric   void visitCallInst(CallInst &CI);
5030b57cec5SDimitry Andric   void visitInvokeInst(InvokeInst &II);
5040b57cec5SDimitry Andric   void visitGetElementPtrInst(GetElementPtrInst &GEP);
5050b57cec5SDimitry Andric   void visitLoadInst(LoadInst &LI);
5060b57cec5SDimitry Andric   void visitStoreInst(StoreInst &SI);
5070b57cec5SDimitry Andric   void verifyDominatesUse(Instruction &I, unsigned i);
5080b57cec5SDimitry Andric   void visitInstruction(Instruction &I);
5090b57cec5SDimitry Andric   void visitTerminator(Instruction &I);
5100b57cec5SDimitry Andric   void visitBranchInst(BranchInst &BI);
5110b57cec5SDimitry Andric   void visitReturnInst(ReturnInst &RI);
5120b57cec5SDimitry Andric   void visitSwitchInst(SwitchInst &SI);
5130b57cec5SDimitry Andric   void visitIndirectBrInst(IndirectBrInst &BI);
5140b57cec5SDimitry Andric   void visitCallBrInst(CallBrInst &CBI);
5150b57cec5SDimitry Andric   void visitSelectInst(SelectInst &SI);
5160b57cec5SDimitry Andric   void visitUserOp1(Instruction &I);
5170b57cec5SDimitry Andric   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
5180b57cec5SDimitry Andric   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
5190b57cec5SDimitry Andric   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
5200b57cec5SDimitry Andric   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
5210b57cec5SDimitry Andric   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
5220b57cec5SDimitry Andric   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
5230b57cec5SDimitry Andric   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
5240b57cec5SDimitry Andric   void visitFenceInst(FenceInst &FI);
5250b57cec5SDimitry Andric   void visitAllocaInst(AllocaInst &AI);
5260b57cec5SDimitry Andric   void visitExtractValueInst(ExtractValueInst &EVI);
5270b57cec5SDimitry Andric   void visitInsertValueInst(InsertValueInst &IVI);
5280b57cec5SDimitry Andric   void visitEHPadPredecessors(Instruction &I);
5290b57cec5SDimitry Andric   void visitLandingPadInst(LandingPadInst &LPI);
5300b57cec5SDimitry Andric   void visitResumeInst(ResumeInst &RI);
5310b57cec5SDimitry Andric   void visitCatchPadInst(CatchPadInst &CPI);
5320b57cec5SDimitry Andric   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
5330b57cec5SDimitry Andric   void visitCleanupPadInst(CleanupPadInst &CPI);
5340b57cec5SDimitry Andric   void visitFuncletPadInst(FuncletPadInst &FPI);
5350b57cec5SDimitry Andric   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
5360b57cec5SDimitry Andric   void visitCleanupReturnInst(CleanupReturnInst &CRI);
5370b57cec5SDimitry Andric 
5380b57cec5SDimitry Andric   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
5390b57cec5SDimitry Andric   void verifySwiftErrorValue(const Value *SwiftErrorVal);
540*fe6060f1SDimitry Andric   void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context);
5410b57cec5SDimitry Andric   void verifyMustTailCall(CallInst &CI);
5420b57cec5SDimitry Andric   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
543*fe6060f1SDimitry Andric   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
5440b57cec5SDimitry Andric   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
545*fe6060f1SDimitry Andric   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
546*fe6060f1SDimitry Andric                                     const Value *V);
5470b57cec5SDimitry Andric   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
5480b57cec5SDimitry Andric                            const Value *V, bool IsIntrinsic);
5490b57cec5SDimitry Andric   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
5500b57cec5SDimitry Andric 
5510b57cec5SDimitry Andric   void visitConstantExprsRecursively(const Constant *EntryC);
5520b57cec5SDimitry Andric   void visitConstantExpr(const ConstantExpr *CE);
5530b57cec5SDimitry Andric   void verifyStatepoint(const CallBase &Call);
5540b57cec5SDimitry Andric   void verifyFrameRecoverIndices();
5550b57cec5SDimitry Andric   void verifySiblingFuncletUnwinds();
5560b57cec5SDimitry Andric 
5570b57cec5SDimitry Andric   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
5580b57cec5SDimitry Andric   template <typename ValueOrMetadata>
5590b57cec5SDimitry Andric   void verifyFragmentExpression(const DIVariable &V,
5600b57cec5SDimitry Andric                                 DIExpression::FragmentInfo Fragment,
5610b57cec5SDimitry Andric                                 ValueOrMetadata *Desc);
5620b57cec5SDimitry Andric   void verifyFnArgs(const DbgVariableIntrinsic &I);
5638bcb0991SDimitry Andric   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
5640b57cec5SDimitry Andric 
5650b57cec5SDimitry Andric   /// Module-level debug info verification...
5660b57cec5SDimitry Andric   void verifyCompileUnits();
5670b57cec5SDimitry Andric 
5680b57cec5SDimitry Andric   /// Module-level verification that all @llvm.experimental.deoptimize
5690b57cec5SDimitry Andric   /// declarations share the same calling convention.
5700b57cec5SDimitry Andric   void verifyDeoptimizeCallingConvs();
5710b57cec5SDimitry Andric 
5720b57cec5SDimitry Andric   /// Verify all-or-nothing property of DIFile source attribute within a CU.
5730b57cec5SDimitry Andric   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
574e8d8bef9SDimitry Andric 
575e8d8bef9SDimitry Andric   /// Verify the llvm.experimental.noalias.scope.decl declarations
576e8d8bef9SDimitry Andric   void verifyNoAliasScopeDecl();
5770b57cec5SDimitry Andric };
5780b57cec5SDimitry Andric 
5790b57cec5SDimitry Andric } // end anonymous namespace
5800b57cec5SDimitry Andric 
5810b57cec5SDimitry Andric /// We know that cond should be true, if not print an error message.
5820b57cec5SDimitry Andric #define Assert(C, ...) \
5830b57cec5SDimitry Andric   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
5840b57cec5SDimitry Andric 
5850b57cec5SDimitry Andric /// We know that a debug info condition should be true, if not print
5860b57cec5SDimitry Andric /// an error message.
5870b57cec5SDimitry Andric #define AssertDI(C, ...) \
5880b57cec5SDimitry Andric   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
5890b57cec5SDimitry Andric 
5900b57cec5SDimitry Andric void Verifier::visit(Instruction &I) {
5910b57cec5SDimitry Andric   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
5920b57cec5SDimitry Andric     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
5930b57cec5SDimitry Andric   InstVisitor<Verifier>::visit(I);
5940b57cec5SDimitry Andric }
5950b57cec5SDimitry Andric 
5960b57cec5SDimitry Andric // Helper to recursively iterate over indirect users. By
5970b57cec5SDimitry Andric // returning false, the callback can ask to stop recursing
5980b57cec5SDimitry Andric // further.
5990b57cec5SDimitry Andric static void forEachUser(const Value *User,
6000b57cec5SDimitry Andric                         SmallPtrSet<const Value *, 32> &Visited,
6010b57cec5SDimitry Andric                         llvm::function_ref<bool(const Value *)> Callback) {
6020b57cec5SDimitry Andric   if (!Visited.insert(User).second)
6030b57cec5SDimitry Andric     return;
6040b57cec5SDimitry Andric   for (const Value *TheNextUser : User->materialized_users())
6050b57cec5SDimitry Andric     if (Callback(TheNextUser))
6060b57cec5SDimitry Andric       forEachUser(TheNextUser, Visited, Callback);
6070b57cec5SDimitry Andric }
6080b57cec5SDimitry Andric 
6090b57cec5SDimitry Andric void Verifier::visitGlobalValue(const GlobalValue &GV) {
6100b57cec5SDimitry Andric   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
6110b57cec5SDimitry Andric          "Global is external, but doesn't have external or weak linkage!", &GV);
6120b57cec5SDimitry Andric 
6135ffd83dbSDimitry Andric   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
6145ffd83dbSDimitry Andric     Assert(GO->getAlignment() <= Value::MaximumAlignment,
6155ffd83dbSDimitry Andric            "huge alignment values are unsupported", GO);
6160b57cec5SDimitry Andric   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
6170b57cec5SDimitry Andric          "Only global variables can have appending linkage!", &GV);
6180b57cec5SDimitry Andric 
6190b57cec5SDimitry Andric   if (GV.hasAppendingLinkage()) {
6200b57cec5SDimitry Andric     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
6210b57cec5SDimitry Andric     Assert(GVar && GVar->getValueType()->isArrayTy(),
6220b57cec5SDimitry Andric            "Only global arrays can have appending linkage!", GVar);
6230b57cec5SDimitry Andric   }
6240b57cec5SDimitry Andric 
6250b57cec5SDimitry Andric   if (GV.isDeclarationForLinker())
6260b57cec5SDimitry Andric     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
6270b57cec5SDimitry Andric 
6280b57cec5SDimitry Andric   if (GV.hasDLLImportStorageClass()) {
6290b57cec5SDimitry Andric     Assert(!GV.isDSOLocal(),
6300b57cec5SDimitry Andric            "GlobalValue with DLLImport Storage is dso_local!", &GV);
6310b57cec5SDimitry Andric 
632e8d8bef9SDimitry Andric     Assert((GV.isDeclaration() &&
633e8d8bef9SDimitry Andric             (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
6340b57cec5SDimitry Andric                GV.hasAvailableExternallyLinkage(),
6350b57cec5SDimitry Andric            "Global is marked as dllimport, but not external", &GV);
6360b57cec5SDimitry Andric   }
6370b57cec5SDimitry Andric 
6385ffd83dbSDimitry Andric   if (GV.isImplicitDSOLocal())
6390b57cec5SDimitry Andric     Assert(GV.isDSOLocal(),
6405ffd83dbSDimitry Andric            "GlobalValue with local linkage or non-default "
6415ffd83dbSDimitry Andric            "visibility must be dso_local!",
6420b57cec5SDimitry Andric            &GV);
6430b57cec5SDimitry Andric 
6440b57cec5SDimitry Andric   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
6450b57cec5SDimitry Andric     if (const Instruction *I = dyn_cast<Instruction>(V)) {
6460b57cec5SDimitry Andric       if (!I->getParent() || !I->getParent()->getParent())
6470b57cec5SDimitry Andric         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
6480b57cec5SDimitry Andric                     I);
6490b57cec5SDimitry Andric       else if (I->getParent()->getParent()->getParent() != &M)
6500b57cec5SDimitry Andric         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
6510b57cec5SDimitry Andric                     I->getParent()->getParent(),
6520b57cec5SDimitry Andric                     I->getParent()->getParent()->getParent());
6530b57cec5SDimitry Andric       return false;
6540b57cec5SDimitry Andric     } else if (const Function *F = dyn_cast<Function>(V)) {
6550b57cec5SDimitry Andric       if (F->getParent() != &M)
6560b57cec5SDimitry Andric         CheckFailed("Global is used by function in a different module", &GV, &M,
6570b57cec5SDimitry Andric                     F, F->getParent());
6580b57cec5SDimitry Andric       return false;
6590b57cec5SDimitry Andric     }
6600b57cec5SDimitry Andric     return true;
6610b57cec5SDimitry Andric   });
6620b57cec5SDimitry Andric }
6630b57cec5SDimitry Andric 
6640b57cec5SDimitry Andric void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
6650b57cec5SDimitry Andric   if (GV.hasInitializer()) {
6660b57cec5SDimitry Andric     Assert(GV.getInitializer()->getType() == GV.getValueType(),
6670b57cec5SDimitry Andric            "Global variable initializer type does not match global "
6680b57cec5SDimitry Andric            "variable type!",
6690b57cec5SDimitry Andric            &GV);
6700b57cec5SDimitry Andric     // If the global has common linkage, it must have a zero initializer and
6710b57cec5SDimitry Andric     // cannot be constant.
6720b57cec5SDimitry Andric     if (GV.hasCommonLinkage()) {
6730b57cec5SDimitry Andric       Assert(GV.getInitializer()->isNullValue(),
6740b57cec5SDimitry Andric              "'common' global must have a zero initializer!", &GV);
6750b57cec5SDimitry Andric       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
6760b57cec5SDimitry Andric              &GV);
6770b57cec5SDimitry Andric       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
6780b57cec5SDimitry Andric     }
6790b57cec5SDimitry Andric   }
6800b57cec5SDimitry Andric 
6810b57cec5SDimitry Andric   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
6820b57cec5SDimitry Andric                        GV.getName() == "llvm.global_dtors")) {
6830b57cec5SDimitry Andric     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
6840b57cec5SDimitry Andric            "invalid linkage for intrinsic global variable", &GV);
6850b57cec5SDimitry Andric     // Don't worry about emitting an error for it not being an array,
6860b57cec5SDimitry Andric     // visitGlobalValue will complain on appending non-array.
6870b57cec5SDimitry Andric     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
6880b57cec5SDimitry Andric       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
6890b57cec5SDimitry Andric       PointerType *FuncPtrTy =
6900b57cec5SDimitry Andric           FunctionType::get(Type::getVoidTy(Context), false)->
6910b57cec5SDimitry Andric           getPointerTo(DL.getProgramAddressSpace());
6920b57cec5SDimitry Andric       Assert(STy &&
6930b57cec5SDimitry Andric                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
6940b57cec5SDimitry Andric                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
6950b57cec5SDimitry Andric                  STy->getTypeAtIndex(1) == FuncPtrTy,
6960b57cec5SDimitry Andric              "wrong type for intrinsic global variable", &GV);
6970b57cec5SDimitry Andric       Assert(STy->getNumElements() == 3,
6980b57cec5SDimitry Andric              "the third field of the element type is mandatory, "
6990b57cec5SDimitry Andric              "specify i8* null to migrate from the obsoleted 2-field form");
7000b57cec5SDimitry Andric       Type *ETy = STy->getTypeAtIndex(2);
701*fe6060f1SDimitry Andric       Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
7020b57cec5SDimitry Andric       Assert(ETy->isPointerTy() &&
703*fe6060f1SDimitry Andric                  cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
7040b57cec5SDimitry Andric              "wrong type for intrinsic global variable", &GV);
7050b57cec5SDimitry Andric     }
7060b57cec5SDimitry Andric   }
7070b57cec5SDimitry Andric 
7080b57cec5SDimitry Andric   if (GV.hasName() && (GV.getName() == "llvm.used" ||
7090b57cec5SDimitry Andric                        GV.getName() == "llvm.compiler.used")) {
7100b57cec5SDimitry Andric     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
7110b57cec5SDimitry Andric            "invalid linkage for intrinsic global variable", &GV);
7120b57cec5SDimitry Andric     Type *GVType = GV.getValueType();
7130b57cec5SDimitry Andric     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
7140b57cec5SDimitry Andric       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
7150b57cec5SDimitry Andric       Assert(PTy, "wrong type for intrinsic global variable", &GV);
7160b57cec5SDimitry Andric       if (GV.hasInitializer()) {
7170b57cec5SDimitry Andric         const Constant *Init = GV.getInitializer();
7180b57cec5SDimitry Andric         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
7190b57cec5SDimitry Andric         Assert(InitArray, "wrong initalizer for intrinsic global variable",
7200b57cec5SDimitry Andric                Init);
7210b57cec5SDimitry Andric         for (Value *Op : InitArray->operands()) {
7228bcb0991SDimitry Andric           Value *V = Op->stripPointerCasts();
7230b57cec5SDimitry Andric           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
7240b57cec5SDimitry Andric                      isa<GlobalAlias>(V),
7250b57cec5SDimitry Andric                  "invalid llvm.used member", V);
7260b57cec5SDimitry Andric           Assert(V->hasName(), "members of llvm.used must be named", V);
7270b57cec5SDimitry Andric         }
7280b57cec5SDimitry Andric       }
7290b57cec5SDimitry Andric     }
7300b57cec5SDimitry Andric   }
7310b57cec5SDimitry Andric 
7320b57cec5SDimitry Andric   // Visit any debug info attachments.
7330b57cec5SDimitry Andric   SmallVector<MDNode *, 1> MDs;
7340b57cec5SDimitry Andric   GV.getMetadata(LLVMContext::MD_dbg, MDs);
7350b57cec5SDimitry Andric   for (auto *MD : MDs) {
7360b57cec5SDimitry Andric     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
7370b57cec5SDimitry Andric       visitDIGlobalVariableExpression(*GVE);
7380b57cec5SDimitry Andric     else
7390b57cec5SDimitry Andric       AssertDI(false, "!dbg attachment of global variable must be a "
7400b57cec5SDimitry Andric                       "DIGlobalVariableExpression");
7410b57cec5SDimitry Andric   }
7420b57cec5SDimitry Andric 
7430b57cec5SDimitry Andric   // Scalable vectors cannot be global variables, since we don't know
744e8d8bef9SDimitry Andric   // the runtime size. If the global is an array containing scalable vectors,
745e8d8bef9SDimitry Andric   // that will be caught by the isValidElementType methods in StructType or
746e8d8bef9SDimitry Andric   // ArrayType instead.
7475ffd83dbSDimitry Andric   Assert(!isa<ScalableVectorType>(GV.getValueType()),
7485ffd83dbSDimitry Andric          "Globals cannot contain scalable vectors", &GV);
7490b57cec5SDimitry Andric 
750e8d8bef9SDimitry Andric   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
751e8d8bef9SDimitry Andric     Assert(!STy->containsScalableVectorType(),
752e8d8bef9SDimitry Andric            "Globals cannot contain scalable vectors", &GV);
753e8d8bef9SDimitry Andric 
7540b57cec5SDimitry Andric   if (!GV.hasInitializer()) {
7550b57cec5SDimitry Andric     visitGlobalValue(GV);
7560b57cec5SDimitry Andric     return;
7570b57cec5SDimitry Andric   }
7580b57cec5SDimitry Andric 
7590b57cec5SDimitry Andric   // Walk any aggregate initializers looking for bitcasts between address spaces
7600b57cec5SDimitry Andric   visitConstantExprsRecursively(GV.getInitializer());
7610b57cec5SDimitry Andric 
7620b57cec5SDimitry Andric   visitGlobalValue(GV);
7630b57cec5SDimitry Andric }
7640b57cec5SDimitry Andric 
7650b57cec5SDimitry Andric void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
7660b57cec5SDimitry Andric   SmallPtrSet<const GlobalAlias*, 4> Visited;
7670b57cec5SDimitry Andric   Visited.insert(&GA);
7680b57cec5SDimitry Andric   visitAliaseeSubExpr(Visited, GA, C);
7690b57cec5SDimitry Andric }
7700b57cec5SDimitry Andric 
7710b57cec5SDimitry Andric void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
7720b57cec5SDimitry Andric                                    const GlobalAlias &GA, const Constant &C) {
7730b57cec5SDimitry Andric   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
7740b57cec5SDimitry Andric     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
7750b57cec5SDimitry Andric            &GA);
7760b57cec5SDimitry Andric 
7770b57cec5SDimitry Andric     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
7780b57cec5SDimitry Andric       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
7790b57cec5SDimitry Andric 
7800b57cec5SDimitry Andric       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
7810b57cec5SDimitry Andric              &GA);
7820b57cec5SDimitry Andric     } else {
7830b57cec5SDimitry Andric       // Only continue verifying subexpressions of GlobalAliases.
7840b57cec5SDimitry Andric       // Do not recurse into global initializers.
7850b57cec5SDimitry Andric       return;
7860b57cec5SDimitry Andric     }
7870b57cec5SDimitry Andric   }
7880b57cec5SDimitry Andric 
7890b57cec5SDimitry Andric   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
7900b57cec5SDimitry Andric     visitConstantExprsRecursively(CE);
7910b57cec5SDimitry Andric 
7920b57cec5SDimitry Andric   for (const Use &U : C.operands()) {
7930b57cec5SDimitry Andric     Value *V = &*U;
7940b57cec5SDimitry Andric     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
7950b57cec5SDimitry Andric       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
7960b57cec5SDimitry Andric     else if (const auto *C2 = dyn_cast<Constant>(V))
7970b57cec5SDimitry Andric       visitAliaseeSubExpr(Visited, GA, *C2);
7980b57cec5SDimitry Andric   }
7990b57cec5SDimitry Andric }
8000b57cec5SDimitry Andric 
8010b57cec5SDimitry Andric void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
8020b57cec5SDimitry Andric   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
8030b57cec5SDimitry Andric          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
8040b57cec5SDimitry Andric          "weak_odr, or external linkage!",
8050b57cec5SDimitry Andric          &GA);
8060b57cec5SDimitry Andric   const Constant *Aliasee = GA.getAliasee();
8070b57cec5SDimitry Andric   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
8080b57cec5SDimitry Andric   Assert(GA.getType() == Aliasee->getType(),
8090b57cec5SDimitry Andric          "Alias and aliasee types should match!", &GA);
8100b57cec5SDimitry Andric 
8110b57cec5SDimitry Andric   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
8120b57cec5SDimitry Andric          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
8130b57cec5SDimitry Andric 
8140b57cec5SDimitry Andric   visitAliaseeSubExpr(GA, *Aliasee);
8150b57cec5SDimitry Andric 
8160b57cec5SDimitry Andric   visitGlobalValue(GA);
8170b57cec5SDimitry Andric }
8180b57cec5SDimitry Andric 
8190b57cec5SDimitry Andric void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
8200b57cec5SDimitry Andric   // There used to be various other llvm.dbg.* nodes, but we don't support
8210b57cec5SDimitry Andric   // upgrading them and we want to reserve the namespace for future uses.
8220b57cec5SDimitry Andric   if (NMD.getName().startswith("llvm.dbg."))
8230b57cec5SDimitry Andric     AssertDI(NMD.getName() == "llvm.dbg.cu",
8240b57cec5SDimitry Andric              "unrecognized named metadata node in the llvm.dbg namespace",
8250b57cec5SDimitry Andric              &NMD);
8260b57cec5SDimitry Andric   for (const MDNode *MD : NMD.operands()) {
8270b57cec5SDimitry Andric     if (NMD.getName() == "llvm.dbg.cu")
8280b57cec5SDimitry Andric       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
8290b57cec5SDimitry Andric 
8300b57cec5SDimitry Andric     if (!MD)
8310b57cec5SDimitry Andric       continue;
8320b57cec5SDimitry Andric 
8335ffd83dbSDimitry Andric     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
8340b57cec5SDimitry Andric   }
8350b57cec5SDimitry Andric }
8360b57cec5SDimitry Andric 
8375ffd83dbSDimitry Andric void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
8380b57cec5SDimitry Andric   // Only visit each node once.  Metadata can be mutually recursive, so this
8390b57cec5SDimitry Andric   // avoids infinite recursion here, as well as being an optimization.
8400b57cec5SDimitry Andric   if (!MDNodes.insert(&MD).second)
8410b57cec5SDimitry Andric     return;
8420b57cec5SDimitry Andric 
843*fe6060f1SDimitry Andric   Assert(&MD.getContext() == &Context,
844*fe6060f1SDimitry Andric          "MDNode context does not match Module context!", &MD);
845*fe6060f1SDimitry Andric 
8460b57cec5SDimitry Andric   switch (MD.getMetadataID()) {
8470b57cec5SDimitry Andric   default:
8480b57cec5SDimitry Andric     llvm_unreachable("Invalid MDNode subclass");
8490b57cec5SDimitry Andric   case Metadata::MDTupleKind:
8500b57cec5SDimitry Andric     break;
8510b57cec5SDimitry Andric #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
8520b57cec5SDimitry Andric   case Metadata::CLASS##Kind:                                                  \
8530b57cec5SDimitry Andric     visit##CLASS(cast<CLASS>(MD));                                             \
8540b57cec5SDimitry Andric     break;
8550b57cec5SDimitry Andric #include "llvm/IR/Metadata.def"
8560b57cec5SDimitry Andric   }
8570b57cec5SDimitry Andric 
8580b57cec5SDimitry Andric   for (const Metadata *Op : MD.operands()) {
8590b57cec5SDimitry Andric     if (!Op)
8600b57cec5SDimitry Andric       continue;
8610b57cec5SDimitry Andric     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
8620b57cec5SDimitry Andric            &MD, Op);
8635ffd83dbSDimitry Andric     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
8645ffd83dbSDimitry Andric              "DILocation not allowed within this metadata node", &MD, Op);
8650b57cec5SDimitry Andric     if (auto *N = dyn_cast<MDNode>(Op)) {
8665ffd83dbSDimitry Andric       visitMDNode(*N, AllowLocs);
8670b57cec5SDimitry Andric       continue;
8680b57cec5SDimitry Andric     }
8690b57cec5SDimitry Andric     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
8700b57cec5SDimitry Andric       visitValueAsMetadata(*V, nullptr);
8710b57cec5SDimitry Andric       continue;
8720b57cec5SDimitry Andric     }
8730b57cec5SDimitry Andric   }
8740b57cec5SDimitry Andric 
8750b57cec5SDimitry Andric   // Check these last, so we diagnose problems in operands first.
8760b57cec5SDimitry Andric   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
8770b57cec5SDimitry Andric   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
8780b57cec5SDimitry Andric }
8790b57cec5SDimitry Andric 
8800b57cec5SDimitry Andric void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
8810b57cec5SDimitry Andric   Assert(MD.getValue(), "Expected valid value", &MD);
8820b57cec5SDimitry Andric   Assert(!MD.getValue()->getType()->isMetadataTy(),
8830b57cec5SDimitry Andric          "Unexpected metadata round-trip through values", &MD, MD.getValue());
8840b57cec5SDimitry Andric 
8850b57cec5SDimitry Andric   auto *L = dyn_cast<LocalAsMetadata>(&MD);
8860b57cec5SDimitry Andric   if (!L)
8870b57cec5SDimitry Andric     return;
8880b57cec5SDimitry Andric 
8890b57cec5SDimitry Andric   Assert(F, "function-local metadata used outside a function", L);
8900b57cec5SDimitry Andric 
8910b57cec5SDimitry Andric   // If this was an instruction, bb, or argument, verify that it is in the
8920b57cec5SDimitry Andric   // function that we expect.
8930b57cec5SDimitry Andric   Function *ActualF = nullptr;
8940b57cec5SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
8950b57cec5SDimitry Andric     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
8960b57cec5SDimitry Andric     ActualF = I->getParent()->getParent();
8970b57cec5SDimitry Andric   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
8980b57cec5SDimitry Andric     ActualF = BB->getParent();
8990b57cec5SDimitry Andric   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
9000b57cec5SDimitry Andric     ActualF = A->getParent();
9010b57cec5SDimitry Andric   assert(ActualF && "Unimplemented function local metadata case!");
9020b57cec5SDimitry Andric 
9030b57cec5SDimitry Andric   Assert(ActualF == F, "function-local metadata used in wrong function", L);
9040b57cec5SDimitry Andric }
9050b57cec5SDimitry Andric 
9060b57cec5SDimitry Andric void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
9070b57cec5SDimitry Andric   Metadata *MD = MDV.getMetadata();
9080b57cec5SDimitry Andric   if (auto *N = dyn_cast<MDNode>(MD)) {
9095ffd83dbSDimitry Andric     visitMDNode(*N, AreDebugLocsAllowed::No);
9100b57cec5SDimitry Andric     return;
9110b57cec5SDimitry Andric   }
9120b57cec5SDimitry Andric 
9130b57cec5SDimitry Andric   // Only visit each node once.  Metadata can be mutually recursive, so this
9140b57cec5SDimitry Andric   // avoids infinite recursion here, as well as being an optimization.
9150b57cec5SDimitry Andric   if (!MDNodes.insert(MD).second)
9160b57cec5SDimitry Andric     return;
9170b57cec5SDimitry Andric 
9180b57cec5SDimitry Andric   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
9190b57cec5SDimitry Andric     visitValueAsMetadata(*V, F);
9200b57cec5SDimitry Andric }
9210b57cec5SDimitry Andric 
9220b57cec5SDimitry Andric static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
9230b57cec5SDimitry Andric static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
9240b57cec5SDimitry Andric static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
9250b57cec5SDimitry Andric 
9260b57cec5SDimitry Andric void Verifier::visitDILocation(const DILocation &N) {
9270b57cec5SDimitry Andric   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
9280b57cec5SDimitry Andric            "location requires a valid scope", &N, N.getRawScope());
9290b57cec5SDimitry Andric   if (auto *IA = N.getRawInlinedAt())
9300b57cec5SDimitry Andric     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
9310b57cec5SDimitry Andric   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
9320b57cec5SDimitry Andric     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
9330b57cec5SDimitry Andric }
9340b57cec5SDimitry Andric 
9350b57cec5SDimitry Andric void Verifier::visitGenericDINode(const GenericDINode &N) {
9360b57cec5SDimitry Andric   AssertDI(N.getTag(), "invalid tag", &N);
9370b57cec5SDimitry Andric }
9380b57cec5SDimitry Andric 
9390b57cec5SDimitry Andric void Verifier::visitDIScope(const DIScope &N) {
9400b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
9410b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
9420b57cec5SDimitry Andric }
9430b57cec5SDimitry Andric 
9440b57cec5SDimitry Andric void Verifier::visitDISubrange(const DISubrange &N) {
9450b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
946e8d8bef9SDimitry Andric   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
947e8d8bef9SDimitry Andric   AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
948e8d8bef9SDimitry Andric                N.getRawUpperBound(),
9495ffd83dbSDimitry Andric            "Subrange must contain count or upperBound", &N);
9505ffd83dbSDimitry Andric   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
9515ffd83dbSDimitry Andric            "Subrange can have any one of count or upperBound", &N);
952*fe6060f1SDimitry Andric   auto *CBound = N.getRawCountNode();
953*fe6060f1SDimitry Andric   AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
954*fe6060f1SDimitry Andric                isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
955*fe6060f1SDimitry Andric            "Count must be signed constant or DIVariable or DIExpression", &N);
9560b57cec5SDimitry Andric   auto Count = N.getCount();
9575ffd83dbSDimitry Andric   AssertDI(!Count || !Count.is<ConstantInt *>() ||
9580b57cec5SDimitry Andric                Count.get<ConstantInt *>()->getSExtValue() >= -1,
9590b57cec5SDimitry Andric            "invalid subrange count", &N);
9605ffd83dbSDimitry Andric   auto *LBound = N.getRawLowerBound();
9615ffd83dbSDimitry Andric   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
9625ffd83dbSDimitry Andric                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
9635ffd83dbSDimitry Andric            "LowerBound must be signed constant or DIVariable or DIExpression",
9645ffd83dbSDimitry Andric            &N);
9655ffd83dbSDimitry Andric   auto *UBound = N.getRawUpperBound();
9665ffd83dbSDimitry Andric   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
9675ffd83dbSDimitry Andric                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
9685ffd83dbSDimitry Andric            "UpperBound must be signed constant or DIVariable or DIExpression",
9695ffd83dbSDimitry Andric            &N);
9705ffd83dbSDimitry Andric   auto *Stride = N.getRawStride();
9715ffd83dbSDimitry Andric   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
9725ffd83dbSDimitry Andric                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
9735ffd83dbSDimitry Andric            "Stride must be signed constant or DIVariable or DIExpression", &N);
9740b57cec5SDimitry Andric }
9750b57cec5SDimitry Andric 
976e8d8bef9SDimitry Andric void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
977e8d8bef9SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
978e8d8bef9SDimitry Andric   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
979e8d8bef9SDimitry Andric            "GenericSubrange must contain count or upperBound", &N);
980e8d8bef9SDimitry Andric   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
981e8d8bef9SDimitry Andric            "GenericSubrange can have any one of count or upperBound", &N);
982e8d8bef9SDimitry Andric   auto *CBound = N.getRawCountNode();
983e8d8bef9SDimitry Andric   AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
984e8d8bef9SDimitry Andric            "Count must be signed constant or DIVariable or DIExpression", &N);
985e8d8bef9SDimitry Andric   auto *LBound = N.getRawLowerBound();
986e8d8bef9SDimitry Andric   AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
987e8d8bef9SDimitry Andric   AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
988e8d8bef9SDimitry Andric            "LowerBound must be signed constant or DIVariable or DIExpression",
989e8d8bef9SDimitry Andric            &N);
990e8d8bef9SDimitry Andric   auto *UBound = N.getRawUpperBound();
991e8d8bef9SDimitry Andric   AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
992e8d8bef9SDimitry Andric            "UpperBound must be signed constant or DIVariable or DIExpression",
993e8d8bef9SDimitry Andric            &N);
994e8d8bef9SDimitry Andric   auto *Stride = N.getRawStride();
995e8d8bef9SDimitry Andric   AssertDI(Stride, "GenericSubrange must contain stride", &N);
996e8d8bef9SDimitry Andric   AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
997e8d8bef9SDimitry Andric            "Stride must be signed constant or DIVariable or DIExpression", &N);
998e8d8bef9SDimitry Andric }
999e8d8bef9SDimitry Andric 
10000b57cec5SDimitry Andric void Verifier::visitDIEnumerator(const DIEnumerator &N) {
10010b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
10020b57cec5SDimitry Andric }
10030b57cec5SDimitry Andric 
10040b57cec5SDimitry Andric void Verifier::visitDIBasicType(const DIBasicType &N) {
10050b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
1006e8d8bef9SDimitry Andric                N.getTag() == dwarf::DW_TAG_unspecified_type ||
1007e8d8bef9SDimitry Andric                N.getTag() == dwarf::DW_TAG_string_type,
10080b57cec5SDimitry Andric            "invalid tag", &N);
1009e8d8bef9SDimitry Andric }
1010e8d8bef9SDimitry Andric 
1011e8d8bef9SDimitry Andric void Verifier::visitDIStringType(const DIStringType &N) {
1012e8d8bef9SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
10130b57cec5SDimitry Andric   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
10140b57cec5SDimitry Andric             "has conflicting flags", &N);
10150b57cec5SDimitry Andric }
10160b57cec5SDimitry Andric 
10170b57cec5SDimitry Andric void Verifier::visitDIDerivedType(const DIDerivedType &N) {
10180b57cec5SDimitry Andric   // Common scope checks.
10190b57cec5SDimitry Andric   visitDIScope(N);
10200b57cec5SDimitry Andric 
10210b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
10220b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_pointer_type ||
10230b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
10240b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_reference_type ||
10250b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
10260b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_const_type ||
10270b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_volatile_type ||
10280b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_restrict_type ||
10290b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_atomic_type ||
10300b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_member ||
10310b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_inheritance ||
1032*fe6060f1SDimitry Andric                N.getTag() == dwarf::DW_TAG_friend ||
1033*fe6060f1SDimitry Andric                N.getTag() == dwarf::DW_TAG_set_type,
10340b57cec5SDimitry Andric            "invalid tag", &N);
10350b57cec5SDimitry Andric   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
10360b57cec5SDimitry Andric     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
10370b57cec5SDimitry Andric              N.getRawExtraData());
10380b57cec5SDimitry Andric   }
10390b57cec5SDimitry Andric 
1040*fe6060f1SDimitry Andric   if (N.getTag() == dwarf::DW_TAG_set_type) {
1041*fe6060f1SDimitry Andric     if (auto *T = N.getRawBaseType()) {
1042*fe6060f1SDimitry Andric       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1043*fe6060f1SDimitry Andric       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1044*fe6060f1SDimitry Andric       AssertDI(
1045*fe6060f1SDimitry Andric           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1046*fe6060f1SDimitry Andric               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1047*fe6060f1SDimitry Andric                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1048*fe6060f1SDimitry Andric                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1049*fe6060f1SDimitry Andric                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1050*fe6060f1SDimitry Andric                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1051*fe6060f1SDimitry Andric           "invalid set base type", &N, T);
1052*fe6060f1SDimitry Andric     }
1053*fe6060f1SDimitry Andric   }
1054*fe6060f1SDimitry Andric 
10550b57cec5SDimitry Andric   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
10560b57cec5SDimitry Andric   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
10570b57cec5SDimitry Andric            N.getRawBaseType());
10580b57cec5SDimitry Andric 
10590b57cec5SDimitry Andric   if (N.getDWARFAddressSpace()) {
10600b57cec5SDimitry Andric     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
10610b57cec5SDimitry Andric                  N.getTag() == dwarf::DW_TAG_reference_type ||
10620b57cec5SDimitry Andric                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
10630b57cec5SDimitry Andric              "DWARF address space only applies to pointer or reference types",
10640b57cec5SDimitry Andric              &N);
10650b57cec5SDimitry Andric   }
10660b57cec5SDimitry Andric }
10670b57cec5SDimitry Andric 
10680b57cec5SDimitry Andric /// Detect mutually exclusive flags.
10690b57cec5SDimitry Andric static bool hasConflictingReferenceFlags(unsigned Flags) {
10700b57cec5SDimitry Andric   return ((Flags & DINode::FlagLValueReference) &&
10710b57cec5SDimitry Andric           (Flags & DINode::FlagRValueReference)) ||
10720b57cec5SDimitry Andric          ((Flags & DINode::FlagTypePassByValue) &&
10730b57cec5SDimitry Andric           (Flags & DINode::FlagTypePassByReference));
10740b57cec5SDimitry Andric }
10750b57cec5SDimitry Andric 
10760b57cec5SDimitry Andric void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
10770b57cec5SDimitry Andric   auto *Params = dyn_cast<MDTuple>(&RawParams);
10780b57cec5SDimitry Andric   AssertDI(Params, "invalid template params", &N, &RawParams);
10790b57cec5SDimitry Andric   for (Metadata *Op : Params->operands()) {
10800b57cec5SDimitry Andric     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
10810b57cec5SDimitry Andric              &N, Params, Op);
10820b57cec5SDimitry Andric   }
10830b57cec5SDimitry Andric }
10840b57cec5SDimitry Andric 
10850b57cec5SDimitry Andric void Verifier::visitDICompositeType(const DICompositeType &N) {
10860b57cec5SDimitry Andric   // Common scope checks.
10870b57cec5SDimitry Andric   visitDIScope(N);
10880b57cec5SDimitry Andric 
10890b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
10900b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_structure_type ||
10910b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_union_type ||
10920b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_enumeration_type ||
10930b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_class_type ||
10940b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_variant_part,
10950b57cec5SDimitry Andric            "invalid tag", &N);
10960b57cec5SDimitry Andric 
10970b57cec5SDimitry Andric   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
10980b57cec5SDimitry Andric   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
10990b57cec5SDimitry Andric            N.getRawBaseType());
11000b57cec5SDimitry Andric 
11010b57cec5SDimitry Andric   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
11020b57cec5SDimitry Andric            "invalid composite elements", &N, N.getRawElements());
11030b57cec5SDimitry Andric   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
11040b57cec5SDimitry Andric            N.getRawVTableHolder());
11050b57cec5SDimitry Andric   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
11060b57cec5SDimitry Andric            "invalid reference flags", &N);
11078bcb0991SDimitry Andric   unsigned DIBlockByRefStruct = 1 << 4;
11088bcb0991SDimitry Andric   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
11098bcb0991SDimitry Andric            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
11100b57cec5SDimitry Andric 
11110b57cec5SDimitry Andric   if (N.isVector()) {
11120b57cec5SDimitry Andric     const DINodeArray Elements = N.getElements();
11130b57cec5SDimitry Andric     AssertDI(Elements.size() == 1 &&
11140b57cec5SDimitry Andric              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
11150b57cec5SDimitry Andric              "invalid vector, expected one element of type subrange", &N);
11160b57cec5SDimitry Andric   }
11170b57cec5SDimitry Andric 
11180b57cec5SDimitry Andric   if (auto *Params = N.getRawTemplateParams())
11190b57cec5SDimitry Andric     visitTemplateParams(N, *Params);
11200b57cec5SDimitry Andric 
11210b57cec5SDimitry Andric   if (auto *D = N.getRawDiscriminator()) {
11220b57cec5SDimitry Andric     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
11230b57cec5SDimitry Andric              "discriminator can only appear on variant part");
11240b57cec5SDimitry Andric   }
11255ffd83dbSDimitry Andric 
11265ffd83dbSDimitry Andric   if (N.getRawDataLocation()) {
11275ffd83dbSDimitry Andric     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
11285ffd83dbSDimitry Andric              "dataLocation can only appear in array type");
11295ffd83dbSDimitry Andric   }
1130e8d8bef9SDimitry Andric 
1131e8d8bef9SDimitry Andric   if (N.getRawAssociated()) {
1132e8d8bef9SDimitry Andric     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1133e8d8bef9SDimitry Andric              "associated can only appear in array type");
1134e8d8bef9SDimitry Andric   }
1135e8d8bef9SDimitry Andric 
1136e8d8bef9SDimitry Andric   if (N.getRawAllocated()) {
1137e8d8bef9SDimitry Andric     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1138e8d8bef9SDimitry Andric              "allocated can only appear in array type");
1139e8d8bef9SDimitry Andric   }
1140e8d8bef9SDimitry Andric 
1141e8d8bef9SDimitry Andric   if (N.getRawRank()) {
1142e8d8bef9SDimitry Andric     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1143e8d8bef9SDimitry Andric              "rank can only appear in array type");
1144e8d8bef9SDimitry Andric   }
11450b57cec5SDimitry Andric }
11460b57cec5SDimitry Andric 
11470b57cec5SDimitry Andric void Verifier::visitDISubroutineType(const DISubroutineType &N) {
11480b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
11490b57cec5SDimitry Andric   if (auto *Types = N.getRawTypeArray()) {
11500b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
11510b57cec5SDimitry Andric     for (Metadata *Ty : N.getTypeArray()->operands()) {
11520b57cec5SDimitry Andric       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
11530b57cec5SDimitry Andric     }
11540b57cec5SDimitry Andric   }
11550b57cec5SDimitry Andric   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
11560b57cec5SDimitry Andric            "invalid reference flags", &N);
11570b57cec5SDimitry Andric }
11580b57cec5SDimitry Andric 
11590b57cec5SDimitry Andric void Verifier::visitDIFile(const DIFile &N) {
11600b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
11610b57cec5SDimitry Andric   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
11620b57cec5SDimitry Andric   if (Checksum) {
11630b57cec5SDimitry Andric     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
11640b57cec5SDimitry Andric              "invalid checksum kind", &N);
11650b57cec5SDimitry Andric     size_t Size;
11660b57cec5SDimitry Andric     switch (Checksum->Kind) {
11670b57cec5SDimitry Andric     case DIFile::CSK_MD5:
11680b57cec5SDimitry Andric       Size = 32;
11690b57cec5SDimitry Andric       break;
11700b57cec5SDimitry Andric     case DIFile::CSK_SHA1:
11710b57cec5SDimitry Andric       Size = 40;
11720b57cec5SDimitry Andric       break;
11735ffd83dbSDimitry Andric     case DIFile::CSK_SHA256:
11745ffd83dbSDimitry Andric       Size = 64;
11755ffd83dbSDimitry Andric       break;
11760b57cec5SDimitry Andric     }
11770b57cec5SDimitry Andric     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
11780b57cec5SDimitry Andric     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
11790b57cec5SDimitry Andric              "invalid checksum", &N);
11800b57cec5SDimitry Andric   }
11810b57cec5SDimitry Andric }
11820b57cec5SDimitry Andric 
11830b57cec5SDimitry Andric void Verifier::visitDICompileUnit(const DICompileUnit &N) {
11840b57cec5SDimitry Andric   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
11850b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
11860b57cec5SDimitry Andric 
11870b57cec5SDimitry Andric   // Don't bother verifying the compilation directory or producer string
11880b57cec5SDimitry Andric   // as those could be empty.
11890b57cec5SDimitry Andric   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
11900b57cec5SDimitry Andric            N.getRawFile());
11910b57cec5SDimitry Andric   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
11920b57cec5SDimitry Andric            N.getFile());
11930b57cec5SDimitry Andric 
1194e8d8bef9SDimitry Andric   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1195e8d8bef9SDimitry Andric 
11960b57cec5SDimitry Andric   verifySourceDebugInfo(N, *N.getFile());
11970b57cec5SDimitry Andric 
11980b57cec5SDimitry Andric   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
11990b57cec5SDimitry Andric            "invalid emission kind", &N);
12000b57cec5SDimitry Andric 
12010b57cec5SDimitry Andric   if (auto *Array = N.getRawEnumTypes()) {
12020b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
12030b57cec5SDimitry Andric     for (Metadata *Op : N.getEnumTypes()->operands()) {
12040b57cec5SDimitry Andric       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
12050b57cec5SDimitry Andric       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
12060b57cec5SDimitry Andric                "invalid enum type", &N, N.getEnumTypes(), Op);
12070b57cec5SDimitry Andric     }
12080b57cec5SDimitry Andric   }
12090b57cec5SDimitry Andric   if (auto *Array = N.getRawRetainedTypes()) {
12100b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
12110b57cec5SDimitry Andric     for (Metadata *Op : N.getRetainedTypes()->operands()) {
12120b57cec5SDimitry Andric       AssertDI(Op && (isa<DIType>(Op) ||
12130b57cec5SDimitry Andric                       (isa<DISubprogram>(Op) &&
12140b57cec5SDimitry Andric                        !cast<DISubprogram>(Op)->isDefinition())),
12150b57cec5SDimitry Andric                "invalid retained type", &N, Op);
12160b57cec5SDimitry Andric     }
12170b57cec5SDimitry Andric   }
12180b57cec5SDimitry Andric   if (auto *Array = N.getRawGlobalVariables()) {
12190b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
12200b57cec5SDimitry Andric     for (Metadata *Op : N.getGlobalVariables()->operands()) {
12210b57cec5SDimitry Andric       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
12220b57cec5SDimitry Andric                "invalid global variable ref", &N, Op);
12230b57cec5SDimitry Andric     }
12240b57cec5SDimitry Andric   }
12250b57cec5SDimitry Andric   if (auto *Array = N.getRawImportedEntities()) {
12260b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
12270b57cec5SDimitry Andric     for (Metadata *Op : N.getImportedEntities()->operands()) {
12280b57cec5SDimitry Andric       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
12290b57cec5SDimitry Andric                &N, Op);
12300b57cec5SDimitry Andric     }
12310b57cec5SDimitry Andric   }
12320b57cec5SDimitry Andric   if (auto *Array = N.getRawMacros()) {
12330b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
12340b57cec5SDimitry Andric     for (Metadata *Op : N.getMacros()->operands()) {
12350b57cec5SDimitry Andric       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
12360b57cec5SDimitry Andric     }
12370b57cec5SDimitry Andric   }
12380b57cec5SDimitry Andric   CUVisited.insert(&N);
12390b57cec5SDimitry Andric }
12400b57cec5SDimitry Andric 
12410b57cec5SDimitry Andric void Verifier::visitDISubprogram(const DISubprogram &N) {
12420b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
12430b57cec5SDimitry Andric   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
12440b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
12450b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
12460b57cec5SDimitry Andric   else
12470b57cec5SDimitry Andric     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
12480b57cec5SDimitry Andric   if (auto *T = N.getRawType())
12490b57cec5SDimitry Andric     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
12500b57cec5SDimitry Andric   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
12510b57cec5SDimitry Andric            N.getRawContainingType());
12520b57cec5SDimitry Andric   if (auto *Params = N.getRawTemplateParams())
12530b57cec5SDimitry Andric     visitTemplateParams(N, *Params);
12540b57cec5SDimitry Andric   if (auto *S = N.getRawDeclaration())
12550b57cec5SDimitry Andric     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
12560b57cec5SDimitry Andric              "invalid subprogram declaration", &N, S);
12570b57cec5SDimitry Andric   if (auto *RawNode = N.getRawRetainedNodes()) {
12580b57cec5SDimitry Andric     auto *Node = dyn_cast<MDTuple>(RawNode);
12590b57cec5SDimitry Andric     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
12600b57cec5SDimitry Andric     for (Metadata *Op : Node->operands()) {
12610b57cec5SDimitry Andric       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
12620b57cec5SDimitry Andric                "invalid retained nodes, expected DILocalVariable or DILabel",
12630b57cec5SDimitry Andric                &N, Node, Op);
12640b57cec5SDimitry Andric     }
12650b57cec5SDimitry Andric   }
12660b57cec5SDimitry Andric   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
12670b57cec5SDimitry Andric            "invalid reference flags", &N);
12680b57cec5SDimitry Andric 
12690b57cec5SDimitry Andric   auto *Unit = N.getRawUnit();
12700b57cec5SDimitry Andric   if (N.isDefinition()) {
12710b57cec5SDimitry Andric     // Subprogram definitions (not part of the type hierarchy).
12720b57cec5SDimitry Andric     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
12730b57cec5SDimitry Andric     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
12740b57cec5SDimitry Andric     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
12750b57cec5SDimitry Andric     if (N.getFile())
12760b57cec5SDimitry Andric       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
12770b57cec5SDimitry Andric   } else {
12780b57cec5SDimitry Andric     // Subprogram declarations (part of the type hierarchy).
12790b57cec5SDimitry Andric     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
12800b57cec5SDimitry Andric   }
12810b57cec5SDimitry Andric 
12820b57cec5SDimitry Andric   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
12830b57cec5SDimitry Andric     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
12840b57cec5SDimitry Andric     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
12850b57cec5SDimitry Andric     for (Metadata *Op : ThrownTypes->operands())
12860b57cec5SDimitry Andric       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
12870b57cec5SDimitry Andric                Op);
12880b57cec5SDimitry Andric   }
12890b57cec5SDimitry Andric 
12900b57cec5SDimitry Andric   if (N.areAllCallsDescribed())
12910b57cec5SDimitry Andric     AssertDI(N.isDefinition(),
12920b57cec5SDimitry Andric              "DIFlagAllCallsDescribed must be attached to a definition");
12930b57cec5SDimitry Andric }
12940b57cec5SDimitry Andric 
12950b57cec5SDimitry Andric void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
12960b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
12970b57cec5SDimitry Andric   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
12980b57cec5SDimitry Andric            "invalid local scope", &N, N.getRawScope());
12990b57cec5SDimitry Andric   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
13000b57cec5SDimitry Andric     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
13010b57cec5SDimitry Andric }
13020b57cec5SDimitry Andric 
13030b57cec5SDimitry Andric void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
13040b57cec5SDimitry Andric   visitDILexicalBlockBase(N);
13050b57cec5SDimitry Andric 
13060b57cec5SDimitry Andric   AssertDI(N.getLine() || !N.getColumn(),
13070b57cec5SDimitry Andric            "cannot have column info without line info", &N);
13080b57cec5SDimitry Andric }
13090b57cec5SDimitry Andric 
13100b57cec5SDimitry Andric void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
13110b57cec5SDimitry Andric   visitDILexicalBlockBase(N);
13120b57cec5SDimitry Andric }
13130b57cec5SDimitry Andric 
13140b57cec5SDimitry Andric void Verifier::visitDICommonBlock(const DICommonBlock &N) {
13150b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
13160b57cec5SDimitry Andric   if (auto *S = N.getRawScope())
13170b57cec5SDimitry Andric     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
13180b57cec5SDimitry Andric   if (auto *S = N.getRawDecl())
13190b57cec5SDimitry Andric     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
13200b57cec5SDimitry Andric }
13210b57cec5SDimitry Andric 
13220b57cec5SDimitry Andric void Verifier::visitDINamespace(const DINamespace &N) {
13230b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
13240b57cec5SDimitry Andric   if (auto *S = N.getRawScope())
13250b57cec5SDimitry Andric     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
13260b57cec5SDimitry Andric }
13270b57cec5SDimitry Andric 
13280b57cec5SDimitry Andric void Verifier::visitDIMacro(const DIMacro &N) {
13290b57cec5SDimitry Andric   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
13300b57cec5SDimitry Andric                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
13310b57cec5SDimitry Andric            "invalid macinfo type", &N);
13320b57cec5SDimitry Andric   AssertDI(!N.getName().empty(), "anonymous macro", &N);
13330b57cec5SDimitry Andric   if (!N.getValue().empty()) {
13340b57cec5SDimitry Andric     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
13350b57cec5SDimitry Andric   }
13360b57cec5SDimitry Andric }
13370b57cec5SDimitry Andric 
13380b57cec5SDimitry Andric void Verifier::visitDIMacroFile(const DIMacroFile &N) {
13390b57cec5SDimitry Andric   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
13400b57cec5SDimitry Andric            "invalid macinfo type", &N);
13410b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
13420b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
13430b57cec5SDimitry Andric 
13440b57cec5SDimitry Andric   if (auto *Array = N.getRawElements()) {
13450b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
13460b57cec5SDimitry Andric     for (Metadata *Op : N.getElements()->operands()) {
13470b57cec5SDimitry Andric       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
13480b57cec5SDimitry Andric     }
13490b57cec5SDimitry Andric   }
13500b57cec5SDimitry Andric }
13510b57cec5SDimitry Andric 
1352*fe6060f1SDimitry Andric void Verifier::visitDIArgList(const DIArgList &N) {
1353*fe6060f1SDimitry Andric   AssertDI(!N.getNumOperands(),
1354*fe6060f1SDimitry Andric            "DIArgList should have no operands other than a list of "
1355*fe6060f1SDimitry Andric            "ValueAsMetadata",
1356*fe6060f1SDimitry Andric            &N);
1357*fe6060f1SDimitry Andric }
1358*fe6060f1SDimitry Andric 
13590b57cec5SDimitry Andric void Verifier::visitDIModule(const DIModule &N) {
13600b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
13610b57cec5SDimitry Andric   AssertDI(!N.getName().empty(), "anonymous module", &N);
13620b57cec5SDimitry Andric }
13630b57cec5SDimitry Andric 
13640b57cec5SDimitry Andric void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
13650b57cec5SDimitry Andric   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
13660b57cec5SDimitry Andric }
13670b57cec5SDimitry Andric 
13680b57cec5SDimitry Andric void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
13690b57cec5SDimitry Andric   visitDITemplateParameter(N);
13700b57cec5SDimitry Andric 
13710b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
13720b57cec5SDimitry Andric            &N);
13730b57cec5SDimitry Andric }
13740b57cec5SDimitry Andric 
13750b57cec5SDimitry Andric void Verifier::visitDITemplateValueParameter(
13760b57cec5SDimitry Andric     const DITemplateValueParameter &N) {
13770b57cec5SDimitry Andric   visitDITemplateParameter(N);
13780b57cec5SDimitry Andric 
13790b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
13800b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
13810b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
13820b57cec5SDimitry Andric            "invalid tag", &N);
13830b57cec5SDimitry Andric }
13840b57cec5SDimitry Andric 
13850b57cec5SDimitry Andric void Verifier::visitDIVariable(const DIVariable &N) {
13860b57cec5SDimitry Andric   if (auto *S = N.getRawScope())
13870b57cec5SDimitry Andric     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
13880b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
13890b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
13900b57cec5SDimitry Andric }
13910b57cec5SDimitry Andric 
13920b57cec5SDimitry Andric void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
13930b57cec5SDimitry Andric   // Checks common to all variables.
13940b57cec5SDimitry Andric   visitDIVariable(N);
13950b57cec5SDimitry Andric 
13960b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
13970b57cec5SDimitry Andric   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
13985ffd83dbSDimitry Andric   // Assert only if the global variable is not an extern
13995ffd83dbSDimitry Andric   if (N.isDefinition())
14000b57cec5SDimitry Andric     AssertDI(N.getType(), "missing global variable type", &N);
14010b57cec5SDimitry Andric   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
14020b57cec5SDimitry Andric     AssertDI(isa<DIDerivedType>(Member),
14030b57cec5SDimitry Andric              "invalid static data member declaration", &N, Member);
14040b57cec5SDimitry Andric   }
14050b57cec5SDimitry Andric }
14060b57cec5SDimitry Andric 
14070b57cec5SDimitry Andric void Verifier::visitDILocalVariable(const DILocalVariable &N) {
14080b57cec5SDimitry Andric   // Checks common to all variables.
14090b57cec5SDimitry Andric   visitDIVariable(N);
14100b57cec5SDimitry Andric 
14110b57cec5SDimitry Andric   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
14120b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
14130b57cec5SDimitry Andric   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
14140b57cec5SDimitry Andric            "local variable requires a valid scope", &N, N.getRawScope());
14150b57cec5SDimitry Andric   if (auto Ty = N.getType())
14160b57cec5SDimitry Andric     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
14170b57cec5SDimitry Andric }
14180b57cec5SDimitry Andric 
14190b57cec5SDimitry Andric void Verifier::visitDILabel(const DILabel &N) {
14200b57cec5SDimitry Andric   if (auto *S = N.getRawScope())
14210b57cec5SDimitry Andric     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
14220b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
14230b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
14240b57cec5SDimitry Andric 
14250b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
14260b57cec5SDimitry Andric   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
14270b57cec5SDimitry Andric            "label requires a valid scope", &N, N.getRawScope());
14280b57cec5SDimitry Andric }
14290b57cec5SDimitry Andric 
14300b57cec5SDimitry Andric void Verifier::visitDIExpression(const DIExpression &N) {
14310b57cec5SDimitry Andric   AssertDI(N.isValid(), "invalid expression", &N);
14320b57cec5SDimitry Andric }
14330b57cec5SDimitry Andric 
14340b57cec5SDimitry Andric void Verifier::visitDIGlobalVariableExpression(
14350b57cec5SDimitry Andric     const DIGlobalVariableExpression &GVE) {
14360b57cec5SDimitry Andric   AssertDI(GVE.getVariable(), "missing variable");
14370b57cec5SDimitry Andric   if (auto *Var = GVE.getVariable())
14380b57cec5SDimitry Andric     visitDIGlobalVariable(*Var);
14390b57cec5SDimitry Andric   if (auto *Expr = GVE.getExpression()) {
14400b57cec5SDimitry Andric     visitDIExpression(*Expr);
14410b57cec5SDimitry Andric     if (auto Fragment = Expr->getFragmentInfo())
14420b57cec5SDimitry Andric       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
14430b57cec5SDimitry Andric   }
14440b57cec5SDimitry Andric }
14450b57cec5SDimitry Andric 
14460b57cec5SDimitry Andric void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
14470b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
14480b57cec5SDimitry Andric   if (auto *T = N.getRawType())
14490b57cec5SDimitry Andric     AssertDI(isType(T), "invalid type ref", &N, T);
14500b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
14510b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
14520b57cec5SDimitry Andric }
14530b57cec5SDimitry Andric 
14540b57cec5SDimitry Andric void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
14550b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
14560b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_imported_declaration,
14570b57cec5SDimitry Andric            "invalid tag", &N);
14580b57cec5SDimitry Andric   if (auto *S = N.getRawScope())
14590b57cec5SDimitry Andric     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
14600b57cec5SDimitry Andric   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
14610b57cec5SDimitry Andric            N.getRawEntity());
14620b57cec5SDimitry Andric }
14630b57cec5SDimitry Andric 
14640b57cec5SDimitry Andric void Verifier::visitComdat(const Comdat &C) {
14658bcb0991SDimitry Andric   // In COFF the Module is invalid if the GlobalValue has private linkage.
14668bcb0991SDimitry Andric   // Entities with private linkage don't have entries in the symbol table.
14678bcb0991SDimitry Andric   if (TT.isOSBinFormatCOFF())
14680b57cec5SDimitry Andric     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
14698bcb0991SDimitry Andric       Assert(!GV->hasPrivateLinkage(),
14708bcb0991SDimitry Andric              "comdat global value has private linkage", GV);
14710b57cec5SDimitry Andric }
14720b57cec5SDimitry Andric 
14730b57cec5SDimitry Andric void Verifier::visitModuleIdents(const Module &M) {
14740b57cec5SDimitry Andric   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
14750b57cec5SDimitry Andric   if (!Idents)
14760b57cec5SDimitry Andric     return;
14770b57cec5SDimitry Andric 
14780b57cec5SDimitry Andric   // llvm.ident takes a list of metadata entry. Each entry has only one string.
14790b57cec5SDimitry Andric   // Scan each llvm.ident entry and make sure that this requirement is met.
14800b57cec5SDimitry Andric   for (const MDNode *N : Idents->operands()) {
14810b57cec5SDimitry Andric     Assert(N->getNumOperands() == 1,
14820b57cec5SDimitry Andric            "incorrect number of operands in llvm.ident metadata", N);
14830b57cec5SDimitry Andric     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
14840b57cec5SDimitry Andric            ("invalid value for llvm.ident metadata entry operand"
14850b57cec5SDimitry Andric             "(the operand should be a string)"),
14860b57cec5SDimitry Andric            N->getOperand(0));
14870b57cec5SDimitry Andric   }
14880b57cec5SDimitry Andric }
14890b57cec5SDimitry Andric 
14900b57cec5SDimitry Andric void Verifier::visitModuleCommandLines(const Module &M) {
14910b57cec5SDimitry Andric   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
14920b57cec5SDimitry Andric   if (!CommandLines)
14930b57cec5SDimitry Andric     return;
14940b57cec5SDimitry Andric 
14950b57cec5SDimitry Andric   // llvm.commandline takes a list of metadata entry. Each entry has only one
14960b57cec5SDimitry Andric   // string. Scan each llvm.commandline entry and make sure that this
14970b57cec5SDimitry Andric   // requirement is met.
14980b57cec5SDimitry Andric   for (const MDNode *N : CommandLines->operands()) {
14990b57cec5SDimitry Andric     Assert(N->getNumOperands() == 1,
15000b57cec5SDimitry Andric            "incorrect number of operands in llvm.commandline metadata", N);
15010b57cec5SDimitry Andric     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
15020b57cec5SDimitry Andric            ("invalid value for llvm.commandline metadata entry operand"
15030b57cec5SDimitry Andric             "(the operand should be a string)"),
15040b57cec5SDimitry Andric            N->getOperand(0));
15050b57cec5SDimitry Andric   }
15060b57cec5SDimitry Andric }
15070b57cec5SDimitry Andric 
15080b57cec5SDimitry Andric void Verifier::visitModuleFlags(const Module &M) {
15090b57cec5SDimitry Andric   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
15100b57cec5SDimitry Andric   if (!Flags) return;
15110b57cec5SDimitry Andric 
15120b57cec5SDimitry Andric   // Scan each flag, and track the flags and requirements.
15130b57cec5SDimitry Andric   DenseMap<const MDString*, const MDNode*> SeenIDs;
15140b57cec5SDimitry Andric   SmallVector<const MDNode*, 16> Requirements;
15150b57cec5SDimitry Andric   for (const MDNode *MDN : Flags->operands())
15160b57cec5SDimitry Andric     visitModuleFlag(MDN, SeenIDs, Requirements);
15170b57cec5SDimitry Andric 
15180b57cec5SDimitry Andric   // Validate that the requirements in the module are valid.
15190b57cec5SDimitry Andric   for (const MDNode *Requirement : Requirements) {
15200b57cec5SDimitry Andric     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
15210b57cec5SDimitry Andric     const Metadata *ReqValue = Requirement->getOperand(1);
15220b57cec5SDimitry Andric 
15230b57cec5SDimitry Andric     const MDNode *Op = SeenIDs.lookup(Flag);
15240b57cec5SDimitry Andric     if (!Op) {
15250b57cec5SDimitry Andric       CheckFailed("invalid requirement on flag, flag is not present in module",
15260b57cec5SDimitry Andric                   Flag);
15270b57cec5SDimitry Andric       continue;
15280b57cec5SDimitry Andric     }
15290b57cec5SDimitry Andric 
15300b57cec5SDimitry Andric     if (Op->getOperand(2) != ReqValue) {
15310b57cec5SDimitry Andric       CheckFailed(("invalid requirement on flag, "
15320b57cec5SDimitry Andric                    "flag does not have the required value"),
15330b57cec5SDimitry Andric                   Flag);
15340b57cec5SDimitry Andric       continue;
15350b57cec5SDimitry Andric     }
15360b57cec5SDimitry Andric   }
15370b57cec5SDimitry Andric }
15380b57cec5SDimitry Andric 
15390b57cec5SDimitry Andric void
15400b57cec5SDimitry Andric Verifier::visitModuleFlag(const MDNode *Op,
15410b57cec5SDimitry Andric                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
15420b57cec5SDimitry Andric                           SmallVectorImpl<const MDNode *> &Requirements) {
15430b57cec5SDimitry Andric   // Each module flag should have three arguments, the merge behavior (a
15440b57cec5SDimitry Andric   // constant int), the flag ID (an MDString), and the value.
15450b57cec5SDimitry Andric   Assert(Op->getNumOperands() == 3,
15460b57cec5SDimitry Andric          "incorrect number of operands in module flag", Op);
15470b57cec5SDimitry Andric   Module::ModFlagBehavior MFB;
15480b57cec5SDimitry Andric   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
15490b57cec5SDimitry Andric     Assert(
15500b57cec5SDimitry Andric         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
15510b57cec5SDimitry Andric         "invalid behavior operand in module flag (expected constant integer)",
15520b57cec5SDimitry Andric         Op->getOperand(0));
15530b57cec5SDimitry Andric     Assert(false,
15540b57cec5SDimitry Andric            "invalid behavior operand in module flag (unexpected constant)",
15550b57cec5SDimitry Andric            Op->getOperand(0));
15560b57cec5SDimitry Andric   }
15570b57cec5SDimitry Andric   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
15580b57cec5SDimitry Andric   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
15590b57cec5SDimitry Andric          Op->getOperand(1));
15600b57cec5SDimitry Andric 
15610b57cec5SDimitry Andric   // Sanity check the values for behaviors with additional requirements.
15620b57cec5SDimitry Andric   switch (MFB) {
15630b57cec5SDimitry Andric   case Module::Error:
15640b57cec5SDimitry Andric   case Module::Warning:
15650b57cec5SDimitry Andric   case Module::Override:
15660b57cec5SDimitry Andric     // These behavior types accept any value.
15670b57cec5SDimitry Andric     break;
15680b57cec5SDimitry Andric 
15690b57cec5SDimitry Andric   case Module::Max: {
15700b57cec5SDimitry Andric     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
15710b57cec5SDimitry Andric            "invalid value for 'max' module flag (expected constant integer)",
15720b57cec5SDimitry Andric            Op->getOperand(2));
15730b57cec5SDimitry Andric     break;
15740b57cec5SDimitry Andric   }
15750b57cec5SDimitry Andric 
15760b57cec5SDimitry Andric   case Module::Require: {
15770b57cec5SDimitry Andric     // The value should itself be an MDNode with two operands, a flag ID (an
15780b57cec5SDimitry Andric     // MDString), and a value.
15790b57cec5SDimitry Andric     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
15800b57cec5SDimitry Andric     Assert(Value && Value->getNumOperands() == 2,
15810b57cec5SDimitry Andric            "invalid value for 'require' module flag (expected metadata pair)",
15820b57cec5SDimitry Andric            Op->getOperand(2));
15830b57cec5SDimitry Andric     Assert(isa<MDString>(Value->getOperand(0)),
15840b57cec5SDimitry Andric            ("invalid value for 'require' module flag "
15850b57cec5SDimitry Andric             "(first value operand should be a string)"),
15860b57cec5SDimitry Andric            Value->getOperand(0));
15870b57cec5SDimitry Andric 
15880b57cec5SDimitry Andric     // Append it to the list of requirements, to check once all module flags are
15890b57cec5SDimitry Andric     // scanned.
15900b57cec5SDimitry Andric     Requirements.push_back(Value);
15910b57cec5SDimitry Andric     break;
15920b57cec5SDimitry Andric   }
15930b57cec5SDimitry Andric 
15940b57cec5SDimitry Andric   case Module::Append:
15950b57cec5SDimitry Andric   case Module::AppendUnique: {
15960b57cec5SDimitry Andric     // These behavior types require the operand be an MDNode.
15970b57cec5SDimitry Andric     Assert(isa<MDNode>(Op->getOperand(2)),
15980b57cec5SDimitry Andric            "invalid value for 'append'-type module flag "
15990b57cec5SDimitry Andric            "(expected a metadata node)",
16000b57cec5SDimitry Andric            Op->getOperand(2));
16010b57cec5SDimitry Andric     break;
16020b57cec5SDimitry Andric   }
16030b57cec5SDimitry Andric   }
16040b57cec5SDimitry Andric 
16050b57cec5SDimitry Andric   // Unless this is a "requires" flag, check the ID is unique.
16060b57cec5SDimitry Andric   if (MFB != Module::Require) {
16070b57cec5SDimitry Andric     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
16080b57cec5SDimitry Andric     Assert(Inserted,
16090b57cec5SDimitry Andric            "module flag identifiers must be unique (or of 'require' type)", ID);
16100b57cec5SDimitry Andric   }
16110b57cec5SDimitry Andric 
16120b57cec5SDimitry Andric   if (ID->getString() == "wchar_size") {
16130b57cec5SDimitry Andric     ConstantInt *Value
16140b57cec5SDimitry Andric       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
16150b57cec5SDimitry Andric     Assert(Value, "wchar_size metadata requires constant integer argument");
16160b57cec5SDimitry Andric   }
16170b57cec5SDimitry Andric 
16180b57cec5SDimitry Andric   if (ID->getString() == "Linker Options") {
16190b57cec5SDimitry Andric     // If the llvm.linker.options named metadata exists, we assume that the
16200b57cec5SDimitry Andric     // bitcode reader has upgraded the module flag. Otherwise the flag might
16210b57cec5SDimitry Andric     // have been created by a client directly.
16220b57cec5SDimitry Andric     Assert(M.getNamedMetadata("llvm.linker.options"),
16230b57cec5SDimitry Andric            "'Linker Options' named metadata no longer supported");
16240b57cec5SDimitry Andric   }
16250b57cec5SDimitry Andric 
16265ffd83dbSDimitry Andric   if (ID->getString() == "SemanticInterposition") {
16275ffd83dbSDimitry Andric     ConstantInt *Value =
16285ffd83dbSDimitry Andric         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
16295ffd83dbSDimitry Andric     Assert(Value,
16305ffd83dbSDimitry Andric            "SemanticInterposition metadata requires constant integer argument");
16315ffd83dbSDimitry Andric   }
16325ffd83dbSDimitry Andric 
16330b57cec5SDimitry Andric   if (ID->getString() == "CG Profile") {
16340b57cec5SDimitry Andric     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
16350b57cec5SDimitry Andric       visitModuleFlagCGProfileEntry(MDO);
16360b57cec5SDimitry Andric   }
16370b57cec5SDimitry Andric }
16380b57cec5SDimitry Andric 
16390b57cec5SDimitry Andric void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
16400b57cec5SDimitry Andric   auto CheckFunction = [&](const MDOperand &FuncMDO) {
16410b57cec5SDimitry Andric     if (!FuncMDO)
16420b57cec5SDimitry Andric       return;
16430b57cec5SDimitry Andric     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1644e8d8bef9SDimitry Andric     Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
1645e8d8bef9SDimitry Andric            "expected a Function or null", FuncMDO);
16460b57cec5SDimitry Andric   };
16470b57cec5SDimitry Andric   auto Node = dyn_cast_or_null<MDNode>(MDO);
16480b57cec5SDimitry Andric   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
16490b57cec5SDimitry Andric   CheckFunction(Node->getOperand(0));
16500b57cec5SDimitry Andric   CheckFunction(Node->getOperand(1));
16510b57cec5SDimitry Andric   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
16520b57cec5SDimitry Andric   Assert(Count && Count->getType()->isIntegerTy(),
16530b57cec5SDimitry Andric          "expected an integer constant", Node->getOperand(2));
16540b57cec5SDimitry Andric }
16550b57cec5SDimitry Andric 
1656*fe6060f1SDimitry Andric void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
16570b57cec5SDimitry Andric   for (Attribute A : Attrs) {
1658*fe6060f1SDimitry Andric 
1659*fe6060f1SDimitry Andric     if (A.isStringAttribute()) {
1660*fe6060f1SDimitry Andric #define GET_ATTR_NAMES
1661*fe6060f1SDimitry Andric #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1662*fe6060f1SDimitry Andric #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1663*fe6060f1SDimitry Andric   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1664*fe6060f1SDimitry Andric     auto V = A.getValueAsString();                                             \
1665*fe6060f1SDimitry Andric     if (!(V.empty() || V == "true" || V == "false"))                           \
1666*fe6060f1SDimitry Andric       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1667*fe6060f1SDimitry Andric                   "");                                                         \
1668*fe6060f1SDimitry Andric   }
1669*fe6060f1SDimitry Andric 
1670*fe6060f1SDimitry Andric #include "llvm/IR/Attributes.inc"
16710b57cec5SDimitry Andric       continue;
1672*fe6060f1SDimitry Andric     }
16730b57cec5SDimitry Andric 
1674*fe6060f1SDimitry Andric     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
16755ffd83dbSDimitry Andric       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
16765ffd83dbSDimitry Andric                   V);
16775ffd83dbSDimitry Andric       return;
16785ffd83dbSDimitry Andric     }
16790b57cec5SDimitry Andric   }
16800b57cec5SDimitry Andric }
16810b57cec5SDimitry Andric 
16820b57cec5SDimitry Andric // VerifyParameterAttrs - Check the given attributes for an argument or return
16830b57cec5SDimitry Andric // value of the specified type.  The value V is printed in error messages.
16840b57cec5SDimitry Andric void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
16850b57cec5SDimitry Andric                                     const Value *V) {
16860b57cec5SDimitry Andric   if (!Attrs.hasAttributes())
16870b57cec5SDimitry Andric     return;
16880b57cec5SDimitry Andric 
1689*fe6060f1SDimitry Andric   verifyAttributeTypes(Attrs, V);
1690*fe6060f1SDimitry Andric 
1691*fe6060f1SDimitry Andric   for (Attribute Attr : Attrs)
1692*fe6060f1SDimitry Andric     Assert(Attr.isStringAttribute() ||
1693*fe6060f1SDimitry Andric            Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1694*fe6060f1SDimitry Andric            "Attribute '" + Attr.getAsString() +
1695*fe6060f1SDimitry Andric                "' does not apply to parameters",
1696*fe6060f1SDimitry Andric            V);
16970b57cec5SDimitry Andric 
16980b57cec5SDimitry Andric   if (Attrs.hasAttribute(Attribute::ImmArg)) {
16990b57cec5SDimitry Andric     Assert(Attrs.getNumAttributes() == 1,
17000b57cec5SDimitry Andric            "Attribute 'immarg' is incompatible with other attributes", V);
17010b57cec5SDimitry Andric   }
17020b57cec5SDimitry Andric 
17030b57cec5SDimitry Andric   // Check for mutually incompatible attributes.  Only inreg is compatible with
17040b57cec5SDimitry Andric   // sret.
17050b57cec5SDimitry Andric   unsigned AttrCount = 0;
17060b57cec5SDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
17070b57cec5SDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
17085ffd83dbSDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
17090b57cec5SDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
17100b57cec5SDimitry Andric                Attrs.hasAttribute(Attribute::InReg);
17110b57cec5SDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1712e8d8bef9SDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
17135ffd83dbSDimitry Andric   Assert(AttrCount <= 1,
17145ffd83dbSDimitry Andric          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1715e8d8bef9SDimitry Andric          "'byref', and 'sret' are incompatible!",
17160b57cec5SDimitry Andric          V);
17170b57cec5SDimitry Andric 
17180b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
17190b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::ReadOnly)),
17200b57cec5SDimitry Andric          "Attributes "
17210b57cec5SDimitry Andric          "'inalloca and readonly' are incompatible!",
17220b57cec5SDimitry Andric          V);
17230b57cec5SDimitry Andric 
17240b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
17250b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::Returned)),
17260b57cec5SDimitry Andric          "Attributes "
17270b57cec5SDimitry Andric          "'sret and returned' are incompatible!",
17280b57cec5SDimitry Andric          V);
17290b57cec5SDimitry Andric 
17300b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
17310b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::SExt)),
17320b57cec5SDimitry Andric          "Attributes "
17330b57cec5SDimitry Andric          "'zeroext and signext' are incompatible!",
17340b57cec5SDimitry Andric          V);
17350b57cec5SDimitry Andric 
17360b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
17370b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::ReadOnly)),
17380b57cec5SDimitry Andric          "Attributes "
17390b57cec5SDimitry Andric          "'readnone and readonly' are incompatible!",
17400b57cec5SDimitry Andric          V);
17410b57cec5SDimitry Andric 
17420b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
17430b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::WriteOnly)),
17440b57cec5SDimitry Andric          "Attributes "
17450b57cec5SDimitry Andric          "'readnone and writeonly' are incompatible!",
17460b57cec5SDimitry Andric          V);
17470b57cec5SDimitry Andric 
17480b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
17490b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::WriteOnly)),
17500b57cec5SDimitry Andric          "Attributes "
17510b57cec5SDimitry Andric          "'readonly and writeonly' are incompatible!",
17520b57cec5SDimitry Andric          V);
17530b57cec5SDimitry Andric 
17540b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
17550b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::AlwaysInline)),
17560b57cec5SDimitry Andric          "Attributes "
17570b57cec5SDimitry Andric          "'noinline and alwaysinline' are incompatible!",
17580b57cec5SDimitry Andric          V);
17590b57cec5SDimitry Andric 
17600b57cec5SDimitry Andric   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1761*fe6060f1SDimitry Andric   for (Attribute Attr : Attrs) {
1762*fe6060f1SDimitry Andric     if (!Attr.isStringAttribute() &&
1763*fe6060f1SDimitry Andric         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1764*fe6060f1SDimitry Andric       CheckFailed("Attribute '" + Attr.getAsString() +
1765*fe6060f1SDimitry Andric                   "' applied to incompatible type!", V);
1766*fe6060f1SDimitry Andric       return;
1767*fe6060f1SDimitry Andric     }
1768*fe6060f1SDimitry Andric   }
17690b57cec5SDimitry Andric 
17700b57cec5SDimitry Andric   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1771*fe6060f1SDimitry Andric     if (Attrs.hasAttribute(Attribute::ByVal)) {
17720b57cec5SDimitry Andric       SmallPtrSet<Type *, 4> Visited;
1773*fe6060f1SDimitry Andric       Assert(Attrs.getByValType()->isSized(&Visited),
1774*fe6060f1SDimitry Andric              "Attribute 'byval' does not support unsized types!", V);
17750b57cec5SDimitry Andric     }
1776*fe6060f1SDimitry Andric     if (Attrs.hasAttribute(Attribute::ByRef)) {
1777*fe6060f1SDimitry Andric       SmallPtrSet<Type *, 4> Visited;
1778*fe6060f1SDimitry Andric       Assert(Attrs.getByRefType()->isSized(&Visited),
1779*fe6060f1SDimitry Andric              "Attribute 'byref' does not support unsized types!", V);
1780*fe6060f1SDimitry Andric     }
1781*fe6060f1SDimitry Andric     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1782*fe6060f1SDimitry Andric       SmallPtrSet<Type *, 4> Visited;
1783*fe6060f1SDimitry Andric       Assert(Attrs.getInAllocaType()->isSized(&Visited),
1784*fe6060f1SDimitry Andric              "Attribute 'inalloca' does not support unsized types!", V);
1785*fe6060f1SDimitry Andric     }
1786*fe6060f1SDimitry Andric     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1787*fe6060f1SDimitry Andric       SmallPtrSet<Type *, 4> Visited;
1788*fe6060f1SDimitry Andric       Assert(Attrs.getPreallocatedType()->isSized(&Visited),
1789*fe6060f1SDimitry Andric              "Attribute 'preallocated' does not support unsized types!", V);
1790*fe6060f1SDimitry Andric     }
1791*fe6060f1SDimitry Andric     if (!PTy->isOpaque()) {
17920b57cec5SDimitry Andric       if (!isa<PointerType>(PTy->getElementType()))
17930b57cec5SDimitry Andric         Assert(!Attrs.hasAttribute(Attribute::SwiftError),
17940b57cec5SDimitry Andric                "Attribute 'swifterror' only applies to parameters "
17950b57cec5SDimitry Andric                "with pointer to pointer type!",
17960b57cec5SDimitry Andric                V);
1797e8d8bef9SDimitry Andric       if (Attrs.hasAttribute(Attribute::ByRef)) {
1798e8d8bef9SDimitry Andric         Assert(Attrs.getByRefType() == PTy->getElementType(),
1799e8d8bef9SDimitry Andric                "Attribute 'byref' type does not match parameter!", V);
1800e8d8bef9SDimitry Andric       }
1801e8d8bef9SDimitry Andric 
1802e8d8bef9SDimitry Andric       if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1803e8d8bef9SDimitry Andric         Assert(Attrs.getByValType() == PTy->getElementType(),
1804e8d8bef9SDimitry Andric                "Attribute 'byval' type does not match parameter!", V);
1805e8d8bef9SDimitry Andric       }
1806e8d8bef9SDimitry Andric 
1807e8d8bef9SDimitry Andric       if (Attrs.hasAttribute(Attribute::Preallocated)) {
1808e8d8bef9SDimitry Andric         Assert(Attrs.getPreallocatedType() == PTy->getElementType(),
1809e8d8bef9SDimitry Andric                "Attribute 'preallocated' type does not match parameter!", V);
1810e8d8bef9SDimitry Andric       }
1811*fe6060f1SDimitry Andric 
1812*fe6060f1SDimitry Andric       if (Attrs.hasAttribute(Attribute::InAlloca)) {
1813*fe6060f1SDimitry Andric         Assert(Attrs.getInAllocaType() == PTy->getElementType(),
1814*fe6060f1SDimitry Andric                "Attribute 'inalloca' type does not match parameter!", V);
1815*fe6060f1SDimitry Andric       }
1816*fe6060f1SDimitry Andric 
1817*fe6060f1SDimitry Andric       if (Attrs.hasAttribute(Attribute::ElementType)) {
1818*fe6060f1SDimitry Andric         Assert(Attrs.getElementType() == PTy->getElementType(),
1819*fe6060f1SDimitry Andric                "Attribute 'elementtype' type does not match parameter!", V);
1820*fe6060f1SDimitry Andric       }
1821*fe6060f1SDimitry Andric     }
1822*fe6060f1SDimitry Andric   }
1823*fe6060f1SDimitry Andric }
1824*fe6060f1SDimitry Andric 
1825*fe6060f1SDimitry Andric void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1826*fe6060f1SDimitry Andric                                             const Value *V) {
1827*fe6060f1SDimitry Andric   if (Attrs.hasFnAttribute(Attr)) {
1828*fe6060f1SDimitry Andric     StringRef S = Attrs.getAttribute(AttributeList::FunctionIndex, Attr)
1829*fe6060f1SDimitry Andric                       .getValueAsString();
1830*fe6060f1SDimitry Andric     unsigned N;
1831*fe6060f1SDimitry Andric     if (S.getAsInteger(10, N))
1832*fe6060f1SDimitry Andric       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
18330b57cec5SDimitry Andric   }
18340b57cec5SDimitry Andric }
18350b57cec5SDimitry Andric 
18360b57cec5SDimitry Andric // Check parameter attributes against a function type.
18370b57cec5SDimitry Andric // The value V is printed in error messages.
18380b57cec5SDimitry Andric void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
18390b57cec5SDimitry Andric                                    const Value *V, bool IsIntrinsic) {
18400b57cec5SDimitry Andric   if (Attrs.isEmpty())
18410b57cec5SDimitry Andric     return;
18420b57cec5SDimitry Andric 
1843*fe6060f1SDimitry Andric   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1844*fe6060f1SDimitry Andric     Assert(Attrs.hasParentContext(Context),
1845*fe6060f1SDimitry Andric            "Attribute list does not match Module context!", &Attrs, V);
1846*fe6060f1SDimitry Andric     for (const auto &AttrSet : Attrs) {
1847*fe6060f1SDimitry Andric       Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1848*fe6060f1SDimitry Andric              "Attribute set does not match Module context!", &AttrSet, V);
1849*fe6060f1SDimitry Andric       for (const auto &A : AttrSet) {
1850*fe6060f1SDimitry Andric         Assert(A.hasParentContext(Context),
1851*fe6060f1SDimitry Andric                "Attribute does not match Module context!", &A, V);
1852*fe6060f1SDimitry Andric       }
1853*fe6060f1SDimitry Andric     }
1854*fe6060f1SDimitry Andric   }
1855*fe6060f1SDimitry Andric 
18560b57cec5SDimitry Andric   bool SawNest = false;
18570b57cec5SDimitry Andric   bool SawReturned = false;
18580b57cec5SDimitry Andric   bool SawSRet = false;
18590b57cec5SDimitry Andric   bool SawSwiftSelf = false;
1860*fe6060f1SDimitry Andric   bool SawSwiftAsync = false;
18610b57cec5SDimitry Andric   bool SawSwiftError = false;
18620b57cec5SDimitry Andric 
18630b57cec5SDimitry Andric   // Verify return value attributes.
18640b57cec5SDimitry Andric   AttributeSet RetAttrs = Attrs.getRetAttributes();
1865*fe6060f1SDimitry Andric   for (Attribute RetAttr : RetAttrs)
1866*fe6060f1SDimitry Andric     Assert(RetAttr.isStringAttribute() ||
1867*fe6060f1SDimitry Andric            Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1868*fe6060f1SDimitry Andric            "Attribute '" + RetAttr.getAsString() +
1869*fe6060f1SDimitry Andric                "' does not apply to function return values",
18700b57cec5SDimitry Andric            V);
1871*fe6060f1SDimitry Andric 
18720b57cec5SDimitry Andric   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
18730b57cec5SDimitry Andric 
18740b57cec5SDimitry Andric   // Verify parameter attributes.
18750b57cec5SDimitry Andric   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
18760b57cec5SDimitry Andric     Type *Ty = FT->getParamType(i);
18770b57cec5SDimitry Andric     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
18780b57cec5SDimitry Andric 
18790b57cec5SDimitry Andric     if (!IsIntrinsic) {
18800b57cec5SDimitry Andric       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
18810b57cec5SDimitry Andric              "immarg attribute only applies to intrinsics",V);
1882*fe6060f1SDimitry Andric       Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),
1883*fe6060f1SDimitry Andric              "Attribute 'elementtype' can only be applied to intrinsics.", V);
18840b57cec5SDimitry Andric     }
18850b57cec5SDimitry Andric 
18860b57cec5SDimitry Andric     verifyParameterAttrs(ArgAttrs, Ty, V);
18870b57cec5SDimitry Andric 
18880b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
18890b57cec5SDimitry Andric       Assert(!SawNest, "More than one parameter has attribute nest!", V);
18900b57cec5SDimitry Andric       SawNest = true;
18910b57cec5SDimitry Andric     }
18920b57cec5SDimitry Andric 
18930b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
18940b57cec5SDimitry Andric       Assert(!SawReturned, "More than one parameter has attribute returned!",
18950b57cec5SDimitry Andric              V);
18960b57cec5SDimitry Andric       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
18970b57cec5SDimitry Andric              "Incompatible argument and return types for 'returned' attribute",
18980b57cec5SDimitry Andric              V);
18990b57cec5SDimitry Andric       SawReturned = true;
19000b57cec5SDimitry Andric     }
19010b57cec5SDimitry Andric 
19020b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
19030b57cec5SDimitry Andric       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
19040b57cec5SDimitry Andric       Assert(i == 0 || i == 1,
19050b57cec5SDimitry Andric              "Attribute 'sret' is not on first or second parameter!", V);
19060b57cec5SDimitry Andric       SawSRet = true;
19070b57cec5SDimitry Andric     }
19080b57cec5SDimitry Andric 
19090b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
19100b57cec5SDimitry Andric       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
19110b57cec5SDimitry Andric       SawSwiftSelf = true;
19120b57cec5SDimitry Andric     }
19130b57cec5SDimitry Andric 
1914*fe6060f1SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1915*fe6060f1SDimitry Andric       Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1916*fe6060f1SDimitry Andric       SawSwiftAsync = true;
1917*fe6060f1SDimitry Andric     }
1918*fe6060f1SDimitry Andric 
19190b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
19200b57cec5SDimitry Andric       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
19210b57cec5SDimitry Andric              V);
19220b57cec5SDimitry Andric       SawSwiftError = true;
19230b57cec5SDimitry Andric     }
19240b57cec5SDimitry Andric 
19250b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
19260b57cec5SDimitry Andric       Assert(i == FT->getNumParams() - 1,
19270b57cec5SDimitry Andric              "inalloca isn't on the last parameter!", V);
19280b57cec5SDimitry Andric     }
19290b57cec5SDimitry Andric   }
19300b57cec5SDimitry Andric 
19310b57cec5SDimitry Andric   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
19320b57cec5SDimitry Andric     return;
19330b57cec5SDimitry Andric 
1934*fe6060f1SDimitry Andric   verifyAttributeTypes(Attrs.getFnAttributes(), V);
1935*fe6060f1SDimitry Andric   for (Attribute FnAttr : Attrs.getFnAttributes())
1936*fe6060f1SDimitry Andric     Assert(FnAttr.isStringAttribute() ||
1937*fe6060f1SDimitry Andric            Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
1938*fe6060f1SDimitry Andric            "Attribute '" + FnAttr.getAsString() +
1939*fe6060f1SDimitry Andric                "' does not apply to functions!",
1940*fe6060f1SDimitry Andric            V);
19410b57cec5SDimitry Andric 
19420b57cec5SDimitry Andric   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
19430b57cec5SDimitry Andric            Attrs.hasFnAttribute(Attribute::ReadOnly)),
19440b57cec5SDimitry Andric          "Attributes 'readnone and readonly' are incompatible!", V);
19450b57cec5SDimitry Andric 
19460b57cec5SDimitry Andric   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
19470b57cec5SDimitry Andric            Attrs.hasFnAttribute(Attribute::WriteOnly)),
19480b57cec5SDimitry Andric          "Attributes 'readnone and writeonly' are incompatible!", V);
19490b57cec5SDimitry Andric 
19500b57cec5SDimitry Andric   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
19510b57cec5SDimitry Andric            Attrs.hasFnAttribute(Attribute::WriteOnly)),
19520b57cec5SDimitry Andric          "Attributes 'readonly and writeonly' are incompatible!", V);
19530b57cec5SDimitry Andric 
19540b57cec5SDimitry Andric   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
19550b57cec5SDimitry Andric            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
19560b57cec5SDimitry Andric          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
19570b57cec5SDimitry Andric          "incompatible!",
19580b57cec5SDimitry Andric          V);
19590b57cec5SDimitry Andric 
19600b57cec5SDimitry Andric   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
19610b57cec5SDimitry Andric            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
19620b57cec5SDimitry Andric          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
19630b57cec5SDimitry Andric 
19640b57cec5SDimitry Andric   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
19650b57cec5SDimitry Andric            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
19660b57cec5SDimitry Andric          "Attributes 'noinline and alwaysinline' are incompatible!", V);
19670b57cec5SDimitry Andric 
19680b57cec5SDimitry Andric   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
19690b57cec5SDimitry Andric     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
19700b57cec5SDimitry Andric            "Attribute 'optnone' requires 'noinline'!", V);
19710b57cec5SDimitry Andric 
19720b57cec5SDimitry Andric     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
19730b57cec5SDimitry Andric            "Attributes 'optsize and optnone' are incompatible!", V);
19740b57cec5SDimitry Andric 
19750b57cec5SDimitry Andric     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
19760b57cec5SDimitry Andric            "Attributes 'minsize and optnone' are incompatible!", V);
19770b57cec5SDimitry Andric   }
19780b57cec5SDimitry Andric 
19790b57cec5SDimitry Andric   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
19800b57cec5SDimitry Andric     const GlobalValue *GV = cast<GlobalValue>(V);
19810b57cec5SDimitry Andric     Assert(GV->hasGlobalUnnamedAddr(),
19820b57cec5SDimitry Andric            "Attribute 'jumptable' requires 'unnamed_addr'", V);
19830b57cec5SDimitry Andric   }
19840b57cec5SDimitry Andric 
19850b57cec5SDimitry Andric   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
19860b57cec5SDimitry Andric     std::pair<unsigned, Optional<unsigned>> Args =
19870b57cec5SDimitry Andric         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
19880b57cec5SDimitry Andric 
19890b57cec5SDimitry Andric     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
19900b57cec5SDimitry Andric       if (ParamNo >= FT->getNumParams()) {
19910b57cec5SDimitry Andric         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
19920b57cec5SDimitry Andric         return false;
19930b57cec5SDimitry Andric       }
19940b57cec5SDimitry Andric 
19950b57cec5SDimitry Andric       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
19960b57cec5SDimitry Andric         CheckFailed("'allocsize' " + Name +
19970b57cec5SDimitry Andric                         " argument must refer to an integer parameter",
19980b57cec5SDimitry Andric                     V);
19990b57cec5SDimitry Andric         return false;
20000b57cec5SDimitry Andric       }
20010b57cec5SDimitry Andric 
20020b57cec5SDimitry Andric       return true;
20030b57cec5SDimitry Andric     };
20040b57cec5SDimitry Andric 
20050b57cec5SDimitry Andric     if (!CheckParam("element size", Args.first))
20060b57cec5SDimitry Andric       return;
20070b57cec5SDimitry Andric 
20080b57cec5SDimitry Andric     if (Args.second && !CheckParam("number of elements", *Args.second))
20090b57cec5SDimitry Andric       return;
20100b57cec5SDimitry Andric   }
2011480093f4SDimitry Andric 
2012*fe6060f1SDimitry Andric   if (Attrs.hasFnAttribute(Attribute::VScaleRange)) {
2013*fe6060f1SDimitry Andric     std::pair<unsigned, unsigned> Args =
2014*fe6060f1SDimitry Andric         Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex);
2015*fe6060f1SDimitry Andric 
2016*fe6060f1SDimitry Andric     if (Args.first > Args.second && Args.second != 0)
2017*fe6060f1SDimitry Andric       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2018*fe6060f1SDimitry Andric   }
2019*fe6060f1SDimitry Andric 
2020480093f4SDimitry Andric   if (Attrs.hasFnAttribute("frame-pointer")) {
2021480093f4SDimitry Andric     StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
2022480093f4SDimitry Andric                                       "frame-pointer").getValueAsString();
2023480093f4SDimitry Andric     if (FP != "all" && FP != "non-leaf" && FP != "none")
2024480093f4SDimitry Andric       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2025480093f4SDimitry Andric   }
2026480093f4SDimitry Andric 
2027*fe6060f1SDimitry Andric   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2028*fe6060f1SDimitry Andric   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2029*fe6060f1SDimitry Andric   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
20300b57cec5SDimitry Andric }
20310b57cec5SDimitry Andric 
20320b57cec5SDimitry Andric void Verifier::verifyFunctionMetadata(
20330b57cec5SDimitry Andric     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
20340b57cec5SDimitry Andric   for (const auto &Pair : MDs) {
20350b57cec5SDimitry Andric     if (Pair.first == LLVMContext::MD_prof) {
20360b57cec5SDimitry Andric       MDNode *MD = Pair.second;
20370b57cec5SDimitry Andric       Assert(MD->getNumOperands() >= 2,
20380b57cec5SDimitry Andric              "!prof annotations should have no less than 2 operands", MD);
20390b57cec5SDimitry Andric 
20400b57cec5SDimitry Andric       // Check first operand.
20410b57cec5SDimitry Andric       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
20420b57cec5SDimitry Andric              MD);
20430b57cec5SDimitry Andric       Assert(isa<MDString>(MD->getOperand(0)),
20440b57cec5SDimitry Andric              "expected string with name of the !prof annotation", MD);
20450b57cec5SDimitry Andric       MDString *MDS = cast<MDString>(MD->getOperand(0));
20460b57cec5SDimitry Andric       StringRef ProfName = MDS->getString();
20470b57cec5SDimitry Andric       Assert(ProfName.equals("function_entry_count") ||
20480b57cec5SDimitry Andric                  ProfName.equals("synthetic_function_entry_count"),
20490b57cec5SDimitry Andric              "first operand should be 'function_entry_count'"
20500b57cec5SDimitry Andric              " or 'synthetic_function_entry_count'",
20510b57cec5SDimitry Andric              MD);
20520b57cec5SDimitry Andric 
20530b57cec5SDimitry Andric       // Check second operand.
20540b57cec5SDimitry Andric       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
20550b57cec5SDimitry Andric              MD);
20560b57cec5SDimitry Andric       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
20570b57cec5SDimitry Andric              "expected integer argument to function_entry_count", MD);
20580b57cec5SDimitry Andric     }
20590b57cec5SDimitry Andric   }
20600b57cec5SDimitry Andric }
20610b57cec5SDimitry Andric 
20620b57cec5SDimitry Andric void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
20630b57cec5SDimitry Andric   if (!ConstantExprVisited.insert(EntryC).second)
20640b57cec5SDimitry Andric     return;
20650b57cec5SDimitry Andric 
20660b57cec5SDimitry Andric   SmallVector<const Constant *, 16> Stack;
20670b57cec5SDimitry Andric   Stack.push_back(EntryC);
20680b57cec5SDimitry Andric 
20690b57cec5SDimitry Andric   while (!Stack.empty()) {
20700b57cec5SDimitry Andric     const Constant *C = Stack.pop_back_val();
20710b57cec5SDimitry Andric 
20720b57cec5SDimitry Andric     // Check this constant expression.
20730b57cec5SDimitry Andric     if (const auto *CE = dyn_cast<ConstantExpr>(C))
20740b57cec5SDimitry Andric       visitConstantExpr(CE);
20750b57cec5SDimitry Andric 
20760b57cec5SDimitry Andric     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
20770b57cec5SDimitry Andric       // Global Values get visited separately, but we do need to make sure
20780b57cec5SDimitry Andric       // that the global value is in the correct module
20790b57cec5SDimitry Andric       Assert(GV->getParent() == &M, "Referencing global in another module!",
20800b57cec5SDimitry Andric              EntryC, &M, GV, GV->getParent());
20810b57cec5SDimitry Andric       continue;
20820b57cec5SDimitry Andric     }
20830b57cec5SDimitry Andric 
20840b57cec5SDimitry Andric     // Visit all sub-expressions.
20850b57cec5SDimitry Andric     for (const Use &U : C->operands()) {
20860b57cec5SDimitry Andric       const auto *OpC = dyn_cast<Constant>(U);
20870b57cec5SDimitry Andric       if (!OpC)
20880b57cec5SDimitry Andric         continue;
20890b57cec5SDimitry Andric       if (!ConstantExprVisited.insert(OpC).second)
20900b57cec5SDimitry Andric         continue;
20910b57cec5SDimitry Andric       Stack.push_back(OpC);
20920b57cec5SDimitry Andric     }
20930b57cec5SDimitry Andric   }
20940b57cec5SDimitry Andric }
20950b57cec5SDimitry Andric 
20960b57cec5SDimitry Andric void Verifier::visitConstantExpr(const ConstantExpr *CE) {
20970b57cec5SDimitry Andric   if (CE->getOpcode() == Instruction::BitCast)
20980b57cec5SDimitry Andric     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
20990b57cec5SDimitry Andric                                  CE->getType()),
21000b57cec5SDimitry Andric            "Invalid bitcast", CE);
21010b57cec5SDimitry Andric }
21020b57cec5SDimitry Andric 
21030b57cec5SDimitry Andric bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
21040b57cec5SDimitry Andric   // There shouldn't be more attribute sets than there are parameters plus the
21050b57cec5SDimitry Andric   // function and return value.
21060b57cec5SDimitry Andric   return Attrs.getNumAttrSets() <= Params + 2;
21070b57cec5SDimitry Andric }
21080b57cec5SDimitry Andric 
21090b57cec5SDimitry Andric /// Verify that statepoint intrinsic is well formed.
21100b57cec5SDimitry Andric void Verifier::verifyStatepoint(const CallBase &Call) {
21110b57cec5SDimitry Andric   assert(Call.getCalledFunction() &&
21120b57cec5SDimitry Andric          Call.getCalledFunction()->getIntrinsicID() ==
21130b57cec5SDimitry Andric              Intrinsic::experimental_gc_statepoint);
21140b57cec5SDimitry Andric 
21150b57cec5SDimitry Andric   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
21160b57cec5SDimitry Andric              !Call.onlyAccessesArgMemory(),
21170b57cec5SDimitry Andric          "gc.statepoint must read and write all memory to preserve "
21180b57cec5SDimitry Andric          "reordering restrictions required by safepoint semantics",
21190b57cec5SDimitry Andric          Call);
21200b57cec5SDimitry Andric 
21210b57cec5SDimitry Andric   const int64_t NumPatchBytes =
21220b57cec5SDimitry Andric       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
21230b57cec5SDimitry Andric   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
21240b57cec5SDimitry Andric   Assert(NumPatchBytes >= 0,
21250b57cec5SDimitry Andric          "gc.statepoint number of patchable bytes must be "
21260b57cec5SDimitry Andric          "positive",
21270b57cec5SDimitry Andric          Call);
21280b57cec5SDimitry Andric 
21290b57cec5SDimitry Andric   const Value *Target = Call.getArgOperand(2);
21300b57cec5SDimitry Andric   auto *PT = dyn_cast<PointerType>(Target->getType());
21310b57cec5SDimitry Andric   Assert(PT && PT->getElementType()->isFunctionTy(),
21320b57cec5SDimitry Andric          "gc.statepoint callee must be of function pointer type", Call, Target);
21330b57cec5SDimitry Andric   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
21340b57cec5SDimitry Andric 
21350b57cec5SDimitry Andric   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
21360b57cec5SDimitry Andric   Assert(NumCallArgs >= 0,
21370b57cec5SDimitry Andric          "gc.statepoint number of arguments to underlying call "
21380b57cec5SDimitry Andric          "must be positive",
21390b57cec5SDimitry Andric          Call);
21400b57cec5SDimitry Andric   const int NumParams = (int)TargetFuncType->getNumParams();
21410b57cec5SDimitry Andric   if (TargetFuncType->isVarArg()) {
21420b57cec5SDimitry Andric     Assert(NumCallArgs >= NumParams,
21430b57cec5SDimitry Andric            "gc.statepoint mismatch in number of vararg call args", Call);
21440b57cec5SDimitry Andric 
21450b57cec5SDimitry Andric     // TODO: Remove this limitation
21460b57cec5SDimitry Andric     Assert(TargetFuncType->getReturnType()->isVoidTy(),
21470b57cec5SDimitry Andric            "gc.statepoint doesn't support wrapping non-void "
21480b57cec5SDimitry Andric            "vararg functions yet",
21490b57cec5SDimitry Andric            Call);
21500b57cec5SDimitry Andric   } else
21510b57cec5SDimitry Andric     Assert(NumCallArgs == NumParams,
21520b57cec5SDimitry Andric            "gc.statepoint mismatch in number of call args", Call);
21530b57cec5SDimitry Andric 
21540b57cec5SDimitry Andric   const uint64_t Flags
21550b57cec5SDimitry Andric     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
21560b57cec5SDimitry Andric   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
21570b57cec5SDimitry Andric          "unknown flag used in gc.statepoint flags argument", Call);
21580b57cec5SDimitry Andric 
21590b57cec5SDimitry Andric   // Verify that the types of the call parameter arguments match
21600b57cec5SDimitry Andric   // the type of the wrapped callee.
21610b57cec5SDimitry Andric   AttributeList Attrs = Call.getAttributes();
21620b57cec5SDimitry Andric   for (int i = 0; i < NumParams; i++) {
21630b57cec5SDimitry Andric     Type *ParamType = TargetFuncType->getParamType(i);
21640b57cec5SDimitry Andric     Type *ArgType = Call.getArgOperand(5 + i)->getType();
21650b57cec5SDimitry Andric     Assert(ArgType == ParamType,
21660b57cec5SDimitry Andric            "gc.statepoint call argument does not match wrapped "
21670b57cec5SDimitry Andric            "function type",
21680b57cec5SDimitry Andric            Call);
21690b57cec5SDimitry Andric 
21700b57cec5SDimitry Andric     if (TargetFuncType->isVarArg()) {
21710b57cec5SDimitry Andric       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
21720b57cec5SDimitry Andric       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
21730b57cec5SDimitry Andric              "Attribute 'sret' cannot be used for vararg call arguments!",
21740b57cec5SDimitry Andric              Call);
21750b57cec5SDimitry Andric     }
21760b57cec5SDimitry Andric   }
21770b57cec5SDimitry Andric 
21780b57cec5SDimitry Andric   const int EndCallArgsInx = 4 + NumCallArgs;
21790b57cec5SDimitry Andric 
21800b57cec5SDimitry Andric   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
21810b57cec5SDimitry Andric   Assert(isa<ConstantInt>(NumTransitionArgsV),
21820b57cec5SDimitry Andric          "gc.statepoint number of transition arguments "
21830b57cec5SDimitry Andric          "must be constant integer",
21840b57cec5SDimitry Andric          Call);
21850b57cec5SDimitry Andric   const int NumTransitionArgs =
21860b57cec5SDimitry Andric       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
21875ffd83dbSDimitry Andric   Assert(NumTransitionArgs == 0,
2188e8d8bef9SDimitry Andric          "gc.statepoint w/inline transition bundle is deprecated", Call);
2189e8d8bef9SDimitry Andric   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
21905ffd83dbSDimitry Andric 
21910b57cec5SDimitry Andric   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
21920b57cec5SDimitry Andric   Assert(isa<ConstantInt>(NumDeoptArgsV),
21930b57cec5SDimitry Andric          "gc.statepoint number of deoptimization arguments "
21940b57cec5SDimitry Andric          "must be constant integer",
21950b57cec5SDimitry Andric          Call);
21960b57cec5SDimitry Andric   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
21975ffd83dbSDimitry Andric   Assert(NumDeoptArgs == 0,
2198e8d8bef9SDimitry Andric          "gc.statepoint w/inline deopt operands is deprecated", Call);
21995ffd83dbSDimitry Andric 
2200e8d8bef9SDimitry Andric   const int ExpectedNumArgs = 7 + NumCallArgs;
2201e8d8bef9SDimitry Andric   Assert(ExpectedNumArgs == (int)Call.arg_size(),
2202e8d8bef9SDimitry Andric          "gc.statepoint too many arguments", Call);
22030b57cec5SDimitry Andric 
22040b57cec5SDimitry Andric   // Check that the only uses of this gc.statepoint are gc.result or
22050b57cec5SDimitry Andric   // gc.relocate calls which are tied to this statepoint and thus part
22060b57cec5SDimitry Andric   // of the same statepoint sequence
22070b57cec5SDimitry Andric   for (const User *U : Call.users()) {
22080b57cec5SDimitry Andric     const CallInst *UserCall = dyn_cast<const CallInst>(U);
22090b57cec5SDimitry Andric     Assert(UserCall, "illegal use of statepoint token", Call, U);
22100b57cec5SDimitry Andric     if (!UserCall)
22110b57cec5SDimitry Andric       continue;
22120b57cec5SDimitry Andric     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
22130b57cec5SDimitry Andric            "gc.result or gc.relocate are the only value uses "
22140b57cec5SDimitry Andric            "of a gc.statepoint",
22150b57cec5SDimitry Andric            Call, U);
22160b57cec5SDimitry Andric     if (isa<GCResultInst>(UserCall)) {
22170b57cec5SDimitry Andric       Assert(UserCall->getArgOperand(0) == &Call,
22180b57cec5SDimitry Andric              "gc.result connected to wrong gc.statepoint", Call, UserCall);
22190b57cec5SDimitry Andric     } else if (isa<GCRelocateInst>(Call)) {
22200b57cec5SDimitry Andric       Assert(UserCall->getArgOperand(0) == &Call,
22210b57cec5SDimitry Andric              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
22220b57cec5SDimitry Andric     }
22230b57cec5SDimitry Andric   }
22240b57cec5SDimitry Andric 
22250b57cec5SDimitry Andric   // Note: It is legal for a single derived pointer to be listed multiple
22260b57cec5SDimitry Andric   // times.  It's non-optimal, but it is legal.  It can also happen after
22270b57cec5SDimitry Andric   // insertion if we strip a bitcast away.
22280b57cec5SDimitry Andric   // Note: It is really tempting to check that each base is relocated and
22290b57cec5SDimitry Andric   // that a derived pointer is never reused as a base pointer.  This turns
22300b57cec5SDimitry Andric   // out to be problematic since optimizations run after safepoint insertion
22310b57cec5SDimitry Andric   // can recognize equality properties that the insertion logic doesn't know
22320b57cec5SDimitry Andric   // about.  See example statepoint.ll in the verifier subdirectory
22330b57cec5SDimitry Andric }
22340b57cec5SDimitry Andric 
22350b57cec5SDimitry Andric void Verifier::verifyFrameRecoverIndices() {
22360b57cec5SDimitry Andric   for (auto &Counts : FrameEscapeInfo) {
22370b57cec5SDimitry Andric     Function *F = Counts.first;
22380b57cec5SDimitry Andric     unsigned EscapedObjectCount = Counts.second.first;
22390b57cec5SDimitry Andric     unsigned MaxRecoveredIndex = Counts.second.second;
22400b57cec5SDimitry Andric     Assert(MaxRecoveredIndex <= EscapedObjectCount,
22410b57cec5SDimitry Andric            "all indices passed to llvm.localrecover must be less than the "
22420b57cec5SDimitry Andric            "number of arguments passed to llvm.localescape in the parent "
22430b57cec5SDimitry Andric            "function",
22440b57cec5SDimitry Andric            F);
22450b57cec5SDimitry Andric   }
22460b57cec5SDimitry Andric }
22470b57cec5SDimitry Andric 
22480b57cec5SDimitry Andric static Instruction *getSuccPad(Instruction *Terminator) {
22490b57cec5SDimitry Andric   BasicBlock *UnwindDest;
22500b57cec5SDimitry Andric   if (auto *II = dyn_cast<InvokeInst>(Terminator))
22510b57cec5SDimitry Andric     UnwindDest = II->getUnwindDest();
22520b57cec5SDimitry Andric   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
22530b57cec5SDimitry Andric     UnwindDest = CSI->getUnwindDest();
22540b57cec5SDimitry Andric   else
22550b57cec5SDimitry Andric     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
22560b57cec5SDimitry Andric   return UnwindDest->getFirstNonPHI();
22570b57cec5SDimitry Andric }
22580b57cec5SDimitry Andric 
22590b57cec5SDimitry Andric void Verifier::verifySiblingFuncletUnwinds() {
22600b57cec5SDimitry Andric   SmallPtrSet<Instruction *, 8> Visited;
22610b57cec5SDimitry Andric   SmallPtrSet<Instruction *, 8> Active;
22620b57cec5SDimitry Andric   for (const auto &Pair : SiblingFuncletInfo) {
22630b57cec5SDimitry Andric     Instruction *PredPad = Pair.first;
22640b57cec5SDimitry Andric     if (Visited.count(PredPad))
22650b57cec5SDimitry Andric       continue;
22660b57cec5SDimitry Andric     Active.insert(PredPad);
22670b57cec5SDimitry Andric     Instruction *Terminator = Pair.second;
22680b57cec5SDimitry Andric     do {
22690b57cec5SDimitry Andric       Instruction *SuccPad = getSuccPad(Terminator);
22700b57cec5SDimitry Andric       if (Active.count(SuccPad)) {
22710b57cec5SDimitry Andric         // Found a cycle; report error
22720b57cec5SDimitry Andric         Instruction *CyclePad = SuccPad;
22730b57cec5SDimitry Andric         SmallVector<Instruction *, 8> CycleNodes;
22740b57cec5SDimitry Andric         do {
22750b57cec5SDimitry Andric           CycleNodes.push_back(CyclePad);
22760b57cec5SDimitry Andric           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
22770b57cec5SDimitry Andric           if (CycleTerminator != CyclePad)
22780b57cec5SDimitry Andric             CycleNodes.push_back(CycleTerminator);
22790b57cec5SDimitry Andric           CyclePad = getSuccPad(CycleTerminator);
22800b57cec5SDimitry Andric         } while (CyclePad != SuccPad);
22810b57cec5SDimitry Andric         Assert(false, "EH pads can't handle each other's exceptions",
22820b57cec5SDimitry Andric                ArrayRef<Instruction *>(CycleNodes));
22830b57cec5SDimitry Andric       }
22840b57cec5SDimitry Andric       // Don't re-walk a node we've already checked
22850b57cec5SDimitry Andric       if (!Visited.insert(SuccPad).second)
22860b57cec5SDimitry Andric         break;
22870b57cec5SDimitry Andric       // Walk to this successor if it has a map entry.
22880b57cec5SDimitry Andric       PredPad = SuccPad;
22890b57cec5SDimitry Andric       auto TermI = SiblingFuncletInfo.find(PredPad);
22900b57cec5SDimitry Andric       if (TermI == SiblingFuncletInfo.end())
22910b57cec5SDimitry Andric         break;
22920b57cec5SDimitry Andric       Terminator = TermI->second;
22930b57cec5SDimitry Andric       Active.insert(PredPad);
22940b57cec5SDimitry Andric     } while (true);
22950b57cec5SDimitry Andric     // Each node only has one successor, so we've walked all the active
22960b57cec5SDimitry Andric     // nodes' successors.
22970b57cec5SDimitry Andric     Active.clear();
22980b57cec5SDimitry Andric   }
22990b57cec5SDimitry Andric }
23000b57cec5SDimitry Andric 
23010b57cec5SDimitry Andric // visitFunction - Verify that a function is ok.
23020b57cec5SDimitry Andric //
23030b57cec5SDimitry Andric void Verifier::visitFunction(const Function &F) {
23040b57cec5SDimitry Andric   visitGlobalValue(F);
23050b57cec5SDimitry Andric 
23060b57cec5SDimitry Andric   // Check function arguments.
23070b57cec5SDimitry Andric   FunctionType *FT = F.getFunctionType();
23080b57cec5SDimitry Andric   unsigned NumArgs = F.arg_size();
23090b57cec5SDimitry Andric 
23100b57cec5SDimitry Andric   Assert(&Context == &F.getContext(),
23110b57cec5SDimitry Andric          "Function context does not match Module context!", &F);
23120b57cec5SDimitry Andric 
23130b57cec5SDimitry Andric   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
23140b57cec5SDimitry Andric   Assert(FT->getNumParams() == NumArgs,
23150b57cec5SDimitry Andric          "# formal arguments must match # of arguments for function type!", &F,
23160b57cec5SDimitry Andric          FT);
23170b57cec5SDimitry Andric   Assert(F.getReturnType()->isFirstClassType() ||
23180b57cec5SDimitry Andric              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
23190b57cec5SDimitry Andric          "Functions cannot return aggregate values!", &F);
23200b57cec5SDimitry Andric 
23210b57cec5SDimitry Andric   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
23220b57cec5SDimitry Andric          "Invalid struct return type!", &F);
23230b57cec5SDimitry Andric 
23240b57cec5SDimitry Andric   AttributeList Attrs = F.getAttributes();
23250b57cec5SDimitry Andric 
23260b57cec5SDimitry Andric   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
23270b57cec5SDimitry Andric          "Attribute after last parameter!", &F);
23280b57cec5SDimitry Andric 
2329*fe6060f1SDimitry Andric   bool IsIntrinsic = F.isIntrinsic();
23300b57cec5SDimitry Andric 
23310b57cec5SDimitry Andric   // Check function attributes.
2332*fe6060f1SDimitry Andric   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic);
23330b57cec5SDimitry Andric 
23340b57cec5SDimitry Andric   // On function declarations/definitions, we do not support the builtin
23350b57cec5SDimitry Andric   // attribute. We do not check this in VerifyFunctionAttrs since that is
23360b57cec5SDimitry Andric   // checking for Attributes that can/can not ever be on functions.
23370b57cec5SDimitry Andric   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
23380b57cec5SDimitry Andric          "Attribute 'builtin' can only be applied to a callsite.", &F);
23390b57cec5SDimitry Andric 
2340*fe6060f1SDimitry Andric   Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2341*fe6060f1SDimitry Andric          "Attribute 'elementtype' can only be applied to a callsite.", &F);
2342*fe6060f1SDimitry Andric 
23430b57cec5SDimitry Andric   // Check that this function meets the restrictions on this calling convention.
23440b57cec5SDimitry Andric   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
23450b57cec5SDimitry Andric   // restrictions can be lifted.
23460b57cec5SDimitry Andric   switch (F.getCallingConv()) {
23470b57cec5SDimitry Andric   default:
23480b57cec5SDimitry Andric   case CallingConv::C:
23490b57cec5SDimitry Andric     break;
2350e8d8bef9SDimitry Andric   case CallingConv::X86_INTR: {
2351e8d8bef9SDimitry Andric     Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal),
2352e8d8bef9SDimitry Andric            "Calling convention parameter requires byval", &F);
2353e8d8bef9SDimitry Andric     break;
2354e8d8bef9SDimitry Andric   }
23550b57cec5SDimitry Andric   case CallingConv::AMDGPU_KERNEL:
23560b57cec5SDimitry Andric   case CallingConv::SPIR_KERNEL:
23570b57cec5SDimitry Andric     Assert(F.getReturnType()->isVoidTy(),
23580b57cec5SDimitry Andric            "Calling convention requires void return type", &F);
23590b57cec5SDimitry Andric     LLVM_FALLTHROUGH;
23600b57cec5SDimitry Andric   case CallingConv::AMDGPU_VS:
23610b57cec5SDimitry Andric   case CallingConv::AMDGPU_HS:
23620b57cec5SDimitry Andric   case CallingConv::AMDGPU_GS:
23630b57cec5SDimitry Andric   case CallingConv::AMDGPU_PS:
23640b57cec5SDimitry Andric   case CallingConv::AMDGPU_CS:
23650b57cec5SDimitry Andric     Assert(!F.hasStructRetAttr(),
23660b57cec5SDimitry Andric            "Calling convention does not allow sret", &F);
2367e8d8bef9SDimitry Andric     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2368e8d8bef9SDimitry Andric       const unsigned StackAS = DL.getAllocaAddrSpace();
2369e8d8bef9SDimitry Andric       unsigned i = 0;
2370e8d8bef9SDimitry Andric       for (const Argument &Arg : F.args()) {
2371e8d8bef9SDimitry Andric         Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal),
2372e8d8bef9SDimitry Andric                "Calling convention disallows byval", &F);
2373e8d8bef9SDimitry Andric         Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated),
2374e8d8bef9SDimitry Andric                "Calling convention disallows preallocated", &F);
2375e8d8bef9SDimitry Andric         Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca),
2376e8d8bef9SDimitry Andric                "Calling convention disallows inalloca", &F);
2377e8d8bef9SDimitry Andric 
2378e8d8bef9SDimitry Andric         if (Attrs.hasParamAttribute(i, Attribute::ByRef)) {
2379e8d8bef9SDimitry Andric           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2380e8d8bef9SDimitry Andric           // value here.
2381e8d8bef9SDimitry Andric           Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2382e8d8bef9SDimitry Andric                  "Calling convention disallows stack byref", &F);
2383e8d8bef9SDimitry Andric         }
2384e8d8bef9SDimitry Andric 
2385e8d8bef9SDimitry Andric         ++i;
2386e8d8bef9SDimitry Andric       }
2387e8d8bef9SDimitry Andric     }
2388e8d8bef9SDimitry Andric 
23890b57cec5SDimitry Andric     LLVM_FALLTHROUGH;
23900b57cec5SDimitry Andric   case CallingConv::Fast:
23910b57cec5SDimitry Andric   case CallingConv::Cold:
23920b57cec5SDimitry Andric   case CallingConv::Intel_OCL_BI:
23930b57cec5SDimitry Andric   case CallingConv::PTX_Kernel:
23940b57cec5SDimitry Andric   case CallingConv::PTX_Device:
23950b57cec5SDimitry Andric     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
23960b57cec5SDimitry Andric                           "perfect forwarding!",
23970b57cec5SDimitry Andric            &F);
23980b57cec5SDimitry Andric     break;
23990b57cec5SDimitry Andric   }
24000b57cec5SDimitry Andric 
24010b57cec5SDimitry Andric   // Check that the argument values match the function type for this function...
24020b57cec5SDimitry Andric   unsigned i = 0;
24030b57cec5SDimitry Andric   for (const Argument &Arg : F.args()) {
24040b57cec5SDimitry Andric     Assert(Arg.getType() == FT->getParamType(i),
24050b57cec5SDimitry Andric            "Argument value does not match function argument type!", &Arg,
24060b57cec5SDimitry Andric            FT->getParamType(i));
24070b57cec5SDimitry Andric     Assert(Arg.getType()->isFirstClassType(),
24080b57cec5SDimitry Andric            "Function arguments must have first-class types!", &Arg);
2409*fe6060f1SDimitry Andric     if (!IsIntrinsic) {
24100b57cec5SDimitry Andric       Assert(!Arg.getType()->isMetadataTy(),
24110b57cec5SDimitry Andric              "Function takes metadata but isn't an intrinsic", &Arg, &F);
24120b57cec5SDimitry Andric       Assert(!Arg.getType()->isTokenTy(),
24130b57cec5SDimitry Andric              "Function takes token but isn't an intrinsic", &Arg, &F);
2414*fe6060f1SDimitry Andric       Assert(!Arg.getType()->isX86_AMXTy(),
2415*fe6060f1SDimitry Andric              "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
24160b57cec5SDimitry Andric     }
24170b57cec5SDimitry Andric 
24180b57cec5SDimitry Andric     // Check that swifterror argument is only used by loads and stores.
24190b57cec5SDimitry Andric     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
24200b57cec5SDimitry Andric       verifySwiftErrorValue(&Arg);
24210b57cec5SDimitry Andric     }
24220b57cec5SDimitry Andric     ++i;
24230b57cec5SDimitry Andric   }
24240b57cec5SDimitry Andric 
2425*fe6060f1SDimitry Andric   if (!IsIntrinsic) {
24260b57cec5SDimitry Andric     Assert(!F.getReturnType()->isTokenTy(),
2427*fe6060f1SDimitry Andric            "Function returns a token but isn't an intrinsic", &F);
2428*fe6060f1SDimitry Andric     Assert(!F.getReturnType()->isX86_AMXTy(),
2429*fe6060f1SDimitry Andric            "Function returns a x86_amx but isn't an intrinsic", &F);
2430*fe6060f1SDimitry Andric   }
24310b57cec5SDimitry Andric 
24320b57cec5SDimitry Andric   // Get the function metadata attachments.
24330b57cec5SDimitry Andric   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
24340b57cec5SDimitry Andric   F.getAllMetadata(MDs);
24350b57cec5SDimitry Andric   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
24360b57cec5SDimitry Andric   verifyFunctionMetadata(MDs);
24370b57cec5SDimitry Andric 
24380b57cec5SDimitry Andric   // Check validity of the personality function
24390b57cec5SDimitry Andric   if (F.hasPersonalityFn()) {
24400b57cec5SDimitry Andric     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
24410b57cec5SDimitry Andric     if (Per)
24420b57cec5SDimitry Andric       Assert(Per->getParent() == F.getParent(),
24430b57cec5SDimitry Andric              "Referencing personality function in another module!",
24440b57cec5SDimitry Andric              &F, F.getParent(), Per, Per->getParent());
24450b57cec5SDimitry Andric   }
24460b57cec5SDimitry Andric 
24470b57cec5SDimitry Andric   if (F.isMaterializable()) {
24480b57cec5SDimitry Andric     // Function has a body somewhere we can't see.
24490b57cec5SDimitry Andric     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
24500b57cec5SDimitry Andric            MDs.empty() ? nullptr : MDs.front().second);
24510b57cec5SDimitry Andric   } else if (F.isDeclaration()) {
24520b57cec5SDimitry Andric     for (const auto &I : MDs) {
24530b57cec5SDimitry Andric       // This is used for call site debug information.
24540b57cec5SDimitry Andric       AssertDI(I.first != LLVMContext::MD_dbg ||
24550b57cec5SDimitry Andric                    !cast<DISubprogram>(I.second)->isDistinct(),
24560b57cec5SDimitry Andric                "function declaration may only have a unique !dbg attachment",
24570b57cec5SDimitry Andric                &F);
24580b57cec5SDimitry Andric       Assert(I.first != LLVMContext::MD_prof,
24590b57cec5SDimitry Andric              "function declaration may not have a !prof attachment", &F);
24600b57cec5SDimitry Andric 
24610b57cec5SDimitry Andric       // Verify the metadata itself.
24625ffd83dbSDimitry Andric       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
24630b57cec5SDimitry Andric     }
24640b57cec5SDimitry Andric     Assert(!F.hasPersonalityFn(),
24650b57cec5SDimitry Andric            "Function declaration shouldn't have a personality routine", &F);
24660b57cec5SDimitry Andric   } else {
24670b57cec5SDimitry Andric     // Verify that this function (which has a body) is not named "llvm.*".  It
24680b57cec5SDimitry Andric     // is not legal to define intrinsics.
2469*fe6060f1SDimitry Andric     Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
24700b57cec5SDimitry Andric 
24710b57cec5SDimitry Andric     // Check the entry node
24720b57cec5SDimitry Andric     const BasicBlock *Entry = &F.getEntryBlock();
24730b57cec5SDimitry Andric     Assert(pred_empty(Entry),
24740b57cec5SDimitry Andric            "Entry block to function must not have predecessors!", Entry);
24750b57cec5SDimitry Andric 
24760b57cec5SDimitry Andric     // The address of the entry block cannot be taken, unless it is dead.
24770b57cec5SDimitry Andric     if (Entry->hasAddressTaken()) {
24780b57cec5SDimitry Andric       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
24790b57cec5SDimitry Andric              "blockaddress may not be used with the entry block!", Entry);
24800b57cec5SDimitry Andric     }
24810b57cec5SDimitry Andric 
24820b57cec5SDimitry Andric     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
24830b57cec5SDimitry Andric     // Visit metadata attachments.
24840b57cec5SDimitry Andric     for (const auto &I : MDs) {
24850b57cec5SDimitry Andric       // Verify that the attachment is legal.
24865ffd83dbSDimitry Andric       auto AllowLocs = AreDebugLocsAllowed::No;
24870b57cec5SDimitry Andric       switch (I.first) {
24880b57cec5SDimitry Andric       default:
24890b57cec5SDimitry Andric         break;
24900b57cec5SDimitry Andric       case LLVMContext::MD_dbg: {
24910b57cec5SDimitry Andric         ++NumDebugAttachments;
24920b57cec5SDimitry Andric         AssertDI(NumDebugAttachments == 1,
24930b57cec5SDimitry Andric                  "function must have a single !dbg attachment", &F, I.second);
24940b57cec5SDimitry Andric         AssertDI(isa<DISubprogram>(I.second),
24950b57cec5SDimitry Andric                  "function !dbg attachment must be a subprogram", &F, I.second);
2496e8d8bef9SDimitry Andric         AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
2497e8d8bef9SDimitry Andric                  "function definition may only have a distinct !dbg attachment",
2498e8d8bef9SDimitry Andric                  &F);
2499e8d8bef9SDimitry Andric 
25000b57cec5SDimitry Andric         auto *SP = cast<DISubprogram>(I.second);
25010b57cec5SDimitry Andric         const Function *&AttachedTo = DISubprogramAttachments[SP];
25020b57cec5SDimitry Andric         AssertDI(!AttachedTo || AttachedTo == &F,
25030b57cec5SDimitry Andric                  "DISubprogram attached to more than one function", SP, &F);
25040b57cec5SDimitry Andric         AttachedTo = &F;
25055ffd83dbSDimitry Andric         AllowLocs = AreDebugLocsAllowed::Yes;
25060b57cec5SDimitry Andric         break;
25070b57cec5SDimitry Andric       }
25080b57cec5SDimitry Andric       case LLVMContext::MD_prof:
25090b57cec5SDimitry Andric         ++NumProfAttachments;
25100b57cec5SDimitry Andric         Assert(NumProfAttachments == 1,
25110b57cec5SDimitry Andric                "function must have a single !prof attachment", &F, I.second);
25120b57cec5SDimitry Andric         break;
25130b57cec5SDimitry Andric       }
25140b57cec5SDimitry Andric 
25150b57cec5SDimitry Andric       // Verify the metadata itself.
25165ffd83dbSDimitry Andric       visitMDNode(*I.second, AllowLocs);
25170b57cec5SDimitry Andric     }
25180b57cec5SDimitry Andric   }
25190b57cec5SDimitry Andric 
25200b57cec5SDimitry Andric   // If this function is actually an intrinsic, verify that it is only used in
25210b57cec5SDimitry Andric   // direct call/invokes, never having its "address taken".
25220b57cec5SDimitry Andric   // Only do this if the module is materialized, otherwise we don't have all the
25230b57cec5SDimitry Andric   // uses.
2524*fe6060f1SDimitry Andric   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
25250b57cec5SDimitry Andric     const User *U;
25260b57cec5SDimitry Andric     if (F.hasAddressTaken(&U))
25270b57cec5SDimitry Andric       Assert(false, "Invalid user of intrinsic instruction!", U);
25280b57cec5SDimitry Andric   }
25290b57cec5SDimitry Andric 
2530*fe6060f1SDimitry Andric   // Check intrinsics' signatures.
2531*fe6060f1SDimitry Andric   switch (F.getIntrinsicID()) {
2532*fe6060f1SDimitry Andric   case Intrinsic::experimental_gc_get_pointer_base: {
2533*fe6060f1SDimitry Andric     FunctionType *FT = F.getFunctionType();
2534*fe6060f1SDimitry Andric     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2535*fe6060f1SDimitry Andric     Assert(isa<PointerType>(F.getReturnType()),
2536*fe6060f1SDimitry Andric            "gc.get.pointer.base must return a pointer", F);
2537*fe6060f1SDimitry Andric     Assert(FT->getParamType(0) == F.getReturnType(),
2538*fe6060f1SDimitry Andric            "gc.get.pointer.base operand and result must be of the same type",
2539*fe6060f1SDimitry Andric            F);
2540*fe6060f1SDimitry Andric     break;
2541*fe6060f1SDimitry Andric   }
2542*fe6060f1SDimitry Andric   case Intrinsic::experimental_gc_get_pointer_offset: {
2543*fe6060f1SDimitry Andric     FunctionType *FT = F.getFunctionType();
2544*fe6060f1SDimitry Andric     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2545*fe6060f1SDimitry Andric     Assert(isa<PointerType>(FT->getParamType(0)),
2546*fe6060f1SDimitry Andric            "gc.get.pointer.offset operand must be a pointer", F);
2547*fe6060f1SDimitry Andric     Assert(F.getReturnType()->isIntegerTy(),
2548*fe6060f1SDimitry Andric            "gc.get.pointer.offset must return integer", F);
2549*fe6060f1SDimitry Andric     break;
2550*fe6060f1SDimitry Andric   }
2551*fe6060f1SDimitry Andric   }
2552*fe6060f1SDimitry Andric 
25530b57cec5SDimitry Andric   auto *N = F.getSubprogram();
25540b57cec5SDimitry Andric   HasDebugInfo = (N != nullptr);
25550b57cec5SDimitry Andric   if (!HasDebugInfo)
25560b57cec5SDimitry Andric     return;
25570b57cec5SDimitry Andric 
25585ffd83dbSDimitry Andric   // Check that all !dbg attachments lead to back to N.
25590b57cec5SDimitry Andric   //
25600b57cec5SDimitry Andric   // FIXME: Check this incrementally while visiting !dbg attachments.
25610b57cec5SDimitry Andric   // FIXME: Only check when N is the canonical subprogram for F.
25620b57cec5SDimitry Andric   SmallPtrSet<const MDNode *, 32> Seen;
25630b57cec5SDimitry Andric   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
25640b57cec5SDimitry Andric     // Be careful about using DILocation here since we might be dealing with
25650b57cec5SDimitry Andric     // broken code (this is the Verifier after all).
25660b57cec5SDimitry Andric     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
25670b57cec5SDimitry Andric     if (!DL)
25680b57cec5SDimitry Andric       return;
25690b57cec5SDimitry Andric     if (!Seen.insert(DL).second)
25700b57cec5SDimitry Andric       return;
25710b57cec5SDimitry Andric 
25720b57cec5SDimitry Andric     Metadata *Parent = DL->getRawScope();
25730b57cec5SDimitry Andric     AssertDI(Parent && isa<DILocalScope>(Parent),
25740b57cec5SDimitry Andric              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
25750b57cec5SDimitry Andric              Parent);
25765ffd83dbSDimitry Andric 
25770b57cec5SDimitry Andric     DILocalScope *Scope = DL->getInlinedAtScope();
25785ffd83dbSDimitry Andric     Assert(Scope, "Failed to find DILocalScope", DL);
25795ffd83dbSDimitry Andric 
25805ffd83dbSDimitry Andric     if (!Seen.insert(Scope).second)
25810b57cec5SDimitry Andric       return;
25820b57cec5SDimitry Andric 
25835ffd83dbSDimitry Andric     DISubprogram *SP = Scope->getSubprogram();
25840b57cec5SDimitry Andric 
25850b57cec5SDimitry Andric     // Scope and SP could be the same MDNode and we don't want to skip
25860b57cec5SDimitry Andric     // validation in that case
25870b57cec5SDimitry Andric     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
25880b57cec5SDimitry Andric       return;
25890b57cec5SDimitry Andric 
25900b57cec5SDimitry Andric     AssertDI(SP->describes(&F),
25910b57cec5SDimitry Andric              "!dbg attachment points at wrong subprogram for function", N, &F,
25920b57cec5SDimitry Andric              &I, DL, Scope, SP);
25930b57cec5SDimitry Andric   };
25940b57cec5SDimitry Andric   for (auto &BB : F)
25950b57cec5SDimitry Andric     for (auto &I : BB) {
25960b57cec5SDimitry Andric       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
25970b57cec5SDimitry Andric       // The llvm.loop annotations also contain two DILocations.
25980b57cec5SDimitry Andric       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
25990b57cec5SDimitry Andric         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
26000b57cec5SDimitry Andric           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
26010b57cec5SDimitry Andric       if (BrokenDebugInfo)
26020b57cec5SDimitry Andric         return;
26030b57cec5SDimitry Andric     }
26040b57cec5SDimitry Andric }
26050b57cec5SDimitry Andric 
26060b57cec5SDimitry Andric // verifyBasicBlock - Verify that a basic block is well formed...
26070b57cec5SDimitry Andric //
26080b57cec5SDimitry Andric void Verifier::visitBasicBlock(BasicBlock &BB) {
26090b57cec5SDimitry Andric   InstsInThisBlock.clear();
26100b57cec5SDimitry Andric 
26110b57cec5SDimitry Andric   // Ensure that basic blocks have terminators!
26120b57cec5SDimitry Andric   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
26130b57cec5SDimitry Andric 
26140b57cec5SDimitry Andric   // Check constraints that this basic block imposes on all of the PHI nodes in
26150b57cec5SDimitry Andric   // it.
26160b57cec5SDimitry Andric   if (isa<PHINode>(BB.front())) {
2617e8d8bef9SDimitry Andric     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
26180b57cec5SDimitry Andric     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
26190b57cec5SDimitry Andric     llvm::sort(Preds);
26200b57cec5SDimitry Andric     for (const PHINode &PN : BB.phis()) {
26210b57cec5SDimitry Andric       Assert(PN.getNumIncomingValues() == Preds.size(),
26220b57cec5SDimitry Andric              "PHINode should have one entry for each predecessor of its "
26230b57cec5SDimitry Andric              "parent basic block!",
26240b57cec5SDimitry Andric              &PN);
26250b57cec5SDimitry Andric 
26260b57cec5SDimitry Andric       // Get and sort all incoming values in the PHI node...
26270b57cec5SDimitry Andric       Values.clear();
26280b57cec5SDimitry Andric       Values.reserve(PN.getNumIncomingValues());
26290b57cec5SDimitry Andric       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
26300b57cec5SDimitry Andric         Values.push_back(
26310b57cec5SDimitry Andric             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
26320b57cec5SDimitry Andric       llvm::sort(Values);
26330b57cec5SDimitry Andric 
26340b57cec5SDimitry Andric       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
26350b57cec5SDimitry Andric         // Check to make sure that if there is more than one entry for a
26360b57cec5SDimitry Andric         // particular basic block in this PHI node, that the incoming values are
26370b57cec5SDimitry Andric         // all identical.
26380b57cec5SDimitry Andric         //
26390b57cec5SDimitry Andric         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
26400b57cec5SDimitry Andric                    Values[i].second == Values[i - 1].second,
26410b57cec5SDimitry Andric                "PHI node has multiple entries for the same basic block with "
26420b57cec5SDimitry Andric                "different incoming values!",
26430b57cec5SDimitry Andric                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
26440b57cec5SDimitry Andric 
26450b57cec5SDimitry Andric         // Check to make sure that the predecessors and PHI node entries are
26460b57cec5SDimitry Andric         // matched up.
26470b57cec5SDimitry Andric         Assert(Values[i].first == Preds[i],
26480b57cec5SDimitry Andric                "PHI node entries do not match predecessors!", &PN,
26490b57cec5SDimitry Andric                Values[i].first, Preds[i]);
26500b57cec5SDimitry Andric       }
26510b57cec5SDimitry Andric     }
26520b57cec5SDimitry Andric   }
26530b57cec5SDimitry Andric 
26540b57cec5SDimitry Andric   // Check that all instructions have their parent pointers set up correctly.
26550b57cec5SDimitry Andric   for (auto &I : BB)
26560b57cec5SDimitry Andric   {
26570b57cec5SDimitry Andric     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
26580b57cec5SDimitry Andric   }
26590b57cec5SDimitry Andric }
26600b57cec5SDimitry Andric 
26610b57cec5SDimitry Andric void Verifier::visitTerminator(Instruction &I) {
26620b57cec5SDimitry Andric   // Ensure that terminators only exist at the end of the basic block.
26630b57cec5SDimitry Andric   Assert(&I == I.getParent()->getTerminator(),
26640b57cec5SDimitry Andric          "Terminator found in the middle of a basic block!", I.getParent());
26650b57cec5SDimitry Andric   visitInstruction(I);
26660b57cec5SDimitry Andric }
26670b57cec5SDimitry Andric 
26680b57cec5SDimitry Andric void Verifier::visitBranchInst(BranchInst &BI) {
26690b57cec5SDimitry Andric   if (BI.isConditional()) {
26700b57cec5SDimitry Andric     Assert(BI.getCondition()->getType()->isIntegerTy(1),
26710b57cec5SDimitry Andric            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
26720b57cec5SDimitry Andric   }
26730b57cec5SDimitry Andric   visitTerminator(BI);
26740b57cec5SDimitry Andric }
26750b57cec5SDimitry Andric 
26760b57cec5SDimitry Andric void Verifier::visitReturnInst(ReturnInst &RI) {
26770b57cec5SDimitry Andric   Function *F = RI.getParent()->getParent();
26780b57cec5SDimitry Andric   unsigned N = RI.getNumOperands();
26790b57cec5SDimitry Andric   if (F->getReturnType()->isVoidTy())
26800b57cec5SDimitry Andric     Assert(N == 0,
26810b57cec5SDimitry Andric            "Found return instr that returns non-void in Function of void "
26820b57cec5SDimitry Andric            "return type!",
26830b57cec5SDimitry Andric            &RI, F->getReturnType());
26840b57cec5SDimitry Andric   else
26850b57cec5SDimitry Andric     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
26860b57cec5SDimitry Andric            "Function return type does not match operand "
26870b57cec5SDimitry Andric            "type of return inst!",
26880b57cec5SDimitry Andric            &RI, F->getReturnType());
26890b57cec5SDimitry Andric 
26900b57cec5SDimitry Andric   // Check to make sure that the return value has necessary properties for
26910b57cec5SDimitry Andric   // terminators...
26920b57cec5SDimitry Andric   visitTerminator(RI);
26930b57cec5SDimitry Andric }
26940b57cec5SDimitry Andric 
26950b57cec5SDimitry Andric void Verifier::visitSwitchInst(SwitchInst &SI) {
26960b57cec5SDimitry Andric   // Check to make sure that all of the constants in the switch instruction
26970b57cec5SDimitry Andric   // have the same type as the switched-on value.
26980b57cec5SDimitry Andric   Type *SwitchTy = SI.getCondition()->getType();
26990b57cec5SDimitry Andric   SmallPtrSet<ConstantInt*, 32> Constants;
27000b57cec5SDimitry Andric   for (auto &Case : SI.cases()) {
27010b57cec5SDimitry Andric     Assert(Case.getCaseValue()->getType() == SwitchTy,
27020b57cec5SDimitry Andric            "Switch constants must all be same type as switch value!", &SI);
27030b57cec5SDimitry Andric     Assert(Constants.insert(Case.getCaseValue()).second,
27040b57cec5SDimitry Andric            "Duplicate integer as switch case", &SI, Case.getCaseValue());
27050b57cec5SDimitry Andric   }
27060b57cec5SDimitry Andric 
27070b57cec5SDimitry Andric   visitTerminator(SI);
27080b57cec5SDimitry Andric }
27090b57cec5SDimitry Andric 
27100b57cec5SDimitry Andric void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
27110b57cec5SDimitry Andric   Assert(BI.getAddress()->getType()->isPointerTy(),
27120b57cec5SDimitry Andric          "Indirectbr operand must have pointer type!", &BI);
27130b57cec5SDimitry Andric   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
27140b57cec5SDimitry Andric     Assert(BI.getDestination(i)->getType()->isLabelTy(),
27150b57cec5SDimitry Andric            "Indirectbr destinations must all have pointer type!", &BI);
27160b57cec5SDimitry Andric 
27170b57cec5SDimitry Andric   visitTerminator(BI);
27180b57cec5SDimitry Andric }
27190b57cec5SDimitry Andric 
27200b57cec5SDimitry Andric void Verifier::visitCallBrInst(CallBrInst &CBI) {
27210b57cec5SDimitry Andric   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
27220b57cec5SDimitry Andric          &CBI);
2723*fe6060f1SDimitry Andric   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2724*fe6060f1SDimitry Andric   Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
27250b57cec5SDimitry Andric   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
27260b57cec5SDimitry Andric     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
27270b57cec5SDimitry Andric            "Callbr successors must all have pointer type!", &CBI);
27280b57cec5SDimitry Andric   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
27290b57cec5SDimitry Andric     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
27300b57cec5SDimitry Andric            "Using an unescaped label as a callbr argument!", &CBI);
27310b57cec5SDimitry Andric     if (isa<BasicBlock>(CBI.getOperand(i)))
27320b57cec5SDimitry Andric       for (unsigned j = i + 1; j != e; ++j)
27330b57cec5SDimitry Andric         Assert(CBI.getOperand(i) != CBI.getOperand(j),
27340b57cec5SDimitry Andric                "Duplicate callbr destination!", &CBI);
27350b57cec5SDimitry Andric   }
27368bcb0991SDimitry Andric   {
27378bcb0991SDimitry Andric     SmallPtrSet<BasicBlock *, 4> ArgBBs;
27388bcb0991SDimitry Andric     for (Value *V : CBI.args())
27398bcb0991SDimitry Andric       if (auto *BA = dyn_cast<BlockAddress>(V))
27408bcb0991SDimitry Andric         ArgBBs.insert(BA->getBasicBlock());
27418bcb0991SDimitry Andric     for (BasicBlock *BB : CBI.getIndirectDests())
27425ffd83dbSDimitry Andric       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
27438bcb0991SDimitry Andric   }
27440b57cec5SDimitry Andric 
27450b57cec5SDimitry Andric   visitTerminator(CBI);
27460b57cec5SDimitry Andric }
27470b57cec5SDimitry Andric 
27480b57cec5SDimitry Andric void Verifier::visitSelectInst(SelectInst &SI) {
27490b57cec5SDimitry Andric   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
27500b57cec5SDimitry Andric                                          SI.getOperand(2)),
27510b57cec5SDimitry Andric          "Invalid operands for select instruction!", &SI);
27520b57cec5SDimitry Andric 
27530b57cec5SDimitry Andric   Assert(SI.getTrueValue()->getType() == SI.getType(),
27540b57cec5SDimitry Andric          "Select values must have same type as select instruction!", &SI);
27550b57cec5SDimitry Andric   visitInstruction(SI);
27560b57cec5SDimitry Andric }
27570b57cec5SDimitry Andric 
27580b57cec5SDimitry Andric /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
27590b57cec5SDimitry Andric /// a pass, if any exist, it's an error.
27600b57cec5SDimitry Andric ///
27610b57cec5SDimitry Andric void Verifier::visitUserOp1(Instruction &I) {
27620b57cec5SDimitry Andric   Assert(false, "User-defined operators should not live outside of a pass!", &I);
27630b57cec5SDimitry Andric }
27640b57cec5SDimitry Andric 
27650b57cec5SDimitry Andric void Verifier::visitTruncInst(TruncInst &I) {
27660b57cec5SDimitry Andric   // Get the source and destination types
27670b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
27680b57cec5SDimitry Andric   Type *DestTy = I.getType();
27690b57cec5SDimitry Andric 
27700b57cec5SDimitry Andric   // Get the size of the types in bits, we'll need this later
27710b57cec5SDimitry Andric   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
27720b57cec5SDimitry Andric   unsigned DestBitSize = DestTy->getScalarSizeInBits();
27730b57cec5SDimitry Andric 
27740b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
27750b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
27760b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
27770b57cec5SDimitry Andric          "trunc source and destination must both be a vector or neither", &I);
27780b57cec5SDimitry Andric   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
27790b57cec5SDimitry Andric 
27800b57cec5SDimitry Andric   visitInstruction(I);
27810b57cec5SDimitry Andric }
27820b57cec5SDimitry Andric 
27830b57cec5SDimitry Andric void Verifier::visitZExtInst(ZExtInst &I) {
27840b57cec5SDimitry Andric   // Get the source and destination types
27850b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
27860b57cec5SDimitry Andric   Type *DestTy = I.getType();
27870b57cec5SDimitry Andric 
27880b57cec5SDimitry Andric   // Get the size of the types in bits, we'll need this later
27890b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
27900b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
27910b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
27920b57cec5SDimitry Andric          "zext source and destination must both be a vector or neither", &I);
27930b57cec5SDimitry Andric   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
27940b57cec5SDimitry Andric   unsigned DestBitSize = DestTy->getScalarSizeInBits();
27950b57cec5SDimitry Andric 
27960b57cec5SDimitry Andric   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
27970b57cec5SDimitry Andric 
27980b57cec5SDimitry Andric   visitInstruction(I);
27990b57cec5SDimitry Andric }
28000b57cec5SDimitry Andric 
28010b57cec5SDimitry Andric void Verifier::visitSExtInst(SExtInst &I) {
28020b57cec5SDimitry Andric   // Get the source and destination types
28030b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
28040b57cec5SDimitry Andric   Type *DestTy = I.getType();
28050b57cec5SDimitry Andric 
28060b57cec5SDimitry Andric   // Get the size of the types in bits, we'll need this later
28070b57cec5SDimitry Andric   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
28080b57cec5SDimitry Andric   unsigned DestBitSize = DestTy->getScalarSizeInBits();
28090b57cec5SDimitry Andric 
28100b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
28110b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
28120b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
28130b57cec5SDimitry Andric          "sext source and destination must both be a vector or neither", &I);
28140b57cec5SDimitry Andric   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
28150b57cec5SDimitry Andric 
28160b57cec5SDimitry Andric   visitInstruction(I);
28170b57cec5SDimitry Andric }
28180b57cec5SDimitry Andric 
28190b57cec5SDimitry Andric void Verifier::visitFPTruncInst(FPTruncInst &I) {
28200b57cec5SDimitry Andric   // Get the source and destination types
28210b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
28220b57cec5SDimitry Andric   Type *DestTy = I.getType();
28230b57cec5SDimitry Andric   // Get the size of the types in bits, we'll need this later
28240b57cec5SDimitry Andric   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
28250b57cec5SDimitry Andric   unsigned DestBitSize = DestTy->getScalarSizeInBits();
28260b57cec5SDimitry Andric 
28270b57cec5SDimitry Andric   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
28280b57cec5SDimitry Andric   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
28290b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
28300b57cec5SDimitry Andric          "fptrunc source and destination must both be a vector or neither", &I);
28310b57cec5SDimitry Andric   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
28320b57cec5SDimitry Andric 
28330b57cec5SDimitry Andric   visitInstruction(I);
28340b57cec5SDimitry Andric }
28350b57cec5SDimitry Andric 
28360b57cec5SDimitry Andric void Verifier::visitFPExtInst(FPExtInst &I) {
28370b57cec5SDimitry Andric   // Get the source and destination types
28380b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
28390b57cec5SDimitry Andric   Type *DestTy = I.getType();
28400b57cec5SDimitry Andric 
28410b57cec5SDimitry Andric   // Get the size of the types in bits, we'll need this later
28420b57cec5SDimitry Andric   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
28430b57cec5SDimitry Andric   unsigned DestBitSize = DestTy->getScalarSizeInBits();
28440b57cec5SDimitry Andric 
28450b57cec5SDimitry Andric   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
28460b57cec5SDimitry Andric   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
28470b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
28480b57cec5SDimitry Andric          "fpext source and destination must both be a vector or neither", &I);
28490b57cec5SDimitry Andric   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
28500b57cec5SDimitry Andric 
28510b57cec5SDimitry Andric   visitInstruction(I);
28520b57cec5SDimitry Andric }
28530b57cec5SDimitry Andric 
28540b57cec5SDimitry Andric void Verifier::visitUIToFPInst(UIToFPInst &I) {
28550b57cec5SDimitry Andric   // Get the source and destination types
28560b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
28570b57cec5SDimitry Andric   Type *DestTy = I.getType();
28580b57cec5SDimitry Andric 
28590b57cec5SDimitry Andric   bool SrcVec = SrcTy->isVectorTy();
28600b57cec5SDimitry Andric   bool DstVec = DestTy->isVectorTy();
28610b57cec5SDimitry Andric 
28620b57cec5SDimitry Andric   Assert(SrcVec == DstVec,
28630b57cec5SDimitry Andric          "UIToFP source and dest must both be vector or scalar", &I);
28640b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(),
28650b57cec5SDimitry Andric          "UIToFP source must be integer or integer vector", &I);
28660b57cec5SDimitry Andric   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
28670b57cec5SDimitry Andric          &I);
28680b57cec5SDimitry Andric 
28690b57cec5SDimitry Andric   if (SrcVec && DstVec)
28705ffd83dbSDimitry Andric     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
28715ffd83dbSDimitry Andric                cast<VectorType>(DestTy)->getElementCount(),
28720b57cec5SDimitry Andric            "UIToFP source and dest vector length mismatch", &I);
28730b57cec5SDimitry Andric 
28740b57cec5SDimitry Andric   visitInstruction(I);
28750b57cec5SDimitry Andric }
28760b57cec5SDimitry Andric 
28770b57cec5SDimitry Andric void Verifier::visitSIToFPInst(SIToFPInst &I) {
28780b57cec5SDimitry Andric   // Get the source and destination types
28790b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
28800b57cec5SDimitry Andric   Type *DestTy = I.getType();
28810b57cec5SDimitry Andric 
28820b57cec5SDimitry Andric   bool SrcVec = SrcTy->isVectorTy();
28830b57cec5SDimitry Andric   bool DstVec = DestTy->isVectorTy();
28840b57cec5SDimitry Andric 
28850b57cec5SDimitry Andric   Assert(SrcVec == DstVec,
28860b57cec5SDimitry Andric          "SIToFP source and dest must both be vector or scalar", &I);
28870b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(),
28880b57cec5SDimitry Andric          "SIToFP source must be integer or integer vector", &I);
28890b57cec5SDimitry Andric   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
28900b57cec5SDimitry Andric          &I);
28910b57cec5SDimitry Andric 
28920b57cec5SDimitry Andric   if (SrcVec && DstVec)
28935ffd83dbSDimitry Andric     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
28945ffd83dbSDimitry Andric                cast<VectorType>(DestTy)->getElementCount(),
28950b57cec5SDimitry Andric            "SIToFP source and dest vector length mismatch", &I);
28960b57cec5SDimitry Andric 
28970b57cec5SDimitry Andric   visitInstruction(I);
28980b57cec5SDimitry Andric }
28990b57cec5SDimitry Andric 
29000b57cec5SDimitry Andric void Verifier::visitFPToUIInst(FPToUIInst &I) {
29010b57cec5SDimitry Andric   // Get the source and destination types
29020b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
29030b57cec5SDimitry Andric   Type *DestTy = I.getType();
29040b57cec5SDimitry Andric 
29050b57cec5SDimitry Andric   bool SrcVec = SrcTy->isVectorTy();
29060b57cec5SDimitry Andric   bool DstVec = DestTy->isVectorTy();
29070b57cec5SDimitry Andric 
29080b57cec5SDimitry Andric   Assert(SrcVec == DstVec,
29090b57cec5SDimitry Andric          "FPToUI source and dest must both be vector or scalar", &I);
29100b57cec5SDimitry Andric   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
29110b57cec5SDimitry Andric          &I);
29120b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(),
29130b57cec5SDimitry Andric          "FPToUI result must be integer or integer vector", &I);
29140b57cec5SDimitry Andric 
29150b57cec5SDimitry Andric   if (SrcVec && DstVec)
29165ffd83dbSDimitry Andric     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
29175ffd83dbSDimitry Andric                cast<VectorType>(DestTy)->getElementCount(),
29180b57cec5SDimitry Andric            "FPToUI source and dest vector length mismatch", &I);
29190b57cec5SDimitry Andric 
29200b57cec5SDimitry Andric   visitInstruction(I);
29210b57cec5SDimitry Andric }
29220b57cec5SDimitry Andric 
29230b57cec5SDimitry Andric void Verifier::visitFPToSIInst(FPToSIInst &I) {
29240b57cec5SDimitry Andric   // Get the source and destination types
29250b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
29260b57cec5SDimitry Andric   Type *DestTy = I.getType();
29270b57cec5SDimitry Andric 
29280b57cec5SDimitry Andric   bool SrcVec = SrcTy->isVectorTy();
29290b57cec5SDimitry Andric   bool DstVec = DestTy->isVectorTy();
29300b57cec5SDimitry Andric 
29310b57cec5SDimitry Andric   Assert(SrcVec == DstVec,
29320b57cec5SDimitry Andric          "FPToSI source and dest must both be vector or scalar", &I);
29330b57cec5SDimitry Andric   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
29340b57cec5SDimitry Andric          &I);
29350b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(),
29360b57cec5SDimitry Andric          "FPToSI result must be integer or integer vector", &I);
29370b57cec5SDimitry Andric 
29380b57cec5SDimitry Andric   if (SrcVec && DstVec)
29395ffd83dbSDimitry Andric     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
29405ffd83dbSDimitry Andric                cast<VectorType>(DestTy)->getElementCount(),
29410b57cec5SDimitry Andric            "FPToSI source and dest vector length mismatch", &I);
29420b57cec5SDimitry Andric 
29430b57cec5SDimitry Andric   visitInstruction(I);
29440b57cec5SDimitry Andric }
29450b57cec5SDimitry Andric 
29460b57cec5SDimitry Andric void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
29470b57cec5SDimitry Andric   // Get the source and destination types
29480b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
29490b57cec5SDimitry Andric   Type *DestTy = I.getType();
29500b57cec5SDimitry Andric 
29510b57cec5SDimitry Andric   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
29520b57cec5SDimitry Andric 
29530b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
29540b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
29550b57cec5SDimitry Andric          &I);
29560b57cec5SDimitry Andric 
29570b57cec5SDimitry Andric   if (SrcTy->isVectorTy()) {
29585ffd83dbSDimitry Andric     auto *VSrc = cast<VectorType>(SrcTy);
29595ffd83dbSDimitry Andric     auto *VDest = cast<VectorType>(DestTy);
29605ffd83dbSDimitry Andric     Assert(VSrc->getElementCount() == VDest->getElementCount(),
29610b57cec5SDimitry Andric            "PtrToInt Vector width mismatch", &I);
29620b57cec5SDimitry Andric   }
29630b57cec5SDimitry Andric 
29640b57cec5SDimitry Andric   visitInstruction(I);
29650b57cec5SDimitry Andric }
29660b57cec5SDimitry Andric 
29670b57cec5SDimitry Andric void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
29680b57cec5SDimitry Andric   // Get the source and destination types
29690b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
29700b57cec5SDimitry Andric   Type *DestTy = I.getType();
29710b57cec5SDimitry Andric 
29720b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(),
29730b57cec5SDimitry Andric          "IntToPtr source must be an integral", &I);
29740b57cec5SDimitry Andric   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
29750b57cec5SDimitry Andric 
29760b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
29770b57cec5SDimitry Andric          &I);
29780b57cec5SDimitry Andric   if (SrcTy->isVectorTy()) {
29795ffd83dbSDimitry Andric     auto *VSrc = cast<VectorType>(SrcTy);
29805ffd83dbSDimitry Andric     auto *VDest = cast<VectorType>(DestTy);
29815ffd83dbSDimitry Andric     Assert(VSrc->getElementCount() == VDest->getElementCount(),
29820b57cec5SDimitry Andric            "IntToPtr Vector width mismatch", &I);
29830b57cec5SDimitry Andric   }
29840b57cec5SDimitry Andric   visitInstruction(I);
29850b57cec5SDimitry Andric }
29860b57cec5SDimitry Andric 
29870b57cec5SDimitry Andric void Verifier::visitBitCastInst(BitCastInst &I) {
29880b57cec5SDimitry Andric   Assert(
29890b57cec5SDimitry Andric       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
29900b57cec5SDimitry Andric       "Invalid bitcast", &I);
29910b57cec5SDimitry Andric   visitInstruction(I);
29920b57cec5SDimitry Andric }
29930b57cec5SDimitry Andric 
29940b57cec5SDimitry Andric void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
29950b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
29960b57cec5SDimitry Andric   Type *DestTy = I.getType();
29970b57cec5SDimitry Andric 
29980b57cec5SDimitry Andric   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
29990b57cec5SDimitry Andric          &I);
30000b57cec5SDimitry Andric   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
30010b57cec5SDimitry Andric          &I);
30020b57cec5SDimitry Andric   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
30030b57cec5SDimitry Andric          "AddrSpaceCast must be between different address spaces", &I);
30045ffd83dbSDimitry Andric   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3005e8d8bef9SDimitry Andric     Assert(SrcVTy->getElementCount() ==
3006e8d8bef9SDimitry Andric                cast<VectorType>(DestTy)->getElementCount(),
30070b57cec5SDimitry Andric            "AddrSpaceCast vector pointer number of elements mismatch", &I);
30080b57cec5SDimitry Andric   visitInstruction(I);
30090b57cec5SDimitry Andric }
30100b57cec5SDimitry Andric 
30110b57cec5SDimitry Andric /// visitPHINode - Ensure that a PHI node is well formed.
30120b57cec5SDimitry Andric ///
30130b57cec5SDimitry Andric void Verifier::visitPHINode(PHINode &PN) {
30140b57cec5SDimitry Andric   // Ensure that the PHI nodes are all grouped together at the top of the block.
30150b57cec5SDimitry Andric   // This can be tested by checking whether the instruction before this is
30160b57cec5SDimitry Andric   // either nonexistent (because this is begin()) or is a PHI node.  If not,
30170b57cec5SDimitry Andric   // then there is some other instruction before a PHI.
30180b57cec5SDimitry Andric   Assert(&PN == &PN.getParent()->front() ||
30190b57cec5SDimitry Andric              isa<PHINode>(--BasicBlock::iterator(&PN)),
30200b57cec5SDimitry Andric          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
30210b57cec5SDimitry Andric 
30220b57cec5SDimitry Andric   // Check that a PHI doesn't yield a Token.
30230b57cec5SDimitry Andric   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
30240b57cec5SDimitry Andric 
30250b57cec5SDimitry Andric   // Check that all of the values of the PHI node have the same type as the
30260b57cec5SDimitry Andric   // result, and that the incoming blocks are really basic blocks.
30270b57cec5SDimitry Andric   for (Value *IncValue : PN.incoming_values()) {
30280b57cec5SDimitry Andric     Assert(PN.getType() == IncValue->getType(),
30290b57cec5SDimitry Andric            "PHI node operands are not the same type as the result!", &PN);
30300b57cec5SDimitry Andric   }
30310b57cec5SDimitry Andric 
30320b57cec5SDimitry Andric   // All other PHI node constraints are checked in the visitBasicBlock method.
30330b57cec5SDimitry Andric 
30340b57cec5SDimitry Andric   visitInstruction(PN);
30350b57cec5SDimitry Andric }
30360b57cec5SDimitry Andric 
30370b57cec5SDimitry Andric void Verifier::visitCallBase(CallBase &Call) {
30385ffd83dbSDimitry Andric   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
30390b57cec5SDimitry Andric          "Called function must be a pointer!", Call);
30405ffd83dbSDimitry Andric   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
30410b57cec5SDimitry Andric 
3042*fe6060f1SDimitry Andric   Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
30430b57cec5SDimitry Andric          "Called function is not the same type as the call!", Call);
30440b57cec5SDimitry Andric 
30450b57cec5SDimitry Andric   FunctionType *FTy = Call.getFunctionType();
30460b57cec5SDimitry Andric 
30470b57cec5SDimitry Andric   // Verify that the correct number of arguments are being passed
30480b57cec5SDimitry Andric   if (FTy->isVarArg())
30490b57cec5SDimitry Andric     Assert(Call.arg_size() >= FTy->getNumParams(),
30500b57cec5SDimitry Andric            "Called function requires more parameters than were provided!",
30510b57cec5SDimitry Andric            Call);
30520b57cec5SDimitry Andric   else
30530b57cec5SDimitry Andric     Assert(Call.arg_size() == FTy->getNumParams(),
30540b57cec5SDimitry Andric            "Incorrect number of arguments passed to called function!", Call);
30550b57cec5SDimitry Andric 
30560b57cec5SDimitry Andric   // Verify that all arguments to the call match the function type.
30570b57cec5SDimitry Andric   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
30580b57cec5SDimitry Andric     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
30590b57cec5SDimitry Andric            "Call parameter type does not match function signature!",
30600b57cec5SDimitry Andric            Call.getArgOperand(i), FTy->getParamType(i), Call);
30610b57cec5SDimitry Andric 
30620b57cec5SDimitry Andric   AttributeList Attrs = Call.getAttributes();
30630b57cec5SDimitry Andric 
30640b57cec5SDimitry Andric   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
30650b57cec5SDimitry Andric          "Attribute after last parameter!", Call);
30660b57cec5SDimitry Andric 
30675ffd83dbSDimitry Andric   Function *Callee =
30685ffd83dbSDimitry Andric       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3069*fe6060f1SDimitry Andric   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3070*fe6060f1SDimitry Andric   if (IsIntrinsic)
3071*fe6060f1SDimitry Andric     Assert(Callee->getValueType() == FTy,
3072*fe6060f1SDimitry Andric            "Intrinsic called with incompatible signature", Call);
30730b57cec5SDimitry Andric 
30745ffd83dbSDimitry Andric   if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
30750b57cec5SDimitry Andric     // Don't allow speculatable on call sites, unless the underlying function
30760b57cec5SDimitry Andric     // declaration is also speculatable.
30770b57cec5SDimitry Andric     Assert(Callee && Callee->isSpeculatable(),
30780b57cec5SDimitry Andric            "speculatable attribute may not apply to call sites", Call);
30790b57cec5SDimitry Andric   }
30800b57cec5SDimitry Andric 
30815ffd83dbSDimitry Andric   if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
30825ffd83dbSDimitry Andric     Assert(Call.getCalledFunction()->getIntrinsicID() ==
30835ffd83dbSDimitry Andric                Intrinsic::call_preallocated_arg,
30845ffd83dbSDimitry Andric            "preallocated as a call site attribute can only be on "
30855ffd83dbSDimitry Andric            "llvm.call.preallocated.arg");
30865ffd83dbSDimitry Andric   }
30875ffd83dbSDimitry Andric 
30880b57cec5SDimitry Andric   // Verify call attributes.
30890b57cec5SDimitry Andric   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
30900b57cec5SDimitry Andric 
30910b57cec5SDimitry Andric   // Conservatively check the inalloca argument.
30920b57cec5SDimitry Andric   // We have a bug if we can find that there is an underlying alloca without
30930b57cec5SDimitry Andric   // inalloca.
30940b57cec5SDimitry Andric   if (Call.hasInAllocaArgument()) {
30950b57cec5SDimitry Andric     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
30960b57cec5SDimitry Andric     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
30970b57cec5SDimitry Andric       Assert(AI->isUsedWithInAlloca(),
30980b57cec5SDimitry Andric              "inalloca argument for call has mismatched alloca", AI, Call);
30990b57cec5SDimitry Andric   }
31000b57cec5SDimitry Andric 
31010b57cec5SDimitry Andric   // For each argument of the callsite, if it has the swifterror argument,
31020b57cec5SDimitry Andric   // make sure the underlying alloca/parameter it comes from has a swifterror as
31030b57cec5SDimitry Andric   // well.
31040b57cec5SDimitry Andric   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
31050b57cec5SDimitry Andric     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
31060b57cec5SDimitry Andric       Value *SwiftErrorArg = Call.getArgOperand(i);
31070b57cec5SDimitry Andric       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
31080b57cec5SDimitry Andric         Assert(AI->isSwiftError(),
31090b57cec5SDimitry Andric                "swifterror argument for call has mismatched alloca", AI, Call);
31100b57cec5SDimitry Andric         continue;
31110b57cec5SDimitry Andric       }
31120b57cec5SDimitry Andric       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
31130b57cec5SDimitry Andric       Assert(ArgI,
31140b57cec5SDimitry Andric              "swifterror argument should come from an alloca or parameter",
31150b57cec5SDimitry Andric              SwiftErrorArg, Call);
31160b57cec5SDimitry Andric       Assert(ArgI->hasSwiftErrorAttr(),
31170b57cec5SDimitry Andric              "swifterror argument for call has mismatched parameter", ArgI,
31180b57cec5SDimitry Andric              Call);
31190b57cec5SDimitry Andric     }
31200b57cec5SDimitry Andric 
31210b57cec5SDimitry Andric     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
31220b57cec5SDimitry Andric       // Don't allow immarg on call sites, unless the underlying declaration
31230b57cec5SDimitry Andric       // also has the matching immarg.
31240b57cec5SDimitry Andric       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
31250b57cec5SDimitry Andric              "immarg may not apply only to call sites",
31260b57cec5SDimitry Andric              Call.getArgOperand(i), Call);
31270b57cec5SDimitry Andric     }
31280b57cec5SDimitry Andric 
31290b57cec5SDimitry Andric     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
31300b57cec5SDimitry Andric       Value *ArgVal = Call.getArgOperand(i);
31310b57cec5SDimitry Andric       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
31320b57cec5SDimitry Andric              "immarg operand has non-immediate parameter", ArgVal, Call);
31330b57cec5SDimitry Andric     }
31345ffd83dbSDimitry Andric 
31355ffd83dbSDimitry Andric     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
31365ffd83dbSDimitry Andric       Value *ArgVal = Call.getArgOperand(i);
31375ffd83dbSDimitry Andric       bool hasOB =
31385ffd83dbSDimitry Andric           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
31395ffd83dbSDimitry Andric       bool isMustTail = Call.isMustTailCall();
31405ffd83dbSDimitry Andric       Assert(hasOB != isMustTail,
31415ffd83dbSDimitry Andric              "preallocated operand either requires a preallocated bundle or "
31425ffd83dbSDimitry Andric              "the call to be musttail (but not both)",
31435ffd83dbSDimitry Andric              ArgVal, Call);
31445ffd83dbSDimitry Andric     }
31450b57cec5SDimitry Andric   }
31460b57cec5SDimitry Andric 
31470b57cec5SDimitry Andric   if (FTy->isVarArg()) {
31480b57cec5SDimitry Andric     // FIXME? is 'nest' even legal here?
31490b57cec5SDimitry Andric     bool SawNest = false;
31500b57cec5SDimitry Andric     bool SawReturned = false;
31510b57cec5SDimitry Andric 
31520b57cec5SDimitry Andric     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
31530b57cec5SDimitry Andric       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
31540b57cec5SDimitry Andric         SawNest = true;
31550b57cec5SDimitry Andric       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
31560b57cec5SDimitry Andric         SawReturned = true;
31570b57cec5SDimitry Andric     }
31580b57cec5SDimitry Andric 
31590b57cec5SDimitry Andric     // Check attributes on the varargs part.
31600b57cec5SDimitry Andric     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
31610b57cec5SDimitry Andric       Type *Ty = Call.getArgOperand(Idx)->getType();
31620b57cec5SDimitry Andric       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
31630b57cec5SDimitry Andric       verifyParameterAttrs(ArgAttrs, Ty, &Call);
31640b57cec5SDimitry Andric 
31650b57cec5SDimitry Andric       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
31660b57cec5SDimitry Andric         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
31670b57cec5SDimitry Andric         SawNest = true;
31680b57cec5SDimitry Andric       }
31690b57cec5SDimitry Andric 
31700b57cec5SDimitry Andric       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
31710b57cec5SDimitry Andric         Assert(!SawReturned, "More than one parameter has attribute returned!",
31720b57cec5SDimitry Andric                Call);
31730b57cec5SDimitry Andric         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
31740b57cec5SDimitry Andric                "Incompatible argument and return types for 'returned' "
31750b57cec5SDimitry Andric                "attribute",
31760b57cec5SDimitry Andric                Call);
31770b57cec5SDimitry Andric         SawReturned = true;
31780b57cec5SDimitry Andric       }
31790b57cec5SDimitry Andric 
31800b57cec5SDimitry Andric       // Statepoint intrinsic is vararg but the wrapped function may be not.
31810b57cec5SDimitry Andric       // Allow sret here and check the wrapped function in verifyStatepoint.
31820b57cec5SDimitry Andric       if (!Call.getCalledFunction() ||
31830b57cec5SDimitry Andric           Call.getCalledFunction()->getIntrinsicID() !=
31840b57cec5SDimitry Andric               Intrinsic::experimental_gc_statepoint)
31850b57cec5SDimitry Andric         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
31860b57cec5SDimitry Andric                "Attribute 'sret' cannot be used for vararg call arguments!",
31870b57cec5SDimitry Andric                Call);
31880b57cec5SDimitry Andric 
31890b57cec5SDimitry Andric       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
31900b57cec5SDimitry Andric         Assert(Idx == Call.arg_size() - 1,
31910b57cec5SDimitry Andric                "inalloca isn't on the last argument!", Call);
31920b57cec5SDimitry Andric     }
31930b57cec5SDimitry Andric   }
31940b57cec5SDimitry Andric 
31950b57cec5SDimitry Andric   // Verify that there's no metadata unless it's a direct call to an intrinsic.
31960b57cec5SDimitry Andric   if (!IsIntrinsic) {
31970b57cec5SDimitry Andric     for (Type *ParamTy : FTy->params()) {
31980b57cec5SDimitry Andric       Assert(!ParamTy->isMetadataTy(),
31990b57cec5SDimitry Andric              "Function has metadata parameter but isn't an intrinsic", Call);
32000b57cec5SDimitry Andric       Assert(!ParamTy->isTokenTy(),
32010b57cec5SDimitry Andric              "Function has token parameter but isn't an intrinsic", Call);
32020b57cec5SDimitry Andric     }
32030b57cec5SDimitry Andric   }
32040b57cec5SDimitry Andric 
32050b57cec5SDimitry Andric   // Verify that indirect calls don't return tokens.
3206*fe6060f1SDimitry Andric   if (!Call.getCalledFunction()) {
32070b57cec5SDimitry Andric     Assert(!FTy->getReturnType()->isTokenTy(),
32080b57cec5SDimitry Andric            "Return type cannot be token for indirect call!");
3209*fe6060f1SDimitry Andric     Assert(!FTy->getReturnType()->isX86_AMXTy(),
3210*fe6060f1SDimitry Andric            "Return type cannot be x86_amx for indirect call!");
3211*fe6060f1SDimitry Andric   }
32120b57cec5SDimitry Andric 
32130b57cec5SDimitry Andric   if (Function *F = Call.getCalledFunction())
32140b57cec5SDimitry Andric     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
32150b57cec5SDimitry Andric       visitIntrinsicCall(ID, Call);
32160b57cec5SDimitry Andric 
3217480093f4SDimitry Andric   // Verify that a callsite has at most one "deopt", at most one "funclet", at
32185ffd83dbSDimitry Andric   // most one "gc-transition", at most one "cfguardtarget",
32195ffd83dbSDimitry Andric   // and at most one "preallocated" operand bundle.
32200b57cec5SDimitry Andric   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
32215ffd83dbSDimitry Andric        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3222*fe6060f1SDimitry Andric        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3223*fe6060f1SDimitry Andric        FoundAttachedCallBundle = false;
32240b57cec5SDimitry Andric   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
32250b57cec5SDimitry Andric     OperandBundleUse BU = Call.getOperandBundleAt(i);
32260b57cec5SDimitry Andric     uint32_t Tag = BU.getTagID();
32270b57cec5SDimitry Andric     if (Tag == LLVMContext::OB_deopt) {
32280b57cec5SDimitry Andric       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
32290b57cec5SDimitry Andric       FoundDeoptBundle = true;
32300b57cec5SDimitry Andric     } else if (Tag == LLVMContext::OB_gc_transition) {
32310b57cec5SDimitry Andric       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
32320b57cec5SDimitry Andric              Call);
32330b57cec5SDimitry Andric       FoundGCTransitionBundle = true;
32340b57cec5SDimitry Andric     } else if (Tag == LLVMContext::OB_funclet) {
32350b57cec5SDimitry Andric       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
32360b57cec5SDimitry Andric       FoundFuncletBundle = true;
32370b57cec5SDimitry Andric       Assert(BU.Inputs.size() == 1,
32380b57cec5SDimitry Andric              "Expected exactly one funclet bundle operand", Call);
32390b57cec5SDimitry Andric       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
32400b57cec5SDimitry Andric              "Funclet bundle operands should correspond to a FuncletPadInst",
32410b57cec5SDimitry Andric              Call);
3242480093f4SDimitry Andric     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3243480093f4SDimitry Andric       Assert(!FoundCFGuardTargetBundle,
3244480093f4SDimitry Andric              "Multiple CFGuardTarget operand bundles", Call);
3245480093f4SDimitry Andric       FoundCFGuardTargetBundle = true;
3246480093f4SDimitry Andric       Assert(BU.Inputs.size() == 1,
3247480093f4SDimitry Andric              "Expected exactly one cfguardtarget bundle operand", Call);
32485ffd83dbSDimitry Andric     } else if (Tag == LLVMContext::OB_preallocated) {
32495ffd83dbSDimitry Andric       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
32505ffd83dbSDimitry Andric              Call);
32515ffd83dbSDimitry Andric       FoundPreallocatedBundle = true;
32525ffd83dbSDimitry Andric       Assert(BU.Inputs.size() == 1,
32535ffd83dbSDimitry Andric              "Expected exactly one preallocated bundle operand", Call);
32545ffd83dbSDimitry Andric       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
32555ffd83dbSDimitry Andric       Assert(Input &&
32565ffd83dbSDimitry Andric                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
32575ffd83dbSDimitry Andric              "\"preallocated\" argument must be a token from "
32585ffd83dbSDimitry Andric              "llvm.call.preallocated.setup",
32595ffd83dbSDimitry Andric              Call);
32605ffd83dbSDimitry Andric     } else if (Tag == LLVMContext::OB_gc_live) {
32615ffd83dbSDimitry Andric       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
32625ffd83dbSDimitry Andric              Call);
32635ffd83dbSDimitry Andric       FoundGCLiveBundle = true;
3264*fe6060f1SDimitry Andric     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3265*fe6060f1SDimitry Andric       Assert(!FoundAttachedCallBundle,
3266*fe6060f1SDimitry Andric              "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3267*fe6060f1SDimitry Andric       FoundAttachedCallBundle = true;
32680b57cec5SDimitry Andric     }
32690b57cec5SDimitry Andric   }
32700b57cec5SDimitry Andric 
3271*fe6060f1SDimitry Andric   if (FoundAttachedCallBundle)
3272*fe6060f1SDimitry Andric     Assert((FTy->getReturnType()->isPointerTy() ||
3273*fe6060f1SDimitry Andric             (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
3274*fe6060f1SDimitry Andric            "a call with operand bundle \"clang.arc.attachedcall\" must call a "
3275*fe6060f1SDimitry Andric            "function returning a pointer or a non-returning function that has "
3276*fe6060f1SDimitry Andric            "a void return type",
3277*fe6060f1SDimitry Andric            Call);
3278*fe6060f1SDimitry Andric 
32790b57cec5SDimitry Andric   // Verify that each inlinable callsite of a debug-info-bearing function in a
32800b57cec5SDimitry Andric   // debug-info-bearing function has a debug location attached to it. Failure to
32810b57cec5SDimitry Andric   // do so causes assertion failures when the inliner sets up inline scope info.
32820b57cec5SDimitry Andric   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
32830b57cec5SDimitry Andric       Call.getCalledFunction()->getSubprogram())
32840b57cec5SDimitry Andric     AssertDI(Call.getDebugLoc(),
32850b57cec5SDimitry Andric              "inlinable function call in a function with "
32860b57cec5SDimitry Andric              "debug info must have a !dbg location",
32870b57cec5SDimitry Andric              Call);
32880b57cec5SDimitry Andric 
32890b57cec5SDimitry Andric   visitInstruction(Call);
32900b57cec5SDimitry Andric }
32910b57cec5SDimitry Andric 
3292*fe6060f1SDimitry Andric void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs,
3293*fe6060f1SDimitry Andric                                          StringRef Context) {
3294*fe6060f1SDimitry Andric   Assert(!Attrs.contains(Attribute::InAlloca),
3295*fe6060f1SDimitry Andric          Twine("inalloca attribute not allowed in ") + Context);
3296*fe6060f1SDimitry Andric   Assert(!Attrs.contains(Attribute::InReg),
3297*fe6060f1SDimitry Andric          Twine("inreg attribute not allowed in ") + Context);
3298*fe6060f1SDimitry Andric   Assert(!Attrs.contains(Attribute::SwiftError),
3299*fe6060f1SDimitry Andric          Twine("swifterror attribute not allowed in ") + Context);
3300*fe6060f1SDimitry Andric   Assert(!Attrs.contains(Attribute::Preallocated),
3301*fe6060f1SDimitry Andric          Twine("preallocated attribute not allowed in ") + Context);
3302*fe6060f1SDimitry Andric   Assert(!Attrs.contains(Attribute::ByRef),
3303*fe6060f1SDimitry Andric          Twine("byref attribute not allowed in ") + Context);
3304*fe6060f1SDimitry Andric }
3305*fe6060f1SDimitry Andric 
33060b57cec5SDimitry Andric /// Two types are "congruent" if they are identical, or if they are both pointer
33070b57cec5SDimitry Andric /// types with different pointee types and the same address space.
33080b57cec5SDimitry Andric static bool isTypeCongruent(Type *L, Type *R) {
33090b57cec5SDimitry Andric   if (L == R)
33100b57cec5SDimitry Andric     return true;
33110b57cec5SDimitry Andric   PointerType *PL = dyn_cast<PointerType>(L);
33120b57cec5SDimitry Andric   PointerType *PR = dyn_cast<PointerType>(R);
33130b57cec5SDimitry Andric   if (!PL || !PR)
33140b57cec5SDimitry Andric     return false;
33150b57cec5SDimitry Andric   return PL->getAddressSpace() == PR->getAddressSpace();
33160b57cec5SDimitry Andric }
33170b57cec5SDimitry Andric 
33180b57cec5SDimitry Andric static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
33190b57cec5SDimitry Andric   static const Attribute::AttrKind ABIAttrs[] = {
33200b57cec5SDimitry Andric       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3321*fe6060f1SDimitry Andric       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3322*fe6060f1SDimitry Andric       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3323*fe6060f1SDimitry Andric       Attribute::ByRef};
33240b57cec5SDimitry Andric   AttrBuilder Copy;
33250b57cec5SDimitry Andric   for (auto AK : ABIAttrs) {
3326*fe6060f1SDimitry Andric     Attribute Attr = Attrs.getParamAttributes(I).getAttribute(AK);
3327*fe6060f1SDimitry Andric     if (Attr.isValid())
3328*fe6060f1SDimitry Andric       Copy.addAttribute(Attr);
33290b57cec5SDimitry Andric   }
3330e8d8bef9SDimitry Andric 
3331e8d8bef9SDimitry Andric   // `align` is ABI-affecting only in combination with `byval` or `byref`.
33325ffd83dbSDimitry Andric   if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
3333e8d8bef9SDimitry Andric       (Attrs.hasParamAttribute(I, Attribute::ByVal) ||
3334e8d8bef9SDimitry Andric        Attrs.hasParamAttribute(I, Attribute::ByRef)))
33350b57cec5SDimitry Andric     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
33360b57cec5SDimitry Andric   return Copy;
33370b57cec5SDimitry Andric }
33380b57cec5SDimitry Andric 
33390b57cec5SDimitry Andric void Verifier::verifyMustTailCall(CallInst &CI) {
33400b57cec5SDimitry Andric   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
33410b57cec5SDimitry Andric 
33420b57cec5SDimitry Andric   Function *F = CI.getParent()->getParent();
33430b57cec5SDimitry Andric   FunctionType *CallerTy = F->getFunctionType();
33440b57cec5SDimitry Andric   FunctionType *CalleeTy = CI.getFunctionType();
33450b57cec5SDimitry Andric   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
33460b57cec5SDimitry Andric          "cannot guarantee tail call due to mismatched varargs", &CI);
33470b57cec5SDimitry Andric   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
33480b57cec5SDimitry Andric          "cannot guarantee tail call due to mismatched return types", &CI);
33490b57cec5SDimitry Andric 
33500b57cec5SDimitry Andric   // - The calling conventions of the caller and callee must match.
33510b57cec5SDimitry Andric   Assert(F->getCallingConv() == CI.getCallingConv(),
33520b57cec5SDimitry Andric          "cannot guarantee tail call due to mismatched calling conv", &CI);
33530b57cec5SDimitry Andric 
33540b57cec5SDimitry Andric   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
33550b57cec5SDimitry Andric   //   or a pointer bitcast followed by a ret instruction.
33560b57cec5SDimitry Andric   // - The ret instruction must return the (possibly bitcasted) value
33570b57cec5SDimitry Andric   //   produced by the call or void.
33580b57cec5SDimitry Andric   Value *RetVal = &CI;
33590b57cec5SDimitry Andric   Instruction *Next = CI.getNextNode();
33600b57cec5SDimitry Andric 
33610b57cec5SDimitry Andric   // Handle the optional bitcast.
33620b57cec5SDimitry Andric   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
33630b57cec5SDimitry Andric     Assert(BI->getOperand(0) == RetVal,
33640b57cec5SDimitry Andric            "bitcast following musttail call must use the call", BI);
33650b57cec5SDimitry Andric     RetVal = BI;
33660b57cec5SDimitry Andric     Next = BI->getNextNode();
33670b57cec5SDimitry Andric   }
33680b57cec5SDimitry Andric 
33690b57cec5SDimitry Andric   // Check the return.
33700b57cec5SDimitry Andric   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
33710b57cec5SDimitry Andric   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
33720b57cec5SDimitry Andric          &CI);
3373*fe6060f1SDimitry Andric   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3374*fe6060f1SDimitry Andric              isa<UndefValue>(Ret->getReturnValue()),
33750b57cec5SDimitry Andric          "musttail call result must be returned", Ret);
3376*fe6060f1SDimitry Andric 
3377*fe6060f1SDimitry Andric   AttributeList CallerAttrs = F->getAttributes();
3378*fe6060f1SDimitry Andric   AttributeList CalleeAttrs = CI.getAttributes();
3379*fe6060f1SDimitry Andric   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3380*fe6060f1SDimitry Andric       CI.getCallingConv() == CallingConv::Tail) {
3381*fe6060f1SDimitry Andric     StringRef CCName =
3382*fe6060f1SDimitry Andric         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3383*fe6060f1SDimitry Andric 
3384*fe6060f1SDimitry Andric     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3385*fe6060f1SDimitry Andric     //   are allowed in swifttailcc call
3386*fe6060f1SDimitry Andric     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3387*fe6060f1SDimitry Andric       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3388*fe6060f1SDimitry Andric       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3389*fe6060f1SDimitry Andric       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3390*fe6060f1SDimitry Andric     }
3391*fe6060f1SDimitry Andric     for (int I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3392*fe6060f1SDimitry Andric       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3393*fe6060f1SDimitry Andric       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3394*fe6060f1SDimitry Andric       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3395*fe6060f1SDimitry Andric     }
3396*fe6060f1SDimitry Andric     // - Varargs functions are not allowed
3397*fe6060f1SDimitry Andric     Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3398*fe6060f1SDimitry Andric                                       " tail call for varargs function");
3399*fe6060f1SDimitry Andric     return;
3400*fe6060f1SDimitry Andric   }
3401*fe6060f1SDimitry Andric 
3402*fe6060f1SDimitry Andric   // - The caller and callee prototypes must match.  Pointer types of
3403*fe6060f1SDimitry Andric   //   parameters or return types may differ in pointee type, but not
3404*fe6060f1SDimitry Andric   //   address space.
3405*fe6060f1SDimitry Andric   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3406*fe6060f1SDimitry Andric     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3407*fe6060f1SDimitry Andric            "cannot guarantee tail call due to mismatched parameter counts",
3408*fe6060f1SDimitry Andric            &CI);
3409*fe6060f1SDimitry Andric     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3410*fe6060f1SDimitry Andric       Assert(
3411*fe6060f1SDimitry Andric           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3412*fe6060f1SDimitry Andric           "cannot guarantee tail call due to mismatched parameter types", &CI);
3413*fe6060f1SDimitry Andric     }
3414*fe6060f1SDimitry Andric   }
3415*fe6060f1SDimitry Andric 
3416*fe6060f1SDimitry Andric   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3417*fe6060f1SDimitry Andric   //   returned, preallocated, and inalloca, must match.
3418*fe6060f1SDimitry Andric   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3419*fe6060f1SDimitry Andric     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3420*fe6060f1SDimitry Andric     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3421*fe6060f1SDimitry Andric     Assert(CallerABIAttrs == CalleeABIAttrs,
3422*fe6060f1SDimitry Andric            "cannot guarantee tail call due to mismatched ABI impacting "
3423*fe6060f1SDimitry Andric            "function attributes",
3424*fe6060f1SDimitry Andric            &CI, CI.getOperand(I));
3425*fe6060f1SDimitry Andric   }
34260b57cec5SDimitry Andric }
34270b57cec5SDimitry Andric 
34280b57cec5SDimitry Andric void Verifier::visitCallInst(CallInst &CI) {
34290b57cec5SDimitry Andric   visitCallBase(CI);
34300b57cec5SDimitry Andric 
34310b57cec5SDimitry Andric   if (CI.isMustTailCall())
34320b57cec5SDimitry Andric     verifyMustTailCall(CI);
34330b57cec5SDimitry Andric }
34340b57cec5SDimitry Andric 
34350b57cec5SDimitry Andric void Verifier::visitInvokeInst(InvokeInst &II) {
34360b57cec5SDimitry Andric   visitCallBase(II);
34370b57cec5SDimitry Andric 
34380b57cec5SDimitry Andric   // Verify that the first non-PHI instruction of the unwind destination is an
34390b57cec5SDimitry Andric   // exception handling instruction.
34400b57cec5SDimitry Andric   Assert(
34410b57cec5SDimitry Andric       II.getUnwindDest()->isEHPad(),
34420b57cec5SDimitry Andric       "The unwind destination does not have an exception handling instruction!",
34430b57cec5SDimitry Andric       &II);
34440b57cec5SDimitry Andric 
34450b57cec5SDimitry Andric   visitTerminator(II);
34460b57cec5SDimitry Andric }
34470b57cec5SDimitry Andric 
34480b57cec5SDimitry Andric /// visitUnaryOperator - Check the argument to the unary operator.
34490b57cec5SDimitry Andric ///
34500b57cec5SDimitry Andric void Verifier::visitUnaryOperator(UnaryOperator &U) {
34510b57cec5SDimitry Andric   Assert(U.getType() == U.getOperand(0)->getType(),
34520b57cec5SDimitry Andric          "Unary operators must have same type for"
34530b57cec5SDimitry Andric          "operands and result!",
34540b57cec5SDimitry Andric          &U);
34550b57cec5SDimitry Andric 
34560b57cec5SDimitry Andric   switch (U.getOpcode()) {
34570b57cec5SDimitry Andric   // Check that floating-point arithmetic operators are only used with
34580b57cec5SDimitry Andric   // floating-point operands.
34590b57cec5SDimitry Andric   case Instruction::FNeg:
34600b57cec5SDimitry Andric     Assert(U.getType()->isFPOrFPVectorTy(),
34610b57cec5SDimitry Andric            "FNeg operator only works with float types!", &U);
34620b57cec5SDimitry Andric     break;
34630b57cec5SDimitry Andric   default:
34640b57cec5SDimitry Andric     llvm_unreachable("Unknown UnaryOperator opcode!");
34650b57cec5SDimitry Andric   }
34660b57cec5SDimitry Andric 
34670b57cec5SDimitry Andric   visitInstruction(U);
34680b57cec5SDimitry Andric }
34690b57cec5SDimitry Andric 
34700b57cec5SDimitry Andric /// visitBinaryOperator - Check that both arguments to the binary operator are
34710b57cec5SDimitry Andric /// of the same type!
34720b57cec5SDimitry Andric ///
34730b57cec5SDimitry Andric void Verifier::visitBinaryOperator(BinaryOperator &B) {
34740b57cec5SDimitry Andric   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
34750b57cec5SDimitry Andric          "Both operands to a binary operator are not of the same type!", &B);
34760b57cec5SDimitry Andric 
34770b57cec5SDimitry Andric   switch (B.getOpcode()) {
34780b57cec5SDimitry Andric   // Check that integer arithmetic operators are only used with
34790b57cec5SDimitry Andric   // integral operands.
34800b57cec5SDimitry Andric   case Instruction::Add:
34810b57cec5SDimitry Andric   case Instruction::Sub:
34820b57cec5SDimitry Andric   case Instruction::Mul:
34830b57cec5SDimitry Andric   case Instruction::SDiv:
34840b57cec5SDimitry Andric   case Instruction::UDiv:
34850b57cec5SDimitry Andric   case Instruction::SRem:
34860b57cec5SDimitry Andric   case Instruction::URem:
34870b57cec5SDimitry Andric     Assert(B.getType()->isIntOrIntVectorTy(),
34880b57cec5SDimitry Andric            "Integer arithmetic operators only work with integral types!", &B);
34890b57cec5SDimitry Andric     Assert(B.getType() == B.getOperand(0)->getType(),
34900b57cec5SDimitry Andric            "Integer arithmetic operators must have same type "
34910b57cec5SDimitry Andric            "for operands and result!",
34920b57cec5SDimitry Andric            &B);
34930b57cec5SDimitry Andric     break;
34940b57cec5SDimitry Andric   // Check that floating-point arithmetic operators are only used with
34950b57cec5SDimitry Andric   // floating-point operands.
34960b57cec5SDimitry Andric   case Instruction::FAdd:
34970b57cec5SDimitry Andric   case Instruction::FSub:
34980b57cec5SDimitry Andric   case Instruction::FMul:
34990b57cec5SDimitry Andric   case Instruction::FDiv:
35000b57cec5SDimitry Andric   case Instruction::FRem:
35010b57cec5SDimitry Andric     Assert(B.getType()->isFPOrFPVectorTy(),
35020b57cec5SDimitry Andric            "Floating-point arithmetic operators only work with "
35030b57cec5SDimitry Andric            "floating-point types!",
35040b57cec5SDimitry Andric            &B);
35050b57cec5SDimitry Andric     Assert(B.getType() == B.getOperand(0)->getType(),
35060b57cec5SDimitry Andric            "Floating-point arithmetic operators must have same type "
35070b57cec5SDimitry Andric            "for operands and result!",
35080b57cec5SDimitry Andric            &B);
35090b57cec5SDimitry Andric     break;
35100b57cec5SDimitry Andric   // Check that logical operators are only used with integral operands.
35110b57cec5SDimitry Andric   case Instruction::And:
35120b57cec5SDimitry Andric   case Instruction::Or:
35130b57cec5SDimitry Andric   case Instruction::Xor:
35140b57cec5SDimitry Andric     Assert(B.getType()->isIntOrIntVectorTy(),
35150b57cec5SDimitry Andric            "Logical operators only work with integral types!", &B);
35160b57cec5SDimitry Andric     Assert(B.getType() == B.getOperand(0)->getType(),
35170b57cec5SDimitry Andric            "Logical operators must have same type for operands and result!",
35180b57cec5SDimitry Andric            &B);
35190b57cec5SDimitry Andric     break;
35200b57cec5SDimitry Andric   case Instruction::Shl:
35210b57cec5SDimitry Andric   case Instruction::LShr:
35220b57cec5SDimitry Andric   case Instruction::AShr:
35230b57cec5SDimitry Andric     Assert(B.getType()->isIntOrIntVectorTy(),
35240b57cec5SDimitry Andric            "Shifts only work with integral types!", &B);
35250b57cec5SDimitry Andric     Assert(B.getType() == B.getOperand(0)->getType(),
35260b57cec5SDimitry Andric            "Shift return type must be same as operands!", &B);
35270b57cec5SDimitry Andric     break;
35280b57cec5SDimitry Andric   default:
35290b57cec5SDimitry Andric     llvm_unreachable("Unknown BinaryOperator opcode!");
35300b57cec5SDimitry Andric   }
35310b57cec5SDimitry Andric 
35320b57cec5SDimitry Andric   visitInstruction(B);
35330b57cec5SDimitry Andric }
35340b57cec5SDimitry Andric 
35350b57cec5SDimitry Andric void Verifier::visitICmpInst(ICmpInst &IC) {
35360b57cec5SDimitry Andric   // Check that the operands are the same type
35370b57cec5SDimitry Andric   Type *Op0Ty = IC.getOperand(0)->getType();
35380b57cec5SDimitry Andric   Type *Op1Ty = IC.getOperand(1)->getType();
35390b57cec5SDimitry Andric   Assert(Op0Ty == Op1Ty,
35400b57cec5SDimitry Andric          "Both operands to ICmp instruction are not of the same type!", &IC);
35410b57cec5SDimitry Andric   // Check that the operands are the right type
35420b57cec5SDimitry Andric   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
35430b57cec5SDimitry Andric          "Invalid operand types for ICmp instruction", &IC);
35440b57cec5SDimitry Andric   // Check that the predicate is valid.
35450b57cec5SDimitry Andric   Assert(IC.isIntPredicate(),
35460b57cec5SDimitry Andric          "Invalid predicate in ICmp instruction!", &IC);
35470b57cec5SDimitry Andric 
35480b57cec5SDimitry Andric   visitInstruction(IC);
35490b57cec5SDimitry Andric }
35500b57cec5SDimitry Andric 
35510b57cec5SDimitry Andric void Verifier::visitFCmpInst(FCmpInst &FC) {
35520b57cec5SDimitry Andric   // Check that the operands are the same type
35530b57cec5SDimitry Andric   Type *Op0Ty = FC.getOperand(0)->getType();
35540b57cec5SDimitry Andric   Type *Op1Ty = FC.getOperand(1)->getType();
35550b57cec5SDimitry Andric   Assert(Op0Ty == Op1Ty,
35560b57cec5SDimitry Andric          "Both operands to FCmp instruction are not of the same type!", &FC);
35570b57cec5SDimitry Andric   // Check that the operands are the right type
35580b57cec5SDimitry Andric   Assert(Op0Ty->isFPOrFPVectorTy(),
35590b57cec5SDimitry Andric          "Invalid operand types for FCmp instruction", &FC);
35600b57cec5SDimitry Andric   // Check that the predicate is valid.
35610b57cec5SDimitry Andric   Assert(FC.isFPPredicate(),
35620b57cec5SDimitry Andric          "Invalid predicate in FCmp instruction!", &FC);
35630b57cec5SDimitry Andric 
35640b57cec5SDimitry Andric   visitInstruction(FC);
35650b57cec5SDimitry Andric }
35660b57cec5SDimitry Andric 
35670b57cec5SDimitry Andric void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
35680b57cec5SDimitry Andric   Assert(
35690b57cec5SDimitry Andric       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
35700b57cec5SDimitry Andric       "Invalid extractelement operands!", &EI);
35710b57cec5SDimitry Andric   visitInstruction(EI);
35720b57cec5SDimitry Andric }
35730b57cec5SDimitry Andric 
35740b57cec5SDimitry Andric void Verifier::visitInsertElementInst(InsertElementInst &IE) {
35750b57cec5SDimitry Andric   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
35760b57cec5SDimitry Andric                                             IE.getOperand(2)),
35770b57cec5SDimitry Andric          "Invalid insertelement operands!", &IE);
35780b57cec5SDimitry Andric   visitInstruction(IE);
35790b57cec5SDimitry Andric }
35800b57cec5SDimitry Andric 
35810b57cec5SDimitry Andric void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
35820b57cec5SDimitry Andric   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
35835ffd83dbSDimitry Andric                                             SV.getShuffleMask()),
35840b57cec5SDimitry Andric          "Invalid shufflevector operands!", &SV);
35850b57cec5SDimitry Andric   visitInstruction(SV);
35860b57cec5SDimitry Andric }
35870b57cec5SDimitry Andric 
35880b57cec5SDimitry Andric void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
35890b57cec5SDimitry Andric   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
35900b57cec5SDimitry Andric 
35910b57cec5SDimitry Andric   Assert(isa<PointerType>(TargetTy),
35920b57cec5SDimitry Andric          "GEP base pointer is not a vector or a vector of pointers", &GEP);
35930b57cec5SDimitry Andric   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
35940b57cec5SDimitry Andric 
3595e8d8bef9SDimitry Andric   SmallVector<Value *, 16> Idxs(GEP.indices());
35960b57cec5SDimitry Andric   Assert(all_of(
35970b57cec5SDimitry Andric       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
35980b57cec5SDimitry Andric       "GEP indexes must be integers", &GEP);
35990b57cec5SDimitry Andric   Type *ElTy =
36000b57cec5SDimitry Andric       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
36010b57cec5SDimitry Andric   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
36020b57cec5SDimitry Andric 
36030b57cec5SDimitry Andric   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
36040b57cec5SDimitry Andric              GEP.getResultElementType() == ElTy,
36050b57cec5SDimitry Andric          "GEP is not of right type for indices!", &GEP, ElTy);
36060b57cec5SDimitry Andric 
36075ffd83dbSDimitry Andric   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
36080b57cec5SDimitry Andric     // Additional checks for vector GEPs.
36095ffd83dbSDimitry Andric     ElementCount GEPWidth = GEPVTy->getElementCount();
36100b57cec5SDimitry Andric     if (GEP.getPointerOperandType()->isVectorTy())
36115ffd83dbSDimitry Andric       Assert(
36125ffd83dbSDimitry Andric           GEPWidth ==
36135ffd83dbSDimitry Andric               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
36140b57cec5SDimitry Andric           "Vector GEP result width doesn't match operand's", &GEP);
36150b57cec5SDimitry Andric     for (Value *Idx : Idxs) {
36160b57cec5SDimitry Andric       Type *IndexTy = Idx->getType();
36175ffd83dbSDimitry Andric       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
36185ffd83dbSDimitry Andric         ElementCount IndexWidth = IndexVTy->getElementCount();
36190b57cec5SDimitry Andric         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
36200b57cec5SDimitry Andric       }
36210b57cec5SDimitry Andric       Assert(IndexTy->isIntOrIntVectorTy(),
36220b57cec5SDimitry Andric              "All GEP indices should be of integer type");
36230b57cec5SDimitry Andric     }
36240b57cec5SDimitry Andric   }
36250b57cec5SDimitry Andric 
36260b57cec5SDimitry Andric   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
36270b57cec5SDimitry Andric     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
36280b57cec5SDimitry Andric            "GEP address space doesn't match type", &GEP);
36290b57cec5SDimitry Andric   }
36300b57cec5SDimitry Andric 
36310b57cec5SDimitry Andric   visitInstruction(GEP);
36320b57cec5SDimitry Andric }
36330b57cec5SDimitry Andric 
36340b57cec5SDimitry Andric static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
36350b57cec5SDimitry Andric   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
36360b57cec5SDimitry Andric }
36370b57cec5SDimitry Andric 
36380b57cec5SDimitry Andric void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
36390b57cec5SDimitry Andric   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
36400b57cec5SDimitry Andric          "precondition violation");
36410b57cec5SDimitry Andric 
36420b57cec5SDimitry Andric   unsigned NumOperands = Range->getNumOperands();
36430b57cec5SDimitry Andric   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
36440b57cec5SDimitry Andric   unsigned NumRanges = NumOperands / 2;
36450b57cec5SDimitry Andric   Assert(NumRanges >= 1, "It should have at least one range!", Range);
36460b57cec5SDimitry Andric 
36470b57cec5SDimitry Andric   ConstantRange LastRange(1, true); // Dummy initial value
36480b57cec5SDimitry Andric   for (unsigned i = 0; i < NumRanges; ++i) {
36490b57cec5SDimitry Andric     ConstantInt *Low =
36500b57cec5SDimitry Andric         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
36510b57cec5SDimitry Andric     Assert(Low, "The lower limit must be an integer!", Low);
36520b57cec5SDimitry Andric     ConstantInt *High =
36530b57cec5SDimitry Andric         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
36540b57cec5SDimitry Andric     Assert(High, "The upper limit must be an integer!", High);
36550b57cec5SDimitry Andric     Assert(High->getType() == Low->getType() && High->getType() == Ty,
36560b57cec5SDimitry Andric            "Range types must match instruction type!", &I);
36570b57cec5SDimitry Andric 
36580b57cec5SDimitry Andric     APInt HighV = High->getValue();
36590b57cec5SDimitry Andric     APInt LowV = Low->getValue();
36600b57cec5SDimitry Andric     ConstantRange CurRange(LowV, HighV);
36610b57cec5SDimitry Andric     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
36620b57cec5SDimitry Andric            "Range must not be empty!", Range);
36630b57cec5SDimitry Andric     if (i != 0) {
36640b57cec5SDimitry Andric       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
36650b57cec5SDimitry Andric              "Intervals are overlapping", Range);
36660b57cec5SDimitry Andric       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
36670b57cec5SDimitry Andric              Range);
36680b57cec5SDimitry Andric       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
36690b57cec5SDimitry Andric              Range);
36700b57cec5SDimitry Andric     }
36710b57cec5SDimitry Andric     LastRange = ConstantRange(LowV, HighV);
36720b57cec5SDimitry Andric   }
36730b57cec5SDimitry Andric   if (NumRanges > 2) {
36740b57cec5SDimitry Andric     APInt FirstLow =
36750b57cec5SDimitry Andric         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
36760b57cec5SDimitry Andric     APInt FirstHigh =
36770b57cec5SDimitry Andric         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
36780b57cec5SDimitry Andric     ConstantRange FirstRange(FirstLow, FirstHigh);
36790b57cec5SDimitry Andric     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
36800b57cec5SDimitry Andric            "Intervals are overlapping", Range);
36810b57cec5SDimitry Andric     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
36820b57cec5SDimitry Andric            Range);
36830b57cec5SDimitry Andric   }
36840b57cec5SDimitry Andric }
36850b57cec5SDimitry Andric 
36860b57cec5SDimitry Andric void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
36870b57cec5SDimitry Andric   unsigned Size = DL.getTypeSizeInBits(Ty);
36880b57cec5SDimitry Andric   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
36890b57cec5SDimitry Andric   Assert(!(Size & (Size - 1)),
36900b57cec5SDimitry Andric          "atomic memory access' operand must have a power-of-two size", Ty, I);
36910b57cec5SDimitry Andric }
36920b57cec5SDimitry Andric 
36930b57cec5SDimitry Andric void Verifier::visitLoadInst(LoadInst &LI) {
36940b57cec5SDimitry Andric   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
36950b57cec5SDimitry Andric   Assert(PTy, "Load operand must be a pointer.", &LI);
36960b57cec5SDimitry Andric   Type *ElTy = LI.getType();
36970b57cec5SDimitry Andric   Assert(LI.getAlignment() <= Value::MaximumAlignment,
36980b57cec5SDimitry Andric          "huge alignment values are unsupported", &LI);
36990b57cec5SDimitry Andric   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
37000b57cec5SDimitry Andric   if (LI.isAtomic()) {
37010b57cec5SDimitry Andric     Assert(LI.getOrdering() != AtomicOrdering::Release &&
37020b57cec5SDimitry Andric                LI.getOrdering() != AtomicOrdering::AcquireRelease,
37030b57cec5SDimitry Andric            "Load cannot have Release ordering", &LI);
37040b57cec5SDimitry Andric     Assert(LI.getAlignment() != 0,
37050b57cec5SDimitry Andric            "Atomic load must specify explicit alignment", &LI);
37060b57cec5SDimitry Andric     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
37070b57cec5SDimitry Andric            "atomic load operand must have integer, pointer, or floating point "
37080b57cec5SDimitry Andric            "type!",
37090b57cec5SDimitry Andric            ElTy, &LI);
37100b57cec5SDimitry Andric     checkAtomicMemAccessSize(ElTy, &LI);
37110b57cec5SDimitry Andric   } else {
37120b57cec5SDimitry Andric     Assert(LI.getSyncScopeID() == SyncScope::System,
37130b57cec5SDimitry Andric            "Non-atomic load cannot have SynchronizationScope specified", &LI);
37140b57cec5SDimitry Andric   }
37150b57cec5SDimitry Andric 
37160b57cec5SDimitry Andric   visitInstruction(LI);
37170b57cec5SDimitry Andric }
37180b57cec5SDimitry Andric 
37190b57cec5SDimitry Andric void Verifier::visitStoreInst(StoreInst &SI) {
37200b57cec5SDimitry Andric   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
37210b57cec5SDimitry Andric   Assert(PTy, "Store operand must be a pointer.", &SI);
3722*fe6060f1SDimitry Andric   Type *ElTy = SI.getOperand(0)->getType();
3723*fe6060f1SDimitry Andric   Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
37240b57cec5SDimitry Andric          "Stored value type does not match pointer operand type!", &SI, ElTy);
37250b57cec5SDimitry Andric   Assert(SI.getAlignment() <= Value::MaximumAlignment,
37260b57cec5SDimitry Andric          "huge alignment values are unsupported", &SI);
37270b57cec5SDimitry Andric   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
37280b57cec5SDimitry Andric   if (SI.isAtomic()) {
37290b57cec5SDimitry Andric     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
37300b57cec5SDimitry Andric                SI.getOrdering() != AtomicOrdering::AcquireRelease,
37310b57cec5SDimitry Andric            "Store cannot have Acquire ordering", &SI);
37320b57cec5SDimitry Andric     Assert(SI.getAlignment() != 0,
37330b57cec5SDimitry Andric            "Atomic store must specify explicit alignment", &SI);
37340b57cec5SDimitry Andric     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
37350b57cec5SDimitry Andric            "atomic store operand must have integer, pointer, or floating point "
37360b57cec5SDimitry Andric            "type!",
37370b57cec5SDimitry Andric            ElTy, &SI);
37380b57cec5SDimitry Andric     checkAtomicMemAccessSize(ElTy, &SI);
37390b57cec5SDimitry Andric   } else {
37400b57cec5SDimitry Andric     Assert(SI.getSyncScopeID() == SyncScope::System,
37410b57cec5SDimitry Andric            "Non-atomic store cannot have SynchronizationScope specified", &SI);
37420b57cec5SDimitry Andric   }
37430b57cec5SDimitry Andric   visitInstruction(SI);
37440b57cec5SDimitry Andric }
37450b57cec5SDimitry Andric 
37460b57cec5SDimitry Andric /// Check that SwiftErrorVal is used as a swifterror argument in CS.
37470b57cec5SDimitry Andric void Verifier::verifySwiftErrorCall(CallBase &Call,
37480b57cec5SDimitry Andric                                     const Value *SwiftErrorVal) {
3749*fe6060f1SDimitry Andric   for (const auto &I : llvm::enumerate(Call.args())) {
3750*fe6060f1SDimitry Andric     if (I.value() == SwiftErrorVal) {
3751*fe6060f1SDimitry Andric       Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
37520b57cec5SDimitry Andric              "swifterror value when used in a callsite should be marked "
37530b57cec5SDimitry Andric              "with swifterror attribute",
37540b57cec5SDimitry Andric              SwiftErrorVal, Call);
37550b57cec5SDimitry Andric     }
37560b57cec5SDimitry Andric   }
37570b57cec5SDimitry Andric }
37580b57cec5SDimitry Andric 
37590b57cec5SDimitry Andric void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
37600b57cec5SDimitry Andric   // Check that swifterror value is only used by loads, stores, or as
37610b57cec5SDimitry Andric   // a swifterror argument.
37620b57cec5SDimitry Andric   for (const User *U : SwiftErrorVal->users()) {
37630b57cec5SDimitry Andric     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
37640b57cec5SDimitry Andric            isa<InvokeInst>(U),
37650b57cec5SDimitry Andric            "swifterror value can only be loaded and stored from, or "
37660b57cec5SDimitry Andric            "as a swifterror argument!",
37670b57cec5SDimitry Andric            SwiftErrorVal, U);
37680b57cec5SDimitry Andric     // If it is used by a store, check it is the second operand.
37690b57cec5SDimitry Andric     if (auto StoreI = dyn_cast<StoreInst>(U))
37700b57cec5SDimitry Andric       Assert(StoreI->getOperand(1) == SwiftErrorVal,
37710b57cec5SDimitry Andric              "swifterror value should be the second operand when used "
37720b57cec5SDimitry Andric              "by stores", SwiftErrorVal, U);
37730b57cec5SDimitry Andric     if (auto *Call = dyn_cast<CallBase>(U))
37740b57cec5SDimitry Andric       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
37750b57cec5SDimitry Andric   }
37760b57cec5SDimitry Andric }
37770b57cec5SDimitry Andric 
37780b57cec5SDimitry Andric void Verifier::visitAllocaInst(AllocaInst &AI) {
37790b57cec5SDimitry Andric   SmallPtrSet<Type*, 4> Visited;
37800b57cec5SDimitry Andric   Assert(AI.getAllocatedType()->isSized(&Visited),
37810b57cec5SDimitry Andric          "Cannot allocate unsized type", &AI);
37820b57cec5SDimitry Andric   Assert(AI.getArraySize()->getType()->isIntegerTy(),
37830b57cec5SDimitry Andric          "Alloca array size must have integer type", &AI);
37840b57cec5SDimitry Andric   Assert(AI.getAlignment() <= Value::MaximumAlignment,
37850b57cec5SDimitry Andric          "huge alignment values are unsupported", &AI);
37860b57cec5SDimitry Andric 
37870b57cec5SDimitry Andric   if (AI.isSwiftError()) {
37880b57cec5SDimitry Andric     verifySwiftErrorValue(&AI);
37890b57cec5SDimitry Andric   }
37900b57cec5SDimitry Andric 
37910b57cec5SDimitry Andric   visitInstruction(AI);
37920b57cec5SDimitry Andric }
37930b57cec5SDimitry Andric 
37940b57cec5SDimitry Andric void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3795*fe6060f1SDimitry Andric   Type *ElTy = CXI.getOperand(1)->getType();
37960b57cec5SDimitry Andric   Assert(ElTy->isIntOrPtrTy(),
37970b57cec5SDimitry Andric          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
37980b57cec5SDimitry Andric   checkAtomicMemAccessSize(ElTy, &CXI);
37990b57cec5SDimitry Andric   visitInstruction(CXI);
38000b57cec5SDimitry Andric }
38010b57cec5SDimitry Andric 
38020b57cec5SDimitry Andric void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
38030b57cec5SDimitry Andric   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
38040b57cec5SDimitry Andric          "atomicrmw instructions cannot be unordered.", &RMWI);
38050b57cec5SDimitry Andric   auto Op = RMWI.getOperation();
3806*fe6060f1SDimitry Andric   Type *ElTy = RMWI.getOperand(1)->getType();
38070b57cec5SDimitry Andric   if (Op == AtomicRMWInst::Xchg) {
38080b57cec5SDimitry Andric     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
38090b57cec5SDimitry Andric            AtomicRMWInst::getOperationName(Op) +
38100b57cec5SDimitry Andric            " operand must have integer or floating point type!",
38110b57cec5SDimitry Andric            &RMWI, ElTy);
38120b57cec5SDimitry Andric   } else if (AtomicRMWInst::isFPOperation(Op)) {
38130b57cec5SDimitry Andric     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
38140b57cec5SDimitry Andric            AtomicRMWInst::getOperationName(Op) +
38150b57cec5SDimitry Andric            " operand must have floating point type!",
38160b57cec5SDimitry Andric            &RMWI, ElTy);
38170b57cec5SDimitry Andric   } else {
38180b57cec5SDimitry Andric     Assert(ElTy->isIntegerTy(), "atomicrmw " +
38190b57cec5SDimitry Andric            AtomicRMWInst::getOperationName(Op) +
38200b57cec5SDimitry Andric            " operand must have integer type!",
38210b57cec5SDimitry Andric            &RMWI, ElTy);
38220b57cec5SDimitry Andric   }
38230b57cec5SDimitry Andric   checkAtomicMemAccessSize(ElTy, &RMWI);
38240b57cec5SDimitry Andric   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
38250b57cec5SDimitry Andric          "Invalid binary operation!", &RMWI);
38260b57cec5SDimitry Andric   visitInstruction(RMWI);
38270b57cec5SDimitry Andric }
38280b57cec5SDimitry Andric 
38290b57cec5SDimitry Andric void Verifier::visitFenceInst(FenceInst &FI) {
38300b57cec5SDimitry Andric   const AtomicOrdering Ordering = FI.getOrdering();
38310b57cec5SDimitry Andric   Assert(Ordering == AtomicOrdering::Acquire ||
38320b57cec5SDimitry Andric              Ordering == AtomicOrdering::Release ||
38330b57cec5SDimitry Andric              Ordering == AtomicOrdering::AcquireRelease ||
38340b57cec5SDimitry Andric              Ordering == AtomicOrdering::SequentiallyConsistent,
38350b57cec5SDimitry Andric          "fence instructions may only have acquire, release, acq_rel, or "
38360b57cec5SDimitry Andric          "seq_cst ordering.",
38370b57cec5SDimitry Andric          &FI);
38380b57cec5SDimitry Andric   visitInstruction(FI);
38390b57cec5SDimitry Andric }
38400b57cec5SDimitry Andric 
38410b57cec5SDimitry Andric void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
38420b57cec5SDimitry Andric   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
38430b57cec5SDimitry Andric                                           EVI.getIndices()) == EVI.getType(),
38440b57cec5SDimitry Andric          "Invalid ExtractValueInst operands!", &EVI);
38450b57cec5SDimitry Andric 
38460b57cec5SDimitry Andric   visitInstruction(EVI);
38470b57cec5SDimitry Andric }
38480b57cec5SDimitry Andric 
38490b57cec5SDimitry Andric void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
38500b57cec5SDimitry Andric   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
38510b57cec5SDimitry Andric                                           IVI.getIndices()) ==
38520b57cec5SDimitry Andric              IVI.getOperand(1)->getType(),
38530b57cec5SDimitry Andric          "Invalid InsertValueInst operands!", &IVI);
38540b57cec5SDimitry Andric 
38550b57cec5SDimitry Andric   visitInstruction(IVI);
38560b57cec5SDimitry Andric }
38570b57cec5SDimitry Andric 
38580b57cec5SDimitry Andric static Value *getParentPad(Value *EHPad) {
38590b57cec5SDimitry Andric   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
38600b57cec5SDimitry Andric     return FPI->getParentPad();
38610b57cec5SDimitry Andric 
38620b57cec5SDimitry Andric   return cast<CatchSwitchInst>(EHPad)->getParentPad();
38630b57cec5SDimitry Andric }
38640b57cec5SDimitry Andric 
38650b57cec5SDimitry Andric void Verifier::visitEHPadPredecessors(Instruction &I) {
38660b57cec5SDimitry Andric   assert(I.isEHPad());
38670b57cec5SDimitry Andric 
38680b57cec5SDimitry Andric   BasicBlock *BB = I.getParent();
38690b57cec5SDimitry Andric   Function *F = BB->getParent();
38700b57cec5SDimitry Andric 
38710b57cec5SDimitry Andric   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
38720b57cec5SDimitry Andric 
38730b57cec5SDimitry Andric   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
38740b57cec5SDimitry Andric     // The landingpad instruction defines its parent as a landing pad block. The
38750b57cec5SDimitry Andric     // landing pad block may be branched to only by the unwind edge of an
38760b57cec5SDimitry Andric     // invoke.
38770b57cec5SDimitry Andric     for (BasicBlock *PredBB : predecessors(BB)) {
38780b57cec5SDimitry Andric       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
38790b57cec5SDimitry Andric       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
38800b57cec5SDimitry Andric              "Block containing LandingPadInst must be jumped to "
38810b57cec5SDimitry Andric              "only by the unwind edge of an invoke.",
38820b57cec5SDimitry Andric              LPI);
38830b57cec5SDimitry Andric     }
38840b57cec5SDimitry Andric     return;
38850b57cec5SDimitry Andric   }
38860b57cec5SDimitry Andric   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
38870b57cec5SDimitry Andric     if (!pred_empty(BB))
38880b57cec5SDimitry Andric       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
38890b57cec5SDimitry Andric              "Block containg CatchPadInst must be jumped to "
38900b57cec5SDimitry Andric              "only by its catchswitch.",
38910b57cec5SDimitry Andric              CPI);
38920b57cec5SDimitry Andric     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
38930b57cec5SDimitry Andric            "Catchswitch cannot unwind to one of its catchpads",
38940b57cec5SDimitry Andric            CPI->getCatchSwitch(), CPI);
38950b57cec5SDimitry Andric     return;
38960b57cec5SDimitry Andric   }
38970b57cec5SDimitry Andric 
38980b57cec5SDimitry Andric   // Verify that each pred has a legal terminator with a legal to/from EH
38990b57cec5SDimitry Andric   // pad relationship.
39000b57cec5SDimitry Andric   Instruction *ToPad = &I;
39010b57cec5SDimitry Andric   Value *ToPadParent = getParentPad(ToPad);
39020b57cec5SDimitry Andric   for (BasicBlock *PredBB : predecessors(BB)) {
39030b57cec5SDimitry Andric     Instruction *TI = PredBB->getTerminator();
39040b57cec5SDimitry Andric     Value *FromPad;
39050b57cec5SDimitry Andric     if (auto *II = dyn_cast<InvokeInst>(TI)) {
39060b57cec5SDimitry Andric       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
39070b57cec5SDimitry Andric              "EH pad must be jumped to via an unwind edge", ToPad, II);
39080b57cec5SDimitry Andric       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
39090b57cec5SDimitry Andric         FromPad = Bundle->Inputs[0];
39100b57cec5SDimitry Andric       else
39110b57cec5SDimitry Andric         FromPad = ConstantTokenNone::get(II->getContext());
39120b57cec5SDimitry Andric     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
39130b57cec5SDimitry Andric       FromPad = CRI->getOperand(0);
39140b57cec5SDimitry Andric       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
39150b57cec5SDimitry Andric     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
39160b57cec5SDimitry Andric       FromPad = CSI;
39170b57cec5SDimitry Andric     } else {
39180b57cec5SDimitry Andric       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
39190b57cec5SDimitry Andric     }
39200b57cec5SDimitry Andric 
39210b57cec5SDimitry Andric     // The edge may exit from zero or more nested pads.
39220b57cec5SDimitry Andric     SmallSet<Value *, 8> Seen;
39230b57cec5SDimitry Andric     for (;; FromPad = getParentPad(FromPad)) {
39240b57cec5SDimitry Andric       Assert(FromPad != ToPad,
39250b57cec5SDimitry Andric              "EH pad cannot handle exceptions raised within it", FromPad, TI);
39260b57cec5SDimitry Andric       if (FromPad == ToPadParent) {
39270b57cec5SDimitry Andric         // This is a legal unwind edge.
39280b57cec5SDimitry Andric         break;
39290b57cec5SDimitry Andric       }
39300b57cec5SDimitry Andric       Assert(!isa<ConstantTokenNone>(FromPad),
39310b57cec5SDimitry Andric              "A single unwind edge may only enter one EH pad", TI);
39320b57cec5SDimitry Andric       Assert(Seen.insert(FromPad).second,
39330b57cec5SDimitry Andric              "EH pad jumps through a cycle of pads", FromPad);
39340b57cec5SDimitry Andric     }
39350b57cec5SDimitry Andric   }
39360b57cec5SDimitry Andric }
39370b57cec5SDimitry Andric 
39380b57cec5SDimitry Andric void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
39390b57cec5SDimitry Andric   // The landingpad instruction is ill-formed if it doesn't have any clauses and
39400b57cec5SDimitry Andric   // isn't a cleanup.
39410b57cec5SDimitry Andric   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
39420b57cec5SDimitry Andric          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
39430b57cec5SDimitry Andric 
39440b57cec5SDimitry Andric   visitEHPadPredecessors(LPI);
39450b57cec5SDimitry Andric 
39460b57cec5SDimitry Andric   if (!LandingPadResultTy)
39470b57cec5SDimitry Andric     LandingPadResultTy = LPI.getType();
39480b57cec5SDimitry Andric   else
39490b57cec5SDimitry Andric     Assert(LandingPadResultTy == LPI.getType(),
39500b57cec5SDimitry Andric            "The landingpad instruction should have a consistent result type "
39510b57cec5SDimitry Andric            "inside a function.",
39520b57cec5SDimitry Andric            &LPI);
39530b57cec5SDimitry Andric 
39540b57cec5SDimitry Andric   Function *F = LPI.getParent()->getParent();
39550b57cec5SDimitry Andric   Assert(F->hasPersonalityFn(),
39560b57cec5SDimitry Andric          "LandingPadInst needs to be in a function with a personality.", &LPI);
39570b57cec5SDimitry Andric 
39580b57cec5SDimitry Andric   // The landingpad instruction must be the first non-PHI instruction in the
39590b57cec5SDimitry Andric   // block.
39600b57cec5SDimitry Andric   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
39610b57cec5SDimitry Andric          "LandingPadInst not the first non-PHI instruction in the block.",
39620b57cec5SDimitry Andric          &LPI);
39630b57cec5SDimitry Andric 
39640b57cec5SDimitry Andric   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
39650b57cec5SDimitry Andric     Constant *Clause = LPI.getClause(i);
39660b57cec5SDimitry Andric     if (LPI.isCatch(i)) {
39670b57cec5SDimitry Andric       Assert(isa<PointerType>(Clause->getType()),
39680b57cec5SDimitry Andric              "Catch operand does not have pointer type!", &LPI);
39690b57cec5SDimitry Andric     } else {
39700b57cec5SDimitry Andric       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
39710b57cec5SDimitry Andric       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
39720b57cec5SDimitry Andric              "Filter operand is not an array of constants!", &LPI);
39730b57cec5SDimitry Andric     }
39740b57cec5SDimitry Andric   }
39750b57cec5SDimitry Andric 
39760b57cec5SDimitry Andric   visitInstruction(LPI);
39770b57cec5SDimitry Andric }
39780b57cec5SDimitry Andric 
39790b57cec5SDimitry Andric void Verifier::visitResumeInst(ResumeInst &RI) {
39800b57cec5SDimitry Andric   Assert(RI.getFunction()->hasPersonalityFn(),
39810b57cec5SDimitry Andric          "ResumeInst needs to be in a function with a personality.", &RI);
39820b57cec5SDimitry Andric 
39830b57cec5SDimitry Andric   if (!LandingPadResultTy)
39840b57cec5SDimitry Andric     LandingPadResultTy = RI.getValue()->getType();
39850b57cec5SDimitry Andric   else
39860b57cec5SDimitry Andric     Assert(LandingPadResultTy == RI.getValue()->getType(),
39870b57cec5SDimitry Andric            "The resume instruction should have a consistent result type "
39880b57cec5SDimitry Andric            "inside a function.",
39890b57cec5SDimitry Andric            &RI);
39900b57cec5SDimitry Andric 
39910b57cec5SDimitry Andric   visitTerminator(RI);
39920b57cec5SDimitry Andric }
39930b57cec5SDimitry Andric 
39940b57cec5SDimitry Andric void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
39950b57cec5SDimitry Andric   BasicBlock *BB = CPI.getParent();
39960b57cec5SDimitry Andric 
39970b57cec5SDimitry Andric   Function *F = BB->getParent();
39980b57cec5SDimitry Andric   Assert(F->hasPersonalityFn(),
39990b57cec5SDimitry Andric          "CatchPadInst needs to be in a function with a personality.", &CPI);
40000b57cec5SDimitry Andric 
40010b57cec5SDimitry Andric   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
40020b57cec5SDimitry Andric          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
40030b57cec5SDimitry Andric          CPI.getParentPad());
40040b57cec5SDimitry Andric 
40050b57cec5SDimitry Andric   // The catchpad instruction must be the first non-PHI instruction in the
40060b57cec5SDimitry Andric   // block.
40070b57cec5SDimitry Andric   Assert(BB->getFirstNonPHI() == &CPI,
40080b57cec5SDimitry Andric          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
40090b57cec5SDimitry Andric 
40100b57cec5SDimitry Andric   visitEHPadPredecessors(CPI);
40110b57cec5SDimitry Andric   visitFuncletPadInst(CPI);
40120b57cec5SDimitry Andric }
40130b57cec5SDimitry Andric 
40140b57cec5SDimitry Andric void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
40150b57cec5SDimitry Andric   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
40160b57cec5SDimitry Andric          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
40170b57cec5SDimitry Andric          CatchReturn.getOperand(0));
40180b57cec5SDimitry Andric 
40190b57cec5SDimitry Andric   visitTerminator(CatchReturn);
40200b57cec5SDimitry Andric }
40210b57cec5SDimitry Andric 
40220b57cec5SDimitry Andric void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
40230b57cec5SDimitry Andric   BasicBlock *BB = CPI.getParent();
40240b57cec5SDimitry Andric 
40250b57cec5SDimitry Andric   Function *F = BB->getParent();
40260b57cec5SDimitry Andric   Assert(F->hasPersonalityFn(),
40270b57cec5SDimitry Andric          "CleanupPadInst needs to be in a function with a personality.", &CPI);
40280b57cec5SDimitry Andric 
40290b57cec5SDimitry Andric   // The cleanuppad instruction must be the first non-PHI instruction in the
40300b57cec5SDimitry Andric   // block.
40310b57cec5SDimitry Andric   Assert(BB->getFirstNonPHI() == &CPI,
40320b57cec5SDimitry Andric          "CleanupPadInst not the first non-PHI instruction in the block.",
40330b57cec5SDimitry Andric          &CPI);
40340b57cec5SDimitry Andric 
40350b57cec5SDimitry Andric   auto *ParentPad = CPI.getParentPad();
40360b57cec5SDimitry Andric   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
40370b57cec5SDimitry Andric          "CleanupPadInst has an invalid parent.", &CPI);
40380b57cec5SDimitry Andric 
40390b57cec5SDimitry Andric   visitEHPadPredecessors(CPI);
40400b57cec5SDimitry Andric   visitFuncletPadInst(CPI);
40410b57cec5SDimitry Andric }
40420b57cec5SDimitry Andric 
40430b57cec5SDimitry Andric void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
40440b57cec5SDimitry Andric   User *FirstUser = nullptr;
40450b57cec5SDimitry Andric   Value *FirstUnwindPad = nullptr;
40460b57cec5SDimitry Andric   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
40470b57cec5SDimitry Andric   SmallSet<FuncletPadInst *, 8> Seen;
40480b57cec5SDimitry Andric 
40490b57cec5SDimitry Andric   while (!Worklist.empty()) {
40500b57cec5SDimitry Andric     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
40510b57cec5SDimitry Andric     Assert(Seen.insert(CurrentPad).second,
40520b57cec5SDimitry Andric            "FuncletPadInst must not be nested within itself", CurrentPad);
40530b57cec5SDimitry Andric     Value *UnresolvedAncestorPad = nullptr;
40540b57cec5SDimitry Andric     for (User *U : CurrentPad->users()) {
40550b57cec5SDimitry Andric       BasicBlock *UnwindDest;
40560b57cec5SDimitry Andric       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
40570b57cec5SDimitry Andric         UnwindDest = CRI->getUnwindDest();
40580b57cec5SDimitry Andric       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
40590b57cec5SDimitry Andric         // We allow catchswitch unwind to caller to nest
40600b57cec5SDimitry Andric         // within an outer pad that unwinds somewhere else,
40610b57cec5SDimitry Andric         // because catchswitch doesn't have a nounwind variant.
40620b57cec5SDimitry Andric         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
40630b57cec5SDimitry Andric         if (CSI->unwindsToCaller())
40640b57cec5SDimitry Andric           continue;
40650b57cec5SDimitry Andric         UnwindDest = CSI->getUnwindDest();
40660b57cec5SDimitry Andric       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
40670b57cec5SDimitry Andric         UnwindDest = II->getUnwindDest();
40680b57cec5SDimitry Andric       } else if (isa<CallInst>(U)) {
40690b57cec5SDimitry Andric         // Calls which don't unwind may be found inside funclet
40700b57cec5SDimitry Andric         // pads that unwind somewhere else.  We don't *require*
40710b57cec5SDimitry Andric         // such calls to be annotated nounwind.
40720b57cec5SDimitry Andric         continue;
40730b57cec5SDimitry Andric       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
40740b57cec5SDimitry Andric         // The unwind dest for a cleanup can only be found by
40750b57cec5SDimitry Andric         // recursive search.  Add it to the worklist, and we'll
40760b57cec5SDimitry Andric         // search for its first use that determines where it unwinds.
40770b57cec5SDimitry Andric         Worklist.push_back(CPI);
40780b57cec5SDimitry Andric         continue;
40790b57cec5SDimitry Andric       } else {
40800b57cec5SDimitry Andric         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
40810b57cec5SDimitry Andric         continue;
40820b57cec5SDimitry Andric       }
40830b57cec5SDimitry Andric 
40840b57cec5SDimitry Andric       Value *UnwindPad;
40850b57cec5SDimitry Andric       bool ExitsFPI;
40860b57cec5SDimitry Andric       if (UnwindDest) {
40870b57cec5SDimitry Andric         UnwindPad = UnwindDest->getFirstNonPHI();
40880b57cec5SDimitry Andric         if (!cast<Instruction>(UnwindPad)->isEHPad())
40890b57cec5SDimitry Andric           continue;
40900b57cec5SDimitry Andric         Value *UnwindParent = getParentPad(UnwindPad);
40910b57cec5SDimitry Andric         // Ignore unwind edges that don't exit CurrentPad.
40920b57cec5SDimitry Andric         if (UnwindParent == CurrentPad)
40930b57cec5SDimitry Andric           continue;
40940b57cec5SDimitry Andric         // Determine whether the original funclet pad is exited,
40950b57cec5SDimitry Andric         // and if we are scanning nested pads determine how many
40960b57cec5SDimitry Andric         // of them are exited so we can stop searching their
40970b57cec5SDimitry Andric         // children.
40980b57cec5SDimitry Andric         Value *ExitedPad = CurrentPad;
40990b57cec5SDimitry Andric         ExitsFPI = false;
41000b57cec5SDimitry Andric         do {
41010b57cec5SDimitry Andric           if (ExitedPad == &FPI) {
41020b57cec5SDimitry Andric             ExitsFPI = true;
41030b57cec5SDimitry Andric             // Now we can resolve any ancestors of CurrentPad up to
41040b57cec5SDimitry Andric             // FPI, but not including FPI since we need to make sure
41050b57cec5SDimitry Andric             // to check all direct users of FPI for consistency.
41060b57cec5SDimitry Andric             UnresolvedAncestorPad = &FPI;
41070b57cec5SDimitry Andric             break;
41080b57cec5SDimitry Andric           }
41090b57cec5SDimitry Andric           Value *ExitedParent = getParentPad(ExitedPad);
41100b57cec5SDimitry Andric           if (ExitedParent == UnwindParent) {
41110b57cec5SDimitry Andric             // ExitedPad is the ancestor-most pad which this unwind
41120b57cec5SDimitry Andric             // edge exits, so we can resolve up to it, meaning that
41130b57cec5SDimitry Andric             // ExitedParent is the first ancestor still unresolved.
41140b57cec5SDimitry Andric             UnresolvedAncestorPad = ExitedParent;
41150b57cec5SDimitry Andric             break;
41160b57cec5SDimitry Andric           }
41170b57cec5SDimitry Andric           ExitedPad = ExitedParent;
41180b57cec5SDimitry Andric         } while (!isa<ConstantTokenNone>(ExitedPad));
41190b57cec5SDimitry Andric       } else {
41200b57cec5SDimitry Andric         // Unwinding to caller exits all pads.
41210b57cec5SDimitry Andric         UnwindPad = ConstantTokenNone::get(FPI.getContext());
41220b57cec5SDimitry Andric         ExitsFPI = true;
41230b57cec5SDimitry Andric         UnresolvedAncestorPad = &FPI;
41240b57cec5SDimitry Andric       }
41250b57cec5SDimitry Andric 
41260b57cec5SDimitry Andric       if (ExitsFPI) {
41270b57cec5SDimitry Andric         // This unwind edge exits FPI.  Make sure it agrees with other
41280b57cec5SDimitry Andric         // such edges.
41290b57cec5SDimitry Andric         if (FirstUser) {
41300b57cec5SDimitry Andric           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
41310b57cec5SDimitry Andric                                               "pad must have the same unwind "
41320b57cec5SDimitry Andric                                               "dest",
41330b57cec5SDimitry Andric                  &FPI, U, FirstUser);
41340b57cec5SDimitry Andric         } else {
41350b57cec5SDimitry Andric           FirstUser = U;
41360b57cec5SDimitry Andric           FirstUnwindPad = UnwindPad;
41370b57cec5SDimitry Andric           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
41380b57cec5SDimitry Andric           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
41390b57cec5SDimitry Andric               getParentPad(UnwindPad) == getParentPad(&FPI))
41400b57cec5SDimitry Andric             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
41410b57cec5SDimitry Andric         }
41420b57cec5SDimitry Andric       }
41430b57cec5SDimitry Andric       // Make sure we visit all uses of FPI, but for nested pads stop as
41440b57cec5SDimitry Andric       // soon as we know where they unwind to.
41450b57cec5SDimitry Andric       if (CurrentPad != &FPI)
41460b57cec5SDimitry Andric         break;
41470b57cec5SDimitry Andric     }
41480b57cec5SDimitry Andric     if (UnresolvedAncestorPad) {
41490b57cec5SDimitry Andric       if (CurrentPad == UnresolvedAncestorPad) {
41500b57cec5SDimitry Andric         // When CurrentPad is FPI itself, we don't mark it as resolved even if
41510b57cec5SDimitry Andric         // we've found an unwind edge that exits it, because we need to verify
41520b57cec5SDimitry Andric         // all direct uses of FPI.
41530b57cec5SDimitry Andric         assert(CurrentPad == &FPI);
41540b57cec5SDimitry Andric         continue;
41550b57cec5SDimitry Andric       }
41560b57cec5SDimitry Andric       // Pop off the worklist any nested pads that we've found an unwind
41570b57cec5SDimitry Andric       // destination for.  The pads on the worklist are the uncles,
41580b57cec5SDimitry Andric       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
41590b57cec5SDimitry Andric       // for all ancestors of CurrentPad up to but not including
41600b57cec5SDimitry Andric       // UnresolvedAncestorPad.
41610b57cec5SDimitry Andric       Value *ResolvedPad = CurrentPad;
41620b57cec5SDimitry Andric       while (!Worklist.empty()) {
41630b57cec5SDimitry Andric         Value *UnclePad = Worklist.back();
41640b57cec5SDimitry Andric         Value *AncestorPad = getParentPad(UnclePad);
41650b57cec5SDimitry Andric         // Walk ResolvedPad up the ancestor list until we either find the
41660b57cec5SDimitry Andric         // uncle's parent or the last resolved ancestor.
41670b57cec5SDimitry Andric         while (ResolvedPad != AncestorPad) {
41680b57cec5SDimitry Andric           Value *ResolvedParent = getParentPad(ResolvedPad);
41690b57cec5SDimitry Andric           if (ResolvedParent == UnresolvedAncestorPad) {
41700b57cec5SDimitry Andric             break;
41710b57cec5SDimitry Andric           }
41720b57cec5SDimitry Andric           ResolvedPad = ResolvedParent;
41730b57cec5SDimitry Andric         }
41740b57cec5SDimitry Andric         // If the resolved ancestor search didn't find the uncle's parent,
41750b57cec5SDimitry Andric         // then the uncle is not yet resolved.
41760b57cec5SDimitry Andric         if (ResolvedPad != AncestorPad)
41770b57cec5SDimitry Andric           break;
41780b57cec5SDimitry Andric         // This uncle is resolved, so pop it from the worklist.
41790b57cec5SDimitry Andric         Worklist.pop_back();
41800b57cec5SDimitry Andric       }
41810b57cec5SDimitry Andric     }
41820b57cec5SDimitry Andric   }
41830b57cec5SDimitry Andric 
41840b57cec5SDimitry Andric   if (FirstUnwindPad) {
41850b57cec5SDimitry Andric     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
41860b57cec5SDimitry Andric       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
41870b57cec5SDimitry Andric       Value *SwitchUnwindPad;
41880b57cec5SDimitry Andric       if (SwitchUnwindDest)
41890b57cec5SDimitry Andric         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
41900b57cec5SDimitry Andric       else
41910b57cec5SDimitry Andric         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
41920b57cec5SDimitry Andric       Assert(SwitchUnwindPad == FirstUnwindPad,
41930b57cec5SDimitry Andric              "Unwind edges out of a catch must have the same unwind dest as "
41940b57cec5SDimitry Andric              "the parent catchswitch",
41950b57cec5SDimitry Andric              &FPI, FirstUser, CatchSwitch);
41960b57cec5SDimitry Andric     }
41970b57cec5SDimitry Andric   }
41980b57cec5SDimitry Andric 
41990b57cec5SDimitry Andric   visitInstruction(FPI);
42000b57cec5SDimitry Andric }
42010b57cec5SDimitry Andric 
42020b57cec5SDimitry Andric void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
42030b57cec5SDimitry Andric   BasicBlock *BB = CatchSwitch.getParent();
42040b57cec5SDimitry Andric 
42050b57cec5SDimitry Andric   Function *F = BB->getParent();
42060b57cec5SDimitry Andric   Assert(F->hasPersonalityFn(),
42070b57cec5SDimitry Andric          "CatchSwitchInst needs to be in a function with a personality.",
42080b57cec5SDimitry Andric          &CatchSwitch);
42090b57cec5SDimitry Andric 
42100b57cec5SDimitry Andric   // The catchswitch instruction must be the first non-PHI instruction in the
42110b57cec5SDimitry Andric   // block.
42120b57cec5SDimitry Andric   Assert(BB->getFirstNonPHI() == &CatchSwitch,
42130b57cec5SDimitry Andric          "CatchSwitchInst not the first non-PHI instruction in the block.",
42140b57cec5SDimitry Andric          &CatchSwitch);
42150b57cec5SDimitry Andric 
42160b57cec5SDimitry Andric   auto *ParentPad = CatchSwitch.getParentPad();
42170b57cec5SDimitry Andric   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
42180b57cec5SDimitry Andric          "CatchSwitchInst has an invalid parent.", ParentPad);
42190b57cec5SDimitry Andric 
42200b57cec5SDimitry Andric   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
42210b57cec5SDimitry Andric     Instruction *I = UnwindDest->getFirstNonPHI();
42220b57cec5SDimitry Andric     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
42230b57cec5SDimitry Andric            "CatchSwitchInst must unwind to an EH block which is not a "
42240b57cec5SDimitry Andric            "landingpad.",
42250b57cec5SDimitry Andric            &CatchSwitch);
42260b57cec5SDimitry Andric 
42270b57cec5SDimitry Andric     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
42280b57cec5SDimitry Andric     if (getParentPad(I) == ParentPad)
42290b57cec5SDimitry Andric       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
42300b57cec5SDimitry Andric   }
42310b57cec5SDimitry Andric 
42320b57cec5SDimitry Andric   Assert(CatchSwitch.getNumHandlers() != 0,
42330b57cec5SDimitry Andric          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
42340b57cec5SDimitry Andric 
42350b57cec5SDimitry Andric   for (BasicBlock *Handler : CatchSwitch.handlers()) {
42360b57cec5SDimitry Andric     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
42370b57cec5SDimitry Andric            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
42380b57cec5SDimitry Andric   }
42390b57cec5SDimitry Andric 
42400b57cec5SDimitry Andric   visitEHPadPredecessors(CatchSwitch);
42410b57cec5SDimitry Andric   visitTerminator(CatchSwitch);
42420b57cec5SDimitry Andric }
42430b57cec5SDimitry Andric 
42440b57cec5SDimitry Andric void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
42450b57cec5SDimitry Andric   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
42460b57cec5SDimitry Andric          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
42470b57cec5SDimitry Andric          CRI.getOperand(0));
42480b57cec5SDimitry Andric 
42490b57cec5SDimitry Andric   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
42500b57cec5SDimitry Andric     Instruction *I = UnwindDest->getFirstNonPHI();
42510b57cec5SDimitry Andric     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
42520b57cec5SDimitry Andric            "CleanupReturnInst must unwind to an EH block which is not a "
42530b57cec5SDimitry Andric            "landingpad.",
42540b57cec5SDimitry Andric            &CRI);
42550b57cec5SDimitry Andric   }
42560b57cec5SDimitry Andric 
42570b57cec5SDimitry Andric   visitTerminator(CRI);
42580b57cec5SDimitry Andric }
42590b57cec5SDimitry Andric 
42600b57cec5SDimitry Andric void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
42610b57cec5SDimitry Andric   Instruction *Op = cast<Instruction>(I.getOperand(i));
42620b57cec5SDimitry Andric   // If the we have an invalid invoke, don't try to compute the dominance.
42630b57cec5SDimitry Andric   // We already reject it in the invoke specific checks and the dominance
42640b57cec5SDimitry Andric   // computation doesn't handle multiple edges.
42650b57cec5SDimitry Andric   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
42660b57cec5SDimitry Andric     if (II->getNormalDest() == II->getUnwindDest())
42670b57cec5SDimitry Andric       return;
42680b57cec5SDimitry Andric   }
42690b57cec5SDimitry Andric 
42700b57cec5SDimitry Andric   // Quick check whether the def has already been encountered in the same block.
42710b57cec5SDimitry Andric   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
42720b57cec5SDimitry Andric   // uses are defined to happen on the incoming edge, not at the instruction.
42730b57cec5SDimitry Andric   //
42740b57cec5SDimitry Andric   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
42750b57cec5SDimitry Andric   // wrapping an SSA value, assert that we've already encountered it.  See
42760b57cec5SDimitry Andric   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
42770b57cec5SDimitry Andric   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
42780b57cec5SDimitry Andric     return;
42790b57cec5SDimitry Andric 
42800b57cec5SDimitry Andric   const Use &U = I.getOperandUse(i);
42810b57cec5SDimitry Andric   Assert(DT.dominates(Op, U),
42820b57cec5SDimitry Andric          "Instruction does not dominate all uses!", Op, &I);
42830b57cec5SDimitry Andric }
42840b57cec5SDimitry Andric 
42850b57cec5SDimitry Andric void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
42860b57cec5SDimitry Andric   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
42870b57cec5SDimitry Andric          "apply only to pointer types", &I);
42888bcb0991SDimitry Andric   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
42890b57cec5SDimitry Andric          "dereferenceable, dereferenceable_or_null apply only to load"
42908bcb0991SDimitry Andric          " and inttoptr instructions, use attributes for calls or invokes", &I);
42910b57cec5SDimitry Andric   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
42920b57cec5SDimitry Andric          "take one operand!", &I);
42930b57cec5SDimitry Andric   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
42940b57cec5SDimitry Andric   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
42950b57cec5SDimitry Andric          "dereferenceable_or_null metadata value must be an i64!", &I);
42960b57cec5SDimitry Andric }
42970b57cec5SDimitry Andric 
42988bcb0991SDimitry Andric void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
42998bcb0991SDimitry Andric   Assert(MD->getNumOperands() >= 2,
43008bcb0991SDimitry Andric          "!prof annotations should have no less than 2 operands", MD);
43018bcb0991SDimitry Andric 
43028bcb0991SDimitry Andric   // Check first operand.
43038bcb0991SDimitry Andric   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
43048bcb0991SDimitry Andric   Assert(isa<MDString>(MD->getOperand(0)),
43058bcb0991SDimitry Andric          "expected string with name of the !prof annotation", MD);
43068bcb0991SDimitry Andric   MDString *MDS = cast<MDString>(MD->getOperand(0));
43078bcb0991SDimitry Andric   StringRef ProfName = MDS->getString();
43088bcb0991SDimitry Andric 
43098bcb0991SDimitry Andric   // Check consistency of !prof branch_weights metadata.
43108bcb0991SDimitry Andric   if (ProfName.equals("branch_weights")) {
43115ffd83dbSDimitry Andric     if (isa<InvokeInst>(&I)) {
43125ffd83dbSDimitry Andric       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
43135ffd83dbSDimitry Andric              "Wrong number of InvokeInst branch_weights operands", MD);
43145ffd83dbSDimitry Andric     } else {
43158bcb0991SDimitry Andric       unsigned ExpectedNumOperands = 0;
43168bcb0991SDimitry Andric       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
43178bcb0991SDimitry Andric         ExpectedNumOperands = BI->getNumSuccessors();
43188bcb0991SDimitry Andric       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
43198bcb0991SDimitry Andric         ExpectedNumOperands = SI->getNumSuccessors();
43205ffd83dbSDimitry Andric       else if (isa<CallInst>(&I))
43218bcb0991SDimitry Andric         ExpectedNumOperands = 1;
43228bcb0991SDimitry Andric       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
43238bcb0991SDimitry Andric         ExpectedNumOperands = IBI->getNumDestinations();
43248bcb0991SDimitry Andric       else if (isa<SelectInst>(&I))
43258bcb0991SDimitry Andric         ExpectedNumOperands = 2;
43268bcb0991SDimitry Andric       else
43278bcb0991SDimitry Andric         CheckFailed("!prof branch_weights are not allowed for this instruction",
43288bcb0991SDimitry Andric                     MD);
43298bcb0991SDimitry Andric 
43308bcb0991SDimitry Andric       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
43318bcb0991SDimitry Andric              "Wrong number of operands", MD);
43325ffd83dbSDimitry Andric     }
43338bcb0991SDimitry Andric     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
43348bcb0991SDimitry Andric       auto &MDO = MD->getOperand(i);
43358bcb0991SDimitry Andric       Assert(MDO, "second operand should not be null", MD);
43368bcb0991SDimitry Andric       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
43378bcb0991SDimitry Andric              "!prof brunch_weights operand is not a const int");
43388bcb0991SDimitry Andric     }
43398bcb0991SDimitry Andric   }
43408bcb0991SDimitry Andric }
43418bcb0991SDimitry Andric 
4342e8d8bef9SDimitry Andric void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4343e8d8bef9SDimitry Andric   Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
4344e8d8bef9SDimitry Andric   Assert(Annotation->getNumOperands() >= 1,
4345e8d8bef9SDimitry Andric          "annotation must have at least one operand");
4346e8d8bef9SDimitry Andric   for (const MDOperand &Op : Annotation->operands())
4347e8d8bef9SDimitry Andric     Assert(isa<MDString>(Op.get()), "operands must be strings");
4348e8d8bef9SDimitry Andric }
4349e8d8bef9SDimitry Andric 
43500b57cec5SDimitry Andric /// verifyInstruction - Verify that an instruction is well formed.
43510b57cec5SDimitry Andric ///
43520b57cec5SDimitry Andric void Verifier::visitInstruction(Instruction &I) {
43530b57cec5SDimitry Andric   BasicBlock *BB = I.getParent();
43540b57cec5SDimitry Andric   Assert(BB, "Instruction not embedded in basic block!", &I);
43550b57cec5SDimitry Andric 
43560b57cec5SDimitry Andric   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
43570b57cec5SDimitry Andric     for (User *U : I.users()) {
43580b57cec5SDimitry Andric       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
43590b57cec5SDimitry Andric              "Only PHI nodes may reference their own value!", &I);
43600b57cec5SDimitry Andric     }
43610b57cec5SDimitry Andric   }
43620b57cec5SDimitry Andric 
43630b57cec5SDimitry Andric   // Check that void typed values don't have names
43640b57cec5SDimitry Andric   Assert(!I.getType()->isVoidTy() || !I.hasName(),
43650b57cec5SDimitry Andric          "Instruction has a name, but provides a void value!", &I);
43660b57cec5SDimitry Andric 
43670b57cec5SDimitry Andric   // Check that the return value of the instruction is either void or a legal
43680b57cec5SDimitry Andric   // value type.
43690b57cec5SDimitry Andric   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
43700b57cec5SDimitry Andric          "Instruction returns a non-scalar type!", &I);
43710b57cec5SDimitry Andric 
43720b57cec5SDimitry Andric   // Check that the instruction doesn't produce metadata. Calls are already
43730b57cec5SDimitry Andric   // checked against the callee type.
43740b57cec5SDimitry Andric   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
43750b57cec5SDimitry Andric          "Invalid use of metadata!", &I);
43760b57cec5SDimitry Andric 
43770b57cec5SDimitry Andric   // Check that all uses of the instruction, if they are instructions
43780b57cec5SDimitry Andric   // themselves, actually have parent basic blocks.  If the use is not an
43790b57cec5SDimitry Andric   // instruction, it is an error!
43800b57cec5SDimitry Andric   for (Use &U : I.uses()) {
43810b57cec5SDimitry Andric     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
43820b57cec5SDimitry Andric       Assert(Used->getParent() != nullptr,
43830b57cec5SDimitry Andric              "Instruction referencing"
43840b57cec5SDimitry Andric              " instruction not embedded in a basic block!",
43850b57cec5SDimitry Andric              &I, Used);
43860b57cec5SDimitry Andric     else {
43870b57cec5SDimitry Andric       CheckFailed("Use of instruction is not an instruction!", U);
43880b57cec5SDimitry Andric       return;
43890b57cec5SDimitry Andric     }
43900b57cec5SDimitry Andric   }
43910b57cec5SDimitry Andric 
43920b57cec5SDimitry Andric   // Get a pointer to the call base of the instruction if it is some form of
43930b57cec5SDimitry Andric   // call.
43940b57cec5SDimitry Andric   const CallBase *CBI = dyn_cast<CallBase>(&I);
43950b57cec5SDimitry Andric 
43960b57cec5SDimitry Andric   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
43970b57cec5SDimitry Andric     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
43980b57cec5SDimitry Andric 
43990b57cec5SDimitry Andric     // Check to make sure that only first-class-values are operands to
44000b57cec5SDimitry Andric     // instructions.
44010b57cec5SDimitry Andric     if (!I.getOperand(i)->getType()->isFirstClassType()) {
44020b57cec5SDimitry Andric       Assert(false, "Instruction operands must be first-class values!", &I);
44030b57cec5SDimitry Andric     }
44040b57cec5SDimitry Andric 
44050b57cec5SDimitry Andric     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
44060b57cec5SDimitry Andric       // Check to make sure that the "address of" an intrinsic function is never
44070b57cec5SDimitry Andric       // taken.
44080b57cec5SDimitry Andric       Assert(!F->isIntrinsic() ||
44090b57cec5SDimitry Andric                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
44100b57cec5SDimitry Andric              "Cannot take the address of an intrinsic!", &I);
44110b57cec5SDimitry Andric       Assert(
44120b57cec5SDimitry Andric           !F->isIntrinsic() || isa<CallInst>(I) ||
44130b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::donothing ||
4414*fe6060f1SDimitry Andric               F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4415*fe6060f1SDimitry Andric               F->getIntrinsicID() == Intrinsic::seh_try_end ||
4416*fe6060f1SDimitry Andric               F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4417*fe6060f1SDimitry Andric               F->getIntrinsicID() == Intrinsic::seh_scope_end ||
44180b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::coro_resume ||
44190b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::coro_destroy ||
44200b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
44210b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
44220b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4423e8d8bef9SDimitry Andric               F->getIntrinsicID() == Intrinsic::wasm_rethrow,
44240b57cec5SDimitry Andric           "Cannot invoke an intrinsic other than donothing, patchpoint, "
44250b57cec5SDimitry Andric           "statepoint, coro_resume or coro_destroy",
44260b57cec5SDimitry Andric           &I);
44270b57cec5SDimitry Andric       Assert(F->getParent() == &M, "Referencing function in another module!",
44280b57cec5SDimitry Andric              &I, &M, F, F->getParent());
44290b57cec5SDimitry Andric     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
44300b57cec5SDimitry Andric       Assert(OpBB->getParent() == BB->getParent(),
44310b57cec5SDimitry Andric              "Referring to a basic block in another function!", &I);
44320b57cec5SDimitry Andric     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
44330b57cec5SDimitry Andric       Assert(OpArg->getParent() == BB->getParent(),
44340b57cec5SDimitry Andric              "Referring to an argument in another function!", &I);
44350b57cec5SDimitry Andric     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
44360b57cec5SDimitry Andric       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
44370b57cec5SDimitry Andric              &M, GV, GV->getParent());
44380b57cec5SDimitry Andric     } else if (isa<Instruction>(I.getOperand(i))) {
44390b57cec5SDimitry Andric       verifyDominatesUse(I, i);
44400b57cec5SDimitry Andric     } else if (isa<InlineAsm>(I.getOperand(i))) {
44410b57cec5SDimitry Andric       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
44420b57cec5SDimitry Andric              "Cannot take the address of an inline asm!", &I);
44430b57cec5SDimitry Andric     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4444*fe6060f1SDimitry Andric       if (CE->getType()->isPtrOrPtrVectorTy()) {
44450b57cec5SDimitry Andric         // If we have a ConstantExpr pointer, we need to see if it came from an
4446*fe6060f1SDimitry Andric         // illegal bitcast.
44470b57cec5SDimitry Andric         visitConstantExprsRecursively(CE);
44480b57cec5SDimitry Andric       }
44490b57cec5SDimitry Andric     }
44500b57cec5SDimitry Andric   }
44510b57cec5SDimitry Andric 
44520b57cec5SDimitry Andric   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
44530b57cec5SDimitry Andric     Assert(I.getType()->isFPOrFPVectorTy(),
44540b57cec5SDimitry Andric            "fpmath requires a floating point result!", &I);
44550b57cec5SDimitry Andric     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
44560b57cec5SDimitry Andric     if (ConstantFP *CFP0 =
44570b57cec5SDimitry Andric             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
44580b57cec5SDimitry Andric       const APFloat &Accuracy = CFP0->getValueAPF();
44590b57cec5SDimitry Andric       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
44600b57cec5SDimitry Andric              "fpmath accuracy must have float type", &I);
44610b57cec5SDimitry Andric       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
44620b57cec5SDimitry Andric              "fpmath accuracy not a positive number!", &I);
44630b57cec5SDimitry Andric     } else {
44640b57cec5SDimitry Andric       Assert(false, "invalid fpmath accuracy!", &I);
44650b57cec5SDimitry Andric     }
44660b57cec5SDimitry Andric   }
44670b57cec5SDimitry Andric 
44680b57cec5SDimitry Andric   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
44690b57cec5SDimitry Andric     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
44700b57cec5SDimitry Andric            "Ranges are only for loads, calls and invokes!", &I);
44710b57cec5SDimitry Andric     visitRangeMetadata(I, Range, I.getType());
44720b57cec5SDimitry Andric   }
44730b57cec5SDimitry Andric 
44740b57cec5SDimitry Andric   if (I.getMetadata(LLVMContext::MD_nonnull)) {
44750b57cec5SDimitry Andric     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
44760b57cec5SDimitry Andric            &I);
44770b57cec5SDimitry Andric     Assert(isa<LoadInst>(I),
44780b57cec5SDimitry Andric            "nonnull applies only to load instructions, use attributes"
44790b57cec5SDimitry Andric            " for calls or invokes",
44800b57cec5SDimitry Andric            &I);
44810b57cec5SDimitry Andric   }
44820b57cec5SDimitry Andric 
44830b57cec5SDimitry Andric   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
44840b57cec5SDimitry Andric     visitDereferenceableMetadata(I, MD);
44850b57cec5SDimitry Andric 
44860b57cec5SDimitry Andric   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
44870b57cec5SDimitry Andric     visitDereferenceableMetadata(I, MD);
44880b57cec5SDimitry Andric 
44890b57cec5SDimitry Andric   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
44900b57cec5SDimitry Andric     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
44910b57cec5SDimitry Andric 
44920b57cec5SDimitry Andric   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
44930b57cec5SDimitry Andric     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
44940b57cec5SDimitry Andric            &I);
44950b57cec5SDimitry Andric     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
44960b57cec5SDimitry Andric            "use attributes for calls or invokes", &I);
44970b57cec5SDimitry Andric     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
44980b57cec5SDimitry Andric     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
44990b57cec5SDimitry Andric     Assert(CI && CI->getType()->isIntegerTy(64),
45000b57cec5SDimitry Andric            "align metadata value must be an i64!", &I);
45010b57cec5SDimitry Andric     uint64_t Align = CI->getZExtValue();
45020b57cec5SDimitry Andric     Assert(isPowerOf2_64(Align),
45030b57cec5SDimitry Andric            "align metadata value must be a power of 2!", &I);
45040b57cec5SDimitry Andric     Assert(Align <= Value::MaximumAlignment,
45050b57cec5SDimitry Andric            "alignment is larger that implementation defined limit", &I);
45060b57cec5SDimitry Andric   }
45070b57cec5SDimitry Andric 
45088bcb0991SDimitry Andric   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
45098bcb0991SDimitry Andric     visitProfMetadata(I, MD);
45108bcb0991SDimitry Andric 
4511e8d8bef9SDimitry Andric   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4512e8d8bef9SDimitry Andric     visitAnnotationMetadata(Annotation);
4513e8d8bef9SDimitry Andric 
45140b57cec5SDimitry Andric   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
45150b57cec5SDimitry Andric     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
45165ffd83dbSDimitry Andric     visitMDNode(*N, AreDebugLocsAllowed::Yes);
45170b57cec5SDimitry Andric   }
45180b57cec5SDimitry Andric 
45198bcb0991SDimitry Andric   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
45200b57cec5SDimitry Andric     verifyFragmentExpression(*DII);
45218bcb0991SDimitry Andric     verifyNotEntryValue(*DII);
45228bcb0991SDimitry Andric   }
45230b57cec5SDimitry Andric 
45245ffd83dbSDimitry Andric   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
45255ffd83dbSDimitry Andric   I.getAllMetadata(MDs);
45265ffd83dbSDimitry Andric   for (auto Attachment : MDs) {
45275ffd83dbSDimitry Andric     unsigned Kind = Attachment.first;
45285ffd83dbSDimitry Andric     auto AllowLocs =
45295ffd83dbSDimitry Andric         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
45305ffd83dbSDimitry Andric             ? AreDebugLocsAllowed::Yes
45315ffd83dbSDimitry Andric             : AreDebugLocsAllowed::No;
45325ffd83dbSDimitry Andric     visitMDNode(*Attachment.second, AllowLocs);
45335ffd83dbSDimitry Andric   }
45345ffd83dbSDimitry Andric 
45350b57cec5SDimitry Andric   InstsInThisBlock.insert(&I);
45360b57cec5SDimitry Andric }
45370b57cec5SDimitry Andric 
45380b57cec5SDimitry Andric /// Allow intrinsics to be verified in different ways.
45390b57cec5SDimitry Andric void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
45400b57cec5SDimitry Andric   Function *IF = Call.getCalledFunction();
45410b57cec5SDimitry Andric   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
45420b57cec5SDimitry Andric          IF);
45430b57cec5SDimitry Andric 
45440b57cec5SDimitry Andric   // Verify that the intrinsic prototype lines up with what the .td files
45450b57cec5SDimitry Andric   // describe.
45460b57cec5SDimitry Andric   FunctionType *IFTy = IF->getFunctionType();
45470b57cec5SDimitry Andric   bool IsVarArg = IFTy->isVarArg();
45480b57cec5SDimitry Andric 
45490b57cec5SDimitry Andric   SmallVector<Intrinsic::IITDescriptor, 8> Table;
45500b57cec5SDimitry Andric   getIntrinsicInfoTableEntries(ID, Table);
45510b57cec5SDimitry Andric   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
45520b57cec5SDimitry Andric 
45530b57cec5SDimitry Andric   // Walk the descriptors to extract overloaded types.
45540b57cec5SDimitry Andric   SmallVector<Type *, 4> ArgTys;
45550b57cec5SDimitry Andric   Intrinsic::MatchIntrinsicTypesResult Res =
45560b57cec5SDimitry Andric       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
45570b57cec5SDimitry Andric   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
45580b57cec5SDimitry Andric          "Intrinsic has incorrect return type!", IF);
45590b57cec5SDimitry Andric   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
45600b57cec5SDimitry Andric          "Intrinsic has incorrect argument type!", IF);
45610b57cec5SDimitry Andric 
45620b57cec5SDimitry Andric   // Verify if the intrinsic call matches the vararg property.
45630b57cec5SDimitry Andric   if (IsVarArg)
45640b57cec5SDimitry Andric     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
45650b57cec5SDimitry Andric            "Intrinsic was not defined with variable arguments!", IF);
45660b57cec5SDimitry Andric   else
45670b57cec5SDimitry Andric     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
45680b57cec5SDimitry Andric            "Callsite was not defined with variable arguments!", IF);
45690b57cec5SDimitry Andric 
45700b57cec5SDimitry Andric   // All descriptors should be absorbed by now.
45710b57cec5SDimitry Andric   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
45720b57cec5SDimitry Andric 
45730b57cec5SDimitry Andric   // Now that we have the intrinsic ID and the actual argument types (and we
45740b57cec5SDimitry Andric   // know they are legal for the intrinsic!) get the intrinsic name through the
45750b57cec5SDimitry Andric   // usual means.  This allows us to verify the mangling of argument types into
45760b57cec5SDimitry Andric   // the name.
4577*fe6060f1SDimitry Andric   const std::string ExpectedName =
4578*fe6060f1SDimitry Andric       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
45790b57cec5SDimitry Andric   Assert(ExpectedName == IF->getName(),
45800b57cec5SDimitry Andric          "Intrinsic name not mangled correctly for type arguments! "
45810b57cec5SDimitry Andric          "Should be: " +
45820b57cec5SDimitry Andric              ExpectedName,
45830b57cec5SDimitry Andric          IF);
45840b57cec5SDimitry Andric 
45850b57cec5SDimitry Andric   // If the intrinsic takes MDNode arguments, verify that they are either global
45860b57cec5SDimitry Andric   // or are local to *this* function.
4587*fe6060f1SDimitry Andric   for (Value *V : Call.args()) {
45880b57cec5SDimitry Andric     if (auto *MD = dyn_cast<MetadataAsValue>(V))
45890b57cec5SDimitry Andric       visitMetadataAsValue(*MD, Call.getCaller());
4590*fe6060f1SDimitry Andric     if (auto *Const = dyn_cast<Constant>(V))
4591*fe6060f1SDimitry Andric       Assert(!Const->getType()->isX86_AMXTy(),
4592*fe6060f1SDimitry Andric              "const x86_amx is not allowed in argument!");
4593*fe6060f1SDimitry Andric   }
45940b57cec5SDimitry Andric 
45950b57cec5SDimitry Andric   switch (ID) {
45960b57cec5SDimitry Andric   default:
45970b57cec5SDimitry Andric     break;
45985ffd83dbSDimitry Andric   case Intrinsic::assume: {
45995ffd83dbSDimitry Andric     for (auto &Elem : Call.bundle_op_infos()) {
46005ffd83dbSDimitry Andric       Assert(Elem.Tag->getKey() == "ignore" ||
46015ffd83dbSDimitry Andric                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
46025ffd83dbSDimitry Andric              "tags must be valid attribute names");
46035ffd83dbSDimitry Andric       Attribute::AttrKind Kind =
46045ffd83dbSDimitry Andric           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4605e8d8bef9SDimitry Andric       unsigned ArgCount = Elem.End - Elem.Begin;
4606e8d8bef9SDimitry Andric       if (Kind == Attribute::Alignment) {
4607e8d8bef9SDimitry Andric         Assert(ArgCount <= 3 && ArgCount >= 2,
4608e8d8bef9SDimitry Andric                "alignment assumptions should have 2 or 3 arguments");
4609e8d8bef9SDimitry Andric         Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4610e8d8bef9SDimitry Andric                "first argument should be a pointer");
4611e8d8bef9SDimitry Andric         Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4612e8d8bef9SDimitry Andric                "second argument should be an integer");
4613e8d8bef9SDimitry Andric         if (ArgCount == 3)
4614e8d8bef9SDimitry Andric           Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4615e8d8bef9SDimitry Andric                  "third argument should be an integer if present");
4616e8d8bef9SDimitry Andric         return;
4617e8d8bef9SDimitry Andric       }
4618e8d8bef9SDimitry Andric       Assert(ArgCount <= 2, "to many arguments");
46195ffd83dbSDimitry Andric       if (Kind == Attribute::None)
46205ffd83dbSDimitry Andric         break;
4621*fe6060f1SDimitry Andric       if (Attribute::isIntAttrKind(Kind)) {
4622e8d8bef9SDimitry Andric         Assert(ArgCount == 2, "this attribute should have 2 arguments");
46235ffd83dbSDimitry Andric         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
46245ffd83dbSDimitry Andric                "the second argument should be a constant integral value");
4625*fe6060f1SDimitry Andric       } else if (Attribute::canUseAsParamAttr(Kind)) {
4626e8d8bef9SDimitry Andric         Assert((ArgCount) == 1, "this attribute should have one argument");
4627*fe6060f1SDimitry Andric       } else if (Attribute::canUseAsFnAttr(Kind)) {
4628*fe6060f1SDimitry Andric         Assert((ArgCount) == 0, "this attribute has no argument");
46295ffd83dbSDimitry Andric       }
46305ffd83dbSDimitry Andric     }
46315ffd83dbSDimitry Andric     break;
46325ffd83dbSDimitry Andric   }
46330b57cec5SDimitry Andric   case Intrinsic::coro_id: {
46340b57cec5SDimitry Andric     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
46350b57cec5SDimitry Andric     if (isa<ConstantPointerNull>(InfoArg))
46360b57cec5SDimitry Andric       break;
46370b57cec5SDimitry Andric     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
46380b57cec5SDimitry Andric     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4639*fe6060f1SDimitry Andric            "info argument of llvm.coro.id must refer to an initialized "
46400b57cec5SDimitry Andric            "constant");
46410b57cec5SDimitry Andric     Constant *Init = GV->getInitializer();
46420b57cec5SDimitry Andric     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4643*fe6060f1SDimitry Andric            "info argument of llvm.coro.id must refer to either a struct or "
46440b57cec5SDimitry Andric            "an array");
46450b57cec5SDimitry Andric     break;
46460b57cec5SDimitry Andric   }
46475ffd83dbSDimitry Andric #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4648480093f4SDimitry Andric   case Intrinsic::INTRINSIC:
4649480093f4SDimitry Andric #include "llvm/IR/ConstrainedOps.def"
46500b57cec5SDimitry Andric     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
46510b57cec5SDimitry Andric     break;
46520b57cec5SDimitry Andric   case Intrinsic::dbg_declare: // llvm.dbg.declare
46530b57cec5SDimitry Andric     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
46540b57cec5SDimitry Andric            "invalid llvm.dbg.declare intrinsic call 1", Call);
46550b57cec5SDimitry Andric     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
46560b57cec5SDimitry Andric     break;
46570b57cec5SDimitry Andric   case Intrinsic::dbg_addr: // llvm.dbg.addr
46580b57cec5SDimitry Andric     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
46590b57cec5SDimitry Andric     break;
46600b57cec5SDimitry Andric   case Intrinsic::dbg_value: // llvm.dbg.value
46610b57cec5SDimitry Andric     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
46620b57cec5SDimitry Andric     break;
46630b57cec5SDimitry Andric   case Intrinsic::dbg_label: // llvm.dbg.label
46640b57cec5SDimitry Andric     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
46650b57cec5SDimitry Andric     break;
46660b57cec5SDimitry Andric   case Intrinsic::memcpy:
46675ffd83dbSDimitry Andric   case Intrinsic::memcpy_inline:
46680b57cec5SDimitry Andric   case Intrinsic::memmove:
46690b57cec5SDimitry Andric   case Intrinsic::memset: {
46700b57cec5SDimitry Andric     const auto *MI = cast<MemIntrinsic>(&Call);
46710b57cec5SDimitry Andric     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
46720b57cec5SDimitry Andric       return Alignment == 0 || isPowerOf2_32(Alignment);
46730b57cec5SDimitry Andric     };
46740b57cec5SDimitry Andric     Assert(IsValidAlignment(MI->getDestAlignment()),
46750b57cec5SDimitry Andric            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
46760b57cec5SDimitry Andric            Call);
46770b57cec5SDimitry Andric     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
46780b57cec5SDimitry Andric       Assert(IsValidAlignment(MTI->getSourceAlignment()),
46790b57cec5SDimitry Andric              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
46800b57cec5SDimitry Andric              Call);
46810b57cec5SDimitry Andric     }
46820b57cec5SDimitry Andric 
46830b57cec5SDimitry Andric     break;
46840b57cec5SDimitry Andric   }
46850b57cec5SDimitry Andric   case Intrinsic::memcpy_element_unordered_atomic:
46860b57cec5SDimitry Andric   case Intrinsic::memmove_element_unordered_atomic:
46870b57cec5SDimitry Andric   case Intrinsic::memset_element_unordered_atomic: {
46880b57cec5SDimitry Andric     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
46890b57cec5SDimitry Andric 
46900b57cec5SDimitry Andric     ConstantInt *ElementSizeCI =
46910b57cec5SDimitry Andric         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
46920b57cec5SDimitry Andric     const APInt &ElementSizeVal = ElementSizeCI->getValue();
46930b57cec5SDimitry Andric     Assert(ElementSizeVal.isPowerOf2(),
46940b57cec5SDimitry Andric            "element size of the element-wise atomic memory intrinsic "
46950b57cec5SDimitry Andric            "must be a power of 2",
46960b57cec5SDimitry Andric            Call);
46970b57cec5SDimitry Andric 
46980b57cec5SDimitry Andric     auto IsValidAlignment = [&](uint64_t Alignment) {
46990b57cec5SDimitry Andric       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
47000b57cec5SDimitry Andric     };
47010b57cec5SDimitry Andric     uint64_t DstAlignment = AMI->getDestAlignment();
47020b57cec5SDimitry Andric     Assert(IsValidAlignment(DstAlignment),
47030b57cec5SDimitry Andric            "incorrect alignment of the destination argument", Call);
47040b57cec5SDimitry Andric     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
47050b57cec5SDimitry Andric       uint64_t SrcAlignment = AMT->getSourceAlignment();
47060b57cec5SDimitry Andric       Assert(IsValidAlignment(SrcAlignment),
47070b57cec5SDimitry Andric              "incorrect alignment of the source argument", Call);
47080b57cec5SDimitry Andric     }
47090b57cec5SDimitry Andric     break;
47100b57cec5SDimitry Andric   }
47115ffd83dbSDimitry Andric   case Intrinsic::call_preallocated_setup: {
47125ffd83dbSDimitry Andric     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
47135ffd83dbSDimitry Andric     Assert(NumArgs != nullptr,
47145ffd83dbSDimitry Andric            "llvm.call.preallocated.setup argument must be a constant");
47155ffd83dbSDimitry Andric     bool FoundCall = false;
47165ffd83dbSDimitry Andric     for (User *U : Call.users()) {
47175ffd83dbSDimitry Andric       auto *UseCall = dyn_cast<CallBase>(U);
47185ffd83dbSDimitry Andric       Assert(UseCall != nullptr,
47195ffd83dbSDimitry Andric              "Uses of llvm.call.preallocated.setup must be calls");
47205ffd83dbSDimitry Andric       const Function *Fn = UseCall->getCalledFunction();
47215ffd83dbSDimitry Andric       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
47225ffd83dbSDimitry Andric         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
47235ffd83dbSDimitry Andric         Assert(AllocArgIndex != nullptr,
47245ffd83dbSDimitry Andric                "llvm.call.preallocated.alloc arg index must be a constant");
47255ffd83dbSDimitry Andric         auto AllocArgIndexInt = AllocArgIndex->getValue();
47265ffd83dbSDimitry Andric         Assert(AllocArgIndexInt.sge(0) &&
47275ffd83dbSDimitry Andric                    AllocArgIndexInt.slt(NumArgs->getValue()),
47285ffd83dbSDimitry Andric                "llvm.call.preallocated.alloc arg index must be between 0 and "
47295ffd83dbSDimitry Andric                "corresponding "
47305ffd83dbSDimitry Andric                "llvm.call.preallocated.setup's argument count");
47315ffd83dbSDimitry Andric       } else if (Fn && Fn->getIntrinsicID() ==
47325ffd83dbSDimitry Andric                            Intrinsic::call_preallocated_teardown) {
47335ffd83dbSDimitry Andric         // nothing to do
47345ffd83dbSDimitry Andric       } else {
47355ffd83dbSDimitry Andric         Assert(!FoundCall, "Can have at most one call corresponding to a "
47365ffd83dbSDimitry Andric                            "llvm.call.preallocated.setup");
47375ffd83dbSDimitry Andric         FoundCall = true;
47385ffd83dbSDimitry Andric         size_t NumPreallocatedArgs = 0;
47395ffd83dbSDimitry Andric         for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) {
47405ffd83dbSDimitry Andric           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
47415ffd83dbSDimitry Andric             ++NumPreallocatedArgs;
47425ffd83dbSDimitry Andric           }
47435ffd83dbSDimitry Andric         }
47445ffd83dbSDimitry Andric         Assert(NumPreallocatedArgs != 0,
47455ffd83dbSDimitry Andric                "cannot use preallocated intrinsics on a call without "
47465ffd83dbSDimitry Andric                "preallocated arguments");
47475ffd83dbSDimitry Andric         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
47485ffd83dbSDimitry Andric                "llvm.call.preallocated.setup arg size must be equal to number "
47495ffd83dbSDimitry Andric                "of preallocated arguments "
47505ffd83dbSDimitry Andric                "at call site",
47515ffd83dbSDimitry Andric                Call, *UseCall);
47525ffd83dbSDimitry Andric         // getOperandBundle() cannot be called if more than one of the operand
47535ffd83dbSDimitry Andric         // bundle exists. There is already a check elsewhere for this, so skip
47545ffd83dbSDimitry Andric         // here if we see more than one.
47555ffd83dbSDimitry Andric         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
47565ffd83dbSDimitry Andric             1) {
47575ffd83dbSDimitry Andric           return;
47585ffd83dbSDimitry Andric         }
47595ffd83dbSDimitry Andric         auto PreallocatedBundle =
47605ffd83dbSDimitry Andric             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
47615ffd83dbSDimitry Andric         Assert(PreallocatedBundle,
47625ffd83dbSDimitry Andric                "Use of llvm.call.preallocated.setup outside intrinsics "
47635ffd83dbSDimitry Andric                "must be in \"preallocated\" operand bundle");
47645ffd83dbSDimitry Andric         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
47655ffd83dbSDimitry Andric                "preallocated bundle must have token from corresponding "
47665ffd83dbSDimitry Andric                "llvm.call.preallocated.setup");
47675ffd83dbSDimitry Andric       }
47685ffd83dbSDimitry Andric     }
47695ffd83dbSDimitry Andric     break;
47705ffd83dbSDimitry Andric   }
47715ffd83dbSDimitry Andric   case Intrinsic::call_preallocated_arg: {
47725ffd83dbSDimitry Andric     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
47735ffd83dbSDimitry Andric     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
47745ffd83dbSDimitry Andric                         Intrinsic::call_preallocated_setup,
47755ffd83dbSDimitry Andric            "llvm.call.preallocated.arg token argument must be a "
47765ffd83dbSDimitry Andric            "llvm.call.preallocated.setup");
47775ffd83dbSDimitry Andric     Assert(Call.hasFnAttr(Attribute::Preallocated),
47785ffd83dbSDimitry Andric            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
47795ffd83dbSDimitry Andric            "call site attribute");
47805ffd83dbSDimitry Andric     break;
47815ffd83dbSDimitry Andric   }
47825ffd83dbSDimitry Andric   case Intrinsic::call_preallocated_teardown: {
47835ffd83dbSDimitry Andric     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
47845ffd83dbSDimitry Andric     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
47855ffd83dbSDimitry Andric                         Intrinsic::call_preallocated_setup,
47865ffd83dbSDimitry Andric            "llvm.call.preallocated.teardown token argument must be a "
47875ffd83dbSDimitry Andric            "llvm.call.preallocated.setup");
47885ffd83dbSDimitry Andric     break;
47895ffd83dbSDimitry Andric   }
47900b57cec5SDimitry Andric   case Intrinsic::gcroot:
47910b57cec5SDimitry Andric   case Intrinsic::gcwrite:
47920b57cec5SDimitry Andric   case Intrinsic::gcread:
47930b57cec5SDimitry Andric     if (ID == Intrinsic::gcroot) {
47940b57cec5SDimitry Andric       AllocaInst *AI =
47950b57cec5SDimitry Andric           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
47960b57cec5SDimitry Andric       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
47970b57cec5SDimitry Andric       Assert(isa<Constant>(Call.getArgOperand(1)),
47980b57cec5SDimitry Andric              "llvm.gcroot parameter #2 must be a constant.", Call);
47990b57cec5SDimitry Andric       if (!AI->getAllocatedType()->isPointerTy()) {
48000b57cec5SDimitry Andric         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
48010b57cec5SDimitry Andric                "llvm.gcroot parameter #1 must either be a pointer alloca, "
48020b57cec5SDimitry Andric                "or argument #2 must be a non-null constant.",
48030b57cec5SDimitry Andric                Call);
48040b57cec5SDimitry Andric       }
48050b57cec5SDimitry Andric     }
48060b57cec5SDimitry Andric 
48070b57cec5SDimitry Andric     Assert(Call.getParent()->getParent()->hasGC(),
48080b57cec5SDimitry Andric            "Enclosing function does not use GC.", Call);
48090b57cec5SDimitry Andric     break;
48100b57cec5SDimitry Andric   case Intrinsic::init_trampoline:
48110b57cec5SDimitry Andric     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
48120b57cec5SDimitry Andric            "llvm.init_trampoline parameter #2 must resolve to a function.",
48130b57cec5SDimitry Andric            Call);
48140b57cec5SDimitry Andric     break;
48150b57cec5SDimitry Andric   case Intrinsic::prefetch:
48160b57cec5SDimitry Andric     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
48170b57cec5SDimitry Andric            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
48180b57cec5SDimitry Andric            "invalid arguments to llvm.prefetch", Call);
48190b57cec5SDimitry Andric     break;
48200b57cec5SDimitry Andric   case Intrinsic::stackprotector:
48210b57cec5SDimitry Andric     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
48220b57cec5SDimitry Andric            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
48230b57cec5SDimitry Andric     break;
48240b57cec5SDimitry Andric   case Intrinsic::localescape: {
48250b57cec5SDimitry Andric     BasicBlock *BB = Call.getParent();
48260b57cec5SDimitry Andric     Assert(BB == &BB->getParent()->front(),
48270b57cec5SDimitry Andric            "llvm.localescape used outside of entry block", Call);
48280b57cec5SDimitry Andric     Assert(!SawFrameEscape,
48290b57cec5SDimitry Andric            "multiple calls to llvm.localescape in one function", Call);
48300b57cec5SDimitry Andric     for (Value *Arg : Call.args()) {
48310b57cec5SDimitry Andric       if (isa<ConstantPointerNull>(Arg))
48320b57cec5SDimitry Andric         continue; // Null values are allowed as placeholders.
48330b57cec5SDimitry Andric       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
48340b57cec5SDimitry Andric       Assert(AI && AI->isStaticAlloca(),
48350b57cec5SDimitry Andric              "llvm.localescape only accepts static allocas", Call);
48360b57cec5SDimitry Andric     }
48370b57cec5SDimitry Andric     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
48380b57cec5SDimitry Andric     SawFrameEscape = true;
48390b57cec5SDimitry Andric     break;
48400b57cec5SDimitry Andric   }
48410b57cec5SDimitry Andric   case Intrinsic::localrecover: {
48420b57cec5SDimitry Andric     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
48430b57cec5SDimitry Andric     Function *Fn = dyn_cast<Function>(FnArg);
48440b57cec5SDimitry Andric     Assert(Fn && !Fn->isDeclaration(),
48450b57cec5SDimitry Andric            "llvm.localrecover first "
48460b57cec5SDimitry Andric            "argument must be function defined in this module",
48470b57cec5SDimitry Andric            Call);
48480b57cec5SDimitry Andric     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
48490b57cec5SDimitry Andric     auto &Entry = FrameEscapeInfo[Fn];
48500b57cec5SDimitry Andric     Entry.second = unsigned(
48510b57cec5SDimitry Andric         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
48520b57cec5SDimitry Andric     break;
48530b57cec5SDimitry Andric   }
48540b57cec5SDimitry Andric 
48550b57cec5SDimitry Andric   case Intrinsic::experimental_gc_statepoint:
48560b57cec5SDimitry Andric     if (auto *CI = dyn_cast<CallInst>(&Call))
48570b57cec5SDimitry Andric       Assert(!CI->isInlineAsm(),
48580b57cec5SDimitry Andric              "gc.statepoint support for inline assembly unimplemented", CI);
48590b57cec5SDimitry Andric     Assert(Call.getParent()->getParent()->hasGC(),
48600b57cec5SDimitry Andric            "Enclosing function does not use GC.", Call);
48610b57cec5SDimitry Andric 
48620b57cec5SDimitry Andric     verifyStatepoint(Call);
48630b57cec5SDimitry Andric     break;
48640b57cec5SDimitry Andric   case Intrinsic::experimental_gc_result: {
48650b57cec5SDimitry Andric     Assert(Call.getParent()->getParent()->hasGC(),
48660b57cec5SDimitry Andric            "Enclosing function does not use GC.", Call);
48670b57cec5SDimitry Andric     // Are we tied to a statepoint properly?
48680b57cec5SDimitry Andric     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
48690b57cec5SDimitry Andric     const Function *StatepointFn =
48700b57cec5SDimitry Andric         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
48710b57cec5SDimitry Andric     Assert(StatepointFn && StatepointFn->isDeclaration() &&
48720b57cec5SDimitry Andric                StatepointFn->getIntrinsicID() ==
48730b57cec5SDimitry Andric                    Intrinsic::experimental_gc_statepoint,
48740b57cec5SDimitry Andric            "gc.result operand #1 must be from a statepoint", Call,
48750b57cec5SDimitry Andric            Call.getArgOperand(0));
48760b57cec5SDimitry Andric 
48770b57cec5SDimitry Andric     // Assert that result type matches wrapped callee.
48780b57cec5SDimitry Andric     const Value *Target = StatepointCall->getArgOperand(2);
48790b57cec5SDimitry Andric     auto *PT = cast<PointerType>(Target->getType());
48800b57cec5SDimitry Andric     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
48810b57cec5SDimitry Andric     Assert(Call.getType() == TargetFuncType->getReturnType(),
48820b57cec5SDimitry Andric            "gc.result result type does not match wrapped callee", Call);
48830b57cec5SDimitry Andric     break;
48840b57cec5SDimitry Andric   }
48850b57cec5SDimitry Andric   case Intrinsic::experimental_gc_relocate: {
48860b57cec5SDimitry Andric     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
48870b57cec5SDimitry Andric 
48880b57cec5SDimitry Andric     Assert(isa<PointerType>(Call.getType()->getScalarType()),
48890b57cec5SDimitry Andric            "gc.relocate must return a pointer or a vector of pointers", Call);
48900b57cec5SDimitry Andric 
48910b57cec5SDimitry Andric     // Check that this relocate is correctly tied to the statepoint
48920b57cec5SDimitry Andric 
48930b57cec5SDimitry Andric     // This is case for relocate on the unwinding path of an invoke statepoint
48940b57cec5SDimitry Andric     if (LandingPadInst *LandingPad =
48950b57cec5SDimitry Andric             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
48960b57cec5SDimitry Andric 
48970b57cec5SDimitry Andric       const BasicBlock *InvokeBB =
48980b57cec5SDimitry Andric           LandingPad->getParent()->getUniquePredecessor();
48990b57cec5SDimitry Andric 
49000b57cec5SDimitry Andric       // Landingpad relocates should have only one predecessor with invoke
49010b57cec5SDimitry Andric       // statepoint terminator
49020b57cec5SDimitry Andric       Assert(InvokeBB, "safepoints should have unique landingpads",
49030b57cec5SDimitry Andric              LandingPad->getParent());
49040b57cec5SDimitry Andric       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
49050b57cec5SDimitry Andric              InvokeBB);
49065ffd83dbSDimitry Andric       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
49070b57cec5SDimitry Andric              "gc relocate should be linked to a statepoint", InvokeBB);
49080b57cec5SDimitry Andric     } else {
49090b57cec5SDimitry Andric       // In all other cases relocate should be tied to the statepoint directly.
49100b57cec5SDimitry Andric       // This covers relocates on a normal return path of invoke statepoint and
49110b57cec5SDimitry Andric       // relocates of a call statepoint.
49120b57cec5SDimitry Andric       auto Token = Call.getArgOperand(0);
49135ffd83dbSDimitry Andric       Assert(isa<GCStatepointInst>(Token),
49140b57cec5SDimitry Andric              "gc relocate is incorrectly tied to the statepoint", Call, Token);
49150b57cec5SDimitry Andric     }
49160b57cec5SDimitry Andric 
49170b57cec5SDimitry Andric     // Verify rest of the relocate arguments.
49180b57cec5SDimitry Andric     const CallBase &StatepointCall =
49195ffd83dbSDimitry Andric       *cast<GCRelocateInst>(Call).getStatepoint();
49200b57cec5SDimitry Andric 
49210b57cec5SDimitry Andric     // Both the base and derived must be piped through the safepoint.
49220b57cec5SDimitry Andric     Value *Base = Call.getArgOperand(1);
49230b57cec5SDimitry Andric     Assert(isa<ConstantInt>(Base),
49240b57cec5SDimitry Andric            "gc.relocate operand #2 must be integer offset", Call);
49250b57cec5SDimitry Andric 
49260b57cec5SDimitry Andric     Value *Derived = Call.getArgOperand(2);
49270b57cec5SDimitry Andric     Assert(isa<ConstantInt>(Derived),
49280b57cec5SDimitry Andric            "gc.relocate operand #3 must be integer offset", Call);
49290b57cec5SDimitry Andric 
49305ffd83dbSDimitry Andric     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
49315ffd83dbSDimitry Andric     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
49325ffd83dbSDimitry Andric 
49330b57cec5SDimitry Andric     // Check the bounds
49345ffd83dbSDimitry Andric     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
49355ffd83dbSDimitry Andric       Assert(BaseIndex < Opt->Inputs.size(),
49360b57cec5SDimitry Andric              "gc.relocate: statepoint base index out of bounds", Call);
49375ffd83dbSDimitry Andric       Assert(DerivedIndex < Opt->Inputs.size(),
49385ffd83dbSDimitry Andric              "gc.relocate: statepoint derived index out of bounds", Call);
49395ffd83dbSDimitry Andric     }
49400b57cec5SDimitry Andric 
49410b57cec5SDimitry Andric     // Relocated value must be either a pointer type or vector-of-pointer type,
49420b57cec5SDimitry Andric     // but gc_relocate does not need to return the same pointer type as the
49430b57cec5SDimitry Andric     // relocated pointer. It can be casted to the correct type later if it's
49440b57cec5SDimitry Andric     // desired. However, they must have the same address space and 'vectorness'
49450b57cec5SDimitry Andric     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
49460b57cec5SDimitry Andric     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
49470b57cec5SDimitry Andric            "gc.relocate: relocated value must be a gc pointer", Call);
49480b57cec5SDimitry Andric 
49490b57cec5SDimitry Andric     auto ResultType = Call.getType();
49500b57cec5SDimitry Andric     auto DerivedType = Relocate.getDerivedPtr()->getType();
49510b57cec5SDimitry Andric     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
49520b57cec5SDimitry Andric            "gc.relocate: vector relocates to vector and pointer to pointer",
49530b57cec5SDimitry Andric            Call);
49540b57cec5SDimitry Andric     Assert(
49550b57cec5SDimitry Andric         ResultType->getPointerAddressSpace() ==
49560b57cec5SDimitry Andric             DerivedType->getPointerAddressSpace(),
49570b57cec5SDimitry Andric         "gc.relocate: relocating a pointer shouldn't change its address space",
49580b57cec5SDimitry Andric         Call);
49590b57cec5SDimitry Andric     break;
49600b57cec5SDimitry Andric   }
49610b57cec5SDimitry Andric   case Intrinsic::eh_exceptioncode:
49620b57cec5SDimitry Andric   case Intrinsic::eh_exceptionpointer: {
49630b57cec5SDimitry Andric     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
49640b57cec5SDimitry Andric            "eh.exceptionpointer argument must be a catchpad", Call);
49650b57cec5SDimitry Andric     break;
49660b57cec5SDimitry Andric   }
49675ffd83dbSDimitry Andric   case Intrinsic::get_active_lane_mask: {
49685ffd83dbSDimitry Andric     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
49695ffd83dbSDimitry Andric            "vector", Call);
49705ffd83dbSDimitry Andric     auto *ElemTy = Call.getType()->getScalarType();
49715ffd83dbSDimitry Andric     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
49725ffd83dbSDimitry Andric            "i1", Call);
49735ffd83dbSDimitry Andric     break;
49745ffd83dbSDimitry Andric   }
49750b57cec5SDimitry Andric   case Intrinsic::masked_load: {
49760b57cec5SDimitry Andric     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
49770b57cec5SDimitry Andric            Call);
49780b57cec5SDimitry Andric 
49790b57cec5SDimitry Andric     Value *Ptr = Call.getArgOperand(0);
49800b57cec5SDimitry Andric     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
49810b57cec5SDimitry Andric     Value *Mask = Call.getArgOperand(2);
49820b57cec5SDimitry Andric     Value *PassThru = Call.getArgOperand(3);
49830b57cec5SDimitry Andric     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
49840b57cec5SDimitry Andric            Call);
49850b57cec5SDimitry Andric     Assert(Alignment->getValue().isPowerOf2(),
49860b57cec5SDimitry Andric            "masked_load: alignment must be a power of 2", Call);
49870b57cec5SDimitry Andric 
4988*fe6060f1SDimitry Andric     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
4989*fe6060f1SDimitry Andric     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
49900b57cec5SDimitry Andric            "masked_load: return must match pointer type", Call);
4991*fe6060f1SDimitry Andric     Assert(PassThru->getType() == Call.getType(),
4992*fe6060f1SDimitry Andric            "masked_load: pass through and return type must match", Call);
49935ffd83dbSDimitry Andric     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
4994*fe6060f1SDimitry Andric                cast<VectorType>(Call.getType())->getElementCount(),
4995*fe6060f1SDimitry Andric            "masked_load: vector mask must be same length as return", Call);
49960b57cec5SDimitry Andric     break;
49970b57cec5SDimitry Andric   }
49980b57cec5SDimitry Andric   case Intrinsic::masked_store: {
49990b57cec5SDimitry Andric     Value *Val = Call.getArgOperand(0);
50000b57cec5SDimitry Andric     Value *Ptr = Call.getArgOperand(1);
50010b57cec5SDimitry Andric     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
50020b57cec5SDimitry Andric     Value *Mask = Call.getArgOperand(3);
50030b57cec5SDimitry Andric     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
50040b57cec5SDimitry Andric            Call);
50050b57cec5SDimitry Andric     Assert(Alignment->getValue().isPowerOf2(),
50060b57cec5SDimitry Andric            "masked_store: alignment must be a power of 2", Call);
50070b57cec5SDimitry Andric 
5008*fe6060f1SDimitry Andric     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5009*fe6060f1SDimitry Andric     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
50100b57cec5SDimitry Andric            "masked_store: storee must match pointer type", Call);
50115ffd83dbSDimitry Andric     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5012*fe6060f1SDimitry Andric                cast<VectorType>(Val->getType())->getElementCount(),
5013*fe6060f1SDimitry Andric            "masked_store: vector mask must be same length as value", Call);
50140b57cec5SDimitry Andric     break;
50150b57cec5SDimitry Andric   }
50160b57cec5SDimitry Andric 
50175ffd83dbSDimitry Andric   case Intrinsic::masked_gather: {
50185ffd83dbSDimitry Andric     const APInt &Alignment =
50195ffd83dbSDimitry Andric         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
50205ffd83dbSDimitry Andric     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
50215ffd83dbSDimitry Andric            "masked_gather: alignment must be 0 or a power of 2", Call);
50225ffd83dbSDimitry Andric     break;
50235ffd83dbSDimitry Andric   }
50245ffd83dbSDimitry Andric   case Intrinsic::masked_scatter: {
50255ffd83dbSDimitry Andric     const APInt &Alignment =
50265ffd83dbSDimitry Andric         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
50275ffd83dbSDimitry Andric     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
50285ffd83dbSDimitry Andric            "masked_scatter: alignment must be 0 or a power of 2", Call);
50295ffd83dbSDimitry Andric     break;
50305ffd83dbSDimitry Andric   }
50315ffd83dbSDimitry Andric 
50320b57cec5SDimitry Andric   case Intrinsic::experimental_guard: {
50330b57cec5SDimitry Andric     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
50340b57cec5SDimitry Andric     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
50350b57cec5SDimitry Andric            "experimental_guard must have exactly one "
50360b57cec5SDimitry Andric            "\"deopt\" operand bundle");
50370b57cec5SDimitry Andric     break;
50380b57cec5SDimitry Andric   }
50390b57cec5SDimitry Andric 
50400b57cec5SDimitry Andric   case Intrinsic::experimental_deoptimize: {
50410b57cec5SDimitry Andric     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
50420b57cec5SDimitry Andric            Call);
50430b57cec5SDimitry Andric     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
50440b57cec5SDimitry Andric            "experimental_deoptimize must have exactly one "
50450b57cec5SDimitry Andric            "\"deopt\" operand bundle");
50460b57cec5SDimitry Andric     Assert(Call.getType() == Call.getFunction()->getReturnType(),
50470b57cec5SDimitry Andric            "experimental_deoptimize return type must match caller return type");
50480b57cec5SDimitry Andric 
50490b57cec5SDimitry Andric     if (isa<CallInst>(Call)) {
50500b57cec5SDimitry Andric       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
50510b57cec5SDimitry Andric       Assert(RI,
50520b57cec5SDimitry Andric              "calls to experimental_deoptimize must be followed by a return");
50530b57cec5SDimitry Andric 
50540b57cec5SDimitry Andric       if (!Call.getType()->isVoidTy() && RI)
50550b57cec5SDimitry Andric         Assert(RI->getReturnValue() == &Call,
50560b57cec5SDimitry Andric                "calls to experimental_deoptimize must be followed by a return "
50570b57cec5SDimitry Andric                "of the value computed by experimental_deoptimize");
50580b57cec5SDimitry Andric     }
50590b57cec5SDimitry Andric 
50600b57cec5SDimitry Andric     break;
50610b57cec5SDimitry Andric   }
5062*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_and:
5063*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_or:
5064*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_xor:
5065*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_add:
5066*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_mul:
5067*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_smax:
5068*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_smin:
5069*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_umax:
5070*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_umin: {
5071*fe6060f1SDimitry Andric     Type *ArgTy = Call.getArgOperand(0)->getType();
5072*fe6060f1SDimitry Andric     Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5073*fe6060f1SDimitry Andric            "Intrinsic has incorrect argument type!");
5074*fe6060f1SDimitry Andric     break;
5075*fe6060f1SDimitry Andric   }
5076*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_fmax:
5077*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_fmin: {
5078*fe6060f1SDimitry Andric     Type *ArgTy = Call.getArgOperand(0)->getType();
5079*fe6060f1SDimitry Andric     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5080*fe6060f1SDimitry Andric            "Intrinsic has incorrect argument type!");
5081*fe6060f1SDimitry Andric     break;
5082*fe6060f1SDimitry Andric   }
5083*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_fadd:
5084*fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_fmul: {
5085*fe6060f1SDimitry Andric     // Unlike the other reductions, the first argument is a start value. The
5086*fe6060f1SDimitry Andric     // second argument is the vector to be reduced.
5087*fe6060f1SDimitry Andric     Type *ArgTy = Call.getArgOperand(1)->getType();
5088*fe6060f1SDimitry Andric     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5089*fe6060f1SDimitry Andric            "Intrinsic has incorrect argument type!");
50900b57cec5SDimitry Andric     break;
50910b57cec5SDimitry Andric   }
50920b57cec5SDimitry Andric   case Intrinsic::smul_fix:
50930b57cec5SDimitry Andric   case Intrinsic::smul_fix_sat:
50948bcb0991SDimitry Andric   case Intrinsic::umul_fix:
5095480093f4SDimitry Andric   case Intrinsic::umul_fix_sat:
5096480093f4SDimitry Andric   case Intrinsic::sdiv_fix:
50975ffd83dbSDimitry Andric   case Intrinsic::sdiv_fix_sat:
50985ffd83dbSDimitry Andric   case Intrinsic::udiv_fix:
50995ffd83dbSDimitry Andric   case Intrinsic::udiv_fix_sat: {
51000b57cec5SDimitry Andric     Value *Op1 = Call.getArgOperand(0);
51010b57cec5SDimitry Andric     Value *Op2 = Call.getArgOperand(1);
51020b57cec5SDimitry Andric     Assert(Op1->getType()->isIntOrIntVectorTy(),
5103480093f4SDimitry Andric            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5104480093f4SDimitry Andric            "vector of ints");
51050b57cec5SDimitry Andric     Assert(Op2->getType()->isIntOrIntVectorTy(),
5106480093f4SDimitry Andric            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5107480093f4SDimitry Andric            "vector of ints");
51080b57cec5SDimitry Andric 
51090b57cec5SDimitry Andric     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
51100b57cec5SDimitry Andric     Assert(Op3->getType()->getBitWidth() <= 32,
5111480093f4SDimitry Andric            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
51120b57cec5SDimitry Andric 
5113480093f4SDimitry Andric     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
51145ffd83dbSDimitry Andric         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
51150b57cec5SDimitry Andric       Assert(
51160b57cec5SDimitry Andric           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5117480093f4SDimitry Andric           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5118480093f4SDimitry Andric           "the operands");
51190b57cec5SDimitry Andric     } else {
51200b57cec5SDimitry Andric       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5121480093f4SDimitry Andric              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5122480093f4SDimitry Andric              "to the width of the operands");
51230b57cec5SDimitry Andric     }
51240b57cec5SDimitry Andric     break;
51250b57cec5SDimitry Andric   }
51260b57cec5SDimitry Andric   case Intrinsic::lround:
51270b57cec5SDimitry Andric   case Intrinsic::llround:
51280b57cec5SDimitry Andric   case Intrinsic::lrint:
51290b57cec5SDimitry Andric   case Intrinsic::llrint: {
51300b57cec5SDimitry Andric     Type *ValTy = Call.getArgOperand(0)->getType();
51310b57cec5SDimitry Andric     Type *ResultTy = Call.getType();
51320b57cec5SDimitry Andric     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
51330b57cec5SDimitry Andric            "Intrinsic does not support vectors", &Call);
51340b57cec5SDimitry Andric     break;
51350b57cec5SDimitry Andric   }
51365ffd83dbSDimitry Andric   case Intrinsic::bswap: {
51375ffd83dbSDimitry Andric     Type *Ty = Call.getType();
51385ffd83dbSDimitry Andric     unsigned Size = Ty->getScalarSizeInBits();
51395ffd83dbSDimitry Andric     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
51405ffd83dbSDimitry Andric     break;
51415ffd83dbSDimitry Andric   }
5142e8d8bef9SDimitry Andric   case Intrinsic::invariant_start: {
5143e8d8bef9SDimitry Andric     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5144e8d8bef9SDimitry Andric     Assert(InvariantSize &&
5145e8d8bef9SDimitry Andric                (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5146e8d8bef9SDimitry Andric            "invariant_start parameter must be -1, 0 or a positive number",
5147e8d8bef9SDimitry Andric            &Call);
5148e8d8bef9SDimitry Andric     break;
5149e8d8bef9SDimitry Andric   }
51505ffd83dbSDimitry Andric   case Intrinsic::matrix_multiply:
51515ffd83dbSDimitry Andric   case Intrinsic::matrix_transpose:
51525ffd83dbSDimitry Andric   case Intrinsic::matrix_column_major_load:
51535ffd83dbSDimitry Andric   case Intrinsic::matrix_column_major_store: {
51545ffd83dbSDimitry Andric     Function *IF = Call.getCalledFunction();
51555ffd83dbSDimitry Andric     ConstantInt *Stride = nullptr;
51565ffd83dbSDimitry Andric     ConstantInt *NumRows;
51575ffd83dbSDimitry Andric     ConstantInt *NumColumns;
51585ffd83dbSDimitry Andric     VectorType *ResultTy;
51595ffd83dbSDimitry Andric     Type *Op0ElemTy = nullptr;
51605ffd83dbSDimitry Andric     Type *Op1ElemTy = nullptr;
51615ffd83dbSDimitry Andric     switch (ID) {
51625ffd83dbSDimitry Andric     case Intrinsic::matrix_multiply:
51635ffd83dbSDimitry Andric       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
51645ffd83dbSDimitry Andric       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
51655ffd83dbSDimitry Andric       ResultTy = cast<VectorType>(Call.getType());
51665ffd83dbSDimitry Andric       Op0ElemTy =
51675ffd83dbSDimitry Andric           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
51685ffd83dbSDimitry Andric       Op1ElemTy =
51695ffd83dbSDimitry Andric           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
51705ffd83dbSDimitry Andric       break;
51715ffd83dbSDimitry Andric     case Intrinsic::matrix_transpose:
51725ffd83dbSDimitry Andric       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
51735ffd83dbSDimitry Andric       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
51745ffd83dbSDimitry Andric       ResultTy = cast<VectorType>(Call.getType());
51755ffd83dbSDimitry Andric       Op0ElemTy =
51765ffd83dbSDimitry Andric           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
51775ffd83dbSDimitry Andric       break;
51785ffd83dbSDimitry Andric     case Intrinsic::matrix_column_major_load:
51795ffd83dbSDimitry Andric       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
51805ffd83dbSDimitry Andric       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
51815ffd83dbSDimitry Andric       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
51825ffd83dbSDimitry Andric       ResultTy = cast<VectorType>(Call.getType());
51835ffd83dbSDimitry Andric       Op0ElemTy =
51845ffd83dbSDimitry Andric           cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType();
51855ffd83dbSDimitry Andric       break;
51865ffd83dbSDimitry Andric     case Intrinsic::matrix_column_major_store:
51875ffd83dbSDimitry Andric       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
51885ffd83dbSDimitry Andric       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
51895ffd83dbSDimitry Andric       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
51905ffd83dbSDimitry Andric       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
51915ffd83dbSDimitry Andric       Op0ElemTy =
51925ffd83dbSDimitry Andric           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
51935ffd83dbSDimitry Andric       Op1ElemTy =
51945ffd83dbSDimitry Andric           cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType();
51955ffd83dbSDimitry Andric       break;
51965ffd83dbSDimitry Andric     default:
51975ffd83dbSDimitry Andric       llvm_unreachable("unexpected intrinsic");
51985ffd83dbSDimitry Andric     }
51995ffd83dbSDimitry Andric 
52005ffd83dbSDimitry Andric     Assert(ResultTy->getElementType()->isIntegerTy() ||
52015ffd83dbSDimitry Andric            ResultTy->getElementType()->isFloatingPointTy(),
52025ffd83dbSDimitry Andric            "Result type must be an integer or floating-point type!", IF);
52035ffd83dbSDimitry Andric 
52045ffd83dbSDimitry Andric     Assert(ResultTy->getElementType() == Op0ElemTy,
52055ffd83dbSDimitry Andric            "Vector element type mismatch of the result and first operand "
52065ffd83dbSDimitry Andric            "vector!", IF);
52075ffd83dbSDimitry Andric 
52085ffd83dbSDimitry Andric     if (Op1ElemTy)
52095ffd83dbSDimitry Andric       Assert(ResultTy->getElementType() == Op1ElemTy,
52105ffd83dbSDimitry Andric              "Vector element type mismatch of the result and second operand "
52115ffd83dbSDimitry Andric              "vector!", IF);
52125ffd83dbSDimitry Andric 
5213e8d8bef9SDimitry Andric     Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
52145ffd83dbSDimitry Andric                NumRows->getZExtValue() * NumColumns->getZExtValue(),
52155ffd83dbSDimitry Andric            "Result of a matrix operation does not fit in the returned vector!");
52165ffd83dbSDimitry Andric 
52175ffd83dbSDimitry Andric     if (Stride)
52185ffd83dbSDimitry Andric       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
52195ffd83dbSDimitry Andric              "Stride must be greater or equal than the number of rows!", IF);
52205ffd83dbSDimitry Andric 
52215ffd83dbSDimitry Andric     break;
52225ffd83dbSDimitry Andric   }
5223*fe6060f1SDimitry Andric   case Intrinsic::experimental_stepvector: {
5224*fe6060f1SDimitry Andric     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5225*fe6060f1SDimitry Andric     Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5226*fe6060f1SDimitry Andric                VecTy->getScalarSizeInBits() >= 8,
5227*fe6060f1SDimitry Andric            "experimental_stepvector only supported for vectors of integers "
5228*fe6060f1SDimitry Andric            "with a bitwidth of at least 8.",
5229*fe6060f1SDimitry Andric            &Call);
5230*fe6060f1SDimitry Andric     break;
5231*fe6060f1SDimitry Andric   }
5232e8d8bef9SDimitry Andric   case Intrinsic::experimental_vector_insert: {
5233*fe6060f1SDimitry Andric     Value *Vec = Call.getArgOperand(0);
5234*fe6060f1SDimitry Andric     Value *SubVec = Call.getArgOperand(1);
5235*fe6060f1SDimitry Andric     Value *Idx = Call.getArgOperand(2);
5236*fe6060f1SDimitry Andric     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5237e8d8bef9SDimitry Andric 
5238*fe6060f1SDimitry Andric     VectorType *VecTy = cast<VectorType>(Vec->getType());
5239*fe6060f1SDimitry Andric     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5240*fe6060f1SDimitry Andric 
5241*fe6060f1SDimitry Andric     ElementCount VecEC = VecTy->getElementCount();
5242*fe6060f1SDimitry Andric     ElementCount SubVecEC = SubVecTy->getElementCount();
5243e8d8bef9SDimitry Andric     Assert(VecTy->getElementType() == SubVecTy->getElementType(),
5244e8d8bef9SDimitry Andric            "experimental_vector_insert parameters must have the same element "
5245e8d8bef9SDimitry Andric            "type.",
5246e8d8bef9SDimitry Andric            &Call);
5247*fe6060f1SDimitry Andric     Assert(IdxN % SubVecEC.getKnownMinValue() == 0,
5248*fe6060f1SDimitry Andric            "experimental_vector_insert index must be a constant multiple of "
5249*fe6060f1SDimitry Andric            "the subvector's known minimum vector length.");
5250*fe6060f1SDimitry Andric 
5251*fe6060f1SDimitry Andric     // If this insertion is not the 'mixed' case where a fixed vector is
5252*fe6060f1SDimitry Andric     // inserted into a scalable vector, ensure that the insertion of the
5253*fe6060f1SDimitry Andric     // subvector does not overrun the parent vector.
5254*fe6060f1SDimitry Andric     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5255*fe6060f1SDimitry Andric       Assert(
5256*fe6060f1SDimitry Andric           IdxN < VecEC.getKnownMinValue() &&
5257*fe6060f1SDimitry Andric               IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5258*fe6060f1SDimitry Andric           "subvector operand of experimental_vector_insert would overrun the "
5259*fe6060f1SDimitry Andric           "vector being inserted into.");
5260*fe6060f1SDimitry Andric     }
5261e8d8bef9SDimitry Andric     break;
5262e8d8bef9SDimitry Andric   }
5263e8d8bef9SDimitry Andric   case Intrinsic::experimental_vector_extract: {
5264*fe6060f1SDimitry Andric     Value *Vec = Call.getArgOperand(0);
5265*fe6060f1SDimitry Andric     Value *Idx = Call.getArgOperand(1);
5266*fe6060f1SDimitry Andric     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5267*fe6060f1SDimitry Andric 
5268e8d8bef9SDimitry Andric     VectorType *ResultTy = cast<VectorType>(Call.getType());
5269*fe6060f1SDimitry Andric     VectorType *VecTy = cast<VectorType>(Vec->getType());
5270*fe6060f1SDimitry Andric 
5271*fe6060f1SDimitry Andric     ElementCount VecEC = VecTy->getElementCount();
5272*fe6060f1SDimitry Andric     ElementCount ResultEC = ResultTy->getElementCount();
5273e8d8bef9SDimitry Andric 
5274e8d8bef9SDimitry Andric     Assert(ResultTy->getElementType() == VecTy->getElementType(),
5275e8d8bef9SDimitry Andric            "experimental_vector_extract result must have the same element "
5276e8d8bef9SDimitry Andric            "type as the input vector.",
5277e8d8bef9SDimitry Andric            &Call);
5278*fe6060f1SDimitry Andric     Assert(IdxN % ResultEC.getKnownMinValue() == 0,
5279*fe6060f1SDimitry Andric            "experimental_vector_extract index must be a constant multiple of "
5280*fe6060f1SDimitry Andric            "the result type's known minimum vector length.");
5281*fe6060f1SDimitry Andric 
5282*fe6060f1SDimitry Andric     // If this extraction is not the 'mixed' case where a fixed vector is is
5283*fe6060f1SDimitry Andric     // extracted from a scalable vector, ensure that the extraction does not
5284*fe6060f1SDimitry Andric     // overrun the parent vector.
5285*fe6060f1SDimitry Andric     if (VecEC.isScalable() == ResultEC.isScalable()) {
5286*fe6060f1SDimitry Andric       Assert(IdxN < VecEC.getKnownMinValue() &&
5287*fe6060f1SDimitry Andric                  IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5288*fe6060f1SDimitry Andric              "experimental_vector_extract would overrun.");
5289*fe6060f1SDimitry Andric     }
5290e8d8bef9SDimitry Andric     break;
5291e8d8bef9SDimitry Andric   }
5292e8d8bef9SDimitry Andric   case Intrinsic::experimental_noalias_scope_decl: {
5293e8d8bef9SDimitry Andric     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5294e8d8bef9SDimitry Andric     break;
5295e8d8bef9SDimitry Andric   }
5296*fe6060f1SDimitry Andric   case Intrinsic::preserve_array_access_index:
5297*fe6060f1SDimitry Andric   case Intrinsic::preserve_struct_access_index: {
5298*fe6060f1SDimitry Andric     Type *ElemTy = Call.getAttributes().getParamElementType(0);
5299*fe6060f1SDimitry Andric     Assert(ElemTy,
5300*fe6060f1SDimitry Andric            "Intrinsic requires elementtype attribute on first argument.",
5301*fe6060f1SDimitry Andric            &Call);
5302*fe6060f1SDimitry Andric     break;
5303*fe6060f1SDimitry Andric   }
53040b57cec5SDimitry Andric   };
53050b57cec5SDimitry Andric }
53060b57cec5SDimitry Andric 
53070b57cec5SDimitry Andric /// Carefully grab the subprogram from a local scope.
53080b57cec5SDimitry Andric ///
53090b57cec5SDimitry Andric /// This carefully grabs the subprogram from a local scope, avoiding the
53100b57cec5SDimitry Andric /// built-in assertions that would typically fire.
53110b57cec5SDimitry Andric static DISubprogram *getSubprogram(Metadata *LocalScope) {
53120b57cec5SDimitry Andric   if (!LocalScope)
53130b57cec5SDimitry Andric     return nullptr;
53140b57cec5SDimitry Andric 
53150b57cec5SDimitry Andric   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
53160b57cec5SDimitry Andric     return SP;
53170b57cec5SDimitry Andric 
53180b57cec5SDimitry Andric   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
53190b57cec5SDimitry Andric     return getSubprogram(LB->getRawScope());
53200b57cec5SDimitry Andric 
53210b57cec5SDimitry Andric   // Just return null; broken scope chains are checked elsewhere.
53220b57cec5SDimitry Andric   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
53230b57cec5SDimitry Andric   return nullptr;
53240b57cec5SDimitry Andric }
53250b57cec5SDimitry Andric 
53260b57cec5SDimitry Andric void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5327480093f4SDimitry Andric   unsigned NumOperands;
5328480093f4SDimitry Andric   bool HasRoundingMD;
53290b57cec5SDimitry Andric   switch (FPI.getIntrinsicID()) {
53305ffd83dbSDimitry Andric #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5331480093f4SDimitry Andric   case Intrinsic::INTRINSIC:                                                   \
5332480093f4SDimitry Andric     NumOperands = NARG;                                                        \
5333480093f4SDimitry Andric     HasRoundingMD = ROUND_MODE;                                                \
53340b57cec5SDimitry Andric     break;
5335480093f4SDimitry Andric #include "llvm/IR/ConstrainedOps.def"
5336480093f4SDimitry Andric   default:
5337480093f4SDimitry Andric     llvm_unreachable("Invalid constrained FP intrinsic!");
5338480093f4SDimitry Andric   }
5339480093f4SDimitry Andric   NumOperands += (1 + HasRoundingMD);
5340480093f4SDimitry Andric   // Compare intrinsics carry an extra predicate metadata operand.
5341480093f4SDimitry Andric   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5342480093f4SDimitry Andric     NumOperands += 1;
5343480093f4SDimitry Andric   Assert((FPI.getNumArgOperands() == NumOperands),
5344480093f4SDimitry Andric          "invalid arguments for constrained FP intrinsic", &FPI);
53450b57cec5SDimitry Andric 
5346480093f4SDimitry Andric   switch (FPI.getIntrinsicID()) {
53478bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_lrint:
53488bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_llrint: {
53498bcb0991SDimitry Andric     Type *ValTy = FPI.getArgOperand(0)->getType();
53508bcb0991SDimitry Andric     Type *ResultTy = FPI.getType();
53518bcb0991SDimitry Andric     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
53528bcb0991SDimitry Andric            "Intrinsic does not support vectors", &FPI);
53538bcb0991SDimitry Andric   }
53548bcb0991SDimitry Andric     break;
53558bcb0991SDimitry Andric 
53568bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_lround:
53578bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_llround: {
53588bcb0991SDimitry Andric     Type *ValTy = FPI.getArgOperand(0)->getType();
53598bcb0991SDimitry Andric     Type *ResultTy = FPI.getType();
53608bcb0991SDimitry Andric     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
53618bcb0991SDimitry Andric            "Intrinsic does not support vectors", &FPI);
53628bcb0991SDimitry Andric     break;
53638bcb0991SDimitry Andric   }
53648bcb0991SDimitry Andric 
5365480093f4SDimitry Andric   case Intrinsic::experimental_constrained_fcmp:
5366480093f4SDimitry Andric   case Intrinsic::experimental_constrained_fcmps: {
5367480093f4SDimitry Andric     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5368480093f4SDimitry Andric     Assert(CmpInst::isFPPredicate(Pred),
5369480093f4SDimitry Andric            "invalid predicate for constrained FP comparison intrinsic", &FPI);
53700b57cec5SDimitry Andric     break;
5371480093f4SDimitry Andric   }
53720b57cec5SDimitry Andric 
53738bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_fptosi:
53748bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_fptoui: {
53758bcb0991SDimitry Andric     Value *Operand = FPI.getArgOperand(0);
53768bcb0991SDimitry Andric     uint64_t NumSrcElem = 0;
53778bcb0991SDimitry Andric     Assert(Operand->getType()->isFPOrFPVectorTy(),
53788bcb0991SDimitry Andric            "Intrinsic first argument must be floating point", &FPI);
53798bcb0991SDimitry Andric     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5380e8d8bef9SDimitry Andric       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
53818bcb0991SDimitry Andric     }
53828bcb0991SDimitry Andric 
53838bcb0991SDimitry Andric     Operand = &FPI;
53848bcb0991SDimitry Andric     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
53858bcb0991SDimitry Andric            "Intrinsic first argument and result disagree on vector use", &FPI);
53868bcb0991SDimitry Andric     Assert(Operand->getType()->isIntOrIntVectorTy(),
53878bcb0991SDimitry Andric            "Intrinsic result must be an integer", &FPI);
53888bcb0991SDimitry Andric     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5389e8d8bef9SDimitry Andric       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
53908bcb0991SDimitry Andric              "Intrinsic first argument and result vector lengths must be equal",
53918bcb0991SDimitry Andric              &FPI);
53928bcb0991SDimitry Andric     }
53938bcb0991SDimitry Andric   }
53948bcb0991SDimitry Andric     break;
53958bcb0991SDimitry Andric 
5396480093f4SDimitry Andric   case Intrinsic::experimental_constrained_sitofp:
5397480093f4SDimitry Andric   case Intrinsic::experimental_constrained_uitofp: {
5398480093f4SDimitry Andric     Value *Operand = FPI.getArgOperand(0);
5399480093f4SDimitry Andric     uint64_t NumSrcElem = 0;
5400480093f4SDimitry Andric     Assert(Operand->getType()->isIntOrIntVectorTy(),
5401480093f4SDimitry Andric            "Intrinsic first argument must be integer", &FPI);
5402480093f4SDimitry Andric     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5403e8d8bef9SDimitry Andric       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5404480093f4SDimitry Andric     }
5405480093f4SDimitry Andric 
5406480093f4SDimitry Andric     Operand = &FPI;
5407480093f4SDimitry Andric     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5408480093f4SDimitry Andric            "Intrinsic first argument and result disagree on vector use", &FPI);
5409480093f4SDimitry Andric     Assert(Operand->getType()->isFPOrFPVectorTy(),
5410480093f4SDimitry Andric            "Intrinsic result must be a floating point", &FPI);
5411480093f4SDimitry Andric     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5412e8d8bef9SDimitry Andric       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5413480093f4SDimitry Andric              "Intrinsic first argument and result vector lengths must be equal",
5414480093f4SDimitry Andric              &FPI);
5415480093f4SDimitry Andric     }
5416480093f4SDimitry Andric   } break;
5417480093f4SDimitry Andric 
54180b57cec5SDimitry Andric   case Intrinsic::experimental_constrained_fptrunc:
54190b57cec5SDimitry Andric   case Intrinsic::experimental_constrained_fpext: {
54200b57cec5SDimitry Andric     Value *Operand = FPI.getArgOperand(0);
54210b57cec5SDimitry Andric     Type *OperandTy = Operand->getType();
54220b57cec5SDimitry Andric     Value *Result = &FPI;
54230b57cec5SDimitry Andric     Type *ResultTy = Result->getType();
54240b57cec5SDimitry Andric     Assert(OperandTy->isFPOrFPVectorTy(),
54250b57cec5SDimitry Andric            "Intrinsic first argument must be FP or FP vector", &FPI);
54260b57cec5SDimitry Andric     Assert(ResultTy->isFPOrFPVectorTy(),
54270b57cec5SDimitry Andric            "Intrinsic result must be FP or FP vector", &FPI);
54280b57cec5SDimitry Andric     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
54290b57cec5SDimitry Andric            "Intrinsic first argument and result disagree on vector use", &FPI);
54300b57cec5SDimitry Andric     if (OperandTy->isVectorTy()) {
5431e8d8bef9SDimitry Andric       Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5432e8d8bef9SDimitry Andric                  cast<FixedVectorType>(ResultTy)->getNumElements(),
54330b57cec5SDimitry Andric              "Intrinsic first argument and result vector lengths must be equal",
54340b57cec5SDimitry Andric              &FPI);
54350b57cec5SDimitry Andric     }
54360b57cec5SDimitry Andric     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
54370b57cec5SDimitry Andric       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
54380b57cec5SDimitry Andric              "Intrinsic first argument's type must be larger than result type",
54390b57cec5SDimitry Andric              &FPI);
54400b57cec5SDimitry Andric     } else {
54410b57cec5SDimitry Andric       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
54420b57cec5SDimitry Andric              "Intrinsic first argument's type must be smaller than result type",
54430b57cec5SDimitry Andric              &FPI);
54440b57cec5SDimitry Andric     }
54450b57cec5SDimitry Andric   }
54460b57cec5SDimitry Andric     break;
54470b57cec5SDimitry Andric 
54480b57cec5SDimitry Andric   default:
5449480093f4SDimitry Andric     break;
54500b57cec5SDimitry Andric   }
54510b57cec5SDimitry Andric 
54520b57cec5SDimitry Andric   // If a non-metadata argument is passed in a metadata slot then the
54530b57cec5SDimitry Andric   // error will be caught earlier when the incorrect argument doesn't
54540b57cec5SDimitry Andric   // match the specification in the intrinsic call table. Thus, no
54550b57cec5SDimitry Andric   // argument type check is needed here.
54560b57cec5SDimitry Andric 
54570b57cec5SDimitry Andric   Assert(FPI.getExceptionBehavior().hasValue(),
54580b57cec5SDimitry Andric          "invalid exception behavior argument", &FPI);
54590b57cec5SDimitry Andric   if (HasRoundingMD) {
54600b57cec5SDimitry Andric     Assert(FPI.getRoundingMode().hasValue(),
54610b57cec5SDimitry Andric            "invalid rounding mode argument", &FPI);
54620b57cec5SDimitry Andric   }
54630b57cec5SDimitry Andric }
54640b57cec5SDimitry Andric 
54650b57cec5SDimitry Andric void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5466*fe6060f1SDimitry Andric   auto *MD = DII.getRawLocation();
5467*fe6060f1SDimitry Andric   AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
54680b57cec5SDimitry Andric                (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
54690b57cec5SDimitry Andric            "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
54700b57cec5SDimitry Andric   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
54710b57cec5SDimitry Andric          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
54720b57cec5SDimitry Andric          DII.getRawVariable());
54730b57cec5SDimitry Andric   AssertDI(isa<DIExpression>(DII.getRawExpression()),
54740b57cec5SDimitry Andric          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
54750b57cec5SDimitry Andric          DII.getRawExpression());
54760b57cec5SDimitry Andric 
54770b57cec5SDimitry Andric   // Ignore broken !dbg attachments; they're checked elsewhere.
54780b57cec5SDimitry Andric   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
54790b57cec5SDimitry Andric     if (!isa<DILocation>(N))
54800b57cec5SDimitry Andric       return;
54810b57cec5SDimitry Andric 
54820b57cec5SDimitry Andric   BasicBlock *BB = DII.getParent();
54830b57cec5SDimitry Andric   Function *F = BB ? BB->getParent() : nullptr;
54840b57cec5SDimitry Andric 
54850b57cec5SDimitry Andric   // The scopes for variables and !dbg attachments must agree.
54860b57cec5SDimitry Andric   DILocalVariable *Var = DII.getVariable();
54870b57cec5SDimitry Andric   DILocation *Loc = DII.getDebugLoc();
54880b57cec5SDimitry Andric   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
54890b57cec5SDimitry Andric            &DII, BB, F);
54900b57cec5SDimitry Andric 
54910b57cec5SDimitry Andric   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
54920b57cec5SDimitry Andric   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
54930b57cec5SDimitry Andric   if (!VarSP || !LocSP)
54940b57cec5SDimitry Andric     return; // Broken scope chains are checked elsewhere.
54950b57cec5SDimitry Andric 
54960b57cec5SDimitry Andric   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
54970b57cec5SDimitry Andric                                " variable and !dbg attachment",
54980b57cec5SDimitry Andric            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
54990b57cec5SDimitry Andric            Loc->getScope()->getSubprogram());
55000b57cec5SDimitry Andric 
55010b57cec5SDimitry Andric   // This check is redundant with one in visitLocalVariable().
55020b57cec5SDimitry Andric   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
55030b57cec5SDimitry Andric            Var->getRawType());
55040b57cec5SDimitry Andric   verifyFnArgs(DII);
55050b57cec5SDimitry Andric }
55060b57cec5SDimitry Andric 
55070b57cec5SDimitry Andric void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
55080b57cec5SDimitry Andric   AssertDI(isa<DILabel>(DLI.getRawLabel()),
55090b57cec5SDimitry Andric          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
55100b57cec5SDimitry Andric          DLI.getRawLabel());
55110b57cec5SDimitry Andric 
55120b57cec5SDimitry Andric   // Ignore broken !dbg attachments; they're checked elsewhere.
55130b57cec5SDimitry Andric   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
55140b57cec5SDimitry Andric     if (!isa<DILocation>(N))
55150b57cec5SDimitry Andric       return;
55160b57cec5SDimitry Andric 
55170b57cec5SDimitry Andric   BasicBlock *BB = DLI.getParent();
55180b57cec5SDimitry Andric   Function *F = BB ? BB->getParent() : nullptr;
55190b57cec5SDimitry Andric 
55200b57cec5SDimitry Andric   // The scopes for variables and !dbg attachments must agree.
55210b57cec5SDimitry Andric   DILabel *Label = DLI.getLabel();
55220b57cec5SDimitry Andric   DILocation *Loc = DLI.getDebugLoc();
55230b57cec5SDimitry Andric   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
55240b57cec5SDimitry Andric          &DLI, BB, F);
55250b57cec5SDimitry Andric 
55260b57cec5SDimitry Andric   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
55270b57cec5SDimitry Andric   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
55280b57cec5SDimitry Andric   if (!LabelSP || !LocSP)
55290b57cec5SDimitry Andric     return;
55300b57cec5SDimitry Andric 
55310b57cec5SDimitry Andric   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
55320b57cec5SDimitry Andric                              " label and !dbg attachment",
55330b57cec5SDimitry Andric            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
55340b57cec5SDimitry Andric            Loc->getScope()->getSubprogram());
55350b57cec5SDimitry Andric }
55360b57cec5SDimitry Andric 
55370b57cec5SDimitry Andric void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
55380b57cec5SDimitry Andric   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
55390b57cec5SDimitry Andric   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
55400b57cec5SDimitry Andric 
55410b57cec5SDimitry Andric   // We don't know whether this intrinsic verified correctly.
55420b57cec5SDimitry Andric   if (!V || !E || !E->isValid())
55430b57cec5SDimitry Andric     return;
55440b57cec5SDimitry Andric 
55450b57cec5SDimitry Andric   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
55460b57cec5SDimitry Andric   auto Fragment = E->getFragmentInfo();
55470b57cec5SDimitry Andric   if (!Fragment)
55480b57cec5SDimitry Andric     return;
55490b57cec5SDimitry Andric 
55500b57cec5SDimitry Andric   // The frontend helps out GDB by emitting the members of local anonymous
55510b57cec5SDimitry Andric   // unions as artificial local variables with shared storage. When SROA splits
55520b57cec5SDimitry Andric   // the storage for artificial local variables that are smaller than the entire
55530b57cec5SDimitry Andric   // union, the overhang piece will be outside of the allotted space for the
55540b57cec5SDimitry Andric   // variable and this check fails.
55550b57cec5SDimitry Andric   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
55560b57cec5SDimitry Andric   if (V->isArtificial())
55570b57cec5SDimitry Andric     return;
55580b57cec5SDimitry Andric 
55590b57cec5SDimitry Andric   verifyFragmentExpression(*V, *Fragment, &I);
55600b57cec5SDimitry Andric }
55610b57cec5SDimitry Andric 
55620b57cec5SDimitry Andric template <typename ValueOrMetadata>
55630b57cec5SDimitry Andric void Verifier::verifyFragmentExpression(const DIVariable &V,
55640b57cec5SDimitry Andric                                         DIExpression::FragmentInfo Fragment,
55650b57cec5SDimitry Andric                                         ValueOrMetadata *Desc) {
55660b57cec5SDimitry Andric   // If there's no size, the type is broken, but that should be checked
55670b57cec5SDimitry Andric   // elsewhere.
55680b57cec5SDimitry Andric   auto VarSize = V.getSizeInBits();
55690b57cec5SDimitry Andric   if (!VarSize)
55700b57cec5SDimitry Andric     return;
55710b57cec5SDimitry Andric 
55720b57cec5SDimitry Andric   unsigned FragSize = Fragment.SizeInBits;
55730b57cec5SDimitry Andric   unsigned FragOffset = Fragment.OffsetInBits;
55740b57cec5SDimitry Andric   AssertDI(FragSize + FragOffset <= *VarSize,
55750b57cec5SDimitry Andric          "fragment is larger than or outside of variable", Desc, &V);
55760b57cec5SDimitry Andric   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
55770b57cec5SDimitry Andric }
55780b57cec5SDimitry Andric 
55790b57cec5SDimitry Andric void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
55800b57cec5SDimitry Andric   // This function does not take the scope of noninlined function arguments into
55810b57cec5SDimitry Andric   // account. Don't run it if current function is nodebug, because it may
55820b57cec5SDimitry Andric   // contain inlined debug intrinsics.
55830b57cec5SDimitry Andric   if (!HasDebugInfo)
55840b57cec5SDimitry Andric     return;
55850b57cec5SDimitry Andric 
55860b57cec5SDimitry Andric   // For performance reasons only check non-inlined ones.
55870b57cec5SDimitry Andric   if (I.getDebugLoc()->getInlinedAt())
55880b57cec5SDimitry Andric     return;
55890b57cec5SDimitry Andric 
55900b57cec5SDimitry Andric   DILocalVariable *Var = I.getVariable();
55910b57cec5SDimitry Andric   AssertDI(Var, "dbg intrinsic without variable");
55920b57cec5SDimitry Andric 
55930b57cec5SDimitry Andric   unsigned ArgNo = Var->getArg();
55940b57cec5SDimitry Andric   if (!ArgNo)
55950b57cec5SDimitry Andric     return;
55960b57cec5SDimitry Andric 
55970b57cec5SDimitry Andric   // Verify there are no duplicate function argument debug info entries.
55980b57cec5SDimitry Andric   // These will cause hard-to-debug assertions in the DWARF backend.
55990b57cec5SDimitry Andric   if (DebugFnArgs.size() < ArgNo)
56000b57cec5SDimitry Andric     DebugFnArgs.resize(ArgNo, nullptr);
56010b57cec5SDimitry Andric 
56020b57cec5SDimitry Andric   auto *Prev = DebugFnArgs[ArgNo - 1];
56030b57cec5SDimitry Andric   DebugFnArgs[ArgNo - 1] = Var;
56040b57cec5SDimitry Andric   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
56050b57cec5SDimitry Andric            Prev, Var);
56060b57cec5SDimitry Andric }
56070b57cec5SDimitry Andric 
56088bcb0991SDimitry Andric void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
56098bcb0991SDimitry Andric   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
56108bcb0991SDimitry Andric 
56118bcb0991SDimitry Andric   // We don't know whether this intrinsic verified correctly.
56128bcb0991SDimitry Andric   if (!E || !E->isValid())
56138bcb0991SDimitry Andric     return;
56148bcb0991SDimitry Andric 
56158bcb0991SDimitry Andric   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
56168bcb0991SDimitry Andric }
56178bcb0991SDimitry Andric 
56180b57cec5SDimitry Andric void Verifier::verifyCompileUnits() {
56190b57cec5SDimitry Andric   // When more than one Module is imported into the same context, such as during
56200b57cec5SDimitry Andric   // an LTO build before linking the modules, ODR type uniquing may cause types
56210b57cec5SDimitry Andric   // to point to a different CU. This check does not make sense in this case.
56220b57cec5SDimitry Andric   if (M.getContext().isODRUniquingDebugTypes())
56230b57cec5SDimitry Andric     return;
56240b57cec5SDimitry Andric   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
56250b57cec5SDimitry Andric   SmallPtrSet<const Metadata *, 2> Listed;
56260b57cec5SDimitry Andric   if (CUs)
56270b57cec5SDimitry Andric     Listed.insert(CUs->op_begin(), CUs->op_end());
56280b57cec5SDimitry Andric   for (auto *CU : CUVisited)
56290b57cec5SDimitry Andric     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
56300b57cec5SDimitry Andric   CUVisited.clear();
56310b57cec5SDimitry Andric }
56320b57cec5SDimitry Andric 
56330b57cec5SDimitry Andric void Verifier::verifyDeoptimizeCallingConvs() {
56340b57cec5SDimitry Andric   if (DeoptimizeDeclarations.empty())
56350b57cec5SDimitry Andric     return;
56360b57cec5SDimitry Andric 
56370b57cec5SDimitry Andric   const Function *First = DeoptimizeDeclarations[0];
56380b57cec5SDimitry Andric   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
56390b57cec5SDimitry Andric     Assert(First->getCallingConv() == F->getCallingConv(),
56400b57cec5SDimitry Andric            "All llvm.experimental.deoptimize declarations must have the same "
56410b57cec5SDimitry Andric            "calling convention",
56420b57cec5SDimitry Andric            First, F);
56430b57cec5SDimitry Andric   }
56440b57cec5SDimitry Andric }
56450b57cec5SDimitry Andric 
56460b57cec5SDimitry Andric void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
56470b57cec5SDimitry Andric   bool HasSource = F.getSource().hasValue();
56480b57cec5SDimitry Andric   if (!HasSourceDebugInfo.count(&U))
56490b57cec5SDimitry Andric     HasSourceDebugInfo[&U] = HasSource;
56500b57cec5SDimitry Andric   AssertDI(HasSource == HasSourceDebugInfo[&U],
56510b57cec5SDimitry Andric            "inconsistent use of embedded source");
56520b57cec5SDimitry Andric }
56530b57cec5SDimitry Andric 
5654e8d8bef9SDimitry Andric void Verifier::verifyNoAliasScopeDecl() {
5655e8d8bef9SDimitry Andric   if (NoAliasScopeDecls.empty())
5656e8d8bef9SDimitry Andric     return;
5657e8d8bef9SDimitry Andric 
5658e8d8bef9SDimitry Andric   // only a single scope must be declared at a time.
5659e8d8bef9SDimitry Andric   for (auto *II : NoAliasScopeDecls) {
5660e8d8bef9SDimitry Andric     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
5661e8d8bef9SDimitry Andric            "Not a llvm.experimental.noalias.scope.decl ?");
5662e8d8bef9SDimitry Andric     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
5663e8d8bef9SDimitry Andric         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5664e8d8bef9SDimitry Andric     Assert(ScopeListMV != nullptr,
5665e8d8bef9SDimitry Andric            "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
5666e8d8bef9SDimitry Andric            "argument",
5667e8d8bef9SDimitry Andric            II);
5668e8d8bef9SDimitry Andric 
5669e8d8bef9SDimitry Andric     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
5670e8d8bef9SDimitry Andric     Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",
5671e8d8bef9SDimitry Andric            II);
5672e8d8bef9SDimitry Andric     Assert(ScopeListMD->getNumOperands() == 1,
5673e8d8bef9SDimitry Andric            "!id.scope.list must point to a list with a single scope", II);
5674e8d8bef9SDimitry Andric   }
5675e8d8bef9SDimitry Andric 
5676e8d8bef9SDimitry Andric   // Only check the domination rule when requested. Once all passes have been
5677e8d8bef9SDimitry Andric   // adapted this option can go away.
5678e8d8bef9SDimitry Andric   if (!VerifyNoAliasScopeDomination)
5679e8d8bef9SDimitry Andric     return;
5680e8d8bef9SDimitry Andric 
5681e8d8bef9SDimitry Andric   // Now sort the intrinsics based on the scope MDNode so that declarations of
5682e8d8bef9SDimitry Andric   // the same scopes are next to each other.
5683e8d8bef9SDimitry Andric   auto GetScope = [](IntrinsicInst *II) {
5684e8d8bef9SDimitry Andric     const auto *ScopeListMV = cast<MetadataAsValue>(
5685e8d8bef9SDimitry Andric         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5686e8d8bef9SDimitry Andric     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
5687e8d8bef9SDimitry Andric   };
5688e8d8bef9SDimitry Andric 
5689e8d8bef9SDimitry Andric   // We are sorting on MDNode pointers here. For valid input IR this is ok.
5690e8d8bef9SDimitry Andric   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
5691e8d8bef9SDimitry Andric   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
5692e8d8bef9SDimitry Andric     return GetScope(Lhs) < GetScope(Rhs);
5693e8d8bef9SDimitry Andric   };
5694e8d8bef9SDimitry Andric 
5695e8d8bef9SDimitry Andric   llvm::sort(NoAliasScopeDecls, Compare);
5696e8d8bef9SDimitry Andric 
5697e8d8bef9SDimitry Andric   // Go over the intrinsics and check that for the same scope, they are not
5698e8d8bef9SDimitry Andric   // dominating each other.
5699e8d8bef9SDimitry Andric   auto ItCurrent = NoAliasScopeDecls.begin();
5700e8d8bef9SDimitry Andric   while (ItCurrent != NoAliasScopeDecls.end()) {
5701e8d8bef9SDimitry Andric     auto CurScope = GetScope(*ItCurrent);
5702e8d8bef9SDimitry Andric     auto ItNext = ItCurrent;
5703e8d8bef9SDimitry Andric     do {
5704e8d8bef9SDimitry Andric       ++ItNext;
5705e8d8bef9SDimitry Andric     } while (ItNext != NoAliasScopeDecls.end() &&
5706e8d8bef9SDimitry Andric              GetScope(*ItNext) == CurScope);
5707e8d8bef9SDimitry Andric 
5708e8d8bef9SDimitry Andric     // [ItCurrent, ItNext) represents the declarations for the same scope.
5709e8d8bef9SDimitry Andric     // Ensure they are not dominating each other.. but only if it is not too
5710e8d8bef9SDimitry Andric     // expensive.
5711e8d8bef9SDimitry Andric     if (ItNext - ItCurrent < 32)
5712e8d8bef9SDimitry Andric       for (auto *I : llvm::make_range(ItCurrent, ItNext))
5713e8d8bef9SDimitry Andric         for (auto *J : llvm::make_range(ItCurrent, ItNext))
5714e8d8bef9SDimitry Andric           if (I != J)
5715e8d8bef9SDimitry Andric             Assert(!DT.dominates(I, J),
5716e8d8bef9SDimitry Andric                    "llvm.experimental.noalias.scope.decl dominates another one "
5717e8d8bef9SDimitry Andric                    "with the same scope",
5718e8d8bef9SDimitry Andric                    I);
5719e8d8bef9SDimitry Andric     ItCurrent = ItNext;
5720e8d8bef9SDimitry Andric   }
5721e8d8bef9SDimitry Andric }
5722e8d8bef9SDimitry Andric 
57230b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
57240b57cec5SDimitry Andric //  Implement the public interfaces to this file...
57250b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
57260b57cec5SDimitry Andric 
57270b57cec5SDimitry Andric bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
57280b57cec5SDimitry Andric   Function &F = const_cast<Function &>(f);
57290b57cec5SDimitry Andric 
57300b57cec5SDimitry Andric   // Don't use a raw_null_ostream.  Printing IR is expensive.
57310b57cec5SDimitry Andric   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
57320b57cec5SDimitry Andric 
57330b57cec5SDimitry Andric   // Note that this function's return value is inverted from what you would
57340b57cec5SDimitry Andric   // expect of a function called "verify".
57350b57cec5SDimitry Andric   return !V.verify(F);
57360b57cec5SDimitry Andric }
57370b57cec5SDimitry Andric 
57380b57cec5SDimitry Andric bool llvm::verifyModule(const Module &M, raw_ostream *OS,
57390b57cec5SDimitry Andric                         bool *BrokenDebugInfo) {
57400b57cec5SDimitry Andric   // Don't use a raw_null_ostream.  Printing IR is expensive.
57410b57cec5SDimitry Andric   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
57420b57cec5SDimitry Andric 
57430b57cec5SDimitry Andric   bool Broken = false;
57440b57cec5SDimitry Andric   for (const Function &F : M)
57450b57cec5SDimitry Andric     Broken |= !V.verify(F);
57460b57cec5SDimitry Andric 
57470b57cec5SDimitry Andric   Broken |= !V.verify();
57480b57cec5SDimitry Andric   if (BrokenDebugInfo)
57490b57cec5SDimitry Andric     *BrokenDebugInfo = V.hasBrokenDebugInfo();
57500b57cec5SDimitry Andric   // Note that this function's return value is inverted from what you would
57510b57cec5SDimitry Andric   // expect of a function called "verify".
57520b57cec5SDimitry Andric   return Broken;
57530b57cec5SDimitry Andric }
57540b57cec5SDimitry Andric 
57550b57cec5SDimitry Andric namespace {
57560b57cec5SDimitry Andric 
57570b57cec5SDimitry Andric struct VerifierLegacyPass : public FunctionPass {
57580b57cec5SDimitry Andric   static char ID;
57590b57cec5SDimitry Andric 
57600b57cec5SDimitry Andric   std::unique_ptr<Verifier> V;
57610b57cec5SDimitry Andric   bool FatalErrors = true;
57620b57cec5SDimitry Andric 
57630b57cec5SDimitry Andric   VerifierLegacyPass() : FunctionPass(ID) {
57640b57cec5SDimitry Andric     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
57650b57cec5SDimitry Andric   }
57660b57cec5SDimitry Andric   explicit VerifierLegacyPass(bool FatalErrors)
57670b57cec5SDimitry Andric       : FunctionPass(ID),
57680b57cec5SDimitry Andric         FatalErrors(FatalErrors) {
57690b57cec5SDimitry Andric     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
57700b57cec5SDimitry Andric   }
57710b57cec5SDimitry Andric 
57720b57cec5SDimitry Andric   bool doInitialization(Module &M) override {
57738bcb0991SDimitry Andric     V = std::make_unique<Verifier>(
57740b57cec5SDimitry Andric         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
57750b57cec5SDimitry Andric     return false;
57760b57cec5SDimitry Andric   }
57770b57cec5SDimitry Andric 
57780b57cec5SDimitry Andric   bool runOnFunction(Function &F) override {
57790b57cec5SDimitry Andric     if (!V->verify(F) && FatalErrors) {
57800b57cec5SDimitry Andric       errs() << "in function " << F.getName() << '\n';
57810b57cec5SDimitry Andric       report_fatal_error("Broken function found, compilation aborted!");
57820b57cec5SDimitry Andric     }
57830b57cec5SDimitry Andric     return false;
57840b57cec5SDimitry Andric   }
57850b57cec5SDimitry Andric 
57860b57cec5SDimitry Andric   bool doFinalization(Module &M) override {
57870b57cec5SDimitry Andric     bool HasErrors = false;
57880b57cec5SDimitry Andric     for (Function &F : M)
57890b57cec5SDimitry Andric       if (F.isDeclaration())
57900b57cec5SDimitry Andric         HasErrors |= !V->verify(F);
57910b57cec5SDimitry Andric 
57920b57cec5SDimitry Andric     HasErrors |= !V->verify();
57930b57cec5SDimitry Andric     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
57940b57cec5SDimitry Andric       report_fatal_error("Broken module found, compilation aborted!");
57950b57cec5SDimitry Andric     return false;
57960b57cec5SDimitry Andric   }
57970b57cec5SDimitry Andric 
57980b57cec5SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
57990b57cec5SDimitry Andric     AU.setPreservesAll();
58000b57cec5SDimitry Andric   }
58010b57cec5SDimitry Andric };
58020b57cec5SDimitry Andric 
58030b57cec5SDimitry Andric } // end anonymous namespace
58040b57cec5SDimitry Andric 
58050b57cec5SDimitry Andric /// Helper to issue failure from the TBAA verification
58060b57cec5SDimitry Andric template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
58070b57cec5SDimitry Andric   if (Diagnostic)
58080b57cec5SDimitry Andric     return Diagnostic->CheckFailed(Args...);
58090b57cec5SDimitry Andric }
58100b57cec5SDimitry Andric 
58110b57cec5SDimitry Andric #define AssertTBAA(C, ...)                                                     \
58120b57cec5SDimitry Andric   do {                                                                         \
58130b57cec5SDimitry Andric     if (!(C)) {                                                                \
58140b57cec5SDimitry Andric       CheckFailed(__VA_ARGS__);                                                \
58150b57cec5SDimitry Andric       return false;                                                            \
58160b57cec5SDimitry Andric     }                                                                          \
58170b57cec5SDimitry Andric   } while (false)
58180b57cec5SDimitry Andric 
58190b57cec5SDimitry Andric /// Verify that \p BaseNode can be used as the "base type" in the struct-path
58200b57cec5SDimitry Andric /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
58210b57cec5SDimitry Andric /// struct-type node describing an aggregate data structure (like a struct).
58220b57cec5SDimitry Andric TBAAVerifier::TBAABaseNodeSummary
58230b57cec5SDimitry Andric TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
58240b57cec5SDimitry Andric                                  bool IsNewFormat) {
58250b57cec5SDimitry Andric   if (BaseNode->getNumOperands() < 2) {
58260b57cec5SDimitry Andric     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
58270b57cec5SDimitry Andric     return {true, ~0u};
58280b57cec5SDimitry Andric   }
58290b57cec5SDimitry Andric 
58300b57cec5SDimitry Andric   auto Itr = TBAABaseNodes.find(BaseNode);
58310b57cec5SDimitry Andric   if (Itr != TBAABaseNodes.end())
58320b57cec5SDimitry Andric     return Itr->second;
58330b57cec5SDimitry Andric 
58340b57cec5SDimitry Andric   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
58350b57cec5SDimitry Andric   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
58360b57cec5SDimitry Andric   (void)InsertResult;
58370b57cec5SDimitry Andric   assert(InsertResult.second && "We just checked!");
58380b57cec5SDimitry Andric   return Result;
58390b57cec5SDimitry Andric }
58400b57cec5SDimitry Andric 
58410b57cec5SDimitry Andric TBAAVerifier::TBAABaseNodeSummary
58420b57cec5SDimitry Andric TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
58430b57cec5SDimitry Andric                                      bool IsNewFormat) {
58440b57cec5SDimitry Andric   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
58450b57cec5SDimitry Andric 
58460b57cec5SDimitry Andric   if (BaseNode->getNumOperands() == 2) {
58470b57cec5SDimitry Andric     // Scalar nodes can only be accessed at offset 0.
58480b57cec5SDimitry Andric     return isValidScalarTBAANode(BaseNode)
58490b57cec5SDimitry Andric                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
58500b57cec5SDimitry Andric                : InvalidNode;
58510b57cec5SDimitry Andric   }
58520b57cec5SDimitry Andric 
58530b57cec5SDimitry Andric   if (IsNewFormat) {
58540b57cec5SDimitry Andric     if (BaseNode->getNumOperands() % 3 != 0) {
58550b57cec5SDimitry Andric       CheckFailed("Access tag nodes must have the number of operands that is a "
58560b57cec5SDimitry Andric                   "multiple of 3!", BaseNode);
58570b57cec5SDimitry Andric       return InvalidNode;
58580b57cec5SDimitry Andric     }
58590b57cec5SDimitry Andric   } else {
58600b57cec5SDimitry Andric     if (BaseNode->getNumOperands() % 2 != 1) {
58610b57cec5SDimitry Andric       CheckFailed("Struct tag nodes must have an odd number of operands!",
58620b57cec5SDimitry Andric                   BaseNode);
58630b57cec5SDimitry Andric       return InvalidNode;
58640b57cec5SDimitry Andric     }
58650b57cec5SDimitry Andric   }
58660b57cec5SDimitry Andric 
58670b57cec5SDimitry Andric   // Check the type size field.
58680b57cec5SDimitry Andric   if (IsNewFormat) {
58690b57cec5SDimitry Andric     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
58700b57cec5SDimitry Andric         BaseNode->getOperand(1));
58710b57cec5SDimitry Andric     if (!TypeSizeNode) {
58720b57cec5SDimitry Andric       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
58730b57cec5SDimitry Andric       return InvalidNode;
58740b57cec5SDimitry Andric     }
58750b57cec5SDimitry Andric   }
58760b57cec5SDimitry Andric 
58770b57cec5SDimitry Andric   // Check the type name field. In the new format it can be anything.
58780b57cec5SDimitry Andric   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
58790b57cec5SDimitry Andric     CheckFailed("Struct tag nodes have a string as their first operand",
58800b57cec5SDimitry Andric                 BaseNode);
58810b57cec5SDimitry Andric     return InvalidNode;
58820b57cec5SDimitry Andric   }
58830b57cec5SDimitry Andric 
58840b57cec5SDimitry Andric   bool Failed = false;
58850b57cec5SDimitry Andric 
58860b57cec5SDimitry Andric   Optional<APInt> PrevOffset;
58870b57cec5SDimitry Andric   unsigned BitWidth = ~0u;
58880b57cec5SDimitry Andric 
58890b57cec5SDimitry Andric   // We've already checked that BaseNode is not a degenerate root node with one
58900b57cec5SDimitry Andric   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
58910b57cec5SDimitry Andric   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
58920b57cec5SDimitry Andric   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
58930b57cec5SDimitry Andric   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
58940b57cec5SDimitry Andric            Idx += NumOpsPerField) {
58950b57cec5SDimitry Andric     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
58960b57cec5SDimitry Andric     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
58970b57cec5SDimitry Andric     if (!isa<MDNode>(FieldTy)) {
58980b57cec5SDimitry Andric       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
58990b57cec5SDimitry Andric       Failed = true;
59000b57cec5SDimitry Andric       continue;
59010b57cec5SDimitry Andric     }
59020b57cec5SDimitry Andric 
59030b57cec5SDimitry Andric     auto *OffsetEntryCI =
59040b57cec5SDimitry Andric         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
59050b57cec5SDimitry Andric     if (!OffsetEntryCI) {
59060b57cec5SDimitry Andric       CheckFailed("Offset entries must be constants!", &I, BaseNode);
59070b57cec5SDimitry Andric       Failed = true;
59080b57cec5SDimitry Andric       continue;
59090b57cec5SDimitry Andric     }
59100b57cec5SDimitry Andric 
59110b57cec5SDimitry Andric     if (BitWidth == ~0u)
59120b57cec5SDimitry Andric       BitWidth = OffsetEntryCI->getBitWidth();
59130b57cec5SDimitry Andric 
59140b57cec5SDimitry Andric     if (OffsetEntryCI->getBitWidth() != BitWidth) {
59150b57cec5SDimitry Andric       CheckFailed(
59160b57cec5SDimitry Andric           "Bitwidth between the offsets and struct type entries must match", &I,
59170b57cec5SDimitry Andric           BaseNode);
59180b57cec5SDimitry Andric       Failed = true;
59190b57cec5SDimitry Andric       continue;
59200b57cec5SDimitry Andric     }
59210b57cec5SDimitry Andric 
59220b57cec5SDimitry Andric     // NB! As far as I can tell, we generate a non-strictly increasing offset
59230b57cec5SDimitry Andric     // sequence only from structs that have zero size bit fields.  When
59240b57cec5SDimitry Andric     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
59250b57cec5SDimitry Andric     // pick the field lexically the latest in struct type metadata node.  This
59260b57cec5SDimitry Andric     // mirrors the actual behavior of the alias analysis implementation.
59270b57cec5SDimitry Andric     bool IsAscending =
59280b57cec5SDimitry Andric         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
59290b57cec5SDimitry Andric 
59300b57cec5SDimitry Andric     if (!IsAscending) {
59310b57cec5SDimitry Andric       CheckFailed("Offsets must be increasing!", &I, BaseNode);
59320b57cec5SDimitry Andric       Failed = true;
59330b57cec5SDimitry Andric     }
59340b57cec5SDimitry Andric 
59350b57cec5SDimitry Andric     PrevOffset = OffsetEntryCI->getValue();
59360b57cec5SDimitry Andric 
59370b57cec5SDimitry Andric     if (IsNewFormat) {
59380b57cec5SDimitry Andric       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
59390b57cec5SDimitry Andric           BaseNode->getOperand(Idx + 2));
59400b57cec5SDimitry Andric       if (!MemberSizeNode) {
59410b57cec5SDimitry Andric         CheckFailed("Member size entries must be constants!", &I, BaseNode);
59420b57cec5SDimitry Andric         Failed = true;
59430b57cec5SDimitry Andric         continue;
59440b57cec5SDimitry Andric       }
59450b57cec5SDimitry Andric     }
59460b57cec5SDimitry Andric   }
59470b57cec5SDimitry Andric 
59480b57cec5SDimitry Andric   return Failed ? InvalidNode
59490b57cec5SDimitry Andric                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
59500b57cec5SDimitry Andric }
59510b57cec5SDimitry Andric 
59520b57cec5SDimitry Andric static bool IsRootTBAANode(const MDNode *MD) {
59530b57cec5SDimitry Andric   return MD->getNumOperands() < 2;
59540b57cec5SDimitry Andric }
59550b57cec5SDimitry Andric 
59560b57cec5SDimitry Andric static bool IsScalarTBAANodeImpl(const MDNode *MD,
59570b57cec5SDimitry Andric                                  SmallPtrSetImpl<const MDNode *> &Visited) {
59580b57cec5SDimitry Andric   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
59590b57cec5SDimitry Andric     return false;
59600b57cec5SDimitry Andric 
59610b57cec5SDimitry Andric   if (!isa<MDString>(MD->getOperand(0)))
59620b57cec5SDimitry Andric     return false;
59630b57cec5SDimitry Andric 
59640b57cec5SDimitry Andric   if (MD->getNumOperands() == 3) {
59650b57cec5SDimitry Andric     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
59660b57cec5SDimitry Andric     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
59670b57cec5SDimitry Andric       return false;
59680b57cec5SDimitry Andric   }
59690b57cec5SDimitry Andric 
59700b57cec5SDimitry Andric   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
59710b57cec5SDimitry Andric   return Parent && Visited.insert(Parent).second &&
59720b57cec5SDimitry Andric          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
59730b57cec5SDimitry Andric }
59740b57cec5SDimitry Andric 
59750b57cec5SDimitry Andric bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
59760b57cec5SDimitry Andric   auto ResultIt = TBAAScalarNodes.find(MD);
59770b57cec5SDimitry Andric   if (ResultIt != TBAAScalarNodes.end())
59780b57cec5SDimitry Andric     return ResultIt->second;
59790b57cec5SDimitry Andric 
59800b57cec5SDimitry Andric   SmallPtrSet<const MDNode *, 4> Visited;
59810b57cec5SDimitry Andric   bool Result = IsScalarTBAANodeImpl(MD, Visited);
59820b57cec5SDimitry Andric   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
59830b57cec5SDimitry Andric   (void)InsertResult;
59840b57cec5SDimitry Andric   assert(InsertResult.second && "Just checked!");
59850b57cec5SDimitry Andric 
59860b57cec5SDimitry Andric   return Result;
59870b57cec5SDimitry Andric }
59880b57cec5SDimitry Andric 
59890b57cec5SDimitry Andric /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
59900b57cec5SDimitry Andric /// Offset in place to be the offset within the field node returned.
59910b57cec5SDimitry Andric ///
59920b57cec5SDimitry Andric /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
59930b57cec5SDimitry Andric MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
59940b57cec5SDimitry Andric                                                    const MDNode *BaseNode,
59950b57cec5SDimitry Andric                                                    APInt &Offset,
59960b57cec5SDimitry Andric                                                    bool IsNewFormat) {
59970b57cec5SDimitry Andric   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
59980b57cec5SDimitry Andric 
59990b57cec5SDimitry Andric   // Scalar nodes have only one possible "field" -- their parent in the access
60000b57cec5SDimitry Andric   // hierarchy.  Offset must be zero at this point, but our caller is supposed
60010b57cec5SDimitry Andric   // to Assert that.
60020b57cec5SDimitry Andric   if (BaseNode->getNumOperands() == 2)
60030b57cec5SDimitry Andric     return cast<MDNode>(BaseNode->getOperand(1));
60040b57cec5SDimitry Andric 
60050b57cec5SDimitry Andric   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
60060b57cec5SDimitry Andric   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
60070b57cec5SDimitry Andric   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
60080b57cec5SDimitry Andric            Idx += NumOpsPerField) {
60090b57cec5SDimitry Andric     auto *OffsetEntryCI =
60100b57cec5SDimitry Andric         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
60110b57cec5SDimitry Andric     if (OffsetEntryCI->getValue().ugt(Offset)) {
60120b57cec5SDimitry Andric       if (Idx == FirstFieldOpNo) {
60130b57cec5SDimitry Andric         CheckFailed("Could not find TBAA parent in struct type node", &I,
60140b57cec5SDimitry Andric                     BaseNode, &Offset);
60150b57cec5SDimitry Andric         return nullptr;
60160b57cec5SDimitry Andric       }
60170b57cec5SDimitry Andric 
60180b57cec5SDimitry Andric       unsigned PrevIdx = Idx - NumOpsPerField;
60190b57cec5SDimitry Andric       auto *PrevOffsetEntryCI =
60200b57cec5SDimitry Andric           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
60210b57cec5SDimitry Andric       Offset -= PrevOffsetEntryCI->getValue();
60220b57cec5SDimitry Andric       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
60230b57cec5SDimitry Andric     }
60240b57cec5SDimitry Andric   }
60250b57cec5SDimitry Andric 
60260b57cec5SDimitry Andric   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
60270b57cec5SDimitry Andric   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
60280b57cec5SDimitry Andric       BaseNode->getOperand(LastIdx + 1));
60290b57cec5SDimitry Andric   Offset -= LastOffsetEntryCI->getValue();
60300b57cec5SDimitry Andric   return cast<MDNode>(BaseNode->getOperand(LastIdx));
60310b57cec5SDimitry Andric }
60320b57cec5SDimitry Andric 
60330b57cec5SDimitry Andric static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
60340b57cec5SDimitry Andric   if (!Type || Type->getNumOperands() < 3)
60350b57cec5SDimitry Andric     return false;
60360b57cec5SDimitry Andric 
60370b57cec5SDimitry Andric   // In the new format type nodes shall have a reference to the parent type as
60380b57cec5SDimitry Andric   // its first operand.
60390b57cec5SDimitry Andric   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
60400b57cec5SDimitry Andric   if (!Parent)
60410b57cec5SDimitry Andric     return false;
60420b57cec5SDimitry Andric 
60430b57cec5SDimitry Andric   return true;
60440b57cec5SDimitry Andric }
60450b57cec5SDimitry Andric 
60460b57cec5SDimitry Andric bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
60470b57cec5SDimitry Andric   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
60480b57cec5SDimitry Andric                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
60490b57cec5SDimitry Andric                  isa<AtomicCmpXchgInst>(I),
60500b57cec5SDimitry Andric              "This instruction shall not have a TBAA access tag!", &I);
60510b57cec5SDimitry Andric 
60520b57cec5SDimitry Andric   bool IsStructPathTBAA =
60530b57cec5SDimitry Andric       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
60540b57cec5SDimitry Andric 
60550b57cec5SDimitry Andric   AssertTBAA(
60560b57cec5SDimitry Andric       IsStructPathTBAA,
60570b57cec5SDimitry Andric       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
60580b57cec5SDimitry Andric 
60590b57cec5SDimitry Andric   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
60600b57cec5SDimitry Andric   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
60610b57cec5SDimitry Andric 
60620b57cec5SDimitry Andric   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
60630b57cec5SDimitry Andric 
60640b57cec5SDimitry Andric   if (IsNewFormat) {
60650b57cec5SDimitry Andric     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
60660b57cec5SDimitry Andric                "Access tag metadata must have either 4 or 5 operands", &I, MD);
60670b57cec5SDimitry Andric   } else {
60680b57cec5SDimitry Andric     AssertTBAA(MD->getNumOperands() < 5,
60690b57cec5SDimitry Andric                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
60700b57cec5SDimitry Andric   }
60710b57cec5SDimitry Andric 
60720b57cec5SDimitry Andric   // Check the access size field.
60730b57cec5SDimitry Andric   if (IsNewFormat) {
60740b57cec5SDimitry Andric     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
60750b57cec5SDimitry Andric         MD->getOperand(3));
60760b57cec5SDimitry Andric     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
60770b57cec5SDimitry Andric   }
60780b57cec5SDimitry Andric 
60790b57cec5SDimitry Andric   // Check the immutability flag.
60800b57cec5SDimitry Andric   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
60810b57cec5SDimitry Andric   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
60820b57cec5SDimitry Andric     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
60830b57cec5SDimitry Andric         MD->getOperand(ImmutabilityFlagOpNo));
60840b57cec5SDimitry Andric     AssertTBAA(IsImmutableCI,
60850b57cec5SDimitry Andric                "Immutability tag on struct tag metadata must be a constant",
60860b57cec5SDimitry Andric                &I, MD);
60870b57cec5SDimitry Andric     AssertTBAA(
60880b57cec5SDimitry Andric         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
60890b57cec5SDimitry Andric         "Immutability part of the struct tag metadata must be either 0 or 1",
60900b57cec5SDimitry Andric         &I, MD);
60910b57cec5SDimitry Andric   }
60920b57cec5SDimitry Andric 
60930b57cec5SDimitry Andric   AssertTBAA(BaseNode && AccessType,
60940b57cec5SDimitry Andric              "Malformed struct tag metadata: base and access-type "
60950b57cec5SDimitry Andric              "should be non-null and point to Metadata nodes",
60960b57cec5SDimitry Andric              &I, MD, BaseNode, AccessType);
60970b57cec5SDimitry Andric 
60980b57cec5SDimitry Andric   if (!IsNewFormat) {
60990b57cec5SDimitry Andric     AssertTBAA(isValidScalarTBAANode(AccessType),
61000b57cec5SDimitry Andric                "Access type node must be a valid scalar type", &I, MD,
61010b57cec5SDimitry Andric                AccessType);
61020b57cec5SDimitry Andric   }
61030b57cec5SDimitry Andric 
61040b57cec5SDimitry Andric   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
61050b57cec5SDimitry Andric   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
61060b57cec5SDimitry Andric 
61070b57cec5SDimitry Andric   APInt Offset = OffsetCI->getValue();
61080b57cec5SDimitry Andric   bool SeenAccessTypeInPath = false;
61090b57cec5SDimitry Andric 
61100b57cec5SDimitry Andric   SmallPtrSet<MDNode *, 4> StructPath;
61110b57cec5SDimitry Andric 
61120b57cec5SDimitry Andric   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
61130b57cec5SDimitry Andric        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
61140b57cec5SDimitry Andric                                                IsNewFormat)) {
61150b57cec5SDimitry Andric     if (!StructPath.insert(BaseNode).second) {
61160b57cec5SDimitry Andric       CheckFailed("Cycle detected in struct path", &I, MD);
61170b57cec5SDimitry Andric       return false;
61180b57cec5SDimitry Andric     }
61190b57cec5SDimitry Andric 
61200b57cec5SDimitry Andric     bool Invalid;
61210b57cec5SDimitry Andric     unsigned BaseNodeBitWidth;
61220b57cec5SDimitry Andric     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
61230b57cec5SDimitry Andric                                                              IsNewFormat);
61240b57cec5SDimitry Andric 
61250b57cec5SDimitry Andric     // If the base node is invalid in itself, then we've already printed all the
61260b57cec5SDimitry Andric     // errors we wanted to print.
61270b57cec5SDimitry Andric     if (Invalid)
61280b57cec5SDimitry Andric       return false;
61290b57cec5SDimitry Andric 
61300b57cec5SDimitry Andric     SeenAccessTypeInPath |= BaseNode == AccessType;
61310b57cec5SDimitry Andric 
61320b57cec5SDimitry Andric     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
61330b57cec5SDimitry Andric       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
61340b57cec5SDimitry Andric                  &I, MD, &Offset);
61350b57cec5SDimitry Andric 
61360b57cec5SDimitry Andric     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
61370b57cec5SDimitry Andric                    (BaseNodeBitWidth == 0 && Offset == 0) ||
61380b57cec5SDimitry Andric                    (IsNewFormat && BaseNodeBitWidth == ~0u),
61390b57cec5SDimitry Andric                "Access bit-width not the same as description bit-width", &I, MD,
61400b57cec5SDimitry Andric                BaseNodeBitWidth, Offset.getBitWidth());
61410b57cec5SDimitry Andric 
61420b57cec5SDimitry Andric     if (IsNewFormat && SeenAccessTypeInPath)
61430b57cec5SDimitry Andric       break;
61440b57cec5SDimitry Andric   }
61450b57cec5SDimitry Andric 
61460b57cec5SDimitry Andric   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
61470b57cec5SDimitry Andric              &I, MD);
61480b57cec5SDimitry Andric   return true;
61490b57cec5SDimitry Andric }
61500b57cec5SDimitry Andric 
61510b57cec5SDimitry Andric char VerifierLegacyPass::ID = 0;
61520b57cec5SDimitry Andric INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
61530b57cec5SDimitry Andric 
61540b57cec5SDimitry Andric FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
61550b57cec5SDimitry Andric   return new VerifierLegacyPass(FatalErrors);
61560b57cec5SDimitry Andric }
61570b57cec5SDimitry Andric 
61580b57cec5SDimitry Andric AnalysisKey VerifierAnalysis::Key;
61590b57cec5SDimitry Andric VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
61600b57cec5SDimitry Andric                                                ModuleAnalysisManager &) {
61610b57cec5SDimitry Andric   Result Res;
61620b57cec5SDimitry Andric   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
61630b57cec5SDimitry Andric   return Res;
61640b57cec5SDimitry Andric }
61650b57cec5SDimitry Andric 
61660b57cec5SDimitry Andric VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
61670b57cec5SDimitry Andric                                                FunctionAnalysisManager &) {
61680b57cec5SDimitry Andric   return { llvm::verifyFunction(F, &dbgs()), false };
61690b57cec5SDimitry Andric }
61700b57cec5SDimitry Andric 
61710b57cec5SDimitry Andric PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
61720b57cec5SDimitry Andric   auto Res = AM.getResult<VerifierAnalysis>(M);
61730b57cec5SDimitry Andric   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
61740b57cec5SDimitry Andric     report_fatal_error("Broken module found, compilation aborted!");
61750b57cec5SDimitry Andric 
61760b57cec5SDimitry Andric   return PreservedAnalyses::all();
61770b57cec5SDimitry Andric }
61780b57cec5SDimitry Andric 
61790b57cec5SDimitry Andric PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
61800b57cec5SDimitry Andric   auto res = AM.getResult<VerifierAnalysis>(F);
61810b57cec5SDimitry Andric   if (res.IRBroken && FatalErrors)
61820b57cec5SDimitry Andric     report_fatal_error("Broken function found, compilation aborted!");
61830b57cec5SDimitry Andric 
61840b57cec5SDimitry Andric   return PreservedAnalyses::all();
61850b57cec5SDimitry Andric }
6186