10b57cec5SDimitry Andric //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file defines the function verifier interface, that can be used for some 100b57cec5SDimitry Andric // sanity checking of input to the system. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric // Note that this does not provide full `Java style' security and verifications, 130b57cec5SDimitry Andric // instead it just tries to ensure that code is well-formed. 140b57cec5SDimitry Andric // 150b57cec5SDimitry Andric // * Both of a binary operator's parameters are of the same type 160b57cec5SDimitry Andric // * Verify that the indices of mem access instructions match other operands 170b57cec5SDimitry Andric // * Verify that arithmetic and other things are only performed on first-class 180b57cec5SDimitry Andric // types. Verify that shifts & logicals only happen on integrals f.e. 190b57cec5SDimitry Andric // * All of the constants in a switch statement are of the correct type 200b57cec5SDimitry Andric // * The code is in valid SSA form 210b57cec5SDimitry Andric // * It should be illegal to put a label into any other type (like a structure) 220b57cec5SDimitry Andric // or to return one. [except constant arrays!] 230b57cec5SDimitry Andric // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 240b57cec5SDimitry Andric // * PHI nodes must have an entry for each predecessor, with no extras. 250b57cec5SDimitry Andric // * PHI nodes must be the first thing in a basic block, all grouped together 260b57cec5SDimitry Andric // * PHI nodes must have at least one entry 270b57cec5SDimitry Andric // * All basic blocks should only end with terminator insts, not contain them 280b57cec5SDimitry Andric // * The entry node to a function must not have predecessors 290b57cec5SDimitry Andric // * All Instructions must be embedded into a basic block 300b57cec5SDimitry Andric // * Functions cannot take a void-typed parameter 310b57cec5SDimitry Andric // * Verify that a function's argument list agrees with it's declared type. 320b57cec5SDimitry Andric // * It is illegal to specify a name for a void value. 330b57cec5SDimitry Andric // * It is illegal to have a internal global value with no initializer 340b57cec5SDimitry Andric // * It is illegal to have a ret instruction that returns a value that does not 350b57cec5SDimitry Andric // agree with the function return value type. 360b57cec5SDimitry Andric // * Function call argument types match the function prototype 370b57cec5SDimitry Andric // * A landing pad is defined by a landingpad instruction, and can be jumped to 380b57cec5SDimitry Andric // only by the unwind edge of an invoke instruction. 390b57cec5SDimitry Andric // * A landingpad instruction must be the first non-PHI instruction in the 400b57cec5SDimitry Andric // block. 410b57cec5SDimitry Andric // * Landingpad instructions must be in a function with a personality function. 420b57cec5SDimitry Andric // * All other things that are tested by asserts spread about the code... 430b57cec5SDimitry Andric // 440b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 450b57cec5SDimitry Andric 460b57cec5SDimitry Andric #include "llvm/IR/Verifier.h" 470b57cec5SDimitry Andric #include "llvm/ADT/APFloat.h" 480b57cec5SDimitry Andric #include "llvm/ADT/APInt.h" 490b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 500b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h" 510b57cec5SDimitry Andric #include "llvm/ADT/MapVector.h" 520b57cec5SDimitry Andric #include "llvm/ADT/Optional.h" 530b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 540b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 550b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h" 560b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 570b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h" 580b57cec5SDimitry Andric #include "llvm/ADT/StringMap.h" 590b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h" 600b57cec5SDimitry Andric #include "llvm/ADT/Twine.h" 610b57cec5SDimitry Andric #include "llvm/ADT/ilist.h" 620b57cec5SDimitry Andric #include "llvm/BinaryFormat/Dwarf.h" 630b57cec5SDimitry Andric #include "llvm/IR/Argument.h" 640b57cec5SDimitry Andric #include "llvm/IR/Attributes.h" 650b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 660b57cec5SDimitry Andric #include "llvm/IR/CFG.h" 670b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h" 680b57cec5SDimitry Andric #include "llvm/IR/Comdat.h" 690b57cec5SDimitry Andric #include "llvm/IR/Constant.h" 700b57cec5SDimitry Andric #include "llvm/IR/ConstantRange.h" 710b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 720b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 730b57cec5SDimitry Andric #include "llvm/IR/DebugInfo.h" 740b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h" 750b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h" 760b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 770b57cec5SDimitry Andric #include "llvm/IR/Dominators.h" 780b57cec5SDimitry Andric #include "llvm/IR/Function.h" 790b57cec5SDimitry Andric #include "llvm/IR/GlobalAlias.h" 800b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h" 810b57cec5SDimitry Andric #include "llvm/IR/GlobalVariable.h" 820b57cec5SDimitry Andric #include "llvm/IR/InlineAsm.h" 830b57cec5SDimitry Andric #include "llvm/IR/InstVisitor.h" 840b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 850b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 860b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 870b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 880b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 89480093f4SDimitry Andric #include "llvm/IR/IntrinsicsWebAssembly.h" 900b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h" 910b57cec5SDimitry Andric #include "llvm/IR/Metadata.h" 920b57cec5SDimitry Andric #include "llvm/IR/Module.h" 930b57cec5SDimitry Andric #include "llvm/IR/ModuleSlotTracker.h" 940b57cec5SDimitry Andric #include "llvm/IR/PassManager.h" 950b57cec5SDimitry Andric #include "llvm/IR/Statepoint.h" 960b57cec5SDimitry Andric #include "llvm/IR/Type.h" 970b57cec5SDimitry Andric #include "llvm/IR/Use.h" 980b57cec5SDimitry Andric #include "llvm/IR/User.h" 990b57cec5SDimitry Andric #include "llvm/IR/Value.h" 100480093f4SDimitry Andric #include "llvm/InitializePasses.h" 1010b57cec5SDimitry Andric #include "llvm/Pass.h" 1020b57cec5SDimitry Andric #include "llvm/Support/AtomicOrdering.h" 1030b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 1040b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 1050b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 1060b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 1070b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h" 1080b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 1090b57cec5SDimitry Andric #include <algorithm> 1100b57cec5SDimitry Andric #include <cassert> 1110b57cec5SDimitry Andric #include <cstdint> 1120b57cec5SDimitry Andric #include <memory> 1130b57cec5SDimitry Andric #include <string> 1140b57cec5SDimitry Andric #include <utility> 1150b57cec5SDimitry Andric 1160b57cec5SDimitry Andric using namespace llvm; 1170b57cec5SDimitry Andric 1180b57cec5SDimitry Andric namespace llvm { 1190b57cec5SDimitry Andric 1200b57cec5SDimitry Andric struct VerifierSupport { 1210b57cec5SDimitry Andric raw_ostream *OS; 1220b57cec5SDimitry Andric const Module &M; 1230b57cec5SDimitry Andric ModuleSlotTracker MST; 1248bcb0991SDimitry Andric Triple TT; 1250b57cec5SDimitry Andric const DataLayout &DL; 1260b57cec5SDimitry Andric LLVMContext &Context; 1270b57cec5SDimitry Andric 1280b57cec5SDimitry Andric /// Track the brokenness of the module while recursively visiting. 1290b57cec5SDimitry Andric bool Broken = false; 1300b57cec5SDimitry Andric /// Broken debug info can be "recovered" from by stripping the debug info. 1310b57cec5SDimitry Andric bool BrokenDebugInfo = false; 1320b57cec5SDimitry Andric /// Whether to treat broken debug info as an error. 1330b57cec5SDimitry Andric bool TreatBrokenDebugInfoAsError = true; 1340b57cec5SDimitry Andric 1350b57cec5SDimitry Andric explicit VerifierSupport(raw_ostream *OS, const Module &M) 1368bcb0991SDimitry Andric : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 1378bcb0991SDimitry Andric Context(M.getContext()) {} 1380b57cec5SDimitry Andric 1390b57cec5SDimitry Andric private: 1400b57cec5SDimitry Andric void Write(const Module *M) { 1410b57cec5SDimitry Andric *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 1420b57cec5SDimitry Andric } 1430b57cec5SDimitry Andric 1440b57cec5SDimitry Andric void Write(const Value *V) { 1450b57cec5SDimitry Andric if (V) 1460b57cec5SDimitry Andric Write(*V); 1470b57cec5SDimitry Andric } 1480b57cec5SDimitry Andric 1490b57cec5SDimitry Andric void Write(const Value &V) { 1500b57cec5SDimitry Andric if (isa<Instruction>(V)) { 1510b57cec5SDimitry Andric V.print(*OS, MST); 1520b57cec5SDimitry Andric *OS << '\n'; 1530b57cec5SDimitry Andric } else { 1540b57cec5SDimitry Andric V.printAsOperand(*OS, true, MST); 1550b57cec5SDimitry Andric *OS << '\n'; 1560b57cec5SDimitry Andric } 1570b57cec5SDimitry Andric } 1580b57cec5SDimitry Andric 1590b57cec5SDimitry Andric void Write(const Metadata *MD) { 1600b57cec5SDimitry Andric if (!MD) 1610b57cec5SDimitry Andric return; 1620b57cec5SDimitry Andric MD->print(*OS, MST, &M); 1630b57cec5SDimitry Andric *OS << '\n'; 1640b57cec5SDimitry Andric } 1650b57cec5SDimitry Andric 1660b57cec5SDimitry Andric template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 1670b57cec5SDimitry Andric Write(MD.get()); 1680b57cec5SDimitry Andric } 1690b57cec5SDimitry Andric 1700b57cec5SDimitry Andric void Write(const NamedMDNode *NMD) { 1710b57cec5SDimitry Andric if (!NMD) 1720b57cec5SDimitry Andric return; 1730b57cec5SDimitry Andric NMD->print(*OS, MST); 1740b57cec5SDimitry Andric *OS << '\n'; 1750b57cec5SDimitry Andric } 1760b57cec5SDimitry Andric 1770b57cec5SDimitry Andric void Write(Type *T) { 1780b57cec5SDimitry Andric if (!T) 1790b57cec5SDimitry Andric return; 1800b57cec5SDimitry Andric *OS << ' ' << *T; 1810b57cec5SDimitry Andric } 1820b57cec5SDimitry Andric 1830b57cec5SDimitry Andric void Write(const Comdat *C) { 1840b57cec5SDimitry Andric if (!C) 1850b57cec5SDimitry Andric return; 1860b57cec5SDimitry Andric *OS << *C; 1870b57cec5SDimitry Andric } 1880b57cec5SDimitry Andric 1890b57cec5SDimitry Andric void Write(const APInt *AI) { 1900b57cec5SDimitry Andric if (!AI) 1910b57cec5SDimitry Andric return; 1920b57cec5SDimitry Andric *OS << *AI << '\n'; 1930b57cec5SDimitry Andric } 1940b57cec5SDimitry Andric 1950b57cec5SDimitry Andric void Write(const unsigned i) { *OS << i << '\n'; } 1960b57cec5SDimitry Andric 1970b57cec5SDimitry Andric template <typename T> void Write(ArrayRef<T> Vs) { 1980b57cec5SDimitry Andric for (const T &V : Vs) 1990b57cec5SDimitry Andric Write(V); 2000b57cec5SDimitry Andric } 2010b57cec5SDimitry Andric 2020b57cec5SDimitry Andric template <typename T1, typename... Ts> 2030b57cec5SDimitry Andric void WriteTs(const T1 &V1, const Ts &... Vs) { 2040b57cec5SDimitry Andric Write(V1); 2050b57cec5SDimitry Andric WriteTs(Vs...); 2060b57cec5SDimitry Andric } 2070b57cec5SDimitry Andric 2080b57cec5SDimitry Andric template <typename... Ts> void WriteTs() {} 2090b57cec5SDimitry Andric 2100b57cec5SDimitry Andric public: 2110b57cec5SDimitry Andric /// A check failed, so printout out the condition and the message. 2120b57cec5SDimitry Andric /// 2130b57cec5SDimitry Andric /// This provides a nice place to put a breakpoint if you want to see why 2140b57cec5SDimitry Andric /// something is not correct. 2150b57cec5SDimitry Andric void CheckFailed(const Twine &Message) { 2160b57cec5SDimitry Andric if (OS) 2170b57cec5SDimitry Andric *OS << Message << '\n'; 2180b57cec5SDimitry Andric Broken = true; 2190b57cec5SDimitry Andric } 2200b57cec5SDimitry Andric 2210b57cec5SDimitry Andric /// A check failed (with values to print). 2220b57cec5SDimitry Andric /// 2230b57cec5SDimitry Andric /// This calls the Message-only version so that the above is easier to set a 2240b57cec5SDimitry Andric /// breakpoint on. 2250b57cec5SDimitry Andric template <typename T1, typename... Ts> 2260b57cec5SDimitry Andric void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 2270b57cec5SDimitry Andric CheckFailed(Message); 2280b57cec5SDimitry Andric if (OS) 2290b57cec5SDimitry Andric WriteTs(V1, Vs...); 2300b57cec5SDimitry Andric } 2310b57cec5SDimitry Andric 2320b57cec5SDimitry Andric /// A debug info check failed. 2330b57cec5SDimitry Andric void DebugInfoCheckFailed(const Twine &Message) { 2340b57cec5SDimitry Andric if (OS) 2350b57cec5SDimitry Andric *OS << Message << '\n'; 2360b57cec5SDimitry Andric Broken |= TreatBrokenDebugInfoAsError; 2370b57cec5SDimitry Andric BrokenDebugInfo = true; 2380b57cec5SDimitry Andric } 2390b57cec5SDimitry Andric 2400b57cec5SDimitry Andric /// A debug info check failed (with values to print). 2410b57cec5SDimitry Andric template <typename T1, typename... Ts> 2420b57cec5SDimitry Andric void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 2430b57cec5SDimitry Andric const Ts &... Vs) { 2440b57cec5SDimitry Andric DebugInfoCheckFailed(Message); 2450b57cec5SDimitry Andric if (OS) 2460b57cec5SDimitry Andric WriteTs(V1, Vs...); 2470b57cec5SDimitry Andric } 2480b57cec5SDimitry Andric }; 2490b57cec5SDimitry Andric 2500b57cec5SDimitry Andric } // namespace llvm 2510b57cec5SDimitry Andric 2520b57cec5SDimitry Andric namespace { 2530b57cec5SDimitry Andric 2540b57cec5SDimitry Andric class Verifier : public InstVisitor<Verifier>, VerifierSupport { 2550b57cec5SDimitry Andric friend class InstVisitor<Verifier>; 2560b57cec5SDimitry Andric 2570b57cec5SDimitry Andric DominatorTree DT; 2580b57cec5SDimitry Andric 2590b57cec5SDimitry Andric /// When verifying a basic block, keep track of all of the 2600b57cec5SDimitry Andric /// instructions we have seen so far. 2610b57cec5SDimitry Andric /// 2620b57cec5SDimitry Andric /// This allows us to do efficient dominance checks for the case when an 2630b57cec5SDimitry Andric /// instruction has an operand that is an instruction in the same block. 2640b57cec5SDimitry Andric SmallPtrSet<Instruction *, 16> InstsInThisBlock; 2650b57cec5SDimitry Andric 2660b57cec5SDimitry Andric /// Keep track of the metadata nodes that have been checked already. 2670b57cec5SDimitry Andric SmallPtrSet<const Metadata *, 32> MDNodes; 2680b57cec5SDimitry Andric 2690b57cec5SDimitry Andric /// Keep track which DISubprogram is attached to which function. 2700b57cec5SDimitry Andric DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 2710b57cec5SDimitry Andric 2720b57cec5SDimitry Andric /// Track all DICompileUnits visited. 2730b57cec5SDimitry Andric SmallPtrSet<const Metadata *, 2> CUVisited; 2740b57cec5SDimitry Andric 2750b57cec5SDimitry Andric /// The result type for a landingpad. 2760b57cec5SDimitry Andric Type *LandingPadResultTy; 2770b57cec5SDimitry Andric 2780b57cec5SDimitry Andric /// Whether we've seen a call to @llvm.localescape in this function 2790b57cec5SDimitry Andric /// already. 2800b57cec5SDimitry Andric bool SawFrameEscape; 2810b57cec5SDimitry Andric 2820b57cec5SDimitry Andric /// Whether the current function has a DISubprogram attached to it. 2830b57cec5SDimitry Andric bool HasDebugInfo = false; 2840b57cec5SDimitry Andric 2850b57cec5SDimitry Andric /// Whether source was present on the first DIFile encountered in each CU. 2860b57cec5SDimitry Andric DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 2870b57cec5SDimitry Andric 2880b57cec5SDimitry Andric /// Stores the count of how many objects were passed to llvm.localescape for a 2890b57cec5SDimitry Andric /// given function and the largest index passed to llvm.localrecover. 2900b57cec5SDimitry Andric DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 2910b57cec5SDimitry Andric 2920b57cec5SDimitry Andric // Maps catchswitches and cleanuppads that unwind to siblings to the 2930b57cec5SDimitry Andric // terminators that indicate the unwind, used to detect cycles therein. 2940b57cec5SDimitry Andric MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 2950b57cec5SDimitry Andric 2960b57cec5SDimitry Andric /// Cache of constants visited in search of ConstantExprs. 2970b57cec5SDimitry Andric SmallPtrSet<const Constant *, 32> ConstantExprVisited; 2980b57cec5SDimitry Andric 2990b57cec5SDimitry Andric /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 3000b57cec5SDimitry Andric SmallVector<const Function *, 4> DeoptimizeDeclarations; 3010b57cec5SDimitry Andric 3020b57cec5SDimitry Andric // Verify that this GlobalValue is only used in this module. 3030b57cec5SDimitry Andric // This map is used to avoid visiting uses twice. We can arrive at a user 3040b57cec5SDimitry Andric // twice, if they have multiple operands. In particular for very large 3050b57cec5SDimitry Andric // constant expressions, we can arrive at a particular user many times. 3060b57cec5SDimitry Andric SmallPtrSet<const Value *, 32> GlobalValueVisited; 3070b57cec5SDimitry Andric 3080b57cec5SDimitry Andric // Keeps track of duplicate function argument debug info. 3090b57cec5SDimitry Andric SmallVector<const DILocalVariable *, 16> DebugFnArgs; 3100b57cec5SDimitry Andric 3110b57cec5SDimitry Andric TBAAVerifier TBAAVerifyHelper; 3120b57cec5SDimitry Andric 3130b57cec5SDimitry Andric void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 3140b57cec5SDimitry Andric 3150b57cec5SDimitry Andric public: 3160b57cec5SDimitry Andric explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 3170b57cec5SDimitry Andric const Module &M) 3180b57cec5SDimitry Andric : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 3190b57cec5SDimitry Andric SawFrameEscape(false), TBAAVerifyHelper(this) { 3200b57cec5SDimitry Andric TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 3210b57cec5SDimitry Andric } 3220b57cec5SDimitry Andric 3230b57cec5SDimitry Andric bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 3240b57cec5SDimitry Andric 3250b57cec5SDimitry Andric bool verify(const Function &F) { 3260b57cec5SDimitry Andric assert(F.getParent() == &M && 3270b57cec5SDimitry Andric "An instance of this class only works with a specific module!"); 3280b57cec5SDimitry Andric 3290b57cec5SDimitry Andric // First ensure the function is well-enough formed to compute dominance 3300b57cec5SDimitry Andric // information, and directly compute a dominance tree. We don't rely on the 3310b57cec5SDimitry Andric // pass manager to provide this as it isolates us from a potentially 3320b57cec5SDimitry Andric // out-of-date dominator tree and makes it significantly more complex to run 3330b57cec5SDimitry Andric // this code outside of a pass manager. 3340b57cec5SDimitry Andric // FIXME: It's really gross that we have to cast away constness here. 3350b57cec5SDimitry Andric if (!F.empty()) 3360b57cec5SDimitry Andric DT.recalculate(const_cast<Function &>(F)); 3370b57cec5SDimitry Andric 3380b57cec5SDimitry Andric for (const BasicBlock &BB : F) { 3390b57cec5SDimitry Andric if (!BB.empty() && BB.back().isTerminator()) 3400b57cec5SDimitry Andric continue; 3410b57cec5SDimitry Andric 3420b57cec5SDimitry Andric if (OS) { 3430b57cec5SDimitry Andric *OS << "Basic Block in function '" << F.getName() 3440b57cec5SDimitry Andric << "' does not have terminator!\n"; 3450b57cec5SDimitry Andric BB.printAsOperand(*OS, true, MST); 3460b57cec5SDimitry Andric *OS << "\n"; 3470b57cec5SDimitry Andric } 3480b57cec5SDimitry Andric return false; 3490b57cec5SDimitry Andric } 3500b57cec5SDimitry Andric 3510b57cec5SDimitry Andric Broken = false; 3520b57cec5SDimitry Andric // FIXME: We strip const here because the inst visitor strips const. 3530b57cec5SDimitry Andric visit(const_cast<Function &>(F)); 3540b57cec5SDimitry Andric verifySiblingFuncletUnwinds(); 3550b57cec5SDimitry Andric InstsInThisBlock.clear(); 3560b57cec5SDimitry Andric DebugFnArgs.clear(); 3570b57cec5SDimitry Andric LandingPadResultTy = nullptr; 3580b57cec5SDimitry Andric SawFrameEscape = false; 3590b57cec5SDimitry Andric SiblingFuncletInfo.clear(); 3600b57cec5SDimitry Andric 3610b57cec5SDimitry Andric return !Broken; 3620b57cec5SDimitry Andric } 3630b57cec5SDimitry Andric 3640b57cec5SDimitry Andric /// Verify the module that this instance of \c Verifier was initialized with. 3650b57cec5SDimitry Andric bool verify() { 3660b57cec5SDimitry Andric Broken = false; 3670b57cec5SDimitry Andric 3680b57cec5SDimitry Andric // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 3690b57cec5SDimitry Andric for (const Function &F : M) 3700b57cec5SDimitry Andric if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 3710b57cec5SDimitry Andric DeoptimizeDeclarations.push_back(&F); 3720b57cec5SDimitry Andric 3730b57cec5SDimitry Andric // Now that we've visited every function, verify that we never asked to 3740b57cec5SDimitry Andric // recover a frame index that wasn't escaped. 3750b57cec5SDimitry Andric verifyFrameRecoverIndices(); 3760b57cec5SDimitry Andric for (const GlobalVariable &GV : M.globals()) 3770b57cec5SDimitry Andric visitGlobalVariable(GV); 3780b57cec5SDimitry Andric 3790b57cec5SDimitry Andric for (const GlobalAlias &GA : M.aliases()) 3800b57cec5SDimitry Andric visitGlobalAlias(GA); 3810b57cec5SDimitry Andric 3820b57cec5SDimitry Andric for (const NamedMDNode &NMD : M.named_metadata()) 3830b57cec5SDimitry Andric visitNamedMDNode(NMD); 3840b57cec5SDimitry Andric 3850b57cec5SDimitry Andric for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 3860b57cec5SDimitry Andric visitComdat(SMEC.getValue()); 3870b57cec5SDimitry Andric 3880b57cec5SDimitry Andric visitModuleFlags(M); 3890b57cec5SDimitry Andric visitModuleIdents(M); 3900b57cec5SDimitry Andric visitModuleCommandLines(M); 3910b57cec5SDimitry Andric 3920b57cec5SDimitry Andric verifyCompileUnits(); 3930b57cec5SDimitry Andric 3940b57cec5SDimitry Andric verifyDeoptimizeCallingConvs(); 3950b57cec5SDimitry Andric DISubprogramAttachments.clear(); 3960b57cec5SDimitry Andric return !Broken; 3970b57cec5SDimitry Andric } 3980b57cec5SDimitry Andric 3990b57cec5SDimitry Andric private: 400*5ffd83dbSDimitry Andric /// Whether a metadata node is allowed to be, or contain, a DILocation. 401*5ffd83dbSDimitry Andric enum class AreDebugLocsAllowed { No, Yes }; 402*5ffd83dbSDimitry Andric 4030b57cec5SDimitry Andric // Verification methods... 4040b57cec5SDimitry Andric void visitGlobalValue(const GlobalValue &GV); 4050b57cec5SDimitry Andric void visitGlobalVariable(const GlobalVariable &GV); 4060b57cec5SDimitry Andric void visitGlobalAlias(const GlobalAlias &GA); 4070b57cec5SDimitry Andric void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 4080b57cec5SDimitry Andric void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 4090b57cec5SDimitry Andric const GlobalAlias &A, const Constant &C); 4100b57cec5SDimitry Andric void visitNamedMDNode(const NamedMDNode &NMD); 411*5ffd83dbSDimitry Andric void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 4120b57cec5SDimitry Andric void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 4130b57cec5SDimitry Andric void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 4140b57cec5SDimitry Andric void visitComdat(const Comdat &C); 4150b57cec5SDimitry Andric void visitModuleIdents(const Module &M); 4160b57cec5SDimitry Andric void visitModuleCommandLines(const Module &M); 4170b57cec5SDimitry Andric void visitModuleFlags(const Module &M); 4180b57cec5SDimitry Andric void visitModuleFlag(const MDNode *Op, 4190b57cec5SDimitry Andric DenseMap<const MDString *, const MDNode *> &SeenIDs, 4200b57cec5SDimitry Andric SmallVectorImpl<const MDNode *> &Requirements); 4210b57cec5SDimitry Andric void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 4220b57cec5SDimitry Andric void visitFunction(const Function &F); 4230b57cec5SDimitry Andric void visitBasicBlock(BasicBlock &BB); 4240b57cec5SDimitry Andric void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 4250b57cec5SDimitry Andric void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 4268bcb0991SDimitry Andric void visitProfMetadata(Instruction &I, MDNode *MD); 4270b57cec5SDimitry Andric 4280b57cec5SDimitry Andric template <class Ty> bool isValidMetadataArray(const MDTuple &N); 4290b57cec5SDimitry Andric #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 4300b57cec5SDimitry Andric #include "llvm/IR/Metadata.def" 4310b57cec5SDimitry Andric void visitDIScope(const DIScope &N); 4320b57cec5SDimitry Andric void visitDIVariable(const DIVariable &N); 4330b57cec5SDimitry Andric void visitDILexicalBlockBase(const DILexicalBlockBase &N); 4340b57cec5SDimitry Andric void visitDITemplateParameter(const DITemplateParameter &N); 4350b57cec5SDimitry Andric 4360b57cec5SDimitry Andric void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 4370b57cec5SDimitry Andric 4380b57cec5SDimitry Andric // InstVisitor overrides... 4390b57cec5SDimitry Andric using InstVisitor<Verifier>::visit; 4400b57cec5SDimitry Andric void visit(Instruction &I); 4410b57cec5SDimitry Andric 4420b57cec5SDimitry Andric void visitTruncInst(TruncInst &I); 4430b57cec5SDimitry Andric void visitZExtInst(ZExtInst &I); 4440b57cec5SDimitry Andric void visitSExtInst(SExtInst &I); 4450b57cec5SDimitry Andric void visitFPTruncInst(FPTruncInst &I); 4460b57cec5SDimitry Andric void visitFPExtInst(FPExtInst &I); 4470b57cec5SDimitry Andric void visitFPToUIInst(FPToUIInst &I); 4480b57cec5SDimitry Andric void visitFPToSIInst(FPToSIInst &I); 4490b57cec5SDimitry Andric void visitUIToFPInst(UIToFPInst &I); 4500b57cec5SDimitry Andric void visitSIToFPInst(SIToFPInst &I); 4510b57cec5SDimitry Andric void visitIntToPtrInst(IntToPtrInst &I); 4520b57cec5SDimitry Andric void visitPtrToIntInst(PtrToIntInst &I); 4530b57cec5SDimitry Andric void visitBitCastInst(BitCastInst &I); 4540b57cec5SDimitry Andric void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 4550b57cec5SDimitry Andric void visitPHINode(PHINode &PN); 4560b57cec5SDimitry Andric void visitCallBase(CallBase &Call); 4570b57cec5SDimitry Andric void visitUnaryOperator(UnaryOperator &U); 4580b57cec5SDimitry Andric void visitBinaryOperator(BinaryOperator &B); 4590b57cec5SDimitry Andric void visitICmpInst(ICmpInst &IC); 4600b57cec5SDimitry Andric void visitFCmpInst(FCmpInst &FC); 4610b57cec5SDimitry Andric void visitExtractElementInst(ExtractElementInst &EI); 4620b57cec5SDimitry Andric void visitInsertElementInst(InsertElementInst &EI); 4630b57cec5SDimitry Andric void visitShuffleVectorInst(ShuffleVectorInst &EI); 4640b57cec5SDimitry Andric void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 4650b57cec5SDimitry Andric void visitCallInst(CallInst &CI); 4660b57cec5SDimitry Andric void visitInvokeInst(InvokeInst &II); 4670b57cec5SDimitry Andric void visitGetElementPtrInst(GetElementPtrInst &GEP); 4680b57cec5SDimitry Andric void visitLoadInst(LoadInst &LI); 4690b57cec5SDimitry Andric void visitStoreInst(StoreInst &SI); 4700b57cec5SDimitry Andric void verifyDominatesUse(Instruction &I, unsigned i); 4710b57cec5SDimitry Andric void visitInstruction(Instruction &I); 4720b57cec5SDimitry Andric void visitTerminator(Instruction &I); 4730b57cec5SDimitry Andric void visitBranchInst(BranchInst &BI); 4740b57cec5SDimitry Andric void visitReturnInst(ReturnInst &RI); 4750b57cec5SDimitry Andric void visitSwitchInst(SwitchInst &SI); 4760b57cec5SDimitry Andric void visitIndirectBrInst(IndirectBrInst &BI); 4770b57cec5SDimitry Andric void visitCallBrInst(CallBrInst &CBI); 4780b57cec5SDimitry Andric void visitSelectInst(SelectInst &SI); 4790b57cec5SDimitry Andric void visitUserOp1(Instruction &I); 4800b57cec5SDimitry Andric void visitUserOp2(Instruction &I) { visitUserOp1(I); } 4810b57cec5SDimitry Andric void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 4820b57cec5SDimitry Andric void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 4830b57cec5SDimitry Andric void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 4840b57cec5SDimitry Andric void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 4850b57cec5SDimitry Andric void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 4860b57cec5SDimitry Andric void visitAtomicRMWInst(AtomicRMWInst &RMWI); 4870b57cec5SDimitry Andric void visitFenceInst(FenceInst &FI); 4880b57cec5SDimitry Andric void visitAllocaInst(AllocaInst &AI); 4890b57cec5SDimitry Andric void visitExtractValueInst(ExtractValueInst &EVI); 4900b57cec5SDimitry Andric void visitInsertValueInst(InsertValueInst &IVI); 4910b57cec5SDimitry Andric void visitEHPadPredecessors(Instruction &I); 4920b57cec5SDimitry Andric void visitLandingPadInst(LandingPadInst &LPI); 4930b57cec5SDimitry Andric void visitResumeInst(ResumeInst &RI); 4940b57cec5SDimitry Andric void visitCatchPadInst(CatchPadInst &CPI); 4950b57cec5SDimitry Andric void visitCatchReturnInst(CatchReturnInst &CatchReturn); 4960b57cec5SDimitry Andric void visitCleanupPadInst(CleanupPadInst &CPI); 4970b57cec5SDimitry Andric void visitFuncletPadInst(FuncletPadInst &FPI); 4980b57cec5SDimitry Andric void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 4990b57cec5SDimitry Andric void visitCleanupReturnInst(CleanupReturnInst &CRI); 5000b57cec5SDimitry Andric 5010b57cec5SDimitry Andric void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 5020b57cec5SDimitry Andric void verifySwiftErrorValue(const Value *SwiftErrorVal); 5030b57cec5SDimitry Andric void verifyMustTailCall(CallInst &CI); 5040b57cec5SDimitry Andric bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 5050b57cec5SDimitry Andric unsigned ArgNo, std::string &Suffix); 5060b57cec5SDimitry Andric bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 5070b57cec5SDimitry Andric void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 5080b57cec5SDimitry Andric const Value *V); 5090b57cec5SDimitry Andric void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 5100b57cec5SDimitry Andric void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 5110b57cec5SDimitry Andric const Value *V, bool IsIntrinsic); 5120b57cec5SDimitry Andric void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 5130b57cec5SDimitry Andric 5140b57cec5SDimitry Andric void visitConstantExprsRecursively(const Constant *EntryC); 5150b57cec5SDimitry Andric void visitConstantExpr(const ConstantExpr *CE); 5160b57cec5SDimitry Andric void verifyStatepoint(const CallBase &Call); 5170b57cec5SDimitry Andric void verifyFrameRecoverIndices(); 5180b57cec5SDimitry Andric void verifySiblingFuncletUnwinds(); 5190b57cec5SDimitry Andric 5200b57cec5SDimitry Andric void verifyFragmentExpression(const DbgVariableIntrinsic &I); 5210b57cec5SDimitry Andric template <typename ValueOrMetadata> 5220b57cec5SDimitry Andric void verifyFragmentExpression(const DIVariable &V, 5230b57cec5SDimitry Andric DIExpression::FragmentInfo Fragment, 5240b57cec5SDimitry Andric ValueOrMetadata *Desc); 5250b57cec5SDimitry Andric void verifyFnArgs(const DbgVariableIntrinsic &I); 5268bcb0991SDimitry Andric void verifyNotEntryValue(const DbgVariableIntrinsic &I); 5270b57cec5SDimitry Andric 5280b57cec5SDimitry Andric /// Module-level debug info verification... 5290b57cec5SDimitry Andric void verifyCompileUnits(); 5300b57cec5SDimitry Andric 5310b57cec5SDimitry Andric /// Module-level verification that all @llvm.experimental.deoptimize 5320b57cec5SDimitry Andric /// declarations share the same calling convention. 5330b57cec5SDimitry Andric void verifyDeoptimizeCallingConvs(); 5340b57cec5SDimitry Andric 5350b57cec5SDimitry Andric /// Verify all-or-nothing property of DIFile source attribute within a CU. 5360b57cec5SDimitry Andric void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 5370b57cec5SDimitry Andric }; 5380b57cec5SDimitry Andric 5390b57cec5SDimitry Andric } // end anonymous namespace 5400b57cec5SDimitry Andric 5410b57cec5SDimitry Andric /// We know that cond should be true, if not print an error message. 5420b57cec5SDimitry Andric #define Assert(C, ...) \ 5430b57cec5SDimitry Andric do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 5440b57cec5SDimitry Andric 5450b57cec5SDimitry Andric /// We know that a debug info condition should be true, if not print 5460b57cec5SDimitry Andric /// an error message. 5470b57cec5SDimitry Andric #define AssertDI(C, ...) \ 5480b57cec5SDimitry Andric do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 5490b57cec5SDimitry Andric 5500b57cec5SDimitry Andric void Verifier::visit(Instruction &I) { 5510b57cec5SDimitry Andric for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 5520b57cec5SDimitry Andric Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 5530b57cec5SDimitry Andric InstVisitor<Verifier>::visit(I); 5540b57cec5SDimitry Andric } 5550b57cec5SDimitry Andric 5560b57cec5SDimitry Andric // Helper to recursively iterate over indirect users. By 5570b57cec5SDimitry Andric // returning false, the callback can ask to stop recursing 5580b57cec5SDimitry Andric // further. 5590b57cec5SDimitry Andric static void forEachUser(const Value *User, 5600b57cec5SDimitry Andric SmallPtrSet<const Value *, 32> &Visited, 5610b57cec5SDimitry Andric llvm::function_ref<bool(const Value *)> Callback) { 5620b57cec5SDimitry Andric if (!Visited.insert(User).second) 5630b57cec5SDimitry Andric return; 5640b57cec5SDimitry Andric for (const Value *TheNextUser : User->materialized_users()) 5650b57cec5SDimitry Andric if (Callback(TheNextUser)) 5660b57cec5SDimitry Andric forEachUser(TheNextUser, Visited, Callback); 5670b57cec5SDimitry Andric } 5680b57cec5SDimitry Andric 5690b57cec5SDimitry Andric void Verifier::visitGlobalValue(const GlobalValue &GV) { 5700b57cec5SDimitry Andric Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 5710b57cec5SDimitry Andric "Global is external, but doesn't have external or weak linkage!", &GV); 5720b57cec5SDimitry Andric 573*5ffd83dbSDimitry Andric if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 574*5ffd83dbSDimitry Andric Assert(GO->getAlignment() <= Value::MaximumAlignment, 575*5ffd83dbSDimitry Andric "huge alignment values are unsupported", GO); 5760b57cec5SDimitry Andric Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 5770b57cec5SDimitry Andric "Only global variables can have appending linkage!", &GV); 5780b57cec5SDimitry Andric 5790b57cec5SDimitry Andric if (GV.hasAppendingLinkage()) { 5800b57cec5SDimitry Andric const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 5810b57cec5SDimitry Andric Assert(GVar && GVar->getValueType()->isArrayTy(), 5820b57cec5SDimitry Andric "Only global arrays can have appending linkage!", GVar); 5830b57cec5SDimitry Andric } 5840b57cec5SDimitry Andric 5850b57cec5SDimitry Andric if (GV.isDeclarationForLinker()) 5860b57cec5SDimitry Andric Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 5870b57cec5SDimitry Andric 5880b57cec5SDimitry Andric if (GV.hasDLLImportStorageClass()) { 5890b57cec5SDimitry Andric Assert(!GV.isDSOLocal(), 5900b57cec5SDimitry Andric "GlobalValue with DLLImport Storage is dso_local!", &GV); 5910b57cec5SDimitry Andric 5920b57cec5SDimitry Andric Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 5930b57cec5SDimitry Andric GV.hasAvailableExternallyLinkage(), 5940b57cec5SDimitry Andric "Global is marked as dllimport, but not external", &GV); 5950b57cec5SDimitry Andric } 5960b57cec5SDimitry Andric 597*5ffd83dbSDimitry Andric if (GV.isImplicitDSOLocal()) 5980b57cec5SDimitry Andric Assert(GV.isDSOLocal(), 599*5ffd83dbSDimitry Andric "GlobalValue with local linkage or non-default " 600*5ffd83dbSDimitry Andric "visibility must be dso_local!", 6010b57cec5SDimitry Andric &GV); 6020b57cec5SDimitry Andric 6030b57cec5SDimitry Andric forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 6040b57cec5SDimitry Andric if (const Instruction *I = dyn_cast<Instruction>(V)) { 6050b57cec5SDimitry Andric if (!I->getParent() || !I->getParent()->getParent()) 6060b57cec5SDimitry Andric CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 6070b57cec5SDimitry Andric I); 6080b57cec5SDimitry Andric else if (I->getParent()->getParent()->getParent() != &M) 6090b57cec5SDimitry Andric CheckFailed("Global is referenced in a different module!", &GV, &M, I, 6100b57cec5SDimitry Andric I->getParent()->getParent(), 6110b57cec5SDimitry Andric I->getParent()->getParent()->getParent()); 6120b57cec5SDimitry Andric return false; 6130b57cec5SDimitry Andric } else if (const Function *F = dyn_cast<Function>(V)) { 6140b57cec5SDimitry Andric if (F->getParent() != &M) 6150b57cec5SDimitry Andric CheckFailed("Global is used by function in a different module", &GV, &M, 6160b57cec5SDimitry Andric F, F->getParent()); 6170b57cec5SDimitry Andric return false; 6180b57cec5SDimitry Andric } 6190b57cec5SDimitry Andric return true; 6200b57cec5SDimitry Andric }); 6210b57cec5SDimitry Andric } 6220b57cec5SDimitry Andric 6230b57cec5SDimitry Andric void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 6240b57cec5SDimitry Andric if (GV.hasInitializer()) { 6250b57cec5SDimitry Andric Assert(GV.getInitializer()->getType() == GV.getValueType(), 6260b57cec5SDimitry Andric "Global variable initializer type does not match global " 6270b57cec5SDimitry Andric "variable type!", 6280b57cec5SDimitry Andric &GV); 6290b57cec5SDimitry Andric // If the global has common linkage, it must have a zero initializer and 6300b57cec5SDimitry Andric // cannot be constant. 6310b57cec5SDimitry Andric if (GV.hasCommonLinkage()) { 6320b57cec5SDimitry Andric Assert(GV.getInitializer()->isNullValue(), 6330b57cec5SDimitry Andric "'common' global must have a zero initializer!", &GV); 6340b57cec5SDimitry Andric Assert(!GV.isConstant(), "'common' global may not be marked constant!", 6350b57cec5SDimitry Andric &GV); 6360b57cec5SDimitry Andric Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 6370b57cec5SDimitry Andric } 6380b57cec5SDimitry Andric } 6390b57cec5SDimitry Andric 6400b57cec5SDimitry Andric if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 6410b57cec5SDimitry Andric GV.getName() == "llvm.global_dtors")) { 6420b57cec5SDimitry Andric Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 6430b57cec5SDimitry Andric "invalid linkage for intrinsic global variable", &GV); 6440b57cec5SDimitry Andric // Don't worry about emitting an error for it not being an array, 6450b57cec5SDimitry Andric // visitGlobalValue will complain on appending non-array. 6460b57cec5SDimitry Andric if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 6470b57cec5SDimitry Andric StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 6480b57cec5SDimitry Andric PointerType *FuncPtrTy = 6490b57cec5SDimitry Andric FunctionType::get(Type::getVoidTy(Context), false)-> 6500b57cec5SDimitry Andric getPointerTo(DL.getProgramAddressSpace()); 6510b57cec5SDimitry Andric Assert(STy && 6520b57cec5SDimitry Andric (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 6530b57cec5SDimitry Andric STy->getTypeAtIndex(0u)->isIntegerTy(32) && 6540b57cec5SDimitry Andric STy->getTypeAtIndex(1) == FuncPtrTy, 6550b57cec5SDimitry Andric "wrong type for intrinsic global variable", &GV); 6560b57cec5SDimitry Andric Assert(STy->getNumElements() == 3, 6570b57cec5SDimitry Andric "the third field of the element type is mandatory, " 6580b57cec5SDimitry Andric "specify i8* null to migrate from the obsoleted 2-field form"); 6590b57cec5SDimitry Andric Type *ETy = STy->getTypeAtIndex(2); 6600b57cec5SDimitry Andric Assert(ETy->isPointerTy() && 6610b57cec5SDimitry Andric cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 6620b57cec5SDimitry Andric "wrong type for intrinsic global variable", &GV); 6630b57cec5SDimitry Andric } 6640b57cec5SDimitry Andric } 6650b57cec5SDimitry Andric 6660b57cec5SDimitry Andric if (GV.hasName() && (GV.getName() == "llvm.used" || 6670b57cec5SDimitry Andric GV.getName() == "llvm.compiler.used")) { 6680b57cec5SDimitry Andric Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 6690b57cec5SDimitry Andric "invalid linkage for intrinsic global variable", &GV); 6700b57cec5SDimitry Andric Type *GVType = GV.getValueType(); 6710b57cec5SDimitry Andric if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 6720b57cec5SDimitry Andric PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 6730b57cec5SDimitry Andric Assert(PTy, "wrong type for intrinsic global variable", &GV); 6740b57cec5SDimitry Andric if (GV.hasInitializer()) { 6750b57cec5SDimitry Andric const Constant *Init = GV.getInitializer(); 6760b57cec5SDimitry Andric const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 6770b57cec5SDimitry Andric Assert(InitArray, "wrong initalizer for intrinsic global variable", 6780b57cec5SDimitry Andric Init); 6790b57cec5SDimitry Andric for (Value *Op : InitArray->operands()) { 6808bcb0991SDimitry Andric Value *V = Op->stripPointerCasts(); 6810b57cec5SDimitry Andric Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 6820b57cec5SDimitry Andric isa<GlobalAlias>(V), 6830b57cec5SDimitry Andric "invalid llvm.used member", V); 6840b57cec5SDimitry Andric Assert(V->hasName(), "members of llvm.used must be named", V); 6850b57cec5SDimitry Andric } 6860b57cec5SDimitry Andric } 6870b57cec5SDimitry Andric } 6880b57cec5SDimitry Andric } 6890b57cec5SDimitry Andric 6900b57cec5SDimitry Andric // Visit any debug info attachments. 6910b57cec5SDimitry Andric SmallVector<MDNode *, 1> MDs; 6920b57cec5SDimitry Andric GV.getMetadata(LLVMContext::MD_dbg, MDs); 6930b57cec5SDimitry Andric for (auto *MD : MDs) { 6940b57cec5SDimitry Andric if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 6950b57cec5SDimitry Andric visitDIGlobalVariableExpression(*GVE); 6960b57cec5SDimitry Andric else 6970b57cec5SDimitry Andric AssertDI(false, "!dbg attachment of global variable must be a " 6980b57cec5SDimitry Andric "DIGlobalVariableExpression"); 6990b57cec5SDimitry Andric } 7000b57cec5SDimitry Andric 7010b57cec5SDimitry Andric // Scalable vectors cannot be global variables, since we don't know 7020b57cec5SDimitry Andric // the runtime size. If the global is a struct or an array containing 7030b57cec5SDimitry Andric // scalable vectors, that will be caught by the isValidElementType methods 7040b57cec5SDimitry Andric // in StructType or ArrayType instead. 705*5ffd83dbSDimitry Andric Assert(!isa<ScalableVectorType>(GV.getValueType()), 706*5ffd83dbSDimitry Andric "Globals cannot contain scalable vectors", &GV); 7070b57cec5SDimitry Andric 7080b57cec5SDimitry Andric if (!GV.hasInitializer()) { 7090b57cec5SDimitry Andric visitGlobalValue(GV); 7100b57cec5SDimitry Andric return; 7110b57cec5SDimitry Andric } 7120b57cec5SDimitry Andric 7130b57cec5SDimitry Andric // Walk any aggregate initializers looking for bitcasts between address spaces 7140b57cec5SDimitry Andric visitConstantExprsRecursively(GV.getInitializer()); 7150b57cec5SDimitry Andric 7160b57cec5SDimitry Andric visitGlobalValue(GV); 7170b57cec5SDimitry Andric } 7180b57cec5SDimitry Andric 7190b57cec5SDimitry Andric void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 7200b57cec5SDimitry Andric SmallPtrSet<const GlobalAlias*, 4> Visited; 7210b57cec5SDimitry Andric Visited.insert(&GA); 7220b57cec5SDimitry Andric visitAliaseeSubExpr(Visited, GA, C); 7230b57cec5SDimitry Andric } 7240b57cec5SDimitry Andric 7250b57cec5SDimitry Andric void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 7260b57cec5SDimitry Andric const GlobalAlias &GA, const Constant &C) { 7270b57cec5SDimitry Andric if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 7280b57cec5SDimitry Andric Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 7290b57cec5SDimitry Andric &GA); 7300b57cec5SDimitry Andric 7310b57cec5SDimitry Andric if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 7320b57cec5SDimitry Andric Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 7330b57cec5SDimitry Andric 7340b57cec5SDimitry Andric Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 7350b57cec5SDimitry Andric &GA); 7360b57cec5SDimitry Andric } else { 7370b57cec5SDimitry Andric // Only continue verifying subexpressions of GlobalAliases. 7380b57cec5SDimitry Andric // Do not recurse into global initializers. 7390b57cec5SDimitry Andric return; 7400b57cec5SDimitry Andric } 7410b57cec5SDimitry Andric } 7420b57cec5SDimitry Andric 7430b57cec5SDimitry Andric if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 7440b57cec5SDimitry Andric visitConstantExprsRecursively(CE); 7450b57cec5SDimitry Andric 7460b57cec5SDimitry Andric for (const Use &U : C.operands()) { 7470b57cec5SDimitry Andric Value *V = &*U; 7480b57cec5SDimitry Andric if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 7490b57cec5SDimitry Andric visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 7500b57cec5SDimitry Andric else if (const auto *C2 = dyn_cast<Constant>(V)) 7510b57cec5SDimitry Andric visitAliaseeSubExpr(Visited, GA, *C2); 7520b57cec5SDimitry Andric } 7530b57cec5SDimitry Andric } 7540b57cec5SDimitry Andric 7550b57cec5SDimitry Andric void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 7560b57cec5SDimitry Andric Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 7570b57cec5SDimitry Andric "Alias should have private, internal, linkonce, weak, linkonce_odr, " 7580b57cec5SDimitry Andric "weak_odr, or external linkage!", 7590b57cec5SDimitry Andric &GA); 7600b57cec5SDimitry Andric const Constant *Aliasee = GA.getAliasee(); 7610b57cec5SDimitry Andric Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 7620b57cec5SDimitry Andric Assert(GA.getType() == Aliasee->getType(), 7630b57cec5SDimitry Andric "Alias and aliasee types should match!", &GA); 7640b57cec5SDimitry Andric 7650b57cec5SDimitry Andric Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 7660b57cec5SDimitry Andric "Aliasee should be either GlobalValue or ConstantExpr", &GA); 7670b57cec5SDimitry Andric 7680b57cec5SDimitry Andric visitAliaseeSubExpr(GA, *Aliasee); 7690b57cec5SDimitry Andric 7700b57cec5SDimitry Andric visitGlobalValue(GA); 7710b57cec5SDimitry Andric } 7720b57cec5SDimitry Andric 7730b57cec5SDimitry Andric void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 7740b57cec5SDimitry Andric // There used to be various other llvm.dbg.* nodes, but we don't support 7750b57cec5SDimitry Andric // upgrading them and we want to reserve the namespace for future uses. 7760b57cec5SDimitry Andric if (NMD.getName().startswith("llvm.dbg.")) 7770b57cec5SDimitry Andric AssertDI(NMD.getName() == "llvm.dbg.cu", 7780b57cec5SDimitry Andric "unrecognized named metadata node in the llvm.dbg namespace", 7790b57cec5SDimitry Andric &NMD); 7800b57cec5SDimitry Andric for (const MDNode *MD : NMD.operands()) { 7810b57cec5SDimitry Andric if (NMD.getName() == "llvm.dbg.cu") 7820b57cec5SDimitry Andric AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 7830b57cec5SDimitry Andric 7840b57cec5SDimitry Andric if (!MD) 7850b57cec5SDimitry Andric continue; 7860b57cec5SDimitry Andric 787*5ffd83dbSDimitry Andric visitMDNode(*MD, AreDebugLocsAllowed::Yes); 7880b57cec5SDimitry Andric } 7890b57cec5SDimitry Andric } 7900b57cec5SDimitry Andric 791*5ffd83dbSDimitry Andric void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 7920b57cec5SDimitry Andric // Only visit each node once. Metadata can be mutually recursive, so this 7930b57cec5SDimitry Andric // avoids infinite recursion here, as well as being an optimization. 7940b57cec5SDimitry Andric if (!MDNodes.insert(&MD).second) 7950b57cec5SDimitry Andric return; 7960b57cec5SDimitry Andric 7970b57cec5SDimitry Andric switch (MD.getMetadataID()) { 7980b57cec5SDimitry Andric default: 7990b57cec5SDimitry Andric llvm_unreachable("Invalid MDNode subclass"); 8000b57cec5SDimitry Andric case Metadata::MDTupleKind: 8010b57cec5SDimitry Andric break; 8020b57cec5SDimitry Andric #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 8030b57cec5SDimitry Andric case Metadata::CLASS##Kind: \ 8040b57cec5SDimitry Andric visit##CLASS(cast<CLASS>(MD)); \ 8050b57cec5SDimitry Andric break; 8060b57cec5SDimitry Andric #include "llvm/IR/Metadata.def" 8070b57cec5SDimitry Andric } 8080b57cec5SDimitry Andric 8090b57cec5SDimitry Andric for (const Metadata *Op : MD.operands()) { 8100b57cec5SDimitry Andric if (!Op) 8110b57cec5SDimitry Andric continue; 8120b57cec5SDimitry Andric Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 8130b57cec5SDimitry Andric &MD, Op); 814*5ffd83dbSDimitry Andric AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 815*5ffd83dbSDimitry Andric "DILocation not allowed within this metadata node", &MD, Op); 8160b57cec5SDimitry Andric if (auto *N = dyn_cast<MDNode>(Op)) { 817*5ffd83dbSDimitry Andric visitMDNode(*N, AllowLocs); 8180b57cec5SDimitry Andric continue; 8190b57cec5SDimitry Andric } 8200b57cec5SDimitry Andric if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 8210b57cec5SDimitry Andric visitValueAsMetadata(*V, nullptr); 8220b57cec5SDimitry Andric continue; 8230b57cec5SDimitry Andric } 8240b57cec5SDimitry Andric } 8250b57cec5SDimitry Andric 8260b57cec5SDimitry Andric // Check these last, so we diagnose problems in operands first. 8270b57cec5SDimitry Andric Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 8280b57cec5SDimitry Andric Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 8290b57cec5SDimitry Andric } 8300b57cec5SDimitry Andric 8310b57cec5SDimitry Andric void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 8320b57cec5SDimitry Andric Assert(MD.getValue(), "Expected valid value", &MD); 8330b57cec5SDimitry Andric Assert(!MD.getValue()->getType()->isMetadataTy(), 8340b57cec5SDimitry Andric "Unexpected metadata round-trip through values", &MD, MD.getValue()); 8350b57cec5SDimitry Andric 8360b57cec5SDimitry Andric auto *L = dyn_cast<LocalAsMetadata>(&MD); 8370b57cec5SDimitry Andric if (!L) 8380b57cec5SDimitry Andric return; 8390b57cec5SDimitry Andric 8400b57cec5SDimitry Andric Assert(F, "function-local metadata used outside a function", L); 8410b57cec5SDimitry Andric 8420b57cec5SDimitry Andric // If this was an instruction, bb, or argument, verify that it is in the 8430b57cec5SDimitry Andric // function that we expect. 8440b57cec5SDimitry Andric Function *ActualF = nullptr; 8450b57cec5SDimitry Andric if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 8460b57cec5SDimitry Andric Assert(I->getParent(), "function-local metadata not in basic block", L, I); 8470b57cec5SDimitry Andric ActualF = I->getParent()->getParent(); 8480b57cec5SDimitry Andric } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 8490b57cec5SDimitry Andric ActualF = BB->getParent(); 8500b57cec5SDimitry Andric else if (Argument *A = dyn_cast<Argument>(L->getValue())) 8510b57cec5SDimitry Andric ActualF = A->getParent(); 8520b57cec5SDimitry Andric assert(ActualF && "Unimplemented function local metadata case!"); 8530b57cec5SDimitry Andric 8540b57cec5SDimitry Andric Assert(ActualF == F, "function-local metadata used in wrong function", L); 8550b57cec5SDimitry Andric } 8560b57cec5SDimitry Andric 8570b57cec5SDimitry Andric void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 8580b57cec5SDimitry Andric Metadata *MD = MDV.getMetadata(); 8590b57cec5SDimitry Andric if (auto *N = dyn_cast<MDNode>(MD)) { 860*5ffd83dbSDimitry Andric visitMDNode(*N, AreDebugLocsAllowed::No); 8610b57cec5SDimitry Andric return; 8620b57cec5SDimitry Andric } 8630b57cec5SDimitry Andric 8640b57cec5SDimitry Andric // Only visit each node once. Metadata can be mutually recursive, so this 8650b57cec5SDimitry Andric // avoids infinite recursion here, as well as being an optimization. 8660b57cec5SDimitry Andric if (!MDNodes.insert(MD).second) 8670b57cec5SDimitry Andric return; 8680b57cec5SDimitry Andric 8690b57cec5SDimitry Andric if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 8700b57cec5SDimitry Andric visitValueAsMetadata(*V, F); 8710b57cec5SDimitry Andric } 8720b57cec5SDimitry Andric 8730b57cec5SDimitry Andric static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 8740b57cec5SDimitry Andric static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 8750b57cec5SDimitry Andric static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 8760b57cec5SDimitry Andric 8770b57cec5SDimitry Andric void Verifier::visitDILocation(const DILocation &N) { 8780b57cec5SDimitry Andric AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 8790b57cec5SDimitry Andric "location requires a valid scope", &N, N.getRawScope()); 8800b57cec5SDimitry Andric if (auto *IA = N.getRawInlinedAt()) 8810b57cec5SDimitry Andric AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 8820b57cec5SDimitry Andric if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 8830b57cec5SDimitry Andric AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 8840b57cec5SDimitry Andric } 8850b57cec5SDimitry Andric 8860b57cec5SDimitry Andric void Verifier::visitGenericDINode(const GenericDINode &N) { 8870b57cec5SDimitry Andric AssertDI(N.getTag(), "invalid tag", &N); 8880b57cec5SDimitry Andric } 8890b57cec5SDimitry Andric 8900b57cec5SDimitry Andric void Verifier::visitDIScope(const DIScope &N) { 8910b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 8920b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 8930b57cec5SDimitry Andric } 8940b57cec5SDimitry Andric 8950b57cec5SDimitry Andric void Verifier::visitDISubrange(const DISubrange &N) { 8960b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 897*5ffd83dbSDimitry Andric AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 898*5ffd83dbSDimitry Andric "Subrange must contain count or upperBound", &N); 899*5ffd83dbSDimitry Andric AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 900*5ffd83dbSDimitry Andric "Subrange can have any one of count or upperBound", &N); 901*5ffd83dbSDimitry Andric AssertDI(!N.getRawCountNode() || N.getCount(), 902*5ffd83dbSDimitry Andric "Count must either be a signed constant or a DIVariable", &N); 9030b57cec5SDimitry Andric auto Count = N.getCount(); 904*5ffd83dbSDimitry Andric AssertDI(!Count || !Count.is<ConstantInt *>() || 9050b57cec5SDimitry Andric Count.get<ConstantInt *>()->getSExtValue() >= -1, 9060b57cec5SDimitry Andric "invalid subrange count", &N); 907*5ffd83dbSDimitry Andric auto *LBound = N.getRawLowerBound(); 908*5ffd83dbSDimitry Andric AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 909*5ffd83dbSDimitry Andric isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 910*5ffd83dbSDimitry Andric "LowerBound must be signed constant or DIVariable or DIExpression", 911*5ffd83dbSDimitry Andric &N); 912*5ffd83dbSDimitry Andric auto *UBound = N.getRawUpperBound(); 913*5ffd83dbSDimitry Andric AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 914*5ffd83dbSDimitry Andric isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 915*5ffd83dbSDimitry Andric "UpperBound must be signed constant or DIVariable or DIExpression", 916*5ffd83dbSDimitry Andric &N); 917*5ffd83dbSDimitry Andric auto *Stride = N.getRawStride(); 918*5ffd83dbSDimitry Andric AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 919*5ffd83dbSDimitry Andric isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 920*5ffd83dbSDimitry Andric "Stride must be signed constant or DIVariable or DIExpression", &N); 9210b57cec5SDimitry Andric } 9220b57cec5SDimitry Andric 9230b57cec5SDimitry Andric void Verifier::visitDIEnumerator(const DIEnumerator &N) { 9240b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 9250b57cec5SDimitry Andric } 9260b57cec5SDimitry Andric 9270b57cec5SDimitry Andric void Verifier::visitDIBasicType(const DIBasicType &N) { 9280b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 9290b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_unspecified_type, 9300b57cec5SDimitry Andric "invalid tag", &N); 9310b57cec5SDimitry Andric AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 9320b57cec5SDimitry Andric "has conflicting flags", &N); 9330b57cec5SDimitry Andric } 9340b57cec5SDimitry Andric 9350b57cec5SDimitry Andric void Verifier::visitDIDerivedType(const DIDerivedType &N) { 9360b57cec5SDimitry Andric // Common scope checks. 9370b57cec5SDimitry Andric visitDIScope(N); 9380b57cec5SDimitry Andric 9390b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 9400b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_pointer_type || 9410b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 9420b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_reference_type || 9430b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 9440b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_const_type || 9450b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_volatile_type || 9460b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_restrict_type || 9470b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_atomic_type || 9480b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_member || 9490b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_inheritance || 9500b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_friend, 9510b57cec5SDimitry Andric "invalid tag", &N); 9520b57cec5SDimitry Andric if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 9530b57cec5SDimitry Andric AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 9540b57cec5SDimitry Andric N.getRawExtraData()); 9550b57cec5SDimitry Andric } 9560b57cec5SDimitry Andric 9570b57cec5SDimitry Andric AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 9580b57cec5SDimitry Andric AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 9590b57cec5SDimitry Andric N.getRawBaseType()); 9600b57cec5SDimitry Andric 9610b57cec5SDimitry Andric if (N.getDWARFAddressSpace()) { 9620b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 9630b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_reference_type || 9640b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 9650b57cec5SDimitry Andric "DWARF address space only applies to pointer or reference types", 9660b57cec5SDimitry Andric &N); 9670b57cec5SDimitry Andric } 9680b57cec5SDimitry Andric } 9690b57cec5SDimitry Andric 9700b57cec5SDimitry Andric /// Detect mutually exclusive flags. 9710b57cec5SDimitry Andric static bool hasConflictingReferenceFlags(unsigned Flags) { 9720b57cec5SDimitry Andric return ((Flags & DINode::FlagLValueReference) && 9730b57cec5SDimitry Andric (Flags & DINode::FlagRValueReference)) || 9740b57cec5SDimitry Andric ((Flags & DINode::FlagTypePassByValue) && 9750b57cec5SDimitry Andric (Flags & DINode::FlagTypePassByReference)); 9760b57cec5SDimitry Andric } 9770b57cec5SDimitry Andric 9780b57cec5SDimitry Andric void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 9790b57cec5SDimitry Andric auto *Params = dyn_cast<MDTuple>(&RawParams); 9800b57cec5SDimitry Andric AssertDI(Params, "invalid template params", &N, &RawParams); 9810b57cec5SDimitry Andric for (Metadata *Op : Params->operands()) { 9820b57cec5SDimitry Andric AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 9830b57cec5SDimitry Andric &N, Params, Op); 9840b57cec5SDimitry Andric } 9850b57cec5SDimitry Andric } 9860b57cec5SDimitry Andric 9870b57cec5SDimitry Andric void Verifier::visitDICompositeType(const DICompositeType &N) { 9880b57cec5SDimitry Andric // Common scope checks. 9890b57cec5SDimitry Andric visitDIScope(N); 9900b57cec5SDimitry Andric 9910b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 9920b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_structure_type || 9930b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_union_type || 9940b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_enumeration_type || 9950b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_class_type || 9960b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_variant_part, 9970b57cec5SDimitry Andric "invalid tag", &N); 9980b57cec5SDimitry Andric 9990b57cec5SDimitry Andric AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 10000b57cec5SDimitry Andric AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 10010b57cec5SDimitry Andric N.getRawBaseType()); 10020b57cec5SDimitry Andric 10030b57cec5SDimitry Andric AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 10040b57cec5SDimitry Andric "invalid composite elements", &N, N.getRawElements()); 10050b57cec5SDimitry Andric AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 10060b57cec5SDimitry Andric N.getRawVTableHolder()); 10070b57cec5SDimitry Andric AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 10080b57cec5SDimitry Andric "invalid reference flags", &N); 10098bcb0991SDimitry Andric unsigned DIBlockByRefStruct = 1 << 4; 10108bcb0991SDimitry Andric AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 10118bcb0991SDimitry Andric "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 10120b57cec5SDimitry Andric 10130b57cec5SDimitry Andric if (N.isVector()) { 10140b57cec5SDimitry Andric const DINodeArray Elements = N.getElements(); 10150b57cec5SDimitry Andric AssertDI(Elements.size() == 1 && 10160b57cec5SDimitry Andric Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 10170b57cec5SDimitry Andric "invalid vector, expected one element of type subrange", &N); 10180b57cec5SDimitry Andric } 10190b57cec5SDimitry Andric 10200b57cec5SDimitry Andric if (auto *Params = N.getRawTemplateParams()) 10210b57cec5SDimitry Andric visitTemplateParams(N, *Params); 10220b57cec5SDimitry Andric 10230b57cec5SDimitry Andric if (N.getTag() == dwarf::DW_TAG_class_type || 10240b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_union_type) { 10250b57cec5SDimitry Andric AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 10260b57cec5SDimitry Andric "class/union requires a filename", &N, N.getFile()); 10270b57cec5SDimitry Andric } 10280b57cec5SDimitry Andric 10290b57cec5SDimitry Andric if (auto *D = N.getRawDiscriminator()) { 10300b57cec5SDimitry Andric AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 10310b57cec5SDimitry Andric "discriminator can only appear on variant part"); 10320b57cec5SDimitry Andric } 1033*5ffd83dbSDimitry Andric 1034*5ffd83dbSDimitry Andric if (N.getRawDataLocation()) { 1035*5ffd83dbSDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1036*5ffd83dbSDimitry Andric "dataLocation can only appear in array type"); 1037*5ffd83dbSDimitry Andric } 10380b57cec5SDimitry Andric } 10390b57cec5SDimitry Andric 10400b57cec5SDimitry Andric void Verifier::visitDISubroutineType(const DISubroutineType &N) { 10410b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 10420b57cec5SDimitry Andric if (auto *Types = N.getRawTypeArray()) { 10430b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 10440b57cec5SDimitry Andric for (Metadata *Ty : N.getTypeArray()->operands()) { 10450b57cec5SDimitry Andric AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 10460b57cec5SDimitry Andric } 10470b57cec5SDimitry Andric } 10480b57cec5SDimitry Andric AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 10490b57cec5SDimitry Andric "invalid reference flags", &N); 10500b57cec5SDimitry Andric } 10510b57cec5SDimitry Andric 10520b57cec5SDimitry Andric void Verifier::visitDIFile(const DIFile &N) { 10530b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 10540b57cec5SDimitry Andric Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 10550b57cec5SDimitry Andric if (Checksum) { 10560b57cec5SDimitry Andric AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 10570b57cec5SDimitry Andric "invalid checksum kind", &N); 10580b57cec5SDimitry Andric size_t Size; 10590b57cec5SDimitry Andric switch (Checksum->Kind) { 10600b57cec5SDimitry Andric case DIFile::CSK_MD5: 10610b57cec5SDimitry Andric Size = 32; 10620b57cec5SDimitry Andric break; 10630b57cec5SDimitry Andric case DIFile::CSK_SHA1: 10640b57cec5SDimitry Andric Size = 40; 10650b57cec5SDimitry Andric break; 1066*5ffd83dbSDimitry Andric case DIFile::CSK_SHA256: 1067*5ffd83dbSDimitry Andric Size = 64; 1068*5ffd83dbSDimitry Andric break; 10690b57cec5SDimitry Andric } 10700b57cec5SDimitry Andric AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 10710b57cec5SDimitry Andric AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 10720b57cec5SDimitry Andric "invalid checksum", &N); 10730b57cec5SDimitry Andric } 10740b57cec5SDimitry Andric } 10750b57cec5SDimitry Andric 10760b57cec5SDimitry Andric void Verifier::visitDICompileUnit(const DICompileUnit &N) { 10770b57cec5SDimitry Andric AssertDI(N.isDistinct(), "compile units must be distinct", &N); 10780b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 10790b57cec5SDimitry Andric 10800b57cec5SDimitry Andric // Don't bother verifying the compilation directory or producer string 10810b57cec5SDimitry Andric // as those could be empty. 10820b57cec5SDimitry Andric AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 10830b57cec5SDimitry Andric N.getRawFile()); 10840b57cec5SDimitry Andric AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 10850b57cec5SDimitry Andric N.getFile()); 10860b57cec5SDimitry Andric 10870b57cec5SDimitry Andric verifySourceDebugInfo(N, *N.getFile()); 10880b57cec5SDimitry Andric 10890b57cec5SDimitry Andric AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 10900b57cec5SDimitry Andric "invalid emission kind", &N); 10910b57cec5SDimitry Andric 10920b57cec5SDimitry Andric if (auto *Array = N.getRawEnumTypes()) { 10930b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 10940b57cec5SDimitry Andric for (Metadata *Op : N.getEnumTypes()->operands()) { 10950b57cec5SDimitry Andric auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 10960b57cec5SDimitry Andric AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 10970b57cec5SDimitry Andric "invalid enum type", &N, N.getEnumTypes(), Op); 10980b57cec5SDimitry Andric } 10990b57cec5SDimitry Andric } 11000b57cec5SDimitry Andric if (auto *Array = N.getRawRetainedTypes()) { 11010b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 11020b57cec5SDimitry Andric for (Metadata *Op : N.getRetainedTypes()->operands()) { 11030b57cec5SDimitry Andric AssertDI(Op && (isa<DIType>(Op) || 11040b57cec5SDimitry Andric (isa<DISubprogram>(Op) && 11050b57cec5SDimitry Andric !cast<DISubprogram>(Op)->isDefinition())), 11060b57cec5SDimitry Andric "invalid retained type", &N, Op); 11070b57cec5SDimitry Andric } 11080b57cec5SDimitry Andric } 11090b57cec5SDimitry Andric if (auto *Array = N.getRawGlobalVariables()) { 11100b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 11110b57cec5SDimitry Andric for (Metadata *Op : N.getGlobalVariables()->operands()) { 11120b57cec5SDimitry Andric AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 11130b57cec5SDimitry Andric "invalid global variable ref", &N, Op); 11140b57cec5SDimitry Andric } 11150b57cec5SDimitry Andric } 11160b57cec5SDimitry Andric if (auto *Array = N.getRawImportedEntities()) { 11170b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 11180b57cec5SDimitry Andric for (Metadata *Op : N.getImportedEntities()->operands()) { 11190b57cec5SDimitry Andric AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 11200b57cec5SDimitry Andric &N, Op); 11210b57cec5SDimitry Andric } 11220b57cec5SDimitry Andric } 11230b57cec5SDimitry Andric if (auto *Array = N.getRawMacros()) { 11240b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 11250b57cec5SDimitry Andric for (Metadata *Op : N.getMacros()->operands()) { 11260b57cec5SDimitry Andric AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 11270b57cec5SDimitry Andric } 11280b57cec5SDimitry Andric } 11290b57cec5SDimitry Andric CUVisited.insert(&N); 11300b57cec5SDimitry Andric } 11310b57cec5SDimitry Andric 11320b57cec5SDimitry Andric void Verifier::visitDISubprogram(const DISubprogram &N) { 11330b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 11340b57cec5SDimitry Andric AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 11350b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 11360b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 11370b57cec5SDimitry Andric else 11380b57cec5SDimitry Andric AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 11390b57cec5SDimitry Andric if (auto *T = N.getRawType()) 11400b57cec5SDimitry Andric AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 11410b57cec5SDimitry Andric AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 11420b57cec5SDimitry Andric N.getRawContainingType()); 11430b57cec5SDimitry Andric if (auto *Params = N.getRawTemplateParams()) 11440b57cec5SDimitry Andric visitTemplateParams(N, *Params); 11450b57cec5SDimitry Andric if (auto *S = N.getRawDeclaration()) 11460b57cec5SDimitry Andric AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 11470b57cec5SDimitry Andric "invalid subprogram declaration", &N, S); 11480b57cec5SDimitry Andric if (auto *RawNode = N.getRawRetainedNodes()) { 11490b57cec5SDimitry Andric auto *Node = dyn_cast<MDTuple>(RawNode); 11500b57cec5SDimitry Andric AssertDI(Node, "invalid retained nodes list", &N, RawNode); 11510b57cec5SDimitry Andric for (Metadata *Op : Node->operands()) { 11520b57cec5SDimitry Andric AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 11530b57cec5SDimitry Andric "invalid retained nodes, expected DILocalVariable or DILabel", 11540b57cec5SDimitry Andric &N, Node, Op); 11550b57cec5SDimitry Andric } 11560b57cec5SDimitry Andric } 11570b57cec5SDimitry Andric AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 11580b57cec5SDimitry Andric "invalid reference flags", &N); 11590b57cec5SDimitry Andric 11600b57cec5SDimitry Andric auto *Unit = N.getRawUnit(); 11610b57cec5SDimitry Andric if (N.isDefinition()) { 11620b57cec5SDimitry Andric // Subprogram definitions (not part of the type hierarchy). 11630b57cec5SDimitry Andric AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 11640b57cec5SDimitry Andric AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 11650b57cec5SDimitry Andric AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 11660b57cec5SDimitry Andric if (N.getFile()) 11670b57cec5SDimitry Andric verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 11680b57cec5SDimitry Andric } else { 11690b57cec5SDimitry Andric // Subprogram declarations (part of the type hierarchy). 11700b57cec5SDimitry Andric AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 11710b57cec5SDimitry Andric } 11720b57cec5SDimitry Andric 11730b57cec5SDimitry Andric if (auto *RawThrownTypes = N.getRawThrownTypes()) { 11740b57cec5SDimitry Andric auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 11750b57cec5SDimitry Andric AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 11760b57cec5SDimitry Andric for (Metadata *Op : ThrownTypes->operands()) 11770b57cec5SDimitry Andric AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 11780b57cec5SDimitry Andric Op); 11790b57cec5SDimitry Andric } 11800b57cec5SDimitry Andric 11810b57cec5SDimitry Andric if (N.areAllCallsDescribed()) 11820b57cec5SDimitry Andric AssertDI(N.isDefinition(), 11830b57cec5SDimitry Andric "DIFlagAllCallsDescribed must be attached to a definition"); 11840b57cec5SDimitry Andric } 11850b57cec5SDimitry Andric 11860b57cec5SDimitry Andric void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 11870b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 11880b57cec5SDimitry Andric AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 11890b57cec5SDimitry Andric "invalid local scope", &N, N.getRawScope()); 11900b57cec5SDimitry Andric if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 11910b57cec5SDimitry Andric AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 11920b57cec5SDimitry Andric } 11930b57cec5SDimitry Andric 11940b57cec5SDimitry Andric void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 11950b57cec5SDimitry Andric visitDILexicalBlockBase(N); 11960b57cec5SDimitry Andric 11970b57cec5SDimitry Andric AssertDI(N.getLine() || !N.getColumn(), 11980b57cec5SDimitry Andric "cannot have column info without line info", &N); 11990b57cec5SDimitry Andric } 12000b57cec5SDimitry Andric 12010b57cec5SDimitry Andric void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 12020b57cec5SDimitry Andric visitDILexicalBlockBase(N); 12030b57cec5SDimitry Andric } 12040b57cec5SDimitry Andric 12050b57cec5SDimitry Andric void Verifier::visitDICommonBlock(const DICommonBlock &N) { 12060b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 12070b57cec5SDimitry Andric if (auto *S = N.getRawScope()) 12080b57cec5SDimitry Andric AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 12090b57cec5SDimitry Andric if (auto *S = N.getRawDecl()) 12100b57cec5SDimitry Andric AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 12110b57cec5SDimitry Andric } 12120b57cec5SDimitry Andric 12130b57cec5SDimitry Andric void Verifier::visitDINamespace(const DINamespace &N) { 12140b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 12150b57cec5SDimitry Andric if (auto *S = N.getRawScope()) 12160b57cec5SDimitry Andric AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 12170b57cec5SDimitry Andric } 12180b57cec5SDimitry Andric 12190b57cec5SDimitry Andric void Verifier::visitDIMacro(const DIMacro &N) { 12200b57cec5SDimitry Andric AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 12210b57cec5SDimitry Andric N.getMacinfoType() == dwarf::DW_MACINFO_undef, 12220b57cec5SDimitry Andric "invalid macinfo type", &N); 12230b57cec5SDimitry Andric AssertDI(!N.getName().empty(), "anonymous macro", &N); 12240b57cec5SDimitry Andric if (!N.getValue().empty()) { 12250b57cec5SDimitry Andric assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 12260b57cec5SDimitry Andric } 12270b57cec5SDimitry Andric } 12280b57cec5SDimitry Andric 12290b57cec5SDimitry Andric void Verifier::visitDIMacroFile(const DIMacroFile &N) { 12300b57cec5SDimitry Andric AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 12310b57cec5SDimitry Andric "invalid macinfo type", &N); 12320b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 12330b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 12340b57cec5SDimitry Andric 12350b57cec5SDimitry Andric if (auto *Array = N.getRawElements()) { 12360b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 12370b57cec5SDimitry Andric for (Metadata *Op : N.getElements()->operands()) { 12380b57cec5SDimitry Andric AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 12390b57cec5SDimitry Andric } 12400b57cec5SDimitry Andric } 12410b57cec5SDimitry Andric } 12420b57cec5SDimitry Andric 12430b57cec5SDimitry Andric void Verifier::visitDIModule(const DIModule &N) { 12440b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 12450b57cec5SDimitry Andric AssertDI(!N.getName().empty(), "anonymous module", &N); 12460b57cec5SDimitry Andric } 12470b57cec5SDimitry Andric 12480b57cec5SDimitry Andric void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 12490b57cec5SDimitry Andric AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 12500b57cec5SDimitry Andric } 12510b57cec5SDimitry Andric 12520b57cec5SDimitry Andric void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 12530b57cec5SDimitry Andric visitDITemplateParameter(N); 12540b57cec5SDimitry Andric 12550b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 12560b57cec5SDimitry Andric &N); 12570b57cec5SDimitry Andric } 12580b57cec5SDimitry Andric 12590b57cec5SDimitry Andric void Verifier::visitDITemplateValueParameter( 12600b57cec5SDimitry Andric const DITemplateValueParameter &N) { 12610b57cec5SDimitry Andric visitDITemplateParameter(N); 12620b57cec5SDimitry Andric 12630b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 12640b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 12650b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 12660b57cec5SDimitry Andric "invalid tag", &N); 12670b57cec5SDimitry Andric } 12680b57cec5SDimitry Andric 12690b57cec5SDimitry Andric void Verifier::visitDIVariable(const DIVariable &N) { 12700b57cec5SDimitry Andric if (auto *S = N.getRawScope()) 12710b57cec5SDimitry Andric AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 12720b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 12730b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 12740b57cec5SDimitry Andric } 12750b57cec5SDimitry Andric 12760b57cec5SDimitry Andric void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 12770b57cec5SDimitry Andric // Checks common to all variables. 12780b57cec5SDimitry Andric visitDIVariable(N); 12790b57cec5SDimitry Andric 12800b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 12810b57cec5SDimitry Andric AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1282*5ffd83dbSDimitry Andric // Assert only if the global variable is not an extern 1283*5ffd83dbSDimitry Andric if (N.isDefinition()) 12840b57cec5SDimitry Andric AssertDI(N.getType(), "missing global variable type", &N); 12850b57cec5SDimitry Andric if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 12860b57cec5SDimitry Andric AssertDI(isa<DIDerivedType>(Member), 12870b57cec5SDimitry Andric "invalid static data member declaration", &N, Member); 12880b57cec5SDimitry Andric } 12890b57cec5SDimitry Andric } 12900b57cec5SDimitry Andric 12910b57cec5SDimitry Andric void Verifier::visitDILocalVariable(const DILocalVariable &N) { 12920b57cec5SDimitry Andric // Checks common to all variables. 12930b57cec5SDimitry Andric visitDIVariable(N); 12940b57cec5SDimitry Andric 12950b57cec5SDimitry Andric AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 12960b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 12970b57cec5SDimitry Andric AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 12980b57cec5SDimitry Andric "local variable requires a valid scope", &N, N.getRawScope()); 12990b57cec5SDimitry Andric if (auto Ty = N.getType()) 13000b57cec5SDimitry Andric AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 13010b57cec5SDimitry Andric } 13020b57cec5SDimitry Andric 13030b57cec5SDimitry Andric void Verifier::visitDILabel(const DILabel &N) { 13040b57cec5SDimitry Andric if (auto *S = N.getRawScope()) 13050b57cec5SDimitry Andric AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 13060b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 13070b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 13080b57cec5SDimitry Andric 13090b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 13100b57cec5SDimitry Andric AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 13110b57cec5SDimitry Andric "label requires a valid scope", &N, N.getRawScope()); 13120b57cec5SDimitry Andric } 13130b57cec5SDimitry Andric 13140b57cec5SDimitry Andric void Verifier::visitDIExpression(const DIExpression &N) { 13150b57cec5SDimitry Andric AssertDI(N.isValid(), "invalid expression", &N); 13160b57cec5SDimitry Andric } 13170b57cec5SDimitry Andric 13180b57cec5SDimitry Andric void Verifier::visitDIGlobalVariableExpression( 13190b57cec5SDimitry Andric const DIGlobalVariableExpression &GVE) { 13200b57cec5SDimitry Andric AssertDI(GVE.getVariable(), "missing variable"); 13210b57cec5SDimitry Andric if (auto *Var = GVE.getVariable()) 13220b57cec5SDimitry Andric visitDIGlobalVariable(*Var); 13230b57cec5SDimitry Andric if (auto *Expr = GVE.getExpression()) { 13240b57cec5SDimitry Andric visitDIExpression(*Expr); 13250b57cec5SDimitry Andric if (auto Fragment = Expr->getFragmentInfo()) 13260b57cec5SDimitry Andric verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 13270b57cec5SDimitry Andric } 13280b57cec5SDimitry Andric } 13290b57cec5SDimitry Andric 13300b57cec5SDimitry Andric void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 13310b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 13320b57cec5SDimitry Andric if (auto *T = N.getRawType()) 13330b57cec5SDimitry Andric AssertDI(isType(T), "invalid type ref", &N, T); 13340b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 13350b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 13360b57cec5SDimitry Andric } 13370b57cec5SDimitry Andric 13380b57cec5SDimitry Andric void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 13390b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 13400b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_imported_declaration, 13410b57cec5SDimitry Andric "invalid tag", &N); 13420b57cec5SDimitry Andric if (auto *S = N.getRawScope()) 13430b57cec5SDimitry Andric AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 13440b57cec5SDimitry Andric AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 13450b57cec5SDimitry Andric N.getRawEntity()); 13460b57cec5SDimitry Andric } 13470b57cec5SDimitry Andric 13480b57cec5SDimitry Andric void Verifier::visitComdat(const Comdat &C) { 13498bcb0991SDimitry Andric // In COFF the Module is invalid if the GlobalValue has private linkage. 13508bcb0991SDimitry Andric // Entities with private linkage don't have entries in the symbol table. 13518bcb0991SDimitry Andric if (TT.isOSBinFormatCOFF()) 13520b57cec5SDimitry Andric if (const GlobalValue *GV = M.getNamedValue(C.getName())) 13538bcb0991SDimitry Andric Assert(!GV->hasPrivateLinkage(), 13548bcb0991SDimitry Andric "comdat global value has private linkage", GV); 13550b57cec5SDimitry Andric } 13560b57cec5SDimitry Andric 13570b57cec5SDimitry Andric void Verifier::visitModuleIdents(const Module &M) { 13580b57cec5SDimitry Andric const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 13590b57cec5SDimitry Andric if (!Idents) 13600b57cec5SDimitry Andric return; 13610b57cec5SDimitry Andric 13620b57cec5SDimitry Andric // llvm.ident takes a list of metadata entry. Each entry has only one string. 13630b57cec5SDimitry Andric // Scan each llvm.ident entry and make sure that this requirement is met. 13640b57cec5SDimitry Andric for (const MDNode *N : Idents->operands()) { 13650b57cec5SDimitry Andric Assert(N->getNumOperands() == 1, 13660b57cec5SDimitry Andric "incorrect number of operands in llvm.ident metadata", N); 13670b57cec5SDimitry Andric Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 13680b57cec5SDimitry Andric ("invalid value for llvm.ident metadata entry operand" 13690b57cec5SDimitry Andric "(the operand should be a string)"), 13700b57cec5SDimitry Andric N->getOperand(0)); 13710b57cec5SDimitry Andric } 13720b57cec5SDimitry Andric } 13730b57cec5SDimitry Andric 13740b57cec5SDimitry Andric void Verifier::visitModuleCommandLines(const Module &M) { 13750b57cec5SDimitry Andric const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 13760b57cec5SDimitry Andric if (!CommandLines) 13770b57cec5SDimitry Andric return; 13780b57cec5SDimitry Andric 13790b57cec5SDimitry Andric // llvm.commandline takes a list of metadata entry. Each entry has only one 13800b57cec5SDimitry Andric // string. Scan each llvm.commandline entry and make sure that this 13810b57cec5SDimitry Andric // requirement is met. 13820b57cec5SDimitry Andric for (const MDNode *N : CommandLines->operands()) { 13830b57cec5SDimitry Andric Assert(N->getNumOperands() == 1, 13840b57cec5SDimitry Andric "incorrect number of operands in llvm.commandline metadata", N); 13850b57cec5SDimitry Andric Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 13860b57cec5SDimitry Andric ("invalid value for llvm.commandline metadata entry operand" 13870b57cec5SDimitry Andric "(the operand should be a string)"), 13880b57cec5SDimitry Andric N->getOperand(0)); 13890b57cec5SDimitry Andric } 13900b57cec5SDimitry Andric } 13910b57cec5SDimitry Andric 13920b57cec5SDimitry Andric void Verifier::visitModuleFlags(const Module &M) { 13930b57cec5SDimitry Andric const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 13940b57cec5SDimitry Andric if (!Flags) return; 13950b57cec5SDimitry Andric 13960b57cec5SDimitry Andric // Scan each flag, and track the flags and requirements. 13970b57cec5SDimitry Andric DenseMap<const MDString*, const MDNode*> SeenIDs; 13980b57cec5SDimitry Andric SmallVector<const MDNode*, 16> Requirements; 13990b57cec5SDimitry Andric for (const MDNode *MDN : Flags->operands()) 14000b57cec5SDimitry Andric visitModuleFlag(MDN, SeenIDs, Requirements); 14010b57cec5SDimitry Andric 14020b57cec5SDimitry Andric // Validate that the requirements in the module are valid. 14030b57cec5SDimitry Andric for (const MDNode *Requirement : Requirements) { 14040b57cec5SDimitry Andric const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 14050b57cec5SDimitry Andric const Metadata *ReqValue = Requirement->getOperand(1); 14060b57cec5SDimitry Andric 14070b57cec5SDimitry Andric const MDNode *Op = SeenIDs.lookup(Flag); 14080b57cec5SDimitry Andric if (!Op) { 14090b57cec5SDimitry Andric CheckFailed("invalid requirement on flag, flag is not present in module", 14100b57cec5SDimitry Andric Flag); 14110b57cec5SDimitry Andric continue; 14120b57cec5SDimitry Andric } 14130b57cec5SDimitry Andric 14140b57cec5SDimitry Andric if (Op->getOperand(2) != ReqValue) { 14150b57cec5SDimitry Andric CheckFailed(("invalid requirement on flag, " 14160b57cec5SDimitry Andric "flag does not have the required value"), 14170b57cec5SDimitry Andric Flag); 14180b57cec5SDimitry Andric continue; 14190b57cec5SDimitry Andric } 14200b57cec5SDimitry Andric } 14210b57cec5SDimitry Andric } 14220b57cec5SDimitry Andric 14230b57cec5SDimitry Andric void 14240b57cec5SDimitry Andric Verifier::visitModuleFlag(const MDNode *Op, 14250b57cec5SDimitry Andric DenseMap<const MDString *, const MDNode *> &SeenIDs, 14260b57cec5SDimitry Andric SmallVectorImpl<const MDNode *> &Requirements) { 14270b57cec5SDimitry Andric // Each module flag should have three arguments, the merge behavior (a 14280b57cec5SDimitry Andric // constant int), the flag ID (an MDString), and the value. 14290b57cec5SDimitry Andric Assert(Op->getNumOperands() == 3, 14300b57cec5SDimitry Andric "incorrect number of operands in module flag", Op); 14310b57cec5SDimitry Andric Module::ModFlagBehavior MFB; 14320b57cec5SDimitry Andric if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 14330b57cec5SDimitry Andric Assert( 14340b57cec5SDimitry Andric mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 14350b57cec5SDimitry Andric "invalid behavior operand in module flag (expected constant integer)", 14360b57cec5SDimitry Andric Op->getOperand(0)); 14370b57cec5SDimitry Andric Assert(false, 14380b57cec5SDimitry Andric "invalid behavior operand in module flag (unexpected constant)", 14390b57cec5SDimitry Andric Op->getOperand(0)); 14400b57cec5SDimitry Andric } 14410b57cec5SDimitry Andric MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 14420b57cec5SDimitry Andric Assert(ID, "invalid ID operand in module flag (expected metadata string)", 14430b57cec5SDimitry Andric Op->getOperand(1)); 14440b57cec5SDimitry Andric 14450b57cec5SDimitry Andric // Sanity check the values for behaviors with additional requirements. 14460b57cec5SDimitry Andric switch (MFB) { 14470b57cec5SDimitry Andric case Module::Error: 14480b57cec5SDimitry Andric case Module::Warning: 14490b57cec5SDimitry Andric case Module::Override: 14500b57cec5SDimitry Andric // These behavior types accept any value. 14510b57cec5SDimitry Andric break; 14520b57cec5SDimitry Andric 14530b57cec5SDimitry Andric case Module::Max: { 14540b57cec5SDimitry Andric Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 14550b57cec5SDimitry Andric "invalid value for 'max' module flag (expected constant integer)", 14560b57cec5SDimitry Andric Op->getOperand(2)); 14570b57cec5SDimitry Andric break; 14580b57cec5SDimitry Andric } 14590b57cec5SDimitry Andric 14600b57cec5SDimitry Andric case Module::Require: { 14610b57cec5SDimitry Andric // The value should itself be an MDNode with two operands, a flag ID (an 14620b57cec5SDimitry Andric // MDString), and a value. 14630b57cec5SDimitry Andric MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 14640b57cec5SDimitry Andric Assert(Value && Value->getNumOperands() == 2, 14650b57cec5SDimitry Andric "invalid value for 'require' module flag (expected metadata pair)", 14660b57cec5SDimitry Andric Op->getOperand(2)); 14670b57cec5SDimitry Andric Assert(isa<MDString>(Value->getOperand(0)), 14680b57cec5SDimitry Andric ("invalid value for 'require' module flag " 14690b57cec5SDimitry Andric "(first value operand should be a string)"), 14700b57cec5SDimitry Andric Value->getOperand(0)); 14710b57cec5SDimitry Andric 14720b57cec5SDimitry Andric // Append it to the list of requirements, to check once all module flags are 14730b57cec5SDimitry Andric // scanned. 14740b57cec5SDimitry Andric Requirements.push_back(Value); 14750b57cec5SDimitry Andric break; 14760b57cec5SDimitry Andric } 14770b57cec5SDimitry Andric 14780b57cec5SDimitry Andric case Module::Append: 14790b57cec5SDimitry Andric case Module::AppendUnique: { 14800b57cec5SDimitry Andric // These behavior types require the operand be an MDNode. 14810b57cec5SDimitry Andric Assert(isa<MDNode>(Op->getOperand(2)), 14820b57cec5SDimitry Andric "invalid value for 'append'-type module flag " 14830b57cec5SDimitry Andric "(expected a metadata node)", 14840b57cec5SDimitry Andric Op->getOperand(2)); 14850b57cec5SDimitry Andric break; 14860b57cec5SDimitry Andric } 14870b57cec5SDimitry Andric } 14880b57cec5SDimitry Andric 14890b57cec5SDimitry Andric // Unless this is a "requires" flag, check the ID is unique. 14900b57cec5SDimitry Andric if (MFB != Module::Require) { 14910b57cec5SDimitry Andric bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 14920b57cec5SDimitry Andric Assert(Inserted, 14930b57cec5SDimitry Andric "module flag identifiers must be unique (or of 'require' type)", ID); 14940b57cec5SDimitry Andric } 14950b57cec5SDimitry Andric 14960b57cec5SDimitry Andric if (ID->getString() == "wchar_size") { 14970b57cec5SDimitry Andric ConstantInt *Value 14980b57cec5SDimitry Andric = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 14990b57cec5SDimitry Andric Assert(Value, "wchar_size metadata requires constant integer argument"); 15000b57cec5SDimitry Andric } 15010b57cec5SDimitry Andric 15020b57cec5SDimitry Andric if (ID->getString() == "Linker Options") { 15030b57cec5SDimitry Andric // If the llvm.linker.options named metadata exists, we assume that the 15040b57cec5SDimitry Andric // bitcode reader has upgraded the module flag. Otherwise the flag might 15050b57cec5SDimitry Andric // have been created by a client directly. 15060b57cec5SDimitry Andric Assert(M.getNamedMetadata("llvm.linker.options"), 15070b57cec5SDimitry Andric "'Linker Options' named metadata no longer supported"); 15080b57cec5SDimitry Andric } 15090b57cec5SDimitry Andric 1510*5ffd83dbSDimitry Andric if (ID->getString() == "SemanticInterposition") { 1511*5ffd83dbSDimitry Andric ConstantInt *Value = 1512*5ffd83dbSDimitry Andric mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1513*5ffd83dbSDimitry Andric Assert(Value, 1514*5ffd83dbSDimitry Andric "SemanticInterposition metadata requires constant integer argument"); 1515*5ffd83dbSDimitry Andric } 1516*5ffd83dbSDimitry Andric 15170b57cec5SDimitry Andric if (ID->getString() == "CG Profile") { 15180b57cec5SDimitry Andric for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 15190b57cec5SDimitry Andric visitModuleFlagCGProfileEntry(MDO); 15200b57cec5SDimitry Andric } 15210b57cec5SDimitry Andric } 15220b57cec5SDimitry Andric 15230b57cec5SDimitry Andric void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 15240b57cec5SDimitry Andric auto CheckFunction = [&](const MDOperand &FuncMDO) { 15250b57cec5SDimitry Andric if (!FuncMDO) 15260b57cec5SDimitry Andric return; 15270b57cec5SDimitry Andric auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 15280b57cec5SDimitry Andric Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 15290b57cec5SDimitry Andric FuncMDO); 15300b57cec5SDimitry Andric }; 15310b57cec5SDimitry Andric auto Node = dyn_cast_or_null<MDNode>(MDO); 15320b57cec5SDimitry Andric Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 15330b57cec5SDimitry Andric CheckFunction(Node->getOperand(0)); 15340b57cec5SDimitry Andric CheckFunction(Node->getOperand(1)); 15350b57cec5SDimitry Andric auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 15360b57cec5SDimitry Andric Assert(Count && Count->getType()->isIntegerTy(), 15370b57cec5SDimitry Andric "expected an integer constant", Node->getOperand(2)); 15380b57cec5SDimitry Andric } 15390b57cec5SDimitry Andric 15400b57cec5SDimitry Andric /// Return true if this attribute kind only applies to functions. 15410b57cec5SDimitry Andric static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 15420b57cec5SDimitry Andric switch (Kind) { 1543*5ffd83dbSDimitry Andric case Attribute::NoMerge: 15440b57cec5SDimitry Andric case Attribute::NoReturn: 15450b57cec5SDimitry Andric case Attribute::NoSync: 15460b57cec5SDimitry Andric case Attribute::WillReturn: 15470b57cec5SDimitry Andric case Attribute::NoCfCheck: 15480b57cec5SDimitry Andric case Attribute::NoUnwind: 15490b57cec5SDimitry Andric case Attribute::NoInline: 15500b57cec5SDimitry Andric case Attribute::AlwaysInline: 15510b57cec5SDimitry Andric case Attribute::OptimizeForSize: 15520b57cec5SDimitry Andric case Attribute::StackProtect: 15530b57cec5SDimitry Andric case Attribute::StackProtectReq: 15540b57cec5SDimitry Andric case Attribute::StackProtectStrong: 15550b57cec5SDimitry Andric case Attribute::SafeStack: 15560b57cec5SDimitry Andric case Attribute::ShadowCallStack: 15570b57cec5SDimitry Andric case Attribute::NoRedZone: 15580b57cec5SDimitry Andric case Attribute::NoImplicitFloat: 15590b57cec5SDimitry Andric case Attribute::Naked: 15600b57cec5SDimitry Andric case Attribute::InlineHint: 15610b57cec5SDimitry Andric case Attribute::StackAlignment: 15620b57cec5SDimitry Andric case Attribute::UWTable: 15630b57cec5SDimitry Andric case Attribute::NonLazyBind: 15640b57cec5SDimitry Andric case Attribute::ReturnsTwice: 15650b57cec5SDimitry Andric case Attribute::SanitizeAddress: 15660b57cec5SDimitry Andric case Attribute::SanitizeHWAddress: 15670b57cec5SDimitry Andric case Attribute::SanitizeMemTag: 15680b57cec5SDimitry Andric case Attribute::SanitizeThread: 15690b57cec5SDimitry Andric case Attribute::SanitizeMemory: 15700b57cec5SDimitry Andric case Attribute::MinSize: 15710b57cec5SDimitry Andric case Attribute::NoDuplicate: 15720b57cec5SDimitry Andric case Attribute::Builtin: 15730b57cec5SDimitry Andric case Attribute::NoBuiltin: 15740b57cec5SDimitry Andric case Attribute::Cold: 15750b57cec5SDimitry Andric case Attribute::OptForFuzzing: 15760b57cec5SDimitry Andric case Attribute::OptimizeNone: 15770b57cec5SDimitry Andric case Attribute::JumpTable: 15780b57cec5SDimitry Andric case Attribute::Convergent: 15790b57cec5SDimitry Andric case Attribute::ArgMemOnly: 15800b57cec5SDimitry Andric case Attribute::NoRecurse: 15810b57cec5SDimitry Andric case Attribute::InaccessibleMemOnly: 15820b57cec5SDimitry Andric case Attribute::InaccessibleMemOrArgMemOnly: 15830b57cec5SDimitry Andric case Attribute::AllocSize: 15840b57cec5SDimitry Andric case Attribute::SpeculativeLoadHardening: 15850b57cec5SDimitry Andric case Attribute::Speculatable: 15860b57cec5SDimitry Andric case Attribute::StrictFP: 1587*5ffd83dbSDimitry Andric case Attribute::NullPointerIsValid: 15880b57cec5SDimitry Andric return true; 15890b57cec5SDimitry Andric default: 15900b57cec5SDimitry Andric break; 15910b57cec5SDimitry Andric } 15920b57cec5SDimitry Andric return false; 15930b57cec5SDimitry Andric } 15940b57cec5SDimitry Andric 15950b57cec5SDimitry Andric /// Return true if this is a function attribute that can also appear on 15960b57cec5SDimitry Andric /// arguments. 15970b57cec5SDimitry Andric static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 15980b57cec5SDimitry Andric return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1599*5ffd83dbSDimitry Andric Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1600*5ffd83dbSDimitry Andric Kind == Attribute::Preallocated; 16010b57cec5SDimitry Andric } 16020b57cec5SDimitry Andric 16030b57cec5SDimitry Andric void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 16040b57cec5SDimitry Andric const Value *V) { 16050b57cec5SDimitry Andric for (Attribute A : Attrs) { 16060b57cec5SDimitry Andric if (A.isStringAttribute()) 16070b57cec5SDimitry Andric continue; 16080b57cec5SDimitry Andric 1609*5ffd83dbSDimitry Andric if (A.isIntAttribute() != 1610*5ffd83dbSDimitry Andric Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1611*5ffd83dbSDimitry Andric CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1612*5ffd83dbSDimitry Andric V); 1613*5ffd83dbSDimitry Andric return; 1614*5ffd83dbSDimitry Andric } 1615*5ffd83dbSDimitry Andric 16160b57cec5SDimitry Andric if (isFuncOnlyAttr(A.getKindAsEnum())) { 16170b57cec5SDimitry Andric if (!IsFunction) { 16180b57cec5SDimitry Andric CheckFailed("Attribute '" + A.getAsString() + 16190b57cec5SDimitry Andric "' only applies to functions!", 16200b57cec5SDimitry Andric V); 16210b57cec5SDimitry Andric return; 16220b57cec5SDimitry Andric } 16230b57cec5SDimitry Andric } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 16240b57cec5SDimitry Andric CheckFailed("Attribute '" + A.getAsString() + 16250b57cec5SDimitry Andric "' does not apply to functions!", 16260b57cec5SDimitry Andric V); 16270b57cec5SDimitry Andric return; 16280b57cec5SDimitry Andric } 16290b57cec5SDimitry Andric } 16300b57cec5SDimitry Andric } 16310b57cec5SDimitry Andric 16320b57cec5SDimitry Andric // VerifyParameterAttrs - Check the given attributes for an argument or return 16330b57cec5SDimitry Andric // value of the specified type. The value V is printed in error messages. 16340b57cec5SDimitry Andric void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 16350b57cec5SDimitry Andric const Value *V) { 16360b57cec5SDimitry Andric if (!Attrs.hasAttributes()) 16370b57cec5SDimitry Andric return; 16380b57cec5SDimitry Andric 16390b57cec5SDimitry Andric verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 16400b57cec5SDimitry Andric 16410b57cec5SDimitry Andric if (Attrs.hasAttribute(Attribute::ImmArg)) { 16420b57cec5SDimitry Andric Assert(Attrs.getNumAttributes() == 1, 16430b57cec5SDimitry Andric "Attribute 'immarg' is incompatible with other attributes", V); 16440b57cec5SDimitry Andric } 16450b57cec5SDimitry Andric 16460b57cec5SDimitry Andric // Check for mutually incompatible attributes. Only inreg is compatible with 16470b57cec5SDimitry Andric // sret. 16480b57cec5SDimitry Andric unsigned AttrCount = 0; 16490b57cec5SDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::ByVal); 16500b57cec5SDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1651*5ffd83dbSDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 16520b57cec5SDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 16530b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::InReg); 16540b57cec5SDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::Nest); 1655*5ffd83dbSDimitry Andric Assert(AttrCount <= 1, 1656*5ffd83dbSDimitry Andric "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 16570b57cec5SDimitry Andric "and 'sret' are incompatible!", 16580b57cec5SDimitry Andric V); 16590b57cec5SDimitry Andric 16600b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 16610b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::ReadOnly)), 16620b57cec5SDimitry Andric "Attributes " 16630b57cec5SDimitry Andric "'inalloca and readonly' are incompatible!", 16640b57cec5SDimitry Andric V); 16650b57cec5SDimitry Andric 16660b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 16670b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::Returned)), 16680b57cec5SDimitry Andric "Attributes " 16690b57cec5SDimitry Andric "'sret and returned' are incompatible!", 16700b57cec5SDimitry Andric V); 16710b57cec5SDimitry Andric 16720b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 16730b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::SExt)), 16740b57cec5SDimitry Andric "Attributes " 16750b57cec5SDimitry Andric "'zeroext and signext' are incompatible!", 16760b57cec5SDimitry Andric V); 16770b57cec5SDimitry Andric 16780b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 16790b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::ReadOnly)), 16800b57cec5SDimitry Andric "Attributes " 16810b57cec5SDimitry Andric "'readnone and readonly' are incompatible!", 16820b57cec5SDimitry Andric V); 16830b57cec5SDimitry Andric 16840b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 16850b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::WriteOnly)), 16860b57cec5SDimitry Andric "Attributes " 16870b57cec5SDimitry Andric "'readnone and writeonly' are incompatible!", 16880b57cec5SDimitry Andric V); 16890b57cec5SDimitry Andric 16900b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 16910b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::WriteOnly)), 16920b57cec5SDimitry Andric "Attributes " 16930b57cec5SDimitry Andric "'readonly and writeonly' are incompatible!", 16940b57cec5SDimitry Andric V); 16950b57cec5SDimitry Andric 16960b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 16970b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::AlwaysInline)), 16980b57cec5SDimitry Andric "Attributes " 16990b57cec5SDimitry Andric "'noinline and alwaysinline' are incompatible!", 17000b57cec5SDimitry Andric V); 17010b57cec5SDimitry Andric 17020b57cec5SDimitry Andric if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 17030b57cec5SDimitry Andric Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 17040b57cec5SDimitry Andric "Attribute 'byval' type does not match parameter!", V); 17050b57cec5SDimitry Andric } 17060b57cec5SDimitry Andric 1707*5ffd83dbSDimitry Andric if (Attrs.hasAttribute(Attribute::Preallocated)) { 1708*5ffd83dbSDimitry Andric Assert(Attrs.getPreallocatedType() == 1709*5ffd83dbSDimitry Andric cast<PointerType>(Ty)->getElementType(), 1710*5ffd83dbSDimitry Andric "Attribute 'preallocated' type does not match parameter!", V); 1711*5ffd83dbSDimitry Andric } 1712*5ffd83dbSDimitry Andric 17130b57cec5SDimitry Andric AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 17140b57cec5SDimitry Andric Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 17150b57cec5SDimitry Andric "Wrong types for attribute: " + 17160b57cec5SDimitry Andric AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 17170b57cec5SDimitry Andric V); 17180b57cec5SDimitry Andric 17190b57cec5SDimitry Andric if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 17200b57cec5SDimitry Andric SmallPtrSet<Type*, 4> Visited; 17210b57cec5SDimitry Andric if (!PTy->getElementType()->isSized(&Visited)) { 17220b57cec5SDimitry Andric Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1723*5ffd83dbSDimitry Andric !Attrs.hasAttribute(Attribute::InAlloca) && 1724*5ffd83dbSDimitry Andric !Attrs.hasAttribute(Attribute::Preallocated), 1725*5ffd83dbSDimitry Andric "Attributes 'byval', 'inalloca', and 'preallocated' do not " 1726*5ffd83dbSDimitry Andric "support unsized types!", 17270b57cec5SDimitry Andric V); 17280b57cec5SDimitry Andric } 17290b57cec5SDimitry Andric if (!isa<PointerType>(PTy->getElementType())) 17300b57cec5SDimitry Andric Assert(!Attrs.hasAttribute(Attribute::SwiftError), 17310b57cec5SDimitry Andric "Attribute 'swifterror' only applies to parameters " 17320b57cec5SDimitry Andric "with pointer to pointer type!", 17330b57cec5SDimitry Andric V); 17340b57cec5SDimitry Andric } else { 17350b57cec5SDimitry Andric Assert(!Attrs.hasAttribute(Attribute::ByVal), 17360b57cec5SDimitry Andric "Attribute 'byval' only applies to parameters with pointer type!", 17370b57cec5SDimitry Andric V); 17380b57cec5SDimitry Andric Assert(!Attrs.hasAttribute(Attribute::SwiftError), 17390b57cec5SDimitry Andric "Attribute 'swifterror' only applies to parameters " 17400b57cec5SDimitry Andric "with pointer type!", 17410b57cec5SDimitry Andric V); 17420b57cec5SDimitry Andric } 17430b57cec5SDimitry Andric } 17440b57cec5SDimitry Andric 17450b57cec5SDimitry Andric // Check parameter attributes against a function type. 17460b57cec5SDimitry Andric // The value V is printed in error messages. 17470b57cec5SDimitry Andric void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 17480b57cec5SDimitry Andric const Value *V, bool IsIntrinsic) { 17490b57cec5SDimitry Andric if (Attrs.isEmpty()) 17500b57cec5SDimitry Andric return; 17510b57cec5SDimitry Andric 17520b57cec5SDimitry Andric bool SawNest = false; 17530b57cec5SDimitry Andric bool SawReturned = false; 17540b57cec5SDimitry Andric bool SawSRet = false; 17550b57cec5SDimitry Andric bool SawSwiftSelf = false; 17560b57cec5SDimitry Andric bool SawSwiftError = false; 17570b57cec5SDimitry Andric 17580b57cec5SDimitry Andric // Verify return value attributes. 17590b57cec5SDimitry Andric AttributeSet RetAttrs = Attrs.getRetAttributes(); 17600b57cec5SDimitry Andric Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 17610b57cec5SDimitry Andric !RetAttrs.hasAttribute(Attribute::Nest) && 17620b57cec5SDimitry Andric !RetAttrs.hasAttribute(Attribute::StructRet) && 17630b57cec5SDimitry Andric !RetAttrs.hasAttribute(Attribute::NoCapture) && 1764480093f4SDimitry Andric !RetAttrs.hasAttribute(Attribute::NoFree) && 17650b57cec5SDimitry Andric !RetAttrs.hasAttribute(Attribute::Returned) && 17660b57cec5SDimitry Andric !RetAttrs.hasAttribute(Attribute::InAlloca) && 1767*5ffd83dbSDimitry Andric !RetAttrs.hasAttribute(Attribute::Preallocated) && 17680b57cec5SDimitry Andric !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 17690b57cec5SDimitry Andric !RetAttrs.hasAttribute(Attribute::SwiftError)), 1770*5ffd83dbSDimitry Andric "Attributes 'byval', 'inalloca', 'preallocated', 'nest', 'sret', " 1771*5ffd83dbSDimitry Andric "'nocapture', 'nofree', " 17720b57cec5SDimitry Andric "'returned', 'swiftself', and 'swifterror' do not apply to return " 17730b57cec5SDimitry Andric "values!", 17740b57cec5SDimitry Andric V); 17750b57cec5SDimitry Andric Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 17760b57cec5SDimitry Andric !RetAttrs.hasAttribute(Attribute::WriteOnly) && 17770b57cec5SDimitry Andric !RetAttrs.hasAttribute(Attribute::ReadNone)), 17780b57cec5SDimitry Andric "Attribute '" + RetAttrs.getAsString() + 17790b57cec5SDimitry Andric "' does not apply to function returns", 17800b57cec5SDimitry Andric V); 17810b57cec5SDimitry Andric verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 17820b57cec5SDimitry Andric 17830b57cec5SDimitry Andric // Verify parameter attributes. 17840b57cec5SDimitry Andric for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 17850b57cec5SDimitry Andric Type *Ty = FT->getParamType(i); 17860b57cec5SDimitry Andric AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 17870b57cec5SDimitry Andric 17880b57cec5SDimitry Andric if (!IsIntrinsic) { 17890b57cec5SDimitry Andric Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 17900b57cec5SDimitry Andric "immarg attribute only applies to intrinsics",V); 17910b57cec5SDimitry Andric } 17920b57cec5SDimitry Andric 17930b57cec5SDimitry Andric verifyParameterAttrs(ArgAttrs, Ty, V); 17940b57cec5SDimitry Andric 17950b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::Nest)) { 17960b57cec5SDimitry Andric Assert(!SawNest, "More than one parameter has attribute nest!", V); 17970b57cec5SDimitry Andric SawNest = true; 17980b57cec5SDimitry Andric } 17990b57cec5SDimitry Andric 18000b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::Returned)) { 18010b57cec5SDimitry Andric Assert(!SawReturned, "More than one parameter has attribute returned!", 18020b57cec5SDimitry Andric V); 18030b57cec5SDimitry Andric Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 18040b57cec5SDimitry Andric "Incompatible argument and return types for 'returned' attribute", 18050b57cec5SDimitry Andric V); 18060b57cec5SDimitry Andric SawReturned = true; 18070b57cec5SDimitry Andric } 18080b57cec5SDimitry Andric 18090b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 18100b57cec5SDimitry Andric Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 18110b57cec5SDimitry Andric Assert(i == 0 || i == 1, 18120b57cec5SDimitry Andric "Attribute 'sret' is not on first or second parameter!", V); 18130b57cec5SDimitry Andric SawSRet = true; 18140b57cec5SDimitry Andric } 18150b57cec5SDimitry Andric 18160b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 18170b57cec5SDimitry Andric Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 18180b57cec5SDimitry Andric SawSwiftSelf = true; 18190b57cec5SDimitry Andric } 18200b57cec5SDimitry Andric 18210b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 18220b57cec5SDimitry Andric Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 18230b57cec5SDimitry Andric V); 18240b57cec5SDimitry Andric SawSwiftError = true; 18250b57cec5SDimitry Andric } 18260b57cec5SDimitry Andric 18270b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 18280b57cec5SDimitry Andric Assert(i == FT->getNumParams() - 1, 18290b57cec5SDimitry Andric "inalloca isn't on the last parameter!", V); 18300b57cec5SDimitry Andric } 18310b57cec5SDimitry Andric } 18320b57cec5SDimitry Andric 18330b57cec5SDimitry Andric if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 18340b57cec5SDimitry Andric return; 18350b57cec5SDimitry Andric 18360b57cec5SDimitry Andric verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 18370b57cec5SDimitry Andric 18380b57cec5SDimitry Andric Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 18390b57cec5SDimitry Andric Attrs.hasFnAttribute(Attribute::ReadOnly)), 18400b57cec5SDimitry Andric "Attributes 'readnone and readonly' are incompatible!", V); 18410b57cec5SDimitry Andric 18420b57cec5SDimitry Andric Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 18430b57cec5SDimitry Andric Attrs.hasFnAttribute(Attribute::WriteOnly)), 18440b57cec5SDimitry Andric "Attributes 'readnone and writeonly' are incompatible!", V); 18450b57cec5SDimitry Andric 18460b57cec5SDimitry Andric Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 18470b57cec5SDimitry Andric Attrs.hasFnAttribute(Attribute::WriteOnly)), 18480b57cec5SDimitry Andric "Attributes 'readonly and writeonly' are incompatible!", V); 18490b57cec5SDimitry Andric 18500b57cec5SDimitry Andric Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 18510b57cec5SDimitry Andric Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 18520b57cec5SDimitry Andric "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 18530b57cec5SDimitry Andric "incompatible!", 18540b57cec5SDimitry Andric V); 18550b57cec5SDimitry Andric 18560b57cec5SDimitry Andric Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 18570b57cec5SDimitry Andric Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 18580b57cec5SDimitry Andric "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 18590b57cec5SDimitry Andric 18600b57cec5SDimitry Andric Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 18610b57cec5SDimitry Andric Attrs.hasFnAttribute(Attribute::AlwaysInline)), 18620b57cec5SDimitry Andric "Attributes 'noinline and alwaysinline' are incompatible!", V); 18630b57cec5SDimitry Andric 18640b57cec5SDimitry Andric if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 18650b57cec5SDimitry Andric Assert(Attrs.hasFnAttribute(Attribute::NoInline), 18660b57cec5SDimitry Andric "Attribute 'optnone' requires 'noinline'!", V); 18670b57cec5SDimitry Andric 18680b57cec5SDimitry Andric Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 18690b57cec5SDimitry Andric "Attributes 'optsize and optnone' are incompatible!", V); 18700b57cec5SDimitry Andric 18710b57cec5SDimitry Andric Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 18720b57cec5SDimitry Andric "Attributes 'minsize and optnone' are incompatible!", V); 18730b57cec5SDimitry Andric } 18740b57cec5SDimitry Andric 18750b57cec5SDimitry Andric if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 18760b57cec5SDimitry Andric const GlobalValue *GV = cast<GlobalValue>(V); 18770b57cec5SDimitry Andric Assert(GV->hasGlobalUnnamedAddr(), 18780b57cec5SDimitry Andric "Attribute 'jumptable' requires 'unnamed_addr'", V); 18790b57cec5SDimitry Andric } 18800b57cec5SDimitry Andric 18810b57cec5SDimitry Andric if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 18820b57cec5SDimitry Andric std::pair<unsigned, Optional<unsigned>> Args = 18830b57cec5SDimitry Andric Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 18840b57cec5SDimitry Andric 18850b57cec5SDimitry Andric auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 18860b57cec5SDimitry Andric if (ParamNo >= FT->getNumParams()) { 18870b57cec5SDimitry Andric CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 18880b57cec5SDimitry Andric return false; 18890b57cec5SDimitry Andric } 18900b57cec5SDimitry Andric 18910b57cec5SDimitry Andric if (!FT->getParamType(ParamNo)->isIntegerTy()) { 18920b57cec5SDimitry Andric CheckFailed("'allocsize' " + Name + 18930b57cec5SDimitry Andric " argument must refer to an integer parameter", 18940b57cec5SDimitry Andric V); 18950b57cec5SDimitry Andric return false; 18960b57cec5SDimitry Andric } 18970b57cec5SDimitry Andric 18980b57cec5SDimitry Andric return true; 18990b57cec5SDimitry Andric }; 19000b57cec5SDimitry Andric 19010b57cec5SDimitry Andric if (!CheckParam("element size", Args.first)) 19020b57cec5SDimitry Andric return; 19030b57cec5SDimitry Andric 19040b57cec5SDimitry Andric if (Args.second && !CheckParam("number of elements", *Args.second)) 19050b57cec5SDimitry Andric return; 19060b57cec5SDimitry Andric } 1907480093f4SDimitry Andric 1908480093f4SDimitry Andric if (Attrs.hasFnAttribute("frame-pointer")) { 1909480093f4SDimitry Andric StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1910480093f4SDimitry Andric "frame-pointer").getValueAsString(); 1911480093f4SDimitry Andric if (FP != "all" && FP != "non-leaf" && FP != "none") 1912480093f4SDimitry Andric CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1913480093f4SDimitry Andric } 1914480093f4SDimitry Andric 191555e4f9d5SDimitry Andric if (Attrs.hasFnAttribute("patchable-function-prefix")) { 191655e4f9d5SDimitry Andric StringRef S = Attrs 1917480093f4SDimitry Andric .getAttribute(AttributeList::FunctionIndex, 191855e4f9d5SDimitry Andric "patchable-function-prefix") 1919480093f4SDimitry Andric .getValueAsString(); 1920480093f4SDimitry Andric unsigned N; 1921480093f4SDimitry Andric if (S.getAsInteger(10, N)) 1922480093f4SDimitry Andric CheckFailed( 192355e4f9d5SDimitry Andric "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 192455e4f9d5SDimitry Andric } 192555e4f9d5SDimitry Andric if (Attrs.hasFnAttribute("patchable-function-entry")) { 192655e4f9d5SDimitry Andric StringRef S = Attrs 192755e4f9d5SDimitry Andric .getAttribute(AttributeList::FunctionIndex, 192855e4f9d5SDimitry Andric "patchable-function-entry") 192955e4f9d5SDimitry Andric .getValueAsString(); 193055e4f9d5SDimitry Andric unsigned N; 193155e4f9d5SDimitry Andric if (S.getAsInteger(10, N)) 193255e4f9d5SDimitry Andric CheckFailed( 193355e4f9d5SDimitry Andric "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 1934480093f4SDimitry Andric } 19350b57cec5SDimitry Andric } 19360b57cec5SDimitry Andric 19370b57cec5SDimitry Andric void Verifier::verifyFunctionMetadata( 19380b57cec5SDimitry Andric ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 19390b57cec5SDimitry Andric for (const auto &Pair : MDs) { 19400b57cec5SDimitry Andric if (Pair.first == LLVMContext::MD_prof) { 19410b57cec5SDimitry Andric MDNode *MD = Pair.second; 19420b57cec5SDimitry Andric Assert(MD->getNumOperands() >= 2, 19430b57cec5SDimitry Andric "!prof annotations should have no less than 2 operands", MD); 19440b57cec5SDimitry Andric 19450b57cec5SDimitry Andric // Check first operand. 19460b57cec5SDimitry Andric Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 19470b57cec5SDimitry Andric MD); 19480b57cec5SDimitry Andric Assert(isa<MDString>(MD->getOperand(0)), 19490b57cec5SDimitry Andric "expected string with name of the !prof annotation", MD); 19500b57cec5SDimitry Andric MDString *MDS = cast<MDString>(MD->getOperand(0)); 19510b57cec5SDimitry Andric StringRef ProfName = MDS->getString(); 19520b57cec5SDimitry Andric Assert(ProfName.equals("function_entry_count") || 19530b57cec5SDimitry Andric ProfName.equals("synthetic_function_entry_count"), 19540b57cec5SDimitry Andric "first operand should be 'function_entry_count'" 19550b57cec5SDimitry Andric " or 'synthetic_function_entry_count'", 19560b57cec5SDimitry Andric MD); 19570b57cec5SDimitry Andric 19580b57cec5SDimitry Andric // Check second operand. 19590b57cec5SDimitry Andric Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 19600b57cec5SDimitry Andric MD); 19610b57cec5SDimitry Andric Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 19620b57cec5SDimitry Andric "expected integer argument to function_entry_count", MD); 19630b57cec5SDimitry Andric } 19640b57cec5SDimitry Andric } 19650b57cec5SDimitry Andric } 19660b57cec5SDimitry Andric 19670b57cec5SDimitry Andric void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 19680b57cec5SDimitry Andric if (!ConstantExprVisited.insert(EntryC).second) 19690b57cec5SDimitry Andric return; 19700b57cec5SDimitry Andric 19710b57cec5SDimitry Andric SmallVector<const Constant *, 16> Stack; 19720b57cec5SDimitry Andric Stack.push_back(EntryC); 19730b57cec5SDimitry Andric 19740b57cec5SDimitry Andric while (!Stack.empty()) { 19750b57cec5SDimitry Andric const Constant *C = Stack.pop_back_val(); 19760b57cec5SDimitry Andric 19770b57cec5SDimitry Andric // Check this constant expression. 19780b57cec5SDimitry Andric if (const auto *CE = dyn_cast<ConstantExpr>(C)) 19790b57cec5SDimitry Andric visitConstantExpr(CE); 19800b57cec5SDimitry Andric 19810b57cec5SDimitry Andric if (const auto *GV = dyn_cast<GlobalValue>(C)) { 19820b57cec5SDimitry Andric // Global Values get visited separately, but we do need to make sure 19830b57cec5SDimitry Andric // that the global value is in the correct module 19840b57cec5SDimitry Andric Assert(GV->getParent() == &M, "Referencing global in another module!", 19850b57cec5SDimitry Andric EntryC, &M, GV, GV->getParent()); 19860b57cec5SDimitry Andric continue; 19870b57cec5SDimitry Andric } 19880b57cec5SDimitry Andric 19890b57cec5SDimitry Andric // Visit all sub-expressions. 19900b57cec5SDimitry Andric for (const Use &U : C->operands()) { 19910b57cec5SDimitry Andric const auto *OpC = dyn_cast<Constant>(U); 19920b57cec5SDimitry Andric if (!OpC) 19930b57cec5SDimitry Andric continue; 19940b57cec5SDimitry Andric if (!ConstantExprVisited.insert(OpC).second) 19950b57cec5SDimitry Andric continue; 19960b57cec5SDimitry Andric Stack.push_back(OpC); 19970b57cec5SDimitry Andric } 19980b57cec5SDimitry Andric } 19990b57cec5SDimitry Andric } 20000b57cec5SDimitry Andric 20010b57cec5SDimitry Andric void Verifier::visitConstantExpr(const ConstantExpr *CE) { 20020b57cec5SDimitry Andric if (CE->getOpcode() == Instruction::BitCast) 20030b57cec5SDimitry Andric Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 20040b57cec5SDimitry Andric CE->getType()), 20050b57cec5SDimitry Andric "Invalid bitcast", CE); 20060b57cec5SDimitry Andric 20070b57cec5SDimitry Andric if (CE->getOpcode() == Instruction::IntToPtr || 20080b57cec5SDimitry Andric CE->getOpcode() == Instruction::PtrToInt) { 20090b57cec5SDimitry Andric auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 20100b57cec5SDimitry Andric ? CE->getType() 20110b57cec5SDimitry Andric : CE->getOperand(0)->getType(); 20120b57cec5SDimitry Andric StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 20130b57cec5SDimitry Andric ? "inttoptr not supported for non-integral pointers" 20140b57cec5SDimitry Andric : "ptrtoint not supported for non-integral pointers"; 20150b57cec5SDimitry Andric Assert( 20160b57cec5SDimitry Andric !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 20170b57cec5SDimitry Andric Msg); 20180b57cec5SDimitry Andric } 20190b57cec5SDimitry Andric } 20200b57cec5SDimitry Andric 20210b57cec5SDimitry Andric bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 20220b57cec5SDimitry Andric // There shouldn't be more attribute sets than there are parameters plus the 20230b57cec5SDimitry Andric // function and return value. 20240b57cec5SDimitry Andric return Attrs.getNumAttrSets() <= Params + 2; 20250b57cec5SDimitry Andric } 20260b57cec5SDimitry Andric 20270b57cec5SDimitry Andric /// Verify that statepoint intrinsic is well formed. 20280b57cec5SDimitry Andric void Verifier::verifyStatepoint(const CallBase &Call) { 20290b57cec5SDimitry Andric assert(Call.getCalledFunction() && 20300b57cec5SDimitry Andric Call.getCalledFunction()->getIntrinsicID() == 20310b57cec5SDimitry Andric Intrinsic::experimental_gc_statepoint); 20320b57cec5SDimitry Andric 20330b57cec5SDimitry Andric Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 20340b57cec5SDimitry Andric !Call.onlyAccessesArgMemory(), 20350b57cec5SDimitry Andric "gc.statepoint must read and write all memory to preserve " 20360b57cec5SDimitry Andric "reordering restrictions required by safepoint semantics", 20370b57cec5SDimitry Andric Call); 20380b57cec5SDimitry Andric 20390b57cec5SDimitry Andric const int64_t NumPatchBytes = 20400b57cec5SDimitry Andric cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 20410b57cec5SDimitry Andric assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 20420b57cec5SDimitry Andric Assert(NumPatchBytes >= 0, 20430b57cec5SDimitry Andric "gc.statepoint number of patchable bytes must be " 20440b57cec5SDimitry Andric "positive", 20450b57cec5SDimitry Andric Call); 20460b57cec5SDimitry Andric 20470b57cec5SDimitry Andric const Value *Target = Call.getArgOperand(2); 20480b57cec5SDimitry Andric auto *PT = dyn_cast<PointerType>(Target->getType()); 20490b57cec5SDimitry Andric Assert(PT && PT->getElementType()->isFunctionTy(), 20500b57cec5SDimitry Andric "gc.statepoint callee must be of function pointer type", Call, Target); 20510b57cec5SDimitry Andric FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 20520b57cec5SDimitry Andric 20530b57cec5SDimitry Andric const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 20540b57cec5SDimitry Andric Assert(NumCallArgs >= 0, 20550b57cec5SDimitry Andric "gc.statepoint number of arguments to underlying call " 20560b57cec5SDimitry Andric "must be positive", 20570b57cec5SDimitry Andric Call); 20580b57cec5SDimitry Andric const int NumParams = (int)TargetFuncType->getNumParams(); 20590b57cec5SDimitry Andric if (TargetFuncType->isVarArg()) { 20600b57cec5SDimitry Andric Assert(NumCallArgs >= NumParams, 20610b57cec5SDimitry Andric "gc.statepoint mismatch in number of vararg call args", Call); 20620b57cec5SDimitry Andric 20630b57cec5SDimitry Andric // TODO: Remove this limitation 20640b57cec5SDimitry Andric Assert(TargetFuncType->getReturnType()->isVoidTy(), 20650b57cec5SDimitry Andric "gc.statepoint doesn't support wrapping non-void " 20660b57cec5SDimitry Andric "vararg functions yet", 20670b57cec5SDimitry Andric Call); 20680b57cec5SDimitry Andric } else 20690b57cec5SDimitry Andric Assert(NumCallArgs == NumParams, 20700b57cec5SDimitry Andric "gc.statepoint mismatch in number of call args", Call); 20710b57cec5SDimitry Andric 20720b57cec5SDimitry Andric const uint64_t Flags 20730b57cec5SDimitry Andric = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 20740b57cec5SDimitry Andric Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 20750b57cec5SDimitry Andric "unknown flag used in gc.statepoint flags argument", Call); 20760b57cec5SDimitry Andric 20770b57cec5SDimitry Andric // Verify that the types of the call parameter arguments match 20780b57cec5SDimitry Andric // the type of the wrapped callee. 20790b57cec5SDimitry Andric AttributeList Attrs = Call.getAttributes(); 20800b57cec5SDimitry Andric for (int i = 0; i < NumParams; i++) { 20810b57cec5SDimitry Andric Type *ParamType = TargetFuncType->getParamType(i); 20820b57cec5SDimitry Andric Type *ArgType = Call.getArgOperand(5 + i)->getType(); 20830b57cec5SDimitry Andric Assert(ArgType == ParamType, 20840b57cec5SDimitry Andric "gc.statepoint call argument does not match wrapped " 20850b57cec5SDimitry Andric "function type", 20860b57cec5SDimitry Andric Call); 20870b57cec5SDimitry Andric 20880b57cec5SDimitry Andric if (TargetFuncType->isVarArg()) { 20890b57cec5SDimitry Andric AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 20900b57cec5SDimitry Andric Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 20910b57cec5SDimitry Andric "Attribute 'sret' cannot be used for vararg call arguments!", 20920b57cec5SDimitry Andric Call); 20930b57cec5SDimitry Andric } 20940b57cec5SDimitry Andric } 20950b57cec5SDimitry Andric 20960b57cec5SDimitry Andric const int EndCallArgsInx = 4 + NumCallArgs; 20970b57cec5SDimitry Andric 20980b57cec5SDimitry Andric const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 20990b57cec5SDimitry Andric Assert(isa<ConstantInt>(NumTransitionArgsV), 21000b57cec5SDimitry Andric "gc.statepoint number of transition arguments " 21010b57cec5SDimitry Andric "must be constant integer", 21020b57cec5SDimitry Andric Call); 21030b57cec5SDimitry Andric const int NumTransitionArgs = 21040b57cec5SDimitry Andric cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 21050b57cec5SDimitry Andric Assert(NumTransitionArgs >= 0, 21060b57cec5SDimitry Andric "gc.statepoint number of transition arguments must be positive", Call); 21070b57cec5SDimitry Andric const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 21080b57cec5SDimitry Andric 2109*5ffd83dbSDimitry Andric // We're migrating away from inline operands to operand bundles, enforce 2110*5ffd83dbSDimitry Andric // the either/or property during transition. 2111*5ffd83dbSDimitry Andric if (Call.getOperandBundle(LLVMContext::OB_gc_transition)) { 2112*5ffd83dbSDimitry Andric Assert(NumTransitionArgs == 0, 2113*5ffd83dbSDimitry Andric "can't use both deopt operands and deopt bundle on a statepoint"); 2114*5ffd83dbSDimitry Andric } 2115*5ffd83dbSDimitry Andric 21160b57cec5SDimitry Andric const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 21170b57cec5SDimitry Andric Assert(isa<ConstantInt>(NumDeoptArgsV), 21180b57cec5SDimitry Andric "gc.statepoint number of deoptimization arguments " 21190b57cec5SDimitry Andric "must be constant integer", 21200b57cec5SDimitry Andric Call); 21210b57cec5SDimitry Andric const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 21220b57cec5SDimitry Andric Assert(NumDeoptArgs >= 0, 21230b57cec5SDimitry Andric "gc.statepoint number of deoptimization arguments " 21240b57cec5SDimitry Andric "must be positive", 21250b57cec5SDimitry Andric Call); 21260b57cec5SDimitry Andric 2127*5ffd83dbSDimitry Andric // We're migrating away from inline operands to operand bundles, enforce 2128*5ffd83dbSDimitry Andric // the either/or property during transition. 2129*5ffd83dbSDimitry Andric if (Call.getOperandBundle(LLVMContext::OB_deopt)) { 2130*5ffd83dbSDimitry Andric Assert(NumDeoptArgs == 0, 2131*5ffd83dbSDimitry Andric "can't use both deopt operands and deopt bundle on a statepoint"); 2132*5ffd83dbSDimitry Andric } 2133*5ffd83dbSDimitry Andric 21340b57cec5SDimitry Andric const int ExpectedNumArgs = 21350b57cec5SDimitry Andric 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 21360b57cec5SDimitry Andric Assert(ExpectedNumArgs <= (int)Call.arg_size(), 21370b57cec5SDimitry Andric "gc.statepoint too few arguments according to length fields", Call); 21380b57cec5SDimitry Andric 21390b57cec5SDimitry Andric // Check that the only uses of this gc.statepoint are gc.result or 21400b57cec5SDimitry Andric // gc.relocate calls which are tied to this statepoint and thus part 21410b57cec5SDimitry Andric // of the same statepoint sequence 21420b57cec5SDimitry Andric for (const User *U : Call.users()) { 21430b57cec5SDimitry Andric const CallInst *UserCall = dyn_cast<const CallInst>(U); 21440b57cec5SDimitry Andric Assert(UserCall, "illegal use of statepoint token", Call, U); 21450b57cec5SDimitry Andric if (!UserCall) 21460b57cec5SDimitry Andric continue; 21470b57cec5SDimitry Andric Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 21480b57cec5SDimitry Andric "gc.result or gc.relocate are the only value uses " 21490b57cec5SDimitry Andric "of a gc.statepoint", 21500b57cec5SDimitry Andric Call, U); 21510b57cec5SDimitry Andric if (isa<GCResultInst>(UserCall)) { 21520b57cec5SDimitry Andric Assert(UserCall->getArgOperand(0) == &Call, 21530b57cec5SDimitry Andric "gc.result connected to wrong gc.statepoint", Call, UserCall); 21540b57cec5SDimitry Andric } else if (isa<GCRelocateInst>(Call)) { 21550b57cec5SDimitry Andric Assert(UserCall->getArgOperand(0) == &Call, 21560b57cec5SDimitry Andric "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 21570b57cec5SDimitry Andric } 21580b57cec5SDimitry Andric } 21590b57cec5SDimitry Andric 21600b57cec5SDimitry Andric // Note: It is legal for a single derived pointer to be listed multiple 21610b57cec5SDimitry Andric // times. It's non-optimal, but it is legal. It can also happen after 21620b57cec5SDimitry Andric // insertion if we strip a bitcast away. 21630b57cec5SDimitry Andric // Note: It is really tempting to check that each base is relocated and 21640b57cec5SDimitry Andric // that a derived pointer is never reused as a base pointer. This turns 21650b57cec5SDimitry Andric // out to be problematic since optimizations run after safepoint insertion 21660b57cec5SDimitry Andric // can recognize equality properties that the insertion logic doesn't know 21670b57cec5SDimitry Andric // about. See example statepoint.ll in the verifier subdirectory 21680b57cec5SDimitry Andric } 21690b57cec5SDimitry Andric 21700b57cec5SDimitry Andric void Verifier::verifyFrameRecoverIndices() { 21710b57cec5SDimitry Andric for (auto &Counts : FrameEscapeInfo) { 21720b57cec5SDimitry Andric Function *F = Counts.first; 21730b57cec5SDimitry Andric unsigned EscapedObjectCount = Counts.second.first; 21740b57cec5SDimitry Andric unsigned MaxRecoveredIndex = Counts.second.second; 21750b57cec5SDimitry Andric Assert(MaxRecoveredIndex <= EscapedObjectCount, 21760b57cec5SDimitry Andric "all indices passed to llvm.localrecover must be less than the " 21770b57cec5SDimitry Andric "number of arguments passed to llvm.localescape in the parent " 21780b57cec5SDimitry Andric "function", 21790b57cec5SDimitry Andric F); 21800b57cec5SDimitry Andric } 21810b57cec5SDimitry Andric } 21820b57cec5SDimitry Andric 21830b57cec5SDimitry Andric static Instruction *getSuccPad(Instruction *Terminator) { 21840b57cec5SDimitry Andric BasicBlock *UnwindDest; 21850b57cec5SDimitry Andric if (auto *II = dyn_cast<InvokeInst>(Terminator)) 21860b57cec5SDimitry Andric UnwindDest = II->getUnwindDest(); 21870b57cec5SDimitry Andric else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 21880b57cec5SDimitry Andric UnwindDest = CSI->getUnwindDest(); 21890b57cec5SDimitry Andric else 21900b57cec5SDimitry Andric UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 21910b57cec5SDimitry Andric return UnwindDest->getFirstNonPHI(); 21920b57cec5SDimitry Andric } 21930b57cec5SDimitry Andric 21940b57cec5SDimitry Andric void Verifier::verifySiblingFuncletUnwinds() { 21950b57cec5SDimitry Andric SmallPtrSet<Instruction *, 8> Visited; 21960b57cec5SDimitry Andric SmallPtrSet<Instruction *, 8> Active; 21970b57cec5SDimitry Andric for (const auto &Pair : SiblingFuncletInfo) { 21980b57cec5SDimitry Andric Instruction *PredPad = Pair.first; 21990b57cec5SDimitry Andric if (Visited.count(PredPad)) 22000b57cec5SDimitry Andric continue; 22010b57cec5SDimitry Andric Active.insert(PredPad); 22020b57cec5SDimitry Andric Instruction *Terminator = Pair.second; 22030b57cec5SDimitry Andric do { 22040b57cec5SDimitry Andric Instruction *SuccPad = getSuccPad(Terminator); 22050b57cec5SDimitry Andric if (Active.count(SuccPad)) { 22060b57cec5SDimitry Andric // Found a cycle; report error 22070b57cec5SDimitry Andric Instruction *CyclePad = SuccPad; 22080b57cec5SDimitry Andric SmallVector<Instruction *, 8> CycleNodes; 22090b57cec5SDimitry Andric do { 22100b57cec5SDimitry Andric CycleNodes.push_back(CyclePad); 22110b57cec5SDimitry Andric Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 22120b57cec5SDimitry Andric if (CycleTerminator != CyclePad) 22130b57cec5SDimitry Andric CycleNodes.push_back(CycleTerminator); 22140b57cec5SDimitry Andric CyclePad = getSuccPad(CycleTerminator); 22150b57cec5SDimitry Andric } while (CyclePad != SuccPad); 22160b57cec5SDimitry Andric Assert(false, "EH pads can't handle each other's exceptions", 22170b57cec5SDimitry Andric ArrayRef<Instruction *>(CycleNodes)); 22180b57cec5SDimitry Andric } 22190b57cec5SDimitry Andric // Don't re-walk a node we've already checked 22200b57cec5SDimitry Andric if (!Visited.insert(SuccPad).second) 22210b57cec5SDimitry Andric break; 22220b57cec5SDimitry Andric // Walk to this successor if it has a map entry. 22230b57cec5SDimitry Andric PredPad = SuccPad; 22240b57cec5SDimitry Andric auto TermI = SiblingFuncletInfo.find(PredPad); 22250b57cec5SDimitry Andric if (TermI == SiblingFuncletInfo.end()) 22260b57cec5SDimitry Andric break; 22270b57cec5SDimitry Andric Terminator = TermI->second; 22280b57cec5SDimitry Andric Active.insert(PredPad); 22290b57cec5SDimitry Andric } while (true); 22300b57cec5SDimitry Andric // Each node only has one successor, so we've walked all the active 22310b57cec5SDimitry Andric // nodes' successors. 22320b57cec5SDimitry Andric Active.clear(); 22330b57cec5SDimitry Andric } 22340b57cec5SDimitry Andric } 22350b57cec5SDimitry Andric 22360b57cec5SDimitry Andric // visitFunction - Verify that a function is ok. 22370b57cec5SDimitry Andric // 22380b57cec5SDimitry Andric void Verifier::visitFunction(const Function &F) { 22390b57cec5SDimitry Andric visitGlobalValue(F); 22400b57cec5SDimitry Andric 22410b57cec5SDimitry Andric // Check function arguments. 22420b57cec5SDimitry Andric FunctionType *FT = F.getFunctionType(); 22430b57cec5SDimitry Andric unsigned NumArgs = F.arg_size(); 22440b57cec5SDimitry Andric 22450b57cec5SDimitry Andric Assert(&Context == &F.getContext(), 22460b57cec5SDimitry Andric "Function context does not match Module context!", &F); 22470b57cec5SDimitry Andric 22480b57cec5SDimitry Andric Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 22490b57cec5SDimitry Andric Assert(FT->getNumParams() == NumArgs, 22500b57cec5SDimitry Andric "# formal arguments must match # of arguments for function type!", &F, 22510b57cec5SDimitry Andric FT); 22520b57cec5SDimitry Andric Assert(F.getReturnType()->isFirstClassType() || 22530b57cec5SDimitry Andric F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 22540b57cec5SDimitry Andric "Functions cannot return aggregate values!", &F); 22550b57cec5SDimitry Andric 22560b57cec5SDimitry Andric Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 22570b57cec5SDimitry Andric "Invalid struct return type!", &F); 22580b57cec5SDimitry Andric 22590b57cec5SDimitry Andric AttributeList Attrs = F.getAttributes(); 22600b57cec5SDimitry Andric 22610b57cec5SDimitry Andric Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 22620b57cec5SDimitry Andric "Attribute after last parameter!", &F); 22630b57cec5SDimitry Andric 22640b57cec5SDimitry Andric bool isLLVMdotName = F.getName().size() >= 5 && 22650b57cec5SDimitry Andric F.getName().substr(0, 5) == "llvm."; 22660b57cec5SDimitry Andric 22670b57cec5SDimitry Andric // Check function attributes. 22680b57cec5SDimitry Andric verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 22690b57cec5SDimitry Andric 22700b57cec5SDimitry Andric // On function declarations/definitions, we do not support the builtin 22710b57cec5SDimitry Andric // attribute. We do not check this in VerifyFunctionAttrs since that is 22720b57cec5SDimitry Andric // checking for Attributes that can/can not ever be on functions. 22730b57cec5SDimitry Andric Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 22740b57cec5SDimitry Andric "Attribute 'builtin' can only be applied to a callsite.", &F); 22750b57cec5SDimitry Andric 22760b57cec5SDimitry Andric // Check that this function meets the restrictions on this calling convention. 22770b57cec5SDimitry Andric // Sometimes varargs is used for perfectly forwarding thunks, so some of these 22780b57cec5SDimitry Andric // restrictions can be lifted. 22790b57cec5SDimitry Andric switch (F.getCallingConv()) { 22800b57cec5SDimitry Andric default: 22810b57cec5SDimitry Andric case CallingConv::C: 22820b57cec5SDimitry Andric break; 22830b57cec5SDimitry Andric case CallingConv::AMDGPU_KERNEL: 22840b57cec5SDimitry Andric case CallingConv::SPIR_KERNEL: 22850b57cec5SDimitry Andric Assert(F.getReturnType()->isVoidTy(), 22860b57cec5SDimitry Andric "Calling convention requires void return type", &F); 22870b57cec5SDimitry Andric LLVM_FALLTHROUGH; 22880b57cec5SDimitry Andric case CallingConv::AMDGPU_VS: 22890b57cec5SDimitry Andric case CallingConv::AMDGPU_HS: 22900b57cec5SDimitry Andric case CallingConv::AMDGPU_GS: 22910b57cec5SDimitry Andric case CallingConv::AMDGPU_PS: 22920b57cec5SDimitry Andric case CallingConv::AMDGPU_CS: 22930b57cec5SDimitry Andric Assert(!F.hasStructRetAttr(), 22940b57cec5SDimitry Andric "Calling convention does not allow sret", &F); 22950b57cec5SDimitry Andric LLVM_FALLTHROUGH; 22960b57cec5SDimitry Andric case CallingConv::Fast: 22970b57cec5SDimitry Andric case CallingConv::Cold: 22980b57cec5SDimitry Andric case CallingConv::Intel_OCL_BI: 22990b57cec5SDimitry Andric case CallingConv::PTX_Kernel: 23000b57cec5SDimitry Andric case CallingConv::PTX_Device: 23010b57cec5SDimitry Andric Assert(!F.isVarArg(), "Calling convention does not support varargs or " 23020b57cec5SDimitry Andric "perfect forwarding!", 23030b57cec5SDimitry Andric &F); 23040b57cec5SDimitry Andric break; 23050b57cec5SDimitry Andric } 23060b57cec5SDimitry Andric 23070b57cec5SDimitry Andric // Check that the argument values match the function type for this function... 23080b57cec5SDimitry Andric unsigned i = 0; 23090b57cec5SDimitry Andric for (const Argument &Arg : F.args()) { 23100b57cec5SDimitry Andric Assert(Arg.getType() == FT->getParamType(i), 23110b57cec5SDimitry Andric "Argument value does not match function argument type!", &Arg, 23120b57cec5SDimitry Andric FT->getParamType(i)); 23130b57cec5SDimitry Andric Assert(Arg.getType()->isFirstClassType(), 23140b57cec5SDimitry Andric "Function arguments must have first-class types!", &Arg); 23150b57cec5SDimitry Andric if (!isLLVMdotName) { 23160b57cec5SDimitry Andric Assert(!Arg.getType()->isMetadataTy(), 23170b57cec5SDimitry Andric "Function takes metadata but isn't an intrinsic", &Arg, &F); 23180b57cec5SDimitry Andric Assert(!Arg.getType()->isTokenTy(), 23190b57cec5SDimitry Andric "Function takes token but isn't an intrinsic", &Arg, &F); 23200b57cec5SDimitry Andric } 23210b57cec5SDimitry Andric 23220b57cec5SDimitry Andric // Check that swifterror argument is only used by loads and stores. 23230b57cec5SDimitry Andric if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 23240b57cec5SDimitry Andric verifySwiftErrorValue(&Arg); 23250b57cec5SDimitry Andric } 23260b57cec5SDimitry Andric ++i; 23270b57cec5SDimitry Andric } 23280b57cec5SDimitry Andric 23290b57cec5SDimitry Andric if (!isLLVMdotName) 23300b57cec5SDimitry Andric Assert(!F.getReturnType()->isTokenTy(), 23310b57cec5SDimitry Andric "Functions returns a token but isn't an intrinsic", &F); 23320b57cec5SDimitry Andric 23330b57cec5SDimitry Andric // Get the function metadata attachments. 23340b57cec5SDimitry Andric SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 23350b57cec5SDimitry Andric F.getAllMetadata(MDs); 23360b57cec5SDimitry Andric assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 23370b57cec5SDimitry Andric verifyFunctionMetadata(MDs); 23380b57cec5SDimitry Andric 23390b57cec5SDimitry Andric // Check validity of the personality function 23400b57cec5SDimitry Andric if (F.hasPersonalityFn()) { 23410b57cec5SDimitry Andric auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 23420b57cec5SDimitry Andric if (Per) 23430b57cec5SDimitry Andric Assert(Per->getParent() == F.getParent(), 23440b57cec5SDimitry Andric "Referencing personality function in another module!", 23450b57cec5SDimitry Andric &F, F.getParent(), Per, Per->getParent()); 23460b57cec5SDimitry Andric } 23470b57cec5SDimitry Andric 23480b57cec5SDimitry Andric if (F.isMaterializable()) { 23490b57cec5SDimitry Andric // Function has a body somewhere we can't see. 23500b57cec5SDimitry Andric Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 23510b57cec5SDimitry Andric MDs.empty() ? nullptr : MDs.front().second); 23520b57cec5SDimitry Andric } else if (F.isDeclaration()) { 23530b57cec5SDimitry Andric for (const auto &I : MDs) { 23540b57cec5SDimitry Andric // This is used for call site debug information. 23550b57cec5SDimitry Andric AssertDI(I.first != LLVMContext::MD_dbg || 23560b57cec5SDimitry Andric !cast<DISubprogram>(I.second)->isDistinct(), 23570b57cec5SDimitry Andric "function declaration may only have a unique !dbg attachment", 23580b57cec5SDimitry Andric &F); 23590b57cec5SDimitry Andric Assert(I.first != LLVMContext::MD_prof, 23600b57cec5SDimitry Andric "function declaration may not have a !prof attachment", &F); 23610b57cec5SDimitry Andric 23620b57cec5SDimitry Andric // Verify the metadata itself. 2363*5ffd83dbSDimitry Andric visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 23640b57cec5SDimitry Andric } 23650b57cec5SDimitry Andric Assert(!F.hasPersonalityFn(), 23660b57cec5SDimitry Andric "Function declaration shouldn't have a personality routine", &F); 23670b57cec5SDimitry Andric } else { 23680b57cec5SDimitry Andric // Verify that this function (which has a body) is not named "llvm.*". It 23690b57cec5SDimitry Andric // is not legal to define intrinsics. 23700b57cec5SDimitry Andric Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 23710b57cec5SDimitry Andric 23720b57cec5SDimitry Andric // Check the entry node 23730b57cec5SDimitry Andric const BasicBlock *Entry = &F.getEntryBlock(); 23740b57cec5SDimitry Andric Assert(pred_empty(Entry), 23750b57cec5SDimitry Andric "Entry block to function must not have predecessors!", Entry); 23760b57cec5SDimitry Andric 23770b57cec5SDimitry Andric // The address of the entry block cannot be taken, unless it is dead. 23780b57cec5SDimitry Andric if (Entry->hasAddressTaken()) { 23790b57cec5SDimitry Andric Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 23800b57cec5SDimitry Andric "blockaddress may not be used with the entry block!", Entry); 23810b57cec5SDimitry Andric } 23820b57cec5SDimitry Andric 23830b57cec5SDimitry Andric unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 23840b57cec5SDimitry Andric // Visit metadata attachments. 23850b57cec5SDimitry Andric for (const auto &I : MDs) { 23860b57cec5SDimitry Andric // Verify that the attachment is legal. 2387*5ffd83dbSDimitry Andric auto AllowLocs = AreDebugLocsAllowed::No; 23880b57cec5SDimitry Andric switch (I.first) { 23890b57cec5SDimitry Andric default: 23900b57cec5SDimitry Andric break; 23910b57cec5SDimitry Andric case LLVMContext::MD_dbg: { 23920b57cec5SDimitry Andric ++NumDebugAttachments; 23930b57cec5SDimitry Andric AssertDI(NumDebugAttachments == 1, 23940b57cec5SDimitry Andric "function must have a single !dbg attachment", &F, I.second); 23950b57cec5SDimitry Andric AssertDI(isa<DISubprogram>(I.second), 23960b57cec5SDimitry Andric "function !dbg attachment must be a subprogram", &F, I.second); 23970b57cec5SDimitry Andric auto *SP = cast<DISubprogram>(I.second); 23980b57cec5SDimitry Andric const Function *&AttachedTo = DISubprogramAttachments[SP]; 23990b57cec5SDimitry Andric AssertDI(!AttachedTo || AttachedTo == &F, 24000b57cec5SDimitry Andric "DISubprogram attached to more than one function", SP, &F); 24010b57cec5SDimitry Andric AttachedTo = &F; 2402*5ffd83dbSDimitry Andric AllowLocs = AreDebugLocsAllowed::Yes; 24030b57cec5SDimitry Andric break; 24040b57cec5SDimitry Andric } 24050b57cec5SDimitry Andric case LLVMContext::MD_prof: 24060b57cec5SDimitry Andric ++NumProfAttachments; 24070b57cec5SDimitry Andric Assert(NumProfAttachments == 1, 24080b57cec5SDimitry Andric "function must have a single !prof attachment", &F, I.second); 24090b57cec5SDimitry Andric break; 24100b57cec5SDimitry Andric } 24110b57cec5SDimitry Andric 24120b57cec5SDimitry Andric // Verify the metadata itself. 2413*5ffd83dbSDimitry Andric visitMDNode(*I.second, AllowLocs); 24140b57cec5SDimitry Andric } 24150b57cec5SDimitry Andric } 24160b57cec5SDimitry Andric 24170b57cec5SDimitry Andric // If this function is actually an intrinsic, verify that it is only used in 24180b57cec5SDimitry Andric // direct call/invokes, never having its "address taken". 24190b57cec5SDimitry Andric // Only do this if the module is materialized, otherwise we don't have all the 24200b57cec5SDimitry Andric // uses. 24210b57cec5SDimitry Andric if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 24220b57cec5SDimitry Andric const User *U; 24230b57cec5SDimitry Andric if (F.hasAddressTaken(&U)) 24240b57cec5SDimitry Andric Assert(false, "Invalid user of intrinsic instruction!", U); 24250b57cec5SDimitry Andric } 24260b57cec5SDimitry Andric 24270b57cec5SDimitry Andric auto *N = F.getSubprogram(); 24280b57cec5SDimitry Andric HasDebugInfo = (N != nullptr); 24290b57cec5SDimitry Andric if (!HasDebugInfo) 24300b57cec5SDimitry Andric return; 24310b57cec5SDimitry Andric 2432*5ffd83dbSDimitry Andric // Check that all !dbg attachments lead to back to N. 24330b57cec5SDimitry Andric // 24340b57cec5SDimitry Andric // FIXME: Check this incrementally while visiting !dbg attachments. 24350b57cec5SDimitry Andric // FIXME: Only check when N is the canonical subprogram for F. 24360b57cec5SDimitry Andric SmallPtrSet<const MDNode *, 32> Seen; 24370b57cec5SDimitry Andric auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 24380b57cec5SDimitry Andric // Be careful about using DILocation here since we might be dealing with 24390b57cec5SDimitry Andric // broken code (this is the Verifier after all). 24400b57cec5SDimitry Andric const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 24410b57cec5SDimitry Andric if (!DL) 24420b57cec5SDimitry Andric return; 24430b57cec5SDimitry Andric if (!Seen.insert(DL).second) 24440b57cec5SDimitry Andric return; 24450b57cec5SDimitry Andric 24460b57cec5SDimitry Andric Metadata *Parent = DL->getRawScope(); 24470b57cec5SDimitry Andric AssertDI(Parent && isa<DILocalScope>(Parent), 24480b57cec5SDimitry Andric "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 24490b57cec5SDimitry Andric Parent); 2450*5ffd83dbSDimitry Andric 24510b57cec5SDimitry Andric DILocalScope *Scope = DL->getInlinedAtScope(); 2452*5ffd83dbSDimitry Andric Assert(Scope, "Failed to find DILocalScope", DL); 2453*5ffd83dbSDimitry Andric 2454*5ffd83dbSDimitry Andric if (!Seen.insert(Scope).second) 24550b57cec5SDimitry Andric return; 24560b57cec5SDimitry Andric 2457*5ffd83dbSDimitry Andric DISubprogram *SP = Scope->getSubprogram(); 24580b57cec5SDimitry Andric 24590b57cec5SDimitry Andric // Scope and SP could be the same MDNode and we don't want to skip 24600b57cec5SDimitry Andric // validation in that case 24610b57cec5SDimitry Andric if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 24620b57cec5SDimitry Andric return; 24630b57cec5SDimitry Andric 24640b57cec5SDimitry Andric AssertDI(SP->describes(&F), 24650b57cec5SDimitry Andric "!dbg attachment points at wrong subprogram for function", N, &F, 24660b57cec5SDimitry Andric &I, DL, Scope, SP); 24670b57cec5SDimitry Andric }; 24680b57cec5SDimitry Andric for (auto &BB : F) 24690b57cec5SDimitry Andric for (auto &I : BB) { 24700b57cec5SDimitry Andric VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 24710b57cec5SDimitry Andric // The llvm.loop annotations also contain two DILocations. 24720b57cec5SDimitry Andric if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 24730b57cec5SDimitry Andric for (unsigned i = 1; i < MD->getNumOperands(); ++i) 24740b57cec5SDimitry Andric VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 24750b57cec5SDimitry Andric if (BrokenDebugInfo) 24760b57cec5SDimitry Andric return; 24770b57cec5SDimitry Andric } 24780b57cec5SDimitry Andric } 24790b57cec5SDimitry Andric 24800b57cec5SDimitry Andric // verifyBasicBlock - Verify that a basic block is well formed... 24810b57cec5SDimitry Andric // 24820b57cec5SDimitry Andric void Verifier::visitBasicBlock(BasicBlock &BB) { 24830b57cec5SDimitry Andric InstsInThisBlock.clear(); 24840b57cec5SDimitry Andric 24850b57cec5SDimitry Andric // Ensure that basic blocks have terminators! 24860b57cec5SDimitry Andric Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 24870b57cec5SDimitry Andric 24880b57cec5SDimitry Andric // Check constraints that this basic block imposes on all of the PHI nodes in 24890b57cec5SDimitry Andric // it. 24900b57cec5SDimitry Andric if (isa<PHINode>(BB.front())) { 24910b57cec5SDimitry Andric SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 24920b57cec5SDimitry Andric SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 24930b57cec5SDimitry Andric llvm::sort(Preds); 24940b57cec5SDimitry Andric for (const PHINode &PN : BB.phis()) { 24950b57cec5SDimitry Andric // Ensure that PHI nodes have at least one entry! 24960b57cec5SDimitry Andric Assert(PN.getNumIncomingValues() != 0, 24970b57cec5SDimitry Andric "PHI nodes must have at least one entry. If the block is dead, " 24980b57cec5SDimitry Andric "the PHI should be removed!", 24990b57cec5SDimitry Andric &PN); 25000b57cec5SDimitry Andric Assert(PN.getNumIncomingValues() == Preds.size(), 25010b57cec5SDimitry Andric "PHINode should have one entry for each predecessor of its " 25020b57cec5SDimitry Andric "parent basic block!", 25030b57cec5SDimitry Andric &PN); 25040b57cec5SDimitry Andric 25050b57cec5SDimitry Andric // Get and sort all incoming values in the PHI node... 25060b57cec5SDimitry Andric Values.clear(); 25070b57cec5SDimitry Andric Values.reserve(PN.getNumIncomingValues()); 25080b57cec5SDimitry Andric for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 25090b57cec5SDimitry Andric Values.push_back( 25100b57cec5SDimitry Andric std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 25110b57cec5SDimitry Andric llvm::sort(Values); 25120b57cec5SDimitry Andric 25130b57cec5SDimitry Andric for (unsigned i = 0, e = Values.size(); i != e; ++i) { 25140b57cec5SDimitry Andric // Check to make sure that if there is more than one entry for a 25150b57cec5SDimitry Andric // particular basic block in this PHI node, that the incoming values are 25160b57cec5SDimitry Andric // all identical. 25170b57cec5SDimitry Andric // 25180b57cec5SDimitry Andric Assert(i == 0 || Values[i].first != Values[i - 1].first || 25190b57cec5SDimitry Andric Values[i].second == Values[i - 1].second, 25200b57cec5SDimitry Andric "PHI node has multiple entries for the same basic block with " 25210b57cec5SDimitry Andric "different incoming values!", 25220b57cec5SDimitry Andric &PN, Values[i].first, Values[i].second, Values[i - 1].second); 25230b57cec5SDimitry Andric 25240b57cec5SDimitry Andric // Check to make sure that the predecessors and PHI node entries are 25250b57cec5SDimitry Andric // matched up. 25260b57cec5SDimitry Andric Assert(Values[i].first == Preds[i], 25270b57cec5SDimitry Andric "PHI node entries do not match predecessors!", &PN, 25280b57cec5SDimitry Andric Values[i].first, Preds[i]); 25290b57cec5SDimitry Andric } 25300b57cec5SDimitry Andric } 25310b57cec5SDimitry Andric } 25320b57cec5SDimitry Andric 25330b57cec5SDimitry Andric // Check that all instructions have their parent pointers set up correctly. 25340b57cec5SDimitry Andric for (auto &I : BB) 25350b57cec5SDimitry Andric { 25360b57cec5SDimitry Andric Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 25370b57cec5SDimitry Andric } 25380b57cec5SDimitry Andric } 25390b57cec5SDimitry Andric 25400b57cec5SDimitry Andric void Verifier::visitTerminator(Instruction &I) { 25410b57cec5SDimitry Andric // Ensure that terminators only exist at the end of the basic block. 25420b57cec5SDimitry Andric Assert(&I == I.getParent()->getTerminator(), 25430b57cec5SDimitry Andric "Terminator found in the middle of a basic block!", I.getParent()); 25440b57cec5SDimitry Andric visitInstruction(I); 25450b57cec5SDimitry Andric } 25460b57cec5SDimitry Andric 25470b57cec5SDimitry Andric void Verifier::visitBranchInst(BranchInst &BI) { 25480b57cec5SDimitry Andric if (BI.isConditional()) { 25490b57cec5SDimitry Andric Assert(BI.getCondition()->getType()->isIntegerTy(1), 25500b57cec5SDimitry Andric "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 25510b57cec5SDimitry Andric } 25520b57cec5SDimitry Andric visitTerminator(BI); 25530b57cec5SDimitry Andric } 25540b57cec5SDimitry Andric 25550b57cec5SDimitry Andric void Verifier::visitReturnInst(ReturnInst &RI) { 25560b57cec5SDimitry Andric Function *F = RI.getParent()->getParent(); 25570b57cec5SDimitry Andric unsigned N = RI.getNumOperands(); 25580b57cec5SDimitry Andric if (F->getReturnType()->isVoidTy()) 25590b57cec5SDimitry Andric Assert(N == 0, 25600b57cec5SDimitry Andric "Found return instr that returns non-void in Function of void " 25610b57cec5SDimitry Andric "return type!", 25620b57cec5SDimitry Andric &RI, F->getReturnType()); 25630b57cec5SDimitry Andric else 25640b57cec5SDimitry Andric Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 25650b57cec5SDimitry Andric "Function return type does not match operand " 25660b57cec5SDimitry Andric "type of return inst!", 25670b57cec5SDimitry Andric &RI, F->getReturnType()); 25680b57cec5SDimitry Andric 25690b57cec5SDimitry Andric // Check to make sure that the return value has necessary properties for 25700b57cec5SDimitry Andric // terminators... 25710b57cec5SDimitry Andric visitTerminator(RI); 25720b57cec5SDimitry Andric } 25730b57cec5SDimitry Andric 25740b57cec5SDimitry Andric void Verifier::visitSwitchInst(SwitchInst &SI) { 25750b57cec5SDimitry Andric // Check to make sure that all of the constants in the switch instruction 25760b57cec5SDimitry Andric // have the same type as the switched-on value. 25770b57cec5SDimitry Andric Type *SwitchTy = SI.getCondition()->getType(); 25780b57cec5SDimitry Andric SmallPtrSet<ConstantInt*, 32> Constants; 25790b57cec5SDimitry Andric for (auto &Case : SI.cases()) { 25800b57cec5SDimitry Andric Assert(Case.getCaseValue()->getType() == SwitchTy, 25810b57cec5SDimitry Andric "Switch constants must all be same type as switch value!", &SI); 25820b57cec5SDimitry Andric Assert(Constants.insert(Case.getCaseValue()).second, 25830b57cec5SDimitry Andric "Duplicate integer as switch case", &SI, Case.getCaseValue()); 25840b57cec5SDimitry Andric } 25850b57cec5SDimitry Andric 25860b57cec5SDimitry Andric visitTerminator(SI); 25870b57cec5SDimitry Andric } 25880b57cec5SDimitry Andric 25890b57cec5SDimitry Andric void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 25900b57cec5SDimitry Andric Assert(BI.getAddress()->getType()->isPointerTy(), 25910b57cec5SDimitry Andric "Indirectbr operand must have pointer type!", &BI); 25920b57cec5SDimitry Andric for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 25930b57cec5SDimitry Andric Assert(BI.getDestination(i)->getType()->isLabelTy(), 25940b57cec5SDimitry Andric "Indirectbr destinations must all have pointer type!", &BI); 25950b57cec5SDimitry Andric 25960b57cec5SDimitry Andric visitTerminator(BI); 25970b57cec5SDimitry Andric } 25980b57cec5SDimitry Andric 25990b57cec5SDimitry Andric void Verifier::visitCallBrInst(CallBrInst &CBI) { 26000b57cec5SDimitry Andric Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 26010b57cec5SDimitry Andric &CBI); 26020b57cec5SDimitry Andric for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 26030b57cec5SDimitry Andric Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 26040b57cec5SDimitry Andric "Callbr successors must all have pointer type!", &CBI); 26050b57cec5SDimitry Andric for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 26060b57cec5SDimitry Andric Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 26070b57cec5SDimitry Andric "Using an unescaped label as a callbr argument!", &CBI); 26080b57cec5SDimitry Andric if (isa<BasicBlock>(CBI.getOperand(i))) 26090b57cec5SDimitry Andric for (unsigned j = i + 1; j != e; ++j) 26100b57cec5SDimitry Andric Assert(CBI.getOperand(i) != CBI.getOperand(j), 26110b57cec5SDimitry Andric "Duplicate callbr destination!", &CBI); 26120b57cec5SDimitry Andric } 26138bcb0991SDimitry Andric { 26148bcb0991SDimitry Andric SmallPtrSet<BasicBlock *, 4> ArgBBs; 26158bcb0991SDimitry Andric for (Value *V : CBI.args()) 26168bcb0991SDimitry Andric if (auto *BA = dyn_cast<BlockAddress>(V)) 26178bcb0991SDimitry Andric ArgBBs.insert(BA->getBasicBlock()); 26188bcb0991SDimitry Andric for (BasicBlock *BB : CBI.getIndirectDests()) 2619*5ffd83dbSDimitry Andric Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 26208bcb0991SDimitry Andric } 26210b57cec5SDimitry Andric 26220b57cec5SDimitry Andric visitTerminator(CBI); 26230b57cec5SDimitry Andric } 26240b57cec5SDimitry Andric 26250b57cec5SDimitry Andric void Verifier::visitSelectInst(SelectInst &SI) { 26260b57cec5SDimitry Andric Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 26270b57cec5SDimitry Andric SI.getOperand(2)), 26280b57cec5SDimitry Andric "Invalid operands for select instruction!", &SI); 26290b57cec5SDimitry Andric 26300b57cec5SDimitry Andric Assert(SI.getTrueValue()->getType() == SI.getType(), 26310b57cec5SDimitry Andric "Select values must have same type as select instruction!", &SI); 26320b57cec5SDimitry Andric visitInstruction(SI); 26330b57cec5SDimitry Andric } 26340b57cec5SDimitry Andric 26350b57cec5SDimitry Andric /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 26360b57cec5SDimitry Andric /// a pass, if any exist, it's an error. 26370b57cec5SDimitry Andric /// 26380b57cec5SDimitry Andric void Verifier::visitUserOp1(Instruction &I) { 26390b57cec5SDimitry Andric Assert(false, "User-defined operators should not live outside of a pass!", &I); 26400b57cec5SDimitry Andric } 26410b57cec5SDimitry Andric 26420b57cec5SDimitry Andric void Verifier::visitTruncInst(TruncInst &I) { 26430b57cec5SDimitry Andric // Get the source and destination types 26440b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 26450b57cec5SDimitry Andric Type *DestTy = I.getType(); 26460b57cec5SDimitry Andric 26470b57cec5SDimitry Andric // Get the size of the types in bits, we'll need this later 26480b57cec5SDimitry Andric unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 26490b57cec5SDimitry Andric unsigned DestBitSize = DestTy->getScalarSizeInBits(); 26500b57cec5SDimitry Andric 26510b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 26520b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 26530b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 26540b57cec5SDimitry Andric "trunc source and destination must both be a vector or neither", &I); 26550b57cec5SDimitry Andric Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 26560b57cec5SDimitry Andric 26570b57cec5SDimitry Andric visitInstruction(I); 26580b57cec5SDimitry Andric } 26590b57cec5SDimitry Andric 26600b57cec5SDimitry Andric void Verifier::visitZExtInst(ZExtInst &I) { 26610b57cec5SDimitry Andric // Get the source and destination types 26620b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 26630b57cec5SDimitry Andric Type *DestTy = I.getType(); 26640b57cec5SDimitry Andric 26650b57cec5SDimitry Andric // Get the size of the types in bits, we'll need this later 26660b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 26670b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 26680b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 26690b57cec5SDimitry Andric "zext source and destination must both be a vector or neither", &I); 26700b57cec5SDimitry Andric unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 26710b57cec5SDimitry Andric unsigned DestBitSize = DestTy->getScalarSizeInBits(); 26720b57cec5SDimitry Andric 26730b57cec5SDimitry Andric Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 26740b57cec5SDimitry Andric 26750b57cec5SDimitry Andric visitInstruction(I); 26760b57cec5SDimitry Andric } 26770b57cec5SDimitry Andric 26780b57cec5SDimitry Andric void Verifier::visitSExtInst(SExtInst &I) { 26790b57cec5SDimitry Andric // Get the source and destination types 26800b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 26810b57cec5SDimitry Andric Type *DestTy = I.getType(); 26820b57cec5SDimitry Andric 26830b57cec5SDimitry Andric // Get the size of the types in bits, we'll need this later 26840b57cec5SDimitry Andric unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 26850b57cec5SDimitry Andric unsigned DestBitSize = DestTy->getScalarSizeInBits(); 26860b57cec5SDimitry Andric 26870b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 26880b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 26890b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 26900b57cec5SDimitry Andric "sext source and destination must both be a vector or neither", &I); 26910b57cec5SDimitry Andric Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 26920b57cec5SDimitry Andric 26930b57cec5SDimitry Andric visitInstruction(I); 26940b57cec5SDimitry Andric } 26950b57cec5SDimitry Andric 26960b57cec5SDimitry Andric void Verifier::visitFPTruncInst(FPTruncInst &I) { 26970b57cec5SDimitry Andric // Get the source and destination types 26980b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 26990b57cec5SDimitry Andric Type *DestTy = I.getType(); 27000b57cec5SDimitry Andric // Get the size of the types in bits, we'll need this later 27010b57cec5SDimitry Andric unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 27020b57cec5SDimitry Andric unsigned DestBitSize = DestTy->getScalarSizeInBits(); 27030b57cec5SDimitry Andric 27040b57cec5SDimitry Andric Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 27050b57cec5SDimitry Andric Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 27060b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 27070b57cec5SDimitry Andric "fptrunc source and destination must both be a vector or neither", &I); 27080b57cec5SDimitry Andric Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 27090b57cec5SDimitry Andric 27100b57cec5SDimitry Andric visitInstruction(I); 27110b57cec5SDimitry Andric } 27120b57cec5SDimitry Andric 27130b57cec5SDimitry Andric void Verifier::visitFPExtInst(FPExtInst &I) { 27140b57cec5SDimitry Andric // Get the source and destination types 27150b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 27160b57cec5SDimitry Andric Type *DestTy = I.getType(); 27170b57cec5SDimitry Andric 27180b57cec5SDimitry Andric // Get the size of the types in bits, we'll need this later 27190b57cec5SDimitry Andric unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 27200b57cec5SDimitry Andric unsigned DestBitSize = DestTy->getScalarSizeInBits(); 27210b57cec5SDimitry Andric 27220b57cec5SDimitry Andric Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 27230b57cec5SDimitry Andric Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 27240b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 27250b57cec5SDimitry Andric "fpext source and destination must both be a vector or neither", &I); 27260b57cec5SDimitry Andric Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 27270b57cec5SDimitry Andric 27280b57cec5SDimitry Andric visitInstruction(I); 27290b57cec5SDimitry Andric } 27300b57cec5SDimitry Andric 27310b57cec5SDimitry Andric void Verifier::visitUIToFPInst(UIToFPInst &I) { 27320b57cec5SDimitry Andric // Get the source and destination types 27330b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 27340b57cec5SDimitry Andric Type *DestTy = I.getType(); 27350b57cec5SDimitry Andric 27360b57cec5SDimitry Andric bool SrcVec = SrcTy->isVectorTy(); 27370b57cec5SDimitry Andric bool DstVec = DestTy->isVectorTy(); 27380b57cec5SDimitry Andric 27390b57cec5SDimitry Andric Assert(SrcVec == DstVec, 27400b57cec5SDimitry Andric "UIToFP source and dest must both be vector or scalar", &I); 27410b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), 27420b57cec5SDimitry Andric "UIToFP source must be integer or integer vector", &I); 27430b57cec5SDimitry Andric Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 27440b57cec5SDimitry Andric &I); 27450b57cec5SDimitry Andric 27460b57cec5SDimitry Andric if (SrcVec && DstVec) 2747*5ffd83dbSDimitry Andric Assert(cast<VectorType>(SrcTy)->getElementCount() == 2748*5ffd83dbSDimitry Andric cast<VectorType>(DestTy)->getElementCount(), 27490b57cec5SDimitry Andric "UIToFP source and dest vector length mismatch", &I); 27500b57cec5SDimitry Andric 27510b57cec5SDimitry Andric visitInstruction(I); 27520b57cec5SDimitry Andric } 27530b57cec5SDimitry Andric 27540b57cec5SDimitry Andric void Verifier::visitSIToFPInst(SIToFPInst &I) { 27550b57cec5SDimitry Andric // Get the source and destination types 27560b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 27570b57cec5SDimitry Andric Type *DestTy = I.getType(); 27580b57cec5SDimitry Andric 27590b57cec5SDimitry Andric bool SrcVec = SrcTy->isVectorTy(); 27600b57cec5SDimitry Andric bool DstVec = DestTy->isVectorTy(); 27610b57cec5SDimitry Andric 27620b57cec5SDimitry Andric Assert(SrcVec == DstVec, 27630b57cec5SDimitry Andric "SIToFP source and dest must both be vector or scalar", &I); 27640b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), 27650b57cec5SDimitry Andric "SIToFP source must be integer or integer vector", &I); 27660b57cec5SDimitry Andric Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 27670b57cec5SDimitry Andric &I); 27680b57cec5SDimitry Andric 27690b57cec5SDimitry Andric if (SrcVec && DstVec) 2770*5ffd83dbSDimitry Andric Assert(cast<VectorType>(SrcTy)->getElementCount() == 2771*5ffd83dbSDimitry Andric cast<VectorType>(DestTy)->getElementCount(), 27720b57cec5SDimitry Andric "SIToFP source and dest vector length mismatch", &I); 27730b57cec5SDimitry Andric 27740b57cec5SDimitry Andric visitInstruction(I); 27750b57cec5SDimitry Andric } 27760b57cec5SDimitry Andric 27770b57cec5SDimitry Andric void Verifier::visitFPToUIInst(FPToUIInst &I) { 27780b57cec5SDimitry Andric // Get the source and destination types 27790b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 27800b57cec5SDimitry Andric Type *DestTy = I.getType(); 27810b57cec5SDimitry Andric 27820b57cec5SDimitry Andric bool SrcVec = SrcTy->isVectorTy(); 27830b57cec5SDimitry Andric bool DstVec = DestTy->isVectorTy(); 27840b57cec5SDimitry Andric 27850b57cec5SDimitry Andric Assert(SrcVec == DstVec, 27860b57cec5SDimitry Andric "FPToUI source and dest must both be vector or scalar", &I); 27870b57cec5SDimitry Andric Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 27880b57cec5SDimitry Andric &I); 27890b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), 27900b57cec5SDimitry Andric "FPToUI result must be integer or integer vector", &I); 27910b57cec5SDimitry Andric 27920b57cec5SDimitry Andric if (SrcVec && DstVec) 2793*5ffd83dbSDimitry Andric Assert(cast<VectorType>(SrcTy)->getElementCount() == 2794*5ffd83dbSDimitry Andric cast<VectorType>(DestTy)->getElementCount(), 27950b57cec5SDimitry Andric "FPToUI source and dest vector length mismatch", &I); 27960b57cec5SDimitry Andric 27970b57cec5SDimitry Andric visitInstruction(I); 27980b57cec5SDimitry Andric } 27990b57cec5SDimitry Andric 28000b57cec5SDimitry Andric void Verifier::visitFPToSIInst(FPToSIInst &I) { 28010b57cec5SDimitry Andric // Get the source and destination types 28020b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 28030b57cec5SDimitry Andric Type *DestTy = I.getType(); 28040b57cec5SDimitry Andric 28050b57cec5SDimitry Andric bool SrcVec = SrcTy->isVectorTy(); 28060b57cec5SDimitry Andric bool DstVec = DestTy->isVectorTy(); 28070b57cec5SDimitry Andric 28080b57cec5SDimitry Andric Assert(SrcVec == DstVec, 28090b57cec5SDimitry Andric "FPToSI source and dest must both be vector or scalar", &I); 28100b57cec5SDimitry Andric Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 28110b57cec5SDimitry Andric &I); 28120b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), 28130b57cec5SDimitry Andric "FPToSI result must be integer or integer vector", &I); 28140b57cec5SDimitry Andric 28150b57cec5SDimitry Andric if (SrcVec && DstVec) 2816*5ffd83dbSDimitry Andric Assert(cast<VectorType>(SrcTy)->getElementCount() == 2817*5ffd83dbSDimitry Andric cast<VectorType>(DestTy)->getElementCount(), 28180b57cec5SDimitry Andric "FPToSI source and dest vector length mismatch", &I); 28190b57cec5SDimitry Andric 28200b57cec5SDimitry Andric visitInstruction(I); 28210b57cec5SDimitry Andric } 28220b57cec5SDimitry Andric 28230b57cec5SDimitry Andric void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 28240b57cec5SDimitry Andric // Get the source and destination types 28250b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 28260b57cec5SDimitry Andric Type *DestTy = I.getType(); 28270b57cec5SDimitry Andric 28280b57cec5SDimitry Andric Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 28290b57cec5SDimitry Andric 28300b57cec5SDimitry Andric if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 28310b57cec5SDimitry Andric Assert(!DL.isNonIntegralPointerType(PTy), 28320b57cec5SDimitry Andric "ptrtoint not supported for non-integral pointers"); 28330b57cec5SDimitry Andric 28340b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 28350b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 28360b57cec5SDimitry Andric &I); 28370b57cec5SDimitry Andric 28380b57cec5SDimitry Andric if (SrcTy->isVectorTy()) { 2839*5ffd83dbSDimitry Andric auto *VSrc = cast<VectorType>(SrcTy); 2840*5ffd83dbSDimitry Andric auto *VDest = cast<VectorType>(DestTy); 2841*5ffd83dbSDimitry Andric Assert(VSrc->getElementCount() == VDest->getElementCount(), 28420b57cec5SDimitry Andric "PtrToInt Vector width mismatch", &I); 28430b57cec5SDimitry Andric } 28440b57cec5SDimitry Andric 28450b57cec5SDimitry Andric visitInstruction(I); 28460b57cec5SDimitry Andric } 28470b57cec5SDimitry Andric 28480b57cec5SDimitry Andric void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 28490b57cec5SDimitry Andric // Get the source and destination types 28500b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 28510b57cec5SDimitry Andric Type *DestTy = I.getType(); 28520b57cec5SDimitry Andric 28530b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), 28540b57cec5SDimitry Andric "IntToPtr source must be an integral", &I); 28550b57cec5SDimitry Andric Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 28560b57cec5SDimitry Andric 28570b57cec5SDimitry Andric if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 28580b57cec5SDimitry Andric Assert(!DL.isNonIntegralPointerType(PTy), 28590b57cec5SDimitry Andric "inttoptr not supported for non-integral pointers"); 28600b57cec5SDimitry Andric 28610b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 28620b57cec5SDimitry Andric &I); 28630b57cec5SDimitry Andric if (SrcTy->isVectorTy()) { 2864*5ffd83dbSDimitry Andric auto *VSrc = cast<VectorType>(SrcTy); 2865*5ffd83dbSDimitry Andric auto *VDest = cast<VectorType>(DestTy); 2866*5ffd83dbSDimitry Andric Assert(VSrc->getElementCount() == VDest->getElementCount(), 28670b57cec5SDimitry Andric "IntToPtr Vector width mismatch", &I); 28680b57cec5SDimitry Andric } 28690b57cec5SDimitry Andric visitInstruction(I); 28700b57cec5SDimitry Andric } 28710b57cec5SDimitry Andric 28720b57cec5SDimitry Andric void Verifier::visitBitCastInst(BitCastInst &I) { 28730b57cec5SDimitry Andric Assert( 28740b57cec5SDimitry Andric CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 28750b57cec5SDimitry Andric "Invalid bitcast", &I); 28760b57cec5SDimitry Andric visitInstruction(I); 28770b57cec5SDimitry Andric } 28780b57cec5SDimitry Andric 28790b57cec5SDimitry Andric void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 28800b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 28810b57cec5SDimitry Andric Type *DestTy = I.getType(); 28820b57cec5SDimitry Andric 28830b57cec5SDimitry Andric Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 28840b57cec5SDimitry Andric &I); 28850b57cec5SDimitry Andric Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 28860b57cec5SDimitry Andric &I); 28870b57cec5SDimitry Andric Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 28880b57cec5SDimitry Andric "AddrSpaceCast must be between different address spaces", &I); 2889*5ffd83dbSDimitry Andric if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 2890*5ffd83dbSDimitry Andric Assert(SrcVTy->getNumElements() == 2891*5ffd83dbSDimitry Andric cast<VectorType>(DestTy)->getNumElements(), 28920b57cec5SDimitry Andric "AddrSpaceCast vector pointer number of elements mismatch", &I); 28930b57cec5SDimitry Andric visitInstruction(I); 28940b57cec5SDimitry Andric } 28950b57cec5SDimitry Andric 28960b57cec5SDimitry Andric /// visitPHINode - Ensure that a PHI node is well formed. 28970b57cec5SDimitry Andric /// 28980b57cec5SDimitry Andric void Verifier::visitPHINode(PHINode &PN) { 28990b57cec5SDimitry Andric // Ensure that the PHI nodes are all grouped together at the top of the block. 29000b57cec5SDimitry Andric // This can be tested by checking whether the instruction before this is 29010b57cec5SDimitry Andric // either nonexistent (because this is begin()) or is a PHI node. If not, 29020b57cec5SDimitry Andric // then there is some other instruction before a PHI. 29030b57cec5SDimitry Andric Assert(&PN == &PN.getParent()->front() || 29040b57cec5SDimitry Andric isa<PHINode>(--BasicBlock::iterator(&PN)), 29050b57cec5SDimitry Andric "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 29060b57cec5SDimitry Andric 29070b57cec5SDimitry Andric // Check that a PHI doesn't yield a Token. 29080b57cec5SDimitry Andric Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 29090b57cec5SDimitry Andric 29100b57cec5SDimitry Andric // Check that all of the values of the PHI node have the same type as the 29110b57cec5SDimitry Andric // result, and that the incoming blocks are really basic blocks. 29120b57cec5SDimitry Andric for (Value *IncValue : PN.incoming_values()) { 29130b57cec5SDimitry Andric Assert(PN.getType() == IncValue->getType(), 29140b57cec5SDimitry Andric "PHI node operands are not the same type as the result!", &PN); 29150b57cec5SDimitry Andric } 29160b57cec5SDimitry Andric 29170b57cec5SDimitry Andric // All other PHI node constraints are checked in the visitBasicBlock method. 29180b57cec5SDimitry Andric 29190b57cec5SDimitry Andric visitInstruction(PN); 29200b57cec5SDimitry Andric } 29210b57cec5SDimitry Andric 29220b57cec5SDimitry Andric void Verifier::visitCallBase(CallBase &Call) { 2923*5ffd83dbSDimitry Andric Assert(Call.getCalledOperand()->getType()->isPointerTy(), 29240b57cec5SDimitry Andric "Called function must be a pointer!", Call); 2925*5ffd83dbSDimitry Andric PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 29260b57cec5SDimitry Andric 29270b57cec5SDimitry Andric Assert(FPTy->getElementType()->isFunctionTy(), 29280b57cec5SDimitry Andric "Called function is not pointer to function type!", Call); 29290b57cec5SDimitry Andric 29300b57cec5SDimitry Andric Assert(FPTy->getElementType() == Call.getFunctionType(), 29310b57cec5SDimitry Andric "Called function is not the same type as the call!", Call); 29320b57cec5SDimitry Andric 29330b57cec5SDimitry Andric FunctionType *FTy = Call.getFunctionType(); 29340b57cec5SDimitry Andric 29350b57cec5SDimitry Andric // Verify that the correct number of arguments are being passed 29360b57cec5SDimitry Andric if (FTy->isVarArg()) 29370b57cec5SDimitry Andric Assert(Call.arg_size() >= FTy->getNumParams(), 29380b57cec5SDimitry Andric "Called function requires more parameters than were provided!", 29390b57cec5SDimitry Andric Call); 29400b57cec5SDimitry Andric else 29410b57cec5SDimitry Andric Assert(Call.arg_size() == FTy->getNumParams(), 29420b57cec5SDimitry Andric "Incorrect number of arguments passed to called function!", Call); 29430b57cec5SDimitry Andric 29440b57cec5SDimitry Andric // Verify that all arguments to the call match the function type. 29450b57cec5SDimitry Andric for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 29460b57cec5SDimitry Andric Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 29470b57cec5SDimitry Andric "Call parameter type does not match function signature!", 29480b57cec5SDimitry Andric Call.getArgOperand(i), FTy->getParamType(i), Call); 29490b57cec5SDimitry Andric 29500b57cec5SDimitry Andric AttributeList Attrs = Call.getAttributes(); 29510b57cec5SDimitry Andric 29520b57cec5SDimitry Andric Assert(verifyAttributeCount(Attrs, Call.arg_size()), 29530b57cec5SDimitry Andric "Attribute after last parameter!", Call); 29540b57cec5SDimitry Andric 29550b57cec5SDimitry Andric bool IsIntrinsic = Call.getCalledFunction() && 29560b57cec5SDimitry Andric Call.getCalledFunction()->getName().startswith("llvm."); 29570b57cec5SDimitry Andric 2958*5ffd83dbSDimitry Andric Function *Callee = 2959*5ffd83dbSDimitry Andric dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 29600b57cec5SDimitry Andric 2961*5ffd83dbSDimitry Andric if (Attrs.hasFnAttribute(Attribute::Speculatable)) { 29620b57cec5SDimitry Andric // Don't allow speculatable on call sites, unless the underlying function 29630b57cec5SDimitry Andric // declaration is also speculatable. 29640b57cec5SDimitry Andric Assert(Callee && Callee->isSpeculatable(), 29650b57cec5SDimitry Andric "speculatable attribute may not apply to call sites", Call); 29660b57cec5SDimitry Andric } 29670b57cec5SDimitry Andric 2968*5ffd83dbSDimitry Andric if (Attrs.hasFnAttribute(Attribute::Preallocated)) { 2969*5ffd83dbSDimitry Andric Assert(Call.getCalledFunction()->getIntrinsicID() == 2970*5ffd83dbSDimitry Andric Intrinsic::call_preallocated_arg, 2971*5ffd83dbSDimitry Andric "preallocated as a call site attribute can only be on " 2972*5ffd83dbSDimitry Andric "llvm.call.preallocated.arg"); 2973*5ffd83dbSDimitry Andric } 2974*5ffd83dbSDimitry Andric 29750b57cec5SDimitry Andric // Verify call attributes. 29760b57cec5SDimitry Andric verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 29770b57cec5SDimitry Andric 29780b57cec5SDimitry Andric // Conservatively check the inalloca argument. 29790b57cec5SDimitry Andric // We have a bug if we can find that there is an underlying alloca without 29800b57cec5SDimitry Andric // inalloca. 29810b57cec5SDimitry Andric if (Call.hasInAllocaArgument()) { 29820b57cec5SDimitry Andric Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 29830b57cec5SDimitry Andric if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 29840b57cec5SDimitry Andric Assert(AI->isUsedWithInAlloca(), 29850b57cec5SDimitry Andric "inalloca argument for call has mismatched alloca", AI, Call); 29860b57cec5SDimitry Andric } 29870b57cec5SDimitry Andric 29880b57cec5SDimitry Andric // For each argument of the callsite, if it has the swifterror argument, 29890b57cec5SDimitry Andric // make sure the underlying alloca/parameter it comes from has a swifterror as 29900b57cec5SDimitry Andric // well. 29910b57cec5SDimitry Andric for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 29920b57cec5SDimitry Andric if (Call.paramHasAttr(i, Attribute::SwiftError)) { 29930b57cec5SDimitry Andric Value *SwiftErrorArg = Call.getArgOperand(i); 29940b57cec5SDimitry Andric if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 29950b57cec5SDimitry Andric Assert(AI->isSwiftError(), 29960b57cec5SDimitry Andric "swifterror argument for call has mismatched alloca", AI, Call); 29970b57cec5SDimitry Andric continue; 29980b57cec5SDimitry Andric } 29990b57cec5SDimitry Andric auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 30000b57cec5SDimitry Andric Assert(ArgI, 30010b57cec5SDimitry Andric "swifterror argument should come from an alloca or parameter", 30020b57cec5SDimitry Andric SwiftErrorArg, Call); 30030b57cec5SDimitry Andric Assert(ArgI->hasSwiftErrorAttr(), 30040b57cec5SDimitry Andric "swifterror argument for call has mismatched parameter", ArgI, 30050b57cec5SDimitry Andric Call); 30060b57cec5SDimitry Andric } 30070b57cec5SDimitry Andric 30080b57cec5SDimitry Andric if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 30090b57cec5SDimitry Andric // Don't allow immarg on call sites, unless the underlying declaration 30100b57cec5SDimitry Andric // also has the matching immarg. 30110b57cec5SDimitry Andric Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 30120b57cec5SDimitry Andric "immarg may not apply only to call sites", 30130b57cec5SDimitry Andric Call.getArgOperand(i), Call); 30140b57cec5SDimitry Andric } 30150b57cec5SDimitry Andric 30160b57cec5SDimitry Andric if (Call.paramHasAttr(i, Attribute::ImmArg)) { 30170b57cec5SDimitry Andric Value *ArgVal = Call.getArgOperand(i); 30180b57cec5SDimitry Andric Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 30190b57cec5SDimitry Andric "immarg operand has non-immediate parameter", ArgVal, Call); 30200b57cec5SDimitry Andric } 3021*5ffd83dbSDimitry Andric 3022*5ffd83dbSDimitry Andric if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3023*5ffd83dbSDimitry Andric Value *ArgVal = Call.getArgOperand(i); 3024*5ffd83dbSDimitry Andric bool hasOB = 3025*5ffd83dbSDimitry Andric Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3026*5ffd83dbSDimitry Andric bool isMustTail = Call.isMustTailCall(); 3027*5ffd83dbSDimitry Andric Assert(hasOB != isMustTail, 3028*5ffd83dbSDimitry Andric "preallocated operand either requires a preallocated bundle or " 3029*5ffd83dbSDimitry Andric "the call to be musttail (but not both)", 3030*5ffd83dbSDimitry Andric ArgVal, Call); 3031*5ffd83dbSDimitry Andric } 30320b57cec5SDimitry Andric } 30330b57cec5SDimitry Andric 30340b57cec5SDimitry Andric if (FTy->isVarArg()) { 30350b57cec5SDimitry Andric // FIXME? is 'nest' even legal here? 30360b57cec5SDimitry Andric bool SawNest = false; 30370b57cec5SDimitry Andric bool SawReturned = false; 30380b57cec5SDimitry Andric 30390b57cec5SDimitry Andric for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 30400b57cec5SDimitry Andric if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 30410b57cec5SDimitry Andric SawNest = true; 30420b57cec5SDimitry Andric if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 30430b57cec5SDimitry Andric SawReturned = true; 30440b57cec5SDimitry Andric } 30450b57cec5SDimitry Andric 30460b57cec5SDimitry Andric // Check attributes on the varargs part. 30470b57cec5SDimitry Andric for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 30480b57cec5SDimitry Andric Type *Ty = Call.getArgOperand(Idx)->getType(); 30490b57cec5SDimitry Andric AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 30500b57cec5SDimitry Andric verifyParameterAttrs(ArgAttrs, Ty, &Call); 30510b57cec5SDimitry Andric 30520b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::Nest)) { 30530b57cec5SDimitry Andric Assert(!SawNest, "More than one parameter has attribute nest!", Call); 30540b57cec5SDimitry Andric SawNest = true; 30550b57cec5SDimitry Andric } 30560b57cec5SDimitry Andric 30570b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::Returned)) { 30580b57cec5SDimitry Andric Assert(!SawReturned, "More than one parameter has attribute returned!", 30590b57cec5SDimitry Andric Call); 30600b57cec5SDimitry Andric Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 30610b57cec5SDimitry Andric "Incompatible argument and return types for 'returned' " 30620b57cec5SDimitry Andric "attribute", 30630b57cec5SDimitry Andric Call); 30640b57cec5SDimitry Andric SawReturned = true; 30650b57cec5SDimitry Andric } 30660b57cec5SDimitry Andric 30670b57cec5SDimitry Andric // Statepoint intrinsic is vararg but the wrapped function may be not. 30680b57cec5SDimitry Andric // Allow sret here and check the wrapped function in verifyStatepoint. 30690b57cec5SDimitry Andric if (!Call.getCalledFunction() || 30700b57cec5SDimitry Andric Call.getCalledFunction()->getIntrinsicID() != 30710b57cec5SDimitry Andric Intrinsic::experimental_gc_statepoint) 30720b57cec5SDimitry Andric Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 30730b57cec5SDimitry Andric "Attribute 'sret' cannot be used for vararg call arguments!", 30740b57cec5SDimitry Andric Call); 30750b57cec5SDimitry Andric 30760b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 30770b57cec5SDimitry Andric Assert(Idx == Call.arg_size() - 1, 30780b57cec5SDimitry Andric "inalloca isn't on the last argument!", Call); 30790b57cec5SDimitry Andric } 30800b57cec5SDimitry Andric } 30810b57cec5SDimitry Andric 30820b57cec5SDimitry Andric // Verify that there's no metadata unless it's a direct call to an intrinsic. 30830b57cec5SDimitry Andric if (!IsIntrinsic) { 30840b57cec5SDimitry Andric for (Type *ParamTy : FTy->params()) { 30850b57cec5SDimitry Andric Assert(!ParamTy->isMetadataTy(), 30860b57cec5SDimitry Andric "Function has metadata parameter but isn't an intrinsic", Call); 30870b57cec5SDimitry Andric Assert(!ParamTy->isTokenTy(), 30880b57cec5SDimitry Andric "Function has token parameter but isn't an intrinsic", Call); 30890b57cec5SDimitry Andric } 30900b57cec5SDimitry Andric } 30910b57cec5SDimitry Andric 30920b57cec5SDimitry Andric // Verify that indirect calls don't return tokens. 30930b57cec5SDimitry Andric if (!Call.getCalledFunction()) 30940b57cec5SDimitry Andric Assert(!FTy->getReturnType()->isTokenTy(), 30950b57cec5SDimitry Andric "Return type cannot be token for indirect call!"); 30960b57cec5SDimitry Andric 30970b57cec5SDimitry Andric if (Function *F = Call.getCalledFunction()) 30980b57cec5SDimitry Andric if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 30990b57cec5SDimitry Andric visitIntrinsicCall(ID, Call); 31000b57cec5SDimitry Andric 3101480093f4SDimitry Andric // Verify that a callsite has at most one "deopt", at most one "funclet", at 3102*5ffd83dbSDimitry Andric // most one "gc-transition", at most one "cfguardtarget", 3103*5ffd83dbSDimitry Andric // and at most one "preallocated" operand bundle. 31040b57cec5SDimitry Andric bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3105*5ffd83dbSDimitry Andric FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3106*5ffd83dbSDimitry Andric FoundPreallocatedBundle = false, FoundGCLiveBundle = false;; 31070b57cec5SDimitry Andric for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 31080b57cec5SDimitry Andric OperandBundleUse BU = Call.getOperandBundleAt(i); 31090b57cec5SDimitry Andric uint32_t Tag = BU.getTagID(); 31100b57cec5SDimitry Andric if (Tag == LLVMContext::OB_deopt) { 31110b57cec5SDimitry Andric Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 31120b57cec5SDimitry Andric FoundDeoptBundle = true; 31130b57cec5SDimitry Andric } else if (Tag == LLVMContext::OB_gc_transition) { 31140b57cec5SDimitry Andric Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 31150b57cec5SDimitry Andric Call); 31160b57cec5SDimitry Andric FoundGCTransitionBundle = true; 31170b57cec5SDimitry Andric } else if (Tag == LLVMContext::OB_funclet) { 31180b57cec5SDimitry Andric Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 31190b57cec5SDimitry Andric FoundFuncletBundle = true; 31200b57cec5SDimitry Andric Assert(BU.Inputs.size() == 1, 31210b57cec5SDimitry Andric "Expected exactly one funclet bundle operand", Call); 31220b57cec5SDimitry Andric Assert(isa<FuncletPadInst>(BU.Inputs.front()), 31230b57cec5SDimitry Andric "Funclet bundle operands should correspond to a FuncletPadInst", 31240b57cec5SDimitry Andric Call); 3125480093f4SDimitry Andric } else if (Tag == LLVMContext::OB_cfguardtarget) { 3126480093f4SDimitry Andric Assert(!FoundCFGuardTargetBundle, 3127480093f4SDimitry Andric "Multiple CFGuardTarget operand bundles", Call); 3128480093f4SDimitry Andric FoundCFGuardTargetBundle = true; 3129480093f4SDimitry Andric Assert(BU.Inputs.size() == 1, 3130480093f4SDimitry Andric "Expected exactly one cfguardtarget bundle operand", Call); 3131*5ffd83dbSDimitry Andric } else if (Tag == LLVMContext::OB_preallocated) { 3132*5ffd83dbSDimitry Andric Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3133*5ffd83dbSDimitry Andric Call); 3134*5ffd83dbSDimitry Andric FoundPreallocatedBundle = true; 3135*5ffd83dbSDimitry Andric Assert(BU.Inputs.size() == 1, 3136*5ffd83dbSDimitry Andric "Expected exactly one preallocated bundle operand", Call); 3137*5ffd83dbSDimitry Andric auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3138*5ffd83dbSDimitry Andric Assert(Input && 3139*5ffd83dbSDimitry Andric Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3140*5ffd83dbSDimitry Andric "\"preallocated\" argument must be a token from " 3141*5ffd83dbSDimitry Andric "llvm.call.preallocated.setup", 3142*5ffd83dbSDimitry Andric Call); 3143*5ffd83dbSDimitry Andric } else if (Tag == LLVMContext::OB_gc_live) { 3144*5ffd83dbSDimitry Andric Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3145*5ffd83dbSDimitry Andric Call); 3146*5ffd83dbSDimitry Andric FoundGCLiveBundle = true; 31470b57cec5SDimitry Andric } 31480b57cec5SDimitry Andric } 31490b57cec5SDimitry Andric 31500b57cec5SDimitry Andric // Verify that each inlinable callsite of a debug-info-bearing function in a 31510b57cec5SDimitry Andric // debug-info-bearing function has a debug location attached to it. Failure to 31520b57cec5SDimitry Andric // do so causes assertion failures when the inliner sets up inline scope info. 31530b57cec5SDimitry Andric if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 31540b57cec5SDimitry Andric Call.getCalledFunction()->getSubprogram()) 31550b57cec5SDimitry Andric AssertDI(Call.getDebugLoc(), 31560b57cec5SDimitry Andric "inlinable function call in a function with " 31570b57cec5SDimitry Andric "debug info must have a !dbg location", 31580b57cec5SDimitry Andric Call); 31590b57cec5SDimitry Andric 31600b57cec5SDimitry Andric visitInstruction(Call); 31610b57cec5SDimitry Andric } 31620b57cec5SDimitry Andric 31630b57cec5SDimitry Andric /// Two types are "congruent" if they are identical, or if they are both pointer 31640b57cec5SDimitry Andric /// types with different pointee types and the same address space. 31650b57cec5SDimitry Andric static bool isTypeCongruent(Type *L, Type *R) { 31660b57cec5SDimitry Andric if (L == R) 31670b57cec5SDimitry Andric return true; 31680b57cec5SDimitry Andric PointerType *PL = dyn_cast<PointerType>(L); 31690b57cec5SDimitry Andric PointerType *PR = dyn_cast<PointerType>(R); 31700b57cec5SDimitry Andric if (!PL || !PR) 31710b57cec5SDimitry Andric return false; 31720b57cec5SDimitry Andric return PL->getAddressSpace() == PR->getAddressSpace(); 31730b57cec5SDimitry Andric } 31740b57cec5SDimitry Andric 31750b57cec5SDimitry Andric static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 31760b57cec5SDimitry Andric static const Attribute::AttrKind ABIAttrs[] = { 31770b57cec5SDimitry Andric Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3178*5ffd83dbSDimitry Andric Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError, 3179*5ffd83dbSDimitry Andric Attribute::Preallocated}; 31800b57cec5SDimitry Andric AttrBuilder Copy; 31810b57cec5SDimitry Andric for (auto AK : ABIAttrs) { 31820b57cec5SDimitry Andric if (Attrs.hasParamAttribute(I, AK)) 31830b57cec5SDimitry Andric Copy.addAttribute(AK); 31840b57cec5SDimitry Andric } 3185*5ffd83dbSDimitry Andric // `align` is ABI-affecting only in combination with `byval`. 3186*5ffd83dbSDimitry Andric if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3187*5ffd83dbSDimitry Andric Attrs.hasParamAttribute(I, Attribute::ByVal)) 31880b57cec5SDimitry Andric Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 31890b57cec5SDimitry Andric return Copy; 31900b57cec5SDimitry Andric } 31910b57cec5SDimitry Andric 31920b57cec5SDimitry Andric void Verifier::verifyMustTailCall(CallInst &CI) { 31930b57cec5SDimitry Andric Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 31940b57cec5SDimitry Andric 31950b57cec5SDimitry Andric // - The caller and callee prototypes must match. Pointer types of 31960b57cec5SDimitry Andric // parameters or return types may differ in pointee type, but not 31970b57cec5SDimitry Andric // address space. 31980b57cec5SDimitry Andric Function *F = CI.getParent()->getParent(); 31990b57cec5SDimitry Andric FunctionType *CallerTy = F->getFunctionType(); 32000b57cec5SDimitry Andric FunctionType *CalleeTy = CI.getFunctionType(); 32010b57cec5SDimitry Andric if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 32020b57cec5SDimitry Andric Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 32030b57cec5SDimitry Andric "cannot guarantee tail call due to mismatched parameter counts", 32040b57cec5SDimitry Andric &CI); 32050b57cec5SDimitry Andric for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 32060b57cec5SDimitry Andric Assert( 32070b57cec5SDimitry Andric isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 32080b57cec5SDimitry Andric "cannot guarantee tail call due to mismatched parameter types", &CI); 32090b57cec5SDimitry Andric } 32100b57cec5SDimitry Andric } 32110b57cec5SDimitry Andric Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 32120b57cec5SDimitry Andric "cannot guarantee tail call due to mismatched varargs", &CI); 32130b57cec5SDimitry Andric Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 32140b57cec5SDimitry Andric "cannot guarantee tail call due to mismatched return types", &CI); 32150b57cec5SDimitry Andric 32160b57cec5SDimitry Andric // - The calling conventions of the caller and callee must match. 32170b57cec5SDimitry Andric Assert(F->getCallingConv() == CI.getCallingConv(), 32180b57cec5SDimitry Andric "cannot guarantee tail call due to mismatched calling conv", &CI); 32190b57cec5SDimitry Andric 32200b57cec5SDimitry Andric // - All ABI-impacting function attributes, such as sret, byval, inreg, 3221*5ffd83dbSDimitry Andric // returned, preallocated, and inalloca, must match. 32220b57cec5SDimitry Andric AttributeList CallerAttrs = F->getAttributes(); 32230b57cec5SDimitry Andric AttributeList CalleeAttrs = CI.getAttributes(); 32240b57cec5SDimitry Andric for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 32250b57cec5SDimitry Andric AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 32260b57cec5SDimitry Andric AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 32270b57cec5SDimitry Andric Assert(CallerABIAttrs == CalleeABIAttrs, 32280b57cec5SDimitry Andric "cannot guarantee tail call due to mismatched ABI impacting " 32290b57cec5SDimitry Andric "function attributes", 32300b57cec5SDimitry Andric &CI, CI.getOperand(I)); 32310b57cec5SDimitry Andric } 32320b57cec5SDimitry Andric 32330b57cec5SDimitry Andric // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 32340b57cec5SDimitry Andric // or a pointer bitcast followed by a ret instruction. 32350b57cec5SDimitry Andric // - The ret instruction must return the (possibly bitcasted) value 32360b57cec5SDimitry Andric // produced by the call or void. 32370b57cec5SDimitry Andric Value *RetVal = &CI; 32380b57cec5SDimitry Andric Instruction *Next = CI.getNextNode(); 32390b57cec5SDimitry Andric 32400b57cec5SDimitry Andric // Handle the optional bitcast. 32410b57cec5SDimitry Andric if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 32420b57cec5SDimitry Andric Assert(BI->getOperand(0) == RetVal, 32430b57cec5SDimitry Andric "bitcast following musttail call must use the call", BI); 32440b57cec5SDimitry Andric RetVal = BI; 32450b57cec5SDimitry Andric Next = BI->getNextNode(); 32460b57cec5SDimitry Andric } 32470b57cec5SDimitry Andric 32480b57cec5SDimitry Andric // Check the return. 32490b57cec5SDimitry Andric ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 32500b57cec5SDimitry Andric Assert(Ret, "musttail call must precede a ret with an optional bitcast", 32510b57cec5SDimitry Andric &CI); 32520b57cec5SDimitry Andric Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 32530b57cec5SDimitry Andric "musttail call result must be returned", Ret); 32540b57cec5SDimitry Andric } 32550b57cec5SDimitry Andric 32560b57cec5SDimitry Andric void Verifier::visitCallInst(CallInst &CI) { 32570b57cec5SDimitry Andric visitCallBase(CI); 32580b57cec5SDimitry Andric 32590b57cec5SDimitry Andric if (CI.isMustTailCall()) 32600b57cec5SDimitry Andric verifyMustTailCall(CI); 32610b57cec5SDimitry Andric } 32620b57cec5SDimitry Andric 32630b57cec5SDimitry Andric void Verifier::visitInvokeInst(InvokeInst &II) { 32640b57cec5SDimitry Andric visitCallBase(II); 32650b57cec5SDimitry Andric 32660b57cec5SDimitry Andric // Verify that the first non-PHI instruction of the unwind destination is an 32670b57cec5SDimitry Andric // exception handling instruction. 32680b57cec5SDimitry Andric Assert( 32690b57cec5SDimitry Andric II.getUnwindDest()->isEHPad(), 32700b57cec5SDimitry Andric "The unwind destination does not have an exception handling instruction!", 32710b57cec5SDimitry Andric &II); 32720b57cec5SDimitry Andric 32730b57cec5SDimitry Andric visitTerminator(II); 32740b57cec5SDimitry Andric } 32750b57cec5SDimitry Andric 32760b57cec5SDimitry Andric /// visitUnaryOperator - Check the argument to the unary operator. 32770b57cec5SDimitry Andric /// 32780b57cec5SDimitry Andric void Verifier::visitUnaryOperator(UnaryOperator &U) { 32790b57cec5SDimitry Andric Assert(U.getType() == U.getOperand(0)->getType(), 32800b57cec5SDimitry Andric "Unary operators must have same type for" 32810b57cec5SDimitry Andric "operands and result!", 32820b57cec5SDimitry Andric &U); 32830b57cec5SDimitry Andric 32840b57cec5SDimitry Andric switch (U.getOpcode()) { 32850b57cec5SDimitry Andric // Check that floating-point arithmetic operators are only used with 32860b57cec5SDimitry Andric // floating-point operands. 32870b57cec5SDimitry Andric case Instruction::FNeg: 32880b57cec5SDimitry Andric Assert(U.getType()->isFPOrFPVectorTy(), 32890b57cec5SDimitry Andric "FNeg operator only works with float types!", &U); 32900b57cec5SDimitry Andric break; 32910b57cec5SDimitry Andric default: 32920b57cec5SDimitry Andric llvm_unreachable("Unknown UnaryOperator opcode!"); 32930b57cec5SDimitry Andric } 32940b57cec5SDimitry Andric 32950b57cec5SDimitry Andric visitInstruction(U); 32960b57cec5SDimitry Andric } 32970b57cec5SDimitry Andric 32980b57cec5SDimitry Andric /// visitBinaryOperator - Check that both arguments to the binary operator are 32990b57cec5SDimitry Andric /// of the same type! 33000b57cec5SDimitry Andric /// 33010b57cec5SDimitry Andric void Verifier::visitBinaryOperator(BinaryOperator &B) { 33020b57cec5SDimitry Andric Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 33030b57cec5SDimitry Andric "Both operands to a binary operator are not of the same type!", &B); 33040b57cec5SDimitry Andric 33050b57cec5SDimitry Andric switch (B.getOpcode()) { 33060b57cec5SDimitry Andric // Check that integer arithmetic operators are only used with 33070b57cec5SDimitry Andric // integral operands. 33080b57cec5SDimitry Andric case Instruction::Add: 33090b57cec5SDimitry Andric case Instruction::Sub: 33100b57cec5SDimitry Andric case Instruction::Mul: 33110b57cec5SDimitry Andric case Instruction::SDiv: 33120b57cec5SDimitry Andric case Instruction::UDiv: 33130b57cec5SDimitry Andric case Instruction::SRem: 33140b57cec5SDimitry Andric case Instruction::URem: 33150b57cec5SDimitry Andric Assert(B.getType()->isIntOrIntVectorTy(), 33160b57cec5SDimitry Andric "Integer arithmetic operators only work with integral types!", &B); 33170b57cec5SDimitry Andric Assert(B.getType() == B.getOperand(0)->getType(), 33180b57cec5SDimitry Andric "Integer arithmetic operators must have same type " 33190b57cec5SDimitry Andric "for operands and result!", 33200b57cec5SDimitry Andric &B); 33210b57cec5SDimitry Andric break; 33220b57cec5SDimitry Andric // Check that floating-point arithmetic operators are only used with 33230b57cec5SDimitry Andric // floating-point operands. 33240b57cec5SDimitry Andric case Instruction::FAdd: 33250b57cec5SDimitry Andric case Instruction::FSub: 33260b57cec5SDimitry Andric case Instruction::FMul: 33270b57cec5SDimitry Andric case Instruction::FDiv: 33280b57cec5SDimitry Andric case Instruction::FRem: 33290b57cec5SDimitry Andric Assert(B.getType()->isFPOrFPVectorTy(), 33300b57cec5SDimitry Andric "Floating-point arithmetic operators only work with " 33310b57cec5SDimitry Andric "floating-point types!", 33320b57cec5SDimitry Andric &B); 33330b57cec5SDimitry Andric Assert(B.getType() == B.getOperand(0)->getType(), 33340b57cec5SDimitry Andric "Floating-point arithmetic operators must have same type " 33350b57cec5SDimitry Andric "for operands and result!", 33360b57cec5SDimitry Andric &B); 33370b57cec5SDimitry Andric break; 33380b57cec5SDimitry Andric // Check that logical operators are only used with integral operands. 33390b57cec5SDimitry Andric case Instruction::And: 33400b57cec5SDimitry Andric case Instruction::Or: 33410b57cec5SDimitry Andric case Instruction::Xor: 33420b57cec5SDimitry Andric Assert(B.getType()->isIntOrIntVectorTy(), 33430b57cec5SDimitry Andric "Logical operators only work with integral types!", &B); 33440b57cec5SDimitry Andric Assert(B.getType() == B.getOperand(0)->getType(), 33450b57cec5SDimitry Andric "Logical operators must have same type for operands and result!", 33460b57cec5SDimitry Andric &B); 33470b57cec5SDimitry Andric break; 33480b57cec5SDimitry Andric case Instruction::Shl: 33490b57cec5SDimitry Andric case Instruction::LShr: 33500b57cec5SDimitry Andric case Instruction::AShr: 33510b57cec5SDimitry Andric Assert(B.getType()->isIntOrIntVectorTy(), 33520b57cec5SDimitry Andric "Shifts only work with integral types!", &B); 33530b57cec5SDimitry Andric Assert(B.getType() == B.getOperand(0)->getType(), 33540b57cec5SDimitry Andric "Shift return type must be same as operands!", &B); 33550b57cec5SDimitry Andric break; 33560b57cec5SDimitry Andric default: 33570b57cec5SDimitry Andric llvm_unreachable("Unknown BinaryOperator opcode!"); 33580b57cec5SDimitry Andric } 33590b57cec5SDimitry Andric 33600b57cec5SDimitry Andric visitInstruction(B); 33610b57cec5SDimitry Andric } 33620b57cec5SDimitry Andric 33630b57cec5SDimitry Andric void Verifier::visitICmpInst(ICmpInst &IC) { 33640b57cec5SDimitry Andric // Check that the operands are the same type 33650b57cec5SDimitry Andric Type *Op0Ty = IC.getOperand(0)->getType(); 33660b57cec5SDimitry Andric Type *Op1Ty = IC.getOperand(1)->getType(); 33670b57cec5SDimitry Andric Assert(Op0Ty == Op1Ty, 33680b57cec5SDimitry Andric "Both operands to ICmp instruction are not of the same type!", &IC); 33690b57cec5SDimitry Andric // Check that the operands are the right type 33700b57cec5SDimitry Andric Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 33710b57cec5SDimitry Andric "Invalid operand types for ICmp instruction", &IC); 33720b57cec5SDimitry Andric // Check that the predicate is valid. 33730b57cec5SDimitry Andric Assert(IC.isIntPredicate(), 33740b57cec5SDimitry Andric "Invalid predicate in ICmp instruction!", &IC); 33750b57cec5SDimitry Andric 33760b57cec5SDimitry Andric visitInstruction(IC); 33770b57cec5SDimitry Andric } 33780b57cec5SDimitry Andric 33790b57cec5SDimitry Andric void Verifier::visitFCmpInst(FCmpInst &FC) { 33800b57cec5SDimitry Andric // Check that the operands are the same type 33810b57cec5SDimitry Andric Type *Op0Ty = FC.getOperand(0)->getType(); 33820b57cec5SDimitry Andric Type *Op1Ty = FC.getOperand(1)->getType(); 33830b57cec5SDimitry Andric Assert(Op0Ty == Op1Ty, 33840b57cec5SDimitry Andric "Both operands to FCmp instruction are not of the same type!", &FC); 33850b57cec5SDimitry Andric // Check that the operands are the right type 33860b57cec5SDimitry Andric Assert(Op0Ty->isFPOrFPVectorTy(), 33870b57cec5SDimitry Andric "Invalid operand types for FCmp instruction", &FC); 33880b57cec5SDimitry Andric // Check that the predicate is valid. 33890b57cec5SDimitry Andric Assert(FC.isFPPredicate(), 33900b57cec5SDimitry Andric "Invalid predicate in FCmp instruction!", &FC); 33910b57cec5SDimitry Andric 33920b57cec5SDimitry Andric visitInstruction(FC); 33930b57cec5SDimitry Andric } 33940b57cec5SDimitry Andric 33950b57cec5SDimitry Andric void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 33960b57cec5SDimitry Andric Assert( 33970b57cec5SDimitry Andric ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 33980b57cec5SDimitry Andric "Invalid extractelement operands!", &EI); 33990b57cec5SDimitry Andric visitInstruction(EI); 34000b57cec5SDimitry Andric } 34010b57cec5SDimitry Andric 34020b57cec5SDimitry Andric void Verifier::visitInsertElementInst(InsertElementInst &IE) { 34030b57cec5SDimitry Andric Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 34040b57cec5SDimitry Andric IE.getOperand(2)), 34050b57cec5SDimitry Andric "Invalid insertelement operands!", &IE); 34060b57cec5SDimitry Andric visitInstruction(IE); 34070b57cec5SDimitry Andric } 34080b57cec5SDimitry Andric 34090b57cec5SDimitry Andric void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 34100b57cec5SDimitry Andric Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3411*5ffd83dbSDimitry Andric SV.getShuffleMask()), 34120b57cec5SDimitry Andric "Invalid shufflevector operands!", &SV); 34130b57cec5SDimitry Andric visitInstruction(SV); 34140b57cec5SDimitry Andric } 34150b57cec5SDimitry Andric 34160b57cec5SDimitry Andric void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 34170b57cec5SDimitry Andric Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 34180b57cec5SDimitry Andric 34190b57cec5SDimitry Andric Assert(isa<PointerType>(TargetTy), 34200b57cec5SDimitry Andric "GEP base pointer is not a vector or a vector of pointers", &GEP); 34210b57cec5SDimitry Andric Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 34220b57cec5SDimitry Andric 34230b57cec5SDimitry Andric SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 34240b57cec5SDimitry Andric Assert(all_of( 34250b57cec5SDimitry Andric Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 34260b57cec5SDimitry Andric "GEP indexes must be integers", &GEP); 34270b57cec5SDimitry Andric Type *ElTy = 34280b57cec5SDimitry Andric GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 34290b57cec5SDimitry Andric Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 34300b57cec5SDimitry Andric 34310b57cec5SDimitry Andric Assert(GEP.getType()->isPtrOrPtrVectorTy() && 34320b57cec5SDimitry Andric GEP.getResultElementType() == ElTy, 34330b57cec5SDimitry Andric "GEP is not of right type for indices!", &GEP, ElTy); 34340b57cec5SDimitry Andric 3435*5ffd83dbSDimitry Andric if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 34360b57cec5SDimitry Andric // Additional checks for vector GEPs. 3437*5ffd83dbSDimitry Andric ElementCount GEPWidth = GEPVTy->getElementCount(); 34380b57cec5SDimitry Andric if (GEP.getPointerOperandType()->isVectorTy()) 3439*5ffd83dbSDimitry Andric Assert( 3440*5ffd83dbSDimitry Andric GEPWidth == 3441*5ffd83dbSDimitry Andric cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 34420b57cec5SDimitry Andric "Vector GEP result width doesn't match operand's", &GEP); 34430b57cec5SDimitry Andric for (Value *Idx : Idxs) { 34440b57cec5SDimitry Andric Type *IndexTy = Idx->getType(); 3445*5ffd83dbSDimitry Andric if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3446*5ffd83dbSDimitry Andric ElementCount IndexWidth = IndexVTy->getElementCount(); 34470b57cec5SDimitry Andric Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 34480b57cec5SDimitry Andric } 34490b57cec5SDimitry Andric Assert(IndexTy->isIntOrIntVectorTy(), 34500b57cec5SDimitry Andric "All GEP indices should be of integer type"); 34510b57cec5SDimitry Andric } 34520b57cec5SDimitry Andric } 34530b57cec5SDimitry Andric 34540b57cec5SDimitry Andric if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 34550b57cec5SDimitry Andric Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 34560b57cec5SDimitry Andric "GEP address space doesn't match type", &GEP); 34570b57cec5SDimitry Andric } 34580b57cec5SDimitry Andric 34590b57cec5SDimitry Andric visitInstruction(GEP); 34600b57cec5SDimitry Andric } 34610b57cec5SDimitry Andric 34620b57cec5SDimitry Andric static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 34630b57cec5SDimitry Andric return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 34640b57cec5SDimitry Andric } 34650b57cec5SDimitry Andric 34660b57cec5SDimitry Andric void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 34670b57cec5SDimitry Andric assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 34680b57cec5SDimitry Andric "precondition violation"); 34690b57cec5SDimitry Andric 34700b57cec5SDimitry Andric unsigned NumOperands = Range->getNumOperands(); 34710b57cec5SDimitry Andric Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 34720b57cec5SDimitry Andric unsigned NumRanges = NumOperands / 2; 34730b57cec5SDimitry Andric Assert(NumRanges >= 1, "It should have at least one range!", Range); 34740b57cec5SDimitry Andric 34750b57cec5SDimitry Andric ConstantRange LastRange(1, true); // Dummy initial value 34760b57cec5SDimitry Andric for (unsigned i = 0; i < NumRanges; ++i) { 34770b57cec5SDimitry Andric ConstantInt *Low = 34780b57cec5SDimitry Andric mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 34790b57cec5SDimitry Andric Assert(Low, "The lower limit must be an integer!", Low); 34800b57cec5SDimitry Andric ConstantInt *High = 34810b57cec5SDimitry Andric mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 34820b57cec5SDimitry Andric Assert(High, "The upper limit must be an integer!", High); 34830b57cec5SDimitry Andric Assert(High->getType() == Low->getType() && High->getType() == Ty, 34840b57cec5SDimitry Andric "Range types must match instruction type!", &I); 34850b57cec5SDimitry Andric 34860b57cec5SDimitry Andric APInt HighV = High->getValue(); 34870b57cec5SDimitry Andric APInt LowV = Low->getValue(); 34880b57cec5SDimitry Andric ConstantRange CurRange(LowV, HighV); 34890b57cec5SDimitry Andric Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 34900b57cec5SDimitry Andric "Range must not be empty!", Range); 34910b57cec5SDimitry Andric if (i != 0) { 34920b57cec5SDimitry Andric Assert(CurRange.intersectWith(LastRange).isEmptySet(), 34930b57cec5SDimitry Andric "Intervals are overlapping", Range); 34940b57cec5SDimitry Andric Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 34950b57cec5SDimitry Andric Range); 34960b57cec5SDimitry Andric Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 34970b57cec5SDimitry Andric Range); 34980b57cec5SDimitry Andric } 34990b57cec5SDimitry Andric LastRange = ConstantRange(LowV, HighV); 35000b57cec5SDimitry Andric } 35010b57cec5SDimitry Andric if (NumRanges > 2) { 35020b57cec5SDimitry Andric APInt FirstLow = 35030b57cec5SDimitry Andric mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 35040b57cec5SDimitry Andric APInt FirstHigh = 35050b57cec5SDimitry Andric mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 35060b57cec5SDimitry Andric ConstantRange FirstRange(FirstLow, FirstHigh); 35070b57cec5SDimitry Andric Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 35080b57cec5SDimitry Andric "Intervals are overlapping", Range); 35090b57cec5SDimitry Andric Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 35100b57cec5SDimitry Andric Range); 35110b57cec5SDimitry Andric } 35120b57cec5SDimitry Andric } 35130b57cec5SDimitry Andric 35140b57cec5SDimitry Andric void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 35150b57cec5SDimitry Andric unsigned Size = DL.getTypeSizeInBits(Ty); 35160b57cec5SDimitry Andric Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 35170b57cec5SDimitry Andric Assert(!(Size & (Size - 1)), 35180b57cec5SDimitry Andric "atomic memory access' operand must have a power-of-two size", Ty, I); 35190b57cec5SDimitry Andric } 35200b57cec5SDimitry Andric 35210b57cec5SDimitry Andric void Verifier::visitLoadInst(LoadInst &LI) { 35220b57cec5SDimitry Andric PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 35230b57cec5SDimitry Andric Assert(PTy, "Load operand must be a pointer.", &LI); 35240b57cec5SDimitry Andric Type *ElTy = LI.getType(); 35250b57cec5SDimitry Andric Assert(LI.getAlignment() <= Value::MaximumAlignment, 35260b57cec5SDimitry Andric "huge alignment values are unsupported", &LI); 35270b57cec5SDimitry Andric Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 35280b57cec5SDimitry Andric if (LI.isAtomic()) { 35290b57cec5SDimitry Andric Assert(LI.getOrdering() != AtomicOrdering::Release && 35300b57cec5SDimitry Andric LI.getOrdering() != AtomicOrdering::AcquireRelease, 35310b57cec5SDimitry Andric "Load cannot have Release ordering", &LI); 35320b57cec5SDimitry Andric Assert(LI.getAlignment() != 0, 35330b57cec5SDimitry Andric "Atomic load must specify explicit alignment", &LI); 35340b57cec5SDimitry Andric Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 35350b57cec5SDimitry Andric "atomic load operand must have integer, pointer, or floating point " 35360b57cec5SDimitry Andric "type!", 35370b57cec5SDimitry Andric ElTy, &LI); 35380b57cec5SDimitry Andric checkAtomicMemAccessSize(ElTy, &LI); 35390b57cec5SDimitry Andric } else { 35400b57cec5SDimitry Andric Assert(LI.getSyncScopeID() == SyncScope::System, 35410b57cec5SDimitry Andric "Non-atomic load cannot have SynchronizationScope specified", &LI); 35420b57cec5SDimitry Andric } 35430b57cec5SDimitry Andric 35440b57cec5SDimitry Andric visitInstruction(LI); 35450b57cec5SDimitry Andric } 35460b57cec5SDimitry Andric 35470b57cec5SDimitry Andric void Verifier::visitStoreInst(StoreInst &SI) { 35480b57cec5SDimitry Andric PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 35490b57cec5SDimitry Andric Assert(PTy, "Store operand must be a pointer.", &SI); 35500b57cec5SDimitry Andric Type *ElTy = PTy->getElementType(); 35510b57cec5SDimitry Andric Assert(ElTy == SI.getOperand(0)->getType(), 35520b57cec5SDimitry Andric "Stored value type does not match pointer operand type!", &SI, ElTy); 35530b57cec5SDimitry Andric Assert(SI.getAlignment() <= Value::MaximumAlignment, 35540b57cec5SDimitry Andric "huge alignment values are unsupported", &SI); 35550b57cec5SDimitry Andric Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 35560b57cec5SDimitry Andric if (SI.isAtomic()) { 35570b57cec5SDimitry Andric Assert(SI.getOrdering() != AtomicOrdering::Acquire && 35580b57cec5SDimitry Andric SI.getOrdering() != AtomicOrdering::AcquireRelease, 35590b57cec5SDimitry Andric "Store cannot have Acquire ordering", &SI); 35600b57cec5SDimitry Andric Assert(SI.getAlignment() != 0, 35610b57cec5SDimitry Andric "Atomic store must specify explicit alignment", &SI); 35620b57cec5SDimitry Andric Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 35630b57cec5SDimitry Andric "atomic store operand must have integer, pointer, or floating point " 35640b57cec5SDimitry Andric "type!", 35650b57cec5SDimitry Andric ElTy, &SI); 35660b57cec5SDimitry Andric checkAtomicMemAccessSize(ElTy, &SI); 35670b57cec5SDimitry Andric } else { 35680b57cec5SDimitry Andric Assert(SI.getSyncScopeID() == SyncScope::System, 35690b57cec5SDimitry Andric "Non-atomic store cannot have SynchronizationScope specified", &SI); 35700b57cec5SDimitry Andric } 35710b57cec5SDimitry Andric visitInstruction(SI); 35720b57cec5SDimitry Andric } 35730b57cec5SDimitry Andric 35740b57cec5SDimitry Andric /// Check that SwiftErrorVal is used as a swifterror argument in CS. 35750b57cec5SDimitry Andric void Verifier::verifySwiftErrorCall(CallBase &Call, 35760b57cec5SDimitry Andric const Value *SwiftErrorVal) { 35770b57cec5SDimitry Andric unsigned Idx = 0; 35780b57cec5SDimitry Andric for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 35790b57cec5SDimitry Andric if (*I == SwiftErrorVal) { 35800b57cec5SDimitry Andric Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 35810b57cec5SDimitry Andric "swifterror value when used in a callsite should be marked " 35820b57cec5SDimitry Andric "with swifterror attribute", 35830b57cec5SDimitry Andric SwiftErrorVal, Call); 35840b57cec5SDimitry Andric } 35850b57cec5SDimitry Andric } 35860b57cec5SDimitry Andric } 35870b57cec5SDimitry Andric 35880b57cec5SDimitry Andric void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 35890b57cec5SDimitry Andric // Check that swifterror value is only used by loads, stores, or as 35900b57cec5SDimitry Andric // a swifterror argument. 35910b57cec5SDimitry Andric for (const User *U : SwiftErrorVal->users()) { 35920b57cec5SDimitry Andric Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 35930b57cec5SDimitry Andric isa<InvokeInst>(U), 35940b57cec5SDimitry Andric "swifterror value can only be loaded and stored from, or " 35950b57cec5SDimitry Andric "as a swifterror argument!", 35960b57cec5SDimitry Andric SwiftErrorVal, U); 35970b57cec5SDimitry Andric // If it is used by a store, check it is the second operand. 35980b57cec5SDimitry Andric if (auto StoreI = dyn_cast<StoreInst>(U)) 35990b57cec5SDimitry Andric Assert(StoreI->getOperand(1) == SwiftErrorVal, 36000b57cec5SDimitry Andric "swifterror value should be the second operand when used " 36010b57cec5SDimitry Andric "by stores", SwiftErrorVal, U); 36020b57cec5SDimitry Andric if (auto *Call = dyn_cast<CallBase>(U)) 36030b57cec5SDimitry Andric verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 36040b57cec5SDimitry Andric } 36050b57cec5SDimitry Andric } 36060b57cec5SDimitry Andric 36070b57cec5SDimitry Andric void Verifier::visitAllocaInst(AllocaInst &AI) { 36080b57cec5SDimitry Andric SmallPtrSet<Type*, 4> Visited; 36090b57cec5SDimitry Andric PointerType *PTy = AI.getType(); 36100b57cec5SDimitry Andric // TODO: Relax this restriction? 36110b57cec5SDimitry Andric Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 36120b57cec5SDimitry Andric "Allocation instruction pointer not in the stack address space!", 36130b57cec5SDimitry Andric &AI); 36140b57cec5SDimitry Andric Assert(AI.getAllocatedType()->isSized(&Visited), 36150b57cec5SDimitry Andric "Cannot allocate unsized type", &AI); 36160b57cec5SDimitry Andric Assert(AI.getArraySize()->getType()->isIntegerTy(), 36170b57cec5SDimitry Andric "Alloca array size must have integer type", &AI); 36180b57cec5SDimitry Andric Assert(AI.getAlignment() <= Value::MaximumAlignment, 36190b57cec5SDimitry Andric "huge alignment values are unsupported", &AI); 36200b57cec5SDimitry Andric 36210b57cec5SDimitry Andric if (AI.isSwiftError()) { 36220b57cec5SDimitry Andric verifySwiftErrorValue(&AI); 36230b57cec5SDimitry Andric } 36240b57cec5SDimitry Andric 36250b57cec5SDimitry Andric visitInstruction(AI); 36260b57cec5SDimitry Andric } 36270b57cec5SDimitry Andric 36280b57cec5SDimitry Andric void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 36290b57cec5SDimitry Andric 36300b57cec5SDimitry Andric // FIXME: more conditions??? 36310b57cec5SDimitry Andric Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 36320b57cec5SDimitry Andric "cmpxchg instructions must be atomic.", &CXI); 36330b57cec5SDimitry Andric Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 36340b57cec5SDimitry Andric "cmpxchg instructions must be atomic.", &CXI); 36350b57cec5SDimitry Andric Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 36360b57cec5SDimitry Andric "cmpxchg instructions cannot be unordered.", &CXI); 36370b57cec5SDimitry Andric Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 36380b57cec5SDimitry Andric "cmpxchg instructions cannot be unordered.", &CXI); 36390b57cec5SDimitry Andric Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 36400b57cec5SDimitry Andric "cmpxchg instructions failure argument shall be no stronger than the " 36410b57cec5SDimitry Andric "success argument", 36420b57cec5SDimitry Andric &CXI); 36430b57cec5SDimitry Andric Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 36440b57cec5SDimitry Andric CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 36450b57cec5SDimitry Andric "cmpxchg failure ordering cannot include release semantics", &CXI); 36460b57cec5SDimitry Andric 36470b57cec5SDimitry Andric PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 36480b57cec5SDimitry Andric Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 36490b57cec5SDimitry Andric Type *ElTy = PTy->getElementType(); 36500b57cec5SDimitry Andric Assert(ElTy->isIntOrPtrTy(), 36510b57cec5SDimitry Andric "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 36520b57cec5SDimitry Andric checkAtomicMemAccessSize(ElTy, &CXI); 36530b57cec5SDimitry Andric Assert(ElTy == CXI.getOperand(1)->getType(), 36540b57cec5SDimitry Andric "Expected value type does not match pointer operand type!", &CXI, 36550b57cec5SDimitry Andric ElTy); 36560b57cec5SDimitry Andric Assert(ElTy == CXI.getOperand(2)->getType(), 36570b57cec5SDimitry Andric "Stored value type does not match pointer operand type!", &CXI, ElTy); 36580b57cec5SDimitry Andric visitInstruction(CXI); 36590b57cec5SDimitry Andric } 36600b57cec5SDimitry Andric 36610b57cec5SDimitry Andric void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 36620b57cec5SDimitry Andric Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 36630b57cec5SDimitry Andric "atomicrmw instructions must be atomic.", &RMWI); 36640b57cec5SDimitry Andric Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 36650b57cec5SDimitry Andric "atomicrmw instructions cannot be unordered.", &RMWI); 36660b57cec5SDimitry Andric auto Op = RMWI.getOperation(); 36670b57cec5SDimitry Andric PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 36680b57cec5SDimitry Andric Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 36690b57cec5SDimitry Andric Type *ElTy = PTy->getElementType(); 36700b57cec5SDimitry Andric if (Op == AtomicRMWInst::Xchg) { 36710b57cec5SDimitry Andric Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 36720b57cec5SDimitry Andric AtomicRMWInst::getOperationName(Op) + 36730b57cec5SDimitry Andric " operand must have integer or floating point type!", 36740b57cec5SDimitry Andric &RMWI, ElTy); 36750b57cec5SDimitry Andric } else if (AtomicRMWInst::isFPOperation(Op)) { 36760b57cec5SDimitry Andric Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 36770b57cec5SDimitry Andric AtomicRMWInst::getOperationName(Op) + 36780b57cec5SDimitry Andric " operand must have floating point type!", 36790b57cec5SDimitry Andric &RMWI, ElTy); 36800b57cec5SDimitry Andric } else { 36810b57cec5SDimitry Andric Assert(ElTy->isIntegerTy(), "atomicrmw " + 36820b57cec5SDimitry Andric AtomicRMWInst::getOperationName(Op) + 36830b57cec5SDimitry Andric " operand must have integer type!", 36840b57cec5SDimitry Andric &RMWI, ElTy); 36850b57cec5SDimitry Andric } 36860b57cec5SDimitry Andric checkAtomicMemAccessSize(ElTy, &RMWI); 36870b57cec5SDimitry Andric Assert(ElTy == RMWI.getOperand(1)->getType(), 36880b57cec5SDimitry Andric "Argument value type does not match pointer operand type!", &RMWI, 36890b57cec5SDimitry Andric ElTy); 36900b57cec5SDimitry Andric Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 36910b57cec5SDimitry Andric "Invalid binary operation!", &RMWI); 36920b57cec5SDimitry Andric visitInstruction(RMWI); 36930b57cec5SDimitry Andric } 36940b57cec5SDimitry Andric 36950b57cec5SDimitry Andric void Verifier::visitFenceInst(FenceInst &FI) { 36960b57cec5SDimitry Andric const AtomicOrdering Ordering = FI.getOrdering(); 36970b57cec5SDimitry Andric Assert(Ordering == AtomicOrdering::Acquire || 36980b57cec5SDimitry Andric Ordering == AtomicOrdering::Release || 36990b57cec5SDimitry Andric Ordering == AtomicOrdering::AcquireRelease || 37000b57cec5SDimitry Andric Ordering == AtomicOrdering::SequentiallyConsistent, 37010b57cec5SDimitry Andric "fence instructions may only have acquire, release, acq_rel, or " 37020b57cec5SDimitry Andric "seq_cst ordering.", 37030b57cec5SDimitry Andric &FI); 37040b57cec5SDimitry Andric visitInstruction(FI); 37050b57cec5SDimitry Andric } 37060b57cec5SDimitry Andric 37070b57cec5SDimitry Andric void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 37080b57cec5SDimitry Andric Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 37090b57cec5SDimitry Andric EVI.getIndices()) == EVI.getType(), 37100b57cec5SDimitry Andric "Invalid ExtractValueInst operands!", &EVI); 37110b57cec5SDimitry Andric 37120b57cec5SDimitry Andric visitInstruction(EVI); 37130b57cec5SDimitry Andric } 37140b57cec5SDimitry Andric 37150b57cec5SDimitry Andric void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 37160b57cec5SDimitry Andric Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 37170b57cec5SDimitry Andric IVI.getIndices()) == 37180b57cec5SDimitry Andric IVI.getOperand(1)->getType(), 37190b57cec5SDimitry Andric "Invalid InsertValueInst operands!", &IVI); 37200b57cec5SDimitry Andric 37210b57cec5SDimitry Andric visitInstruction(IVI); 37220b57cec5SDimitry Andric } 37230b57cec5SDimitry Andric 37240b57cec5SDimitry Andric static Value *getParentPad(Value *EHPad) { 37250b57cec5SDimitry Andric if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 37260b57cec5SDimitry Andric return FPI->getParentPad(); 37270b57cec5SDimitry Andric 37280b57cec5SDimitry Andric return cast<CatchSwitchInst>(EHPad)->getParentPad(); 37290b57cec5SDimitry Andric } 37300b57cec5SDimitry Andric 37310b57cec5SDimitry Andric void Verifier::visitEHPadPredecessors(Instruction &I) { 37320b57cec5SDimitry Andric assert(I.isEHPad()); 37330b57cec5SDimitry Andric 37340b57cec5SDimitry Andric BasicBlock *BB = I.getParent(); 37350b57cec5SDimitry Andric Function *F = BB->getParent(); 37360b57cec5SDimitry Andric 37370b57cec5SDimitry Andric Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 37380b57cec5SDimitry Andric 37390b57cec5SDimitry Andric if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 37400b57cec5SDimitry Andric // The landingpad instruction defines its parent as a landing pad block. The 37410b57cec5SDimitry Andric // landing pad block may be branched to only by the unwind edge of an 37420b57cec5SDimitry Andric // invoke. 37430b57cec5SDimitry Andric for (BasicBlock *PredBB : predecessors(BB)) { 37440b57cec5SDimitry Andric const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 37450b57cec5SDimitry Andric Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 37460b57cec5SDimitry Andric "Block containing LandingPadInst must be jumped to " 37470b57cec5SDimitry Andric "only by the unwind edge of an invoke.", 37480b57cec5SDimitry Andric LPI); 37490b57cec5SDimitry Andric } 37500b57cec5SDimitry Andric return; 37510b57cec5SDimitry Andric } 37520b57cec5SDimitry Andric if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 37530b57cec5SDimitry Andric if (!pred_empty(BB)) 37540b57cec5SDimitry Andric Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 37550b57cec5SDimitry Andric "Block containg CatchPadInst must be jumped to " 37560b57cec5SDimitry Andric "only by its catchswitch.", 37570b57cec5SDimitry Andric CPI); 37580b57cec5SDimitry Andric Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 37590b57cec5SDimitry Andric "Catchswitch cannot unwind to one of its catchpads", 37600b57cec5SDimitry Andric CPI->getCatchSwitch(), CPI); 37610b57cec5SDimitry Andric return; 37620b57cec5SDimitry Andric } 37630b57cec5SDimitry Andric 37640b57cec5SDimitry Andric // Verify that each pred has a legal terminator with a legal to/from EH 37650b57cec5SDimitry Andric // pad relationship. 37660b57cec5SDimitry Andric Instruction *ToPad = &I; 37670b57cec5SDimitry Andric Value *ToPadParent = getParentPad(ToPad); 37680b57cec5SDimitry Andric for (BasicBlock *PredBB : predecessors(BB)) { 37690b57cec5SDimitry Andric Instruction *TI = PredBB->getTerminator(); 37700b57cec5SDimitry Andric Value *FromPad; 37710b57cec5SDimitry Andric if (auto *II = dyn_cast<InvokeInst>(TI)) { 37720b57cec5SDimitry Andric Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 37730b57cec5SDimitry Andric "EH pad must be jumped to via an unwind edge", ToPad, II); 37740b57cec5SDimitry Andric if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 37750b57cec5SDimitry Andric FromPad = Bundle->Inputs[0]; 37760b57cec5SDimitry Andric else 37770b57cec5SDimitry Andric FromPad = ConstantTokenNone::get(II->getContext()); 37780b57cec5SDimitry Andric } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 37790b57cec5SDimitry Andric FromPad = CRI->getOperand(0); 37800b57cec5SDimitry Andric Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 37810b57cec5SDimitry Andric } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 37820b57cec5SDimitry Andric FromPad = CSI; 37830b57cec5SDimitry Andric } else { 37840b57cec5SDimitry Andric Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 37850b57cec5SDimitry Andric } 37860b57cec5SDimitry Andric 37870b57cec5SDimitry Andric // The edge may exit from zero or more nested pads. 37880b57cec5SDimitry Andric SmallSet<Value *, 8> Seen; 37890b57cec5SDimitry Andric for (;; FromPad = getParentPad(FromPad)) { 37900b57cec5SDimitry Andric Assert(FromPad != ToPad, 37910b57cec5SDimitry Andric "EH pad cannot handle exceptions raised within it", FromPad, TI); 37920b57cec5SDimitry Andric if (FromPad == ToPadParent) { 37930b57cec5SDimitry Andric // This is a legal unwind edge. 37940b57cec5SDimitry Andric break; 37950b57cec5SDimitry Andric } 37960b57cec5SDimitry Andric Assert(!isa<ConstantTokenNone>(FromPad), 37970b57cec5SDimitry Andric "A single unwind edge may only enter one EH pad", TI); 37980b57cec5SDimitry Andric Assert(Seen.insert(FromPad).second, 37990b57cec5SDimitry Andric "EH pad jumps through a cycle of pads", FromPad); 38000b57cec5SDimitry Andric } 38010b57cec5SDimitry Andric } 38020b57cec5SDimitry Andric } 38030b57cec5SDimitry Andric 38040b57cec5SDimitry Andric void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 38050b57cec5SDimitry Andric // The landingpad instruction is ill-formed if it doesn't have any clauses and 38060b57cec5SDimitry Andric // isn't a cleanup. 38070b57cec5SDimitry Andric Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 38080b57cec5SDimitry Andric "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 38090b57cec5SDimitry Andric 38100b57cec5SDimitry Andric visitEHPadPredecessors(LPI); 38110b57cec5SDimitry Andric 38120b57cec5SDimitry Andric if (!LandingPadResultTy) 38130b57cec5SDimitry Andric LandingPadResultTy = LPI.getType(); 38140b57cec5SDimitry Andric else 38150b57cec5SDimitry Andric Assert(LandingPadResultTy == LPI.getType(), 38160b57cec5SDimitry Andric "The landingpad instruction should have a consistent result type " 38170b57cec5SDimitry Andric "inside a function.", 38180b57cec5SDimitry Andric &LPI); 38190b57cec5SDimitry Andric 38200b57cec5SDimitry Andric Function *F = LPI.getParent()->getParent(); 38210b57cec5SDimitry Andric Assert(F->hasPersonalityFn(), 38220b57cec5SDimitry Andric "LandingPadInst needs to be in a function with a personality.", &LPI); 38230b57cec5SDimitry Andric 38240b57cec5SDimitry Andric // The landingpad instruction must be the first non-PHI instruction in the 38250b57cec5SDimitry Andric // block. 38260b57cec5SDimitry Andric Assert(LPI.getParent()->getLandingPadInst() == &LPI, 38270b57cec5SDimitry Andric "LandingPadInst not the first non-PHI instruction in the block.", 38280b57cec5SDimitry Andric &LPI); 38290b57cec5SDimitry Andric 38300b57cec5SDimitry Andric for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 38310b57cec5SDimitry Andric Constant *Clause = LPI.getClause(i); 38320b57cec5SDimitry Andric if (LPI.isCatch(i)) { 38330b57cec5SDimitry Andric Assert(isa<PointerType>(Clause->getType()), 38340b57cec5SDimitry Andric "Catch operand does not have pointer type!", &LPI); 38350b57cec5SDimitry Andric } else { 38360b57cec5SDimitry Andric Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 38370b57cec5SDimitry Andric Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 38380b57cec5SDimitry Andric "Filter operand is not an array of constants!", &LPI); 38390b57cec5SDimitry Andric } 38400b57cec5SDimitry Andric } 38410b57cec5SDimitry Andric 38420b57cec5SDimitry Andric visitInstruction(LPI); 38430b57cec5SDimitry Andric } 38440b57cec5SDimitry Andric 38450b57cec5SDimitry Andric void Verifier::visitResumeInst(ResumeInst &RI) { 38460b57cec5SDimitry Andric Assert(RI.getFunction()->hasPersonalityFn(), 38470b57cec5SDimitry Andric "ResumeInst needs to be in a function with a personality.", &RI); 38480b57cec5SDimitry Andric 38490b57cec5SDimitry Andric if (!LandingPadResultTy) 38500b57cec5SDimitry Andric LandingPadResultTy = RI.getValue()->getType(); 38510b57cec5SDimitry Andric else 38520b57cec5SDimitry Andric Assert(LandingPadResultTy == RI.getValue()->getType(), 38530b57cec5SDimitry Andric "The resume instruction should have a consistent result type " 38540b57cec5SDimitry Andric "inside a function.", 38550b57cec5SDimitry Andric &RI); 38560b57cec5SDimitry Andric 38570b57cec5SDimitry Andric visitTerminator(RI); 38580b57cec5SDimitry Andric } 38590b57cec5SDimitry Andric 38600b57cec5SDimitry Andric void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 38610b57cec5SDimitry Andric BasicBlock *BB = CPI.getParent(); 38620b57cec5SDimitry Andric 38630b57cec5SDimitry Andric Function *F = BB->getParent(); 38640b57cec5SDimitry Andric Assert(F->hasPersonalityFn(), 38650b57cec5SDimitry Andric "CatchPadInst needs to be in a function with a personality.", &CPI); 38660b57cec5SDimitry Andric 38670b57cec5SDimitry Andric Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 38680b57cec5SDimitry Andric "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 38690b57cec5SDimitry Andric CPI.getParentPad()); 38700b57cec5SDimitry Andric 38710b57cec5SDimitry Andric // The catchpad instruction must be the first non-PHI instruction in the 38720b57cec5SDimitry Andric // block. 38730b57cec5SDimitry Andric Assert(BB->getFirstNonPHI() == &CPI, 38740b57cec5SDimitry Andric "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 38750b57cec5SDimitry Andric 38760b57cec5SDimitry Andric visitEHPadPredecessors(CPI); 38770b57cec5SDimitry Andric visitFuncletPadInst(CPI); 38780b57cec5SDimitry Andric } 38790b57cec5SDimitry Andric 38800b57cec5SDimitry Andric void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 38810b57cec5SDimitry Andric Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 38820b57cec5SDimitry Andric "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 38830b57cec5SDimitry Andric CatchReturn.getOperand(0)); 38840b57cec5SDimitry Andric 38850b57cec5SDimitry Andric visitTerminator(CatchReturn); 38860b57cec5SDimitry Andric } 38870b57cec5SDimitry Andric 38880b57cec5SDimitry Andric void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 38890b57cec5SDimitry Andric BasicBlock *BB = CPI.getParent(); 38900b57cec5SDimitry Andric 38910b57cec5SDimitry Andric Function *F = BB->getParent(); 38920b57cec5SDimitry Andric Assert(F->hasPersonalityFn(), 38930b57cec5SDimitry Andric "CleanupPadInst needs to be in a function with a personality.", &CPI); 38940b57cec5SDimitry Andric 38950b57cec5SDimitry Andric // The cleanuppad instruction must be the first non-PHI instruction in the 38960b57cec5SDimitry Andric // block. 38970b57cec5SDimitry Andric Assert(BB->getFirstNonPHI() == &CPI, 38980b57cec5SDimitry Andric "CleanupPadInst not the first non-PHI instruction in the block.", 38990b57cec5SDimitry Andric &CPI); 39000b57cec5SDimitry Andric 39010b57cec5SDimitry Andric auto *ParentPad = CPI.getParentPad(); 39020b57cec5SDimitry Andric Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 39030b57cec5SDimitry Andric "CleanupPadInst has an invalid parent.", &CPI); 39040b57cec5SDimitry Andric 39050b57cec5SDimitry Andric visitEHPadPredecessors(CPI); 39060b57cec5SDimitry Andric visitFuncletPadInst(CPI); 39070b57cec5SDimitry Andric } 39080b57cec5SDimitry Andric 39090b57cec5SDimitry Andric void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 39100b57cec5SDimitry Andric User *FirstUser = nullptr; 39110b57cec5SDimitry Andric Value *FirstUnwindPad = nullptr; 39120b57cec5SDimitry Andric SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 39130b57cec5SDimitry Andric SmallSet<FuncletPadInst *, 8> Seen; 39140b57cec5SDimitry Andric 39150b57cec5SDimitry Andric while (!Worklist.empty()) { 39160b57cec5SDimitry Andric FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 39170b57cec5SDimitry Andric Assert(Seen.insert(CurrentPad).second, 39180b57cec5SDimitry Andric "FuncletPadInst must not be nested within itself", CurrentPad); 39190b57cec5SDimitry Andric Value *UnresolvedAncestorPad = nullptr; 39200b57cec5SDimitry Andric for (User *U : CurrentPad->users()) { 39210b57cec5SDimitry Andric BasicBlock *UnwindDest; 39220b57cec5SDimitry Andric if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 39230b57cec5SDimitry Andric UnwindDest = CRI->getUnwindDest(); 39240b57cec5SDimitry Andric } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 39250b57cec5SDimitry Andric // We allow catchswitch unwind to caller to nest 39260b57cec5SDimitry Andric // within an outer pad that unwinds somewhere else, 39270b57cec5SDimitry Andric // because catchswitch doesn't have a nounwind variant. 39280b57cec5SDimitry Andric // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 39290b57cec5SDimitry Andric if (CSI->unwindsToCaller()) 39300b57cec5SDimitry Andric continue; 39310b57cec5SDimitry Andric UnwindDest = CSI->getUnwindDest(); 39320b57cec5SDimitry Andric } else if (auto *II = dyn_cast<InvokeInst>(U)) { 39330b57cec5SDimitry Andric UnwindDest = II->getUnwindDest(); 39340b57cec5SDimitry Andric } else if (isa<CallInst>(U)) { 39350b57cec5SDimitry Andric // Calls which don't unwind may be found inside funclet 39360b57cec5SDimitry Andric // pads that unwind somewhere else. We don't *require* 39370b57cec5SDimitry Andric // such calls to be annotated nounwind. 39380b57cec5SDimitry Andric continue; 39390b57cec5SDimitry Andric } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 39400b57cec5SDimitry Andric // The unwind dest for a cleanup can only be found by 39410b57cec5SDimitry Andric // recursive search. Add it to the worklist, and we'll 39420b57cec5SDimitry Andric // search for its first use that determines where it unwinds. 39430b57cec5SDimitry Andric Worklist.push_back(CPI); 39440b57cec5SDimitry Andric continue; 39450b57cec5SDimitry Andric } else { 39460b57cec5SDimitry Andric Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 39470b57cec5SDimitry Andric continue; 39480b57cec5SDimitry Andric } 39490b57cec5SDimitry Andric 39500b57cec5SDimitry Andric Value *UnwindPad; 39510b57cec5SDimitry Andric bool ExitsFPI; 39520b57cec5SDimitry Andric if (UnwindDest) { 39530b57cec5SDimitry Andric UnwindPad = UnwindDest->getFirstNonPHI(); 39540b57cec5SDimitry Andric if (!cast<Instruction>(UnwindPad)->isEHPad()) 39550b57cec5SDimitry Andric continue; 39560b57cec5SDimitry Andric Value *UnwindParent = getParentPad(UnwindPad); 39570b57cec5SDimitry Andric // Ignore unwind edges that don't exit CurrentPad. 39580b57cec5SDimitry Andric if (UnwindParent == CurrentPad) 39590b57cec5SDimitry Andric continue; 39600b57cec5SDimitry Andric // Determine whether the original funclet pad is exited, 39610b57cec5SDimitry Andric // and if we are scanning nested pads determine how many 39620b57cec5SDimitry Andric // of them are exited so we can stop searching their 39630b57cec5SDimitry Andric // children. 39640b57cec5SDimitry Andric Value *ExitedPad = CurrentPad; 39650b57cec5SDimitry Andric ExitsFPI = false; 39660b57cec5SDimitry Andric do { 39670b57cec5SDimitry Andric if (ExitedPad == &FPI) { 39680b57cec5SDimitry Andric ExitsFPI = true; 39690b57cec5SDimitry Andric // Now we can resolve any ancestors of CurrentPad up to 39700b57cec5SDimitry Andric // FPI, but not including FPI since we need to make sure 39710b57cec5SDimitry Andric // to check all direct users of FPI for consistency. 39720b57cec5SDimitry Andric UnresolvedAncestorPad = &FPI; 39730b57cec5SDimitry Andric break; 39740b57cec5SDimitry Andric } 39750b57cec5SDimitry Andric Value *ExitedParent = getParentPad(ExitedPad); 39760b57cec5SDimitry Andric if (ExitedParent == UnwindParent) { 39770b57cec5SDimitry Andric // ExitedPad is the ancestor-most pad which this unwind 39780b57cec5SDimitry Andric // edge exits, so we can resolve up to it, meaning that 39790b57cec5SDimitry Andric // ExitedParent is the first ancestor still unresolved. 39800b57cec5SDimitry Andric UnresolvedAncestorPad = ExitedParent; 39810b57cec5SDimitry Andric break; 39820b57cec5SDimitry Andric } 39830b57cec5SDimitry Andric ExitedPad = ExitedParent; 39840b57cec5SDimitry Andric } while (!isa<ConstantTokenNone>(ExitedPad)); 39850b57cec5SDimitry Andric } else { 39860b57cec5SDimitry Andric // Unwinding to caller exits all pads. 39870b57cec5SDimitry Andric UnwindPad = ConstantTokenNone::get(FPI.getContext()); 39880b57cec5SDimitry Andric ExitsFPI = true; 39890b57cec5SDimitry Andric UnresolvedAncestorPad = &FPI; 39900b57cec5SDimitry Andric } 39910b57cec5SDimitry Andric 39920b57cec5SDimitry Andric if (ExitsFPI) { 39930b57cec5SDimitry Andric // This unwind edge exits FPI. Make sure it agrees with other 39940b57cec5SDimitry Andric // such edges. 39950b57cec5SDimitry Andric if (FirstUser) { 39960b57cec5SDimitry Andric Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 39970b57cec5SDimitry Andric "pad must have the same unwind " 39980b57cec5SDimitry Andric "dest", 39990b57cec5SDimitry Andric &FPI, U, FirstUser); 40000b57cec5SDimitry Andric } else { 40010b57cec5SDimitry Andric FirstUser = U; 40020b57cec5SDimitry Andric FirstUnwindPad = UnwindPad; 40030b57cec5SDimitry Andric // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 40040b57cec5SDimitry Andric if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 40050b57cec5SDimitry Andric getParentPad(UnwindPad) == getParentPad(&FPI)) 40060b57cec5SDimitry Andric SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 40070b57cec5SDimitry Andric } 40080b57cec5SDimitry Andric } 40090b57cec5SDimitry Andric // Make sure we visit all uses of FPI, but for nested pads stop as 40100b57cec5SDimitry Andric // soon as we know where they unwind to. 40110b57cec5SDimitry Andric if (CurrentPad != &FPI) 40120b57cec5SDimitry Andric break; 40130b57cec5SDimitry Andric } 40140b57cec5SDimitry Andric if (UnresolvedAncestorPad) { 40150b57cec5SDimitry Andric if (CurrentPad == UnresolvedAncestorPad) { 40160b57cec5SDimitry Andric // When CurrentPad is FPI itself, we don't mark it as resolved even if 40170b57cec5SDimitry Andric // we've found an unwind edge that exits it, because we need to verify 40180b57cec5SDimitry Andric // all direct uses of FPI. 40190b57cec5SDimitry Andric assert(CurrentPad == &FPI); 40200b57cec5SDimitry Andric continue; 40210b57cec5SDimitry Andric } 40220b57cec5SDimitry Andric // Pop off the worklist any nested pads that we've found an unwind 40230b57cec5SDimitry Andric // destination for. The pads on the worklist are the uncles, 40240b57cec5SDimitry Andric // great-uncles, etc. of CurrentPad. We've found an unwind destination 40250b57cec5SDimitry Andric // for all ancestors of CurrentPad up to but not including 40260b57cec5SDimitry Andric // UnresolvedAncestorPad. 40270b57cec5SDimitry Andric Value *ResolvedPad = CurrentPad; 40280b57cec5SDimitry Andric while (!Worklist.empty()) { 40290b57cec5SDimitry Andric Value *UnclePad = Worklist.back(); 40300b57cec5SDimitry Andric Value *AncestorPad = getParentPad(UnclePad); 40310b57cec5SDimitry Andric // Walk ResolvedPad up the ancestor list until we either find the 40320b57cec5SDimitry Andric // uncle's parent or the last resolved ancestor. 40330b57cec5SDimitry Andric while (ResolvedPad != AncestorPad) { 40340b57cec5SDimitry Andric Value *ResolvedParent = getParentPad(ResolvedPad); 40350b57cec5SDimitry Andric if (ResolvedParent == UnresolvedAncestorPad) { 40360b57cec5SDimitry Andric break; 40370b57cec5SDimitry Andric } 40380b57cec5SDimitry Andric ResolvedPad = ResolvedParent; 40390b57cec5SDimitry Andric } 40400b57cec5SDimitry Andric // If the resolved ancestor search didn't find the uncle's parent, 40410b57cec5SDimitry Andric // then the uncle is not yet resolved. 40420b57cec5SDimitry Andric if (ResolvedPad != AncestorPad) 40430b57cec5SDimitry Andric break; 40440b57cec5SDimitry Andric // This uncle is resolved, so pop it from the worklist. 40450b57cec5SDimitry Andric Worklist.pop_back(); 40460b57cec5SDimitry Andric } 40470b57cec5SDimitry Andric } 40480b57cec5SDimitry Andric } 40490b57cec5SDimitry Andric 40500b57cec5SDimitry Andric if (FirstUnwindPad) { 40510b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 40520b57cec5SDimitry Andric BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 40530b57cec5SDimitry Andric Value *SwitchUnwindPad; 40540b57cec5SDimitry Andric if (SwitchUnwindDest) 40550b57cec5SDimitry Andric SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 40560b57cec5SDimitry Andric else 40570b57cec5SDimitry Andric SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 40580b57cec5SDimitry Andric Assert(SwitchUnwindPad == FirstUnwindPad, 40590b57cec5SDimitry Andric "Unwind edges out of a catch must have the same unwind dest as " 40600b57cec5SDimitry Andric "the parent catchswitch", 40610b57cec5SDimitry Andric &FPI, FirstUser, CatchSwitch); 40620b57cec5SDimitry Andric } 40630b57cec5SDimitry Andric } 40640b57cec5SDimitry Andric 40650b57cec5SDimitry Andric visitInstruction(FPI); 40660b57cec5SDimitry Andric } 40670b57cec5SDimitry Andric 40680b57cec5SDimitry Andric void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 40690b57cec5SDimitry Andric BasicBlock *BB = CatchSwitch.getParent(); 40700b57cec5SDimitry Andric 40710b57cec5SDimitry Andric Function *F = BB->getParent(); 40720b57cec5SDimitry Andric Assert(F->hasPersonalityFn(), 40730b57cec5SDimitry Andric "CatchSwitchInst needs to be in a function with a personality.", 40740b57cec5SDimitry Andric &CatchSwitch); 40750b57cec5SDimitry Andric 40760b57cec5SDimitry Andric // The catchswitch instruction must be the first non-PHI instruction in the 40770b57cec5SDimitry Andric // block. 40780b57cec5SDimitry Andric Assert(BB->getFirstNonPHI() == &CatchSwitch, 40790b57cec5SDimitry Andric "CatchSwitchInst not the first non-PHI instruction in the block.", 40800b57cec5SDimitry Andric &CatchSwitch); 40810b57cec5SDimitry Andric 40820b57cec5SDimitry Andric auto *ParentPad = CatchSwitch.getParentPad(); 40830b57cec5SDimitry Andric Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 40840b57cec5SDimitry Andric "CatchSwitchInst has an invalid parent.", ParentPad); 40850b57cec5SDimitry Andric 40860b57cec5SDimitry Andric if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 40870b57cec5SDimitry Andric Instruction *I = UnwindDest->getFirstNonPHI(); 40880b57cec5SDimitry Andric Assert(I->isEHPad() && !isa<LandingPadInst>(I), 40890b57cec5SDimitry Andric "CatchSwitchInst must unwind to an EH block which is not a " 40900b57cec5SDimitry Andric "landingpad.", 40910b57cec5SDimitry Andric &CatchSwitch); 40920b57cec5SDimitry Andric 40930b57cec5SDimitry Andric // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 40940b57cec5SDimitry Andric if (getParentPad(I) == ParentPad) 40950b57cec5SDimitry Andric SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 40960b57cec5SDimitry Andric } 40970b57cec5SDimitry Andric 40980b57cec5SDimitry Andric Assert(CatchSwitch.getNumHandlers() != 0, 40990b57cec5SDimitry Andric "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 41000b57cec5SDimitry Andric 41010b57cec5SDimitry Andric for (BasicBlock *Handler : CatchSwitch.handlers()) { 41020b57cec5SDimitry Andric Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 41030b57cec5SDimitry Andric "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 41040b57cec5SDimitry Andric } 41050b57cec5SDimitry Andric 41060b57cec5SDimitry Andric visitEHPadPredecessors(CatchSwitch); 41070b57cec5SDimitry Andric visitTerminator(CatchSwitch); 41080b57cec5SDimitry Andric } 41090b57cec5SDimitry Andric 41100b57cec5SDimitry Andric void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 41110b57cec5SDimitry Andric Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 41120b57cec5SDimitry Andric "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 41130b57cec5SDimitry Andric CRI.getOperand(0)); 41140b57cec5SDimitry Andric 41150b57cec5SDimitry Andric if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 41160b57cec5SDimitry Andric Instruction *I = UnwindDest->getFirstNonPHI(); 41170b57cec5SDimitry Andric Assert(I->isEHPad() && !isa<LandingPadInst>(I), 41180b57cec5SDimitry Andric "CleanupReturnInst must unwind to an EH block which is not a " 41190b57cec5SDimitry Andric "landingpad.", 41200b57cec5SDimitry Andric &CRI); 41210b57cec5SDimitry Andric } 41220b57cec5SDimitry Andric 41230b57cec5SDimitry Andric visitTerminator(CRI); 41240b57cec5SDimitry Andric } 41250b57cec5SDimitry Andric 41260b57cec5SDimitry Andric void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 41270b57cec5SDimitry Andric Instruction *Op = cast<Instruction>(I.getOperand(i)); 41280b57cec5SDimitry Andric // If the we have an invalid invoke, don't try to compute the dominance. 41290b57cec5SDimitry Andric // We already reject it in the invoke specific checks and the dominance 41300b57cec5SDimitry Andric // computation doesn't handle multiple edges. 41310b57cec5SDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 41320b57cec5SDimitry Andric if (II->getNormalDest() == II->getUnwindDest()) 41330b57cec5SDimitry Andric return; 41340b57cec5SDimitry Andric } 41350b57cec5SDimitry Andric 41360b57cec5SDimitry Andric // Quick check whether the def has already been encountered in the same block. 41370b57cec5SDimitry Andric // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 41380b57cec5SDimitry Andric // uses are defined to happen on the incoming edge, not at the instruction. 41390b57cec5SDimitry Andric // 41400b57cec5SDimitry Andric // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 41410b57cec5SDimitry Andric // wrapping an SSA value, assert that we've already encountered it. See 41420b57cec5SDimitry Andric // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 41430b57cec5SDimitry Andric if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 41440b57cec5SDimitry Andric return; 41450b57cec5SDimitry Andric 41460b57cec5SDimitry Andric const Use &U = I.getOperandUse(i); 41470b57cec5SDimitry Andric Assert(DT.dominates(Op, U), 41480b57cec5SDimitry Andric "Instruction does not dominate all uses!", Op, &I); 41490b57cec5SDimitry Andric } 41500b57cec5SDimitry Andric 41510b57cec5SDimitry Andric void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 41520b57cec5SDimitry Andric Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 41530b57cec5SDimitry Andric "apply only to pointer types", &I); 41548bcb0991SDimitry Andric Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 41550b57cec5SDimitry Andric "dereferenceable, dereferenceable_or_null apply only to load" 41568bcb0991SDimitry Andric " and inttoptr instructions, use attributes for calls or invokes", &I); 41570b57cec5SDimitry Andric Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 41580b57cec5SDimitry Andric "take one operand!", &I); 41590b57cec5SDimitry Andric ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 41600b57cec5SDimitry Andric Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 41610b57cec5SDimitry Andric "dereferenceable_or_null metadata value must be an i64!", &I); 41620b57cec5SDimitry Andric } 41630b57cec5SDimitry Andric 41648bcb0991SDimitry Andric void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 41658bcb0991SDimitry Andric Assert(MD->getNumOperands() >= 2, 41668bcb0991SDimitry Andric "!prof annotations should have no less than 2 operands", MD); 41678bcb0991SDimitry Andric 41688bcb0991SDimitry Andric // Check first operand. 41698bcb0991SDimitry Andric Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 41708bcb0991SDimitry Andric Assert(isa<MDString>(MD->getOperand(0)), 41718bcb0991SDimitry Andric "expected string with name of the !prof annotation", MD); 41728bcb0991SDimitry Andric MDString *MDS = cast<MDString>(MD->getOperand(0)); 41738bcb0991SDimitry Andric StringRef ProfName = MDS->getString(); 41748bcb0991SDimitry Andric 41758bcb0991SDimitry Andric // Check consistency of !prof branch_weights metadata. 41768bcb0991SDimitry Andric if (ProfName.equals("branch_weights")) { 4177*5ffd83dbSDimitry Andric if (isa<InvokeInst>(&I)) { 4178*5ffd83dbSDimitry Andric Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4179*5ffd83dbSDimitry Andric "Wrong number of InvokeInst branch_weights operands", MD); 4180*5ffd83dbSDimitry Andric } else { 41818bcb0991SDimitry Andric unsigned ExpectedNumOperands = 0; 41828bcb0991SDimitry Andric if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 41838bcb0991SDimitry Andric ExpectedNumOperands = BI->getNumSuccessors(); 41848bcb0991SDimitry Andric else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 41858bcb0991SDimitry Andric ExpectedNumOperands = SI->getNumSuccessors(); 4186*5ffd83dbSDimitry Andric else if (isa<CallInst>(&I)) 41878bcb0991SDimitry Andric ExpectedNumOperands = 1; 41888bcb0991SDimitry Andric else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 41898bcb0991SDimitry Andric ExpectedNumOperands = IBI->getNumDestinations(); 41908bcb0991SDimitry Andric else if (isa<SelectInst>(&I)) 41918bcb0991SDimitry Andric ExpectedNumOperands = 2; 41928bcb0991SDimitry Andric else 41938bcb0991SDimitry Andric CheckFailed("!prof branch_weights are not allowed for this instruction", 41948bcb0991SDimitry Andric MD); 41958bcb0991SDimitry Andric 41968bcb0991SDimitry Andric Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 41978bcb0991SDimitry Andric "Wrong number of operands", MD); 4198*5ffd83dbSDimitry Andric } 41998bcb0991SDimitry Andric for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 42008bcb0991SDimitry Andric auto &MDO = MD->getOperand(i); 42018bcb0991SDimitry Andric Assert(MDO, "second operand should not be null", MD); 42028bcb0991SDimitry Andric Assert(mdconst::dyn_extract<ConstantInt>(MDO), 42038bcb0991SDimitry Andric "!prof brunch_weights operand is not a const int"); 42048bcb0991SDimitry Andric } 42058bcb0991SDimitry Andric } 42068bcb0991SDimitry Andric } 42078bcb0991SDimitry Andric 42080b57cec5SDimitry Andric /// verifyInstruction - Verify that an instruction is well formed. 42090b57cec5SDimitry Andric /// 42100b57cec5SDimitry Andric void Verifier::visitInstruction(Instruction &I) { 42110b57cec5SDimitry Andric BasicBlock *BB = I.getParent(); 42120b57cec5SDimitry Andric Assert(BB, "Instruction not embedded in basic block!", &I); 42130b57cec5SDimitry Andric 42140b57cec5SDimitry Andric if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 42150b57cec5SDimitry Andric for (User *U : I.users()) { 42160b57cec5SDimitry Andric Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 42170b57cec5SDimitry Andric "Only PHI nodes may reference their own value!", &I); 42180b57cec5SDimitry Andric } 42190b57cec5SDimitry Andric } 42200b57cec5SDimitry Andric 42210b57cec5SDimitry Andric // Check that void typed values don't have names 42220b57cec5SDimitry Andric Assert(!I.getType()->isVoidTy() || !I.hasName(), 42230b57cec5SDimitry Andric "Instruction has a name, but provides a void value!", &I); 42240b57cec5SDimitry Andric 42250b57cec5SDimitry Andric // Check that the return value of the instruction is either void or a legal 42260b57cec5SDimitry Andric // value type. 42270b57cec5SDimitry Andric Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 42280b57cec5SDimitry Andric "Instruction returns a non-scalar type!", &I); 42290b57cec5SDimitry Andric 42300b57cec5SDimitry Andric // Check that the instruction doesn't produce metadata. Calls are already 42310b57cec5SDimitry Andric // checked against the callee type. 42320b57cec5SDimitry Andric Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 42330b57cec5SDimitry Andric "Invalid use of metadata!", &I); 42340b57cec5SDimitry Andric 42350b57cec5SDimitry Andric // Check that all uses of the instruction, if they are instructions 42360b57cec5SDimitry Andric // themselves, actually have parent basic blocks. If the use is not an 42370b57cec5SDimitry Andric // instruction, it is an error! 42380b57cec5SDimitry Andric for (Use &U : I.uses()) { 42390b57cec5SDimitry Andric if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 42400b57cec5SDimitry Andric Assert(Used->getParent() != nullptr, 42410b57cec5SDimitry Andric "Instruction referencing" 42420b57cec5SDimitry Andric " instruction not embedded in a basic block!", 42430b57cec5SDimitry Andric &I, Used); 42440b57cec5SDimitry Andric else { 42450b57cec5SDimitry Andric CheckFailed("Use of instruction is not an instruction!", U); 42460b57cec5SDimitry Andric return; 42470b57cec5SDimitry Andric } 42480b57cec5SDimitry Andric } 42490b57cec5SDimitry Andric 42500b57cec5SDimitry Andric // Get a pointer to the call base of the instruction if it is some form of 42510b57cec5SDimitry Andric // call. 42520b57cec5SDimitry Andric const CallBase *CBI = dyn_cast<CallBase>(&I); 42530b57cec5SDimitry Andric 42540b57cec5SDimitry Andric for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 42550b57cec5SDimitry Andric Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 42560b57cec5SDimitry Andric 42570b57cec5SDimitry Andric // Check to make sure that only first-class-values are operands to 42580b57cec5SDimitry Andric // instructions. 42590b57cec5SDimitry Andric if (!I.getOperand(i)->getType()->isFirstClassType()) { 42600b57cec5SDimitry Andric Assert(false, "Instruction operands must be first-class values!", &I); 42610b57cec5SDimitry Andric } 42620b57cec5SDimitry Andric 42630b57cec5SDimitry Andric if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 42640b57cec5SDimitry Andric // Check to make sure that the "address of" an intrinsic function is never 42650b57cec5SDimitry Andric // taken. 42660b57cec5SDimitry Andric Assert(!F->isIntrinsic() || 42670b57cec5SDimitry Andric (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 42680b57cec5SDimitry Andric "Cannot take the address of an intrinsic!", &I); 42690b57cec5SDimitry Andric Assert( 42700b57cec5SDimitry Andric !F->isIntrinsic() || isa<CallInst>(I) || 42710b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::donothing || 42720b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::coro_resume || 42730b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::coro_destroy || 42740b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 42750b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 42760b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 42770b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 42780b57cec5SDimitry Andric "Cannot invoke an intrinsic other than donothing, patchpoint, " 42790b57cec5SDimitry Andric "statepoint, coro_resume or coro_destroy", 42800b57cec5SDimitry Andric &I); 42810b57cec5SDimitry Andric Assert(F->getParent() == &M, "Referencing function in another module!", 42820b57cec5SDimitry Andric &I, &M, F, F->getParent()); 42830b57cec5SDimitry Andric } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 42840b57cec5SDimitry Andric Assert(OpBB->getParent() == BB->getParent(), 42850b57cec5SDimitry Andric "Referring to a basic block in another function!", &I); 42860b57cec5SDimitry Andric } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 42870b57cec5SDimitry Andric Assert(OpArg->getParent() == BB->getParent(), 42880b57cec5SDimitry Andric "Referring to an argument in another function!", &I); 42890b57cec5SDimitry Andric } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 42900b57cec5SDimitry Andric Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 42910b57cec5SDimitry Andric &M, GV, GV->getParent()); 42920b57cec5SDimitry Andric } else if (isa<Instruction>(I.getOperand(i))) { 42930b57cec5SDimitry Andric verifyDominatesUse(I, i); 42940b57cec5SDimitry Andric } else if (isa<InlineAsm>(I.getOperand(i))) { 42950b57cec5SDimitry Andric Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 42960b57cec5SDimitry Andric "Cannot take the address of an inline asm!", &I); 42970b57cec5SDimitry Andric } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 42980b57cec5SDimitry Andric if (CE->getType()->isPtrOrPtrVectorTy() || 42990b57cec5SDimitry Andric !DL.getNonIntegralAddressSpaces().empty()) { 43000b57cec5SDimitry Andric // If we have a ConstantExpr pointer, we need to see if it came from an 43010b57cec5SDimitry Andric // illegal bitcast. If the datalayout string specifies non-integral 43020b57cec5SDimitry Andric // address spaces then we also need to check for illegal ptrtoint and 43030b57cec5SDimitry Andric // inttoptr expressions. 43040b57cec5SDimitry Andric visitConstantExprsRecursively(CE); 43050b57cec5SDimitry Andric } 43060b57cec5SDimitry Andric } 43070b57cec5SDimitry Andric } 43080b57cec5SDimitry Andric 43090b57cec5SDimitry Andric if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 43100b57cec5SDimitry Andric Assert(I.getType()->isFPOrFPVectorTy(), 43110b57cec5SDimitry Andric "fpmath requires a floating point result!", &I); 43120b57cec5SDimitry Andric Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 43130b57cec5SDimitry Andric if (ConstantFP *CFP0 = 43140b57cec5SDimitry Andric mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 43150b57cec5SDimitry Andric const APFloat &Accuracy = CFP0->getValueAPF(); 43160b57cec5SDimitry Andric Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 43170b57cec5SDimitry Andric "fpmath accuracy must have float type", &I); 43180b57cec5SDimitry Andric Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 43190b57cec5SDimitry Andric "fpmath accuracy not a positive number!", &I); 43200b57cec5SDimitry Andric } else { 43210b57cec5SDimitry Andric Assert(false, "invalid fpmath accuracy!", &I); 43220b57cec5SDimitry Andric } 43230b57cec5SDimitry Andric } 43240b57cec5SDimitry Andric 43250b57cec5SDimitry Andric if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 43260b57cec5SDimitry Andric Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 43270b57cec5SDimitry Andric "Ranges are only for loads, calls and invokes!", &I); 43280b57cec5SDimitry Andric visitRangeMetadata(I, Range, I.getType()); 43290b57cec5SDimitry Andric } 43300b57cec5SDimitry Andric 43310b57cec5SDimitry Andric if (I.getMetadata(LLVMContext::MD_nonnull)) { 43320b57cec5SDimitry Andric Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 43330b57cec5SDimitry Andric &I); 43340b57cec5SDimitry Andric Assert(isa<LoadInst>(I), 43350b57cec5SDimitry Andric "nonnull applies only to load instructions, use attributes" 43360b57cec5SDimitry Andric " for calls or invokes", 43370b57cec5SDimitry Andric &I); 43380b57cec5SDimitry Andric } 43390b57cec5SDimitry Andric 43400b57cec5SDimitry Andric if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 43410b57cec5SDimitry Andric visitDereferenceableMetadata(I, MD); 43420b57cec5SDimitry Andric 43430b57cec5SDimitry Andric if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 43440b57cec5SDimitry Andric visitDereferenceableMetadata(I, MD); 43450b57cec5SDimitry Andric 43460b57cec5SDimitry Andric if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 43470b57cec5SDimitry Andric TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 43480b57cec5SDimitry Andric 43490b57cec5SDimitry Andric if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 43500b57cec5SDimitry Andric Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 43510b57cec5SDimitry Andric &I); 43520b57cec5SDimitry Andric Assert(isa<LoadInst>(I), "align applies only to load instructions, " 43530b57cec5SDimitry Andric "use attributes for calls or invokes", &I); 43540b57cec5SDimitry Andric Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 43550b57cec5SDimitry Andric ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 43560b57cec5SDimitry Andric Assert(CI && CI->getType()->isIntegerTy(64), 43570b57cec5SDimitry Andric "align metadata value must be an i64!", &I); 43580b57cec5SDimitry Andric uint64_t Align = CI->getZExtValue(); 43590b57cec5SDimitry Andric Assert(isPowerOf2_64(Align), 43600b57cec5SDimitry Andric "align metadata value must be a power of 2!", &I); 43610b57cec5SDimitry Andric Assert(Align <= Value::MaximumAlignment, 43620b57cec5SDimitry Andric "alignment is larger that implementation defined limit", &I); 43630b57cec5SDimitry Andric } 43640b57cec5SDimitry Andric 43658bcb0991SDimitry Andric if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 43668bcb0991SDimitry Andric visitProfMetadata(I, MD); 43678bcb0991SDimitry Andric 43680b57cec5SDimitry Andric if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 43690b57cec5SDimitry Andric AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4370*5ffd83dbSDimitry Andric visitMDNode(*N, AreDebugLocsAllowed::Yes); 43710b57cec5SDimitry Andric } 43720b57cec5SDimitry Andric 43738bcb0991SDimitry Andric if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 43740b57cec5SDimitry Andric verifyFragmentExpression(*DII); 43758bcb0991SDimitry Andric verifyNotEntryValue(*DII); 43768bcb0991SDimitry Andric } 43770b57cec5SDimitry Andric 4378*5ffd83dbSDimitry Andric SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4379*5ffd83dbSDimitry Andric I.getAllMetadata(MDs); 4380*5ffd83dbSDimitry Andric for (auto Attachment : MDs) { 4381*5ffd83dbSDimitry Andric unsigned Kind = Attachment.first; 4382*5ffd83dbSDimitry Andric auto AllowLocs = 4383*5ffd83dbSDimitry Andric (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4384*5ffd83dbSDimitry Andric ? AreDebugLocsAllowed::Yes 4385*5ffd83dbSDimitry Andric : AreDebugLocsAllowed::No; 4386*5ffd83dbSDimitry Andric visitMDNode(*Attachment.second, AllowLocs); 4387*5ffd83dbSDimitry Andric } 4388*5ffd83dbSDimitry Andric 43890b57cec5SDimitry Andric InstsInThisBlock.insert(&I); 43900b57cec5SDimitry Andric } 43910b57cec5SDimitry Andric 43920b57cec5SDimitry Andric /// Allow intrinsics to be verified in different ways. 43930b57cec5SDimitry Andric void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 43940b57cec5SDimitry Andric Function *IF = Call.getCalledFunction(); 43950b57cec5SDimitry Andric Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 43960b57cec5SDimitry Andric IF); 43970b57cec5SDimitry Andric 43980b57cec5SDimitry Andric // Verify that the intrinsic prototype lines up with what the .td files 43990b57cec5SDimitry Andric // describe. 44000b57cec5SDimitry Andric FunctionType *IFTy = IF->getFunctionType(); 44010b57cec5SDimitry Andric bool IsVarArg = IFTy->isVarArg(); 44020b57cec5SDimitry Andric 44030b57cec5SDimitry Andric SmallVector<Intrinsic::IITDescriptor, 8> Table; 44040b57cec5SDimitry Andric getIntrinsicInfoTableEntries(ID, Table); 44050b57cec5SDimitry Andric ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 44060b57cec5SDimitry Andric 44070b57cec5SDimitry Andric // Walk the descriptors to extract overloaded types. 44080b57cec5SDimitry Andric SmallVector<Type *, 4> ArgTys; 44090b57cec5SDimitry Andric Intrinsic::MatchIntrinsicTypesResult Res = 44100b57cec5SDimitry Andric Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 44110b57cec5SDimitry Andric Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 44120b57cec5SDimitry Andric "Intrinsic has incorrect return type!", IF); 44130b57cec5SDimitry Andric Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 44140b57cec5SDimitry Andric "Intrinsic has incorrect argument type!", IF); 44150b57cec5SDimitry Andric 44160b57cec5SDimitry Andric // Verify if the intrinsic call matches the vararg property. 44170b57cec5SDimitry Andric if (IsVarArg) 44180b57cec5SDimitry Andric Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 44190b57cec5SDimitry Andric "Intrinsic was not defined with variable arguments!", IF); 44200b57cec5SDimitry Andric else 44210b57cec5SDimitry Andric Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 44220b57cec5SDimitry Andric "Callsite was not defined with variable arguments!", IF); 44230b57cec5SDimitry Andric 44240b57cec5SDimitry Andric // All descriptors should be absorbed by now. 44250b57cec5SDimitry Andric Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 44260b57cec5SDimitry Andric 44270b57cec5SDimitry Andric // Now that we have the intrinsic ID and the actual argument types (and we 44280b57cec5SDimitry Andric // know they are legal for the intrinsic!) get the intrinsic name through the 44290b57cec5SDimitry Andric // usual means. This allows us to verify the mangling of argument types into 44300b57cec5SDimitry Andric // the name. 44310b57cec5SDimitry Andric const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 44320b57cec5SDimitry Andric Assert(ExpectedName == IF->getName(), 44330b57cec5SDimitry Andric "Intrinsic name not mangled correctly for type arguments! " 44340b57cec5SDimitry Andric "Should be: " + 44350b57cec5SDimitry Andric ExpectedName, 44360b57cec5SDimitry Andric IF); 44370b57cec5SDimitry Andric 44380b57cec5SDimitry Andric // If the intrinsic takes MDNode arguments, verify that they are either global 44390b57cec5SDimitry Andric // or are local to *this* function. 44400b57cec5SDimitry Andric for (Value *V : Call.args()) 44410b57cec5SDimitry Andric if (auto *MD = dyn_cast<MetadataAsValue>(V)) 44420b57cec5SDimitry Andric visitMetadataAsValue(*MD, Call.getCaller()); 44430b57cec5SDimitry Andric 44440b57cec5SDimitry Andric switch (ID) { 44450b57cec5SDimitry Andric default: 44460b57cec5SDimitry Andric break; 4447*5ffd83dbSDimitry Andric case Intrinsic::assume: { 4448*5ffd83dbSDimitry Andric for (auto &Elem : Call.bundle_op_infos()) { 4449*5ffd83dbSDimitry Andric Assert(Elem.Tag->getKey() == "ignore" || 4450*5ffd83dbSDimitry Andric Attribute::isExistingAttribute(Elem.Tag->getKey()), 4451*5ffd83dbSDimitry Andric "tags must be valid attribute names"); 4452*5ffd83dbSDimitry Andric Attribute::AttrKind Kind = 4453*5ffd83dbSDimitry Andric Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4454*5ffd83dbSDimitry Andric unsigned ArgCount = Elem.End - Elem.Begin; 4455*5ffd83dbSDimitry Andric if (Kind == Attribute::Alignment) { 4456*5ffd83dbSDimitry Andric Assert(ArgCount <= 3 && ArgCount >= 2, 4457*5ffd83dbSDimitry Andric "alignment assumptions should have 2 or 3 arguments"); 4458*5ffd83dbSDimitry Andric Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4459*5ffd83dbSDimitry Andric "first argument should be a pointer"); 4460*5ffd83dbSDimitry Andric Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4461*5ffd83dbSDimitry Andric "second argument should be an integer"); 4462*5ffd83dbSDimitry Andric if (ArgCount == 3) 4463*5ffd83dbSDimitry Andric Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4464*5ffd83dbSDimitry Andric "third argument should be an integer if present"); 4465*5ffd83dbSDimitry Andric return; 4466*5ffd83dbSDimitry Andric } 4467*5ffd83dbSDimitry Andric Assert(ArgCount <= 2, "to many arguments"); 4468*5ffd83dbSDimitry Andric if (Kind == Attribute::None) 4469*5ffd83dbSDimitry Andric break; 4470*5ffd83dbSDimitry Andric if (Attribute::doesAttrKindHaveArgument(Kind)) { 4471*5ffd83dbSDimitry Andric Assert(ArgCount == 2, "this attribute should have 2 arguments"); 4472*5ffd83dbSDimitry Andric Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4473*5ffd83dbSDimitry Andric "the second argument should be a constant integral value"); 4474*5ffd83dbSDimitry Andric } else if (isFuncOnlyAttr(Kind)) { 4475*5ffd83dbSDimitry Andric Assert((ArgCount) == 0, "this attribute has no argument"); 4476*5ffd83dbSDimitry Andric } else if (!isFuncOrArgAttr(Kind)) { 4477*5ffd83dbSDimitry Andric Assert((ArgCount) == 1, "this attribute should have one argument"); 4478*5ffd83dbSDimitry Andric } 4479*5ffd83dbSDimitry Andric } 4480*5ffd83dbSDimitry Andric break; 4481*5ffd83dbSDimitry Andric } 44820b57cec5SDimitry Andric case Intrinsic::coro_id: { 44830b57cec5SDimitry Andric auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 44840b57cec5SDimitry Andric if (isa<ConstantPointerNull>(InfoArg)) 44850b57cec5SDimitry Andric break; 44860b57cec5SDimitry Andric auto *GV = dyn_cast<GlobalVariable>(InfoArg); 44870b57cec5SDimitry Andric Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 44880b57cec5SDimitry Andric "info argument of llvm.coro.begin must refer to an initialized " 44890b57cec5SDimitry Andric "constant"); 44900b57cec5SDimitry Andric Constant *Init = GV->getInitializer(); 44910b57cec5SDimitry Andric Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 44920b57cec5SDimitry Andric "info argument of llvm.coro.begin must refer to either a struct or " 44930b57cec5SDimitry Andric "an array"); 44940b57cec5SDimitry Andric break; 44950b57cec5SDimitry Andric } 4496*5ffd83dbSDimitry Andric #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4497480093f4SDimitry Andric case Intrinsic::INTRINSIC: 4498480093f4SDimitry Andric #include "llvm/IR/ConstrainedOps.def" 44990b57cec5SDimitry Andric visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 45000b57cec5SDimitry Andric break; 45010b57cec5SDimitry Andric case Intrinsic::dbg_declare: // llvm.dbg.declare 45020b57cec5SDimitry Andric Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 45030b57cec5SDimitry Andric "invalid llvm.dbg.declare intrinsic call 1", Call); 45040b57cec5SDimitry Andric visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 45050b57cec5SDimitry Andric break; 45060b57cec5SDimitry Andric case Intrinsic::dbg_addr: // llvm.dbg.addr 45070b57cec5SDimitry Andric visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 45080b57cec5SDimitry Andric break; 45090b57cec5SDimitry Andric case Intrinsic::dbg_value: // llvm.dbg.value 45100b57cec5SDimitry Andric visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 45110b57cec5SDimitry Andric break; 45120b57cec5SDimitry Andric case Intrinsic::dbg_label: // llvm.dbg.label 45130b57cec5SDimitry Andric visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 45140b57cec5SDimitry Andric break; 45150b57cec5SDimitry Andric case Intrinsic::memcpy: 4516*5ffd83dbSDimitry Andric case Intrinsic::memcpy_inline: 45170b57cec5SDimitry Andric case Intrinsic::memmove: 45180b57cec5SDimitry Andric case Intrinsic::memset: { 45190b57cec5SDimitry Andric const auto *MI = cast<MemIntrinsic>(&Call); 45200b57cec5SDimitry Andric auto IsValidAlignment = [&](unsigned Alignment) -> bool { 45210b57cec5SDimitry Andric return Alignment == 0 || isPowerOf2_32(Alignment); 45220b57cec5SDimitry Andric }; 45230b57cec5SDimitry Andric Assert(IsValidAlignment(MI->getDestAlignment()), 45240b57cec5SDimitry Andric "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 45250b57cec5SDimitry Andric Call); 45260b57cec5SDimitry Andric if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 45270b57cec5SDimitry Andric Assert(IsValidAlignment(MTI->getSourceAlignment()), 45280b57cec5SDimitry Andric "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 45290b57cec5SDimitry Andric Call); 45300b57cec5SDimitry Andric } 45310b57cec5SDimitry Andric 45320b57cec5SDimitry Andric break; 45330b57cec5SDimitry Andric } 45340b57cec5SDimitry Andric case Intrinsic::memcpy_element_unordered_atomic: 45350b57cec5SDimitry Andric case Intrinsic::memmove_element_unordered_atomic: 45360b57cec5SDimitry Andric case Intrinsic::memset_element_unordered_atomic: { 45370b57cec5SDimitry Andric const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 45380b57cec5SDimitry Andric 45390b57cec5SDimitry Andric ConstantInt *ElementSizeCI = 45400b57cec5SDimitry Andric cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 45410b57cec5SDimitry Andric const APInt &ElementSizeVal = ElementSizeCI->getValue(); 45420b57cec5SDimitry Andric Assert(ElementSizeVal.isPowerOf2(), 45430b57cec5SDimitry Andric "element size of the element-wise atomic memory intrinsic " 45440b57cec5SDimitry Andric "must be a power of 2", 45450b57cec5SDimitry Andric Call); 45460b57cec5SDimitry Andric 45470b57cec5SDimitry Andric auto IsValidAlignment = [&](uint64_t Alignment) { 45480b57cec5SDimitry Andric return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 45490b57cec5SDimitry Andric }; 45500b57cec5SDimitry Andric uint64_t DstAlignment = AMI->getDestAlignment(); 45510b57cec5SDimitry Andric Assert(IsValidAlignment(DstAlignment), 45520b57cec5SDimitry Andric "incorrect alignment of the destination argument", Call); 45530b57cec5SDimitry Andric if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 45540b57cec5SDimitry Andric uint64_t SrcAlignment = AMT->getSourceAlignment(); 45550b57cec5SDimitry Andric Assert(IsValidAlignment(SrcAlignment), 45560b57cec5SDimitry Andric "incorrect alignment of the source argument", Call); 45570b57cec5SDimitry Andric } 45580b57cec5SDimitry Andric break; 45590b57cec5SDimitry Andric } 4560*5ffd83dbSDimitry Andric case Intrinsic::call_preallocated_setup: { 4561*5ffd83dbSDimitry Andric auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4562*5ffd83dbSDimitry Andric Assert(NumArgs != nullptr, 4563*5ffd83dbSDimitry Andric "llvm.call.preallocated.setup argument must be a constant"); 4564*5ffd83dbSDimitry Andric bool FoundCall = false; 4565*5ffd83dbSDimitry Andric for (User *U : Call.users()) { 4566*5ffd83dbSDimitry Andric auto *UseCall = dyn_cast<CallBase>(U); 4567*5ffd83dbSDimitry Andric Assert(UseCall != nullptr, 4568*5ffd83dbSDimitry Andric "Uses of llvm.call.preallocated.setup must be calls"); 4569*5ffd83dbSDimitry Andric const Function *Fn = UseCall->getCalledFunction(); 4570*5ffd83dbSDimitry Andric if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4571*5ffd83dbSDimitry Andric auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4572*5ffd83dbSDimitry Andric Assert(AllocArgIndex != nullptr, 4573*5ffd83dbSDimitry Andric "llvm.call.preallocated.alloc arg index must be a constant"); 4574*5ffd83dbSDimitry Andric auto AllocArgIndexInt = AllocArgIndex->getValue(); 4575*5ffd83dbSDimitry Andric Assert(AllocArgIndexInt.sge(0) && 4576*5ffd83dbSDimitry Andric AllocArgIndexInt.slt(NumArgs->getValue()), 4577*5ffd83dbSDimitry Andric "llvm.call.preallocated.alloc arg index must be between 0 and " 4578*5ffd83dbSDimitry Andric "corresponding " 4579*5ffd83dbSDimitry Andric "llvm.call.preallocated.setup's argument count"); 4580*5ffd83dbSDimitry Andric } else if (Fn && Fn->getIntrinsicID() == 4581*5ffd83dbSDimitry Andric Intrinsic::call_preallocated_teardown) { 4582*5ffd83dbSDimitry Andric // nothing to do 4583*5ffd83dbSDimitry Andric } else { 4584*5ffd83dbSDimitry Andric Assert(!FoundCall, "Can have at most one call corresponding to a " 4585*5ffd83dbSDimitry Andric "llvm.call.preallocated.setup"); 4586*5ffd83dbSDimitry Andric FoundCall = true; 4587*5ffd83dbSDimitry Andric size_t NumPreallocatedArgs = 0; 4588*5ffd83dbSDimitry Andric for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4589*5ffd83dbSDimitry Andric if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4590*5ffd83dbSDimitry Andric ++NumPreallocatedArgs; 4591*5ffd83dbSDimitry Andric } 4592*5ffd83dbSDimitry Andric } 4593*5ffd83dbSDimitry Andric Assert(NumPreallocatedArgs != 0, 4594*5ffd83dbSDimitry Andric "cannot use preallocated intrinsics on a call without " 4595*5ffd83dbSDimitry Andric "preallocated arguments"); 4596*5ffd83dbSDimitry Andric Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4597*5ffd83dbSDimitry Andric "llvm.call.preallocated.setup arg size must be equal to number " 4598*5ffd83dbSDimitry Andric "of preallocated arguments " 4599*5ffd83dbSDimitry Andric "at call site", 4600*5ffd83dbSDimitry Andric Call, *UseCall); 4601*5ffd83dbSDimitry Andric // getOperandBundle() cannot be called if more than one of the operand 4602*5ffd83dbSDimitry Andric // bundle exists. There is already a check elsewhere for this, so skip 4603*5ffd83dbSDimitry Andric // here if we see more than one. 4604*5ffd83dbSDimitry Andric if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4605*5ffd83dbSDimitry Andric 1) { 4606*5ffd83dbSDimitry Andric return; 4607*5ffd83dbSDimitry Andric } 4608*5ffd83dbSDimitry Andric auto PreallocatedBundle = 4609*5ffd83dbSDimitry Andric UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4610*5ffd83dbSDimitry Andric Assert(PreallocatedBundle, 4611*5ffd83dbSDimitry Andric "Use of llvm.call.preallocated.setup outside intrinsics " 4612*5ffd83dbSDimitry Andric "must be in \"preallocated\" operand bundle"); 4613*5ffd83dbSDimitry Andric Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4614*5ffd83dbSDimitry Andric "preallocated bundle must have token from corresponding " 4615*5ffd83dbSDimitry Andric "llvm.call.preallocated.setup"); 4616*5ffd83dbSDimitry Andric } 4617*5ffd83dbSDimitry Andric } 4618*5ffd83dbSDimitry Andric break; 4619*5ffd83dbSDimitry Andric } 4620*5ffd83dbSDimitry Andric case Intrinsic::call_preallocated_arg: { 4621*5ffd83dbSDimitry Andric auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4622*5ffd83dbSDimitry Andric Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4623*5ffd83dbSDimitry Andric Intrinsic::call_preallocated_setup, 4624*5ffd83dbSDimitry Andric "llvm.call.preallocated.arg token argument must be a " 4625*5ffd83dbSDimitry Andric "llvm.call.preallocated.setup"); 4626*5ffd83dbSDimitry Andric Assert(Call.hasFnAttr(Attribute::Preallocated), 4627*5ffd83dbSDimitry Andric "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4628*5ffd83dbSDimitry Andric "call site attribute"); 4629*5ffd83dbSDimitry Andric break; 4630*5ffd83dbSDimitry Andric } 4631*5ffd83dbSDimitry Andric case Intrinsic::call_preallocated_teardown: { 4632*5ffd83dbSDimitry Andric auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4633*5ffd83dbSDimitry Andric Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4634*5ffd83dbSDimitry Andric Intrinsic::call_preallocated_setup, 4635*5ffd83dbSDimitry Andric "llvm.call.preallocated.teardown token argument must be a " 4636*5ffd83dbSDimitry Andric "llvm.call.preallocated.setup"); 4637*5ffd83dbSDimitry Andric break; 4638*5ffd83dbSDimitry Andric } 46390b57cec5SDimitry Andric case Intrinsic::gcroot: 46400b57cec5SDimitry Andric case Intrinsic::gcwrite: 46410b57cec5SDimitry Andric case Intrinsic::gcread: 46420b57cec5SDimitry Andric if (ID == Intrinsic::gcroot) { 46430b57cec5SDimitry Andric AllocaInst *AI = 46440b57cec5SDimitry Andric dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 46450b57cec5SDimitry Andric Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 46460b57cec5SDimitry Andric Assert(isa<Constant>(Call.getArgOperand(1)), 46470b57cec5SDimitry Andric "llvm.gcroot parameter #2 must be a constant.", Call); 46480b57cec5SDimitry Andric if (!AI->getAllocatedType()->isPointerTy()) { 46490b57cec5SDimitry Andric Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 46500b57cec5SDimitry Andric "llvm.gcroot parameter #1 must either be a pointer alloca, " 46510b57cec5SDimitry Andric "or argument #2 must be a non-null constant.", 46520b57cec5SDimitry Andric Call); 46530b57cec5SDimitry Andric } 46540b57cec5SDimitry Andric } 46550b57cec5SDimitry Andric 46560b57cec5SDimitry Andric Assert(Call.getParent()->getParent()->hasGC(), 46570b57cec5SDimitry Andric "Enclosing function does not use GC.", Call); 46580b57cec5SDimitry Andric break; 46590b57cec5SDimitry Andric case Intrinsic::init_trampoline: 46600b57cec5SDimitry Andric Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 46610b57cec5SDimitry Andric "llvm.init_trampoline parameter #2 must resolve to a function.", 46620b57cec5SDimitry Andric Call); 46630b57cec5SDimitry Andric break; 46640b57cec5SDimitry Andric case Intrinsic::prefetch: 46650b57cec5SDimitry Andric Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 46660b57cec5SDimitry Andric cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 46670b57cec5SDimitry Andric "invalid arguments to llvm.prefetch", Call); 46680b57cec5SDimitry Andric break; 46690b57cec5SDimitry Andric case Intrinsic::stackprotector: 46700b57cec5SDimitry Andric Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 46710b57cec5SDimitry Andric "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 46720b57cec5SDimitry Andric break; 46730b57cec5SDimitry Andric case Intrinsic::localescape: { 46740b57cec5SDimitry Andric BasicBlock *BB = Call.getParent(); 46750b57cec5SDimitry Andric Assert(BB == &BB->getParent()->front(), 46760b57cec5SDimitry Andric "llvm.localescape used outside of entry block", Call); 46770b57cec5SDimitry Andric Assert(!SawFrameEscape, 46780b57cec5SDimitry Andric "multiple calls to llvm.localescape in one function", Call); 46790b57cec5SDimitry Andric for (Value *Arg : Call.args()) { 46800b57cec5SDimitry Andric if (isa<ConstantPointerNull>(Arg)) 46810b57cec5SDimitry Andric continue; // Null values are allowed as placeholders. 46820b57cec5SDimitry Andric auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 46830b57cec5SDimitry Andric Assert(AI && AI->isStaticAlloca(), 46840b57cec5SDimitry Andric "llvm.localescape only accepts static allocas", Call); 46850b57cec5SDimitry Andric } 46860b57cec5SDimitry Andric FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 46870b57cec5SDimitry Andric SawFrameEscape = true; 46880b57cec5SDimitry Andric break; 46890b57cec5SDimitry Andric } 46900b57cec5SDimitry Andric case Intrinsic::localrecover: { 46910b57cec5SDimitry Andric Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 46920b57cec5SDimitry Andric Function *Fn = dyn_cast<Function>(FnArg); 46930b57cec5SDimitry Andric Assert(Fn && !Fn->isDeclaration(), 46940b57cec5SDimitry Andric "llvm.localrecover first " 46950b57cec5SDimitry Andric "argument must be function defined in this module", 46960b57cec5SDimitry Andric Call); 46970b57cec5SDimitry Andric auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 46980b57cec5SDimitry Andric auto &Entry = FrameEscapeInfo[Fn]; 46990b57cec5SDimitry Andric Entry.second = unsigned( 47000b57cec5SDimitry Andric std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 47010b57cec5SDimitry Andric break; 47020b57cec5SDimitry Andric } 47030b57cec5SDimitry Andric 47040b57cec5SDimitry Andric case Intrinsic::experimental_gc_statepoint: 47050b57cec5SDimitry Andric if (auto *CI = dyn_cast<CallInst>(&Call)) 47060b57cec5SDimitry Andric Assert(!CI->isInlineAsm(), 47070b57cec5SDimitry Andric "gc.statepoint support for inline assembly unimplemented", CI); 47080b57cec5SDimitry Andric Assert(Call.getParent()->getParent()->hasGC(), 47090b57cec5SDimitry Andric "Enclosing function does not use GC.", Call); 47100b57cec5SDimitry Andric 47110b57cec5SDimitry Andric verifyStatepoint(Call); 47120b57cec5SDimitry Andric break; 47130b57cec5SDimitry Andric case Intrinsic::experimental_gc_result: { 47140b57cec5SDimitry Andric Assert(Call.getParent()->getParent()->hasGC(), 47150b57cec5SDimitry Andric "Enclosing function does not use GC.", Call); 47160b57cec5SDimitry Andric // Are we tied to a statepoint properly? 47170b57cec5SDimitry Andric const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 47180b57cec5SDimitry Andric const Function *StatepointFn = 47190b57cec5SDimitry Andric StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 47200b57cec5SDimitry Andric Assert(StatepointFn && StatepointFn->isDeclaration() && 47210b57cec5SDimitry Andric StatepointFn->getIntrinsicID() == 47220b57cec5SDimitry Andric Intrinsic::experimental_gc_statepoint, 47230b57cec5SDimitry Andric "gc.result operand #1 must be from a statepoint", Call, 47240b57cec5SDimitry Andric Call.getArgOperand(0)); 47250b57cec5SDimitry Andric 47260b57cec5SDimitry Andric // Assert that result type matches wrapped callee. 47270b57cec5SDimitry Andric const Value *Target = StatepointCall->getArgOperand(2); 47280b57cec5SDimitry Andric auto *PT = cast<PointerType>(Target->getType()); 47290b57cec5SDimitry Andric auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 47300b57cec5SDimitry Andric Assert(Call.getType() == TargetFuncType->getReturnType(), 47310b57cec5SDimitry Andric "gc.result result type does not match wrapped callee", Call); 47320b57cec5SDimitry Andric break; 47330b57cec5SDimitry Andric } 47340b57cec5SDimitry Andric case Intrinsic::experimental_gc_relocate: { 47350b57cec5SDimitry Andric Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 47360b57cec5SDimitry Andric 47370b57cec5SDimitry Andric Assert(isa<PointerType>(Call.getType()->getScalarType()), 47380b57cec5SDimitry Andric "gc.relocate must return a pointer or a vector of pointers", Call); 47390b57cec5SDimitry Andric 47400b57cec5SDimitry Andric // Check that this relocate is correctly tied to the statepoint 47410b57cec5SDimitry Andric 47420b57cec5SDimitry Andric // This is case for relocate on the unwinding path of an invoke statepoint 47430b57cec5SDimitry Andric if (LandingPadInst *LandingPad = 47440b57cec5SDimitry Andric dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 47450b57cec5SDimitry Andric 47460b57cec5SDimitry Andric const BasicBlock *InvokeBB = 47470b57cec5SDimitry Andric LandingPad->getParent()->getUniquePredecessor(); 47480b57cec5SDimitry Andric 47490b57cec5SDimitry Andric // Landingpad relocates should have only one predecessor with invoke 47500b57cec5SDimitry Andric // statepoint terminator 47510b57cec5SDimitry Andric Assert(InvokeBB, "safepoints should have unique landingpads", 47520b57cec5SDimitry Andric LandingPad->getParent()); 47530b57cec5SDimitry Andric Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 47540b57cec5SDimitry Andric InvokeBB); 4755*5ffd83dbSDimitry Andric Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 47560b57cec5SDimitry Andric "gc relocate should be linked to a statepoint", InvokeBB); 47570b57cec5SDimitry Andric } else { 47580b57cec5SDimitry Andric // In all other cases relocate should be tied to the statepoint directly. 47590b57cec5SDimitry Andric // This covers relocates on a normal return path of invoke statepoint and 47600b57cec5SDimitry Andric // relocates of a call statepoint. 47610b57cec5SDimitry Andric auto Token = Call.getArgOperand(0); 4762*5ffd83dbSDimitry Andric Assert(isa<GCStatepointInst>(Token), 47630b57cec5SDimitry Andric "gc relocate is incorrectly tied to the statepoint", Call, Token); 47640b57cec5SDimitry Andric } 47650b57cec5SDimitry Andric 47660b57cec5SDimitry Andric // Verify rest of the relocate arguments. 47670b57cec5SDimitry Andric const CallBase &StatepointCall = 4768*5ffd83dbSDimitry Andric *cast<GCRelocateInst>(Call).getStatepoint(); 47690b57cec5SDimitry Andric 47700b57cec5SDimitry Andric // Both the base and derived must be piped through the safepoint. 47710b57cec5SDimitry Andric Value *Base = Call.getArgOperand(1); 47720b57cec5SDimitry Andric Assert(isa<ConstantInt>(Base), 47730b57cec5SDimitry Andric "gc.relocate operand #2 must be integer offset", Call); 47740b57cec5SDimitry Andric 47750b57cec5SDimitry Andric Value *Derived = Call.getArgOperand(2); 47760b57cec5SDimitry Andric Assert(isa<ConstantInt>(Derived), 47770b57cec5SDimitry Andric "gc.relocate operand #3 must be integer offset", Call); 47780b57cec5SDimitry Andric 4779*5ffd83dbSDimitry Andric const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4780*5ffd83dbSDimitry Andric const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4781*5ffd83dbSDimitry Andric 47820b57cec5SDimitry Andric // Check the bounds 4783*5ffd83dbSDimitry Andric if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4784*5ffd83dbSDimitry Andric Assert(BaseIndex < Opt->Inputs.size(), 47850b57cec5SDimitry Andric "gc.relocate: statepoint base index out of bounds", Call); 4786*5ffd83dbSDimitry Andric Assert(DerivedIndex < Opt->Inputs.size(), 4787*5ffd83dbSDimitry Andric "gc.relocate: statepoint derived index out of bounds", Call); 4788*5ffd83dbSDimitry Andric } else { 4789*5ffd83dbSDimitry Andric Assert(BaseIndex < StatepointCall.arg_size(), 4790*5ffd83dbSDimitry Andric "gc.relocate: statepoint base index out of bounds", Call); 4791*5ffd83dbSDimitry Andric Assert(DerivedIndex < StatepointCall.arg_size(), 47920b57cec5SDimitry Andric "gc.relocate: statepoint derived index out of bounds", Call); 47930b57cec5SDimitry Andric 47940b57cec5SDimitry Andric // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 47950b57cec5SDimitry Andric // section of the statepoint's argument. 47960b57cec5SDimitry Andric Assert(StatepointCall.arg_size() > 0, 47970b57cec5SDimitry Andric "gc.statepoint: insufficient arguments"); 47980b57cec5SDimitry Andric Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 47990b57cec5SDimitry Andric "gc.statement: number of call arguments must be constant integer"); 4800*5ffd83dbSDimitry Andric const uint64_t NumCallArgs = 48010b57cec5SDimitry Andric cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 48020b57cec5SDimitry Andric Assert(StatepointCall.arg_size() > NumCallArgs + 5, 48030b57cec5SDimitry Andric "gc.statepoint: mismatch in number of call arguments"); 48040b57cec5SDimitry Andric Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 48050b57cec5SDimitry Andric "gc.statepoint: number of transition arguments must be " 48060b57cec5SDimitry Andric "a constant integer"); 4807*5ffd83dbSDimitry Andric const uint64_t NumTransitionArgs = 48080b57cec5SDimitry Andric cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 48090b57cec5SDimitry Andric ->getZExtValue(); 4810*5ffd83dbSDimitry Andric const uint64_t DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 48110b57cec5SDimitry Andric Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 48120b57cec5SDimitry Andric "gc.statepoint: number of deoptimization arguments must be " 48130b57cec5SDimitry Andric "a constant integer"); 4814*5ffd83dbSDimitry Andric const uint64_t NumDeoptArgs = 48150b57cec5SDimitry Andric cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 48160b57cec5SDimitry Andric ->getZExtValue(); 4817*5ffd83dbSDimitry Andric const uint64_t GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4818*5ffd83dbSDimitry Andric const uint64_t GCParamArgsEnd = StatepointCall.arg_size(); 48190b57cec5SDimitry Andric Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 48200b57cec5SDimitry Andric "gc.relocate: statepoint base index doesn't fall within the " 48210b57cec5SDimitry Andric "'gc parameters' section of the statepoint call", 48220b57cec5SDimitry Andric Call); 48230b57cec5SDimitry Andric Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 48240b57cec5SDimitry Andric "gc.relocate: statepoint derived index doesn't fall within the " 48250b57cec5SDimitry Andric "'gc parameters' section of the statepoint call", 48260b57cec5SDimitry Andric Call); 4827*5ffd83dbSDimitry Andric } 48280b57cec5SDimitry Andric 48290b57cec5SDimitry Andric // Relocated value must be either a pointer type or vector-of-pointer type, 48300b57cec5SDimitry Andric // but gc_relocate does not need to return the same pointer type as the 48310b57cec5SDimitry Andric // relocated pointer. It can be casted to the correct type later if it's 48320b57cec5SDimitry Andric // desired. However, they must have the same address space and 'vectorness' 48330b57cec5SDimitry Andric GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 48340b57cec5SDimitry Andric Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 48350b57cec5SDimitry Andric "gc.relocate: relocated value must be a gc pointer", Call); 48360b57cec5SDimitry Andric 48370b57cec5SDimitry Andric auto ResultType = Call.getType(); 48380b57cec5SDimitry Andric auto DerivedType = Relocate.getDerivedPtr()->getType(); 48390b57cec5SDimitry Andric Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 48400b57cec5SDimitry Andric "gc.relocate: vector relocates to vector and pointer to pointer", 48410b57cec5SDimitry Andric Call); 48420b57cec5SDimitry Andric Assert( 48430b57cec5SDimitry Andric ResultType->getPointerAddressSpace() == 48440b57cec5SDimitry Andric DerivedType->getPointerAddressSpace(), 48450b57cec5SDimitry Andric "gc.relocate: relocating a pointer shouldn't change its address space", 48460b57cec5SDimitry Andric Call); 48470b57cec5SDimitry Andric break; 48480b57cec5SDimitry Andric } 48490b57cec5SDimitry Andric case Intrinsic::eh_exceptioncode: 48500b57cec5SDimitry Andric case Intrinsic::eh_exceptionpointer: { 48510b57cec5SDimitry Andric Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 48520b57cec5SDimitry Andric "eh.exceptionpointer argument must be a catchpad", Call); 48530b57cec5SDimitry Andric break; 48540b57cec5SDimitry Andric } 4855*5ffd83dbSDimitry Andric case Intrinsic::get_active_lane_mask: { 4856*5ffd83dbSDimitry Andric Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4857*5ffd83dbSDimitry Andric "vector", Call); 4858*5ffd83dbSDimitry Andric auto *ElemTy = Call.getType()->getScalarType(); 4859*5ffd83dbSDimitry Andric Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4860*5ffd83dbSDimitry Andric "i1", Call); 4861*5ffd83dbSDimitry Andric break; 4862*5ffd83dbSDimitry Andric } 48630b57cec5SDimitry Andric case Intrinsic::masked_load: { 48640b57cec5SDimitry Andric Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 48650b57cec5SDimitry Andric Call); 48660b57cec5SDimitry Andric 48670b57cec5SDimitry Andric Value *Ptr = Call.getArgOperand(0); 48680b57cec5SDimitry Andric ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 48690b57cec5SDimitry Andric Value *Mask = Call.getArgOperand(2); 48700b57cec5SDimitry Andric Value *PassThru = Call.getArgOperand(3); 48710b57cec5SDimitry Andric Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 48720b57cec5SDimitry Andric Call); 48730b57cec5SDimitry Andric Assert(Alignment->getValue().isPowerOf2(), 48740b57cec5SDimitry Andric "masked_load: alignment must be a power of 2", Call); 48750b57cec5SDimitry Andric 48760b57cec5SDimitry Andric // DataTy is the overloaded type 48770b57cec5SDimitry Andric Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 48780b57cec5SDimitry Andric Assert(DataTy == Call.getType(), 48790b57cec5SDimitry Andric "masked_load: return must match pointer type", Call); 48800b57cec5SDimitry Andric Assert(PassThru->getType() == DataTy, 48810b57cec5SDimitry Andric "masked_load: pass through and data type must match", Call); 4882*5ffd83dbSDimitry Andric Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4883*5ffd83dbSDimitry Andric cast<VectorType>(DataTy)->getElementCount(), 48840b57cec5SDimitry Andric "masked_load: vector mask must be same length as data", Call); 48850b57cec5SDimitry Andric break; 48860b57cec5SDimitry Andric } 48870b57cec5SDimitry Andric case Intrinsic::masked_store: { 48880b57cec5SDimitry Andric Value *Val = Call.getArgOperand(0); 48890b57cec5SDimitry Andric Value *Ptr = Call.getArgOperand(1); 48900b57cec5SDimitry Andric ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 48910b57cec5SDimitry Andric Value *Mask = Call.getArgOperand(3); 48920b57cec5SDimitry Andric Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 48930b57cec5SDimitry Andric Call); 48940b57cec5SDimitry Andric Assert(Alignment->getValue().isPowerOf2(), 48950b57cec5SDimitry Andric "masked_store: alignment must be a power of 2", Call); 48960b57cec5SDimitry Andric 48970b57cec5SDimitry Andric // DataTy is the overloaded type 48980b57cec5SDimitry Andric Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 48990b57cec5SDimitry Andric Assert(DataTy == Val->getType(), 49000b57cec5SDimitry Andric "masked_store: storee must match pointer type", Call); 4901*5ffd83dbSDimitry Andric Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4902*5ffd83dbSDimitry Andric cast<VectorType>(DataTy)->getElementCount(), 49030b57cec5SDimitry Andric "masked_store: vector mask must be same length as data", Call); 49040b57cec5SDimitry Andric break; 49050b57cec5SDimitry Andric } 49060b57cec5SDimitry Andric 4907*5ffd83dbSDimitry Andric case Intrinsic::masked_gather: { 4908*5ffd83dbSDimitry Andric const APInt &Alignment = 4909*5ffd83dbSDimitry Andric cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 4910*5ffd83dbSDimitry Andric Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4911*5ffd83dbSDimitry Andric "masked_gather: alignment must be 0 or a power of 2", Call); 4912*5ffd83dbSDimitry Andric break; 4913*5ffd83dbSDimitry Andric } 4914*5ffd83dbSDimitry Andric case Intrinsic::masked_scatter: { 4915*5ffd83dbSDimitry Andric const APInt &Alignment = 4916*5ffd83dbSDimitry Andric cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 4917*5ffd83dbSDimitry Andric Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4918*5ffd83dbSDimitry Andric "masked_scatter: alignment must be 0 or a power of 2", Call); 4919*5ffd83dbSDimitry Andric break; 4920*5ffd83dbSDimitry Andric } 4921*5ffd83dbSDimitry Andric 49220b57cec5SDimitry Andric case Intrinsic::experimental_guard: { 49230b57cec5SDimitry Andric Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 49240b57cec5SDimitry Andric Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 49250b57cec5SDimitry Andric "experimental_guard must have exactly one " 49260b57cec5SDimitry Andric "\"deopt\" operand bundle"); 49270b57cec5SDimitry Andric break; 49280b57cec5SDimitry Andric } 49290b57cec5SDimitry Andric 49300b57cec5SDimitry Andric case Intrinsic::experimental_deoptimize: { 49310b57cec5SDimitry Andric Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 49320b57cec5SDimitry Andric Call); 49330b57cec5SDimitry Andric Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 49340b57cec5SDimitry Andric "experimental_deoptimize must have exactly one " 49350b57cec5SDimitry Andric "\"deopt\" operand bundle"); 49360b57cec5SDimitry Andric Assert(Call.getType() == Call.getFunction()->getReturnType(), 49370b57cec5SDimitry Andric "experimental_deoptimize return type must match caller return type"); 49380b57cec5SDimitry Andric 49390b57cec5SDimitry Andric if (isa<CallInst>(Call)) { 49400b57cec5SDimitry Andric auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 49410b57cec5SDimitry Andric Assert(RI, 49420b57cec5SDimitry Andric "calls to experimental_deoptimize must be followed by a return"); 49430b57cec5SDimitry Andric 49440b57cec5SDimitry Andric if (!Call.getType()->isVoidTy() && RI) 49450b57cec5SDimitry Andric Assert(RI->getReturnValue() == &Call, 49460b57cec5SDimitry Andric "calls to experimental_deoptimize must be followed by a return " 49470b57cec5SDimitry Andric "of the value computed by experimental_deoptimize"); 49480b57cec5SDimitry Andric } 49490b57cec5SDimitry Andric 49500b57cec5SDimitry Andric break; 49510b57cec5SDimitry Andric } 49520b57cec5SDimitry Andric case Intrinsic::sadd_sat: 49530b57cec5SDimitry Andric case Intrinsic::uadd_sat: 49540b57cec5SDimitry Andric case Intrinsic::ssub_sat: 49550b57cec5SDimitry Andric case Intrinsic::usub_sat: { 49560b57cec5SDimitry Andric Value *Op1 = Call.getArgOperand(0); 49570b57cec5SDimitry Andric Value *Op2 = Call.getArgOperand(1); 49580b57cec5SDimitry Andric Assert(Op1->getType()->isIntOrIntVectorTy(), 49590b57cec5SDimitry Andric "first operand of [us][add|sub]_sat must be an int type or vector " 49600b57cec5SDimitry Andric "of ints"); 49610b57cec5SDimitry Andric Assert(Op2->getType()->isIntOrIntVectorTy(), 49620b57cec5SDimitry Andric "second operand of [us][add|sub]_sat must be an int type or vector " 49630b57cec5SDimitry Andric "of ints"); 49640b57cec5SDimitry Andric break; 49650b57cec5SDimitry Andric } 49660b57cec5SDimitry Andric case Intrinsic::smul_fix: 49670b57cec5SDimitry Andric case Intrinsic::smul_fix_sat: 49688bcb0991SDimitry Andric case Intrinsic::umul_fix: 4969480093f4SDimitry Andric case Intrinsic::umul_fix_sat: 4970480093f4SDimitry Andric case Intrinsic::sdiv_fix: 4971*5ffd83dbSDimitry Andric case Intrinsic::sdiv_fix_sat: 4972*5ffd83dbSDimitry Andric case Intrinsic::udiv_fix: 4973*5ffd83dbSDimitry Andric case Intrinsic::udiv_fix_sat: { 49740b57cec5SDimitry Andric Value *Op1 = Call.getArgOperand(0); 49750b57cec5SDimitry Andric Value *Op2 = Call.getArgOperand(1); 49760b57cec5SDimitry Andric Assert(Op1->getType()->isIntOrIntVectorTy(), 4977480093f4SDimitry Andric "first operand of [us][mul|div]_fix[_sat] must be an int type or " 4978480093f4SDimitry Andric "vector of ints"); 49790b57cec5SDimitry Andric Assert(Op2->getType()->isIntOrIntVectorTy(), 4980480093f4SDimitry Andric "second operand of [us][mul|div]_fix[_sat] must be an int type or " 4981480093f4SDimitry Andric "vector of ints"); 49820b57cec5SDimitry Andric 49830b57cec5SDimitry Andric auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 49840b57cec5SDimitry Andric Assert(Op3->getType()->getBitWidth() <= 32, 4985480093f4SDimitry Andric "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 49860b57cec5SDimitry Andric 4987480093f4SDimitry Andric if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 4988*5ffd83dbSDimitry Andric ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 49890b57cec5SDimitry Andric Assert( 49900b57cec5SDimitry Andric Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4991480093f4SDimitry Andric "the scale of s[mul|div]_fix[_sat] must be less than the width of " 4992480093f4SDimitry Andric "the operands"); 49930b57cec5SDimitry Andric } else { 49940b57cec5SDimitry Andric Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4995480093f4SDimitry Andric "the scale of u[mul|div]_fix[_sat] must be less than or equal " 4996480093f4SDimitry Andric "to the width of the operands"); 49970b57cec5SDimitry Andric } 49980b57cec5SDimitry Andric break; 49990b57cec5SDimitry Andric } 50000b57cec5SDimitry Andric case Intrinsic::lround: 50010b57cec5SDimitry Andric case Intrinsic::llround: 50020b57cec5SDimitry Andric case Intrinsic::lrint: 50030b57cec5SDimitry Andric case Intrinsic::llrint: { 50040b57cec5SDimitry Andric Type *ValTy = Call.getArgOperand(0)->getType(); 50050b57cec5SDimitry Andric Type *ResultTy = Call.getType(); 50060b57cec5SDimitry Andric Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 50070b57cec5SDimitry Andric "Intrinsic does not support vectors", &Call); 50080b57cec5SDimitry Andric break; 50090b57cec5SDimitry Andric } 5010*5ffd83dbSDimitry Andric case Intrinsic::bswap: { 5011*5ffd83dbSDimitry Andric Type *Ty = Call.getType(); 5012*5ffd83dbSDimitry Andric unsigned Size = Ty->getScalarSizeInBits(); 5013*5ffd83dbSDimitry Andric Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5014*5ffd83dbSDimitry Andric break; 5015*5ffd83dbSDimitry Andric } 5016*5ffd83dbSDimitry Andric case Intrinsic::matrix_multiply: 5017*5ffd83dbSDimitry Andric case Intrinsic::matrix_transpose: 5018*5ffd83dbSDimitry Andric case Intrinsic::matrix_column_major_load: 5019*5ffd83dbSDimitry Andric case Intrinsic::matrix_column_major_store: { 5020*5ffd83dbSDimitry Andric Function *IF = Call.getCalledFunction(); 5021*5ffd83dbSDimitry Andric ConstantInt *Stride = nullptr; 5022*5ffd83dbSDimitry Andric ConstantInt *NumRows; 5023*5ffd83dbSDimitry Andric ConstantInt *NumColumns; 5024*5ffd83dbSDimitry Andric VectorType *ResultTy; 5025*5ffd83dbSDimitry Andric Type *Op0ElemTy = nullptr; 5026*5ffd83dbSDimitry Andric Type *Op1ElemTy = nullptr; 5027*5ffd83dbSDimitry Andric switch (ID) { 5028*5ffd83dbSDimitry Andric case Intrinsic::matrix_multiply: 5029*5ffd83dbSDimitry Andric NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5030*5ffd83dbSDimitry Andric NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5031*5ffd83dbSDimitry Andric ResultTy = cast<VectorType>(Call.getType()); 5032*5ffd83dbSDimitry Andric Op0ElemTy = 5033*5ffd83dbSDimitry Andric cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5034*5ffd83dbSDimitry Andric Op1ElemTy = 5035*5ffd83dbSDimitry Andric cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5036*5ffd83dbSDimitry Andric break; 5037*5ffd83dbSDimitry Andric case Intrinsic::matrix_transpose: 5038*5ffd83dbSDimitry Andric NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5039*5ffd83dbSDimitry Andric NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5040*5ffd83dbSDimitry Andric ResultTy = cast<VectorType>(Call.getType()); 5041*5ffd83dbSDimitry Andric Op0ElemTy = 5042*5ffd83dbSDimitry Andric cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5043*5ffd83dbSDimitry Andric break; 5044*5ffd83dbSDimitry Andric case Intrinsic::matrix_column_major_load: 5045*5ffd83dbSDimitry Andric Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5046*5ffd83dbSDimitry Andric NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5047*5ffd83dbSDimitry Andric NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5048*5ffd83dbSDimitry Andric ResultTy = cast<VectorType>(Call.getType()); 5049*5ffd83dbSDimitry Andric Op0ElemTy = 5050*5ffd83dbSDimitry Andric cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5051*5ffd83dbSDimitry Andric break; 5052*5ffd83dbSDimitry Andric case Intrinsic::matrix_column_major_store: 5053*5ffd83dbSDimitry Andric Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5054*5ffd83dbSDimitry Andric NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5055*5ffd83dbSDimitry Andric NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5056*5ffd83dbSDimitry Andric ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5057*5ffd83dbSDimitry Andric Op0ElemTy = 5058*5ffd83dbSDimitry Andric cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5059*5ffd83dbSDimitry Andric Op1ElemTy = 5060*5ffd83dbSDimitry Andric cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5061*5ffd83dbSDimitry Andric break; 5062*5ffd83dbSDimitry Andric default: 5063*5ffd83dbSDimitry Andric llvm_unreachable("unexpected intrinsic"); 5064*5ffd83dbSDimitry Andric } 5065*5ffd83dbSDimitry Andric 5066*5ffd83dbSDimitry Andric Assert(ResultTy->getElementType()->isIntegerTy() || 5067*5ffd83dbSDimitry Andric ResultTy->getElementType()->isFloatingPointTy(), 5068*5ffd83dbSDimitry Andric "Result type must be an integer or floating-point type!", IF); 5069*5ffd83dbSDimitry Andric 5070*5ffd83dbSDimitry Andric Assert(ResultTy->getElementType() == Op0ElemTy, 5071*5ffd83dbSDimitry Andric "Vector element type mismatch of the result and first operand " 5072*5ffd83dbSDimitry Andric "vector!", IF); 5073*5ffd83dbSDimitry Andric 5074*5ffd83dbSDimitry Andric if (Op1ElemTy) 5075*5ffd83dbSDimitry Andric Assert(ResultTy->getElementType() == Op1ElemTy, 5076*5ffd83dbSDimitry Andric "Vector element type mismatch of the result and second operand " 5077*5ffd83dbSDimitry Andric "vector!", IF); 5078*5ffd83dbSDimitry Andric 5079*5ffd83dbSDimitry Andric Assert(ResultTy->getNumElements() == 5080*5ffd83dbSDimitry Andric NumRows->getZExtValue() * NumColumns->getZExtValue(), 5081*5ffd83dbSDimitry Andric "Result of a matrix operation does not fit in the returned vector!"); 5082*5ffd83dbSDimitry Andric 5083*5ffd83dbSDimitry Andric if (Stride) 5084*5ffd83dbSDimitry Andric Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5085*5ffd83dbSDimitry Andric "Stride must be greater or equal than the number of rows!", IF); 5086*5ffd83dbSDimitry Andric 5087*5ffd83dbSDimitry Andric break; 5088*5ffd83dbSDimitry Andric } 50890b57cec5SDimitry Andric }; 50900b57cec5SDimitry Andric } 50910b57cec5SDimitry Andric 50920b57cec5SDimitry Andric /// Carefully grab the subprogram from a local scope. 50930b57cec5SDimitry Andric /// 50940b57cec5SDimitry Andric /// This carefully grabs the subprogram from a local scope, avoiding the 50950b57cec5SDimitry Andric /// built-in assertions that would typically fire. 50960b57cec5SDimitry Andric static DISubprogram *getSubprogram(Metadata *LocalScope) { 50970b57cec5SDimitry Andric if (!LocalScope) 50980b57cec5SDimitry Andric return nullptr; 50990b57cec5SDimitry Andric 51000b57cec5SDimitry Andric if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 51010b57cec5SDimitry Andric return SP; 51020b57cec5SDimitry Andric 51030b57cec5SDimitry Andric if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 51040b57cec5SDimitry Andric return getSubprogram(LB->getRawScope()); 51050b57cec5SDimitry Andric 51060b57cec5SDimitry Andric // Just return null; broken scope chains are checked elsewhere. 51070b57cec5SDimitry Andric assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 51080b57cec5SDimitry Andric return nullptr; 51090b57cec5SDimitry Andric } 51100b57cec5SDimitry Andric 51110b57cec5SDimitry Andric void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5112480093f4SDimitry Andric unsigned NumOperands; 5113480093f4SDimitry Andric bool HasRoundingMD; 51140b57cec5SDimitry Andric switch (FPI.getIntrinsicID()) { 5115*5ffd83dbSDimitry Andric #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5116480093f4SDimitry Andric case Intrinsic::INTRINSIC: \ 5117480093f4SDimitry Andric NumOperands = NARG; \ 5118480093f4SDimitry Andric HasRoundingMD = ROUND_MODE; \ 51190b57cec5SDimitry Andric break; 5120480093f4SDimitry Andric #include "llvm/IR/ConstrainedOps.def" 5121480093f4SDimitry Andric default: 5122480093f4SDimitry Andric llvm_unreachable("Invalid constrained FP intrinsic!"); 5123480093f4SDimitry Andric } 5124480093f4SDimitry Andric NumOperands += (1 + HasRoundingMD); 5125480093f4SDimitry Andric // Compare intrinsics carry an extra predicate metadata operand. 5126480093f4SDimitry Andric if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5127480093f4SDimitry Andric NumOperands += 1; 5128480093f4SDimitry Andric Assert((FPI.getNumArgOperands() == NumOperands), 5129480093f4SDimitry Andric "invalid arguments for constrained FP intrinsic", &FPI); 51300b57cec5SDimitry Andric 5131480093f4SDimitry Andric switch (FPI.getIntrinsicID()) { 51328bcb0991SDimitry Andric case Intrinsic::experimental_constrained_lrint: 51338bcb0991SDimitry Andric case Intrinsic::experimental_constrained_llrint: { 51348bcb0991SDimitry Andric Type *ValTy = FPI.getArgOperand(0)->getType(); 51358bcb0991SDimitry Andric Type *ResultTy = FPI.getType(); 51368bcb0991SDimitry Andric Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 51378bcb0991SDimitry Andric "Intrinsic does not support vectors", &FPI); 51388bcb0991SDimitry Andric } 51398bcb0991SDimitry Andric break; 51408bcb0991SDimitry Andric 51418bcb0991SDimitry Andric case Intrinsic::experimental_constrained_lround: 51428bcb0991SDimitry Andric case Intrinsic::experimental_constrained_llround: { 51438bcb0991SDimitry Andric Type *ValTy = FPI.getArgOperand(0)->getType(); 51448bcb0991SDimitry Andric Type *ResultTy = FPI.getType(); 51458bcb0991SDimitry Andric Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 51468bcb0991SDimitry Andric "Intrinsic does not support vectors", &FPI); 51478bcb0991SDimitry Andric break; 51488bcb0991SDimitry Andric } 51498bcb0991SDimitry Andric 5150480093f4SDimitry Andric case Intrinsic::experimental_constrained_fcmp: 5151480093f4SDimitry Andric case Intrinsic::experimental_constrained_fcmps: { 5152480093f4SDimitry Andric auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5153480093f4SDimitry Andric Assert(CmpInst::isFPPredicate(Pred), 5154480093f4SDimitry Andric "invalid predicate for constrained FP comparison intrinsic", &FPI); 51550b57cec5SDimitry Andric break; 5156480093f4SDimitry Andric } 51570b57cec5SDimitry Andric 51588bcb0991SDimitry Andric case Intrinsic::experimental_constrained_fptosi: 51598bcb0991SDimitry Andric case Intrinsic::experimental_constrained_fptoui: { 51608bcb0991SDimitry Andric Value *Operand = FPI.getArgOperand(0); 51618bcb0991SDimitry Andric uint64_t NumSrcElem = 0; 51628bcb0991SDimitry Andric Assert(Operand->getType()->isFPOrFPVectorTy(), 51638bcb0991SDimitry Andric "Intrinsic first argument must be floating point", &FPI); 51648bcb0991SDimitry Andric if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 51658bcb0991SDimitry Andric NumSrcElem = OperandT->getNumElements(); 51668bcb0991SDimitry Andric } 51678bcb0991SDimitry Andric 51688bcb0991SDimitry Andric Operand = &FPI; 51698bcb0991SDimitry Andric Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 51708bcb0991SDimitry Andric "Intrinsic first argument and result disagree on vector use", &FPI); 51718bcb0991SDimitry Andric Assert(Operand->getType()->isIntOrIntVectorTy(), 51728bcb0991SDimitry Andric "Intrinsic result must be an integer", &FPI); 51738bcb0991SDimitry Andric if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 51748bcb0991SDimitry Andric Assert(NumSrcElem == OperandT->getNumElements(), 51758bcb0991SDimitry Andric "Intrinsic first argument and result vector lengths must be equal", 51768bcb0991SDimitry Andric &FPI); 51778bcb0991SDimitry Andric } 51788bcb0991SDimitry Andric } 51798bcb0991SDimitry Andric break; 51808bcb0991SDimitry Andric 5181480093f4SDimitry Andric case Intrinsic::experimental_constrained_sitofp: 5182480093f4SDimitry Andric case Intrinsic::experimental_constrained_uitofp: { 5183480093f4SDimitry Andric Value *Operand = FPI.getArgOperand(0); 5184480093f4SDimitry Andric uint64_t NumSrcElem = 0; 5185480093f4SDimitry Andric Assert(Operand->getType()->isIntOrIntVectorTy(), 5186480093f4SDimitry Andric "Intrinsic first argument must be integer", &FPI); 5187480093f4SDimitry Andric if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5188480093f4SDimitry Andric NumSrcElem = OperandT->getNumElements(); 5189480093f4SDimitry Andric } 5190480093f4SDimitry Andric 5191480093f4SDimitry Andric Operand = &FPI; 5192480093f4SDimitry Andric Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5193480093f4SDimitry Andric "Intrinsic first argument and result disagree on vector use", &FPI); 5194480093f4SDimitry Andric Assert(Operand->getType()->isFPOrFPVectorTy(), 5195480093f4SDimitry Andric "Intrinsic result must be a floating point", &FPI); 5196480093f4SDimitry Andric if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5197480093f4SDimitry Andric Assert(NumSrcElem == OperandT->getNumElements(), 5198480093f4SDimitry Andric "Intrinsic first argument and result vector lengths must be equal", 5199480093f4SDimitry Andric &FPI); 5200480093f4SDimitry Andric } 5201480093f4SDimitry Andric } break; 5202480093f4SDimitry Andric 52030b57cec5SDimitry Andric case Intrinsic::experimental_constrained_fptrunc: 52040b57cec5SDimitry Andric case Intrinsic::experimental_constrained_fpext: { 52050b57cec5SDimitry Andric Value *Operand = FPI.getArgOperand(0); 52060b57cec5SDimitry Andric Type *OperandTy = Operand->getType(); 52070b57cec5SDimitry Andric Value *Result = &FPI; 52080b57cec5SDimitry Andric Type *ResultTy = Result->getType(); 52090b57cec5SDimitry Andric Assert(OperandTy->isFPOrFPVectorTy(), 52100b57cec5SDimitry Andric "Intrinsic first argument must be FP or FP vector", &FPI); 52110b57cec5SDimitry Andric Assert(ResultTy->isFPOrFPVectorTy(), 52120b57cec5SDimitry Andric "Intrinsic result must be FP or FP vector", &FPI); 52130b57cec5SDimitry Andric Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 52140b57cec5SDimitry Andric "Intrinsic first argument and result disagree on vector use", &FPI); 52150b57cec5SDimitry Andric if (OperandTy->isVectorTy()) { 52160b57cec5SDimitry Andric auto *OperandVecTy = cast<VectorType>(OperandTy); 52170b57cec5SDimitry Andric auto *ResultVecTy = cast<VectorType>(ResultTy); 52180b57cec5SDimitry Andric Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 52190b57cec5SDimitry Andric "Intrinsic first argument and result vector lengths must be equal", 52200b57cec5SDimitry Andric &FPI); 52210b57cec5SDimitry Andric } 52220b57cec5SDimitry Andric if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 52230b57cec5SDimitry Andric Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 52240b57cec5SDimitry Andric "Intrinsic first argument's type must be larger than result type", 52250b57cec5SDimitry Andric &FPI); 52260b57cec5SDimitry Andric } else { 52270b57cec5SDimitry Andric Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 52280b57cec5SDimitry Andric "Intrinsic first argument's type must be smaller than result type", 52290b57cec5SDimitry Andric &FPI); 52300b57cec5SDimitry Andric } 52310b57cec5SDimitry Andric } 52320b57cec5SDimitry Andric break; 52330b57cec5SDimitry Andric 52340b57cec5SDimitry Andric default: 5235480093f4SDimitry Andric break; 52360b57cec5SDimitry Andric } 52370b57cec5SDimitry Andric 52380b57cec5SDimitry Andric // If a non-metadata argument is passed in a metadata slot then the 52390b57cec5SDimitry Andric // error will be caught earlier when the incorrect argument doesn't 52400b57cec5SDimitry Andric // match the specification in the intrinsic call table. Thus, no 52410b57cec5SDimitry Andric // argument type check is needed here. 52420b57cec5SDimitry Andric 52430b57cec5SDimitry Andric Assert(FPI.getExceptionBehavior().hasValue(), 52440b57cec5SDimitry Andric "invalid exception behavior argument", &FPI); 52450b57cec5SDimitry Andric if (HasRoundingMD) { 52460b57cec5SDimitry Andric Assert(FPI.getRoundingMode().hasValue(), 52470b57cec5SDimitry Andric "invalid rounding mode argument", &FPI); 52480b57cec5SDimitry Andric } 52490b57cec5SDimitry Andric } 52500b57cec5SDimitry Andric 52510b57cec5SDimitry Andric void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 52520b57cec5SDimitry Andric auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 52530b57cec5SDimitry Andric AssertDI(isa<ValueAsMetadata>(MD) || 52540b57cec5SDimitry Andric (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 52550b57cec5SDimitry Andric "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 52560b57cec5SDimitry Andric AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 52570b57cec5SDimitry Andric "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 52580b57cec5SDimitry Andric DII.getRawVariable()); 52590b57cec5SDimitry Andric AssertDI(isa<DIExpression>(DII.getRawExpression()), 52600b57cec5SDimitry Andric "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 52610b57cec5SDimitry Andric DII.getRawExpression()); 52620b57cec5SDimitry Andric 52630b57cec5SDimitry Andric // Ignore broken !dbg attachments; they're checked elsewhere. 52640b57cec5SDimitry Andric if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 52650b57cec5SDimitry Andric if (!isa<DILocation>(N)) 52660b57cec5SDimitry Andric return; 52670b57cec5SDimitry Andric 52680b57cec5SDimitry Andric BasicBlock *BB = DII.getParent(); 52690b57cec5SDimitry Andric Function *F = BB ? BB->getParent() : nullptr; 52700b57cec5SDimitry Andric 52710b57cec5SDimitry Andric // The scopes for variables and !dbg attachments must agree. 52720b57cec5SDimitry Andric DILocalVariable *Var = DII.getVariable(); 52730b57cec5SDimitry Andric DILocation *Loc = DII.getDebugLoc(); 52740b57cec5SDimitry Andric AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 52750b57cec5SDimitry Andric &DII, BB, F); 52760b57cec5SDimitry Andric 52770b57cec5SDimitry Andric DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 52780b57cec5SDimitry Andric DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 52790b57cec5SDimitry Andric if (!VarSP || !LocSP) 52800b57cec5SDimitry Andric return; // Broken scope chains are checked elsewhere. 52810b57cec5SDimitry Andric 52820b57cec5SDimitry Andric AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 52830b57cec5SDimitry Andric " variable and !dbg attachment", 52840b57cec5SDimitry Andric &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 52850b57cec5SDimitry Andric Loc->getScope()->getSubprogram()); 52860b57cec5SDimitry Andric 52870b57cec5SDimitry Andric // This check is redundant with one in visitLocalVariable(). 52880b57cec5SDimitry Andric AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 52890b57cec5SDimitry Andric Var->getRawType()); 52900b57cec5SDimitry Andric verifyFnArgs(DII); 52910b57cec5SDimitry Andric } 52920b57cec5SDimitry Andric 52930b57cec5SDimitry Andric void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 52940b57cec5SDimitry Andric AssertDI(isa<DILabel>(DLI.getRawLabel()), 52950b57cec5SDimitry Andric "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 52960b57cec5SDimitry Andric DLI.getRawLabel()); 52970b57cec5SDimitry Andric 52980b57cec5SDimitry Andric // Ignore broken !dbg attachments; they're checked elsewhere. 52990b57cec5SDimitry Andric if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 53000b57cec5SDimitry Andric if (!isa<DILocation>(N)) 53010b57cec5SDimitry Andric return; 53020b57cec5SDimitry Andric 53030b57cec5SDimitry Andric BasicBlock *BB = DLI.getParent(); 53040b57cec5SDimitry Andric Function *F = BB ? BB->getParent() : nullptr; 53050b57cec5SDimitry Andric 53060b57cec5SDimitry Andric // The scopes for variables and !dbg attachments must agree. 53070b57cec5SDimitry Andric DILabel *Label = DLI.getLabel(); 53080b57cec5SDimitry Andric DILocation *Loc = DLI.getDebugLoc(); 53090b57cec5SDimitry Andric Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 53100b57cec5SDimitry Andric &DLI, BB, F); 53110b57cec5SDimitry Andric 53120b57cec5SDimitry Andric DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 53130b57cec5SDimitry Andric DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 53140b57cec5SDimitry Andric if (!LabelSP || !LocSP) 53150b57cec5SDimitry Andric return; 53160b57cec5SDimitry Andric 53170b57cec5SDimitry Andric AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 53180b57cec5SDimitry Andric " label and !dbg attachment", 53190b57cec5SDimitry Andric &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 53200b57cec5SDimitry Andric Loc->getScope()->getSubprogram()); 53210b57cec5SDimitry Andric } 53220b57cec5SDimitry Andric 53230b57cec5SDimitry Andric void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 53240b57cec5SDimitry Andric DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 53250b57cec5SDimitry Andric DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 53260b57cec5SDimitry Andric 53270b57cec5SDimitry Andric // We don't know whether this intrinsic verified correctly. 53280b57cec5SDimitry Andric if (!V || !E || !E->isValid()) 53290b57cec5SDimitry Andric return; 53300b57cec5SDimitry Andric 53310b57cec5SDimitry Andric // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 53320b57cec5SDimitry Andric auto Fragment = E->getFragmentInfo(); 53330b57cec5SDimitry Andric if (!Fragment) 53340b57cec5SDimitry Andric return; 53350b57cec5SDimitry Andric 53360b57cec5SDimitry Andric // The frontend helps out GDB by emitting the members of local anonymous 53370b57cec5SDimitry Andric // unions as artificial local variables with shared storage. When SROA splits 53380b57cec5SDimitry Andric // the storage for artificial local variables that are smaller than the entire 53390b57cec5SDimitry Andric // union, the overhang piece will be outside of the allotted space for the 53400b57cec5SDimitry Andric // variable and this check fails. 53410b57cec5SDimitry Andric // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 53420b57cec5SDimitry Andric if (V->isArtificial()) 53430b57cec5SDimitry Andric return; 53440b57cec5SDimitry Andric 53450b57cec5SDimitry Andric verifyFragmentExpression(*V, *Fragment, &I); 53460b57cec5SDimitry Andric } 53470b57cec5SDimitry Andric 53480b57cec5SDimitry Andric template <typename ValueOrMetadata> 53490b57cec5SDimitry Andric void Verifier::verifyFragmentExpression(const DIVariable &V, 53500b57cec5SDimitry Andric DIExpression::FragmentInfo Fragment, 53510b57cec5SDimitry Andric ValueOrMetadata *Desc) { 53520b57cec5SDimitry Andric // If there's no size, the type is broken, but that should be checked 53530b57cec5SDimitry Andric // elsewhere. 53540b57cec5SDimitry Andric auto VarSize = V.getSizeInBits(); 53550b57cec5SDimitry Andric if (!VarSize) 53560b57cec5SDimitry Andric return; 53570b57cec5SDimitry Andric 53580b57cec5SDimitry Andric unsigned FragSize = Fragment.SizeInBits; 53590b57cec5SDimitry Andric unsigned FragOffset = Fragment.OffsetInBits; 53600b57cec5SDimitry Andric AssertDI(FragSize + FragOffset <= *VarSize, 53610b57cec5SDimitry Andric "fragment is larger than or outside of variable", Desc, &V); 53620b57cec5SDimitry Andric AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 53630b57cec5SDimitry Andric } 53640b57cec5SDimitry Andric 53650b57cec5SDimitry Andric void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 53660b57cec5SDimitry Andric // This function does not take the scope of noninlined function arguments into 53670b57cec5SDimitry Andric // account. Don't run it if current function is nodebug, because it may 53680b57cec5SDimitry Andric // contain inlined debug intrinsics. 53690b57cec5SDimitry Andric if (!HasDebugInfo) 53700b57cec5SDimitry Andric return; 53710b57cec5SDimitry Andric 53720b57cec5SDimitry Andric // For performance reasons only check non-inlined ones. 53730b57cec5SDimitry Andric if (I.getDebugLoc()->getInlinedAt()) 53740b57cec5SDimitry Andric return; 53750b57cec5SDimitry Andric 53760b57cec5SDimitry Andric DILocalVariable *Var = I.getVariable(); 53770b57cec5SDimitry Andric AssertDI(Var, "dbg intrinsic without variable"); 53780b57cec5SDimitry Andric 53790b57cec5SDimitry Andric unsigned ArgNo = Var->getArg(); 53800b57cec5SDimitry Andric if (!ArgNo) 53810b57cec5SDimitry Andric return; 53820b57cec5SDimitry Andric 53830b57cec5SDimitry Andric // Verify there are no duplicate function argument debug info entries. 53840b57cec5SDimitry Andric // These will cause hard-to-debug assertions in the DWARF backend. 53850b57cec5SDimitry Andric if (DebugFnArgs.size() < ArgNo) 53860b57cec5SDimitry Andric DebugFnArgs.resize(ArgNo, nullptr); 53870b57cec5SDimitry Andric 53880b57cec5SDimitry Andric auto *Prev = DebugFnArgs[ArgNo - 1]; 53890b57cec5SDimitry Andric DebugFnArgs[ArgNo - 1] = Var; 53900b57cec5SDimitry Andric AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 53910b57cec5SDimitry Andric Prev, Var); 53920b57cec5SDimitry Andric } 53930b57cec5SDimitry Andric 53948bcb0991SDimitry Andric void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 53958bcb0991SDimitry Andric DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 53968bcb0991SDimitry Andric 53978bcb0991SDimitry Andric // We don't know whether this intrinsic verified correctly. 53988bcb0991SDimitry Andric if (!E || !E->isValid()) 53998bcb0991SDimitry Andric return; 54008bcb0991SDimitry Andric 54018bcb0991SDimitry Andric AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 54028bcb0991SDimitry Andric } 54038bcb0991SDimitry Andric 54040b57cec5SDimitry Andric void Verifier::verifyCompileUnits() { 54050b57cec5SDimitry Andric // When more than one Module is imported into the same context, such as during 54060b57cec5SDimitry Andric // an LTO build before linking the modules, ODR type uniquing may cause types 54070b57cec5SDimitry Andric // to point to a different CU. This check does not make sense in this case. 54080b57cec5SDimitry Andric if (M.getContext().isODRUniquingDebugTypes()) 54090b57cec5SDimitry Andric return; 54100b57cec5SDimitry Andric auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 54110b57cec5SDimitry Andric SmallPtrSet<const Metadata *, 2> Listed; 54120b57cec5SDimitry Andric if (CUs) 54130b57cec5SDimitry Andric Listed.insert(CUs->op_begin(), CUs->op_end()); 54140b57cec5SDimitry Andric for (auto *CU : CUVisited) 54150b57cec5SDimitry Andric AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 54160b57cec5SDimitry Andric CUVisited.clear(); 54170b57cec5SDimitry Andric } 54180b57cec5SDimitry Andric 54190b57cec5SDimitry Andric void Verifier::verifyDeoptimizeCallingConvs() { 54200b57cec5SDimitry Andric if (DeoptimizeDeclarations.empty()) 54210b57cec5SDimitry Andric return; 54220b57cec5SDimitry Andric 54230b57cec5SDimitry Andric const Function *First = DeoptimizeDeclarations[0]; 54240b57cec5SDimitry Andric for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 54250b57cec5SDimitry Andric Assert(First->getCallingConv() == F->getCallingConv(), 54260b57cec5SDimitry Andric "All llvm.experimental.deoptimize declarations must have the same " 54270b57cec5SDimitry Andric "calling convention", 54280b57cec5SDimitry Andric First, F); 54290b57cec5SDimitry Andric } 54300b57cec5SDimitry Andric } 54310b57cec5SDimitry Andric 54320b57cec5SDimitry Andric void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 54330b57cec5SDimitry Andric bool HasSource = F.getSource().hasValue(); 54340b57cec5SDimitry Andric if (!HasSourceDebugInfo.count(&U)) 54350b57cec5SDimitry Andric HasSourceDebugInfo[&U] = HasSource; 54360b57cec5SDimitry Andric AssertDI(HasSource == HasSourceDebugInfo[&U], 54370b57cec5SDimitry Andric "inconsistent use of embedded source"); 54380b57cec5SDimitry Andric } 54390b57cec5SDimitry Andric 54400b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 54410b57cec5SDimitry Andric // Implement the public interfaces to this file... 54420b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 54430b57cec5SDimitry Andric 54440b57cec5SDimitry Andric bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 54450b57cec5SDimitry Andric Function &F = const_cast<Function &>(f); 54460b57cec5SDimitry Andric 54470b57cec5SDimitry Andric // Don't use a raw_null_ostream. Printing IR is expensive. 54480b57cec5SDimitry Andric Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 54490b57cec5SDimitry Andric 54500b57cec5SDimitry Andric // Note that this function's return value is inverted from what you would 54510b57cec5SDimitry Andric // expect of a function called "verify". 54520b57cec5SDimitry Andric return !V.verify(F); 54530b57cec5SDimitry Andric } 54540b57cec5SDimitry Andric 54550b57cec5SDimitry Andric bool llvm::verifyModule(const Module &M, raw_ostream *OS, 54560b57cec5SDimitry Andric bool *BrokenDebugInfo) { 54570b57cec5SDimitry Andric // Don't use a raw_null_ostream. Printing IR is expensive. 54580b57cec5SDimitry Andric Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 54590b57cec5SDimitry Andric 54600b57cec5SDimitry Andric bool Broken = false; 54610b57cec5SDimitry Andric for (const Function &F : M) 54620b57cec5SDimitry Andric Broken |= !V.verify(F); 54630b57cec5SDimitry Andric 54640b57cec5SDimitry Andric Broken |= !V.verify(); 54650b57cec5SDimitry Andric if (BrokenDebugInfo) 54660b57cec5SDimitry Andric *BrokenDebugInfo = V.hasBrokenDebugInfo(); 54670b57cec5SDimitry Andric // Note that this function's return value is inverted from what you would 54680b57cec5SDimitry Andric // expect of a function called "verify". 54690b57cec5SDimitry Andric return Broken; 54700b57cec5SDimitry Andric } 54710b57cec5SDimitry Andric 54720b57cec5SDimitry Andric namespace { 54730b57cec5SDimitry Andric 54740b57cec5SDimitry Andric struct VerifierLegacyPass : public FunctionPass { 54750b57cec5SDimitry Andric static char ID; 54760b57cec5SDimitry Andric 54770b57cec5SDimitry Andric std::unique_ptr<Verifier> V; 54780b57cec5SDimitry Andric bool FatalErrors = true; 54790b57cec5SDimitry Andric 54800b57cec5SDimitry Andric VerifierLegacyPass() : FunctionPass(ID) { 54810b57cec5SDimitry Andric initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 54820b57cec5SDimitry Andric } 54830b57cec5SDimitry Andric explicit VerifierLegacyPass(bool FatalErrors) 54840b57cec5SDimitry Andric : FunctionPass(ID), 54850b57cec5SDimitry Andric FatalErrors(FatalErrors) { 54860b57cec5SDimitry Andric initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 54870b57cec5SDimitry Andric } 54880b57cec5SDimitry Andric 54890b57cec5SDimitry Andric bool doInitialization(Module &M) override { 54908bcb0991SDimitry Andric V = std::make_unique<Verifier>( 54910b57cec5SDimitry Andric &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 54920b57cec5SDimitry Andric return false; 54930b57cec5SDimitry Andric } 54940b57cec5SDimitry Andric 54950b57cec5SDimitry Andric bool runOnFunction(Function &F) override { 54960b57cec5SDimitry Andric if (!V->verify(F) && FatalErrors) { 54970b57cec5SDimitry Andric errs() << "in function " << F.getName() << '\n'; 54980b57cec5SDimitry Andric report_fatal_error("Broken function found, compilation aborted!"); 54990b57cec5SDimitry Andric } 55000b57cec5SDimitry Andric return false; 55010b57cec5SDimitry Andric } 55020b57cec5SDimitry Andric 55030b57cec5SDimitry Andric bool doFinalization(Module &M) override { 55040b57cec5SDimitry Andric bool HasErrors = false; 55050b57cec5SDimitry Andric for (Function &F : M) 55060b57cec5SDimitry Andric if (F.isDeclaration()) 55070b57cec5SDimitry Andric HasErrors |= !V->verify(F); 55080b57cec5SDimitry Andric 55090b57cec5SDimitry Andric HasErrors |= !V->verify(); 55100b57cec5SDimitry Andric if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 55110b57cec5SDimitry Andric report_fatal_error("Broken module found, compilation aborted!"); 55120b57cec5SDimitry Andric return false; 55130b57cec5SDimitry Andric } 55140b57cec5SDimitry Andric 55150b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 55160b57cec5SDimitry Andric AU.setPreservesAll(); 55170b57cec5SDimitry Andric } 55180b57cec5SDimitry Andric }; 55190b57cec5SDimitry Andric 55200b57cec5SDimitry Andric } // end anonymous namespace 55210b57cec5SDimitry Andric 55220b57cec5SDimitry Andric /// Helper to issue failure from the TBAA verification 55230b57cec5SDimitry Andric template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 55240b57cec5SDimitry Andric if (Diagnostic) 55250b57cec5SDimitry Andric return Diagnostic->CheckFailed(Args...); 55260b57cec5SDimitry Andric } 55270b57cec5SDimitry Andric 55280b57cec5SDimitry Andric #define AssertTBAA(C, ...) \ 55290b57cec5SDimitry Andric do { \ 55300b57cec5SDimitry Andric if (!(C)) { \ 55310b57cec5SDimitry Andric CheckFailed(__VA_ARGS__); \ 55320b57cec5SDimitry Andric return false; \ 55330b57cec5SDimitry Andric } \ 55340b57cec5SDimitry Andric } while (false) 55350b57cec5SDimitry Andric 55360b57cec5SDimitry Andric /// Verify that \p BaseNode can be used as the "base type" in the struct-path 55370b57cec5SDimitry Andric /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 55380b57cec5SDimitry Andric /// struct-type node describing an aggregate data structure (like a struct). 55390b57cec5SDimitry Andric TBAAVerifier::TBAABaseNodeSummary 55400b57cec5SDimitry Andric TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 55410b57cec5SDimitry Andric bool IsNewFormat) { 55420b57cec5SDimitry Andric if (BaseNode->getNumOperands() < 2) { 55430b57cec5SDimitry Andric CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 55440b57cec5SDimitry Andric return {true, ~0u}; 55450b57cec5SDimitry Andric } 55460b57cec5SDimitry Andric 55470b57cec5SDimitry Andric auto Itr = TBAABaseNodes.find(BaseNode); 55480b57cec5SDimitry Andric if (Itr != TBAABaseNodes.end()) 55490b57cec5SDimitry Andric return Itr->second; 55500b57cec5SDimitry Andric 55510b57cec5SDimitry Andric auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 55520b57cec5SDimitry Andric auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 55530b57cec5SDimitry Andric (void)InsertResult; 55540b57cec5SDimitry Andric assert(InsertResult.second && "We just checked!"); 55550b57cec5SDimitry Andric return Result; 55560b57cec5SDimitry Andric } 55570b57cec5SDimitry Andric 55580b57cec5SDimitry Andric TBAAVerifier::TBAABaseNodeSummary 55590b57cec5SDimitry Andric TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 55600b57cec5SDimitry Andric bool IsNewFormat) { 55610b57cec5SDimitry Andric const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 55620b57cec5SDimitry Andric 55630b57cec5SDimitry Andric if (BaseNode->getNumOperands() == 2) { 55640b57cec5SDimitry Andric // Scalar nodes can only be accessed at offset 0. 55650b57cec5SDimitry Andric return isValidScalarTBAANode(BaseNode) 55660b57cec5SDimitry Andric ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 55670b57cec5SDimitry Andric : InvalidNode; 55680b57cec5SDimitry Andric } 55690b57cec5SDimitry Andric 55700b57cec5SDimitry Andric if (IsNewFormat) { 55710b57cec5SDimitry Andric if (BaseNode->getNumOperands() % 3 != 0) { 55720b57cec5SDimitry Andric CheckFailed("Access tag nodes must have the number of operands that is a " 55730b57cec5SDimitry Andric "multiple of 3!", BaseNode); 55740b57cec5SDimitry Andric return InvalidNode; 55750b57cec5SDimitry Andric } 55760b57cec5SDimitry Andric } else { 55770b57cec5SDimitry Andric if (BaseNode->getNumOperands() % 2 != 1) { 55780b57cec5SDimitry Andric CheckFailed("Struct tag nodes must have an odd number of operands!", 55790b57cec5SDimitry Andric BaseNode); 55800b57cec5SDimitry Andric return InvalidNode; 55810b57cec5SDimitry Andric } 55820b57cec5SDimitry Andric } 55830b57cec5SDimitry Andric 55840b57cec5SDimitry Andric // Check the type size field. 55850b57cec5SDimitry Andric if (IsNewFormat) { 55860b57cec5SDimitry Andric auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 55870b57cec5SDimitry Andric BaseNode->getOperand(1)); 55880b57cec5SDimitry Andric if (!TypeSizeNode) { 55890b57cec5SDimitry Andric CheckFailed("Type size nodes must be constants!", &I, BaseNode); 55900b57cec5SDimitry Andric return InvalidNode; 55910b57cec5SDimitry Andric } 55920b57cec5SDimitry Andric } 55930b57cec5SDimitry Andric 55940b57cec5SDimitry Andric // Check the type name field. In the new format it can be anything. 55950b57cec5SDimitry Andric if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 55960b57cec5SDimitry Andric CheckFailed("Struct tag nodes have a string as their first operand", 55970b57cec5SDimitry Andric BaseNode); 55980b57cec5SDimitry Andric return InvalidNode; 55990b57cec5SDimitry Andric } 56000b57cec5SDimitry Andric 56010b57cec5SDimitry Andric bool Failed = false; 56020b57cec5SDimitry Andric 56030b57cec5SDimitry Andric Optional<APInt> PrevOffset; 56040b57cec5SDimitry Andric unsigned BitWidth = ~0u; 56050b57cec5SDimitry Andric 56060b57cec5SDimitry Andric // We've already checked that BaseNode is not a degenerate root node with one 56070b57cec5SDimitry Andric // operand in \c verifyTBAABaseNode, so this loop should run at least once. 56080b57cec5SDimitry Andric unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 56090b57cec5SDimitry Andric unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 56100b57cec5SDimitry Andric for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 56110b57cec5SDimitry Andric Idx += NumOpsPerField) { 56120b57cec5SDimitry Andric const MDOperand &FieldTy = BaseNode->getOperand(Idx); 56130b57cec5SDimitry Andric const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 56140b57cec5SDimitry Andric if (!isa<MDNode>(FieldTy)) { 56150b57cec5SDimitry Andric CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 56160b57cec5SDimitry Andric Failed = true; 56170b57cec5SDimitry Andric continue; 56180b57cec5SDimitry Andric } 56190b57cec5SDimitry Andric 56200b57cec5SDimitry Andric auto *OffsetEntryCI = 56210b57cec5SDimitry Andric mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 56220b57cec5SDimitry Andric if (!OffsetEntryCI) { 56230b57cec5SDimitry Andric CheckFailed("Offset entries must be constants!", &I, BaseNode); 56240b57cec5SDimitry Andric Failed = true; 56250b57cec5SDimitry Andric continue; 56260b57cec5SDimitry Andric } 56270b57cec5SDimitry Andric 56280b57cec5SDimitry Andric if (BitWidth == ~0u) 56290b57cec5SDimitry Andric BitWidth = OffsetEntryCI->getBitWidth(); 56300b57cec5SDimitry Andric 56310b57cec5SDimitry Andric if (OffsetEntryCI->getBitWidth() != BitWidth) { 56320b57cec5SDimitry Andric CheckFailed( 56330b57cec5SDimitry Andric "Bitwidth between the offsets and struct type entries must match", &I, 56340b57cec5SDimitry Andric BaseNode); 56350b57cec5SDimitry Andric Failed = true; 56360b57cec5SDimitry Andric continue; 56370b57cec5SDimitry Andric } 56380b57cec5SDimitry Andric 56390b57cec5SDimitry Andric // NB! As far as I can tell, we generate a non-strictly increasing offset 56400b57cec5SDimitry Andric // sequence only from structs that have zero size bit fields. When 56410b57cec5SDimitry Andric // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 56420b57cec5SDimitry Andric // pick the field lexically the latest in struct type metadata node. This 56430b57cec5SDimitry Andric // mirrors the actual behavior of the alias analysis implementation. 56440b57cec5SDimitry Andric bool IsAscending = 56450b57cec5SDimitry Andric !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 56460b57cec5SDimitry Andric 56470b57cec5SDimitry Andric if (!IsAscending) { 56480b57cec5SDimitry Andric CheckFailed("Offsets must be increasing!", &I, BaseNode); 56490b57cec5SDimitry Andric Failed = true; 56500b57cec5SDimitry Andric } 56510b57cec5SDimitry Andric 56520b57cec5SDimitry Andric PrevOffset = OffsetEntryCI->getValue(); 56530b57cec5SDimitry Andric 56540b57cec5SDimitry Andric if (IsNewFormat) { 56550b57cec5SDimitry Andric auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 56560b57cec5SDimitry Andric BaseNode->getOperand(Idx + 2)); 56570b57cec5SDimitry Andric if (!MemberSizeNode) { 56580b57cec5SDimitry Andric CheckFailed("Member size entries must be constants!", &I, BaseNode); 56590b57cec5SDimitry Andric Failed = true; 56600b57cec5SDimitry Andric continue; 56610b57cec5SDimitry Andric } 56620b57cec5SDimitry Andric } 56630b57cec5SDimitry Andric } 56640b57cec5SDimitry Andric 56650b57cec5SDimitry Andric return Failed ? InvalidNode 56660b57cec5SDimitry Andric : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 56670b57cec5SDimitry Andric } 56680b57cec5SDimitry Andric 56690b57cec5SDimitry Andric static bool IsRootTBAANode(const MDNode *MD) { 56700b57cec5SDimitry Andric return MD->getNumOperands() < 2; 56710b57cec5SDimitry Andric } 56720b57cec5SDimitry Andric 56730b57cec5SDimitry Andric static bool IsScalarTBAANodeImpl(const MDNode *MD, 56740b57cec5SDimitry Andric SmallPtrSetImpl<const MDNode *> &Visited) { 56750b57cec5SDimitry Andric if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 56760b57cec5SDimitry Andric return false; 56770b57cec5SDimitry Andric 56780b57cec5SDimitry Andric if (!isa<MDString>(MD->getOperand(0))) 56790b57cec5SDimitry Andric return false; 56800b57cec5SDimitry Andric 56810b57cec5SDimitry Andric if (MD->getNumOperands() == 3) { 56820b57cec5SDimitry Andric auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 56830b57cec5SDimitry Andric if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 56840b57cec5SDimitry Andric return false; 56850b57cec5SDimitry Andric } 56860b57cec5SDimitry Andric 56870b57cec5SDimitry Andric auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 56880b57cec5SDimitry Andric return Parent && Visited.insert(Parent).second && 56890b57cec5SDimitry Andric (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 56900b57cec5SDimitry Andric } 56910b57cec5SDimitry Andric 56920b57cec5SDimitry Andric bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 56930b57cec5SDimitry Andric auto ResultIt = TBAAScalarNodes.find(MD); 56940b57cec5SDimitry Andric if (ResultIt != TBAAScalarNodes.end()) 56950b57cec5SDimitry Andric return ResultIt->second; 56960b57cec5SDimitry Andric 56970b57cec5SDimitry Andric SmallPtrSet<const MDNode *, 4> Visited; 56980b57cec5SDimitry Andric bool Result = IsScalarTBAANodeImpl(MD, Visited); 56990b57cec5SDimitry Andric auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 57000b57cec5SDimitry Andric (void)InsertResult; 57010b57cec5SDimitry Andric assert(InsertResult.second && "Just checked!"); 57020b57cec5SDimitry Andric 57030b57cec5SDimitry Andric return Result; 57040b57cec5SDimitry Andric } 57050b57cec5SDimitry Andric 57060b57cec5SDimitry Andric /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 57070b57cec5SDimitry Andric /// Offset in place to be the offset within the field node returned. 57080b57cec5SDimitry Andric /// 57090b57cec5SDimitry Andric /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 57100b57cec5SDimitry Andric MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 57110b57cec5SDimitry Andric const MDNode *BaseNode, 57120b57cec5SDimitry Andric APInt &Offset, 57130b57cec5SDimitry Andric bool IsNewFormat) { 57140b57cec5SDimitry Andric assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 57150b57cec5SDimitry Andric 57160b57cec5SDimitry Andric // Scalar nodes have only one possible "field" -- their parent in the access 57170b57cec5SDimitry Andric // hierarchy. Offset must be zero at this point, but our caller is supposed 57180b57cec5SDimitry Andric // to Assert that. 57190b57cec5SDimitry Andric if (BaseNode->getNumOperands() == 2) 57200b57cec5SDimitry Andric return cast<MDNode>(BaseNode->getOperand(1)); 57210b57cec5SDimitry Andric 57220b57cec5SDimitry Andric unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 57230b57cec5SDimitry Andric unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 57240b57cec5SDimitry Andric for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 57250b57cec5SDimitry Andric Idx += NumOpsPerField) { 57260b57cec5SDimitry Andric auto *OffsetEntryCI = 57270b57cec5SDimitry Andric mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 57280b57cec5SDimitry Andric if (OffsetEntryCI->getValue().ugt(Offset)) { 57290b57cec5SDimitry Andric if (Idx == FirstFieldOpNo) { 57300b57cec5SDimitry Andric CheckFailed("Could not find TBAA parent in struct type node", &I, 57310b57cec5SDimitry Andric BaseNode, &Offset); 57320b57cec5SDimitry Andric return nullptr; 57330b57cec5SDimitry Andric } 57340b57cec5SDimitry Andric 57350b57cec5SDimitry Andric unsigned PrevIdx = Idx - NumOpsPerField; 57360b57cec5SDimitry Andric auto *PrevOffsetEntryCI = 57370b57cec5SDimitry Andric mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 57380b57cec5SDimitry Andric Offset -= PrevOffsetEntryCI->getValue(); 57390b57cec5SDimitry Andric return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 57400b57cec5SDimitry Andric } 57410b57cec5SDimitry Andric } 57420b57cec5SDimitry Andric 57430b57cec5SDimitry Andric unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 57440b57cec5SDimitry Andric auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 57450b57cec5SDimitry Andric BaseNode->getOperand(LastIdx + 1)); 57460b57cec5SDimitry Andric Offset -= LastOffsetEntryCI->getValue(); 57470b57cec5SDimitry Andric return cast<MDNode>(BaseNode->getOperand(LastIdx)); 57480b57cec5SDimitry Andric } 57490b57cec5SDimitry Andric 57500b57cec5SDimitry Andric static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 57510b57cec5SDimitry Andric if (!Type || Type->getNumOperands() < 3) 57520b57cec5SDimitry Andric return false; 57530b57cec5SDimitry Andric 57540b57cec5SDimitry Andric // In the new format type nodes shall have a reference to the parent type as 57550b57cec5SDimitry Andric // its first operand. 57560b57cec5SDimitry Andric MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 57570b57cec5SDimitry Andric if (!Parent) 57580b57cec5SDimitry Andric return false; 57590b57cec5SDimitry Andric 57600b57cec5SDimitry Andric return true; 57610b57cec5SDimitry Andric } 57620b57cec5SDimitry Andric 57630b57cec5SDimitry Andric bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 57640b57cec5SDimitry Andric AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 57650b57cec5SDimitry Andric isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 57660b57cec5SDimitry Andric isa<AtomicCmpXchgInst>(I), 57670b57cec5SDimitry Andric "This instruction shall not have a TBAA access tag!", &I); 57680b57cec5SDimitry Andric 57690b57cec5SDimitry Andric bool IsStructPathTBAA = 57700b57cec5SDimitry Andric isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 57710b57cec5SDimitry Andric 57720b57cec5SDimitry Andric AssertTBAA( 57730b57cec5SDimitry Andric IsStructPathTBAA, 57740b57cec5SDimitry Andric "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 57750b57cec5SDimitry Andric 57760b57cec5SDimitry Andric MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 57770b57cec5SDimitry Andric MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 57780b57cec5SDimitry Andric 57790b57cec5SDimitry Andric bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 57800b57cec5SDimitry Andric 57810b57cec5SDimitry Andric if (IsNewFormat) { 57820b57cec5SDimitry Andric AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 57830b57cec5SDimitry Andric "Access tag metadata must have either 4 or 5 operands", &I, MD); 57840b57cec5SDimitry Andric } else { 57850b57cec5SDimitry Andric AssertTBAA(MD->getNumOperands() < 5, 57860b57cec5SDimitry Andric "Struct tag metadata must have either 3 or 4 operands", &I, MD); 57870b57cec5SDimitry Andric } 57880b57cec5SDimitry Andric 57890b57cec5SDimitry Andric // Check the access size field. 57900b57cec5SDimitry Andric if (IsNewFormat) { 57910b57cec5SDimitry Andric auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 57920b57cec5SDimitry Andric MD->getOperand(3)); 57930b57cec5SDimitry Andric AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 57940b57cec5SDimitry Andric } 57950b57cec5SDimitry Andric 57960b57cec5SDimitry Andric // Check the immutability flag. 57970b57cec5SDimitry Andric unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 57980b57cec5SDimitry Andric if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 57990b57cec5SDimitry Andric auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 58000b57cec5SDimitry Andric MD->getOperand(ImmutabilityFlagOpNo)); 58010b57cec5SDimitry Andric AssertTBAA(IsImmutableCI, 58020b57cec5SDimitry Andric "Immutability tag on struct tag metadata must be a constant", 58030b57cec5SDimitry Andric &I, MD); 58040b57cec5SDimitry Andric AssertTBAA( 58050b57cec5SDimitry Andric IsImmutableCI->isZero() || IsImmutableCI->isOne(), 58060b57cec5SDimitry Andric "Immutability part of the struct tag metadata must be either 0 or 1", 58070b57cec5SDimitry Andric &I, MD); 58080b57cec5SDimitry Andric } 58090b57cec5SDimitry Andric 58100b57cec5SDimitry Andric AssertTBAA(BaseNode && AccessType, 58110b57cec5SDimitry Andric "Malformed struct tag metadata: base and access-type " 58120b57cec5SDimitry Andric "should be non-null and point to Metadata nodes", 58130b57cec5SDimitry Andric &I, MD, BaseNode, AccessType); 58140b57cec5SDimitry Andric 58150b57cec5SDimitry Andric if (!IsNewFormat) { 58160b57cec5SDimitry Andric AssertTBAA(isValidScalarTBAANode(AccessType), 58170b57cec5SDimitry Andric "Access type node must be a valid scalar type", &I, MD, 58180b57cec5SDimitry Andric AccessType); 58190b57cec5SDimitry Andric } 58200b57cec5SDimitry Andric 58210b57cec5SDimitry Andric auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 58220b57cec5SDimitry Andric AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 58230b57cec5SDimitry Andric 58240b57cec5SDimitry Andric APInt Offset = OffsetCI->getValue(); 58250b57cec5SDimitry Andric bool SeenAccessTypeInPath = false; 58260b57cec5SDimitry Andric 58270b57cec5SDimitry Andric SmallPtrSet<MDNode *, 4> StructPath; 58280b57cec5SDimitry Andric 58290b57cec5SDimitry Andric for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 58300b57cec5SDimitry Andric BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 58310b57cec5SDimitry Andric IsNewFormat)) { 58320b57cec5SDimitry Andric if (!StructPath.insert(BaseNode).second) { 58330b57cec5SDimitry Andric CheckFailed("Cycle detected in struct path", &I, MD); 58340b57cec5SDimitry Andric return false; 58350b57cec5SDimitry Andric } 58360b57cec5SDimitry Andric 58370b57cec5SDimitry Andric bool Invalid; 58380b57cec5SDimitry Andric unsigned BaseNodeBitWidth; 58390b57cec5SDimitry Andric std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 58400b57cec5SDimitry Andric IsNewFormat); 58410b57cec5SDimitry Andric 58420b57cec5SDimitry Andric // If the base node is invalid in itself, then we've already printed all the 58430b57cec5SDimitry Andric // errors we wanted to print. 58440b57cec5SDimitry Andric if (Invalid) 58450b57cec5SDimitry Andric return false; 58460b57cec5SDimitry Andric 58470b57cec5SDimitry Andric SeenAccessTypeInPath |= BaseNode == AccessType; 58480b57cec5SDimitry Andric 58490b57cec5SDimitry Andric if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 58500b57cec5SDimitry Andric AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 58510b57cec5SDimitry Andric &I, MD, &Offset); 58520b57cec5SDimitry Andric 58530b57cec5SDimitry Andric AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 58540b57cec5SDimitry Andric (BaseNodeBitWidth == 0 && Offset == 0) || 58550b57cec5SDimitry Andric (IsNewFormat && BaseNodeBitWidth == ~0u), 58560b57cec5SDimitry Andric "Access bit-width not the same as description bit-width", &I, MD, 58570b57cec5SDimitry Andric BaseNodeBitWidth, Offset.getBitWidth()); 58580b57cec5SDimitry Andric 58590b57cec5SDimitry Andric if (IsNewFormat && SeenAccessTypeInPath) 58600b57cec5SDimitry Andric break; 58610b57cec5SDimitry Andric } 58620b57cec5SDimitry Andric 58630b57cec5SDimitry Andric AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 58640b57cec5SDimitry Andric &I, MD); 58650b57cec5SDimitry Andric return true; 58660b57cec5SDimitry Andric } 58670b57cec5SDimitry Andric 58680b57cec5SDimitry Andric char VerifierLegacyPass::ID = 0; 58690b57cec5SDimitry Andric INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 58700b57cec5SDimitry Andric 58710b57cec5SDimitry Andric FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 58720b57cec5SDimitry Andric return new VerifierLegacyPass(FatalErrors); 58730b57cec5SDimitry Andric } 58740b57cec5SDimitry Andric 58750b57cec5SDimitry Andric AnalysisKey VerifierAnalysis::Key; 58760b57cec5SDimitry Andric VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 58770b57cec5SDimitry Andric ModuleAnalysisManager &) { 58780b57cec5SDimitry Andric Result Res; 58790b57cec5SDimitry Andric Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 58800b57cec5SDimitry Andric return Res; 58810b57cec5SDimitry Andric } 58820b57cec5SDimitry Andric 58830b57cec5SDimitry Andric VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 58840b57cec5SDimitry Andric FunctionAnalysisManager &) { 58850b57cec5SDimitry Andric return { llvm::verifyFunction(F, &dbgs()), false }; 58860b57cec5SDimitry Andric } 58870b57cec5SDimitry Andric 58880b57cec5SDimitry Andric PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 58890b57cec5SDimitry Andric auto Res = AM.getResult<VerifierAnalysis>(M); 58900b57cec5SDimitry Andric if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 58910b57cec5SDimitry Andric report_fatal_error("Broken module found, compilation aborted!"); 58920b57cec5SDimitry Andric 58930b57cec5SDimitry Andric return PreservedAnalyses::all(); 58940b57cec5SDimitry Andric } 58950b57cec5SDimitry Andric 58960b57cec5SDimitry Andric PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 58970b57cec5SDimitry Andric auto res = AM.getResult<VerifierAnalysis>(F); 58980b57cec5SDimitry Andric if (res.IRBroken && FatalErrors) 58990b57cec5SDimitry Andric report_fatal_error("Broken function found, compilation aborted!"); 59000b57cec5SDimitry Andric 59010b57cec5SDimitry Andric return PreservedAnalyses::all(); 59020b57cec5SDimitry Andric } 5903