xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Verifier.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
10b57cec5SDimitry Andric //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file defines the function verifier interface, that can be used for some
10*4824e7fdSDimitry Andric // basic correctness checking of input to the system.
110b57cec5SDimitry Andric //
120b57cec5SDimitry Andric // Note that this does not provide full `Java style' security and verifications,
130b57cec5SDimitry Andric // instead it just tries to ensure that code is well-formed.
140b57cec5SDimitry Andric //
150b57cec5SDimitry Andric //  * Both of a binary operator's parameters are of the same type
160b57cec5SDimitry Andric //  * Verify that the indices of mem access instructions match other operands
170b57cec5SDimitry Andric //  * Verify that arithmetic and other things are only performed on first-class
180b57cec5SDimitry Andric //    types.  Verify that shifts & logicals only happen on integrals f.e.
190b57cec5SDimitry Andric //  * All of the constants in a switch statement are of the correct type
200b57cec5SDimitry Andric //  * The code is in valid SSA form
210b57cec5SDimitry Andric //  * It should be illegal to put a label into any other type (like a structure)
220b57cec5SDimitry Andric //    or to return one. [except constant arrays!]
230b57cec5SDimitry Andric //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
240b57cec5SDimitry Andric //  * PHI nodes must have an entry for each predecessor, with no extras.
250b57cec5SDimitry Andric //  * PHI nodes must be the first thing in a basic block, all grouped together
260b57cec5SDimitry Andric //  * PHI nodes must have at least one entry
270b57cec5SDimitry Andric //  * All basic blocks should only end with terminator insts, not contain them
280b57cec5SDimitry Andric //  * The entry node to a function must not have predecessors
290b57cec5SDimitry Andric //  * All Instructions must be embedded into a basic block
300b57cec5SDimitry Andric //  * Functions cannot take a void-typed parameter
310b57cec5SDimitry Andric //  * Verify that a function's argument list agrees with it's declared type.
320b57cec5SDimitry Andric //  * It is illegal to specify a name for a void value.
330b57cec5SDimitry Andric //  * It is illegal to have a internal global value with no initializer
340b57cec5SDimitry Andric //  * It is illegal to have a ret instruction that returns a value that does not
350b57cec5SDimitry Andric //    agree with the function return value type.
360b57cec5SDimitry Andric //  * Function call argument types match the function prototype
370b57cec5SDimitry Andric //  * A landing pad is defined by a landingpad instruction, and can be jumped to
380b57cec5SDimitry Andric //    only by the unwind edge of an invoke instruction.
390b57cec5SDimitry Andric //  * A landingpad instruction must be the first non-PHI instruction in the
400b57cec5SDimitry Andric //    block.
410b57cec5SDimitry Andric //  * Landingpad instructions must be in a function with a personality function.
420b57cec5SDimitry Andric //  * All other things that are tested by asserts spread about the code...
430b57cec5SDimitry Andric //
440b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
450b57cec5SDimitry Andric 
460b57cec5SDimitry Andric #include "llvm/IR/Verifier.h"
470b57cec5SDimitry Andric #include "llvm/ADT/APFloat.h"
480b57cec5SDimitry Andric #include "llvm/ADT/APInt.h"
490b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h"
500b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
510b57cec5SDimitry Andric #include "llvm/ADT/MapVector.h"
520b57cec5SDimitry Andric #include "llvm/ADT/Optional.h"
530b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
540b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
550b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h"
560b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
570b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h"
580b57cec5SDimitry Andric #include "llvm/ADT/StringMap.h"
590b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h"
600b57cec5SDimitry Andric #include "llvm/ADT/Twine.h"
610b57cec5SDimitry Andric #include "llvm/ADT/ilist.h"
620b57cec5SDimitry Andric #include "llvm/BinaryFormat/Dwarf.h"
630b57cec5SDimitry Andric #include "llvm/IR/Argument.h"
640b57cec5SDimitry Andric #include "llvm/IR/Attributes.h"
650b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
660b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
670b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h"
680b57cec5SDimitry Andric #include "llvm/IR/Comdat.h"
690b57cec5SDimitry Andric #include "llvm/IR/Constant.h"
700b57cec5SDimitry Andric #include "llvm/IR/ConstantRange.h"
710b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
720b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
730b57cec5SDimitry Andric #include "llvm/IR/DebugInfo.h"
740b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h"
750b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h"
760b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
770b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
780b57cec5SDimitry Andric #include "llvm/IR/Function.h"
790b57cec5SDimitry Andric #include "llvm/IR/GlobalAlias.h"
800b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h"
810b57cec5SDimitry Andric #include "llvm/IR/GlobalVariable.h"
820b57cec5SDimitry Andric #include "llvm/IR/InlineAsm.h"
830b57cec5SDimitry Andric #include "llvm/IR/InstVisitor.h"
840b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
850b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
860b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
870b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
880b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h"
89480093f4SDimitry Andric #include "llvm/IR/IntrinsicsWebAssembly.h"
900b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h"
910b57cec5SDimitry Andric #include "llvm/IR/Metadata.h"
920b57cec5SDimitry Andric #include "llvm/IR/Module.h"
930b57cec5SDimitry Andric #include "llvm/IR/ModuleSlotTracker.h"
940b57cec5SDimitry Andric #include "llvm/IR/PassManager.h"
950b57cec5SDimitry Andric #include "llvm/IR/Statepoint.h"
960b57cec5SDimitry Andric #include "llvm/IR/Type.h"
970b57cec5SDimitry Andric #include "llvm/IR/Use.h"
980b57cec5SDimitry Andric #include "llvm/IR/User.h"
990b57cec5SDimitry Andric #include "llvm/IR/Value.h"
100480093f4SDimitry Andric #include "llvm/InitializePasses.h"
1010b57cec5SDimitry Andric #include "llvm/Pass.h"
1020b57cec5SDimitry Andric #include "llvm/Support/AtomicOrdering.h"
1030b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
1040b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
1050b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
1060b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
1070b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h"
1080b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
1090b57cec5SDimitry Andric #include <algorithm>
1100b57cec5SDimitry Andric #include <cassert>
1110b57cec5SDimitry Andric #include <cstdint>
1120b57cec5SDimitry Andric #include <memory>
1130b57cec5SDimitry Andric #include <string>
1140b57cec5SDimitry Andric #include <utility>
1150b57cec5SDimitry Andric 
1160b57cec5SDimitry Andric using namespace llvm;
1170b57cec5SDimitry Andric 
118e8d8bef9SDimitry Andric static cl::opt<bool> VerifyNoAliasScopeDomination(
119e8d8bef9SDimitry Andric     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120e8d8bef9SDimitry Andric     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121e8d8bef9SDimitry Andric              "scopes are not dominating"));
122e8d8bef9SDimitry Andric 
1230b57cec5SDimitry Andric namespace llvm {
1240b57cec5SDimitry Andric 
1250b57cec5SDimitry Andric struct VerifierSupport {
1260b57cec5SDimitry Andric   raw_ostream *OS;
1270b57cec5SDimitry Andric   const Module &M;
1280b57cec5SDimitry Andric   ModuleSlotTracker MST;
1298bcb0991SDimitry Andric   Triple TT;
1300b57cec5SDimitry Andric   const DataLayout &DL;
1310b57cec5SDimitry Andric   LLVMContext &Context;
1320b57cec5SDimitry Andric 
1330b57cec5SDimitry Andric   /// Track the brokenness of the module while recursively visiting.
1340b57cec5SDimitry Andric   bool Broken = false;
1350b57cec5SDimitry Andric   /// Broken debug info can be "recovered" from by stripping the debug info.
1360b57cec5SDimitry Andric   bool BrokenDebugInfo = false;
1370b57cec5SDimitry Andric   /// Whether to treat broken debug info as an error.
1380b57cec5SDimitry Andric   bool TreatBrokenDebugInfoAsError = true;
1390b57cec5SDimitry Andric 
1400b57cec5SDimitry Andric   explicit VerifierSupport(raw_ostream *OS, const Module &M)
1418bcb0991SDimitry Andric       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
1428bcb0991SDimitry Andric         Context(M.getContext()) {}
1430b57cec5SDimitry Andric 
1440b57cec5SDimitry Andric private:
1450b57cec5SDimitry Andric   void Write(const Module *M) {
1460b57cec5SDimitry Andric     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1470b57cec5SDimitry Andric   }
1480b57cec5SDimitry Andric 
1490b57cec5SDimitry Andric   void Write(const Value *V) {
1500b57cec5SDimitry Andric     if (V)
1510b57cec5SDimitry Andric       Write(*V);
1520b57cec5SDimitry Andric   }
1530b57cec5SDimitry Andric 
1540b57cec5SDimitry Andric   void Write(const Value &V) {
1550b57cec5SDimitry Andric     if (isa<Instruction>(V)) {
1560b57cec5SDimitry Andric       V.print(*OS, MST);
1570b57cec5SDimitry Andric       *OS << '\n';
1580b57cec5SDimitry Andric     } else {
1590b57cec5SDimitry Andric       V.printAsOperand(*OS, true, MST);
1600b57cec5SDimitry Andric       *OS << '\n';
1610b57cec5SDimitry Andric     }
1620b57cec5SDimitry Andric   }
1630b57cec5SDimitry Andric 
1640b57cec5SDimitry Andric   void Write(const Metadata *MD) {
1650b57cec5SDimitry Andric     if (!MD)
1660b57cec5SDimitry Andric       return;
1670b57cec5SDimitry Andric     MD->print(*OS, MST, &M);
1680b57cec5SDimitry Andric     *OS << '\n';
1690b57cec5SDimitry Andric   }
1700b57cec5SDimitry Andric 
1710b57cec5SDimitry Andric   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
1720b57cec5SDimitry Andric     Write(MD.get());
1730b57cec5SDimitry Andric   }
1740b57cec5SDimitry Andric 
1750b57cec5SDimitry Andric   void Write(const NamedMDNode *NMD) {
1760b57cec5SDimitry Andric     if (!NMD)
1770b57cec5SDimitry Andric       return;
1780b57cec5SDimitry Andric     NMD->print(*OS, MST);
1790b57cec5SDimitry Andric     *OS << '\n';
1800b57cec5SDimitry Andric   }
1810b57cec5SDimitry Andric 
1820b57cec5SDimitry Andric   void Write(Type *T) {
1830b57cec5SDimitry Andric     if (!T)
1840b57cec5SDimitry Andric       return;
1850b57cec5SDimitry Andric     *OS << ' ' << *T;
1860b57cec5SDimitry Andric   }
1870b57cec5SDimitry Andric 
1880b57cec5SDimitry Andric   void Write(const Comdat *C) {
1890b57cec5SDimitry Andric     if (!C)
1900b57cec5SDimitry Andric       return;
1910b57cec5SDimitry Andric     *OS << *C;
1920b57cec5SDimitry Andric   }
1930b57cec5SDimitry Andric 
1940b57cec5SDimitry Andric   void Write(const APInt *AI) {
1950b57cec5SDimitry Andric     if (!AI)
1960b57cec5SDimitry Andric       return;
1970b57cec5SDimitry Andric     *OS << *AI << '\n';
1980b57cec5SDimitry Andric   }
1990b57cec5SDimitry Andric 
2000b57cec5SDimitry Andric   void Write(const unsigned i) { *OS << i << '\n'; }
2010b57cec5SDimitry Andric 
202fe6060f1SDimitry Andric   // NOLINTNEXTLINE(readability-identifier-naming)
203fe6060f1SDimitry Andric   void Write(const Attribute *A) {
204fe6060f1SDimitry Andric     if (!A)
205fe6060f1SDimitry Andric       return;
206fe6060f1SDimitry Andric     *OS << A->getAsString() << '\n';
207fe6060f1SDimitry Andric   }
208fe6060f1SDimitry Andric 
209fe6060f1SDimitry Andric   // NOLINTNEXTLINE(readability-identifier-naming)
210fe6060f1SDimitry Andric   void Write(const AttributeSet *AS) {
211fe6060f1SDimitry Andric     if (!AS)
212fe6060f1SDimitry Andric       return;
213fe6060f1SDimitry Andric     *OS << AS->getAsString() << '\n';
214fe6060f1SDimitry Andric   }
215fe6060f1SDimitry Andric 
216fe6060f1SDimitry Andric   // NOLINTNEXTLINE(readability-identifier-naming)
217fe6060f1SDimitry Andric   void Write(const AttributeList *AL) {
218fe6060f1SDimitry Andric     if (!AL)
219fe6060f1SDimitry Andric       return;
220fe6060f1SDimitry Andric     AL->print(*OS);
221fe6060f1SDimitry Andric   }
222fe6060f1SDimitry Andric 
2230b57cec5SDimitry Andric   template <typename T> void Write(ArrayRef<T> Vs) {
2240b57cec5SDimitry Andric     for (const T &V : Vs)
2250b57cec5SDimitry Andric       Write(V);
2260b57cec5SDimitry Andric   }
2270b57cec5SDimitry Andric 
2280b57cec5SDimitry Andric   template <typename T1, typename... Ts>
2290b57cec5SDimitry Andric   void WriteTs(const T1 &V1, const Ts &... Vs) {
2300b57cec5SDimitry Andric     Write(V1);
2310b57cec5SDimitry Andric     WriteTs(Vs...);
2320b57cec5SDimitry Andric   }
2330b57cec5SDimitry Andric 
2340b57cec5SDimitry Andric   template <typename... Ts> void WriteTs() {}
2350b57cec5SDimitry Andric 
2360b57cec5SDimitry Andric public:
2370b57cec5SDimitry Andric   /// A check failed, so printout out the condition and the message.
2380b57cec5SDimitry Andric   ///
2390b57cec5SDimitry Andric   /// This provides a nice place to put a breakpoint if you want to see why
2400b57cec5SDimitry Andric   /// something is not correct.
2410b57cec5SDimitry Andric   void CheckFailed(const Twine &Message) {
2420b57cec5SDimitry Andric     if (OS)
2430b57cec5SDimitry Andric       *OS << Message << '\n';
2440b57cec5SDimitry Andric     Broken = true;
2450b57cec5SDimitry Andric   }
2460b57cec5SDimitry Andric 
2470b57cec5SDimitry Andric   /// A check failed (with values to print).
2480b57cec5SDimitry Andric   ///
2490b57cec5SDimitry Andric   /// This calls the Message-only version so that the above is easier to set a
2500b57cec5SDimitry Andric   /// breakpoint on.
2510b57cec5SDimitry Andric   template <typename T1, typename... Ts>
2520b57cec5SDimitry Andric   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
2530b57cec5SDimitry Andric     CheckFailed(Message);
2540b57cec5SDimitry Andric     if (OS)
2550b57cec5SDimitry Andric       WriteTs(V1, Vs...);
2560b57cec5SDimitry Andric   }
2570b57cec5SDimitry Andric 
2580b57cec5SDimitry Andric   /// A debug info check failed.
2590b57cec5SDimitry Andric   void DebugInfoCheckFailed(const Twine &Message) {
2600b57cec5SDimitry Andric     if (OS)
2610b57cec5SDimitry Andric       *OS << Message << '\n';
2620b57cec5SDimitry Andric     Broken |= TreatBrokenDebugInfoAsError;
2630b57cec5SDimitry Andric     BrokenDebugInfo = true;
2640b57cec5SDimitry Andric   }
2650b57cec5SDimitry Andric 
2660b57cec5SDimitry Andric   /// A debug info check failed (with values to print).
2670b57cec5SDimitry Andric   template <typename T1, typename... Ts>
2680b57cec5SDimitry Andric   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
2690b57cec5SDimitry Andric                             const Ts &... Vs) {
2700b57cec5SDimitry Andric     DebugInfoCheckFailed(Message);
2710b57cec5SDimitry Andric     if (OS)
2720b57cec5SDimitry Andric       WriteTs(V1, Vs...);
2730b57cec5SDimitry Andric   }
2740b57cec5SDimitry Andric };
2750b57cec5SDimitry Andric 
2760b57cec5SDimitry Andric } // namespace llvm
2770b57cec5SDimitry Andric 
2780b57cec5SDimitry Andric namespace {
2790b57cec5SDimitry Andric 
2800b57cec5SDimitry Andric class Verifier : public InstVisitor<Verifier>, VerifierSupport {
2810b57cec5SDimitry Andric   friend class InstVisitor<Verifier>;
2820b57cec5SDimitry Andric 
2830b57cec5SDimitry Andric   DominatorTree DT;
2840b57cec5SDimitry Andric 
2850b57cec5SDimitry Andric   /// When verifying a basic block, keep track of all of the
2860b57cec5SDimitry Andric   /// instructions we have seen so far.
2870b57cec5SDimitry Andric   ///
2880b57cec5SDimitry Andric   /// This allows us to do efficient dominance checks for the case when an
2890b57cec5SDimitry Andric   /// instruction has an operand that is an instruction in the same block.
2900b57cec5SDimitry Andric   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
2910b57cec5SDimitry Andric 
2920b57cec5SDimitry Andric   /// Keep track of the metadata nodes that have been checked already.
2930b57cec5SDimitry Andric   SmallPtrSet<const Metadata *, 32> MDNodes;
2940b57cec5SDimitry Andric 
2950b57cec5SDimitry Andric   /// Keep track which DISubprogram is attached to which function.
2960b57cec5SDimitry Andric   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
2970b57cec5SDimitry Andric 
2980b57cec5SDimitry Andric   /// Track all DICompileUnits visited.
2990b57cec5SDimitry Andric   SmallPtrSet<const Metadata *, 2> CUVisited;
3000b57cec5SDimitry Andric 
3010b57cec5SDimitry Andric   /// The result type for a landingpad.
3020b57cec5SDimitry Andric   Type *LandingPadResultTy;
3030b57cec5SDimitry Andric 
3040b57cec5SDimitry Andric   /// Whether we've seen a call to @llvm.localescape in this function
3050b57cec5SDimitry Andric   /// already.
3060b57cec5SDimitry Andric   bool SawFrameEscape;
3070b57cec5SDimitry Andric 
3080b57cec5SDimitry Andric   /// Whether the current function has a DISubprogram attached to it.
3090b57cec5SDimitry Andric   bool HasDebugInfo = false;
3100b57cec5SDimitry Andric 
311e8d8bef9SDimitry Andric   /// The current source language.
312e8d8bef9SDimitry Andric   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
313e8d8bef9SDimitry Andric 
3140b57cec5SDimitry Andric   /// Whether source was present on the first DIFile encountered in each CU.
3150b57cec5SDimitry Andric   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
3160b57cec5SDimitry Andric 
3170b57cec5SDimitry Andric   /// Stores the count of how many objects were passed to llvm.localescape for a
3180b57cec5SDimitry Andric   /// given function and the largest index passed to llvm.localrecover.
3190b57cec5SDimitry Andric   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
3200b57cec5SDimitry Andric 
3210b57cec5SDimitry Andric   // Maps catchswitches and cleanuppads that unwind to siblings to the
3220b57cec5SDimitry Andric   // terminators that indicate the unwind, used to detect cycles therein.
3230b57cec5SDimitry Andric   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
3240b57cec5SDimitry Andric 
3250b57cec5SDimitry Andric   /// Cache of constants visited in search of ConstantExprs.
3260b57cec5SDimitry Andric   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
3270b57cec5SDimitry Andric 
3280b57cec5SDimitry Andric   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
3290b57cec5SDimitry Andric   SmallVector<const Function *, 4> DeoptimizeDeclarations;
3300b57cec5SDimitry Andric 
331fe6060f1SDimitry Andric   /// Cache of attribute lists verified.
332fe6060f1SDimitry Andric   SmallPtrSet<const void *, 32> AttributeListsVisited;
333fe6060f1SDimitry Andric 
3340b57cec5SDimitry Andric   // Verify that this GlobalValue is only used in this module.
3350b57cec5SDimitry Andric   // This map is used to avoid visiting uses twice. We can arrive at a user
3360b57cec5SDimitry Andric   // twice, if they have multiple operands. In particular for very large
3370b57cec5SDimitry Andric   // constant expressions, we can arrive at a particular user many times.
3380b57cec5SDimitry Andric   SmallPtrSet<const Value *, 32> GlobalValueVisited;
3390b57cec5SDimitry Andric 
3400b57cec5SDimitry Andric   // Keeps track of duplicate function argument debug info.
3410b57cec5SDimitry Andric   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
3420b57cec5SDimitry Andric 
3430b57cec5SDimitry Andric   TBAAVerifier TBAAVerifyHelper;
3440b57cec5SDimitry Andric 
345e8d8bef9SDimitry Andric   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
346e8d8bef9SDimitry Andric 
3470b57cec5SDimitry Andric   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
3480b57cec5SDimitry Andric 
3490b57cec5SDimitry Andric public:
3500b57cec5SDimitry Andric   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
3510b57cec5SDimitry Andric                     const Module &M)
3520b57cec5SDimitry Andric       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
3530b57cec5SDimitry Andric         SawFrameEscape(false), TBAAVerifyHelper(this) {
3540b57cec5SDimitry Andric     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
3550b57cec5SDimitry Andric   }
3560b57cec5SDimitry Andric 
3570b57cec5SDimitry Andric   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
3580b57cec5SDimitry Andric 
3590b57cec5SDimitry Andric   bool verify(const Function &F) {
3600b57cec5SDimitry Andric     assert(F.getParent() == &M &&
3610b57cec5SDimitry Andric            "An instance of this class only works with a specific module!");
3620b57cec5SDimitry Andric 
3630b57cec5SDimitry Andric     // First ensure the function is well-enough formed to compute dominance
3640b57cec5SDimitry Andric     // information, and directly compute a dominance tree. We don't rely on the
3650b57cec5SDimitry Andric     // pass manager to provide this as it isolates us from a potentially
3660b57cec5SDimitry Andric     // out-of-date dominator tree and makes it significantly more complex to run
3670b57cec5SDimitry Andric     // this code outside of a pass manager.
3680b57cec5SDimitry Andric     // FIXME: It's really gross that we have to cast away constness here.
3690b57cec5SDimitry Andric     if (!F.empty())
3700b57cec5SDimitry Andric       DT.recalculate(const_cast<Function &>(F));
3710b57cec5SDimitry Andric 
3720b57cec5SDimitry Andric     for (const BasicBlock &BB : F) {
3730b57cec5SDimitry Andric       if (!BB.empty() && BB.back().isTerminator())
3740b57cec5SDimitry Andric         continue;
3750b57cec5SDimitry Andric 
3760b57cec5SDimitry Andric       if (OS) {
3770b57cec5SDimitry Andric         *OS << "Basic Block in function '" << F.getName()
3780b57cec5SDimitry Andric             << "' does not have terminator!\n";
3790b57cec5SDimitry Andric         BB.printAsOperand(*OS, true, MST);
3800b57cec5SDimitry Andric         *OS << "\n";
3810b57cec5SDimitry Andric       }
3820b57cec5SDimitry Andric       return false;
3830b57cec5SDimitry Andric     }
3840b57cec5SDimitry Andric 
3850b57cec5SDimitry Andric     Broken = false;
3860b57cec5SDimitry Andric     // FIXME: We strip const here because the inst visitor strips const.
3870b57cec5SDimitry Andric     visit(const_cast<Function &>(F));
3880b57cec5SDimitry Andric     verifySiblingFuncletUnwinds();
3890b57cec5SDimitry Andric     InstsInThisBlock.clear();
3900b57cec5SDimitry Andric     DebugFnArgs.clear();
3910b57cec5SDimitry Andric     LandingPadResultTy = nullptr;
3920b57cec5SDimitry Andric     SawFrameEscape = false;
3930b57cec5SDimitry Andric     SiblingFuncletInfo.clear();
394e8d8bef9SDimitry Andric     verifyNoAliasScopeDecl();
395e8d8bef9SDimitry Andric     NoAliasScopeDecls.clear();
3960b57cec5SDimitry Andric 
3970b57cec5SDimitry Andric     return !Broken;
3980b57cec5SDimitry Andric   }
3990b57cec5SDimitry Andric 
4000b57cec5SDimitry Andric   /// Verify the module that this instance of \c Verifier was initialized with.
4010b57cec5SDimitry Andric   bool verify() {
4020b57cec5SDimitry Andric     Broken = false;
4030b57cec5SDimitry Andric 
4040b57cec5SDimitry Andric     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
4050b57cec5SDimitry Andric     for (const Function &F : M)
4060b57cec5SDimitry Andric       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
4070b57cec5SDimitry Andric         DeoptimizeDeclarations.push_back(&F);
4080b57cec5SDimitry Andric 
4090b57cec5SDimitry Andric     // Now that we've visited every function, verify that we never asked to
4100b57cec5SDimitry Andric     // recover a frame index that wasn't escaped.
4110b57cec5SDimitry Andric     verifyFrameRecoverIndices();
4120b57cec5SDimitry Andric     for (const GlobalVariable &GV : M.globals())
4130b57cec5SDimitry Andric       visitGlobalVariable(GV);
4140b57cec5SDimitry Andric 
4150b57cec5SDimitry Andric     for (const GlobalAlias &GA : M.aliases())
4160b57cec5SDimitry Andric       visitGlobalAlias(GA);
4170b57cec5SDimitry Andric 
418349cc55cSDimitry Andric     for (const GlobalIFunc &GI : M.ifuncs())
419349cc55cSDimitry Andric       visitGlobalIFunc(GI);
420349cc55cSDimitry Andric 
4210b57cec5SDimitry Andric     for (const NamedMDNode &NMD : M.named_metadata())
4220b57cec5SDimitry Andric       visitNamedMDNode(NMD);
4230b57cec5SDimitry Andric 
4240b57cec5SDimitry Andric     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
4250b57cec5SDimitry Andric       visitComdat(SMEC.getValue());
4260b57cec5SDimitry Andric 
427349cc55cSDimitry Andric     visitModuleFlags();
428349cc55cSDimitry Andric     visitModuleIdents();
429349cc55cSDimitry Andric     visitModuleCommandLines();
4300b57cec5SDimitry Andric 
4310b57cec5SDimitry Andric     verifyCompileUnits();
4320b57cec5SDimitry Andric 
4330b57cec5SDimitry Andric     verifyDeoptimizeCallingConvs();
4340b57cec5SDimitry Andric     DISubprogramAttachments.clear();
4350b57cec5SDimitry Andric     return !Broken;
4360b57cec5SDimitry Andric   }
4370b57cec5SDimitry Andric 
4380b57cec5SDimitry Andric private:
4395ffd83dbSDimitry Andric   /// Whether a metadata node is allowed to be, or contain, a DILocation.
4405ffd83dbSDimitry Andric   enum class AreDebugLocsAllowed { No, Yes };
4415ffd83dbSDimitry Andric 
4420b57cec5SDimitry Andric   // Verification methods...
4430b57cec5SDimitry Andric   void visitGlobalValue(const GlobalValue &GV);
4440b57cec5SDimitry Andric   void visitGlobalVariable(const GlobalVariable &GV);
4450b57cec5SDimitry Andric   void visitGlobalAlias(const GlobalAlias &GA);
446349cc55cSDimitry Andric   void visitGlobalIFunc(const GlobalIFunc &GI);
4470b57cec5SDimitry Andric   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
4480b57cec5SDimitry Andric   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
4490b57cec5SDimitry Andric                            const GlobalAlias &A, const Constant &C);
4500b57cec5SDimitry Andric   void visitNamedMDNode(const NamedMDNode &NMD);
4515ffd83dbSDimitry Andric   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
4520b57cec5SDimitry Andric   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
4530b57cec5SDimitry Andric   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
4540b57cec5SDimitry Andric   void visitComdat(const Comdat &C);
455349cc55cSDimitry Andric   void visitModuleIdents();
456349cc55cSDimitry Andric   void visitModuleCommandLines();
457349cc55cSDimitry Andric   void visitModuleFlags();
4580b57cec5SDimitry Andric   void visitModuleFlag(const MDNode *Op,
4590b57cec5SDimitry Andric                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
4600b57cec5SDimitry Andric                        SmallVectorImpl<const MDNode *> &Requirements);
4610b57cec5SDimitry Andric   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
4620b57cec5SDimitry Andric   void visitFunction(const Function &F);
4630b57cec5SDimitry Andric   void visitBasicBlock(BasicBlock &BB);
4640b57cec5SDimitry Andric   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
4650b57cec5SDimitry Andric   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
4668bcb0991SDimitry Andric   void visitProfMetadata(Instruction &I, MDNode *MD);
467e8d8bef9SDimitry Andric   void visitAnnotationMetadata(MDNode *Annotation);
468349cc55cSDimitry Andric   void visitAliasScopeMetadata(const MDNode *MD);
469349cc55cSDimitry Andric   void visitAliasScopeListMetadata(const MDNode *MD);
4700b57cec5SDimitry Andric 
4710b57cec5SDimitry Andric   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
4720b57cec5SDimitry Andric #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
4730b57cec5SDimitry Andric #include "llvm/IR/Metadata.def"
4740b57cec5SDimitry Andric   void visitDIScope(const DIScope &N);
4750b57cec5SDimitry Andric   void visitDIVariable(const DIVariable &N);
4760b57cec5SDimitry Andric   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
4770b57cec5SDimitry Andric   void visitDITemplateParameter(const DITemplateParameter &N);
4780b57cec5SDimitry Andric 
4790b57cec5SDimitry Andric   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
4800b57cec5SDimitry Andric 
4810b57cec5SDimitry Andric   // InstVisitor overrides...
4820b57cec5SDimitry Andric   using InstVisitor<Verifier>::visit;
4830b57cec5SDimitry Andric   void visit(Instruction &I);
4840b57cec5SDimitry Andric 
4850b57cec5SDimitry Andric   void visitTruncInst(TruncInst &I);
4860b57cec5SDimitry Andric   void visitZExtInst(ZExtInst &I);
4870b57cec5SDimitry Andric   void visitSExtInst(SExtInst &I);
4880b57cec5SDimitry Andric   void visitFPTruncInst(FPTruncInst &I);
4890b57cec5SDimitry Andric   void visitFPExtInst(FPExtInst &I);
4900b57cec5SDimitry Andric   void visitFPToUIInst(FPToUIInst &I);
4910b57cec5SDimitry Andric   void visitFPToSIInst(FPToSIInst &I);
4920b57cec5SDimitry Andric   void visitUIToFPInst(UIToFPInst &I);
4930b57cec5SDimitry Andric   void visitSIToFPInst(SIToFPInst &I);
4940b57cec5SDimitry Andric   void visitIntToPtrInst(IntToPtrInst &I);
4950b57cec5SDimitry Andric   void visitPtrToIntInst(PtrToIntInst &I);
4960b57cec5SDimitry Andric   void visitBitCastInst(BitCastInst &I);
4970b57cec5SDimitry Andric   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
4980b57cec5SDimitry Andric   void visitPHINode(PHINode &PN);
4990b57cec5SDimitry Andric   void visitCallBase(CallBase &Call);
5000b57cec5SDimitry Andric   void visitUnaryOperator(UnaryOperator &U);
5010b57cec5SDimitry Andric   void visitBinaryOperator(BinaryOperator &B);
5020b57cec5SDimitry Andric   void visitICmpInst(ICmpInst &IC);
5030b57cec5SDimitry Andric   void visitFCmpInst(FCmpInst &FC);
5040b57cec5SDimitry Andric   void visitExtractElementInst(ExtractElementInst &EI);
5050b57cec5SDimitry Andric   void visitInsertElementInst(InsertElementInst &EI);
5060b57cec5SDimitry Andric   void visitShuffleVectorInst(ShuffleVectorInst &EI);
5070b57cec5SDimitry Andric   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
5080b57cec5SDimitry Andric   void visitCallInst(CallInst &CI);
5090b57cec5SDimitry Andric   void visitInvokeInst(InvokeInst &II);
5100b57cec5SDimitry Andric   void visitGetElementPtrInst(GetElementPtrInst &GEP);
5110b57cec5SDimitry Andric   void visitLoadInst(LoadInst &LI);
5120b57cec5SDimitry Andric   void visitStoreInst(StoreInst &SI);
5130b57cec5SDimitry Andric   void verifyDominatesUse(Instruction &I, unsigned i);
5140b57cec5SDimitry Andric   void visitInstruction(Instruction &I);
5150b57cec5SDimitry Andric   void visitTerminator(Instruction &I);
5160b57cec5SDimitry Andric   void visitBranchInst(BranchInst &BI);
5170b57cec5SDimitry Andric   void visitReturnInst(ReturnInst &RI);
5180b57cec5SDimitry Andric   void visitSwitchInst(SwitchInst &SI);
5190b57cec5SDimitry Andric   void visitIndirectBrInst(IndirectBrInst &BI);
5200b57cec5SDimitry Andric   void visitCallBrInst(CallBrInst &CBI);
5210b57cec5SDimitry Andric   void visitSelectInst(SelectInst &SI);
5220b57cec5SDimitry Andric   void visitUserOp1(Instruction &I);
5230b57cec5SDimitry Andric   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
5240b57cec5SDimitry Andric   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
5250b57cec5SDimitry Andric   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
5260b57cec5SDimitry Andric   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
5270b57cec5SDimitry Andric   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
5280b57cec5SDimitry Andric   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
5290b57cec5SDimitry Andric   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
5300b57cec5SDimitry Andric   void visitFenceInst(FenceInst &FI);
5310b57cec5SDimitry Andric   void visitAllocaInst(AllocaInst &AI);
5320b57cec5SDimitry Andric   void visitExtractValueInst(ExtractValueInst &EVI);
5330b57cec5SDimitry Andric   void visitInsertValueInst(InsertValueInst &IVI);
5340b57cec5SDimitry Andric   void visitEHPadPredecessors(Instruction &I);
5350b57cec5SDimitry Andric   void visitLandingPadInst(LandingPadInst &LPI);
5360b57cec5SDimitry Andric   void visitResumeInst(ResumeInst &RI);
5370b57cec5SDimitry Andric   void visitCatchPadInst(CatchPadInst &CPI);
5380b57cec5SDimitry Andric   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
5390b57cec5SDimitry Andric   void visitCleanupPadInst(CleanupPadInst &CPI);
5400b57cec5SDimitry Andric   void visitFuncletPadInst(FuncletPadInst &FPI);
5410b57cec5SDimitry Andric   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
5420b57cec5SDimitry Andric   void visitCleanupReturnInst(CleanupReturnInst &CRI);
5430b57cec5SDimitry Andric 
5440b57cec5SDimitry Andric   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
5450b57cec5SDimitry Andric   void verifySwiftErrorValue(const Value *SwiftErrorVal);
546fe6060f1SDimitry Andric   void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context);
5470b57cec5SDimitry Andric   void verifyMustTailCall(CallInst &CI);
5480b57cec5SDimitry Andric   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
549fe6060f1SDimitry Andric   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
5500b57cec5SDimitry Andric   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
551fe6060f1SDimitry Andric   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
552fe6060f1SDimitry Andric                                     const Value *V);
5530b57cec5SDimitry Andric   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
5540b57cec5SDimitry Andric                            const Value *V, bool IsIntrinsic);
5550b57cec5SDimitry Andric   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
556349cc55cSDimitry Andric   template <typename T>
557349cc55cSDimitry Andric   void verifyODRTypeAsScopeOperand(const MDNode &MD, T * = nullptr);
5580b57cec5SDimitry Andric 
5590b57cec5SDimitry Andric   void visitConstantExprsRecursively(const Constant *EntryC);
5600b57cec5SDimitry Andric   void visitConstantExpr(const ConstantExpr *CE);
5610b57cec5SDimitry Andric   void verifyStatepoint(const CallBase &Call);
5620b57cec5SDimitry Andric   void verifyFrameRecoverIndices();
5630b57cec5SDimitry Andric   void verifySiblingFuncletUnwinds();
5640b57cec5SDimitry Andric 
5650b57cec5SDimitry Andric   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
5660b57cec5SDimitry Andric   template <typename ValueOrMetadata>
5670b57cec5SDimitry Andric   void verifyFragmentExpression(const DIVariable &V,
5680b57cec5SDimitry Andric                                 DIExpression::FragmentInfo Fragment,
5690b57cec5SDimitry Andric                                 ValueOrMetadata *Desc);
5700b57cec5SDimitry Andric   void verifyFnArgs(const DbgVariableIntrinsic &I);
5718bcb0991SDimitry Andric   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
5720b57cec5SDimitry Andric 
5730b57cec5SDimitry Andric   /// Module-level debug info verification...
5740b57cec5SDimitry Andric   void verifyCompileUnits();
5750b57cec5SDimitry Andric 
5760b57cec5SDimitry Andric   /// Module-level verification that all @llvm.experimental.deoptimize
5770b57cec5SDimitry Andric   /// declarations share the same calling convention.
5780b57cec5SDimitry Andric   void verifyDeoptimizeCallingConvs();
5790b57cec5SDimitry Andric 
580349cc55cSDimitry Andric   void verifyAttachedCallBundle(const CallBase &Call,
581349cc55cSDimitry Andric                                 const OperandBundleUse &BU);
582349cc55cSDimitry Andric 
5830b57cec5SDimitry Andric   /// Verify all-or-nothing property of DIFile source attribute within a CU.
5840b57cec5SDimitry Andric   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
585e8d8bef9SDimitry Andric 
586e8d8bef9SDimitry Andric   /// Verify the llvm.experimental.noalias.scope.decl declarations
587e8d8bef9SDimitry Andric   void verifyNoAliasScopeDecl();
5880b57cec5SDimitry Andric };
5890b57cec5SDimitry Andric 
5900b57cec5SDimitry Andric } // end anonymous namespace
5910b57cec5SDimitry Andric 
5920b57cec5SDimitry Andric /// We know that cond should be true, if not print an error message.
5930b57cec5SDimitry Andric #define Assert(C, ...) \
5940b57cec5SDimitry Andric   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
5950b57cec5SDimitry Andric 
5960b57cec5SDimitry Andric /// We know that a debug info condition should be true, if not print
5970b57cec5SDimitry Andric /// an error message.
5980b57cec5SDimitry Andric #define AssertDI(C, ...) \
5990b57cec5SDimitry Andric   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
6000b57cec5SDimitry Andric 
6010b57cec5SDimitry Andric void Verifier::visit(Instruction &I) {
6020b57cec5SDimitry Andric   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
6030b57cec5SDimitry Andric     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
6040b57cec5SDimitry Andric   InstVisitor<Verifier>::visit(I);
6050b57cec5SDimitry Andric }
6060b57cec5SDimitry Andric 
6070b57cec5SDimitry Andric // Helper to recursively iterate over indirect users. By
6080b57cec5SDimitry Andric // returning false, the callback can ask to stop recursing
6090b57cec5SDimitry Andric // further.
6100b57cec5SDimitry Andric static void forEachUser(const Value *User,
6110b57cec5SDimitry Andric                         SmallPtrSet<const Value *, 32> &Visited,
6120b57cec5SDimitry Andric                         llvm::function_ref<bool(const Value *)> Callback) {
6130b57cec5SDimitry Andric   if (!Visited.insert(User).second)
6140b57cec5SDimitry Andric     return;
6150b57cec5SDimitry Andric   for (const Value *TheNextUser : User->materialized_users())
6160b57cec5SDimitry Andric     if (Callback(TheNextUser))
6170b57cec5SDimitry Andric       forEachUser(TheNextUser, Visited, Callback);
6180b57cec5SDimitry Andric }
6190b57cec5SDimitry Andric 
6200b57cec5SDimitry Andric void Verifier::visitGlobalValue(const GlobalValue &GV) {
6210b57cec5SDimitry Andric   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
6220b57cec5SDimitry Andric          "Global is external, but doesn't have external or weak linkage!", &GV);
6230b57cec5SDimitry Andric 
6245ffd83dbSDimitry Andric   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
6255ffd83dbSDimitry Andric     Assert(GO->getAlignment() <= Value::MaximumAlignment,
6265ffd83dbSDimitry Andric            "huge alignment values are unsupported", GO);
6270b57cec5SDimitry Andric   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
6280b57cec5SDimitry Andric          "Only global variables can have appending linkage!", &GV);
6290b57cec5SDimitry Andric 
6300b57cec5SDimitry Andric   if (GV.hasAppendingLinkage()) {
6310b57cec5SDimitry Andric     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
6320b57cec5SDimitry Andric     Assert(GVar && GVar->getValueType()->isArrayTy(),
6330b57cec5SDimitry Andric            "Only global arrays can have appending linkage!", GVar);
6340b57cec5SDimitry Andric   }
6350b57cec5SDimitry Andric 
6360b57cec5SDimitry Andric   if (GV.isDeclarationForLinker())
6370b57cec5SDimitry Andric     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
6380b57cec5SDimitry Andric 
6390b57cec5SDimitry Andric   if (GV.hasDLLImportStorageClass()) {
6400b57cec5SDimitry Andric     Assert(!GV.isDSOLocal(),
6410b57cec5SDimitry Andric            "GlobalValue with DLLImport Storage is dso_local!", &GV);
6420b57cec5SDimitry Andric 
643e8d8bef9SDimitry Andric     Assert((GV.isDeclaration() &&
644e8d8bef9SDimitry Andric             (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
6450b57cec5SDimitry Andric                GV.hasAvailableExternallyLinkage(),
6460b57cec5SDimitry Andric            "Global is marked as dllimport, but not external", &GV);
6470b57cec5SDimitry Andric   }
6480b57cec5SDimitry Andric 
6495ffd83dbSDimitry Andric   if (GV.isImplicitDSOLocal())
6500b57cec5SDimitry Andric     Assert(GV.isDSOLocal(),
6515ffd83dbSDimitry Andric            "GlobalValue with local linkage or non-default "
6525ffd83dbSDimitry Andric            "visibility must be dso_local!",
6530b57cec5SDimitry Andric            &GV);
6540b57cec5SDimitry Andric 
6550b57cec5SDimitry Andric   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
6560b57cec5SDimitry Andric     if (const Instruction *I = dyn_cast<Instruction>(V)) {
6570b57cec5SDimitry Andric       if (!I->getParent() || !I->getParent()->getParent())
6580b57cec5SDimitry Andric         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
6590b57cec5SDimitry Andric                     I);
6600b57cec5SDimitry Andric       else if (I->getParent()->getParent()->getParent() != &M)
6610b57cec5SDimitry Andric         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
6620b57cec5SDimitry Andric                     I->getParent()->getParent(),
6630b57cec5SDimitry Andric                     I->getParent()->getParent()->getParent());
6640b57cec5SDimitry Andric       return false;
6650b57cec5SDimitry Andric     } else if (const Function *F = dyn_cast<Function>(V)) {
6660b57cec5SDimitry Andric       if (F->getParent() != &M)
6670b57cec5SDimitry Andric         CheckFailed("Global is used by function in a different module", &GV, &M,
6680b57cec5SDimitry Andric                     F, F->getParent());
6690b57cec5SDimitry Andric       return false;
6700b57cec5SDimitry Andric     }
6710b57cec5SDimitry Andric     return true;
6720b57cec5SDimitry Andric   });
6730b57cec5SDimitry Andric }
6740b57cec5SDimitry Andric 
6750b57cec5SDimitry Andric void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
6760b57cec5SDimitry Andric   if (GV.hasInitializer()) {
6770b57cec5SDimitry Andric     Assert(GV.getInitializer()->getType() == GV.getValueType(),
6780b57cec5SDimitry Andric            "Global variable initializer type does not match global "
6790b57cec5SDimitry Andric            "variable type!",
6800b57cec5SDimitry Andric            &GV);
6810b57cec5SDimitry Andric     // If the global has common linkage, it must have a zero initializer and
6820b57cec5SDimitry Andric     // cannot be constant.
6830b57cec5SDimitry Andric     if (GV.hasCommonLinkage()) {
6840b57cec5SDimitry Andric       Assert(GV.getInitializer()->isNullValue(),
6850b57cec5SDimitry Andric              "'common' global must have a zero initializer!", &GV);
6860b57cec5SDimitry Andric       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
6870b57cec5SDimitry Andric              &GV);
6880b57cec5SDimitry Andric       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
6890b57cec5SDimitry Andric     }
6900b57cec5SDimitry Andric   }
6910b57cec5SDimitry Andric 
6920b57cec5SDimitry Andric   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
6930b57cec5SDimitry Andric                        GV.getName() == "llvm.global_dtors")) {
6940b57cec5SDimitry Andric     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
6950b57cec5SDimitry Andric            "invalid linkage for intrinsic global variable", &GV);
6960b57cec5SDimitry Andric     // Don't worry about emitting an error for it not being an array,
6970b57cec5SDimitry Andric     // visitGlobalValue will complain on appending non-array.
6980b57cec5SDimitry Andric     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
6990b57cec5SDimitry Andric       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
7000b57cec5SDimitry Andric       PointerType *FuncPtrTy =
7010b57cec5SDimitry Andric           FunctionType::get(Type::getVoidTy(Context), false)->
7020b57cec5SDimitry Andric           getPointerTo(DL.getProgramAddressSpace());
7030b57cec5SDimitry Andric       Assert(STy &&
7040b57cec5SDimitry Andric                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
7050b57cec5SDimitry Andric                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
7060b57cec5SDimitry Andric                  STy->getTypeAtIndex(1) == FuncPtrTy,
7070b57cec5SDimitry Andric              "wrong type for intrinsic global variable", &GV);
7080b57cec5SDimitry Andric       Assert(STy->getNumElements() == 3,
7090b57cec5SDimitry Andric              "the third field of the element type is mandatory, "
7100b57cec5SDimitry Andric              "specify i8* null to migrate from the obsoleted 2-field form");
7110b57cec5SDimitry Andric       Type *ETy = STy->getTypeAtIndex(2);
712fe6060f1SDimitry Andric       Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
7130b57cec5SDimitry Andric       Assert(ETy->isPointerTy() &&
714fe6060f1SDimitry Andric                  cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
7150b57cec5SDimitry Andric              "wrong type for intrinsic global variable", &GV);
7160b57cec5SDimitry Andric     }
7170b57cec5SDimitry Andric   }
7180b57cec5SDimitry Andric 
7190b57cec5SDimitry Andric   if (GV.hasName() && (GV.getName() == "llvm.used" ||
7200b57cec5SDimitry Andric                        GV.getName() == "llvm.compiler.used")) {
7210b57cec5SDimitry Andric     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
7220b57cec5SDimitry Andric            "invalid linkage for intrinsic global variable", &GV);
7230b57cec5SDimitry Andric     Type *GVType = GV.getValueType();
7240b57cec5SDimitry Andric     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
7250b57cec5SDimitry Andric       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
7260b57cec5SDimitry Andric       Assert(PTy, "wrong type for intrinsic global variable", &GV);
7270b57cec5SDimitry Andric       if (GV.hasInitializer()) {
7280b57cec5SDimitry Andric         const Constant *Init = GV.getInitializer();
7290b57cec5SDimitry Andric         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
7300b57cec5SDimitry Andric         Assert(InitArray, "wrong initalizer for intrinsic global variable",
7310b57cec5SDimitry Andric                Init);
7320b57cec5SDimitry Andric         for (Value *Op : InitArray->operands()) {
7338bcb0991SDimitry Andric           Value *V = Op->stripPointerCasts();
7340b57cec5SDimitry Andric           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
7350b57cec5SDimitry Andric                      isa<GlobalAlias>(V),
7360b57cec5SDimitry Andric                  "invalid llvm.used member", V);
7370b57cec5SDimitry Andric           Assert(V->hasName(), "members of llvm.used must be named", V);
7380b57cec5SDimitry Andric         }
7390b57cec5SDimitry Andric       }
7400b57cec5SDimitry Andric     }
7410b57cec5SDimitry Andric   }
7420b57cec5SDimitry Andric 
7430b57cec5SDimitry Andric   // Visit any debug info attachments.
7440b57cec5SDimitry Andric   SmallVector<MDNode *, 1> MDs;
7450b57cec5SDimitry Andric   GV.getMetadata(LLVMContext::MD_dbg, MDs);
7460b57cec5SDimitry Andric   for (auto *MD : MDs) {
7470b57cec5SDimitry Andric     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
7480b57cec5SDimitry Andric       visitDIGlobalVariableExpression(*GVE);
7490b57cec5SDimitry Andric     else
7500b57cec5SDimitry Andric       AssertDI(false, "!dbg attachment of global variable must be a "
7510b57cec5SDimitry Andric                       "DIGlobalVariableExpression");
7520b57cec5SDimitry Andric   }
7530b57cec5SDimitry Andric 
7540b57cec5SDimitry Andric   // Scalable vectors cannot be global variables, since we don't know
755e8d8bef9SDimitry Andric   // the runtime size. If the global is an array containing scalable vectors,
756e8d8bef9SDimitry Andric   // that will be caught by the isValidElementType methods in StructType or
757e8d8bef9SDimitry Andric   // ArrayType instead.
7585ffd83dbSDimitry Andric   Assert(!isa<ScalableVectorType>(GV.getValueType()),
7595ffd83dbSDimitry Andric          "Globals cannot contain scalable vectors", &GV);
7600b57cec5SDimitry Andric 
761e8d8bef9SDimitry Andric   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
762e8d8bef9SDimitry Andric     Assert(!STy->containsScalableVectorType(),
763e8d8bef9SDimitry Andric            "Globals cannot contain scalable vectors", &GV);
764e8d8bef9SDimitry Andric 
7650b57cec5SDimitry Andric   if (!GV.hasInitializer()) {
7660b57cec5SDimitry Andric     visitGlobalValue(GV);
7670b57cec5SDimitry Andric     return;
7680b57cec5SDimitry Andric   }
7690b57cec5SDimitry Andric 
7700b57cec5SDimitry Andric   // Walk any aggregate initializers looking for bitcasts between address spaces
7710b57cec5SDimitry Andric   visitConstantExprsRecursively(GV.getInitializer());
7720b57cec5SDimitry Andric 
7730b57cec5SDimitry Andric   visitGlobalValue(GV);
7740b57cec5SDimitry Andric }
7750b57cec5SDimitry Andric 
7760b57cec5SDimitry Andric void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
7770b57cec5SDimitry Andric   SmallPtrSet<const GlobalAlias*, 4> Visited;
7780b57cec5SDimitry Andric   Visited.insert(&GA);
7790b57cec5SDimitry Andric   visitAliaseeSubExpr(Visited, GA, C);
7800b57cec5SDimitry Andric }
7810b57cec5SDimitry Andric 
7820b57cec5SDimitry Andric void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
7830b57cec5SDimitry Andric                                    const GlobalAlias &GA, const Constant &C) {
7840b57cec5SDimitry Andric   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
7850b57cec5SDimitry Andric     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
7860b57cec5SDimitry Andric            &GA);
7870b57cec5SDimitry Andric 
7880b57cec5SDimitry Andric     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
7890b57cec5SDimitry Andric       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
7900b57cec5SDimitry Andric 
7910b57cec5SDimitry Andric       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
7920b57cec5SDimitry Andric              &GA);
7930b57cec5SDimitry Andric     } else {
7940b57cec5SDimitry Andric       // Only continue verifying subexpressions of GlobalAliases.
7950b57cec5SDimitry Andric       // Do not recurse into global initializers.
7960b57cec5SDimitry Andric       return;
7970b57cec5SDimitry Andric     }
7980b57cec5SDimitry Andric   }
7990b57cec5SDimitry Andric 
8000b57cec5SDimitry Andric   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
8010b57cec5SDimitry Andric     visitConstantExprsRecursively(CE);
8020b57cec5SDimitry Andric 
8030b57cec5SDimitry Andric   for (const Use &U : C.operands()) {
8040b57cec5SDimitry Andric     Value *V = &*U;
8050b57cec5SDimitry Andric     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
8060b57cec5SDimitry Andric       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
8070b57cec5SDimitry Andric     else if (const auto *C2 = dyn_cast<Constant>(V))
8080b57cec5SDimitry Andric       visitAliaseeSubExpr(Visited, GA, *C2);
8090b57cec5SDimitry Andric   }
8100b57cec5SDimitry Andric }
8110b57cec5SDimitry Andric 
8120b57cec5SDimitry Andric void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
8130b57cec5SDimitry Andric   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
8140b57cec5SDimitry Andric          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
8150b57cec5SDimitry Andric          "weak_odr, or external linkage!",
8160b57cec5SDimitry Andric          &GA);
8170b57cec5SDimitry Andric   const Constant *Aliasee = GA.getAliasee();
8180b57cec5SDimitry Andric   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
8190b57cec5SDimitry Andric   Assert(GA.getType() == Aliasee->getType(),
8200b57cec5SDimitry Andric          "Alias and aliasee types should match!", &GA);
8210b57cec5SDimitry Andric 
8220b57cec5SDimitry Andric   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
8230b57cec5SDimitry Andric          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
8240b57cec5SDimitry Andric 
8250b57cec5SDimitry Andric   visitAliaseeSubExpr(GA, *Aliasee);
8260b57cec5SDimitry Andric 
8270b57cec5SDimitry Andric   visitGlobalValue(GA);
8280b57cec5SDimitry Andric }
8290b57cec5SDimitry Andric 
830349cc55cSDimitry Andric void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
831349cc55cSDimitry Andric   // Pierce through ConstantExprs and GlobalAliases and check that the resolver
832349cc55cSDimitry Andric   // has a Function
833349cc55cSDimitry Andric   const Function *Resolver = GI.getResolverFunction();
834349cc55cSDimitry Andric   Assert(Resolver, "IFunc must have a Function resolver", &GI);
835349cc55cSDimitry Andric 
836349cc55cSDimitry Andric   // Check that the immediate resolver operand (prior to any bitcasts) has the
837349cc55cSDimitry Andric   // correct type
838349cc55cSDimitry Andric   const Type *ResolverTy = GI.getResolver()->getType();
839349cc55cSDimitry Andric   const Type *ResolverFuncTy =
840349cc55cSDimitry Andric       GlobalIFunc::getResolverFunctionType(GI.getValueType());
841349cc55cSDimitry Andric   Assert(ResolverTy == ResolverFuncTy->getPointerTo(),
842349cc55cSDimitry Andric          "IFunc resolver has incorrect type", &GI);
843349cc55cSDimitry Andric }
844349cc55cSDimitry Andric 
8450b57cec5SDimitry Andric void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
8460b57cec5SDimitry Andric   // There used to be various other llvm.dbg.* nodes, but we don't support
8470b57cec5SDimitry Andric   // upgrading them and we want to reserve the namespace for future uses.
8480b57cec5SDimitry Andric   if (NMD.getName().startswith("llvm.dbg."))
8490b57cec5SDimitry Andric     AssertDI(NMD.getName() == "llvm.dbg.cu",
8500b57cec5SDimitry Andric              "unrecognized named metadata node in the llvm.dbg namespace",
8510b57cec5SDimitry Andric              &NMD);
8520b57cec5SDimitry Andric   for (const MDNode *MD : NMD.operands()) {
8530b57cec5SDimitry Andric     if (NMD.getName() == "llvm.dbg.cu")
8540b57cec5SDimitry Andric       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
8550b57cec5SDimitry Andric 
8560b57cec5SDimitry Andric     if (!MD)
8570b57cec5SDimitry Andric       continue;
8580b57cec5SDimitry Andric 
8595ffd83dbSDimitry Andric     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
8600b57cec5SDimitry Andric   }
8610b57cec5SDimitry Andric }
8620b57cec5SDimitry Andric 
863349cc55cSDimitry Andric template <typename T>
864349cc55cSDimitry Andric void Verifier::verifyODRTypeAsScopeOperand(const MDNode &MD, T *) {
865349cc55cSDimitry Andric   if (isa<T>(MD)) {
866349cc55cSDimitry Andric     if (auto *N = dyn_cast_or_null<DICompositeType>(cast<T>(MD).getScope()))
867349cc55cSDimitry Andric       // Of all the supported tags for DICompositeType(see visitDICompositeType)
868349cc55cSDimitry Andric       // we know that enum type cannot be a scope.
869349cc55cSDimitry Andric       AssertDI(N->getTag() != dwarf::DW_TAG_enumeration_type,
870349cc55cSDimitry Andric                "enum type is not a scope; check enum type ODR "
871349cc55cSDimitry Andric                "violation",
872349cc55cSDimitry Andric                N, &MD);
873349cc55cSDimitry Andric   }
874349cc55cSDimitry Andric }
875349cc55cSDimitry Andric 
8765ffd83dbSDimitry Andric void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
8770b57cec5SDimitry Andric   // Only visit each node once.  Metadata can be mutually recursive, so this
8780b57cec5SDimitry Andric   // avoids infinite recursion here, as well as being an optimization.
8790b57cec5SDimitry Andric   if (!MDNodes.insert(&MD).second)
8800b57cec5SDimitry Andric     return;
8810b57cec5SDimitry Andric 
882fe6060f1SDimitry Andric   Assert(&MD.getContext() == &Context,
883fe6060f1SDimitry Andric          "MDNode context does not match Module context!", &MD);
884fe6060f1SDimitry Andric 
885349cc55cSDimitry Andric   // Makes sure when a scope operand is a ODR type, the ODR type uniquing does
886349cc55cSDimitry Andric   // not create invalid debug metadata.
887349cc55cSDimitry Andric   // TODO: check that the non-ODR-type scope operand is valid.
888349cc55cSDimitry Andric   verifyODRTypeAsScopeOperand<DIType>(MD);
889349cc55cSDimitry Andric   verifyODRTypeAsScopeOperand<DILocalScope>(MD);
890349cc55cSDimitry Andric 
8910b57cec5SDimitry Andric   switch (MD.getMetadataID()) {
8920b57cec5SDimitry Andric   default:
8930b57cec5SDimitry Andric     llvm_unreachable("Invalid MDNode subclass");
8940b57cec5SDimitry Andric   case Metadata::MDTupleKind:
8950b57cec5SDimitry Andric     break;
8960b57cec5SDimitry Andric #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
8970b57cec5SDimitry Andric   case Metadata::CLASS##Kind:                                                  \
8980b57cec5SDimitry Andric     visit##CLASS(cast<CLASS>(MD));                                             \
8990b57cec5SDimitry Andric     break;
9000b57cec5SDimitry Andric #include "llvm/IR/Metadata.def"
9010b57cec5SDimitry Andric   }
9020b57cec5SDimitry Andric 
9030b57cec5SDimitry Andric   for (const Metadata *Op : MD.operands()) {
9040b57cec5SDimitry Andric     if (!Op)
9050b57cec5SDimitry Andric       continue;
9060b57cec5SDimitry Andric     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
9070b57cec5SDimitry Andric            &MD, Op);
9085ffd83dbSDimitry Andric     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
9095ffd83dbSDimitry Andric              "DILocation not allowed within this metadata node", &MD, Op);
9100b57cec5SDimitry Andric     if (auto *N = dyn_cast<MDNode>(Op)) {
9115ffd83dbSDimitry Andric       visitMDNode(*N, AllowLocs);
9120b57cec5SDimitry Andric       continue;
9130b57cec5SDimitry Andric     }
9140b57cec5SDimitry Andric     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
9150b57cec5SDimitry Andric       visitValueAsMetadata(*V, nullptr);
9160b57cec5SDimitry Andric       continue;
9170b57cec5SDimitry Andric     }
9180b57cec5SDimitry Andric   }
9190b57cec5SDimitry Andric 
9200b57cec5SDimitry Andric   // Check these last, so we diagnose problems in operands first.
9210b57cec5SDimitry Andric   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
9220b57cec5SDimitry Andric   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
9230b57cec5SDimitry Andric }
9240b57cec5SDimitry Andric 
9250b57cec5SDimitry Andric void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
9260b57cec5SDimitry Andric   Assert(MD.getValue(), "Expected valid value", &MD);
9270b57cec5SDimitry Andric   Assert(!MD.getValue()->getType()->isMetadataTy(),
9280b57cec5SDimitry Andric          "Unexpected metadata round-trip through values", &MD, MD.getValue());
9290b57cec5SDimitry Andric 
9300b57cec5SDimitry Andric   auto *L = dyn_cast<LocalAsMetadata>(&MD);
9310b57cec5SDimitry Andric   if (!L)
9320b57cec5SDimitry Andric     return;
9330b57cec5SDimitry Andric 
9340b57cec5SDimitry Andric   Assert(F, "function-local metadata used outside a function", L);
9350b57cec5SDimitry Andric 
9360b57cec5SDimitry Andric   // If this was an instruction, bb, or argument, verify that it is in the
9370b57cec5SDimitry Andric   // function that we expect.
9380b57cec5SDimitry Andric   Function *ActualF = nullptr;
9390b57cec5SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
9400b57cec5SDimitry Andric     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
9410b57cec5SDimitry Andric     ActualF = I->getParent()->getParent();
9420b57cec5SDimitry Andric   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
9430b57cec5SDimitry Andric     ActualF = BB->getParent();
9440b57cec5SDimitry Andric   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
9450b57cec5SDimitry Andric     ActualF = A->getParent();
9460b57cec5SDimitry Andric   assert(ActualF && "Unimplemented function local metadata case!");
9470b57cec5SDimitry Andric 
9480b57cec5SDimitry Andric   Assert(ActualF == F, "function-local metadata used in wrong function", L);
9490b57cec5SDimitry Andric }
9500b57cec5SDimitry Andric 
9510b57cec5SDimitry Andric void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
9520b57cec5SDimitry Andric   Metadata *MD = MDV.getMetadata();
9530b57cec5SDimitry Andric   if (auto *N = dyn_cast<MDNode>(MD)) {
9545ffd83dbSDimitry Andric     visitMDNode(*N, AreDebugLocsAllowed::No);
9550b57cec5SDimitry Andric     return;
9560b57cec5SDimitry Andric   }
9570b57cec5SDimitry Andric 
9580b57cec5SDimitry Andric   // Only visit each node once.  Metadata can be mutually recursive, so this
9590b57cec5SDimitry Andric   // avoids infinite recursion here, as well as being an optimization.
9600b57cec5SDimitry Andric   if (!MDNodes.insert(MD).second)
9610b57cec5SDimitry Andric     return;
9620b57cec5SDimitry Andric 
9630b57cec5SDimitry Andric   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
9640b57cec5SDimitry Andric     visitValueAsMetadata(*V, F);
9650b57cec5SDimitry Andric }
9660b57cec5SDimitry Andric 
9670b57cec5SDimitry Andric static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
9680b57cec5SDimitry Andric static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
9690b57cec5SDimitry Andric static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
9700b57cec5SDimitry Andric 
9710b57cec5SDimitry Andric void Verifier::visitDILocation(const DILocation &N) {
9720b57cec5SDimitry Andric   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
9730b57cec5SDimitry Andric            "location requires a valid scope", &N, N.getRawScope());
9740b57cec5SDimitry Andric   if (auto *IA = N.getRawInlinedAt())
9750b57cec5SDimitry Andric     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
9760b57cec5SDimitry Andric   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
9770b57cec5SDimitry Andric     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
9780b57cec5SDimitry Andric }
9790b57cec5SDimitry Andric 
9800b57cec5SDimitry Andric void Verifier::visitGenericDINode(const GenericDINode &N) {
9810b57cec5SDimitry Andric   AssertDI(N.getTag(), "invalid tag", &N);
9820b57cec5SDimitry Andric }
9830b57cec5SDimitry Andric 
9840b57cec5SDimitry Andric void Verifier::visitDIScope(const DIScope &N) {
9850b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
9860b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
9870b57cec5SDimitry Andric }
9880b57cec5SDimitry Andric 
9890b57cec5SDimitry Andric void Verifier::visitDISubrange(const DISubrange &N) {
9900b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
991e8d8bef9SDimitry Andric   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
992e8d8bef9SDimitry Andric   AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
993e8d8bef9SDimitry Andric                N.getRawUpperBound(),
9945ffd83dbSDimitry Andric            "Subrange must contain count or upperBound", &N);
9955ffd83dbSDimitry Andric   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
9965ffd83dbSDimitry Andric            "Subrange can have any one of count or upperBound", &N);
997fe6060f1SDimitry Andric   auto *CBound = N.getRawCountNode();
998fe6060f1SDimitry Andric   AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
999fe6060f1SDimitry Andric                isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1000fe6060f1SDimitry Andric            "Count must be signed constant or DIVariable or DIExpression", &N);
10010b57cec5SDimitry Andric   auto Count = N.getCount();
10025ffd83dbSDimitry Andric   AssertDI(!Count || !Count.is<ConstantInt *>() ||
10030b57cec5SDimitry Andric                Count.get<ConstantInt *>()->getSExtValue() >= -1,
10040b57cec5SDimitry Andric            "invalid subrange count", &N);
10055ffd83dbSDimitry Andric   auto *LBound = N.getRawLowerBound();
10065ffd83dbSDimitry Andric   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
10075ffd83dbSDimitry Andric                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
10085ffd83dbSDimitry Andric            "LowerBound must be signed constant or DIVariable or DIExpression",
10095ffd83dbSDimitry Andric            &N);
10105ffd83dbSDimitry Andric   auto *UBound = N.getRawUpperBound();
10115ffd83dbSDimitry Andric   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
10125ffd83dbSDimitry Andric                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
10135ffd83dbSDimitry Andric            "UpperBound must be signed constant or DIVariable or DIExpression",
10145ffd83dbSDimitry Andric            &N);
10155ffd83dbSDimitry Andric   auto *Stride = N.getRawStride();
10165ffd83dbSDimitry Andric   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
10175ffd83dbSDimitry Andric                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
10185ffd83dbSDimitry Andric            "Stride must be signed constant or DIVariable or DIExpression", &N);
10190b57cec5SDimitry Andric }
10200b57cec5SDimitry Andric 
1021e8d8bef9SDimitry Andric void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1022e8d8bef9SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1023e8d8bef9SDimitry Andric   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
1024e8d8bef9SDimitry Andric            "GenericSubrange must contain count or upperBound", &N);
1025e8d8bef9SDimitry Andric   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1026e8d8bef9SDimitry Andric            "GenericSubrange can have any one of count or upperBound", &N);
1027e8d8bef9SDimitry Andric   auto *CBound = N.getRawCountNode();
1028e8d8bef9SDimitry Andric   AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1029e8d8bef9SDimitry Andric            "Count must be signed constant or DIVariable or DIExpression", &N);
1030e8d8bef9SDimitry Andric   auto *LBound = N.getRawLowerBound();
1031e8d8bef9SDimitry Andric   AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
1032e8d8bef9SDimitry Andric   AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1033e8d8bef9SDimitry Andric            "LowerBound must be signed constant or DIVariable or DIExpression",
1034e8d8bef9SDimitry Andric            &N);
1035e8d8bef9SDimitry Andric   auto *UBound = N.getRawUpperBound();
1036e8d8bef9SDimitry Andric   AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1037e8d8bef9SDimitry Andric            "UpperBound must be signed constant or DIVariable or DIExpression",
1038e8d8bef9SDimitry Andric            &N);
1039e8d8bef9SDimitry Andric   auto *Stride = N.getRawStride();
1040e8d8bef9SDimitry Andric   AssertDI(Stride, "GenericSubrange must contain stride", &N);
1041e8d8bef9SDimitry Andric   AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1042e8d8bef9SDimitry Andric            "Stride must be signed constant or DIVariable or DIExpression", &N);
1043e8d8bef9SDimitry Andric }
1044e8d8bef9SDimitry Andric 
10450b57cec5SDimitry Andric void Verifier::visitDIEnumerator(const DIEnumerator &N) {
10460b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
10470b57cec5SDimitry Andric }
10480b57cec5SDimitry Andric 
10490b57cec5SDimitry Andric void Verifier::visitDIBasicType(const DIBasicType &N) {
10500b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
1051e8d8bef9SDimitry Andric                N.getTag() == dwarf::DW_TAG_unspecified_type ||
1052e8d8bef9SDimitry Andric                N.getTag() == dwarf::DW_TAG_string_type,
10530b57cec5SDimitry Andric            "invalid tag", &N);
1054e8d8bef9SDimitry Andric }
1055e8d8bef9SDimitry Andric 
1056e8d8bef9SDimitry Andric void Verifier::visitDIStringType(const DIStringType &N) {
1057e8d8bef9SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
10580b57cec5SDimitry Andric   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
10590b57cec5SDimitry Andric             "has conflicting flags", &N);
10600b57cec5SDimitry Andric }
10610b57cec5SDimitry Andric 
10620b57cec5SDimitry Andric void Verifier::visitDIDerivedType(const DIDerivedType &N) {
10630b57cec5SDimitry Andric   // Common scope checks.
10640b57cec5SDimitry Andric   visitDIScope(N);
10650b57cec5SDimitry Andric 
10660b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
10670b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_pointer_type ||
10680b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
10690b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_reference_type ||
10700b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
10710b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_const_type ||
10720b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_volatile_type ||
10730b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_restrict_type ||
10740b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_atomic_type ||
10750b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_member ||
10760b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_inheritance ||
1077fe6060f1SDimitry Andric                N.getTag() == dwarf::DW_TAG_friend ||
1078fe6060f1SDimitry Andric                N.getTag() == dwarf::DW_TAG_set_type,
10790b57cec5SDimitry Andric            "invalid tag", &N);
10800b57cec5SDimitry Andric   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
10810b57cec5SDimitry Andric     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
10820b57cec5SDimitry Andric              N.getRawExtraData());
10830b57cec5SDimitry Andric   }
10840b57cec5SDimitry Andric 
1085fe6060f1SDimitry Andric   if (N.getTag() == dwarf::DW_TAG_set_type) {
1086fe6060f1SDimitry Andric     if (auto *T = N.getRawBaseType()) {
1087fe6060f1SDimitry Andric       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1088fe6060f1SDimitry Andric       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1089fe6060f1SDimitry Andric       AssertDI(
1090fe6060f1SDimitry Andric           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1091fe6060f1SDimitry Andric               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1092fe6060f1SDimitry Andric                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1093fe6060f1SDimitry Andric                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1094fe6060f1SDimitry Andric                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1095fe6060f1SDimitry Andric                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1096fe6060f1SDimitry Andric           "invalid set base type", &N, T);
1097fe6060f1SDimitry Andric     }
1098fe6060f1SDimitry Andric   }
1099fe6060f1SDimitry Andric 
11000b57cec5SDimitry Andric   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
11010b57cec5SDimitry Andric   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
11020b57cec5SDimitry Andric            N.getRawBaseType());
11030b57cec5SDimitry Andric 
11040b57cec5SDimitry Andric   if (N.getDWARFAddressSpace()) {
11050b57cec5SDimitry Andric     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
11060b57cec5SDimitry Andric                  N.getTag() == dwarf::DW_TAG_reference_type ||
11070b57cec5SDimitry Andric                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
11080b57cec5SDimitry Andric              "DWARF address space only applies to pointer or reference types",
11090b57cec5SDimitry Andric              &N);
11100b57cec5SDimitry Andric   }
11110b57cec5SDimitry Andric }
11120b57cec5SDimitry Andric 
11130b57cec5SDimitry Andric /// Detect mutually exclusive flags.
11140b57cec5SDimitry Andric static bool hasConflictingReferenceFlags(unsigned Flags) {
11150b57cec5SDimitry Andric   return ((Flags & DINode::FlagLValueReference) &&
11160b57cec5SDimitry Andric           (Flags & DINode::FlagRValueReference)) ||
11170b57cec5SDimitry Andric          ((Flags & DINode::FlagTypePassByValue) &&
11180b57cec5SDimitry Andric           (Flags & DINode::FlagTypePassByReference));
11190b57cec5SDimitry Andric }
11200b57cec5SDimitry Andric 
11210b57cec5SDimitry Andric void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
11220b57cec5SDimitry Andric   auto *Params = dyn_cast<MDTuple>(&RawParams);
11230b57cec5SDimitry Andric   AssertDI(Params, "invalid template params", &N, &RawParams);
11240b57cec5SDimitry Andric   for (Metadata *Op : Params->operands()) {
11250b57cec5SDimitry Andric     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
11260b57cec5SDimitry Andric              &N, Params, Op);
11270b57cec5SDimitry Andric   }
11280b57cec5SDimitry Andric }
11290b57cec5SDimitry Andric 
11300b57cec5SDimitry Andric void Verifier::visitDICompositeType(const DICompositeType &N) {
11310b57cec5SDimitry Andric   // Common scope checks.
11320b57cec5SDimitry Andric   visitDIScope(N);
11330b57cec5SDimitry Andric 
11340b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
11350b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_structure_type ||
11360b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_union_type ||
11370b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_enumeration_type ||
11380b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_class_type ||
1139349cc55cSDimitry Andric                N.getTag() == dwarf::DW_TAG_variant_part ||
1140349cc55cSDimitry Andric                N.getTag() == dwarf::DW_TAG_namelist,
11410b57cec5SDimitry Andric            "invalid tag", &N);
11420b57cec5SDimitry Andric 
11430b57cec5SDimitry Andric   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
11440b57cec5SDimitry Andric   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
11450b57cec5SDimitry Andric            N.getRawBaseType());
11460b57cec5SDimitry Andric 
11470b57cec5SDimitry Andric   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
11480b57cec5SDimitry Andric            "invalid composite elements", &N, N.getRawElements());
11490b57cec5SDimitry Andric   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
11500b57cec5SDimitry Andric            N.getRawVTableHolder());
11510b57cec5SDimitry Andric   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
11520b57cec5SDimitry Andric            "invalid reference flags", &N);
11538bcb0991SDimitry Andric   unsigned DIBlockByRefStruct = 1 << 4;
11548bcb0991SDimitry Andric   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
11558bcb0991SDimitry Andric            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
11560b57cec5SDimitry Andric 
11570b57cec5SDimitry Andric   if (N.isVector()) {
11580b57cec5SDimitry Andric     const DINodeArray Elements = N.getElements();
11590b57cec5SDimitry Andric     AssertDI(Elements.size() == 1 &&
11600b57cec5SDimitry Andric              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
11610b57cec5SDimitry Andric              "invalid vector, expected one element of type subrange", &N);
11620b57cec5SDimitry Andric   }
11630b57cec5SDimitry Andric 
11640b57cec5SDimitry Andric   if (auto *Params = N.getRawTemplateParams())
11650b57cec5SDimitry Andric     visitTemplateParams(N, *Params);
11660b57cec5SDimitry Andric 
11670b57cec5SDimitry Andric   if (auto *D = N.getRawDiscriminator()) {
11680b57cec5SDimitry Andric     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
11690b57cec5SDimitry Andric              "discriminator can only appear on variant part");
11700b57cec5SDimitry Andric   }
11715ffd83dbSDimitry Andric 
11725ffd83dbSDimitry Andric   if (N.getRawDataLocation()) {
11735ffd83dbSDimitry Andric     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
11745ffd83dbSDimitry Andric              "dataLocation can only appear in array type");
11755ffd83dbSDimitry Andric   }
1176e8d8bef9SDimitry Andric 
1177e8d8bef9SDimitry Andric   if (N.getRawAssociated()) {
1178e8d8bef9SDimitry Andric     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1179e8d8bef9SDimitry Andric              "associated can only appear in array type");
1180e8d8bef9SDimitry Andric   }
1181e8d8bef9SDimitry Andric 
1182e8d8bef9SDimitry Andric   if (N.getRawAllocated()) {
1183e8d8bef9SDimitry Andric     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1184e8d8bef9SDimitry Andric              "allocated can only appear in array type");
1185e8d8bef9SDimitry Andric   }
1186e8d8bef9SDimitry Andric 
1187e8d8bef9SDimitry Andric   if (N.getRawRank()) {
1188e8d8bef9SDimitry Andric     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1189e8d8bef9SDimitry Andric              "rank can only appear in array type");
1190e8d8bef9SDimitry Andric   }
11910b57cec5SDimitry Andric }
11920b57cec5SDimitry Andric 
11930b57cec5SDimitry Andric void Verifier::visitDISubroutineType(const DISubroutineType &N) {
11940b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
11950b57cec5SDimitry Andric   if (auto *Types = N.getRawTypeArray()) {
11960b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
11970b57cec5SDimitry Andric     for (Metadata *Ty : N.getTypeArray()->operands()) {
11980b57cec5SDimitry Andric       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
11990b57cec5SDimitry Andric     }
12000b57cec5SDimitry Andric   }
12010b57cec5SDimitry Andric   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
12020b57cec5SDimitry Andric            "invalid reference flags", &N);
12030b57cec5SDimitry Andric }
12040b57cec5SDimitry Andric 
12050b57cec5SDimitry Andric void Verifier::visitDIFile(const DIFile &N) {
12060b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
12070b57cec5SDimitry Andric   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
12080b57cec5SDimitry Andric   if (Checksum) {
12090b57cec5SDimitry Andric     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
12100b57cec5SDimitry Andric              "invalid checksum kind", &N);
12110b57cec5SDimitry Andric     size_t Size;
12120b57cec5SDimitry Andric     switch (Checksum->Kind) {
12130b57cec5SDimitry Andric     case DIFile::CSK_MD5:
12140b57cec5SDimitry Andric       Size = 32;
12150b57cec5SDimitry Andric       break;
12160b57cec5SDimitry Andric     case DIFile::CSK_SHA1:
12170b57cec5SDimitry Andric       Size = 40;
12180b57cec5SDimitry Andric       break;
12195ffd83dbSDimitry Andric     case DIFile::CSK_SHA256:
12205ffd83dbSDimitry Andric       Size = 64;
12215ffd83dbSDimitry Andric       break;
12220b57cec5SDimitry Andric     }
12230b57cec5SDimitry Andric     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
12240b57cec5SDimitry Andric     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
12250b57cec5SDimitry Andric              "invalid checksum", &N);
12260b57cec5SDimitry Andric   }
12270b57cec5SDimitry Andric }
12280b57cec5SDimitry Andric 
12290b57cec5SDimitry Andric void Verifier::visitDICompileUnit(const DICompileUnit &N) {
12300b57cec5SDimitry Andric   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
12310b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
12320b57cec5SDimitry Andric 
12330b57cec5SDimitry Andric   // Don't bother verifying the compilation directory or producer string
12340b57cec5SDimitry Andric   // as those could be empty.
12350b57cec5SDimitry Andric   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
12360b57cec5SDimitry Andric            N.getRawFile());
12370b57cec5SDimitry Andric   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
12380b57cec5SDimitry Andric            N.getFile());
12390b57cec5SDimitry Andric 
1240e8d8bef9SDimitry Andric   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1241e8d8bef9SDimitry Andric 
12420b57cec5SDimitry Andric   verifySourceDebugInfo(N, *N.getFile());
12430b57cec5SDimitry Andric 
12440b57cec5SDimitry Andric   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
12450b57cec5SDimitry Andric            "invalid emission kind", &N);
12460b57cec5SDimitry Andric 
12470b57cec5SDimitry Andric   if (auto *Array = N.getRawEnumTypes()) {
12480b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
12490b57cec5SDimitry Andric     for (Metadata *Op : N.getEnumTypes()->operands()) {
12500b57cec5SDimitry Andric       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
12510b57cec5SDimitry Andric       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
12520b57cec5SDimitry Andric                "invalid enum type", &N, N.getEnumTypes(), Op);
12530b57cec5SDimitry Andric     }
12540b57cec5SDimitry Andric   }
12550b57cec5SDimitry Andric   if (auto *Array = N.getRawRetainedTypes()) {
12560b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
12570b57cec5SDimitry Andric     for (Metadata *Op : N.getRetainedTypes()->operands()) {
12580b57cec5SDimitry Andric       AssertDI(Op && (isa<DIType>(Op) ||
12590b57cec5SDimitry Andric                       (isa<DISubprogram>(Op) &&
12600b57cec5SDimitry Andric                        !cast<DISubprogram>(Op)->isDefinition())),
12610b57cec5SDimitry Andric                "invalid retained type", &N, Op);
12620b57cec5SDimitry Andric     }
12630b57cec5SDimitry Andric   }
12640b57cec5SDimitry Andric   if (auto *Array = N.getRawGlobalVariables()) {
12650b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
12660b57cec5SDimitry Andric     for (Metadata *Op : N.getGlobalVariables()->operands()) {
12670b57cec5SDimitry Andric       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
12680b57cec5SDimitry Andric                "invalid global variable ref", &N, Op);
12690b57cec5SDimitry Andric     }
12700b57cec5SDimitry Andric   }
12710b57cec5SDimitry Andric   if (auto *Array = N.getRawImportedEntities()) {
12720b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
12730b57cec5SDimitry Andric     for (Metadata *Op : N.getImportedEntities()->operands()) {
12740b57cec5SDimitry Andric       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
12750b57cec5SDimitry Andric                &N, Op);
12760b57cec5SDimitry Andric     }
12770b57cec5SDimitry Andric   }
12780b57cec5SDimitry Andric   if (auto *Array = N.getRawMacros()) {
12790b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
12800b57cec5SDimitry Andric     for (Metadata *Op : N.getMacros()->operands()) {
12810b57cec5SDimitry Andric       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
12820b57cec5SDimitry Andric     }
12830b57cec5SDimitry Andric   }
12840b57cec5SDimitry Andric   CUVisited.insert(&N);
12850b57cec5SDimitry Andric }
12860b57cec5SDimitry Andric 
12870b57cec5SDimitry Andric void Verifier::visitDISubprogram(const DISubprogram &N) {
12880b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
12890b57cec5SDimitry Andric   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
12900b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
12910b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
12920b57cec5SDimitry Andric   else
12930b57cec5SDimitry Andric     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
12940b57cec5SDimitry Andric   if (auto *T = N.getRawType())
12950b57cec5SDimitry Andric     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
12960b57cec5SDimitry Andric   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
12970b57cec5SDimitry Andric            N.getRawContainingType());
12980b57cec5SDimitry Andric   if (auto *Params = N.getRawTemplateParams())
12990b57cec5SDimitry Andric     visitTemplateParams(N, *Params);
13000b57cec5SDimitry Andric   if (auto *S = N.getRawDeclaration())
13010b57cec5SDimitry Andric     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
13020b57cec5SDimitry Andric              "invalid subprogram declaration", &N, S);
13030b57cec5SDimitry Andric   if (auto *RawNode = N.getRawRetainedNodes()) {
13040b57cec5SDimitry Andric     auto *Node = dyn_cast<MDTuple>(RawNode);
13050b57cec5SDimitry Andric     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
13060b57cec5SDimitry Andric     for (Metadata *Op : Node->operands()) {
13070b57cec5SDimitry Andric       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
13080b57cec5SDimitry Andric                "invalid retained nodes, expected DILocalVariable or DILabel",
13090b57cec5SDimitry Andric                &N, Node, Op);
13100b57cec5SDimitry Andric     }
13110b57cec5SDimitry Andric   }
13120b57cec5SDimitry Andric   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
13130b57cec5SDimitry Andric            "invalid reference flags", &N);
13140b57cec5SDimitry Andric 
13150b57cec5SDimitry Andric   auto *Unit = N.getRawUnit();
13160b57cec5SDimitry Andric   if (N.isDefinition()) {
13170b57cec5SDimitry Andric     // Subprogram definitions (not part of the type hierarchy).
13180b57cec5SDimitry Andric     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
13190b57cec5SDimitry Andric     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
13200b57cec5SDimitry Andric     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
13210b57cec5SDimitry Andric     if (N.getFile())
13220b57cec5SDimitry Andric       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
13230b57cec5SDimitry Andric   } else {
13240b57cec5SDimitry Andric     // Subprogram declarations (part of the type hierarchy).
13250b57cec5SDimitry Andric     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
13260b57cec5SDimitry Andric   }
13270b57cec5SDimitry Andric 
13280b57cec5SDimitry Andric   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
13290b57cec5SDimitry Andric     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
13300b57cec5SDimitry Andric     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
13310b57cec5SDimitry Andric     for (Metadata *Op : ThrownTypes->operands())
13320b57cec5SDimitry Andric       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
13330b57cec5SDimitry Andric                Op);
13340b57cec5SDimitry Andric   }
13350b57cec5SDimitry Andric 
13360b57cec5SDimitry Andric   if (N.areAllCallsDescribed())
13370b57cec5SDimitry Andric     AssertDI(N.isDefinition(),
13380b57cec5SDimitry Andric              "DIFlagAllCallsDescribed must be attached to a definition");
13390b57cec5SDimitry Andric }
13400b57cec5SDimitry Andric 
13410b57cec5SDimitry Andric void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
13420b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
13430b57cec5SDimitry Andric   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
13440b57cec5SDimitry Andric            "invalid local scope", &N, N.getRawScope());
13450b57cec5SDimitry Andric   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
13460b57cec5SDimitry Andric     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
13470b57cec5SDimitry Andric }
13480b57cec5SDimitry Andric 
13490b57cec5SDimitry Andric void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
13500b57cec5SDimitry Andric   visitDILexicalBlockBase(N);
13510b57cec5SDimitry Andric 
13520b57cec5SDimitry Andric   AssertDI(N.getLine() || !N.getColumn(),
13530b57cec5SDimitry Andric            "cannot have column info without line info", &N);
13540b57cec5SDimitry Andric }
13550b57cec5SDimitry Andric 
13560b57cec5SDimitry Andric void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
13570b57cec5SDimitry Andric   visitDILexicalBlockBase(N);
13580b57cec5SDimitry Andric }
13590b57cec5SDimitry Andric 
13600b57cec5SDimitry Andric void Verifier::visitDICommonBlock(const DICommonBlock &N) {
13610b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
13620b57cec5SDimitry Andric   if (auto *S = N.getRawScope())
13630b57cec5SDimitry Andric     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
13640b57cec5SDimitry Andric   if (auto *S = N.getRawDecl())
13650b57cec5SDimitry Andric     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
13660b57cec5SDimitry Andric }
13670b57cec5SDimitry Andric 
13680b57cec5SDimitry Andric void Verifier::visitDINamespace(const DINamespace &N) {
13690b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
13700b57cec5SDimitry Andric   if (auto *S = N.getRawScope())
13710b57cec5SDimitry Andric     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
13720b57cec5SDimitry Andric }
13730b57cec5SDimitry Andric 
13740b57cec5SDimitry Andric void Verifier::visitDIMacro(const DIMacro &N) {
13750b57cec5SDimitry Andric   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
13760b57cec5SDimitry Andric                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
13770b57cec5SDimitry Andric            "invalid macinfo type", &N);
13780b57cec5SDimitry Andric   AssertDI(!N.getName().empty(), "anonymous macro", &N);
13790b57cec5SDimitry Andric   if (!N.getValue().empty()) {
13800b57cec5SDimitry Andric     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
13810b57cec5SDimitry Andric   }
13820b57cec5SDimitry Andric }
13830b57cec5SDimitry Andric 
13840b57cec5SDimitry Andric void Verifier::visitDIMacroFile(const DIMacroFile &N) {
13850b57cec5SDimitry Andric   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
13860b57cec5SDimitry Andric            "invalid macinfo type", &N);
13870b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
13880b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
13890b57cec5SDimitry Andric 
13900b57cec5SDimitry Andric   if (auto *Array = N.getRawElements()) {
13910b57cec5SDimitry Andric     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
13920b57cec5SDimitry Andric     for (Metadata *Op : N.getElements()->operands()) {
13930b57cec5SDimitry Andric       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
13940b57cec5SDimitry Andric     }
13950b57cec5SDimitry Andric   }
13960b57cec5SDimitry Andric }
13970b57cec5SDimitry Andric 
1398fe6060f1SDimitry Andric void Verifier::visitDIArgList(const DIArgList &N) {
1399fe6060f1SDimitry Andric   AssertDI(!N.getNumOperands(),
1400fe6060f1SDimitry Andric            "DIArgList should have no operands other than a list of "
1401fe6060f1SDimitry Andric            "ValueAsMetadata",
1402fe6060f1SDimitry Andric            &N);
1403fe6060f1SDimitry Andric }
1404fe6060f1SDimitry Andric 
14050b57cec5SDimitry Andric void Verifier::visitDIModule(const DIModule &N) {
14060b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
14070b57cec5SDimitry Andric   AssertDI(!N.getName().empty(), "anonymous module", &N);
14080b57cec5SDimitry Andric }
14090b57cec5SDimitry Andric 
14100b57cec5SDimitry Andric void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
14110b57cec5SDimitry Andric   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
14120b57cec5SDimitry Andric }
14130b57cec5SDimitry Andric 
14140b57cec5SDimitry Andric void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
14150b57cec5SDimitry Andric   visitDITemplateParameter(N);
14160b57cec5SDimitry Andric 
14170b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
14180b57cec5SDimitry Andric            &N);
14190b57cec5SDimitry Andric }
14200b57cec5SDimitry Andric 
14210b57cec5SDimitry Andric void Verifier::visitDITemplateValueParameter(
14220b57cec5SDimitry Andric     const DITemplateValueParameter &N) {
14230b57cec5SDimitry Andric   visitDITemplateParameter(N);
14240b57cec5SDimitry Andric 
14250b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
14260b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
14270b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
14280b57cec5SDimitry Andric            "invalid tag", &N);
14290b57cec5SDimitry Andric }
14300b57cec5SDimitry Andric 
14310b57cec5SDimitry Andric void Verifier::visitDIVariable(const DIVariable &N) {
14320b57cec5SDimitry Andric   if (auto *S = N.getRawScope())
14330b57cec5SDimitry Andric     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
14340b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
14350b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
14360b57cec5SDimitry Andric }
14370b57cec5SDimitry Andric 
14380b57cec5SDimitry Andric void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
14390b57cec5SDimitry Andric   // Checks common to all variables.
14400b57cec5SDimitry Andric   visitDIVariable(N);
14410b57cec5SDimitry Andric 
14420b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
14430b57cec5SDimitry Andric   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
14445ffd83dbSDimitry Andric   // Assert only if the global variable is not an extern
14455ffd83dbSDimitry Andric   if (N.isDefinition())
14460b57cec5SDimitry Andric     AssertDI(N.getType(), "missing global variable type", &N);
14470b57cec5SDimitry Andric   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
14480b57cec5SDimitry Andric     AssertDI(isa<DIDerivedType>(Member),
14490b57cec5SDimitry Andric              "invalid static data member declaration", &N, Member);
14500b57cec5SDimitry Andric   }
14510b57cec5SDimitry Andric }
14520b57cec5SDimitry Andric 
14530b57cec5SDimitry Andric void Verifier::visitDILocalVariable(const DILocalVariable &N) {
14540b57cec5SDimitry Andric   // Checks common to all variables.
14550b57cec5SDimitry Andric   visitDIVariable(N);
14560b57cec5SDimitry Andric 
14570b57cec5SDimitry Andric   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
14580b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
14590b57cec5SDimitry Andric   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
14600b57cec5SDimitry Andric            "local variable requires a valid scope", &N, N.getRawScope());
14610b57cec5SDimitry Andric   if (auto Ty = N.getType())
14620b57cec5SDimitry Andric     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
14630b57cec5SDimitry Andric }
14640b57cec5SDimitry Andric 
14650b57cec5SDimitry Andric void Verifier::visitDILabel(const DILabel &N) {
14660b57cec5SDimitry Andric   if (auto *S = N.getRawScope())
14670b57cec5SDimitry Andric     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
14680b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
14690b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
14700b57cec5SDimitry Andric 
14710b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
14720b57cec5SDimitry Andric   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
14730b57cec5SDimitry Andric            "label requires a valid scope", &N, N.getRawScope());
14740b57cec5SDimitry Andric }
14750b57cec5SDimitry Andric 
14760b57cec5SDimitry Andric void Verifier::visitDIExpression(const DIExpression &N) {
14770b57cec5SDimitry Andric   AssertDI(N.isValid(), "invalid expression", &N);
14780b57cec5SDimitry Andric }
14790b57cec5SDimitry Andric 
14800b57cec5SDimitry Andric void Verifier::visitDIGlobalVariableExpression(
14810b57cec5SDimitry Andric     const DIGlobalVariableExpression &GVE) {
14820b57cec5SDimitry Andric   AssertDI(GVE.getVariable(), "missing variable");
14830b57cec5SDimitry Andric   if (auto *Var = GVE.getVariable())
14840b57cec5SDimitry Andric     visitDIGlobalVariable(*Var);
14850b57cec5SDimitry Andric   if (auto *Expr = GVE.getExpression()) {
14860b57cec5SDimitry Andric     visitDIExpression(*Expr);
14870b57cec5SDimitry Andric     if (auto Fragment = Expr->getFragmentInfo())
14880b57cec5SDimitry Andric       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
14890b57cec5SDimitry Andric   }
14900b57cec5SDimitry Andric }
14910b57cec5SDimitry Andric 
14920b57cec5SDimitry Andric void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
14930b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
14940b57cec5SDimitry Andric   if (auto *T = N.getRawType())
14950b57cec5SDimitry Andric     AssertDI(isType(T), "invalid type ref", &N, T);
14960b57cec5SDimitry Andric   if (auto *F = N.getRawFile())
14970b57cec5SDimitry Andric     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
14980b57cec5SDimitry Andric }
14990b57cec5SDimitry Andric 
15000b57cec5SDimitry Andric void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
15010b57cec5SDimitry Andric   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
15020b57cec5SDimitry Andric                N.getTag() == dwarf::DW_TAG_imported_declaration,
15030b57cec5SDimitry Andric            "invalid tag", &N);
15040b57cec5SDimitry Andric   if (auto *S = N.getRawScope())
15050b57cec5SDimitry Andric     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
15060b57cec5SDimitry Andric   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
15070b57cec5SDimitry Andric            N.getRawEntity());
15080b57cec5SDimitry Andric }
15090b57cec5SDimitry Andric 
15100b57cec5SDimitry Andric void Verifier::visitComdat(const Comdat &C) {
15118bcb0991SDimitry Andric   // In COFF the Module is invalid if the GlobalValue has private linkage.
15128bcb0991SDimitry Andric   // Entities with private linkage don't have entries in the symbol table.
15138bcb0991SDimitry Andric   if (TT.isOSBinFormatCOFF())
15140b57cec5SDimitry Andric     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
15158bcb0991SDimitry Andric       Assert(!GV->hasPrivateLinkage(),
15168bcb0991SDimitry Andric              "comdat global value has private linkage", GV);
15170b57cec5SDimitry Andric }
15180b57cec5SDimitry Andric 
1519349cc55cSDimitry Andric void Verifier::visitModuleIdents() {
15200b57cec5SDimitry Andric   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
15210b57cec5SDimitry Andric   if (!Idents)
15220b57cec5SDimitry Andric     return;
15230b57cec5SDimitry Andric 
15240b57cec5SDimitry Andric   // llvm.ident takes a list of metadata entry. Each entry has only one string.
15250b57cec5SDimitry Andric   // Scan each llvm.ident entry and make sure that this requirement is met.
15260b57cec5SDimitry Andric   for (const MDNode *N : Idents->operands()) {
15270b57cec5SDimitry Andric     Assert(N->getNumOperands() == 1,
15280b57cec5SDimitry Andric            "incorrect number of operands in llvm.ident metadata", N);
15290b57cec5SDimitry Andric     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
15300b57cec5SDimitry Andric            ("invalid value for llvm.ident metadata entry operand"
15310b57cec5SDimitry Andric             "(the operand should be a string)"),
15320b57cec5SDimitry Andric            N->getOperand(0));
15330b57cec5SDimitry Andric   }
15340b57cec5SDimitry Andric }
15350b57cec5SDimitry Andric 
1536349cc55cSDimitry Andric void Verifier::visitModuleCommandLines() {
15370b57cec5SDimitry Andric   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
15380b57cec5SDimitry Andric   if (!CommandLines)
15390b57cec5SDimitry Andric     return;
15400b57cec5SDimitry Andric 
15410b57cec5SDimitry Andric   // llvm.commandline takes a list of metadata entry. Each entry has only one
15420b57cec5SDimitry Andric   // string. Scan each llvm.commandline entry and make sure that this
15430b57cec5SDimitry Andric   // requirement is met.
15440b57cec5SDimitry Andric   for (const MDNode *N : CommandLines->operands()) {
15450b57cec5SDimitry Andric     Assert(N->getNumOperands() == 1,
15460b57cec5SDimitry Andric            "incorrect number of operands in llvm.commandline metadata", N);
15470b57cec5SDimitry Andric     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
15480b57cec5SDimitry Andric            ("invalid value for llvm.commandline metadata entry operand"
15490b57cec5SDimitry Andric             "(the operand should be a string)"),
15500b57cec5SDimitry Andric            N->getOperand(0));
15510b57cec5SDimitry Andric   }
15520b57cec5SDimitry Andric }
15530b57cec5SDimitry Andric 
1554349cc55cSDimitry Andric void Verifier::visitModuleFlags() {
15550b57cec5SDimitry Andric   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
15560b57cec5SDimitry Andric   if (!Flags) return;
15570b57cec5SDimitry Andric 
15580b57cec5SDimitry Andric   // Scan each flag, and track the flags and requirements.
15590b57cec5SDimitry Andric   DenseMap<const MDString*, const MDNode*> SeenIDs;
15600b57cec5SDimitry Andric   SmallVector<const MDNode*, 16> Requirements;
15610b57cec5SDimitry Andric   for (const MDNode *MDN : Flags->operands())
15620b57cec5SDimitry Andric     visitModuleFlag(MDN, SeenIDs, Requirements);
15630b57cec5SDimitry Andric 
15640b57cec5SDimitry Andric   // Validate that the requirements in the module are valid.
15650b57cec5SDimitry Andric   for (const MDNode *Requirement : Requirements) {
15660b57cec5SDimitry Andric     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
15670b57cec5SDimitry Andric     const Metadata *ReqValue = Requirement->getOperand(1);
15680b57cec5SDimitry Andric 
15690b57cec5SDimitry Andric     const MDNode *Op = SeenIDs.lookup(Flag);
15700b57cec5SDimitry Andric     if (!Op) {
15710b57cec5SDimitry Andric       CheckFailed("invalid requirement on flag, flag is not present in module",
15720b57cec5SDimitry Andric                   Flag);
15730b57cec5SDimitry Andric       continue;
15740b57cec5SDimitry Andric     }
15750b57cec5SDimitry Andric 
15760b57cec5SDimitry Andric     if (Op->getOperand(2) != ReqValue) {
15770b57cec5SDimitry Andric       CheckFailed(("invalid requirement on flag, "
15780b57cec5SDimitry Andric                    "flag does not have the required value"),
15790b57cec5SDimitry Andric                   Flag);
15800b57cec5SDimitry Andric       continue;
15810b57cec5SDimitry Andric     }
15820b57cec5SDimitry Andric   }
15830b57cec5SDimitry Andric }
15840b57cec5SDimitry Andric 
15850b57cec5SDimitry Andric void
15860b57cec5SDimitry Andric Verifier::visitModuleFlag(const MDNode *Op,
15870b57cec5SDimitry Andric                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
15880b57cec5SDimitry Andric                           SmallVectorImpl<const MDNode *> &Requirements) {
15890b57cec5SDimitry Andric   // Each module flag should have three arguments, the merge behavior (a
15900b57cec5SDimitry Andric   // constant int), the flag ID (an MDString), and the value.
15910b57cec5SDimitry Andric   Assert(Op->getNumOperands() == 3,
15920b57cec5SDimitry Andric          "incorrect number of operands in module flag", Op);
15930b57cec5SDimitry Andric   Module::ModFlagBehavior MFB;
15940b57cec5SDimitry Andric   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
15950b57cec5SDimitry Andric     Assert(
15960b57cec5SDimitry Andric         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
15970b57cec5SDimitry Andric         "invalid behavior operand in module flag (expected constant integer)",
15980b57cec5SDimitry Andric         Op->getOperand(0));
15990b57cec5SDimitry Andric     Assert(false,
16000b57cec5SDimitry Andric            "invalid behavior operand in module flag (unexpected constant)",
16010b57cec5SDimitry Andric            Op->getOperand(0));
16020b57cec5SDimitry Andric   }
16030b57cec5SDimitry Andric   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
16040b57cec5SDimitry Andric   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
16050b57cec5SDimitry Andric          Op->getOperand(1));
16060b57cec5SDimitry Andric 
1607*4824e7fdSDimitry Andric   // Check the values for behaviors with additional requirements.
16080b57cec5SDimitry Andric   switch (MFB) {
16090b57cec5SDimitry Andric   case Module::Error:
16100b57cec5SDimitry Andric   case Module::Warning:
16110b57cec5SDimitry Andric   case Module::Override:
16120b57cec5SDimitry Andric     // These behavior types accept any value.
16130b57cec5SDimitry Andric     break;
16140b57cec5SDimitry Andric 
16150b57cec5SDimitry Andric   case Module::Max: {
16160b57cec5SDimitry Andric     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
16170b57cec5SDimitry Andric            "invalid value for 'max' module flag (expected constant integer)",
16180b57cec5SDimitry Andric            Op->getOperand(2));
16190b57cec5SDimitry Andric     break;
16200b57cec5SDimitry Andric   }
16210b57cec5SDimitry Andric 
16220b57cec5SDimitry Andric   case Module::Require: {
16230b57cec5SDimitry Andric     // The value should itself be an MDNode with two operands, a flag ID (an
16240b57cec5SDimitry Andric     // MDString), and a value.
16250b57cec5SDimitry Andric     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
16260b57cec5SDimitry Andric     Assert(Value && Value->getNumOperands() == 2,
16270b57cec5SDimitry Andric            "invalid value for 'require' module flag (expected metadata pair)",
16280b57cec5SDimitry Andric            Op->getOperand(2));
16290b57cec5SDimitry Andric     Assert(isa<MDString>(Value->getOperand(0)),
16300b57cec5SDimitry Andric            ("invalid value for 'require' module flag "
16310b57cec5SDimitry Andric             "(first value operand should be a string)"),
16320b57cec5SDimitry Andric            Value->getOperand(0));
16330b57cec5SDimitry Andric 
16340b57cec5SDimitry Andric     // Append it to the list of requirements, to check once all module flags are
16350b57cec5SDimitry Andric     // scanned.
16360b57cec5SDimitry Andric     Requirements.push_back(Value);
16370b57cec5SDimitry Andric     break;
16380b57cec5SDimitry Andric   }
16390b57cec5SDimitry Andric 
16400b57cec5SDimitry Andric   case Module::Append:
16410b57cec5SDimitry Andric   case Module::AppendUnique: {
16420b57cec5SDimitry Andric     // These behavior types require the operand be an MDNode.
16430b57cec5SDimitry Andric     Assert(isa<MDNode>(Op->getOperand(2)),
16440b57cec5SDimitry Andric            "invalid value for 'append'-type module flag "
16450b57cec5SDimitry Andric            "(expected a metadata node)",
16460b57cec5SDimitry Andric            Op->getOperand(2));
16470b57cec5SDimitry Andric     break;
16480b57cec5SDimitry Andric   }
16490b57cec5SDimitry Andric   }
16500b57cec5SDimitry Andric 
16510b57cec5SDimitry Andric   // Unless this is a "requires" flag, check the ID is unique.
16520b57cec5SDimitry Andric   if (MFB != Module::Require) {
16530b57cec5SDimitry Andric     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
16540b57cec5SDimitry Andric     Assert(Inserted,
16550b57cec5SDimitry Andric            "module flag identifiers must be unique (or of 'require' type)", ID);
16560b57cec5SDimitry Andric   }
16570b57cec5SDimitry Andric 
16580b57cec5SDimitry Andric   if (ID->getString() == "wchar_size") {
16590b57cec5SDimitry Andric     ConstantInt *Value
16600b57cec5SDimitry Andric       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
16610b57cec5SDimitry Andric     Assert(Value, "wchar_size metadata requires constant integer argument");
16620b57cec5SDimitry Andric   }
16630b57cec5SDimitry Andric 
16640b57cec5SDimitry Andric   if (ID->getString() == "Linker Options") {
16650b57cec5SDimitry Andric     // If the llvm.linker.options named metadata exists, we assume that the
16660b57cec5SDimitry Andric     // bitcode reader has upgraded the module flag. Otherwise the flag might
16670b57cec5SDimitry Andric     // have been created by a client directly.
16680b57cec5SDimitry Andric     Assert(M.getNamedMetadata("llvm.linker.options"),
16690b57cec5SDimitry Andric            "'Linker Options' named metadata no longer supported");
16700b57cec5SDimitry Andric   }
16710b57cec5SDimitry Andric 
16725ffd83dbSDimitry Andric   if (ID->getString() == "SemanticInterposition") {
16735ffd83dbSDimitry Andric     ConstantInt *Value =
16745ffd83dbSDimitry Andric         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
16755ffd83dbSDimitry Andric     Assert(Value,
16765ffd83dbSDimitry Andric            "SemanticInterposition metadata requires constant integer argument");
16775ffd83dbSDimitry Andric   }
16785ffd83dbSDimitry Andric 
16790b57cec5SDimitry Andric   if (ID->getString() == "CG Profile") {
16800b57cec5SDimitry Andric     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
16810b57cec5SDimitry Andric       visitModuleFlagCGProfileEntry(MDO);
16820b57cec5SDimitry Andric   }
16830b57cec5SDimitry Andric }
16840b57cec5SDimitry Andric 
16850b57cec5SDimitry Andric void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
16860b57cec5SDimitry Andric   auto CheckFunction = [&](const MDOperand &FuncMDO) {
16870b57cec5SDimitry Andric     if (!FuncMDO)
16880b57cec5SDimitry Andric       return;
16890b57cec5SDimitry Andric     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1690e8d8bef9SDimitry Andric     Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
1691e8d8bef9SDimitry Andric            "expected a Function or null", FuncMDO);
16920b57cec5SDimitry Andric   };
16930b57cec5SDimitry Andric   auto Node = dyn_cast_or_null<MDNode>(MDO);
16940b57cec5SDimitry Andric   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
16950b57cec5SDimitry Andric   CheckFunction(Node->getOperand(0));
16960b57cec5SDimitry Andric   CheckFunction(Node->getOperand(1));
16970b57cec5SDimitry Andric   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
16980b57cec5SDimitry Andric   Assert(Count && Count->getType()->isIntegerTy(),
16990b57cec5SDimitry Andric          "expected an integer constant", Node->getOperand(2));
17000b57cec5SDimitry Andric }
17010b57cec5SDimitry Andric 
1702fe6060f1SDimitry Andric void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
17030b57cec5SDimitry Andric   for (Attribute A : Attrs) {
1704fe6060f1SDimitry Andric 
1705fe6060f1SDimitry Andric     if (A.isStringAttribute()) {
1706fe6060f1SDimitry Andric #define GET_ATTR_NAMES
1707fe6060f1SDimitry Andric #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1708fe6060f1SDimitry Andric #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1709fe6060f1SDimitry Andric   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1710fe6060f1SDimitry Andric     auto V = A.getValueAsString();                                             \
1711fe6060f1SDimitry Andric     if (!(V.empty() || V == "true" || V == "false"))                           \
1712fe6060f1SDimitry Andric       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1713fe6060f1SDimitry Andric                   "");                                                         \
1714fe6060f1SDimitry Andric   }
1715fe6060f1SDimitry Andric 
1716fe6060f1SDimitry Andric #include "llvm/IR/Attributes.inc"
17170b57cec5SDimitry Andric       continue;
1718fe6060f1SDimitry Andric     }
17190b57cec5SDimitry Andric 
1720fe6060f1SDimitry Andric     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
17215ffd83dbSDimitry Andric       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
17225ffd83dbSDimitry Andric                   V);
17235ffd83dbSDimitry Andric       return;
17245ffd83dbSDimitry Andric     }
17250b57cec5SDimitry Andric   }
17260b57cec5SDimitry Andric }
17270b57cec5SDimitry Andric 
17280b57cec5SDimitry Andric // VerifyParameterAttrs - Check the given attributes for an argument or return
17290b57cec5SDimitry Andric // value of the specified type.  The value V is printed in error messages.
17300b57cec5SDimitry Andric void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
17310b57cec5SDimitry Andric                                     const Value *V) {
17320b57cec5SDimitry Andric   if (!Attrs.hasAttributes())
17330b57cec5SDimitry Andric     return;
17340b57cec5SDimitry Andric 
1735fe6060f1SDimitry Andric   verifyAttributeTypes(Attrs, V);
1736fe6060f1SDimitry Andric 
1737fe6060f1SDimitry Andric   for (Attribute Attr : Attrs)
1738fe6060f1SDimitry Andric     Assert(Attr.isStringAttribute() ||
1739fe6060f1SDimitry Andric            Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1740fe6060f1SDimitry Andric            "Attribute '" + Attr.getAsString() +
1741fe6060f1SDimitry Andric                "' does not apply to parameters",
1742fe6060f1SDimitry Andric            V);
17430b57cec5SDimitry Andric 
17440b57cec5SDimitry Andric   if (Attrs.hasAttribute(Attribute::ImmArg)) {
17450b57cec5SDimitry Andric     Assert(Attrs.getNumAttributes() == 1,
17460b57cec5SDimitry Andric            "Attribute 'immarg' is incompatible with other attributes", V);
17470b57cec5SDimitry Andric   }
17480b57cec5SDimitry Andric 
17490b57cec5SDimitry Andric   // Check for mutually incompatible attributes.  Only inreg is compatible with
17500b57cec5SDimitry Andric   // sret.
17510b57cec5SDimitry Andric   unsigned AttrCount = 0;
17520b57cec5SDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
17530b57cec5SDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
17545ffd83dbSDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
17550b57cec5SDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
17560b57cec5SDimitry Andric                Attrs.hasAttribute(Attribute::InReg);
17570b57cec5SDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1758e8d8bef9SDimitry Andric   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
17595ffd83dbSDimitry Andric   Assert(AttrCount <= 1,
17605ffd83dbSDimitry Andric          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1761e8d8bef9SDimitry Andric          "'byref', and 'sret' are incompatible!",
17620b57cec5SDimitry Andric          V);
17630b57cec5SDimitry Andric 
17640b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
17650b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::ReadOnly)),
17660b57cec5SDimitry Andric          "Attributes "
17670b57cec5SDimitry Andric          "'inalloca and readonly' are incompatible!",
17680b57cec5SDimitry Andric          V);
17690b57cec5SDimitry Andric 
17700b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
17710b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::Returned)),
17720b57cec5SDimitry Andric          "Attributes "
17730b57cec5SDimitry Andric          "'sret and returned' are incompatible!",
17740b57cec5SDimitry Andric          V);
17750b57cec5SDimitry Andric 
17760b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
17770b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::SExt)),
17780b57cec5SDimitry Andric          "Attributes "
17790b57cec5SDimitry Andric          "'zeroext and signext' are incompatible!",
17800b57cec5SDimitry Andric          V);
17810b57cec5SDimitry Andric 
17820b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
17830b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::ReadOnly)),
17840b57cec5SDimitry Andric          "Attributes "
17850b57cec5SDimitry Andric          "'readnone and readonly' are incompatible!",
17860b57cec5SDimitry Andric          V);
17870b57cec5SDimitry Andric 
17880b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
17890b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::WriteOnly)),
17900b57cec5SDimitry Andric          "Attributes "
17910b57cec5SDimitry Andric          "'readnone and writeonly' are incompatible!",
17920b57cec5SDimitry Andric          V);
17930b57cec5SDimitry Andric 
17940b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
17950b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::WriteOnly)),
17960b57cec5SDimitry Andric          "Attributes "
17970b57cec5SDimitry Andric          "'readonly and writeonly' are incompatible!",
17980b57cec5SDimitry Andric          V);
17990b57cec5SDimitry Andric 
18000b57cec5SDimitry Andric   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
18010b57cec5SDimitry Andric            Attrs.hasAttribute(Attribute::AlwaysInline)),
18020b57cec5SDimitry Andric          "Attributes "
18030b57cec5SDimitry Andric          "'noinline and alwaysinline' are incompatible!",
18040b57cec5SDimitry Andric          V);
18050b57cec5SDimitry Andric 
18060b57cec5SDimitry Andric   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1807fe6060f1SDimitry Andric   for (Attribute Attr : Attrs) {
1808fe6060f1SDimitry Andric     if (!Attr.isStringAttribute() &&
1809fe6060f1SDimitry Andric         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1810fe6060f1SDimitry Andric       CheckFailed("Attribute '" + Attr.getAsString() +
1811fe6060f1SDimitry Andric                   "' applied to incompatible type!", V);
1812fe6060f1SDimitry Andric       return;
1813fe6060f1SDimitry Andric     }
1814fe6060f1SDimitry Andric   }
18150b57cec5SDimitry Andric 
18160b57cec5SDimitry Andric   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1817fe6060f1SDimitry Andric     if (Attrs.hasAttribute(Attribute::ByVal)) {
18180b57cec5SDimitry Andric       SmallPtrSet<Type *, 4> Visited;
1819fe6060f1SDimitry Andric       Assert(Attrs.getByValType()->isSized(&Visited),
1820fe6060f1SDimitry Andric              "Attribute 'byval' does not support unsized types!", V);
18210b57cec5SDimitry Andric     }
1822fe6060f1SDimitry Andric     if (Attrs.hasAttribute(Attribute::ByRef)) {
1823fe6060f1SDimitry Andric       SmallPtrSet<Type *, 4> Visited;
1824fe6060f1SDimitry Andric       Assert(Attrs.getByRefType()->isSized(&Visited),
1825fe6060f1SDimitry Andric              "Attribute 'byref' does not support unsized types!", V);
1826fe6060f1SDimitry Andric     }
1827fe6060f1SDimitry Andric     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1828fe6060f1SDimitry Andric       SmallPtrSet<Type *, 4> Visited;
1829fe6060f1SDimitry Andric       Assert(Attrs.getInAllocaType()->isSized(&Visited),
1830fe6060f1SDimitry Andric              "Attribute 'inalloca' does not support unsized types!", V);
1831fe6060f1SDimitry Andric     }
1832fe6060f1SDimitry Andric     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1833fe6060f1SDimitry Andric       SmallPtrSet<Type *, 4> Visited;
1834fe6060f1SDimitry Andric       Assert(Attrs.getPreallocatedType()->isSized(&Visited),
1835fe6060f1SDimitry Andric              "Attribute 'preallocated' does not support unsized types!", V);
1836fe6060f1SDimitry Andric     }
1837fe6060f1SDimitry Andric     if (!PTy->isOpaque()) {
18380b57cec5SDimitry Andric       if (!isa<PointerType>(PTy->getElementType()))
18390b57cec5SDimitry Andric         Assert(!Attrs.hasAttribute(Attribute::SwiftError),
18400b57cec5SDimitry Andric                "Attribute 'swifterror' only applies to parameters "
18410b57cec5SDimitry Andric                "with pointer to pointer type!",
18420b57cec5SDimitry Andric                V);
1843e8d8bef9SDimitry Andric       if (Attrs.hasAttribute(Attribute::ByRef)) {
1844e8d8bef9SDimitry Andric         Assert(Attrs.getByRefType() == PTy->getElementType(),
1845e8d8bef9SDimitry Andric                "Attribute 'byref' type does not match parameter!", V);
1846e8d8bef9SDimitry Andric       }
1847e8d8bef9SDimitry Andric 
1848e8d8bef9SDimitry Andric       if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1849e8d8bef9SDimitry Andric         Assert(Attrs.getByValType() == PTy->getElementType(),
1850e8d8bef9SDimitry Andric                "Attribute 'byval' type does not match parameter!", V);
1851e8d8bef9SDimitry Andric       }
1852e8d8bef9SDimitry Andric 
1853e8d8bef9SDimitry Andric       if (Attrs.hasAttribute(Attribute::Preallocated)) {
1854e8d8bef9SDimitry Andric         Assert(Attrs.getPreallocatedType() == PTy->getElementType(),
1855e8d8bef9SDimitry Andric                "Attribute 'preallocated' type does not match parameter!", V);
1856e8d8bef9SDimitry Andric       }
1857fe6060f1SDimitry Andric 
1858fe6060f1SDimitry Andric       if (Attrs.hasAttribute(Attribute::InAlloca)) {
1859fe6060f1SDimitry Andric         Assert(Attrs.getInAllocaType() == PTy->getElementType(),
1860fe6060f1SDimitry Andric                "Attribute 'inalloca' type does not match parameter!", V);
1861fe6060f1SDimitry Andric       }
1862fe6060f1SDimitry Andric 
1863fe6060f1SDimitry Andric       if (Attrs.hasAttribute(Attribute::ElementType)) {
1864fe6060f1SDimitry Andric         Assert(Attrs.getElementType() == PTy->getElementType(),
1865fe6060f1SDimitry Andric                "Attribute 'elementtype' type does not match parameter!", V);
1866fe6060f1SDimitry Andric       }
1867fe6060f1SDimitry Andric     }
1868fe6060f1SDimitry Andric   }
1869fe6060f1SDimitry Andric }
1870fe6060f1SDimitry Andric 
1871fe6060f1SDimitry Andric void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1872fe6060f1SDimitry Andric                                             const Value *V) {
1873349cc55cSDimitry Andric   if (Attrs.hasFnAttr(Attr)) {
1874349cc55cSDimitry Andric     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1875fe6060f1SDimitry Andric     unsigned N;
1876fe6060f1SDimitry Andric     if (S.getAsInteger(10, N))
1877fe6060f1SDimitry Andric       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
18780b57cec5SDimitry Andric   }
18790b57cec5SDimitry Andric }
18800b57cec5SDimitry Andric 
18810b57cec5SDimitry Andric // Check parameter attributes against a function type.
18820b57cec5SDimitry Andric // The value V is printed in error messages.
18830b57cec5SDimitry Andric void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
18840b57cec5SDimitry Andric                                    const Value *V, bool IsIntrinsic) {
18850b57cec5SDimitry Andric   if (Attrs.isEmpty())
18860b57cec5SDimitry Andric     return;
18870b57cec5SDimitry Andric 
1888fe6060f1SDimitry Andric   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1889fe6060f1SDimitry Andric     Assert(Attrs.hasParentContext(Context),
1890fe6060f1SDimitry Andric            "Attribute list does not match Module context!", &Attrs, V);
1891fe6060f1SDimitry Andric     for (const auto &AttrSet : Attrs) {
1892fe6060f1SDimitry Andric       Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1893fe6060f1SDimitry Andric              "Attribute set does not match Module context!", &AttrSet, V);
1894fe6060f1SDimitry Andric       for (const auto &A : AttrSet) {
1895fe6060f1SDimitry Andric         Assert(A.hasParentContext(Context),
1896fe6060f1SDimitry Andric                "Attribute does not match Module context!", &A, V);
1897fe6060f1SDimitry Andric       }
1898fe6060f1SDimitry Andric     }
1899fe6060f1SDimitry Andric   }
1900fe6060f1SDimitry Andric 
19010b57cec5SDimitry Andric   bool SawNest = false;
19020b57cec5SDimitry Andric   bool SawReturned = false;
19030b57cec5SDimitry Andric   bool SawSRet = false;
19040b57cec5SDimitry Andric   bool SawSwiftSelf = false;
1905fe6060f1SDimitry Andric   bool SawSwiftAsync = false;
19060b57cec5SDimitry Andric   bool SawSwiftError = false;
19070b57cec5SDimitry Andric 
19080b57cec5SDimitry Andric   // Verify return value attributes.
1909349cc55cSDimitry Andric   AttributeSet RetAttrs = Attrs.getRetAttrs();
1910fe6060f1SDimitry Andric   for (Attribute RetAttr : RetAttrs)
1911fe6060f1SDimitry Andric     Assert(RetAttr.isStringAttribute() ||
1912fe6060f1SDimitry Andric            Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1913fe6060f1SDimitry Andric            "Attribute '" + RetAttr.getAsString() +
1914fe6060f1SDimitry Andric                "' does not apply to function return values",
19150b57cec5SDimitry Andric            V);
1916fe6060f1SDimitry Andric 
19170b57cec5SDimitry Andric   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
19180b57cec5SDimitry Andric 
19190b57cec5SDimitry Andric   // Verify parameter attributes.
19200b57cec5SDimitry Andric   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
19210b57cec5SDimitry Andric     Type *Ty = FT->getParamType(i);
1922349cc55cSDimitry Andric     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
19230b57cec5SDimitry Andric 
19240b57cec5SDimitry Andric     if (!IsIntrinsic) {
19250b57cec5SDimitry Andric       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
19260b57cec5SDimitry Andric              "immarg attribute only applies to intrinsics",V);
1927fe6060f1SDimitry Andric       Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),
1928fe6060f1SDimitry Andric              "Attribute 'elementtype' can only be applied to intrinsics.", V);
19290b57cec5SDimitry Andric     }
19300b57cec5SDimitry Andric 
19310b57cec5SDimitry Andric     verifyParameterAttrs(ArgAttrs, Ty, V);
19320b57cec5SDimitry Andric 
19330b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
19340b57cec5SDimitry Andric       Assert(!SawNest, "More than one parameter has attribute nest!", V);
19350b57cec5SDimitry Andric       SawNest = true;
19360b57cec5SDimitry Andric     }
19370b57cec5SDimitry Andric 
19380b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
19390b57cec5SDimitry Andric       Assert(!SawReturned, "More than one parameter has attribute returned!",
19400b57cec5SDimitry Andric              V);
19410b57cec5SDimitry Andric       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
19420b57cec5SDimitry Andric              "Incompatible argument and return types for 'returned' attribute",
19430b57cec5SDimitry Andric              V);
19440b57cec5SDimitry Andric       SawReturned = true;
19450b57cec5SDimitry Andric     }
19460b57cec5SDimitry Andric 
19470b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
19480b57cec5SDimitry Andric       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
19490b57cec5SDimitry Andric       Assert(i == 0 || i == 1,
19500b57cec5SDimitry Andric              "Attribute 'sret' is not on first or second parameter!", V);
19510b57cec5SDimitry Andric       SawSRet = true;
19520b57cec5SDimitry Andric     }
19530b57cec5SDimitry Andric 
19540b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
19550b57cec5SDimitry Andric       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
19560b57cec5SDimitry Andric       SawSwiftSelf = true;
19570b57cec5SDimitry Andric     }
19580b57cec5SDimitry Andric 
1959fe6060f1SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1960fe6060f1SDimitry Andric       Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1961fe6060f1SDimitry Andric       SawSwiftAsync = true;
1962fe6060f1SDimitry Andric     }
1963fe6060f1SDimitry Andric 
19640b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
19650b57cec5SDimitry Andric       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
19660b57cec5SDimitry Andric              V);
19670b57cec5SDimitry Andric       SawSwiftError = true;
19680b57cec5SDimitry Andric     }
19690b57cec5SDimitry Andric 
19700b57cec5SDimitry Andric     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
19710b57cec5SDimitry Andric       Assert(i == FT->getNumParams() - 1,
19720b57cec5SDimitry Andric              "inalloca isn't on the last parameter!", V);
19730b57cec5SDimitry Andric     }
19740b57cec5SDimitry Andric   }
19750b57cec5SDimitry Andric 
1976349cc55cSDimitry Andric   if (!Attrs.hasFnAttrs())
19770b57cec5SDimitry Andric     return;
19780b57cec5SDimitry Andric 
1979349cc55cSDimitry Andric   verifyAttributeTypes(Attrs.getFnAttrs(), V);
1980349cc55cSDimitry Andric   for (Attribute FnAttr : Attrs.getFnAttrs())
1981fe6060f1SDimitry Andric     Assert(FnAttr.isStringAttribute() ||
1982fe6060f1SDimitry Andric            Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
1983fe6060f1SDimitry Andric            "Attribute '" + FnAttr.getAsString() +
1984fe6060f1SDimitry Andric                "' does not apply to functions!",
1985fe6060f1SDimitry Andric            V);
19860b57cec5SDimitry Andric 
1987349cc55cSDimitry Andric   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1988349cc55cSDimitry Andric            Attrs.hasFnAttr(Attribute::ReadOnly)),
19890b57cec5SDimitry Andric          "Attributes 'readnone and readonly' are incompatible!", V);
19900b57cec5SDimitry Andric 
1991349cc55cSDimitry Andric   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1992349cc55cSDimitry Andric            Attrs.hasFnAttr(Attribute::WriteOnly)),
19930b57cec5SDimitry Andric          "Attributes 'readnone and writeonly' are incompatible!", V);
19940b57cec5SDimitry Andric 
1995349cc55cSDimitry Andric   Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) &&
1996349cc55cSDimitry Andric            Attrs.hasFnAttr(Attribute::WriteOnly)),
19970b57cec5SDimitry Andric          "Attributes 'readonly and writeonly' are incompatible!", V);
19980b57cec5SDimitry Andric 
1999349cc55cSDimitry Andric   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2000349cc55cSDimitry Andric            Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)),
20010b57cec5SDimitry Andric          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
20020b57cec5SDimitry Andric          "incompatible!",
20030b57cec5SDimitry Andric          V);
20040b57cec5SDimitry Andric 
2005349cc55cSDimitry Andric   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2006349cc55cSDimitry Andric            Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)),
20070b57cec5SDimitry Andric          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
20080b57cec5SDimitry Andric 
2009349cc55cSDimitry Andric   Assert(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2010349cc55cSDimitry Andric            Attrs.hasFnAttr(Attribute::AlwaysInline)),
20110b57cec5SDimitry Andric          "Attributes 'noinline and alwaysinline' are incompatible!", V);
20120b57cec5SDimitry Andric 
2013349cc55cSDimitry Andric   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2014349cc55cSDimitry Andric     Assert(Attrs.hasFnAttr(Attribute::NoInline),
20150b57cec5SDimitry Andric            "Attribute 'optnone' requires 'noinline'!", V);
20160b57cec5SDimitry Andric 
2017349cc55cSDimitry Andric     Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
20180b57cec5SDimitry Andric            "Attributes 'optsize and optnone' are incompatible!", V);
20190b57cec5SDimitry Andric 
2020349cc55cSDimitry Andric     Assert(!Attrs.hasFnAttr(Attribute::MinSize),
20210b57cec5SDimitry Andric            "Attributes 'minsize and optnone' are incompatible!", V);
20220b57cec5SDimitry Andric   }
20230b57cec5SDimitry Andric 
2024349cc55cSDimitry Andric   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
20250b57cec5SDimitry Andric     const GlobalValue *GV = cast<GlobalValue>(V);
20260b57cec5SDimitry Andric     Assert(GV->hasGlobalUnnamedAddr(),
20270b57cec5SDimitry Andric            "Attribute 'jumptable' requires 'unnamed_addr'", V);
20280b57cec5SDimitry Andric   }
20290b57cec5SDimitry Andric 
2030349cc55cSDimitry Andric   if (Attrs.hasFnAttr(Attribute::AllocSize)) {
20310b57cec5SDimitry Andric     std::pair<unsigned, Optional<unsigned>> Args =
2032349cc55cSDimitry Andric         Attrs.getFnAttrs().getAllocSizeArgs();
20330b57cec5SDimitry Andric 
20340b57cec5SDimitry Andric     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
20350b57cec5SDimitry Andric       if (ParamNo >= FT->getNumParams()) {
20360b57cec5SDimitry Andric         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
20370b57cec5SDimitry Andric         return false;
20380b57cec5SDimitry Andric       }
20390b57cec5SDimitry Andric 
20400b57cec5SDimitry Andric       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
20410b57cec5SDimitry Andric         CheckFailed("'allocsize' " + Name +
20420b57cec5SDimitry Andric                         " argument must refer to an integer parameter",
20430b57cec5SDimitry Andric                     V);
20440b57cec5SDimitry Andric         return false;
20450b57cec5SDimitry Andric       }
20460b57cec5SDimitry Andric 
20470b57cec5SDimitry Andric       return true;
20480b57cec5SDimitry Andric     };
20490b57cec5SDimitry Andric 
20500b57cec5SDimitry Andric     if (!CheckParam("element size", Args.first))
20510b57cec5SDimitry Andric       return;
20520b57cec5SDimitry Andric 
20530b57cec5SDimitry Andric     if (Args.second && !CheckParam("number of elements", *Args.second))
20540b57cec5SDimitry Andric       return;
20550b57cec5SDimitry Andric   }
2056480093f4SDimitry Andric 
2057349cc55cSDimitry Andric   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2058fe6060f1SDimitry Andric     std::pair<unsigned, unsigned> Args =
2059349cc55cSDimitry Andric         Attrs.getFnAttrs().getVScaleRangeArgs();
2060fe6060f1SDimitry Andric 
2061fe6060f1SDimitry Andric     if (Args.first > Args.second && Args.second != 0)
2062fe6060f1SDimitry Andric       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2063fe6060f1SDimitry Andric   }
2064fe6060f1SDimitry Andric 
2065349cc55cSDimitry Andric   if (Attrs.hasFnAttr("frame-pointer")) {
2066349cc55cSDimitry Andric     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2067480093f4SDimitry Andric     if (FP != "all" && FP != "non-leaf" && FP != "none")
2068480093f4SDimitry Andric       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2069480093f4SDimitry Andric   }
2070480093f4SDimitry Andric 
2071fe6060f1SDimitry Andric   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2072fe6060f1SDimitry Andric   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2073fe6060f1SDimitry Andric   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
20740b57cec5SDimitry Andric }
20750b57cec5SDimitry Andric 
20760b57cec5SDimitry Andric void Verifier::verifyFunctionMetadata(
20770b57cec5SDimitry Andric     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
20780b57cec5SDimitry Andric   for (const auto &Pair : MDs) {
20790b57cec5SDimitry Andric     if (Pair.first == LLVMContext::MD_prof) {
20800b57cec5SDimitry Andric       MDNode *MD = Pair.second;
20810b57cec5SDimitry Andric       Assert(MD->getNumOperands() >= 2,
20820b57cec5SDimitry Andric              "!prof annotations should have no less than 2 operands", MD);
20830b57cec5SDimitry Andric 
20840b57cec5SDimitry Andric       // Check first operand.
20850b57cec5SDimitry Andric       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
20860b57cec5SDimitry Andric              MD);
20870b57cec5SDimitry Andric       Assert(isa<MDString>(MD->getOperand(0)),
20880b57cec5SDimitry Andric              "expected string with name of the !prof annotation", MD);
20890b57cec5SDimitry Andric       MDString *MDS = cast<MDString>(MD->getOperand(0));
20900b57cec5SDimitry Andric       StringRef ProfName = MDS->getString();
20910b57cec5SDimitry Andric       Assert(ProfName.equals("function_entry_count") ||
20920b57cec5SDimitry Andric                  ProfName.equals("synthetic_function_entry_count"),
20930b57cec5SDimitry Andric              "first operand should be 'function_entry_count'"
20940b57cec5SDimitry Andric              " or 'synthetic_function_entry_count'",
20950b57cec5SDimitry Andric              MD);
20960b57cec5SDimitry Andric 
20970b57cec5SDimitry Andric       // Check second operand.
20980b57cec5SDimitry Andric       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
20990b57cec5SDimitry Andric              MD);
21000b57cec5SDimitry Andric       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
21010b57cec5SDimitry Andric              "expected integer argument to function_entry_count", MD);
21020b57cec5SDimitry Andric     }
21030b57cec5SDimitry Andric   }
21040b57cec5SDimitry Andric }
21050b57cec5SDimitry Andric 
21060b57cec5SDimitry Andric void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
21070b57cec5SDimitry Andric   if (!ConstantExprVisited.insert(EntryC).second)
21080b57cec5SDimitry Andric     return;
21090b57cec5SDimitry Andric 
21100b57cec5SDimitry Andric   SmallVector<const Constant *, 16> Stack;
21110b57cec5SDimitry Andric   Stack.push_back(EntryC);
21120b57cec5SDimitry Andric 
21130b57cec5SDimitry Andric   while (!Stack.empty()) {
21140b57cec5SDimitry Andric     const Constant *C = Stack.pop_back_val();
21150b57cec5SDimitry Andric 
21160b57cec5SDimitry Andric     // Check this constant expression.
21170b57cec5SDimitry Andric     if (const auto *CE = dyn_cast<ConstantExpr>(C))
21180b57cec5SDimitry Andric       visitConstantExpr(CE);
21190b57cec5SDimitry Andric 
21200b57cec5SDimitry Andric     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
21210b57cec5SDimitry Andric       // Global Values get visited separately, but we do need to make sure
21220b57cec5SDimitry Andric       // that the global value is in the correct module
21230b57cec5SDimitry Andric       Assert(GV->getParent() == &M, "Referencing global in another module!",
21240b57cec5SDimitry Andric              EntryC, &M, GV, GV->getParent());
21250b57cec5SDimitry Andric       continue;
21260b57cec5SDimitry Andric     }
21270b57cec5SDimitry Andric 
21280b57cec5SDimitry Andric     // Visit all sub-expressions.
21290b57cec5SDimitry Andric     for (const Use &U : C->operands()) {
21300b57cec5SDimitry Andric       const auto *OpC = dyn_cast<Constant>(U);
21310b57cec5SDimitry Andric       if (!OpC)
21320b57cec5SDimitry Andric         continue;
21330b57cec5SDimitry Andric       if (!ConstantExprVisited.insert(OpC).second)
21340b57cec5SDimitry Andric         continue;
21350b57cec5SDimitry Andric       Stack.push_back(OpC);
21360b57cec5SDimitry Andric     }
21370b57cec5SDimitry Andric   }
21380b57cec5SDimitry Andric }
21390b57cec5SDimitry Andric 
21400b57cec5SDimitry Andric void Verifier::visitConstantExpr(const ConstantExpr *CE) {
21410b57cec5SDimitry Andric   if (CE->getOpcode() == Instruction::BitCast)
21420b57cec5SDimitry Andric     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
21430b57cec5SDimitry Andric                                  CE->getType()),
21440b57cec5SDimitry Andric            "Invalid bitcast", CE);
21450b57cec5SDimitry Andric }
21460b57cec5SDimitry Andric 
21470b57cec5SDimitry Andric bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
21480b57cec5SDimitry Andric   // There shouldn't be more attribute sets than there are parameters plus the
21490b57cec5SDimitry Andric   // function and return value.
21500b57cec5SDimitry Andric   return Attrs.getNumAttrSets() <= Params + 2;
21510b57cec5SDimitry Andric }
21520b57cec5SDimitry Andric 
21530b57cec5SDimitry Andric /// Verify that statepoint intrinsic is well formed.
21540b57cec5SDimitry Andric void Verifier::verifyStatepoint(const CallBase &Call) {
21550b57cec5SDimitry Andric   assert(Call.getCalledFunction() &&
21560b57cec5SDimitry Andric          Call.getCalledFunction()->getIntrinsicID() ==
21570b57cec5SDimitry Andric              Intrinsic::experimental_gc_statepoint);
21580b57cec5SDimitry Andric 
21590b57cec5SDimitry Andric   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
21600b57cec5SDimitry Andric              !Call.onlyAccessesArgMemory(),
21610b57cec5SDimitry Andric          "gc.statepoint must read and write all memory to preserve "
21620b57cec5SDimitry Andric          "reordering restrictions required by safepoint semantics",
21630b57cec5SDimitry Andric          Call);
21640b57cec5SDimitry Andric 
21650b57cec5SDimitry Andric   const int64_t NumPatchBytes =
21660b57cec5SDimitry Andric       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
21670b57cec5SDimitry Andric   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
21680b57cec5SDimitry Andric   Assert(NumPatchBytes >= 0,
21690b57cec5SDimitry Andric          "gc.statepoint number of patchable bytes must be "
21700b57cec5SDimitry Andric          "positive",
21710b57cec5SDimitry Andric          Call);
21720b57cec5SDimitry Andric 
21730b57cec5SDimitry Andric   const Value *Target = Call.getArgOperand(2);
21740b57cec5SDimitry Andric   auto *PT = dyn_cast<PointerType>(Target->getType());
21750b57cec5SDimitry Andric   Assert(PT && PT->getElementType()->isFunctionTy(),
21760b57cec5SDimitry Andric          "gc.statepoint callee must be of function pointer type", Call, Target);
21770b57cec5SDimitry Andric   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
21780b57cec5SDimitry Andric 
21790b57cec5SDimitry Andric   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
21800b57cec5SDimitry Andric   Assert(NumCallArgs >= 0,
21810b57cec5SDimitry Andric          "gc.statepoint number of arguments to underlying call "
21820b57cec5SDimitry Andric          "must be positive",
21830b57cec5SDimitry Andric          Call);
21840b57cec5SDimitry Andric   const int NumParams = (int)TargetFuncType->getNumParams();
21850b57cec5SDimitry Andric   if (TargetFuncType->isVarArg()) {
21860b57cec5SDimitry Andric     Assert(NumCallArgs >= NumParams,
21870b57cec5SDimitry Andric            "gc.statepoint mismatch in number of vararg call args", Call);
21880b57cec5SDimitry Andric 
21890b57cec5SDimitry Andric     // TODO: Remove this limitation
21900b57cec5SDimitry Andric     Assert(TargetFuncType->getReturnType()->isVoidTy(),
21910b57cec5SDimitry Andric            "gc.statepoint doesn't support wrapping non-void "
21920b57cec5SDimitry Andric            "vararg functions yet",
21930b57cec5SDimitry Andric            Call);
21940b57cec5SDimitry Andric   } else
21950b57cec5SDimitry Andric     Assert(NumCallArgs == NumParams,
21960b57cec5SDimitry Andric            "gc.statepoint mismatch in number of call args", Call);
21970b57cec5SDimitry Andric 
21980b57cec5SDimitry Andric   const uint64_t Flags
21990b57cec5SDimitry Andric     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
22000b57cec5SDimitry Andric   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
22010b57cec5SDimitry Andric          "unknown flag used in gc.statepoint flags argument", Call);
22020b57cec5SDimitry Andric 
22030b57cec5SDimitry Andric   // Verify that the types of the call parameter arguments match
22040b57cec5SDimitry Andric   // the type of the wrapped callee.
22050b57cec5SDimitry Andric   AttributeList Attrs = Call.getAttributes();
22060b57cec5SDimitry Andric   for (int i = 0; i < NumParams; i++) {
22070b57cec5SDimitry Andric     Type *ParamType = TargetFuncType->getParamType(i);
22080b57cec5SDimitry Andric     Type *ArgType = Call.getArgOperand(5 + i)->getType();
22090b57cec5SDimitry Andric     Assert(ArgType == ParamType,
22100b57cec5SDimitry Andric            "gc.statepoint call argument does not match wrapped "
22110b57cec5SDimitry Andric            "function type",
22120b57cec5SDimitry Andric            Call);
22130b57cec5SDimitry Andric 
22140b57cec5SDimitry Andric     if (TargetFuncType->isVarArg()) {
2215349cc55cSDimitry Andric       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
22160b57cec5SDimitry Andric       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
22170b57cec5SDimitry Andric              "Attribute 'sret' cannot be used for vararg call arguments!",
22180b57cec5SDimitry Andric              Call);
22190b57cec5SDimitry Andric     }
22200b57cec5SDimitry Andric   }
22210b57cec5SDimitry Andric 
22220b57cec5SDimitry Andric   const int EndCallArgsInx = 4 + NumCallArgs;
22230b57cec5SDimitry Andric 
22240b57cec5SDimitry Andric   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
22250b57cec5SDimitry Andric   Assert(isa<ConstantInt>(NumTransitionArgsV),
22260b57cec5SDimitry Andric          "gc.statepoint number of transition arguments "
22270b57cec5SDimitry Andric          "must be constant integer",
22280b57cec5SDimitry Andric          Call);
22290b57cec5SDimitry Andric   const int NumTransitionArgs =
22300b57cec5SDimitry Andric       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
22315ffd83dbSDimitry Andric   Assert(NumTransitionArgs == 0,
2232e8d8bef9SDimitry Andric          "gc.statepoint w/inline transition bundle is deprecated", Call);
2233e8d8bef9SDimitry Andric   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
22345ffd83dbSDimitry Andric 
22350b57cec5SDimitry Andric   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
22360b57cec5SDimitry Andric   Assert(isa<ConstantInt>(NumDeoptArgsV),
22370b57cec5SDimitry Andric          "gc.statepoint number of deoptimization arguments "
22380b57cec5SDimitry Andric          "must be constant integer",
22390b57cec5SDimitry Andric          Call);
22400b57cec5SDimitry Andric   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
22415ffd83dbSDimitry Andric   Assert(NumDeoptArgs == 0,
2242e8d8bef9SDimitry Andric          "gc.statepoint w/inline deopt operands is deprecated", Call);
22435ffd83dbSDimitry Andric 
2244e8d8bef9SDimitry Andric   const int ExpectedNumArgs = 7 + NumCallArgs;
2245e8d8bef9SDimitry Andric   Assert(ExpectedNumArgs == (int)Call.arg_size(),
2246e8d8bef9SDimitry Andric          "gc.statepoint too many arguments", Call);
22470b57cec5SDimitry Andric 
22480b57cec5SDimitry Andric   // Check that the only uses of this gc.statepoint are gc.result or
22490b57cec5SDimitry Andric   // gc.relocate calls which are tied to this statepoint and thus part
22500b57cec5SDimitry Andric   // of the same statepoint sequence
22510b57cec5SDimitry Andric   for (const User *U : Call.users()) {
22520b57cec5SDimitry Andric     const CallInst *UserCall = dyn_cast<const CallInst>(U);
22530b57cec5SDimitry Andric     Assert(UserCall, "illegal use of statepoint token", Call, U);
22540b57cec5SDimitry Andric     if (!UserCall)
22550b57cec5SDimitry Andric       continue;
22560b57cec5SDimitry Andric     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
22570b57cec5SDimitry Andric            "gc.result or gc.relocate are the only value uses "
22580b57cec5SDimitry Andric            "of a gc.statepoint",
22590b57cec5SDimitry Andric            Call, U);
22600b57cec5SDimitry Andric     if (isa<GCResultInst>(UserCall)) {
22610b57cec5SDimitry Andric       Assert(UserCall->getArgOperand(0) == &Call,
22620b57cec5SDimitry Andric              "gc.result connected to wrong gc.statepoint", Call, UserCall);
22630b57cec5SDimitry Andric     } else if (isa<GCRelocateInst>(Call)) {
22640b57cec5SDimitry Andric       Assert(UserCall->getArgOperand(0) == &Call,
22650b57cec5SDimitry Andric              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
22660b57cec5SDimitry Andric     }
22670b57cec5SDimitry Andric   }
22680b57cec5SDimitry Andric 
22690b57cec5SDimitry Andric   // Note: It is legal for a single derived pointer to be listed multiple
22700b57cec5SDimitry Andric   // times.  It's non-optimal, but it is legal.  It can also happen after
22710b57cec5SDimitry Andric   // insertion if we strip a bitcast away.
22720b57cec5SDimitry Andric   // Note: It is really tempting to check that each base is relocated and
22730b57cec5SDimitry Andric   // that a derived pointer is never reused as a base pointer.  This turns
22740b57cec5SDimitry Andric   // out to be problematic since optimizations run after safepoint insertion
22750b57cec5SDimitry Andric   // can recognize equality properties that the insertion logic doesn't know
22760b57cec5SDimitry Andric   // about.  See example statepoint.ll in the verifier subdirectory
22770b57cec5SDimitry Andric }
22780b57cec5SDimitry Andric 
22790b57cec5SDimitry Andric void Verifier::verifyFrameRecoverIndices() {
22800b57cec5SDimitry Andric   for (auto &Counts : FrameEscapeInfo) {
22810b57cec5SDimitry Andric     Function *F = Counts.first;
22820b57cec5SDimitry Andric     unsigned EscapedObjectCount = Counts.second.first;
22830b57cec5SDimitry Andric     unsigned MaxRecoveredIndex = Counts.second.second;
22840b57cec5SDimitry Andric     Assert(MaxRecoveredIndex <= EscapedObjectCount,
22850b57cec5SDimitry Andric            "all indices passed to llvm.localrecover must be less than the "
22860b57cec5SDimitry Andric            "number of arguments passed to llvm.localescape in the parent "
22870b57cec5SDimitry Andric            "function",
22880b57cec5SDimitry Andric            F);
22890b57cec5SDimitry Andric   }
22900b57cec5SDimitry Andric }
22910b57cec5SDimitry Andric 
22920b57cec5SDimitry Andric static Instruction *getSuccPad(Instruction *Terminator) {
22930b57cec5SDimitry Andric   BasicBlock *UnwindDest;
22940b57cec5SDimitry Andric   if (auto *II = dyn_cast<InvokeInst>(Terminator))
22950b57cec5SDimitry Andric     UnwindDest = II->getUnwindDest();
22960b57cec5SDimitry Andric   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
22970b57cec5SDimitry Andric     UnwindDest = CSI->getUnwindDest();
22980b57cec5SDimitry Andric   else
22990b57cec5SDimitry Andric     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
23000b57cec5SDimitry Andric   return UnwindDest->getFirstNonPHI();
23010b57cec5SDimitry Andric }
23020b57cec5SDimitry Andric 
23030b57cec5SDimitry Andric void Verifier::verifySiblingFuncletUnwinds() {
23040b57cec5SDimitry Andric   SmallPtrSet<Instruction *, 8> Visited;
23050b57cec5SDimitry Andric   SmallPtrSet<Instruction *, 8> Active;
23060b57cec5SDimitry Andric   for (const auto &Pair : SiblingFuncletInfo) {
23070b57cec5SDimitry Andric     Instruction *PredPad = Pair.first;
23080b57cec5SDimitry Andric     if (Visited.count(PredPad))
23090b57cec5SDimitry Andric       continue;
23100b57cec5SDimitry Andric     Active.insert(PredPad);
23110b57cec5SDimitry Andric     Instruction *Terminator = Pair.second;
23120b57cec5SDimitry Andric     do {
23130b57cec5SDimitry Andric       Instruction *SuccPad = getSuccPad(Terminator);
23140b57cec5SDimitry Andric       if (Active.count(SuccPad)) {
23150b57cec5SDimitry Andric         // Found a cycle; report error
23160b57cec5SDimitry Andric         Instruction *CyclePad = SuccPad;
23170b57cec5SDimitry Andric         SmallVector<Instruction *, 8> CycleNodes;
23180b57cec5SDimitry Andric         do {
23190b57cec5SDimitry Andric           CycleNodes.push_back(CyclePad);
23200b57cec5SDimitry Andric           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
23210b57cec5SDimitry Andric           if (CycleTerminator != CyclePad)
23220b57cec5SDimitry Andric             CycleNodes.push_back(CycleTerminator);
23230b57cec5SDimitry Andric           CyclePad = getSuccPad(CycleTerminator);
23240b57cec5SDimitry Andric         } while (CyclePad != SuccPad);
23250b57cec5SDimitry Andric         Assert(false, "EH pads can't handle each other's exceptions",
23260b57cec5SDimitry Andric                ArrayRef<Instruction *>(CycleNodes));
23270b57cec5SDimitry Andric       }
23280b57cec5SDimitry Andric       // Don't re-walk a node we've already checked
23290b57cec5SDimitry Andric       if (!Visited.insert(SuccPad).second)
23300b57cec5SDimitry Andric         break;
23310b57cec5SDimitry Andric       // Walk to this successor if it has a map entry.
23320b57cec5SDimitry Andric       PredPad = SuccPad;
23330b57cec5SDimitry Andric       auto TermI = SiblingFuncletInfo.find(PredPad);
23340b57cec5SDimitry Andric       if (TermI == SiblingFuncletInfo.end())
23350b57cec5SDimitry Andric         break;
23360b57cec5SDimitry Andric       Terminator = TermI->second;
23370b57cec5SDimitry Andric       Active.insert(PredPad);
23380b57cec5SDimitry Andric     } while (true);
23390b57cec5SDimitry Andric     // Each node only has one successor, so we've walked all the active
23400b57cec5SDimitry Andric     // nodes' successors.
23410b57cec5SDimitry Andric     Active.clear();
23420b57cec5SDimitry Andric   }
23430b57cec5SDimitry Andric }
23440b57cec5SDimitry Andric 
23450b57cec5SDimitry Andric // visitFunction - Verify that a function is ok.
23460b57cec5SDimitry Andric //
23470b57cec5SDimitry Andric void Verifier::visitFunction(const Function &F) {
23480b57cec5SDimitry Andric   visitGlobalValue(F);
23490b57cec5SDimitry Andric 
23500b57cec5SDimitry Andric   // Check function arguments.
23510b57cec5SDimitry Andric   FunctionType *FT = F.getFunctionType();
23520b57cec5SDimitry Andric   unsigned NumArgs = F.arg_size();
23530b57cec5SDimitry Andric 
23540b57cec5SDimitry Andric   Assert(&Context == &F.getContext(),
23550b57cec5SDimitry Andric          "Function context does not match Module context!", &F);
23560b57cec5SDimitry Andric 
23570b57cec5SDimitry Andric   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
23580b57cec5SDimitry Andric   Assert(FT->getNumParams() == NumArgs,
23590b57cec5SDimitry Andric          "# formal arguments must match # of arguments for function type!", &F,
23600b57cec5SDimitry Andric          FT);
23610b57cec5SDimitry Andric   Assert(F.getReturnType()->isFirstClassType() ||
23620b57cec5SDimitry Andric              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
23630b57cec5SDimitry Andric          "Functions cannot return aggregate values!", &F);
23640b57cec5SDimitry Andric 
23650b57cec5SDimitry Andric   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
23660b57cec5SDimitry Andric          "Invalid struct return type!", &F);
23670b57cec5SDimitry Andric 
23680b57cec5SDimitry Andric   AttributeList Attrs = F.getAttributes();
23690b57cec5SDimitry Andric 
23700b57cec5SDimitry Andric   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
23710b57cec5SDimitry Andric          "Attribute after last parameter!", &F);
23720b57cec5SDimitry Andric 
2373fe6060f1SDimitry Andric   bool IsIntrinsic = F.isIntrinsic();
23740b57cec5SDimitry Andric 
23750b57cec5SDimitry Andric   // Check function attributes.
2376fe6060f1SDimitry Andric   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic);
23770b57cec5SDimitry Andric 
23780b57cec5SDimitry Andric   // On function declarations/definitions, we do not support the builtin
23790b57cec5SDimitry Andric   // attribute. We do not check this in VerifyFunctionAttrs since that is
23800b57cec5SDimitry Andric   // checking for Attributes that can/can not ever be on functions.
2381349cc55cSDimitry Andric   Assert(!Attrs.hasFnAttr(Attribute::Builtin),
23820b57cec5SDimitry Andric          "Attribute 'builtin' can only be applied to a callsite.", &F);
23830b57cec5SDimitry Andric 
2384fe6060f1SDimitry Andric   Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2385fe6060f1SDimitry Andric          "Attribute 'elementtype' can only be applied to a callsite.", &F);
2386fe6060f1SDimitry Andric 
23870b57cec5SDimitry Andric   // Check that this function meets the restrictions on this calling convention.
23880b57cec5SDimitry Andric   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
23890b57cec5SDimitry Andric   // restrictions can be lifted.
23900b57cec5SDimitry Andric   switch (F.getCallingConv()) {
23910b57cec5SDimitry Andric   default:
23920b57cec5SDimitry Andric   case CallingConv::C:
23930b57cec5SDimitry Andric     break;
2394e8d8bef9SDimitry Andric   case CallingConv::X86_INTR: {
2395349cc55cSDimitry Andric     Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2396e8d8bef9SDimitry Andric            "Calling convention parameter requires byval", &F);
2397e8d8bef9SDimitry Andric     break;
2398e8d8bef9SDimitry Andric   }
23990b57cec5SDimitry Andric   case CallingConv::AMDGPU_KERNEL:
24000b57cec5SDimitry Andric   case CallingConv::SPIR_KERNEL:
24010b57cec5SDimitry Andric     Assert(F.getReturnType()->isVoidTy(),
24020b57cec5SDimitry Andric            "Calling convention requires void return type", &F);
24030b57cec5SDimitry Andric     LLVM_FALLTHROUGH;
24040b57cec5SDimitry Andric   case CallingConv::AMDGPU_VS:
24050b57cec5SDimitry Andric   case CallingConv::AMDGPU_HS:
24060b57cec5SDimitry Andric   case CallingConv::AMDGPU_GS:
24070b57cec5SDimitry Andric   case CallingConv::AMDGPU_PS:
24080b57cec5SDimitry Andric   case CallingConv::AMDGPU_CS:
24090b57cec5SDimitry Andric     Assert(!F.hasStructRetAttr(),
24100b57cec5SDimitry Andric            "Calling convention does not allow sret", &F);
2411e8d8bef9SDimitry Andric     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2412e8d8bef9SDimitry Andric       const unsigned StackAS = DL.getAllocaAddrSpace();
2413e8d8bef9SDimitry Andric       unsigned i = 0;
2414e8d8bef9SDimitry Andric       for (const Argument &Arg : F.args()) {
2415349cc55cSDimitry Andric         Assert(!Attrs.hasParamAttr(i, Attribute::ByVal),
2416e8d8bef9SDimitry Andric                "Calling convention disallows byval", &F);
2417349cc55cSDimitry Andric         Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2418e8d8bef9SDimitry Andric                "Calling convention disallows preallocated", &F);
2419349cc55cSDimitry Andric         Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2420e8d8bef9SDimitry Andric                "Calling convention disallows inalloca", &F);
2421e8d8bef9SDimitry Andric 
2422349cc55cSDimitry Andric         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2423e8d8bef9SDimitry Andric           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2424e8d8bef9SDimitry Andric           // value here.
2425e8d8bef9SDimitry Andric           Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2426e8d8bef9SDimitry Andric                  "Calling convention disallows stack byref", &F);
2427e8d8bef9SDimitry Andric         }
2428e8d8bef9SDimitry Andric 
2429e8d8bef9SDimitry Andric         ++i;
2430e8d8bef9SDimitry Andric       }
2431e8d8bef9SDimitry Andric     }
2432e8d8bef9SDimitry Andric 
24330b57cec5SDimitry Andric     LLVM_FALLTHROUGH;
24340b57cec5SDimitry Andric   case CallingConv::Fast:
24350b57cec5SDimitry Andric   case CallingConv::Cold:
24360b57cec5SDimitry Andric   case CallingConv::Intel_OCL_BI:
24370b57cec5SDimitry Andric   case CallingConv::PTX_Kernel:
24380b57cec5SDimitry Andric   case CallingConv::PTX_Device:
24390b57cec5SDimitry Andric     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
24400b57cec5SDimitry Andric                           "perfect forwarding!",
24410b57cec5SDimitry Andric            &F);
24420b57cec5SDimitry Andric     break;
24430b57cec5SDimitry Andric   }
24440b57cec5SDimitry Andric 
24450b57cec5SDimitry Andric   // Check that the argument values match the function type for this function...
24460b57cec5SDimitry Andric   unsigned i = 0;
24470b57cec5SDimitry Andric   for (const Argument &Arg : F.args()) {
24480b57cec5SDimitry Andric     Assert(Arg.getType() == FT->getParamType(i),
24490b57cec5SDimitry Andric            "Argument value does not match function argument type!", &Arg,
24500b57cec5SDimitry Andric            FT->getParamType(i));
24510b57cec5SDimitry Andric     Assert(Arg.getType()->isFirstClassType(),
24520b57cec5SDimitry Andric            "Function arguments must have first-class types!", &Arg);
2453fe6060f1SDimitry Andric     if (!IsIntrinsic) {
24540b57cec5SDimitry Andric       Assert(!Arg.getType()->isMetadataTy(),
24550b57cec5SDimitry Andric              "Function takes metadata but isn't an intrinsic", &Arg, &F);
24560b57cec5SDimitry Andric       Assert(!Arg.getType()->isTokenTy(),
24570b57cec5SDimitry Andric              "Function takes token but isn't an intrinsic", &Arg, &F);
2458fe6060f1SDimitry Andric       Assert(!Arg.getType()->isX86_AMXTy(),
2459fe6060f1SDimitry Andric              "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
24600b57cec5SDimitry Andric     }
24610b57cec5SDimitry Andric 
24620b57cec5SDimitry Andric     // Check that swifterror argument is only used by loads and stores.
2463349cc55cSDimitry Andric     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
24640b57cec5SDimitry Andric       verifySwiftErrorValue(&Arg);
24650b57cec5SDimitry Andric     }
24660b57cec5SDimitry Andric     ++i;
24670b57cec5SDimitry Andric   }
24680b57cec5SDimitry Andric 
2469fe6060f1SDimitry Andric   if (!IsIntrinsic) {
24700b57cec5SDimitry Andric     Assert(!F.getReturnType()->isTokenTy(),
2471fe6060f1SDimitry Andric            "Function returns a token but isn't an intrinsic", &F);
2472fe6060f1SDimitry Andric     Assert(!F.getReturnType()->isX86_AMXTy(),
2473fe6060f1SDimitry Andric            "Function returns a x86_amx but isn't an intrinsic", &F);
2474fe6060f1SDimitry Andric   }
24750b57cec5SDimitry Andric 
24760b57cec5SDimitry Andric   // Get the function metadata attachments.
24770b57cec5SDimitry Andric   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
24780b57cec5SDimitry Andric   F.getAllMetadata(MDs);
24790b57cec5SDimitry Andric   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
24800b57cec5SDimitry Andric   verifyFunctionMetadata(MDs);
24810b57cec5SDimitry Andric 
24820b57cec5SDimitry Andric   // Check validity of the personality function
24830b57cec5SDimitry Andric   if (F.hasPersonalityFn()) {
24840b57cec5SDimitry Andric     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
24850b57cec5SDimitry Andric     if (Per)
24860b57cec5SDimitry Andric       Assert(Per->getParent() == F.getParent(),
24870b57cec5SDimitry Andric              "Referencing personality function in another module!",
24880b57cec5SDimitry Andric              &F, F.getParent(), Per, Per->getParent());
24890b57cec5SDimitry Andric   }
24900b57cec5SDimitry Andric 
24910b57cec5SDimitry Andric   if (F.isMaterializable()) {
24920b57cec5SDimitry Andric     // Function has a body somewhere we can't see.
24930b57cec5SDimitry Andric     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
24940b57cec5SDimitry Andric            MDs.empty() ? nullptr : MDs.front().second);
24950b57cec5SDimitry Andric   } else if (F.isDeclaration()) {
24960b57cec5SDimitry Andric     for (const auto &I : MDs) {
24970b57cec5SDimitry Andric       // This is used for call site debug information.
24980b57cec5SDimitry Andric       AssertDI(I.first != LLVMContext::MD_dbg ||
24990b57cec5SDimitry Andric                    !cast<DISubprogram>(I.second)->isDistinct(),
25000b57cec5SDimitry Andric                "function declaration may only have a unique !dbg attachment",
25010b57cec5SDimitry Andric                &F);
25020b57cec5SDimitry Andric       Assert(I.first != LLVMContext::MD_prof,
25030b57cec5SDimitry Andric              "function declaration may not have a !prof attachment", &F);
25040b57cec5SDimitry Andric 
25050b57cec5SDimitry Andric       // Verify the metadata itself.
25065ffd83dbSDimitry Andric       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
25070b57cec5SDimitry Andric     }
25080b57cec5SDimitry Andric     Assert(!F.hasPersonalityFn(),
25090b57cec5SDimitry Andric            "Function declaration shouldn't have a personality routine", &F);
25100b57cec5SDimitry Andric   } else {
25110b57cec5SDimitry Andric     // Verify that this function (which has a body) is not named "llvm.*".  It
25120b57cec5SDimitry Andric     // is not legal to define intrinsics.
2513fe6060f1SDimitry Andric     Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
25140b57cec5SDimitry Andric 
25150b57cec5SDimitry Andric     // Check the entry node
25160b57cec5SDimitry Andric     const BasicBlock *Entry = &F.getEntryBlock();
25170b57cec5SDimitry Andric     Assert(pred_empty(Entry),
25180b57cec5SDimitry Andric            "Entry block to function must not have predecessors!", Entry);
25190b57cec5SDimitry Andric 
25200b57cec5SDimitry Andric     // The address of the entry block cannot be taken, unless it is dead.
25210b57cec5SDimitry Andric     if (Entry->hasAddressTaken()) {
25220b57cec5SDimitry Andric       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
25230b57cec5SDimitry Andric              "blockaddress may not be used with the entry block!", Entry);
25240b57cec5SDimitry Andric     }
25250b57cec5SDimitry Andric 
25260b57cec5SDimitry Andric     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
25270b57cec5SDimitry Andric     // Visit metadata attachments.
25280b57cec5SDimitry Andric     for (const auto &I : MDs) {
25290b57cec5SDimitry Andric       // Verify that the attachment is legal.
25305ffd83dbSDimitry Andric       auto AllowLocs = AreDebugLocsAllowed::No;
25310b57cec5SDimitry Andric       switch (I.first) {
25320b57cec5SDimitry Andric       default:
25330b57cec5SDimitry Andric         break;
25340b57cec5SDimitry Andric       case LLVMContext::MD_dbg: {
25350b57cec5SDimitry Andric         ++NumDebugAttachments;
25360b57cec5SDimitry Andric         AssertDI(NumDebugAttachments == 1,
25370b57cec5SDimitry Andric                  "function must have a single !dbg attachment", &F, I.second);
25380b57cec5SDimitry Andric         AssertDI(isa<DISubprogram>(I.second),
25390b57cec5SDimitry Andric                  "function !dbg attachment must be a subprogram", &F, I.second);
2540e8d8bef9SDimitry Andric         AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
2541e8d8bef9SDimitry Andric                  "function definition may only have a distinct !dbg attachment",
2542e8d8bef9SDimitry Andric                  &F);
2543e8d8bef9SDimitry Andric 
25440b57cec5SDimitry Andric         auto *SP = cast<DISubprogram>(I.second);
25450b57cec5SDimitry Andric         const Function *&AttachedTo = DISubprogramAttachments[SP];
25460b57cec5SDimitry Andric         AssertDI(!AttachedTo || AttachedTo == &F,
25470b57cec5SDimitry Andric                  "DISubprogram attached to more than one function", SP, &F);
25480b57cec5SDimitry Andric         AttachedTo = &F;
25495ffd83dbSDimitry Andric         AllowLocs = AreDebugLocsAllowed::Yes;
25500b57cec5SDimitry Andric         break;
25510b57cec5SDimitry Andric       }
25520b57cec5SDimitry Andric       case LLVMContext::MD_prof:
25530b57cec5SDimitry Andric         ++NumProfAttachments;
25540b57cec5SDimitry Andric         Assert(NumProfAttachments == 1,
25550b57cec5SDimitry Andric                "function must have a single !prof attachment", &F, I.second);
25560b57cec5SDimitry Andric         break;
25570b57cec5SDimitry Andric       }
25580b57cec5SDimitry Andric 
25590b57cec5SDimitry Andric       // Verify the metadata itself.
25605ffd83dbSDimitry Andric       visitMDNode(*I.second, AllowLocs);
25610b57cec5SDimitry Andric     }
25620b57cec5SDimitry Andric   }
25630b57cec5SDimitry Andric 
25640b57cec5SDimitry Andric   // If this function is actually an intrinsic, verify that it is only used in
25650b57cec5SDimitry Andric   // direct call/invokes, never having its "address taken".
25660b57cec5SDimitry Andric   // Only do this if the module is materialized, otherwise we don't have all the
25670b57cec5SDimitry Andric   // uses.
2568fe6060f1SDimitry Andric   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
25690b57cec5SDimitry Andric     const User *U;
2570349cc55cSDimitry Andric     if (F.hasAddressTaken(&U, false, true, false,
2571349cc55cSDimitry Andric                           /*IgnoreARCAttachedCall=*/true))
25720b57cec5SDimitry Andric       Assert(false, "Invalid user of intrinsic instruction!", U);
25730b57cec5SDimitry Andric   }
25740b57cec5SDimitry Andric 
2575fe6060f1SDimitry Andric   // Check intrinsics' signatures.
2576fe6060f1SDimitry Andric   switch (F.getIntrinsicID()) {
2577fe6060f1SDimitry Andric   case Intrinsic::experimental_gc_get_pointer_base: {
2578fe6060f1SDimitry Andric     FunctionType *FT = F.getFunctionType();
2579fe6060f1SDimitry Andric     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2580fe6060f1SDimitry Andric     Assert(isa<PointerType>(F.getReturnType()),
2581fe6060f1SDimitry Andric            "gc.get.pointer.base must return a pointer", F);
2582fe6060f1SDimitry Andric     Assert(FT->getParamType(0) == F.getReturnType(),
2583fe6060f1SDimitry Andric            "gc.get.pointer.base operand and result must be of the same type",
2584fe6060f1SDimitry Andric            F);
2585fe6060f1SDimitry Andric     break;
2586fe6060f1SDimitry Andric   }
2587fe6060f1SDimitry Andric   case Intrinsic::experimental_gc_get_pointer_offset: {
2588fe6060f1SDimitry Andric     FunctionType *FT = F.getFunctionType();
2589fe6060f1SDimitry Andric     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2590fe6060f1SDimitry Andric     Assert(isa<PointerType>(FT->getParamType(0)),
2591fe6060f1SDimitry Andric            "gc.get.pointer.offset operand must be a pointer", F);
2592fe6060f1SDimitry Andric     Assert(F.getReturnType()->isIntegerTy(),
2593fe6060f1SDimitry Andric            "gc.get.pointer.offset must return integer", F);
2594fe6060f1SDimitry Andric     break;
2595fe6060f1SDimitry Andric   }
2596fe6060f1SDimitry Andric   }
2597fe6060f1SDimitry Andric 
25980b57cec5SDimitry Andric   auto *N = F.getSubprogram();
25990b57cec5SDimitry Andric   HasDebugInfo = (N != nullptr);
26000b57cec5SDimitry Andric   if (!HasDebugInfo)
26010b57cec5SDimitry Andric     return;
26020b57cec5SDimitry Andric 
26035ffd83dbSDimitry Andric   // Check that all !dbg attachments lead to back to N.
26040b57cec5SDimitry Andric   //
26050b57cec5SDimitry Andric   // FIXME: Check this incrementally while visiting !dbg attachments.
26060b57cec5SDimitry Andric   // FIXME: Only check when N is the canonical subprogram for F.
26070b57cec5SDimitry Andric   SmallPtrSet<const MDNode *, 32> Seen;
26080b57cec5SDimitry Andric   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
26090b57cec5SDimitry Andric     // Be careful about using DILocation here since we might be dealing with
26100b57cec5SDimitry Andric     // broken code (this is the Verifier after all).
26110b57cec5SDimitry Andric     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
26120b57cec5SDimitry Andric     if (!DL)
26130b57cec5SDimitry Andric       return;
26140b57cec5SDimitry Andric     if (!Seen.insert(DL).second)
26150b57cec5SDimitry Andric       return;
26160b57cec5SDimitry Andric 
26170b57cec5SDimitry Andric     Metadata *Parent = DL->getRawScope();
26180b57cec5SDimitry Andric     AssertDI(Parent && isa<DILocalScope>(Parent),
26190b57cec5SDimitry Andric              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
26200b57cec5SDimitry Andric              Parent);
26215ffd83dbSDimitry Andric 
26220b57cec5SDimitry Andric     DILocalScope *Scope = DL->getInlinedAtScope();
26235ffd83dbSDimitry Andric     Assert(Scope, "Failed to find DILocalScope", DL);
26245ffd83dbSDimitry Andric 
26255ffd83dbSDimitry Andric     if (!Seen.insert(Scope).second)
26260b57cec5SDimitry Andric       return;
26270b57cec5SDimitry Andric 
26285ffd83dbSDimitry Andric     DISubprogram *SP = Scope->getSubprogram();
26290b57cec5SDimitry Andric 
26300b57cec5SDimitry Andric     // Scope and SP could be the same MDNode and we don't want to skip
26310b57cec5SDimitry Andric     // validation in that case
26320b57cec5SDimitry Andric     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
26330b57cec5SDimitry Andric       return;
26340b57cec5SDimitry Andric 
26350b57cec5SDimitry Andric     AssertDI(SP->describes(&F),
26360b57cec5SDimitry Andric              "!dbg attachment points at wrong subprogram for function", N, &F,
26370b57cec5SDimitry Andric              &I, DL, Scope, SP);
26380b57cec5SDimitry Andric   };
26390b57cec5SDimitry Andric   for (auto &BB : F)
26400b57cec5SDimitry Andric     for (auto &I : BB) {
26410b57cec5SDimitry Andric       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
26420b57cec5SDimitry Andric       // The llvm.loop annotations also contain two DILocations.
26430b57cec5SDimitry Andric       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
26440b57cec5SDimitry Andric         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
26450b57cec5SDimitry Andric           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
26460b57cec5SDimitry Andric       if (BrokenDebugInfo)
26470b57cec5SDimitry Andric         return;
26480b57cec5SDimitry Andric     }
26490b57cec5SDimitry Andric }
26500b57cec5SDimitry Andric 
26510b57cec5SDimitry Andric // verifyBasicBlock - Verify that a basic block is well formed...
26520b57cec5SDimitry Andric //
26530b57cec5SDimitry Andric void Verifier::visitBasicBlock(BasicBlock &BB) {
26540b57cec5SDimitry Andric   InstsInThisBlock.clear();
26550b57cec5SDimitry Andric 
26560b57cec5SDimitry Andric   // Ensure that basic blocks have terminators!
26570b57cec5SDimitry Andric   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
26580b57cec5SDimitry Andric 
26590b57cec5SDimitry Andric   // Check constraints that this basic block imposes on all of the PHI nodes in
26600b57cec5SDimitry Andric   // it.
26610b57cec5SDimitry Andric   if (isa<PHINode>(BB.front())) {
2662e8d8bef9SDimitry Andric     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
26630b57cec5SDimitry Andric     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
26640b57cec5SDimitry Andric     llvm::sort(Preds);
26650b57cec5SDimitry Andric     for (const PHINode &PN : BB.phis()) {
26660b57cec5SDimitry Andric       Assert(PN.getNumIncomingValues() == Preds.size(),
26670b57cec5SDimitry Andric              "PHINode should have one entry for each predecessor of its "
26680b57cec5SDimitry Andric              "parent basic block!",
26690b57cec5SDimitry Andric              &PN);
26700b57cec5SDimitry Andric 
26710b57cec5SDimitry Andric       // Get and sort all incoming values in the PHI node...
26720b57cec5SDimitry Andric       Values.clear();
26730b57cec5SDimitry Andric       Values.reserve(PN.getNumIncomingValues());
26740b57cec5SDimitry Andric       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
26750b57cec5SDimitry Andric         Values.push_back(
26760b57cec5SDimitry Andric             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
26770b57cec5SDimitry Andric       llvm::sort(Values);
26780b57cec5SDimitry Andric 
26790b57cec5SDimitry Andric       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
26800b57cec5SDimitry Andric         // Check to make sure that if there is more than one entry for a
26810b57cec5SDimitry Andric         // particular basic block in this PHI node, that the incoming values are
26820b57cec5SDimitry Andric         // all identical.
26830b57cec5SDimitry Andric         //
26840b57cec5SDimitry Andric         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
26850b57cec5SDimitry Andric                    Values[i].second == Values[i - 1].second,
26860b57cec5SDimitry Andric                "PHI node has multiple entries for the same basic block with "
26870b57cec5SDimitry Andric                "different incoming values!",
26880b57cec5SDimitry Andric                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
26890b57cec5SDimitry Andric 
26900b57cec5SDimitry Andric         // Check to make sure that the predecessors and PHI node entries are
26910b57cec5SDimitry Andric         // matched up.
26920b57cec5SDimitry Andric         Assert(Values[i].first == Preds[i],
26930b57cec5SDimitry Andric                "PHI node entries do not match predecessors!", &PN,
26940b57cec5SDimitry Andric                Values[i].first, Preds[i]);
26950b57cec5SDimitry Andric       }
26960b57cec5SDimitry Andric     }
26970b57cec5SDimitry Andric   }
26980b57cec5SDimitry Andric 
26990b57cec5SDimitry Andric   // Check that all instructions have their parent pointers set up correctly.
27000b57cec5SDimitry Andric   for (auto &I : BB)
27010b57cec5SDimitry Andric   {
27020b57cec5SDimitry Andric     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
27030b57cec5SDimitry Andric   }
27040b57cec5SDimitry Andric }
27050b57cec5SDimitry Andric 
27060b57cec5SDimitry Andric void Verifier::visitTerminator(Instruction &I) {
27070b57cec5SDimitry Andric   // Ensure that terminators only exist at the end of the basic block.
27080b57cec5SDimitry Andric   Assert(&I == I.getParent()->getTerminator(),
27090b57cec5SDimitry Andric          "Terminator found in the middle of a basic block!", I.getParent());
27100b57cec5SDimitry Andric   visitInstruction(I);
27110b57cec5SDimitry Andric }
27120b57cec5SDimitry Andric 
27130b57cec5SDimitry Andric void Verifier::visitBranchInst(BranchInst &BI) {
27140b57cec5SDimitry Andric   if (BI.isConditional()) {
27150b57cec5SDimitry Andric     Assert(BI.getCondition()->getType()->isIntegerTy(1),
27160b57cec5SDimitry Andric            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
27170b57cec5SDimitry Andric   }
27180b57cec5SDimitry Andric   visitTerminator(BI);
27190b57cec5SDimitry Andric }
27200b57cec5SDimitry Andric 
27210b57cec5SDimitry Andric void Verifier::visitReturnInst(ReturnInst &RI) {
27220b57cec5SDimitry Andric   Function *F = RI.getParent()->getParent();
27230b57cec5SDimitry Andric   unsigned N = RI.getNumOperands();
27240b57cec5SDimitry Andric   if (F->getReturnType()->isVoidTy())
27250b57cec5SDimitry Andric     Assert(N == 0,
27260b57cec5SDimitry Andric            "Found return instr that returns non-void in Function of void "
27270b57cec5SDimitry Andric            "return type!",
27280b57cec5SDimitry Andric            &RI, F->getReturnType());
27290b57cec5SDimitry Andric   else
27300b57cec5SDimitry Andric     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
27310b57cec5SDimitry Andric            "Function return type does not match operand "
27320b57cec5SDimitry Andric            "type of return inst!",
27330b57cec5SDimitry Andric            &RI, F->getReturnType());
27340b57cec5SDimitry Andric 
27350b57cec5SDimitry Andric   // Check to make sure that the return value has necessary properties for
27360b57cec5SDimitry Andric   // terminators...
27370b57cec5SDimitry Andric   visitTerminator(RI);
27380b57cec5SDimitry Andric }
27390b57cec5SDimitry Andric 
27400b57cec5SDimitry Andric void Verifier::visitSwitchInst(SwitchInst &SI) {
2741349cc55cSDimitry Andric   Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
27420b57cec5SDimitry Andric   // Check to make sure that all of the constants in the switch instruction
27430b57cec5SDimitry Andric   // have the same type as the switched-on value.
27440b57cec5SDimitry Andric   Type *SwitchTy = SI.getCondition()->getType();
27450b57cec5SDimitry Andric   SmallPtrSet<ConstantInt*, 32> Constants;
27460b57cec5SDimitry Andric   for (auto &Case : SI.cases()) {
27470b57cec5SDimitry Andric     Assert(Case.getCaseValue()->getType() == SwitchTy,
27480b57cec5SDimitry Andric            "Switch constants must all be same type as switch value!", &SI);
27490b57cec5SDimitry Andric     Assert(Constants.insert(Case.getCaseValue()).second,
27500b57cec5SDimitry Andric            "Duplicate integer as switch case", &SI, Case.getCaseValue());
27510b57cec5SDimitry Andric   }
27520b57cec5SDimitry Andric 
27530b57cec5SDimitry Andric   visitTerminator(SI);
27540b57cec5SDimitry Andric }
27550b57cec5SDimitry Andric 
27560b57cec5SDimitry Andric void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
27570b57cec5SDimitry Andric   Assert(BI.getAddress()->getType()->isPointerTy(),
27580b57cec5SDimitry Andric          "Indirectbr operand must have pointer type!", &BI);
27590b57cec5SDimitry Andric   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
27600b57cec5SDimitry Andric     Assert(BI.getDestination(i)->getType()->isLabelTy(),
27610b57cec5SDimitry Andric            "Indirectbr destinations must all have pointer type!", &BI);
27620b57cec5SDimitry Andric 
27630b57cec5SDimitry Andric   visitTerminator(BI);
27640b57cec5SDimitry Andric }
27650b57cec5SDimitry Andric 
27660b57cec5SDimitry Andric void Verifier::visitCallBrInst(CallBrInst &CBI) {
27670b57cec5SDimitry Andric   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
27680b57cec5SDimitry Andric          &CBI);
2769fe6060f1SDimitry Andric   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2770fe6060f1SDimitry Andric   Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
27710b57cec5SDimitry Andric   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
27720b57cec5SDimitry Andric     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
27730b57cec5SDimitry Andric            "Callbr successors must all have pointer type!", &CBI);
27740b57cec5SDimitry Andric   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2775349cc55cSDimitry Andric     Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)),
27760b57cec5SDimitry Andric            "Using an unescaped label as a callbr argument!", &CBI);
27770b57cec5SDimitry Andric     if (isa<BasicBlock>(CBI.getOperand(i)))
27780b57cec5SDimitry Andric       for (unsigned j = i + 1; j != e; ++j)
27790b57cec5SDimitry Andric         Assert(CBI.getOperand(i) != CBI.getOperand(j),
27800b57cec5SDimitry Andric                "Duplicate callbr destination!", &CBI);
27810b57cec5SDimitry Andric   }
27828bcb0991SDimitry Andric   {
27838bcb0991SDimitry Andric     SmallPtrSet<BasicBlock *, 4> ArgBBs;
27848bcb0991SDimitry Andric     for (Value *V : CBI.args())
27858bcb0991SDimitry Andric       if (auto *BA = dyn_cast<BlockAddress>(V))
27868bcb0991SDimitry Andric         ArgBBs.insert(BA->getBasicBlock());
27878bcb0991SDimitry Andric     for (BasicBlock *BB : CBI.getIndirectDests())
27885ffd83dbSDimitry Andric       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
27898bcb0991SDimitry Andric   }
27900b57cec5SDimitry Andric 
27910b57cec5SDimitry Andric   visitTerminator(CBI);
27920b57cec5SDimitry Andric }
27930b57cec5SDimitry Andric 
27940b57cec5SDimitry Andric void Verifier::visitSelectInst(SelectInst &SI) {
27950b57cec5SDimitry Andric   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
27960b57cec5SDimitry Andric                                          SI.getOperand(2)),
27970b57cec5SDimitry Andric          "Invalid operands for select instruction!", &SI);
27980b57cec5SDimitry Andric 
27990b57cec5SDimitry Andric   Assert(SI.getTrueValue()->getType() == SI.getType(),
28000b57cec5SDimitry Andric          "Select values must have same type as select instruction!", &SI);
28010b57cec5SDimitry Andric   visitInstruction(SI);
28020b57cec5SDimitry Andric }
28030b57cec5SDimitry Andric 
28040b57cec5SDimitry Andric /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
28050b57cec5SDimitry Andric /// a pass, if any exist, it's an error.
28060b57cec5SDimitry Andric ///
28070b57cec5SDimitry Andric void Verifier::visitUserOp1(Instruction &I) {
28080b57cec5SDimitry Andric   Assert(false, "User-defined operators should not live outside of a pass!", &I);
28090b57cec5SDimitry Andric }
28100b57cec5SDimitry Andric 
28110b57cec5SDimitry Andric void Verifier::visitTruncInst(TruncInst &I) {
28120b57cec5SDimitry Andric   // Get the source and destination types
28130b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
28140b57cec5SDimitry Andric   Type *DestTy = I.getType();
28150b57cec5SDimitry Andric 
28160b57cec5SDimitry Andric   // Get the size of the types in bits, we'll need this later
28170b57cec5SDimitry Andric   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
28180b57cec5SDimitry Andric   unsigned DestBitSize = DestTy->getScalarSizeInBits();
28190b57cec5SDimitry Andric 
28200b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
28210b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
28220b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
28230b57cec5SDimitry Andric          "trunc source and destination must both be a vector or neither", &I);
28240b57cec5SDimitry Andric   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
28250b57cec5SDimitry Andric 
28260b57cec5SDimitry Andric   visitInstruction(I);
28270b57cec5SDimitry Andric }
28280b57cec5SDimitry Andric 
28290b57cec5SDimitry Andric void Verifier::visitZExtInst(ZExtInst &I) {
28300b57cec5SDimitry Andric   // Get the source and destination types
28310b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
28320b57cec5SDimitry Andric   Type *DestTy = I.getType();
28330b57cec5SDimitry Andric 
28340b57cec5SDimitry Andric   // Get the size of the types in bits, we'll need this later
28350b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
28360b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
28370b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
28380b57cec5SDimitry Andric          "zext source and destination must both be a vector or neither", &I);
28390b57cec5SDimitry Andric   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
28400b57cec5SDimitry Andric   unsigned DestBitSize = DestTy->getScalarSizeInBits();
28410b57cec5SDimitry Andric 
28420b57cec5SDimitry Andric   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
28430b57cec5SDimitry Andric 
28440b57cec5SDimitry Andric   visitInstruction(I);
28450b57cec5SDimitry Andric }
28460b57cec5SDimitry Andric 
28470b57cec5SDimitry Andric void Verifier::visitSExtInst(SExtInst &I) {
28480b57cec5SDimitry Andric   // Get the source and destination types
28490b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
28500b57cec5SDimitry Andric   Type *DestTy = I.getType();
28510b57cec5SDimitry Andric 
28520b57cec5SDimitry Andric   // Get the size of the types in bits, we'll need this later
28530b57cec5SDimitry Andric   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
28540b57cec5SDimitry Andric   unsigned DestBitSize = DestTy->getScalarSizeInBits();
28550b57cec5SDimitry Andric 
28560b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
28570b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
28580b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
28590b57cec5SDimitry Andric          "sext source and destination must both be a vector or neither", &I);
28600b57cec5SDimitry Andric   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
28610b57cec5SDimitry Andric 
28620b57cec5SDimitry Andric   visitInstruction(I);
28630b57cec5SDimitry Andric }
28640b57cec5SDimitry Andric 
28650b57cec5SDimitry Andric void Verifier::visitFPTruncInst(FPTruncInst &I) {
28660b57cec5SDimitry Andric   // Get the source and destination types
28670b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
28680b57cec5SDimitry Andric   Type *DestTy = I.getType();
28690b57cec5SDimitry Andric   // Get the size of the types in bits, we'll need this later
28700b57cec5SDimitry Andric   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
28710b57cec5SDimitry Andric   unsigned DestBitSize = DestTy->getScalarSizeInBits();
28720b57cec5SDimitry Andric 
28730b57cec5SDimitry Andric   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
28740b57cec5SDimitry Andric   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
28750b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
28760b57cec5SDimitry Andric          "fptrunc source and destination must both be a vector or neither", &I);
28770b57cec5SDimitry Andric   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
28780b57cec5SDimitry Andric 
28790b57cec5SDimitry Andric   visitInstruction(I);
28800b57cec5SDimitry Andric }
28810b57cec5SDimitry Andric 
28820b57cec5SDimitry Andric void Verifier::visitFPExtInst(FPExtInst &I) {
28830b57cec5SDimitry Andric   // Get the source and destination types
28840b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
28850b57cec5SDimitry Andric   Type *DestTy = I.getType();
28860b57cec5SDimitry Andric 
28870b57cec5SDimitry Andric   // Get the size of the types in bits, we'll need this later
28880b57cec5SDimitry Andric   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
28890b57cec5SDimitry Andric   unsigned DestBitSize = DestTy->getScalarSizeInBits();
28900b57cec5SDimitry Andric 
28910b57cec5SDimitry Andric   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
28920b57cec5SDimitry Andric   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
28930b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
28940b57cec5SDimitry Andric          "fpext source and destination must both be a vector or neither", &I);
28950b57cec5SDimitry Andric   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
28960b57cec5SDimitry Andric 
28970b57cec5SDimitry Andric   visitInstruction(I);
28980b57cec5SDimitry Andric }
28990b57cec5SDimitry Andric 
29000b57cec5SDimitry Andric void Verifier::visitUIToFPInst(UIToFPInst &I) {
29010b57cec5SDimitry Andric   // Get the source and destination types
29020b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
29030b57cec5SDimitry Andric   Type *DestTy = I.getType();
29040b57cec5SDimitry Andric 
29050b57cec5SDimitry Andric   bool SrcVec = SrcTy->isVectorTy();
29060b57cec5SDimitry Andric   bool DstVec = DestTy->isVectorTy();
29070b57cec5SDimitry Andric 
29080b57cec5SDimitry Andric   Assert(SrcVec == DstVec,
29090b57cec5SDimitry Andric          "UIToFP source and dest must both be vector or scalar", &I);
29100b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(),
29110b57cec5SDimitry Andric          "UIToFP source must be integer or integer vector", &I);
29120b57cec5SDimitry Andric   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
29130b57cec5SDimitry Andric          &I);
29140b57cec5SDimitry Andric 
29150b57cec5SDimitry Andric   if (SrcVec && DstVec)
29165ffd83dbSDimitry Andric     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
29175ffd83dbSDimitry Andric                cast<VectorType>(DestTy)->getElementCount(),
29180b57cec5SDimitry Andric            "UIToFP source and dest vector length mismatch", &I);
29190b57cec5SDimitry Andric 
29200b57cec5SDimitry Andric   visitInstruction(I);
29210b57cec5SDimitry Andric }
29220b57cec5SDimitry Andric 
29230b57cec5SDimitry Andric void Verifier::visitSIToFPInst(SIToFPInst &I) {
29240b57cec5SDimitry Andric   // Get the source and destination types
29250b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
29260b57cec5SDimitry Andric   Type *DestTy = I.getType();
29270b57cec5SDimitry Andric 
29280b57cec5SDimitry Andric   bool SrcVec = SrcTy->isVectorTy();
29290b57cec5SDimitry Andric   bool DstVec = DestTy->isVectorTy();
29300b57cec5SDimitry Andric 
29310b57cec5SDimitry Andric   Assert(SrcVec == DstVec,
29320b57cec5SDimitry Andric          "SIToFP source and dest must both be vector or scalar", &I);
29330b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(),
29340b57cec5SDimitry Andric          "SIToFP source must be integer or integer vector", &I);
29350b57cec5SDimitry Andric   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
29360b57cec5SDimitry Andric          &I);
29370b57cec5SDimitry Andric 
29380b57cec5SDimitry Andric   if (SrcVec && DstVec)
29395ffd83dbSDimitry Andric     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
29405ffd83dbSDimitry Andric                cast<VectorType>(DestTy)->getElementCount(),
29410b57cec5SDimitry Andric            "SIToFP source and dest vector length mismatch", &I);
29420b57cec5SDimitry Andric 
29430b57cec5SDimitry Andric   visitInstruction(I);
29440b57cec5SDimitry Andric }
29450b57cec5SDimitry Andric 
29460b57cec5SDimitry Andric void Verifier::visitFPToUIInst(FPToUIInst &I) {
29470b57cec5SDimitry Andric   // Get the source and destination types
29480b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
29490b57cec5SDimitry Andric   Type *DestTy = I.getType();
29500b57cec5SDimitry Andric 
29510b57cec5SDimitry Andric   bool SrcVec = SrcTy->isVectorTy();
29520b57cec5SDimitry Andric   bool DstVec = DestTy->isVectorTy();
29530b57cec5SDimitry Andric 
29540b57cec5SDimitry Andric   Assert(SrcVec == DstVec,
29550b57cec5SDimitry Andric          "FPToUI source and dest must both be vector or scalar", &I);
29560b57cec5SDimitry Andric   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
29570b57cec5SDimitry Andric          &I);
29580b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(),
29590b57cec5SDimitry Andric          "FPToUI result must be integer or integer vector", &I);
29600b57cec5SDimitry Andric 
29610b57cec5SDimitry Andric   if (SrcVec && DstVec)
29625ffd83dbSDimitry Andric     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
29635ffd83dbSDimitry Andric                cast<VectorType>(DestTy)->getElementCount(),
29640b57cec5SDimitry Andric            "FPToUI source and dest vector length mismatch", &I);
29650b57cec5SDimitry Andric 
29660b57cec5SDimitry Andric   visitInstruction(I);
29670b57cec5SDimitry Andric }
29680b57cec5SDimitry Andric 
29690b57cec5SDimitry Andric void Verifier::visitFPToSIInst(FPToSIInst &I) {
29700b57cec5SDimitry Andric   // Get the source and destination types
29710b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
29720b57cec5SDimitry Andric   Type *DestTy = I.getType();
29730b57cec5SDimitry Andric 
29740b57cec5SDimitry Andric   bool SrcVec = SrcTy->isVectorTy();
29750b57cec5SDimitry Andric   bool DstVec = DestTy->isVectorTy();
29760b57cec5SDimitry Andric 
29770b57cec5SDimitry Andric   Assert(SrcVec == DstVec,
29780b57cec5SDimitry Andric          "FPToSI source and dest must both be vector or scalar", &I);
29790b57cec5SDimitry Andric   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
29800b57cec5SDimitry Andric          &I);
29810b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(),
29820b57cec5SDimitry Andric          "FPToSI result must be integer or integer vector", &I);
29830b57cec5SDimitry Andric 
29840b57cec5SDimitry Andric   if (SrcVec && DstVec)
29855ffd83dbSDimitry Andric     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
29865ffd83dbSDimitry Andric                cast<VectorType>(DestTy)->getElementCount(),
29870b57cec5SDimitry Andric            "FPToSI source and dest vector length mismatch", &I);
29880b57cec5SDimitry Andric 
29890b57cec5SDimitry Andric   visitInstruction(I);
29900b57cec5SDimitry Andric }
29910b57cec5SDimitry Andric 
29920b57cec5SDimitry Andric void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
29930b57cec5SDimitry Andric   // Get the source and destination types
29940b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
29950b57cec5SDimitry Andric   Type *DestTy = I.getType();
29960b57cec5SDimitry Andric 
29970b57cec5SDimitry Andric   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
29980b57cec5SDimitry Andric 
29990b57cec5SDimitry Andric   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
30000b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
30010b57cec5SDimitry Andric          &I);
30020b57cec5SDimitry Andric 
30030b57cec5SDimitry Andric   if (SrcTy->isVectorTy()) {
30045ffd83dbSDimitry Andric     auto *VSrc = cast<VectorType>(SrcTy);
30055ffd83dbSDimitry Andric     auto *VDest = cast<VectorType>(DestTy);
30065ffd83dbSDimitry Andric     Assert(VSrc->getElementCount() == VDest->getElementCount(),
30070b57cec5SDimitry Andric            "PtrToInt Vector width mismatch", &I);
30080b57cec5SDimitry Andric   }
30090b57cec5SDimitry Andric 
30100b57cec5SDimitry Andric   visitInstruction(I);
30110b57cec5SDimitry Andric }
30120b57cec5SDimitry Andric 
30130b57cec5SDimitry Andric void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
30140b57cec5SDimitry Andric   // Get the source and destination types
30150b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
30160b57cec5SDimitry Andric   Type *DestTy = I.getType();
30170b57cec5SDimitry Andric 
30180b57cec5SDimitry Andric   Assert(SrcTy->isIntOrIntVectorTy(),
30190b57cec5SDimitry Andric          "IntToPtr source must be an integral", &I);
30200b57cec5SDimitry Andric   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
30210b57cec5SDimitry Andric 
30220b57cec5SDimitry Andric   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
30230b57cec5SDimitry Andric          &I);
30240b57cec5SDimitry Andric   if (SrcTy->isVectorTy()) {
30255ffd83dbSDimitry Andric     auto *VSrc = cast<VectorType>(SrcTy);
30265ffd83dbSDimitry Andric     auto *VDest = cast<VectorType>(DestTy);
30275ffd83dbSDimitry Andric     Assert(VSrc->getElementCount() == VDest->getElementCount(),
30280b57cec5SDimitry Andric            "IntToPtr Vector width mismatch", &I);
30290b57cec5SDimitry Andric   }
30300b57cec5SDimitry Andric   visitInstruction(I);
30310b57cec5SDimitry Andric }
30320b57cec5SDimitry Andric 
30330b57cec5SDimitry Andric void Verifier::visitBitCastInst(BitCastInst &I) {
30340b57cec5SDimitry Andric   Assert(
30350b57cec5SDimitry Andric       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
30360b57cec5SDimitry Andric       "Invalid bitcast", &I);
30370b57cec5SDimitry Andric   visitInstruction(I);
30380b57cec5SDimitry Andric }
30390b57cec5SDimitry Andric 
30400b57cec5SDimitry Andric void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
30410b57cec5SDimitry Andric   Type *SrcTy = I.getOperand(0)->getType();
30420b57cec5SDimitry Andric   Type *DestTy = I.getType();
30430b57cec5SDimitry Andric 
30440b57cec5SDimitry Andric   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
30450b57cec5SDimitry Andric          &I);
30460b57cec5SDimitry Andric   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
30470b57cec5SDimitry Andric          &I);
30480b57cec5SDimitry Andric   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
30490b57cec5SDimitry Andric          "AddrSpaceCast must be between different address spaces", &I);
30505ffd83dbSDimitry Andric   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3051e8d8bef9SDimitry Andric     Assert(SrcVTy->getElementCount() ==
3052e8d8bef9SDimitry Andric                cast<VectorType>(DestTy)->getElementCount(),
30530b57cec5SDimitry Andric            "AddrSpaceCast vector pointer number of elements mismatch", &I);
30540b57cec5SDimitry Andric   visitInstruction(I);
30550b57cec5SDimitry Andric }
30560b57cec5SDimitry Andric 
30570b57cec5SDimitry Andric /// visitPHINode - Ensure that a PHI node is well formed.
30580b57cec5SDimitry Andric ///
30590b57cec5SDimitry Andric void Verifier::visitPHINode(PHINode &PN) {
30600b57cec5SDimitry Andric   // Ensure that the PHI nodes are all grouped together at the top of the block.
30610b57cec5SDimitry Andric   // This can be tested by checking whether the instruction before this is
30620b57cec5SDimitry Andric   // either nonexistent (because this is begin()) or is a PHI node.  If not,
30630b57cec5SDimitry Andric   // then there is some other instruction before a PHI.
30640b57cec5SDimitry Andric   Assert(&PN == &PN.getParent()->front() ||
30650b57cec5SDimitry Andric              isa<PHINode>(--BasicBlock::iterator(&PN)),
30660b57cec5SDimitry Andric          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
30670b57cec5SDimitry Andric 
30680b57cec5SDimitry Andric   // Check that a PHI doesn't yield a Token.
30690b57cec5SDimitry Andric   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
30700b57cec5SDimitry Andric 
30710b57cec5SDimitry Andric   // Check that all of the values of the PHI node have the same type as the
30720b57cec5SDimitry Andric   // result, and that the incoming blocks are really basic blocks.
30730b57cec5SDimitry Andric   for (Value *IncValue : PN.incoming_values()) {
30740b57cec5SDimitry Andric     Assert(PN.getType() == IncValue->getType(),
30750b57cec5SDimitry Andric            "PHI node operands are not the same type as the result!", &PN);
30760b57cec5SDimitry Andric   }
30770b57cec5SDimitry Andric 
30780b57cec5SDimitry Andric   // All other PHI node constraints are checked in the visitBasicBlock method.
30790b57cec5SDimitry Andric 
30800b57cec5SDimitry Andric   visitInstruction(PN);
30810b57cec5SDimitry Andric }
30820b57cec5SDimitry Andric 
30830b57cec5SDimitry Andric void Verifier::visitCallBase(CallBase &Call) {
30845ffd83dbSDimitry Andric   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
30850b57cec5SDimitry Andric          "Called function must be a pointer!", Call);
30865ffd83dbSDimitry Andric   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
30870b57cec5SDimitry Andric 
3088fe6060f1SDimitry Andric   Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
30890b57cec5SDimitry Andric          "Called function is not the same type as the call!", Call);
30900b57cec5SDimitry Andric 
30910b57cec5SDimitry Andric   FunctionType *FTy = Call.getFunctionType();
30920b57cec5SDimitry Andric 
30930b57cec5SDimitry Andric   // Verify that the correct number of arguments are being passed
30940b57cec5SDimitry Andric   if (FTy->isVarArg())
30950b57cec5SDimitry Andric     Assert(Call.arg_size() >= FTy->getNumParams(),
30960b57cec5SDimitry Andric            "Called function requires more parameters than were provided!",
30970b57cec5SDimitry Andric            Call);
30980b57cec5SDimitry Andric   else
30990b57cec5SDimitry Andric     Assert(Call.arg_size() == FTy->getNumParams(),
31000b57cec5SDimitry Andric            "Incorrect number of arguments passed to called function!", Call);
31010b57cec5SDimitry Andric 
31020b57cec5SDimitry Andric   // Verify that all arguments to the call match the function type.
31030b57cec5SDimitry Andric   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
31040b57cec5SDimitry Andric     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
31050b57cec5SDimitry Andric            "Call parameter type does not match function signature!",
31060b57cec5SDimitry Andric            Call.getArgOperand(i), FTy->getParamType(i), Call);
31070b57cec5SDimitry Andric 
31080b57cec5SDimitry Andric   AttributeList Attrs = Call.getAttributes();
31090b57cec5SDimitry Andric 
31100b57cec5SDimitry Andric   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
31110b57cec5SDimitry Andric          "Attribute after last parameter!", Call);
31120b57cec5SDimitry Andric 
31135ffd83dbSDimitry Andric   Function *Callee =
31145ffd83dbSDimitry Andric       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3115fe6060f1SDimitry Andric   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3116fe6060f1SDimitry Andric   if (IsIntrinsic)
3117fe6060f1SDimitry Andric     Assert(Callee->getValueType() == FTy,
3118fe6060f1SDimitry Andric            "Intrinsic called with incompatible signature", Call);
31190b57cec5SDimitry Andric 
3120349cc55cSDimitry Andric   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
31210b57cec5SDimitry Andric     // Don't allow speculatable on call sites, unless the underlying function
31220b57cec5SDimitry Andric     // declaration is also speculatable.
31230b57cec5SDimitry Andric     Assert(Callee && Callee->isSpeculatable(),
31240b57cec5SDimitry Andric            "speculatable attribute may not apply to call sites", Call);
31250b57cec5SDimitry Andric   }
31260b57cec5SDimitry Andric 
3127349cc55cSDimitry Andric   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
31285ffd83dbSDimitry Andric     Assert(Call.getCalledFunction()->getIntrinsicID() ==
31295ffd83dbSDimitry Andric                Intrinsic::call_preallocated_arg,
31305ffd83dbSDimitry Andric            "preallocated as a call site attribute can only be on "
31315ffd83dbSDimitry Andric            "llvm.call.preallocated.arg");
31325ffd83dbSDimitry Andric   }
31335ffd83dbSDimitry Andric 
31340b57cec5SDimitry Andric   // Verify call attributes.
31350b57cec5SDimitry Andric   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
31360b57cec5SDimitry Andric 
31370b57cec5SDimitry Andric   // Conservatively check the inalloca argument.
31380b57cec5SDimitry Andric   // We have a bug if we can find that there is an underlying alloca without
31390b57cec5SDimitry Andric   // inalloca.
31400b57cec5SDimitry Andric   if (Call.hasInAllocaArgument()) {
31410b57cec5SDimitry Andric     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
31420b57cec5SDimitry Andric     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
31430b57cec5SDimitry Andric       Assert(AI->isUsedWithInAlloca(),
31440b57cec5SDimitry Andric              "inalloca argument for call has mismatched alloca", AI, Call);
31450b57cec5SDimitry Andric   }
31460b57cec5SDimitry Andric 
31470b57cec5SDimitry Andric   // For each argument of the callsite, if it has the swifterror argument,
31480b57cec5SDimitry Andric   // make sure the underlying alloca/parameter it comes from has a swifterror as
31490b57cec5SDimitry Andric   // well.
31500b57cec5SDimitry Andric   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
31510b57cec5SDimitry Andric     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
31520b57cec5SDimitry Andric       Value *SwiftErrorArg = Call.getArgOperand(i);
31530b57cec5SDimitry Andric       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
31540b57cec5SDimitry Andric         Assert(AI->isSwiftError(),
31550b57cec5SDimitry Andric                "swifterror argument for call has mismatched alloca", AI, Call);
31560b57cec5SDimitry Andric         continue;
31570b57cec5SDimitry Andric       }
31580b57cec5SDimitry Andric       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
31590b57cec5SDimitry Andric       Assert(ArgI,
31600b57cec5SDimitry Andric              "swifterror argument should come from an alloca or parameter",
31610b57cec5SDimitry Andric              SwiftErrorArg, Call);
31620b57cec5SDimitry Andric       Assert(ArgI->hasSwiftErrorAttr(),
31630b57cec5SDimitry Andric              "swifterror argument for call has mismatched parameter", ArgI,
31640b57cec5SDimitry Andric              Call);
31650b57cec5SDimitry Andric     }
31660b57cec5SDimitry Andric 
3167349cc55cSDimitry Andric     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
31680b57cec5SDimitry Andric       // Don't allow immarg on call sites, unless the underlying declaration
31690b57cec5SDimitry Andric       // also has the matching immarg.
31700b57cec5SDimitry Andric       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
31710b57cec5SDimitry Andric              "immarg may not apply only to call sites",
31720b57cec5SDimitry Andric              Call.getArgOperand(i), Call);
31730b57cec5SDimitry Andric     }
31740b57cec5SDimitry Andric 
31750b57cec5SDimitry Andric     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
31760b57cec5SDimitry Andric       Value *ArgVal = Call.getArgOperand(i);
31770b57cec5SDimitry Andric       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
31780b57cec5SDimitry Andric              "immarg operand has non-immediate parameter", ArgVal, Call);
31790b57cec5SDimitry Andric     }
31805ffd83dbSDimitry Andric 
31815ffd83dbSDimitry Andric     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
31825ffd83dbSDimitry Andric       Value *ArgVal = Call.getArgOperand(i);
31835ffd83dbSDimitry Andric       bool hasOB =
31845ffd83dbSDimitry Andric           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
31855ffd83dbSDimitry Andric       bool isMustTail = Call.isMustTailCall();
31865ffd83dbSDimitry Andric       Assert(hasOB != isMustTail,
31875ffd83dbSDimitry Andric              "preallocated operand either requires a preallocated bundle or "
31885ffd83dbSDimitry Andric              "the call to be musttail (but not both)",
31895ffd83dbSDimitry Andric              ArgVal, Call);
31905ffd83dbSDimitry Andric     }
31910b57cec5SDimitry Andric   }
31920b57cec5SDimitry Andric 
31930b57cec5SDimitry Andric   if (FTy->isVarArg()) {
31940b57cec5SDimitry Andric     // FIXME? is 'nest' even legal here?
31950b57cec5SDimitry Andric     bool SawNest = false;
31960b57cec5SDimitry Andric     bool SawReturned = false;
31970b57cec5SDimitry Andric 
31980b57cec5SDimitry Andric     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3199349cc55cSDimitry Andric       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
32000b57cec5SDimitry Andric         SawNest = true;
3201349cc55cSDimitry Andric       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
32020b57cec5SDimitry Andric         SawReturned = true;
32030b57cec5SDimitry Andric     }
32040b57cec5SDimitry Andric 
32050b57cec5SDimitry Andric     // Check attributes on the varargs part.
32060b57cec5SDimitry Andric     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
32070b57cec5SDimitry Andric       Type *Ty = Call.getArgOperand(Idx)->getType();
3208349cc55cSDimitry Andric       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
32090b57cec5SDimitry Andric       verifyParameterAttrs(ArgAttrs, Ty, &Call);
32100b57cec5SDimitry Andric 
32110b57cec5SDimitry Andric       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
32120b57cec5SDimitry Andric         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
32130b57cec5SDimitry Andric         SawNest = true;
32140b57cec5SDimitry Andric       }
32150b57cec5SDimitry Andric 
32160b57cec5SDimitry Andric       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
32170b57cec5SDimitry Andric         Assert(!SawReturned, "More than one parameter has attribute returned!",
32180b57cec5SDimitry Andric                Call);
32190b57cec5SDimitry Andric         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
32200b57cec5SDimitry Andric                "Incompatible argument and return types for 'returned' "
32210b57cec5SDimitry Andric                "attribute",
32220b57cec5SDimitry Andric                Call);
32230b57cec5SDimitry Andric         SawReturned = true;
32240b57cec5SDimitry Andric       }
32250b57cec5SDimitry Andric 
32260b57cec5SDimitry Andric       // Statepoint intrinsic is vararg but the wrapped function may be not.
32270b57cec5SDimitry Andric       // Allow sret here and check the wrapped function in verifyStatepoint.
32280b57cec5SDimitry Andric       if (!Call.getCalledFunction() ||
32290b57cec5SDimitry Andric           Call.getCalledFunction()->getIntrinsicID() !=
32300b57cec5SDimitry Andric               Intrinsic::experimental_gc_statepoint)
32310b57cec5SDimitry Andric         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
32320b57cec5SDimitry Andric                "Attribute 'sret' cannot be used for vararg call arguments!",
32330b57cec5SDimitry Andric                Call);
32340b57cec5SDimitry Andric 
32350b57cec5SDimitry Andric       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
32360b57cec5SDimitry Andric         Assert(Idx == Call.arg_size() - 1,
32370b57cec5SDimitry Andric                "inalloca isn't on the last argument!", Call);
32380b57cec5SDimitry Andric     }
32390b57cec5SDimitry Andric   }
32400b57cec5SDimitry Andric 
32410b57cec5SDimitry Andric   // Verify that there's no metadata unless it's a direct call to an intrinsic.
32420b57cec5SDimitry Andric   if (!IsIntrinsic) {
32430b57cec5SDimitry Andric     for (Type *ParamTy : FTy->params()) {
32440b57cec5SDimitry Andric       Assert(!ParamTy->isMetadataTy(),
32450b57cec5SDimitry Andric              "Function has metadata parameter but isn't an intrinsic", Call);
32460b57cec5SDimitry Andric       Assert(!ParamTy->isTokenTy(),
32470b57cec5SDimitry Andric              "Function has token parameter but isn't an intrinsic", Call);
32480b57cec5SDimitry Andric     }
32490b57cec5SDimitry Andric   }
32500b57cec5SDimitry Andric 
32510b57cec5SDimitry Andric   // Verify that indirect calls don't return tokens.
3252fe6060f1SDimitry Andric   if (!Call.getCalledFunction()) {
32530b57cec5SDimitry Andric     Assert(!FTy->getReturnType()->isTokenTy(),
32540b57cec5SDimitry Andric            "Return type cannot be token for indirect call!");
3255fe6060f1SDimitry Andric     Assert(!FTy->getReturnType()->isX86_AMXTy(),
3256fe6060f1SDimitry Andric            "Return type cannot be x86_amx for indirect call!");
3257fe6060f1SDimitry Andric   }
32580b57cec5SDimitry Andric 
32590b57cec5SDimitry Andric   if (Function *F = Call.getCalledFunction())
32600b57cec5SDimitry Andric     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
32610b57cec5SDimitry Andric       visitIntrinsicCall(ID, Call);
32620b57cec5SDimitry Andric 
3263480093f4SDimitry Andric   // Verify that a callsite has at most one "deopt", at most one "funclet", at
32645ffd83dbSDimitry Andric   // most one "gc-transition", at most one "cfguardtarget",
32655ffd83dbSDimitry Andric   // and at most one "preallocated" operand bundle.
32660b57cec5SDimitry Andric   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
32675ffd83dbSDimitry Andric        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3268fe6060f1SDimitry Andric        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3269fe6060f1SDimitry Andric        FoundAttachedCallBundle = false;
32700b57cec5SDimitry Andric   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
32710b57cec5SDimitry Andric     OperandBundleUse BU = Call.getOperandBundleAt(i);
32720b57cec5SDimitry Andric     uint32_t Tag = BU.getTagID();
32730b57cec5SDimitry Andric     if (Tag == LLVMContext::OB_deopt) {
32740b57cec5SDimitry Andric       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
32750b57cec5SDimitry Andric       FoundDeoptBundle = true;
32760b57cec5SDimitry Andric     } else if (Tag == LLVMContext::OB_gc_transition) {
32770b57cec5SDimitry Andric       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
32780b57cec5SDimitry Andric              Call);
32790b57cec5SDimitry Andric       FoundGCTransitionBundle = true;
32800b57cec5SDimitry Andric     } else if (Tag == LLVMContext::OB_funclet) {
32810b57cec5SDimitry Andric       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
32820b57cec5SDimitry Andric       FoundFuncletBundle = true;
32830b57cec5SDimitry Andric       Assert(BU.Inputs.size() == 1,
32840b57cec5SDimitry Andric              "Expected exactly one funclet bundle operand", Call);
32850b57cec5SDimitry Andric       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
32860b57cec5SDimitry Andric              "Funclet bundle operands should correspond to a FuncletPadInst",
32870b57cec5SDimitry Andric              Call);
3288480093f4SDimitry Andric     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3289480093f4SDimitry Andric       Assert(!FoundCFGuardTargetBundle,
3290480093f4SDimitry Andric              "Multiple CFGuardTarget operand bundles", Call);
3291480093f4SDimitry Andric       FoundCFGuardTargetBundle = true;
3292480093f4SDimitry Andric       Assert(BU.Inputs.size() == 1,
3293480093f4SDimitry Andric              "Expected exactly one cfguardtarget bundle operand", Call);
32945ffd83dbSDimitry Andric     } else if (Tag == LLVMContext::OB_preallocated) {
32955ffd83dbSDimitry Andric       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
32965ffd83dbSDimitry Andric              Call);
32975ffd83dbSDimitry Andric       FoundPreallocatedBundle = true;
32985ffd83dbSDimitry Andric       Assert(BU.Inputs.size() == 1,
32995ffd83dbSDimitry Andric              "Expected exactly one preallocated bundle operand", Call);
33005ffd83dbSDimitry Andric       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
33015ffd83dbSDimitry Andric       Assert(Input &&
33025ffd83dbSDimitry Andric                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
33035ffd83dbSDimitry Andric              "\"preallocated\" argument must be a token from "
33045ffd83dbSDimitry Andric              "llvm.call.preallocated.setup",
33055ffd83dbSDimitry Andric              Call);
33065ffd83dbSDimitry Andric     } else if (Tag == LLVMContext::OB_gc_live) {
33075ffd83dbSDimitry Andric       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
33085ffd83dbSDimitry Andric              Call);
33095ffd83dbSDimitry Andric       FoundGCLiveBundle = true;
3310fe6060f1SDimitry Andric     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3311fe6060f1SDimitry Andric       Assert(!FoundAttachedCallBundle,
3312fe6060f1SDimitry Andric              "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3313fe6060f1SDimitry Andric       FoundAttachedCallBundle = true;
3314349cc55cSDimitry Andric       verifyAttachedCallBundle(Call, BU);
33150b57cec5SDimitry Andric     }
33160b57cec5SDimitry Andric   }
33170b57cec5SDimitry Andric 
33180b57cec5SDimitry Andric   // Verify that each inlinable callsite of a debug-info-bearing function in a
33190b57cec5SDimitry Andric   // debug-info-bearing function has a debug location attached to it. Failure to
33200b57cec5SDimitry Andric   // do so causes assertion failures when the inliner sets up inline scope info.
33210b57cec5SDimitry Andric   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
33220b57cec5SDimitry Andric       Call.getCalledFunction()->getSubprogram())
33230b57cec5SDimitry Andric     AssertDI(Call.getDebugLoc(),
33240b57cec5SDimitry Andric              "inlinable function call in a function with "
33250b57cec5SDimitry Andric              "debug info must have a !dbg location",
33260b57cec5SDimitry Andric              Call);
33270b57cec5SDimitry Andric 
33280b57cec5SDimitry Andric   visitInstruction(Call);
33290b57cec5SDimitry Andric }
33300b57cec5SDimitry Andric 
3331fe6060f1SDimitry Andric void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs,
3332fe6060f1SDimitry Andric                                          StringRef Context) {
3333fe6060f1SDimitry Andric   Assert(!Attrs.contains(Attribute::InAlloca),
3334fe6060f1SDimitry Andric          Twine("inalloca attribute not allowed in ") + Context);
3335fe6060f1SDimitry Andric   Assert(!Attrs.contains(Attribute::InReg),
3336fe6060f1SDimitry Andric          Twine("inreg attribute not allowed in ") + Context);
3337fe6060f1SDimitry Andric   Assert(!Attrs.contains(Attribute::SwiftError),
3338fe6060f1SDimitry Andric          Twine("swifterror attribute not allowed in ") + Context);
3339fe6060f1SDimitry Andric   Assert(!Attrs.contains(Attribute::Preallocated),
3340fe6060f1SDimitry Andric          Twine("preallocated attribute not allowed in ") + Context);
3341fe6060f1SDimitry Andric   Assert(!Attrs.contains(Attribute::ByRef),
3342fe6060f1SDimitry Andric          Twine("byref attribute not allowed in ") + Context);
3343fe6060f1SDimitry Andric }
3344fe6060f1SDimitry Andric 
33450b57cec5SDimitry Andric /// Two types are "congruent" if they are identical, or if they are both pointer
33460b57cec5SDimitry Andric /// types with different pointee types and the same address space.
33470b57cec5SDimitry Andric static bool isTypeCongruent(Type *L, Type *R) {
33480b57cec5SDimitry Andric   if (L == R)
33490b57cec5SDimitry Andric     return true;
33500b57cec5SDimitry Andric   PointerType *PL = dyn_cast<PointerType>(L);
33510b57cec5SDimitry Andric   PointerType *PR = dyn_cast<PointerType>(R);
33520b57cec5SDimitry Andric   if (!PL || !PR)
33530b57cec5SDimitry Andric     return false;
33540b57cec5SDimitry Andric   return PL->getAddressSpace() == PR->getAddressSpace();
33550b57cec5SDimitry Andric }
33560b57cec5SDimitry Andric 
3357349cc55cSDimitry Andric static AttrBuilder getParameterABIAttributes(unsigned I, AttributeList Attrs) {
33580b57cec5SDimitry Andric   static const Attribute::AttrKind ABIAttrs[] = {
33590b57cec5SDimitry Andric       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3360fe6060f1SDimitry Andric       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3361fe6060f1SDimitry Andric       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3362fe6060f1SDimitry Andric       Attribute::ByRef};
33630b57cec5SDimitry Andric   AttrBuilder Copy;
33640b57cec5SDimitry Andric   for (auto AK : ABIAttrs) {
3365349cc55cSDimitry Andric     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3366fe6060f1SDimitry Andric     if (Attr.isValid())
3367fe6060f1SDimitry Andric       Copy.addAttribute(Attr);
33680b57cec5SDimitry Andric   }
3369e8d8bef9SDimitry Andric 
3370e8d8bef9SDimitry Andric   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3371349cc55cSDimitry Andric   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3372349cc55cSDimitry Andric       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3373349cc55cSDimitry Andric        Attrs.hasParamAttr(I, Attribute::ByRef)))
33740b57cec5SDimitry Andric     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
33750b57cec5SDimitry Andric   return Copy;
33760b57cec5SDimitry Andric }
33770b57cec5SDimitry Andric 
33780b57cec5SDimitry Andric void Verifier::verifyMustTailCall(CallInst &CI) {
33790b57cec5SDimitry Andric   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
33800b57cec5SDimitry Andric 
33810b57cec5SDimitry Andric   Function *F = CI.getParent()->getParent();
33820b57cec5SDimitry Andric   FunctionType *CallerTy = F->getFunctionType();
33830b57cec5SDimitry Andric   FunctionType *CalleeTy = CI.getFunctionType();
33840b57cec5SDimitry Andric   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
33850b57cec5SDimitry Andric          "cannot guarantee tail call due to mismatched varargs", &CI);
33860b57cec5SDimitry Andric   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
33870b57cec5SDimitry Andric          "cannot guarantee tail call due to mismatched return types", &CI);
33880b57cec5SDimitry Andric 
33890b57cec5SDimitry Andric   // - The calling conventions of the caller and callee must match.
33900b57cec5SDimitry Andric   Assert(F->getCallingConv() == CI.getCallingConv(),
33910b57cec5SDimitry Andric          "cannot guarantee tail call due to mismatched calling conv", &CI);
33920b57cec5SDimitry Andric 
33930b57cec5SDimitry Andric   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
33940b57cec5SDimitry Andric   //   or a pointer bitcast followed by a ret instruction.
33950b57cec5SDimitry Andric   // - The ret instruction must return the (possibly bitcasted) value
33960b57cec5SDimitry Andric   //   produced by the call or void.
33970b57cec5SDimitry Andric   Value *RetVal = &CI;
33980b57cec5SDimitry Andric   Instruction *Next = CI.getNextNode();
33990b57cec5SDimitry Andric 
34000b57cec5SDimitry Andric   // Handle the optional bitcast.
34010b57cec5SDimitry Andric   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
34020b57cec5SDimitry Andric     Assert(BI->getOperand(0) == RetVal,
34030b57cec5SDimitry Andric            "bitcast following musttail call must use the call", BI);
34040b57cec5SDimitry Andric     RetVal = BI;
34050b57cec5SDimitry Andric     Next = BI->getNextNode();
34060b57cec5SDimitry Andric   }
34070b57cec5SDimitry Andric 
34080b57cec5SDimitry Andric   // Check the return.
34090b57cec5SDimitry Andric   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
34100b57cec5SDimitry Andric   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
34110b57cec5SDimitry Andric          &CI);
3412fe6060f1SDimitry Andric   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3413fe6060f1SDimitry Andric              isa<UndefValue>(Ret->getReturnValue()),
34140b57cec5SDimitry Andric          "musttail call result must be returned", Ret);
3415fe6060f1SDimitry Andric 
3416fe6060f1SDimitry Andric   AttributeList CallerAttrs = F->getAttributes();
3417fe6060f1SDimitry Andric   AttributeList CalleeAttrs = CI.getAttributes();
3418fe6060f1SDimitry Andric   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3419fe6060f1SDimitry Andric       CI.getCallingConv() == CallingConv::Tail) {
3420fe6060f1SDimitry Andric     StringRef CCName =
3421fe6060f1SDimitry Andric         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3422fe6060f1SDimitry Andric 
3423fe6060f1SDimitry Andric     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3424fe6060f1SDimitry Andric     //   are allowed in swifttailcc call
3425349cc55cSDimitry Andric     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3426fe6060f1SDimitry Andric       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3427fe6060f1SDimitry Andric       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3428fe6060f1SDimitry Andric       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3429fe6060f1SDimitry Andric     }
3430349cc55cSDimitry Andric     for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3431fe6060f1SDimitry Andric       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3432fe6060f1SDimitry Andric       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3433fe6060f1SDimitry Andric       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3434fe6060f1SDimitry Andric     }
3435fe6060f1SDimitry Andric     // - Varargs functions are not allowed
3436fe6060f1SDimitry Andric     Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3437fe6060f1SDimitry Andric                                       " tail call for varargs function");
3438fe6060f1SDimitry Andric     return;
3439fe6060f1SDimitry Andric   }
3440fe6060f1SDimitry Andric 
3441fe6060f1SDimitry Andric   // - The caller and callee prototypes must match.  Pointer types of
3442fe6060f1SDimitry Andric   //   parameters or return types may differ in pointee type, but not
3443fe6060f1SDimitry Andric   //   address space.
3444fe6060f1SDimitry Andric   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3445fe6060f1SDimitry Andric     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3446fe6060f1SDimitry Andric            "cannot guarantee tail call due to mismatched parameter counts",
3447fe6060f1SDimitry Andric            &CI);
3448349cc55cSDimitry Andric     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3449fe6060f1SDimitry Andric       Assert(
3450fe6060f1SDimitry Andric           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3451fe6060f1SDimitry Andric           "cannot guarantee tail call due to mismatched parameter types", &CI);
3452fe6060f1SDimitry Andric     }
3453fe6060f1SDimitry Andric   }
3454fe6060f1SDimitry Andric 
3455fe6060f1SDimitry Andric   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3456fe6060f1SDimitry Andric   //   returned, preallocated, and inalloca, must match.
3457349cc55cSDimitry Andric   for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3458fe6060f1SDimitry Andric     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3459fe6060f1SDimitry Andric     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3460fe6060f1SDimitry Andric     Assert(CallerABIAttrs == CalleeABIAttrs,
3461fe6060f1SDimitry Andric            "cannot guarantee tail call due to mismatched ABI impacting "
3462fe6060f1SDimitry Andric            "function attributes",
3463fe6060f1SDimitry Andric            &CI, CI.getOperand(I));
3464fe6060f1SDimitry Andric   }
34650b57cec5SDimitry Andric }
34660b57cec5SDimitry Andric 
34670b57cec5SDimitry Andric void Verifier::visitCallInst(CallInst &CI) {
34680b57cec5SDimitry Andric   visitCallBase(CI);
34690b57cec5SDimitry Andric 
34700b57cec5SDimitry Andric   if (CI.isMustTailCall())
34710b57cec5SDimitry Andric     verifyMustTailCall(CI);
34720b57cec5SDimitry Andric }
34730b57cec5SDimitry Andric 
34740b57cec5SDimitry Andric void Verifier::visitInvokeInst(InvokeInst &II) {
34750b57cec5SDimitry Andric   visitCallBase(II);
34760b57cec5SDimitry Andric 
34770b57cec5SDimitry Andric   // Verify that the first non-PHI instruction of the unwind destination is an
34780b57cec5SDimitry Andric   // exception handling instruction.
34790b57cec5SDimitry Andric   Assert(
34800b57cec5SDimitry Andric       II.getUnwindDest()->isEHPad(),
34810b57cec5SDimitry Andric       "The unwind destination does not have an exception handling instruction!",
34820b57cec5SDimitry Andric       &II);
34830b57cec5SDimitry Andric 
34840b57cec5SDimitry Andric   visitTerminator(II);
34850b57cec5SDimitry Andric }
34860b57cec5SDimitry Andric 
34870b57cec5SDimitry Andric /// visitUnaryOperator - Check the argument to the unary operator.
34880b57cec5SDimitry Andric ///
34890b57cec5SDimitry Andric void Verifier::visitUnaryOperator(UnaryOperator &U) {
34900b57cec5SDimitry Andric   Assert(U.getType() == U.getOperand(0)->getType(),
34910b57cec5SDimitry Andric          "Unary operators must have same type for"
34920b57cec5SDimitry Andric          "operands and result!",
34930b57cec5SDimitry Andric          &U);
34940b57cec5SDimitry Andric 
34950b57cec5SDimitry Andric   switch (U.getOpcode()) {
34960b57cec5SDimitry Andric   // Check that floating-point arithmetic operators are only used with
34970b57cec5SDimitry Andric   // floating-point operands.
34980b57cec5SDimitry Andric   case Instruction::FNeg:
34990b57cec5SDimitry Andric     Assert(U.getType()->isFPOrFPVectorTy(),
35000b57cec5SDimitry Andric            "FNeg operator only works with float types!", &U);
35010b57cec5SDimitry Andric     break;
35020b57cec5SDimitry Andric   default:
35030b57cec5SDimitry Andric     llvm_unreachable("Unknown UnaryOperator opcode!");
35040b57cec5SDimitry Andric   }
35050b57cec5SDimitry Andric 
35060b57cec5SDimitry Andric   visitInstruction(U);
35070b57cec5SDimitry Andric }
35080b57cec5SDimitry Andric 
35090b57cec5SDimitry Andric /// visitBinaryOperator - Check that both arguments to the binary operator are
35100b57cec5SDimitry Andric /// of the same type!
35110b57cec5SDimitry Andric ///
35120b57cec5SDimitry Andric void Verifier::visitBinaryOperator(BinaryOperator &B) {
35130b57cec5SDimitry Andric   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
35140b57cec5SDimitry Andric          "Both operands to a binary operator are not of the same type!", &B);
35150b57cec5SDimitry Andric 
35160b57cec5SDimitry Andric   switch (B.getOpcode()) {
35170b57cec5SDimitry Andric   // Check that integer arithmetic operators are only used with
35180b57cec5SDimitry Andric   // integral operands.
35190b57cec5SDimitry Andric   case Instruction::Add:
35200b57cec5SDimitry Andric   case Instruction::Sub:
35210b57cec5SDimitry Andric   case Instruction::Mul:
35220b57cec5SDimitry Andric   case Instruction::SDiv:
35230b57cec5SDimitry Andric   case Instruction::UDiv:
35240b57cec5SDimitry Andric   case Instruction::SRem:
35250b57cec5SDimitry Andric   case Instruction::URem:
35260b57cec5SDimitry Andric     Assert(B.getType()->isIntOrIntVectorTy(),
35270b57cec5SDimitry Andric            "Integer arithmetic operators only work with integral types!", &B);
35280b57cec5SDimitry Andric     Assert(B.getType() == B.getOperand(0)->getType(),
35290b57cec5SDimitry Andric            "Integer arithmetic operators must have same type "
35300b57cec5SDimitry Andric            "for operands and result!",
35310b57cec5SDimitry Andric            &B);
35320b57cec5SDimitry Andric     break;
35330b57cec5SDimitry Andric   // Check that floating-point arithmetic operators are only used with
35340b57cec5SDimitry Andric   // floating-point operands.
35350b57cec5SDimitry Andric   case Instruction::FAdd:
35360b57cec5SDimitry Andric   case Instruction::FSub:
35370b57cec5SDimitry Andric   case Instruction::FMul:
35380b57cec5SDimitry Andric   case Instruction::FDiv:
35390b57cec5SDimitry Andric   case Instruction::FRem:
35400b57cec5SDimitry Andric     Assert(B.getType()->isFPOrFPVectorTy(),
35410b57cec5SDimitry Andric            "Floating-point arithmetic operators only work with "
35420b57cec5SDimitry Andric            "floating-point types!",
35430b57cec5SDimitry Andric            &B);
35440b57cec5SDimitry Andric     Assert(B.getType() == B.getOperand(0)->getType(),
35450b57cec5SDimitry Andric            "Floating-point arithmetic operators must have same type "
35460b57cec5SDimitry Andric            "for operands and result!",
35470b57cec5SDimitry Andric            &B);
35480b57cec5SDimitry Andric     break;
35490b57cec5SDimitry Andric   // Check that logical operators are only used with integral operands.
35500b57cec5SDimitry Andric   case Instruction::And:
35510b57cec5SDimitry Andric   case Instruction::Or:
35520b57cec5SDimitry Andric   case Instruction::Xor:
35530b57cec5SDimitry Andric     Assert(B.getType()->isIntOrIntVectorTy(),
35540b57cec5SDimitry Andric            "Logical operators only work with integral types!", &B);
35550b57cec5SDimitry Andric     Assert(B.getType() == B.getOperand(0)->getType(),
35560b57cec5SDimitry Andric            "Logical operators must have same type for operands and result!",
35570b57cec5SDimitry Andric            &B);
35580b57cec5SDimitry Andric     break;
35590b57cec5SDimitry Andric   case Instruction::Shl:
35600b57cec5SDimitry Andric   case Instruction::LShr:
35610b57cec5SDimitry Andric   case Instruction::AShr:
35620b57cec5SDimitry Andric     Assert(B.getType()->isIntOrIntVectorTy(),
35630b57cec5SDimitry Andric            "Shifts only work with integral types!", &B);
35640b57cec5SDimitry Andric     Assert(B.getType() == B.getOperand(0)->getType(),
35650b57cec5SDimitry Andric            "Shift return type must be same as operands!", &B);
35660b57cec5SDimitry Andric     break;
35670b57cec5SDimitry Andric   default:
35680b57cec5SDimitry Andric     llvm_unreachable("Unknown BinaryOperator opcode!");
35690b57cec5SDimitry Andric   }
35700b57cec5SDimitry Andric 
35710b57cec5SDimitry Andric   visitInstruction(B);
35720b57cec5SDimitry Andric }
35730b57cec5SDimitry Andric 
35740b57cec5SDimitry Andric void Verifier::visitICmpInst(ICmpInst &IC) {
35750b57cec5SDimitry Andric   // Check that the operands are the same type
35760b57cec5SDimitry Andric   Type *Op0Ty = IC.getOperand(0)->getType();
35770b57cec5SDimitry Andric   Type *Op1Ty = IC.getOperand(1)->getType();
35780b57cec5SDimitry Andric   Assert(Op0Ty == Op1Ty,
35790b57cec5SDimitry Andric          "Both operands to ICmp instruction are not of the same type!", &IC);
35800b57cec5SDimitry Andric   // Check that the operands are the right type
35810b57cec5SDimitry Andric   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
35820b57cec5SDimitry Andric          "Invalid operand types for ICmp instruction", &IC);
35830b57cec5SDimitry Andric   // Check that the predicate is valid.
35840b57cec5SDimitry Andric   Assert(IC.isIntPredicate(),
35850b57cec5SDimitry Andric          "Invalid predicate in ICmp instruction!", &IC);
35860b57cec5SDimitry Andric 
35870b57cec5SDimitry Andric   visitInstruction(IC);
35880b57cec5SDimitry Andric }
35890b57cec5SDimitry Andric 
35900b57cec5SDimitry Andric void Verifier::visitFCmpInst(FCmpInst &FC) {
35910b57cec5SDimitry Andric   // Check that the operands are the same type
35920b57cec5SDimitry Andric   Type *Op0Ty = FC.getOperand(0)->getType();
35930b57cec5SDimitry Andric   Type *Op1Ty = FC.getOperand(1)->getType();
35940b57cec5SDimitry Andric   Assert(Op0Ty == Op1Ty,
35950b57cec5SDimitry Andric          "Both operands to FCmp instruction are not of the same type!", &FC);
35960b57cec5SDimitry Andric   // Check that the operands are the right type
35970b57cec5SDimitry Andric   Assert(Op0Ty->isFPOrFPVectorTy(),
35980b57cec5SDimitry Andric          "Invalid operand types for FCmp instruction", &FC);
35990b57cec5SDimitry Andric   // Check that the predicate is valid.
36000b57cec5SDimitry Andric   Assert(FC.isFPPredicate(),
36010b57cec5SDimitry Andric          "Invalid predicate in FCmp instruction!", &FC);
36020b57cec5SDimitry Andric 
36030b57cec5SDimitry Andric   visitInstruction(FC);
36040b57cec5SDimitry Andric }
36050b57cec5SDimitry Andric 
36060b57cec5SDimitry Andric void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
36070b57cec5SDimitry Andric   Assert(
36080b57cec5SDimitry Andric       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
36090b57cec5SDimitry Andric       "Invalid extractelement operands!", &EI);
36100b57cec5SDimitry Andric   visitInstruction(EI);
36110b57cec5SDimitry Andric }
36120b57cec5SDimitry Andric 
36130b57cec5SDimitry Andric void Verifier::visitInsertElementInst(InsertElementInst &IE) {
36140b57cec5SDimitry Andric   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
36150b57cec5SDimitry Andric                                             IE.getOperand(2)),
36160b57cec5SDimitry Andric          "Invalid insertelement operands!", &IE);
36170b57cec5SDimitry Andric   visitInstruction(IE);
36180b57cec5SDimitry Andric }
36190b57cec5SDimitry Andric 
36200b57cec5SDimitry Andric void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
36210b57cec5SDimitry Andric   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
36225ffd83dbSDimitry Andric                                             SV.getShuffleMask()),
36230b57cec5SDimitry Andric          "Invalid shufflevector operands!", &SV);
36240b57cec5SDimitry Andric   visitInstruction(SV);
36250b57cec5SDimitry Andric }
36260b57cec5SDimitry Andric 
36270b57cec5SDimitry Andric void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
36280b57cec5SDimitry Andric   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
36290b57cec5SDimitry Andric 
36300b57cec5SDimitry Andric   Assert(isa<PointerType>(TargetTy),
36310b57cec5SDimitry Andric          "GEP base pointer is not a vector or a vector of pointers", &GEP);
36320b57cec5SDimitry Andric   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
36330b57cec5SDimitry Andric 
3634e8d8bef9SDimitry Andric   SmallVector<Value *, 16> Idxs(GEP.indices());
36350b57cec5SDimitry Andric   Assert(all_of(
36360b57cec5SDimitry Andric       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
36370b57cec5SDimitry Andric       "GEP indexes must be integers", &GEP);
36380b57cec5SDimitry Andric   Type *ElTy =
36390b57cec5SDimitry Andric       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
36400b57cec5SDimitry Andric   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
36410b57cec5SDimitry Andric 
36420b57cec5SDimitry Andric   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
36430b57cec5SDimitry Andric              GEP.getResultElementType() == ElTy,
36440b57cec5SDimitry Andric          "GEP is not of right type for indices!", &GEP, ElTy);
36450b57cec5SDimitry Andric 
36465ffd83dbSDimitry Andric   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
36470b57cec5SDimitry Andric     // Additional checks for vector GEPs.
36485ffd83dbSDimitry Andric     ElementCount GEPWidth = GEPVTy->getElementCount();
36490b57cec5SDimitry Andric     if (GEP.getPointerOperandType()->isVectorTy())
36505ffd83dbSDimitry Andric       Assert(
36515ffd83dbSDimitry Andric           GEPWidth ==
36525ffd83dbSDimitry Andric               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
36530b57cec5SDimitry Andric           "Vector GEP result width doesn't match operand's", &GEP);
36540b57cec5SDimitry Andric     for (Value *Idx : Idxs) {
36550b57cec5SDimitry Andric       Type *IndexTy = Idx->getType();
36565ffd83dbSDimitry Andric       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
36575ffd83dbSDimitry Andric         ElementCount IndexWidth = IndexVTy->getElementCount();
36580b57cec5SDimitry Andric         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
36590b57cec5SDimitry Andric       }
36600b57cec5SDimitry Andric       Assert(IndexTy->isIntOrIntVectorTy(),
36610b57cec5SDimitry Andric              "All GEP indices should be of integer type");
36620b57cec5SDimitry Andric     }
36630b57cec5SDimitry Andric   }
36640b57cec5SDimitry Andric 
36650b57cec5SDimitry Andric   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
36660b57cec5SDimitry Andric     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
36670b57cec5SDimitry Andric            "GEP address space doesn't match type", &GEP);
36680b57cec5SDimitry Andric   }
36690b57cec5SDimitry Andric 
36700b57cec5SDimitry Andric   visitInstruction(GEP);
36710b57cec5SDimitry Andric }
36720b57cec5SDimitry Andric 
36730b57cec5SDimitry Andric static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
36740b57cec5SDimitry Andric   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
36750b57cec5SDimitry Andric }
36760b57cec5SDimitry Andric 
36770b57cec5SDimitry Andric void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
36780b57cec5SDimitry Andric   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
36790b57cec5SDimitry Andric          "precondition violation");
36800b57cec5SDimitry Andric 
36810b57cec5SDimitry Andric   unsigned NumOperands = Range->getNumOperands();
36820b57cec5SDimitry Andric   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
36830b57cec5SDimitry Andric   unsigned NumRanges = NumOperands / 2;
36840b57cec5SDimitry Andric   Assert(NumRanges >= 1, "It should have at least one range!", Range);
36850b57cec5SDimitry Andric 
36860b57cec5SDimitry Andric   ConstantRange LastRange(1, true); // Dummy initial value
36870b57cec5SDimitry Andric   for (unsigned i = 0; i < NumRanges; ++i) {
36880b57cec5SDimitry Andric     ConstantInt *Low =
36890b57cec5SDimitry Andric         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
36900b57cec5SDimitry Andric     Assert(Low, "The lower limit must be an integer!", Low);
36910b57cec5SDimitry Andric     ConstantInt *High =
36920b57cec5SDimitry Andric         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
36930b57cec5SDimitry Andric     Assert(High, "The upper limit must be an integer!", High);
36940b57cec5SDimitry Andric     Assert(High->getType() == Low->getType() && High->getType() == Ty,
36950b57cec5SDimitry Andric            "Range types must match instruction type!", &I);
36960b57cec5SDimitry Andric 
36970b57cec5SDimitry Andric     APInt HighV = High->getValue();
36980b57cec5SDimitry Andric     APInt LowV = Low->getValue();
36990b57cec5SDimitry Andric     ConstantRange CurRange(LowV, HighV);
37000b57cec5SDimitry Andric     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
37010b57cec5SDimitry Andric            "Range must not be empty!", Range);
37020b57cec5SDimitry Andric     if (i != 0) {
37030b57cec5SDimitry Andric       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
37040b57cec5SDimitry Andric              "Intervals are overlapping", Range);
37050b57cec5SDimitry Andric       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
37060b57cec5SDimitry Andric              Range);
37070b57cec5SDimitry Andric       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
37080b57cec5SDimitry Andric              Range);
37090b57cec5SDimitry Andric     }
37100b57cec5SDimitry Andric     LastRange = ConstantRange(LowV, HighV);
37110b57cec5SDimitry Andric   }
37120b57cec5SDimitry Andric   if (NumRanges > 2) {
37130b57cec5SDimitry Andric     APInt FirstLow =
37140b57cec5SDimitry Andric         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
37150b57cec5SDimitry Andric     APInt FirstHigh =
37160b57cec5SDimitry Andric         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
37170b57cec5SDimitry Andric     ConstantRange FirstRange(FirstLow, FirstHigh);
37180b57cec5SDimitry Andric     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
37190b57cec5SDimitry Andric            "Intervals are overlapping", Range);
37200b57cec5SDimitry Andric     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
37210b57cec5SDimitry Andric            Range);
37220b57cec5SDimitry Andric   }
37230b57cec5SDimitry Andric }
37240b57cec5SDimitry Andric 
37250b57cec5SDimitry Andric void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
37260b57cec5SDimitry Andric   unsigned Size = DL.getTypeSizeInBits(Ty);
37270b57cec5SDimitry Andric   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
37280b57cec5SDimitry Andric   Assert(!(Size & (Size - 1)),
37290b57cec5SDimitry Andric          "atomic memory access' operand must have a power-of-two size", Ty, I);
37300b57cec5SDimitry Andric }
37310b57cec5SDimitry Andric 
37320b57cec5SDimitry Andric void Verifier::visitLoadInst(LoadInst &LI) {
37330b57cec5SDimitry Andric   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
37340b57cec5SDimitry Andric   Assert(PTy, "Load operand must be a pointer.", &LI);
37350b57cec5SDimitry Andric   Type *ElTy = LI.getType();
37360b57cec5SDimitry Andric   Assert(LI.getAlignment() <= Value::MaximumAlignment,
37370b57cec5SDimitry Andric          "huge alignment values are unsupported", &LI);
37380b57cec5SDimitry Andric   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
37390b57cec5SDimitry Andric   if (LI.isAtomic()) {
37400b57cec5SDimitry Andric     Assert(LI.getOrdering() != AtomicOrdering::Release &&
37410b57cec5SDimitry Andric                LI.getOrdering() != AtomicOrdering::AcquireRelease,
37420b57cec5SDimitry Andric            "Load cannot have Release ordering", &LI);
37430b57cec5SDimitry Andric     Assert(LI.getAlignment() != 0,
37440b57cec5SDimitry Andric            "Atomic load must specify explicit alignment", &LI);
37450b57cec5SDimitry Andric     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
37460b57cec5SDimitry Andric            "atomic load operand must have integer, pointer, or floating point "
37470b57cec5SDimitry Andric            "type!",
37480b57cec5SDimitry Andric            ElTy, &LI);
37490b57cec5SDimitry Andric     checkAtomicMemAccessSize(ElTy, &LI);
37500b57cec5SDimitry Andric   } else {
37510b57cec5SDimitry Andric     Assert(LI.getSyncScopeID() == SyncScope::System,
37520b57cec5SDimitry Andric            "Non-atomic load cannot have SynchronizationScope specified", &LI);
37530b57cec5SDimitry Andric   }
37540b57cec5SDimitry Andric 
37550b57cec5SDimitry Andric   visitInstruction(LI);
37560b57cec5SDimitry Andric }
37570b57cec5SDimitry Andric 
37580b57cec5SDimitry Andric void Verifier::visitStoreInst(StoreInst &SI) {
37590b57cec5SDimitry Andric   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
37600b57cec5SDimitry Andric   Assert(PTy, "Store operand must be a pointer.", &SI);
3761fe6060f1SDimitry Andric   Type *ElTy = SI.getOperand(0)->getType();
3762fe6060f1SDimitry Andric   Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
37630b57cec5SDimitry Andric          "Stored value type does not match pointer operand type!", &SI, ElTy);
37640b57cec5SDimitry Andric   Assert(SI.getAlignment() <= Value::MaximumAlignment,
37650b57cec5SDimitry Andric          "huge alignment values are unsupported", &SI);
37660b57cec5SDimitry Andric   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
37670b57cec5SDimitry Andric   if (SI.isAtomic()) {
37680b57cec5SDimitry Andric     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
37690b57cec5SDimitry Andric                SI.getOrdering() != AtomicOrdering::AcquireRelease,
37700b57cec5SDimitry Andric            "Store cannot have Acquire ordering", &SI);
37710b57cec5SDimitry Andric     Assert(SI.getAlignment() != 0,
37720b57cec5SDimitry Andric            "Atomic store must specify explicit alignment", &SI);
37730b57cec5SDimitry Andric     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
37740b57cec5SDimitry Andric            "atomic store operand must have integer, pointer, or floating point "
37750b57cec5SDimitry Andric            "type!",
37760b57cec5SDimitry Andric            ElTy, &SI);
37770b57cec5SDimitry Andric     checkAtomicMemAccessSize(ElTy, &SI);
37780b57cec5SDimitry Andric   } else {
37790b57cec5SDimitry Andric     Assert(SI.getSyncScopeID() == SyncScope::System,
37800b57cec5SDimitry Andric            "Non-atomic store cannot have SynchronizationScope specified", &SI);
37810b57cec5SDimitry Andric   }
37820b57cec5SDimitry Andric   visitInstruction(SI);
37830b57cec5SDimitry Andric }
37840b57cec5SDimitry Andric 
37850b57cec5SDimitry Andric /// Check that SwiftErrorVal is used as a swifterror argument in CS.
37860b57cec5SDimitry Andric void Verifier::verifySwiftErrorCall(CallBase &Call,
37870b57cec5SDimitry Andric                                     const Value *SwiftErrorVal) {
3788fe6060f1SDimitry Andric   for (const auto &I : llvm::enumerate(Call.args())) {
3789fe6060f1SDimitry Andric     if (I.value() == SwiftErrorVal) {
3790fe6060f1SDimitry Andric       Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
37910b57cec5SDimitry Andric              "swifterror value when used in a callsite should be marked "
37920b57cec5SDimitry Andric              "with swifterror attribute",
37930b57cec5SDimitry Andric              SwiftErrorVal, Call);
37940b57cec5SDimitry Andric     }
37950b57cec5SDimitry Andric   }
37960b57cec5SDimitry Andric }
37970b57cec5SDimitry Andric 
37980b57cec5SDimitry Andric void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
37990b57cec5SDimitry Andric   // Check that swifterror value is only used by loads, stores, or as
38000b57cec5SDimitry Andric   // a swifterror argument.
38010b57cec5SDimitry Andric   for (const User *U : SwiftErrorVal->users()) {
38020b57cec5SDimitry Andric     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
38030b57cec5SDimitry Andric            isa<InvokeInst>(U),
38040b57cec5SDimitry Andric            "swifterror value can only be loaded and stored from, or "
38050b57cec5SDimitry Andric            "as a swifterror argument!",
38060b57cec5SDimitry Andric            SwiftErrorVal, U);
38070b57cec5SDimitry Andric     // If it is used by a store, check it is the second operand.
38080b57cec5SDimitry Andric     if (auto StoreI = dyn_cast<StoreInst>(U))
38090b57cec5SDimitry Andric       Assert(StoreI->getOperand(1) == SwiftErrorVal,
38100b57cec5SDimitry Andric              "swifterror value should be the second operand when used "
38110b57cec5SDimitry Andric              "by stores", SwiftErrorVal, U);
38120b57cec5SDimitry Andric     if (auto *Call = dyn_cast<CallBase>(U))
38130b57cec5SDimitry Andric       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
38140b57cec5SDimitry Andric   }
38150b57cec5SDimitry Andric }
38160b57cec5SDimitry Andric 
38170b57cec5SDimitry Andric void Verifier::visitAllocaInst(AllocaInst &AI) {
38180b57cec5SDimitry Andric   SmallPtrSet<Type*, 4> Visited;
38190b57cec5SDimitry Andric   Assert(AI.getAllocatedType()->isSized(&Visited),
38200b57cec5SDimitry Andric          "Cannot allocate unsized type", &AI);
38210b57cec5SDimitry Andric   Assert(AI.getArraySize()->getType()->isIntegerTy(),
38220b57cec5SDimitry Andric          "Alloca array size must have integer type", &AI);
38230b57cec5SDimitry Andric   Assert(AI.getAlignment() <= Value::MaximumAlignment,
38240b57cec5SDimitry Andric          "huge alignment values are unsupported", &AI);
38250b57cec5SDimitry Andric 
38260b57cec5SDimitry Andric   if (AI.isSwiftError()) {
38270b57cec5SDimitry Andric     verifySwiftErrorValue(&AI);
38280b57cec5SDimitry Andric   }
38290b57cec5SDimitry Andric 
38300b57cec5SDimitry Andric   visitInstruction(AI);
38310b57cec5SDimitry Andric }
38320b57cec5SDimitry Andric 
38330b57cec5SDimitry Andric void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3834fe6060f1SDimitry Andric   Type *ElTy = CXI.getOperand(1)->getType();
38350b57cec5SDimitry Andric   Assert(ElTy->isIntOrPtrTy(),
38360b57cec5SDimitry Andric          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
38370b57cec5SDimitry Andric   checkAtomicMemAccessSize(ElTy, &CXI);
38380b57cec5SDimitry Andric   visitInstruction(CXI);
38390b57cec5SDimitry Andric }
38400b57cec5SDimitry Andric 
38410b57cec5SDimitry Andric void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
38420b57cec5SDimitry Andric   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
38430b57cec5SDimitry Andric          "atomicrmw instructions cannot be unordered.", &RMWI);
38440b57cec5SDimitry Andric   auto Op = RMWI.getOperation();
3845fe6060f1SDimitry Andric   Type *ElTy = RMWI.getOperand(1)->getType();
38460b57cec5SDimitry Andric   if (Op == AtomicRMWInst::Xchg) {
38470b57cec5SDimitry Andric     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
38480b57cec5SDimitry Andric            AtomicRMWInst::getOperationName(Op) +
38490b57cec5SDimitry Andric            " operand must have integer or floating point type!",
38500b57cec5SDimitry Andric            &RMWI, ElTy);
38510b57cec5SDimitry Andric   } else if (AtomicRMWInst::isFPOperation(Op)) {
38520b57cec5SDimitry Andric     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
38530b57cec5SDimitry Andric            AtomicRMWInst::getOperationName(Op) +
38540b57cec5SDimitry Andric            " operand must have floating point type!",
38550b57cec5SDimitry Andric            &RMWI, ElTy);
38560b57cec5SDimitry Andric   } else {
38570b57cec5SDimitry Andric     Assert(ElTy->isIntegerTy(), "atomicrmw " +
38580b57cec5SDimitry Andric            AtomicRMWInst::getOperationName(Op) +
38590b57cec5SDimitry Andric            " operand must have integer type!",
38600b57cec5SDimitry Andric            &RMWI, ElTy);
38610b57cec5SDimitry Andric   }
38620b57cec5SDimitry Andric   checkAtomicMemAccessSize(ElTy, &RMWI);
38630b57cec5SDimitry Andric   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
38640b57cec5SDimitry Andric          "Invalid binary operation!", &RMWI);
38650b57cec5SDimitry Andric   visitInstruction(RMWI);
38660b57cec5SDimitry Andric }
38670b57cec5SDimitry Andric 
38680b57cec5SDimitry Andric void Verifier::visitFenceInst(FenceInst &FI) {
38690b57cec5SDimitry Andric   const AtomicOrdering Ordering = FI.getOrdering();
38700b57cec5SDimitry Andric   Assert(Ordering == AtomicOrdering::Acquire ||
38710b57cec5SDimitry Andric              Ordering == AtomicOrdering::Release ||
38720b57cec5SDimitry Andric              Ordering == AtomicOrdering::AcquireRelease ||
38730b57cec5SDimitry Andric              Ordering == AtomicOrdering::SequentiallyConsistent,
38740b57cec5SDimitry Andric          "fence instructions may only have acquire, release, acq_rel, or "
38750b57cec5SDimitry Andric          "seq_cst ordering.",
38760b57cec5SDimitry Andric          &FI);
38770b57cec5SDimitry Andric   visitInstruction(FI);
38780b57cec5SDimitry Andric }
38790b57cec5SDimitry Andric 
38800b57cec5SDimitry Andric void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
38810b57cec5SDimitry Andric   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
38820b57cec5SDimitry Andric                                           EVI.getIndices()) == EVI.getType(),
38830b57cec5SDimitry Andric          "Invalid ExtractValueInst operands!", &EVI);
38840b57cec5SDimitry Andric 
38850b57cec5SDimitry Andric   visitInstruction(EVI);
38860b57cec5SDimitry Andric }
38870b57cec5SDimitry Andric 
38880b57cec5SDimitry Andric void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
38890b57cec5SDimitry Andric   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
38900b57cec5SDimitry Andric                                           IVI.getIndices()) ==
38910b57cec5SDimitry Andric              IVI.getOperand(1)->getType(),
38920b57cec5SDimitry Andric          "Invalid InsertValueInst operands!", &IVI);
38930b57cec5SDimitry Andric 
38940b57cec5SDimitry Andric   visitInstruction(IVI);
38950b57cec5SDimitry Andric }
38960b57cec5SDimitry Andric 
38970b57cec5SDimitry Andric static Value *getParentPad(Value *EHPad) {
38980b57cec5SDimitry Andric   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
38990b57cec5SDimitry Andric     return FPI->getParentPad();
39000b57cec5SDimitry Andric 
39010b57cec5SDimitry Andric   return cast<CatchSwitchInst>(EHPad)->getParentPad();
39020b57cec5SDimitry Andric }
39030b57cec5SDimitry Andric 
39040b57cec5SDimitry Andric void Verifier::visitEHPadPredecessors(Instruction &I) {
39050b57cec5SDimitry Andric   assert(I.isEHPad());
39060b57cec5SDimitry Andric 
39070b57cec5SDimitry Andric   BasicBlock *BB = I.getParent();
39080b57cec5SDimitry Andric   Function *F = BB->getParent();
39090b57cec5SDimitry Andric 
39100b57cec5SDimitry Andric   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
39110b57cec5SDimitry Andric 
39120b57cec5SDimitry Andric   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
39130b57cec5SDimitry Andric     // The landingpad instruction defines its parent as a landing pad block. The
39140b57cec5SDimitry Andric     // landing pad block may be branched to only by the unwind edge of an
39150b57cec5SDimitry Andric     // invoke.
39160b57cec5SDimitry Andric     for (BasicBlock *PredBB : predecessors(BB)) {
39170b57cec5SDimitry Andric       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
39180b57cec5SDimitry Andric       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
39190b57cec5SDimitry Andric              "Block containing LandingPadInst must be jumped to "
39200b57cec5SDimitry Andric              "only by the unwind edge of an invoke.",
39210b57cec5SDimitry Andric              LPI);
39220b57cec5SDimitry Andric     }
39230b57cec5SDimitry Andric     return;
39240b57cec5SDimitry Andric   }
39250b57cec5SDimitry Andric   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
39260b57cec5SDimitry Andric     if (!pred_empty(BB))
39270b57cec5SDimitry Andric       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
39280b57cec5SDimitry Andric              "Block containg CatchPadInst must be jumped to "
39290b57cec5SDimitry Andric              "only by its catchswitch.",
39300b57cec5SDimitry Andric              CPI);
39310b57cec5SDimitry Andric     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
39320b57cec5SDimitry Andric            "Catchswitch cannot unwind to one of its catchpads",
39330b57cec5SDimitry Andric            CPI->getCatchSwitch(), CPI);
39340b57cec5SDimitry Andric     return;
39350b57cec5SDimitry Andric   }
39360b57cec5SDimitry Andric 
39370b57cec5SDimitry Andric   // Verify that each pred has a legal terminator with a legal to/from EH
39380b57cec5SDimitry Andric   // pad relationship.
39390b57cec5SDimitry Andric   Instruction *ToPad = &I;
39400b57cec5SDimitry Andric   Value *ToPadParent = getParentPad(ToPad);
39410b57cec5SDimitry Andric   for (BasicBlock *PredBB : predecessors(BB)) {
39420b57cec5SDimitry Andric     Instruction *TI = PredBB->getTerminator();
39430b57cec5SDimitry Andric     Value *FromPad;
39440b57cec5SDimitry Andric     if (auto *II = dyn_cast<InvokeInst>(TI)) {
39450b57cec5SDimitry Andric       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
39460b57cec5SDimitry Andric              "EH pad must be jumped to via an unwind edge", ToPad, II);
39470b57cec5SDimitry Andric       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
39480b57cec5SDimitry Andric         FromPad = Bundle->Inputs[0];
39490b57cec5SDimitry Andric       else
39500b57cec5SDimitry Andric         FromPad = ConstantTokenNone::get(II->getContext());
39510b57cec5SDimitry Andric     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
39520b57cec5SDimitry Andric       FromPad = CRI->getOperand(0);
39530b57cec5SDimitry Andric       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
39540b57cec5SDimitry Andric     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
39550b57cec5SDimitry Andric       FromPad = CSI;
39560b57cec5SDimitry Andric     } else {
39570b57cec5SDimitry Andric       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
39580b57cec5SDimitry Andric     }
39590b57cec5SDimitry Andric 
39600b57cec5SDimitry Andric     // The edge may exit from zero or more nested pads.
39610b57cec5SDimitry Andric     SmallSet<Value *, 8> Seen;
39620b57cec5SDimitry Andric     for (;; FromPad = getParentPad(FromPad)) {
39630b57cec5SDimitry Andric       Assert(FromPad != ToPad,
39640b57cec5SDimitry Andric              "EH pad cannot handle exceptions raised within it", FromPad, TI);
39650b57cec5SDimitry Andric       if (FromPad == ToPadParent) {
39660b57cec5SDimitry Andric         // This is a legal unwind edge.
39670b57cec5SDimitry Andric         break;
39680b57cec5SDimitry Andric       }
39690b57cec5SDimitry Andric       Assert(!isa<ConstantTokenNone>(FromPad),
39700b57cec5SDimitry Andric              "A single unwind edge may only enter one EH pad", TI);
39710b57cec5SDimitry Andric       Assert(Seen.insert(FromPad).second,
39720b57cec5SDimitry Andric              "EH pad jumps through a cycle of pads", FromPad);
39730b57cec5SDimitry Andric     }
39740b57cec5SDimitry Andric   }
39750b57cec5SDimitry Andric }
39760b57cec5SDimitry Andric 
39770b57cec5SDimitry Andric void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
39780b57cec5SDimitry Andric   // The landingpad instruction is ill-formed if it doesn't have any clauses and
39790b57cec5SDimitry Andric   // isn't a cleanup.
39800b57cec5SDimitry Andric   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
39810b57cec5SDimitry Andric          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
39820b57cec5SDimitry Andric 
39830b57cec5SDimitry Andric   visitEHPadPredecessors(LPI);
39840b57cec5SDimitry Andric 
39850b57cec5SDimitry Andric   if (!LandingPadResultTy)
39860b57cec5SDimitry Andric     LandingPadResultTy = LPI.getType();
39870b57cec5SDimitry Andric   else
39880b57cec5SDimitry Andric     Assert(LandingPadResultTy == LPI.getType(),
39890b57cec5SDimitry Andric            "The landingpad instruction should have a consistent result type "
39900b57cec5SDimitry Andric            "inside a function.",
39910b57cec5SDimitry Andric            &LPI);
39920b57cec5SDimitry Andric 
39930b57cec5SDimitry Andric   Function *F = LPI.getParent()->getParent();
39940b57cec5SDimitry Andric   Assert(F->hasPersonalityFn(),
39950b57cec5SDimitry Andric          "LandingPadInst needs to be in a function with a personality.", &LPI);
39960b57cec5SDimitry Andric 
39970b57cec5SDimitry Andric   // The landingpad instruction must be the first non-PHI instruction in the
39980b57cec5SDimitry Andric   // block.
39990b57cec5SDimitry Andric   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
40000b57cec5SDimitry Andric          "LandingPadInst not the first non-PHI instruction in the block.",
40010b57cec5SDimitry Andric          &LPI);
40020b57cec5SDimitry Andric 
40030b57cec5SDimitry Andric   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
40040b57cec5SDimitry Andric     Constant *Clause = LPI.getClause(i);
40050b57cec5SDimitry Andric     if (LPI.isCatch(i)) {
40060b57cec5SDimitry Andric       Assert(isa<PointerType>(Clause->getType()),
40070b57cec5SDimitry Andric              "Catch operand does not have pointer type!", &LPI);
40080b57cec5SDimitry Andric     } else {
40090b57cec5SDimitry Andric       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
40100b57cec5SDimitry Andric       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
40110b57cec5SDimitry Andric              "Filter operand is not an array of constants!", &LPI);
40120b57cec5SDimitry Andric     }
40130b57cec5SDimitry Andric   }
40140b57cec5SDimitry Andric 
40150b57cec5SDimitry Andric   visitInstruction(LPI);
40160b57cec5SDimitry Andric }
40170b57cec5SDimitry Andric 
40180b57cec5SDimitry Andric void Verifier::visitResumeInst(ResumeInst &RI) {
40190b57cec5SDimitry Andric   Assert(RI.getFunction()->hasPersonalityFn(),
40200b57cec5SDimitry Andric          "ResumeInst needs to be in a function with a personality.", &RI);
40210b57cec5SDimitry Andric 
40220b57cec5SDimitry Andric   if (!LandingPadResultTy)
40230b57cec5SDimitry Andric     LandingPadResultTy = RI.getValue()->getType();
40240b57cec5SDimitry Andric   else
40250b57cec5SDimitry Andric     Assert(LandingPadResultTy == RI.getValue()->getType(),
40260b57cec5SDimitry Andric            "The resume instruction should have a consistent result type "
40270b57cec5SDimitry Andric            "inside a function.",
40280b57cec5SDimitry Andric            &RI);
40290b57cec5SDimitry Andric 
40300b57cec5SDimitry Andric   visitTerminator(RI);
40310b57cec5SDimitry Andric }
40320b57cec5SDimitry Andric 
40330b57cec5SDimitry Andric void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
40340b57cec5SDimitry Andric   BasicBlock *BB = CPI.getParent();
40350b57cec5SDimitry Andric 
40360b57cec5SDimitry Andric   Function *F = BB->getParent();
40370b57cec5SDimitry Andric   Assert(F->hasPersonalityFn(),
40380b57cec5SDimitry Andric          "CatchPadInst needs to be in a function with a personality.", &CPI);
40390b57cec5SDimitry Andric 
40400b57cec5SDimitry Andric   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
40410b57cec5SDimitry Andric          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
40420b57cec5SDimitry Andric          CPI.getParentPad());
40430b57cec5SDimitry Andric 
40440b57cec5SDimitry Andric   // The catchpad instruction must be the first non-PHI instruction in the
40450b57cec5SDimitry Andric   // block.
40460b57cec5SDimitry Andric   Assert(BB->getFirstNonPHI() == &CPI,
40470b57cec5SDimitry Andric          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
40480b57cec5SDimitry Andric 
40490b57cec5SDimitry Andric   visitEHPadPredecessors(CPI);
40500b57cec5SDimitry Andric   visitFuncletPadInst(CPI);
40510b57cec5SDimitry Andric }
40520b57cec5SDimitry Andric 
40530b57cec5SDimitry Andric void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
40540b57cec5SDimitry Andric   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
40550b57cec5SDimitry Andric          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
40560b57cec5SDimitry Andric          CatchReturn.getOperand(0));
40570b57cec5SDimitry Andric 
40580b57cec5SDimitry Andric   visitTerminator(CatchReturn);
40590b57cec5SDimitry Andric }
40600b57cec5SDimitry Andric 
40610b57cec5SDimitry Andric void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
40620b57cec5SDimitry Andric   BasicBlock *BB = CPI.getParent();
40630b57cec5SDimitry Andric 
40640b57cec5SDimitry Andric   Function *F = BB->getParent();
40650b57cec5SDimitry Andric   Assert(F->hasPersonalityFn(),
40660b57cec5SDimitry Andric          "CleanupPadInst needs to be in a function with a personality.", &CPI);
40670b57cec5SDimitry Andric 
40680b57cec5SDimitry Andric   // The cleanuppad instruction must be the first non-PHI instruction in the
40690b57cec5SDimitry Andric   // block.
40700b57cec5SDimitry Andric   Assert(BB->getFirstNonPHI() == &CPI,
40710b57cec5SDimitry Andric          "CleanupPadInst not the first non-PHI instruction in the block.",
40720b57cec5SDimitry Andric          &CPI);
40730b57cec5SDimitry Andric 
40740b57cec5SDimitry Andric   auto *ParentPad = CPI.getParentPad();
40750b57cec5SDimitry Andric   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
40760b57cec5SDimitry Andric          "CleanupPadInst has an invalid parent.", &CPI);
40770b57cec5SDimitry Andric 
40780b57cec5SDimitry Andric   visitEHPadPredecessors(CPI);
40790b57cec5SDimitry Andric   visitFuncletPadInst(CPI);
40800b57cec5SDimitry Andric }
40810b57cec5SDimitry Andric 
40820b57cec5SDimitry Andric void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
40830b57cec5SDimitry Andric   User *FirstUser = nullptr;
40840b57cec5SDimitry Andric   Value *FirstUnwindPad = nullptr;
40850b57cec5SDimitry Andric   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
40860b57cec5SDimitry Andric   SmallSet<FuncletPadInst *, 8> Seen;
40870b57cec5SDimitry Andric 
40880b57cec5SDimitry Andric   while (!Worklist.empty()) {
40890b57cec5SDimitry Andric     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
40900b57cec5SDimitry Andric     Assert(Seen.insert(CurrentPad).second,
40910b57cec5SDimitry Andric            "FuncletPadInst must not be nested within itself", CurrentPad);
40920b57cec5SDimitry Andric     Value *UnresolvedAncestorPad = nullptr;
40930b57cec5SDimitry Andric     for (User *U : CurrentPad->users()) {
40940b57cec5SDimitry Andric       BasicBlock *UnwindDest;
40950b57cec5SDimitry Andric       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
40960b57cec5SDimitry Andric         UnwindDest = CRI->getUnwindDest();
40970b57cec5SDimitry Andric       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
40980b57cec5SDimitry Andric         // We allow catchswitch unwind to caller to nest
40990b57cec5SDimitry Andric         // within an outer pad that unwinds somewhere else,
41000b57cec5SDimitry Andric         // because catchswitch doesn't have a nounwind variant.
41010b57cec5SDimitry Andric         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
41020b57cec5SDimitry Andric         if (CSI->unwindsToCaller())
41030b57cec5SDimitry Andric           continue;
41040b57cec5SDimitry Andric         UnwindDest = CSI->getUnwindDest();
41050b57cec5SDimitry Andric       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
41060b57cec5SDimitry Andric         UnwindDest = II->getUnwindDest();
41070b57cec5SDimitry Andric       } else if (isa<CallInst>(U)) {
41080b57cec5SDimitry Andric         // Calls which don't unwind may be found inside funclet
41090b57cec5SDimitry Andric         // pads that unwind somewhere else.  We don't *require*
41100b57cec5SDimitry Andric         // such calls to be annotated nounwind.
41110b57cec5SDimitry Andric         continue;
41120b57cec5SDimitry Andric       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
41130b57cec5SDimitry Andric         // The unwind dest for a cleanup can only be found by
41140b57cec5SDimitry Andric         // recursive search.  Add it to the worklist, and we'll
41150b57cec5SDimitry Andric         // search for its first use that determines where it unwinds.
41160b57cec5SDimitry Andric         Worklist.push_back(CPI);
41170b57cec5SDimitry Andric         continue;
41180b57cec5SDimitry Andric       } else {
41190b57cec5SDimitry Andric         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
41200b57cec5SDimitry Andric         continue;
41210b57cec5SDimitry Andric       }
41220b57cec5SDimitry Andric 
41230b57cec5SDimitry Andric       Value *UnwindPad;
41240b57cec5SDimitry Andric       bool ExitsFPI;
41250b57cec5SDimitry Andric       if (UnwindDest) {
41260b57cec5SDimitry Andric         UnwindPad = UnwindDest->getFirstNonPHI();
41270b57cec5SDimitry Andric         if (!cast<Instruction>(UnwindPad)->isEHPad())
41280b57cec5SDimitry Andric           continue;
41290b57cec5SDimitry Andric         Value *UnwindParent = getParentPad(UnwindPad);
41300b57cec5SDimitry Andric         // Ignore unwind edges that don't exit CurrentPad.
41310b57cec5SDimitry Andric         if (UnwindParent == CurrentPad)
41320b57cec5SDimitry Andric           continue;
41330b57cec5SDimitry Andric         // Determine whether the original funclet pad is exited,
41340b57cec5SDimitry Andric         // and if we are scanning nested pads determine how many
41350b57cec5SDimitry Andric         // of them are exited so we can stop searching their
41360b57cec5SDimitry Andric         // children.
41370b57cec5SDimitry Andric         Value *ExitedPad = CurrentPad;
41380b57cec5SDimitry Andric         ExitsFPI = false;
41390b57cec5SDimitry Andric         do {
41400b57cec5SDimitry Andric           if (ExitedPad == &FPI) {
41410b57cec5SDimitry Andric             ExitsFPI = true;
41420b57cec5SDimitry Andric             // Now we can resolve any ancestors of CurrentPad up to
41430b57cec5SDimitry Andric             // FPI, but not including FPI since we need to make sure
41440b57cec5SDimitry Andric             // to check all direct users of FPI for consistency.
41450b57cec5SDimitry Andric             UnresolvedAncestorPad = &FPI;
41460b57cec5SDimitry Andric             break;
41470b57cec5SDimitry Andric           }
41480b57cec5SDimitry Andric           Value *ExitedParent = getParentPad(ExitedPad);
41490b57cec5SDimitry Andric           if (ExitedParent == UnwindParent) {
41500b57cec5SDimitry Andric             // ExitedPad is the ancestor-most pad which this unwind
41510b57cec5SDimitry Andric             // edge exits, so we can resolve up to it, meaning that
41520b57cec5SDimitry Andric             // ExitedParent is the first ancestor still unresolved.
41530b57cec5SDimitry Andric             UnresolvedAncestorPad = ExitedParent;
41540b57cec5SDimitry Andric             break;
41550b57cec5SDimitry Andric           }
41560b57cec5SDimitry Andric           ExitedPad = ExitedParent;
41570b57cec5SDimitry Andric         } while (!isa<ConstantTokenNone>(ExitedPad));
41580b57cec5SDimitry Andric       } else {
41590b57cec5SDimitry Andric         // Unwinding to caller exits all pads.
41600b57cec5SDimitry Andric         UnwindPad = ConstantTokenNone::get(FPI.getContext());
41610b57cec5SDimitry Andric         ExitsFPI = true;
41620b57cec5SDimitry Andric         UnresolvedAncestorPad = &FPI;
41630b57cec5SDimitry Andric       }
41640b57cec5SDimitry Andric 
41650b57cec5SDimitry Andric       if (ExitsFPI) {
41660b57cec5SDimitry Andric         // This unwind edge exits FPI.  Make sure it agrees with other
41670b57cec5SDimitry Andric         // such edges.
41680b57cec5SDimitry Andric         if (FirstUser) {
41690b57cec5SDimitry Andric           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
41700b57cec5SDimitry Andric                                               "pad must have the same unwind "
41710b57cec5SDimitry Andric                                               "dest",
41720b57cec5SDimitry Andric                  &FPI, U, FirstUser);
41730b57cec5SDimitry Andric         } else {
41740b57cec5SDimitry Andric           FirstUser = U;
41750b57cec5SDimitry Andric           FirstUnwindPad = UnwindPad;
41760b57cec5SDimitry Andric           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
41770b57cec5SDimitry Andric           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
41780b57cec5SDimitry Andric               getParentPad(UnwindPad) == getParentPad(&FPI))
41790b57cec5SDimitry Andric             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
41800b57cec5SDimitry Andric         }
41810b57cec5SDimitry Andric       }
41820b57cec5SDimitry Andric       // Make sure we visit all uses of FPI, but for nested pads stop as
41830b57cec5SDimitry Andric       // soon as we know where they unwind to.
41840b57cec5SDimitry Andric       if (CurrentPad != &FPI)
41850b57cec5SDimitry Andric         break;
41860b57cec5SDimitry Andric     }
41870b57cec5SDimitry Andric     if (UnresolvedAncestorPad) {
41880b57cec5SDimitry Andric       if (CurrentPad == UnresolvedAncestorPad) {
41890b57cec5SDimitry Andric         // When CurrentPad is FPI itself, we don't mark it as resolved even if
41900b57cec5SDimitry Andric         // we've found an unwind edge that exits it, because we need to verify
41910b57cec5SDimitry Andric         // all direct uses of FPI.
41920b57cec5SDimitry Andric         assert(CurrentPad == &FPI);
41930b57cec5SDimitry Andric         continue;
41940b57cec5SDimitry Andric       }
41950b57cec5SDimitry Andric       // Pop off the worklist any nested pads that we've found an unwind
41960b57cec5SDimitry Andric       // destination for.  The pads on the worklist are the uncles,
41970b57cec5SDimitry Andric       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
41980b57cec5SDimitry Andric       // for all ancestors of CurrentPad up to but not including
41990b57cec5SDimitry Andric       // UnresolvedAncestorPad.
42000b57cec5SDimitry Andric       Value *ResolvedPad = CurrentPad;
42010b57cec5SDimitry Andric       while (!Worklist.empty()) {
42020b57cec5SDimitry Andric         Value *UnclePad = Worklist.back();
42030b57cec5SDimitry Andric         Value *AncestorPad = getParentPad(UnclePad);
42040b57cec5SDimitry Andric         // Walk ResolvedPad up the ancestor list until we either find the
42050b57cec5SDimitry Andric         // uncle's parent or the last resolved ancestor.
42060b57cec5SDimitry Andric         while (ResolvedPad != AncestorPad) {
42070b57cec5SDimitry Andric           Value *ResolvedParent = getParentPad(ResolvedPad);
42080b57cec5SDimitry Andric           if (ResolvedParent == UnresolvedAncestorPad) {
42090b57cec5SDimitry Andric             break;
42100b57cec5SDimitry Andric           }
42110b57cec5SDimitry Andric           ResolvedPad = ResolvedParent;
42120b57cec5SDimitry Andric         }
42130b57cec5SDimitry Andric         // If the resolved ancestor search didn't find the uncle's parent,
42140b57cec5SDimitry Andric         // then the uncle is not yet resolved.
42150b57cec5SDimitry Andric         if (ResolvedPad != AncestorPad)
42160b57cec5SDimitry Andric           break;
42170b57cec5SDimitry Andric         // This uncle is resolved, so pop it from the worklist.
42180b57cec5SDimitry Andric         Worklist.pop_back();
42190b57cec5SDimitry Andric       }
42200b57cec5SDimitry Andric     }
42210b57cec5SDimitry Andric   }
42220b57cec5SDimitry Andric 
42230b57cec5SDimitry Andric   if (FirstUnwindPad) {
42240b57cec5SDimitry Andric     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
42250b57cec5SDimitry Andric       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
42260b57cec5SDimitry Andric       Value *SwitchUnwindPad;
42270b57cec5SDimitry Andric       if (SwitchUnwindDest)
42280b57cec5SDimitry Andric         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
42290b57cec5SDimitry Andric       else
42300b57cec5SDimitry Andric         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
42310b57cec5SDimitry Andric       Assert(SwitchUnwindPad == FirstUnwindPad,
42320b57cec5SDimitry Andric              "Unwind edges out of a catch must have the same unwind dest as "
42330b57cec5SDimitry Andric              "the parent catchswitch",
42340b57cec5SDimitry Andric              &FPI, FirstUser, CatchSwitch);
42350b57cec5SDimitry Andric     }
42360b57cec5SDimitry Andric   }
42370b57cec5SDimitry Andric 
42380b57cec5SDimitry Andric   visitInstruction(FPI);
42390b57cec5SDimitry Andric }
42400b57cec5SDimitry Andric 
42410b57cec5SDimitry Andric void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
42420b57cec5SDimitry Andric   BasicBlock *BB = CatchSwitch.getParent();
42430b57cec5SDimitry Andric 
42440b57cec5SDimitry Andric   Function *F = BB->getParent();
42450b57cec5SDimitry Andric   Assert(F->hasPersonalityFn(),
42460b57cec5SDimitry Andric          "CatchSwitchInst needs to be in a function with a personality.",
42470b57cec5SDimitry Andric          &CatchSwitch);
42480b57cec5SDimitry Andric 
42490b57cec5SDimitry Andric   // The catchswitch instruction must be the first non-PHI instruction in the
42500b57cec5SDimitry Andric   // block.
42510b57cec5SDimitry Andric   Assert(BB->getFirstNonPHI() == &CatchSwitch,
42520b57cec5SDimitry Andric          "CatchSwitchInst not the first non-PHI instruction in the block.",
42530b57cec5SDimitry Andric          &CatchSwitch);
42540b57cec5SDimitry Andric 
42550b57cec5SDimitry Andric   auto *ParentPad = CatchSwitch.getParentPad();
42560b57cec5SDimitry Andric   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
42570b57cec5SDimitry Andric          "CatchSwitchInst has an invalid parent.", ParentPad);
42580b57cec5SDimitry Andric 
42590b57cec5SDimitry Andric   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
42600b57cec5SDimitry Andric     Instruction *I = UnwindDest->getFirstNonPHI();
42610b57cec5SDimitry Andric     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
42620b57cec5SDimitry Andric            "CatchSwitchInst must unwind to an EH block which is not a "
42630b57cec5SDimitry Andric            "landingpad.",
42640b57cec5SDimitry Andric            &CatchSwitch);
42650b57cec5SDimitry Andric 
42660b57cec5SDimitry Andric     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
42670b57cec5SDimitry Andric     if (getParentPad(I) == ParentPad)
42680b57cec5SDimitry Andric       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
42690b57cec5SDimitry Andric   }
42700b57cec5SDimitry Andric 
42710b57cec5SDimitry Andric   Assert(CatchSwitch.getNumHandlers() != 0,
42720b57cec5SDimitry Andric          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
42730b57cec5SDimitry Andric 
42740b57cec5SDimitry Andric   for (BasicBlock *Handler : CatchSwitch.handlers()) {
42750b57cec5SDimitry Andric     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
42760b57cec5SDimitry Andric            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
42770b57cec5SDimitry Andric   }
42780b57cec5SDimitry Andric 
42790b57cec5SDimitry Andric   visitEHPadPredecessors(CatchSwitch);
42800b57cec5SDimitry Andric   visitTerminator(CatchSwitch);
42810b57cec5SDimitry Andric }
42820b57cec5SDimitry Andric 
42830b57cec5SDimitry Andric void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
42840b57cec5SDimitry Andric   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
42850b57cec5SDimitry Andric          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
42860b57cec5SDimitry Andric          CRI.getOperand(0));
42870b57cec5SDimitry Andric 
42880b57cec5SDimitry Andric   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
42890b57cec5SDimitry Andric     Instruction *I = UnwindDest->getFirstNonPHI();
42900b57cec5SDimitry Andric     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
42910b57cec5SDimitry Andric            "CleanupReturnInst must unwind to an EH block which is not a "
42920b57cec5SDimitry Andric            "landingpad.",
42930b57cec5SDimitry Andric            &CRI);
42940b57cec5SDimitry Andric   }
42950b57cec5SDimitry Andric 
42960b57cec5SDimitry Andric   visitTerminator(CRI);
42970b57cec5SDimitry Andric }
42980b57cec5SDimitry Andric 
42990b57cec5SDimitry Andric void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
43000b57cec5SDimitry Andric   Instruction *Op = cast<Instruction>(I.getOperand(i));
43010b57cec5SDimitry Andric   // If the we have an invalid invoke, don't try to compute the dominance.
43020b57cec5SDimitry Andric   // We already reject it in the invoke specific checks and the dominance
43030b57cec5SDimitry Andric   // computation doesn't handle multiple edges.
43040b57cec5SDimitry Andric   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
43050b57cec5SDimitry Andric     if (II->getNormalDest() == II->getUnwindDest())
43060b57cec5SDimitry Andric       return;
43070b57cec5SDimitry Andric   }
43080b57cec5SDimitry Andric 
43090b57cec5SDimitry Andric   // Quick check whether the def has already been encountered in the same block.
43100b57cec5SDimitry Andric   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
43110b57cec5SDimitry Andric   // uses are defined to happen on the incoming edge, not at the instruction.
43120b57cec5SDimitry Andric   //
43130b57cec5SDimitry Andric   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
43140b57cec5SDimitry Andric   // wrapping an SSA value, assert that we've already encountered it.  See
43150b57cec5SDimitry Andric   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
43160b57cec5SDimitry Andric   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
43170b57cec5SDimitry Andric     return;
43180b57cec5SDimitry Andric 
43190b57cec5SDimitry Andric   const Use &U = I.getOperandUse(i);
43200b57cec5SDimitry Andric   Assert(DT.dominates(Op, U),
43210b57cec5SDimitry Andric          "Instruction does not dominate all uses!", Op, &I);
43220b57cec5SDimitry Andric }
43230b57cec5SDimitry Andric 
43240b57cec5SDimitry Andric void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
43250b57cec5SDimitry Andric   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
43260b57cec5SDimitry Andric          "apply only to pointer types", &I);
43278bcb0991SDimitry Andric   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
43280b57cec5SDimitry Andric          "dereferenceable, dereferenceable_or_null apply only to load"
43298bcb0991SDimitry Andric          " and inttoptr instructions, use attributes for calls or invokes", &I);
43300b57cec5SDimitry Andric   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
43310b57cec5SDimitry Andric          "take one operand!", &I);
43320b57cec5SDimitry Andric   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
43330b57cec5SDimitry Andric   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
43340b57cec5SDimitry Andric          "dereferenceable_or_null metadata value must be an i64!", &I);
43350b57cec5SDimitry Andric }
43360b57cec5SDimitry Andric 
43378bcb0991SDimitry Andric void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
43388bcb0991SDimitry Andric   Assert(MD->getNumOperands() >= 2,
43398bcb0991SDimitry Andric          "!prof annotations should have no less than 2 operands", MD);
43408bcb0991SDimitry Andric 
43418bcb0991SDimitry Andric   // Check first operand.
43428bcb0991SDimitry Andric   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
43438bcb0991SDimitry Andric   Assert(isa<MDString>(MD->getOperand(0)),
43448bcb0991SDimitry Andric          "expected string with name of the !prof annotation", MD);
43458bcb0991SDimitry Andric   MDString *MDS = cast<MDString>(MD->getOperand(0));
43468bcb0991SDimitry Andric   StringRef ProfName = MDS->getString();
43478bcb0991SDimitry Andric 
43488bcb0991SDimitry Andric   // Check consistency of !prof branch_weights metadata.
43498bcb0991SDimitry Andric   if (ProfName.equals("branch_weights")) {
43505ffd83dbSDimitry Andric     if (isa<InvokeInst>(&I)) {
43515ffd83dbSDimitry Andric       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
43525ffd83dbSDimitry Andric              "Wrong number of InvokeInst branch_weights operands", MD);
43535ffd83dbSDimitry Andric     } else {
43548bcb0991SDimitry Andric       unsigned ExpectedNumOperands = 0;
43558bcb0991SDimitry Andric       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
43568bcb0991SDimitry Andric         ExpectedNumOperands = BI->getNumSuccessors();
43578bcb0991SDimitry Andric       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
43588bcb0991SDimitry Andric         ExpectedNumOperands = SI->getNumSuccessors();
43595ffd83dbSDimitry Andric       else if (isa<CallInst>(&I))
43608bcb0991SDimitry Andric         ExpectedNumOperands = 1;
43618bcb0991SDimitry Andric       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
43628bcb0991SDimitry Andric         ExpectedNumOperands = IBI->getNumDestinations();
43638bcb0991SDimitry Andric       else if (isa<SelectInst>(&I))
43648bcb0991SDimitry Andric         ExpectedNumOperands = 2;
43658bcb0991SDimitry Andric       else
43668bcb0991SDimitry Andric         CheckFailed("!prof branch_weights are not allowed for this instruction",
43678bcb0991SDimitry Andric                     MD);
43688bcb0991SDimitry Andric 
43698bcb0991SDimitry Andric       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
43708bcb0991SDimitry Andric              "Wrong number of operands", MD);
43715ffd83dbSDimitry Andric     }
43728bcb0991SDimitry Andric     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
43738bcb0991SDimitry Andric       auto &MDO = MD->getOperand(i);
43748bcb0991SDimitry Andric       Assert(MDO, "second operand should not be null", MD);
43758bcb0991SDimitry Andric       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
43768bcb0991SDimitry Andric              "!prof brunch_weights operand is not a const int");
43778bcb0991SDimitry Andric     }
43788bcb0991SDimitry Andric   }
43798bcb0991SDimitry Andric }
43808bcb0991SDimitry Andric 
4381e8d8bef9SDimitry Andric void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4382e8d8bef9SDimitry Andric   Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
4383e8d8bef9SDimitry Andric   Assert(Annotation->getNumOperands() >= 1,
4384e8d8bef9SDimitry Andric          "annotation must have at least one operand");
4385e8d8bef9SDimitry Andric   for (const MDOperand &Op : Annotation->operands())
4386e8d8bef9SDimitry Andric     Assert(isa<MDString>(Op.get()), "operands must be strings");
4387e8d8bef9SDimitry Andric }
4388e8d8bef9SDimitry Andric 
4389349cc55cSDimitry Andric void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4390349cc55cSDimitry Andric   unsigned NumOps = MD->getNumOperands();
4391349cc55cSDimitry Andric   Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4392349cc55cSDimitry Andric          MD);
4393349cc55cSDimitry Andric   Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4394349cc55cSDimitry Andric          "first scope operand must be self-referential or string", MD);
4395349cc55cSDimitry Andric   if (NumOps == 3)
4396349cc55cSDimitry Andric     Assert(isa<MDString>(MD->getOperand(2)),
4397349cc55cSDimitry Andric            "third scope operand must be string (if used)", MD);
4398349cc55cSDimitry Andric 
4399349cc55cSDimitry Andric   MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4400349cc55cSDimitry Andric   Assert(Domain != nullptr, "second scope operand must be MDNode", MD);
4401349cc55cSDimitry Andric 
4402349cc55cSDimitry Andric   unsigned NumDomainOps = Domain->getNumOperands();
4403349cc55cSDimitry Andric   Assert(NumDomainOps >= 1 && NumDomainOps <= 2,
4404349cc55cSDimitry Andric          "domain must have one or two operands", Domain);
4405349cc55cSDimitry Andric   Assert(Domain->getOperand(0).get() == Domain ||
4406349cc55cSDimitry Andric              isa<MDString>(Domain->getOperand(0)),
4407349cc55cSDimitry Andric          "first domain operand must be self-referential or string", Domain);
4408349cc55cSDimitry Andric   if (NumDomainOps == 2)
4409349cc55cSDimitry Andric     Assert(isa<MDString>(Domain->getOperand(1)),
4410349cc55cSDimitry Andric            "second domain operand must be string (if used)", Domain);
4411349cc55cSDimitry Andric }
4412349cc55cSDimitry Andric 
4413349cc55cSDimitry Andric void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4414349cc55cSDimitry Andric   for (const MDOperand &Op : MD->operands()) {
4415349cc55cSDimitry Andric     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4416349cc55cSDimitry Andric     Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4417349cc55cSDimitry Andric     visitAliasScopeMetadata(OpMD);
4418349cc55cSDimitry Andric   }
4419349cc55cSDimitry Andric }
4420349cc55cSDimitry Andric 
44210b57cec5SDimitry Andric /// verifyInstruction - Verify that an instruction is well formed.
44220b57cec5SDimitry Andric ///
44230b57cec5SDimitry Andric void Verifier::visitInstruction(Instruction &I) {
44240b57cec5SDimitry Andric   BasicBlock *BB = I.getParent();
44250b57cec5SDimitry Andric   Assert(BB, "Instruction not embedded in basic block!", &I);
44260b57cec5SDimitry Andric 
44270b57cec5SDimitry Andric   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
44280b57cec5SDimitry Andric     for (User *U : I.users()) {
44290b57cec5SDimitry Andric       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
44300b57cec5SDimitry Andric              "Only PHI nodes may reference their own value!", &I);
44310b57cec5SDimitry Andric     }
44320b57cec5SDimitry Andric   }
44330b57cec5SDimitry Andric 
44340b57cec5SDimitry Andric   // Check that void typed values don't have names
44350b57cec5SDimitry Andric   Assert(!I.getType()->isVoidTy() || !I.hasName(),
44360b57cec5SDimitry Andric          "Instruction has a name, but provides a void value!", &I);
44370b57cec5SDimitry Andric 
44380b57cec5SDimitry Andric   // Check that the return value of the instruction is either void or a legal
44390b57cec5SDimitry Andric   // value type.
44400b57cec5SDimitry Andric   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
44410b57cec5SDimitry Andric          "Instruction returns a non-scalar type!", &I);
44420b57cec5SDimitry Andric 
44430b57cec5SDimitry Andric   // Check that the instruction doesn't produce metadata. Calls are already
44440b57cec5SDimitry Andric   // checked against the callee type.
44450b57cec5SDimitry Andric   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
44460b57cec5SDimitry Andric          "Invalid use of metadata!", &I);
44470b57cec5SDimitry Andric 
44480b57cec5SDimitry Andric   // Check that all uses of the instruction, if they are instructions
44490b57cec5SDimitry Andric   // themselves, actually have parent basic blocks.  If the use is not an
44500b57cec5SDimitry Andric   // instruction, it is an error!
44510b57cec5SDimitry Andric   for (Use &U : I.uses()) {
44520b57cec5SDimitry Andric     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
44530b57cec5SDimitry Andric       Assert(Used->getParent() != nullptr,
44540b57cec5SDimitry Andric              "Instruction referencing"
44550b57cec5SDimitry Andric              " instruction not embedded in a basic block!",
44560b57cec5SDimitry Andric              &I, Used);
44570b57cec5SDimitry Andric     else {
44580b57cec5SDimitry Andric       CheckFailed("Use of instruction is not an instruction!", U);
44590b57cec5SDimitry Andric       return;
44600b57cec5SDimitry Andric     }
44610b57cec5SDimitry Andric   }
44620b57cec5SDimitry Andric 
44630b57cec5SDimitry Andric   // Get a pointer to the call base of the instruction if it is some form of
44640b57cec5SDimitry Andric   // call.
44650b57cec5SDimitry Andric   const CallBase *CBI = dyn_cast<CallBase>(&I);
44660b57cec5SDimitry Andric 
44670b57cec5SDimitry Andric   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
44680b57cec5SDimitry Andric     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
44690b57cec5SDimitry Andric 
44700b57cec5SDimitry Andric     // Check to make sure that only first-class-values are operands to
44710b57cec5SDimitry Andric     // instructions.
44720b57cec5SDimitry Andric     if (!I.getOperand(i)->getType()->isFirstClassType()) {
44730b57cec5SDimitry Andric       Assert(false, "Instruction operands must be first-class values!", &I);
44740b57cec5SDimitry Andric     }
44750b57cec5SDimitry Andric 
44760b57cec5SDimitry Andric     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4477349cc55cSDimitry Andric       // This code checks whether the function is used as the operand of a
4478349cc55cSDimitry Andric       // clang_arc_attachedcall operand bundle.
4479349cc55cSDimitry Andric       auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4480349cc55cSDimitry Andric                                       int Idx) {
4481349cc55cSDimitry Andric         return CBI && CBI->isOperandBundleOfType(
4482349cc55cSDimitry Andric                           LLVMContext::OB_clang_arc_attachedcall, Idx);
4483349cc55cSDimitry Andric       };
4484349cc55cSDimitry Andric 
44850b57cec5SDimitry Andric       // Check to make sure that the "address of" an intrinsic function is never
4486349cc55cSDimitry Andric       // taken. Ignore cases where the address of the intrinsic function is used
4487349cc55cSDimitry Andric       // as the argument of operand bundle "clang.arc.attachedcall" as those
4488349cc55cSDimitry Andric       // cases are handled in verifyAttachedCallBundle.
4489349cc55cSDimitry Andric       Assert((!F->isIntrinsic() ||
4490349cc55cSDimitry Andric               (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4491349cc55cSDimitry Andric               IsAttachedCallOperand(F, CBI, i)),
44920b57cec5SDimitry Andric              "Cannot take the address of an intrinsic!", &I);
44930b57cec5SDimitry Andric       Assert(
44940b57cec5SDimitry Andric           !F->isIntrinsic() || isa<CallInst>(I) ||
44950b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::donothing ||
4496fe6060f1SDimitry Andric               F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4497fe6060f1SDimitry Andric               F->getIntrinsicID() == Intrinsic::seh_try_end ||
4498fe6060f1SDimitry Andric               F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4499fe6060f1SDimitry Andric               F->getIntrinsicID() == Intrinsic::seh_scope_end ||
45000b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::coro_resume ||
45010b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::coro_destroy ||
45020b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
45030b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
45040b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4505349cc55cSDimitry Andric               F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4506349cc55cSDimitry Andric               IsAttachedCallOperand(F, CBI, i),
45070b57cec5SDimitry Andric           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4508349cc55cSDimitry Andric           "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
45090b57cec5SDimitry Andric           &I);
45100b57cec5SDimitry Andric       Assert(F->getParent() == &M, "Referencing function in another module!",
45110b57cec5SDimitry Andric              &I, &M, F, F->getParent());
45120b57cec5SDimitry Andric     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
45130b57cec5SDimitry Andric       Assert(OpBB->getParent() == BB->getParent(),
45140b57cec5SDimitry Andric              "Referring to a basic block in another function!", &I);
45150b57cec5SDimitry Andric     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
45160b57cec5SDimitry Andric       Assert(OpArg->getParent() == BB->getParent(),
45170b57cec5SDimitry Andric              "Referring to an argument in another function!", &I);
45180b57cec5SDimitry Andric     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
45190b57cec5SDimitry Andric       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
45200b57cec5SDimitry Andric              &M, GV, GV->getParent());
45210b57cec5SDimitry Andric     } else if (isa<Instruction>(I.getOperand(i))) {
45220b57cec5SDimitry Andric       verifyDominatesUse(I, i);
45230b57cec5SDimitry Andric     } else if (isa<InlineAsm>(I.getOperand(i))) {
45240b57cec5SDimitry Andric       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
45250b57cec5SDimitry Andric              "Cannot take the address of an inline asm!", &I);
45260b57cec5SDimitry Andric     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4527fe6060f1SDimitry Andric       if (CE->getType()->isPtrOrPtrVectorTy()) {
45280b57cec5SDimitry Andric         // If we have a ConstantExpr pointer, we need to see if it came from an
4529fe6060f1SDimitry Andric         // illegal bitcast.
45300b57cec5SDimitry Andric         visitConstantExprsRecursively(CE);
45310b57cec5SDimitry Andric       }
45320b57cec5SDimitry Andric     }
45330b57cec5SDimitry Andric   }
45340b57cec5SDimitry Andric 
45350b57cec5SDimitry Andric   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
45360b57cec5SDimitry Andric     Assert(I.getType()->isFPOrFPVectorTy(),
45370b57cec5SDimitry Andric            "fpmath requires a floating point result!", &I);
45380b57cec5SDimitry Andric     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
45390b57cec5SDimitry Andric     if (ConstantFP *CFP0 =
45400b57cec5SDimitry Andric             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
45410b57cec5SDimitry Andric       const APFloat &Accuracy = CFP0->getValueAPF();
45420b57cec5SDimitry Andric       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
45430b57cec5SDimitry Andric              "fpmath accuracy must have float type", &I);
45440b57cec5SDimitry Andric       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
45450b57cec5SDimitry Andric              "fpmath accuracy not a positive number!", &I);
45460b57cec5SDimitry Andric     } else {
45470b57cec5SDimitry Andric       Assert(false, "invalid fpmath accuracy!", &I);
45480b57cec5SDimitry Andric     }
45490b57cec5SDimitry Andric   }
45500b57cec5SDimitry Andric 
45510b57cec5SDimitry Andric   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
45520b57cec5SDimitry Andric     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
45530b57cec5SDimitry Andric            "Ranges are only for loads, calls and invokes!", &I);
45540b57cec5SDimitry Andric     visitRangeMetadata(I, Range, I.getType());
45550b57cec5SDimitry Andric   }
45560b57cec5SDimitry Andric 
4557349cc55cSDimitry Andric   if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4558349cc55cSDimitry Andric     Assert(isa<LoadInst>(I) || isa<StoreInst>(I),
4559349cc55cSDimitry Andric            "invariant.group metadata is only for loads and stores", &I);
4560349cc55cSDimitry Andric   }
4561349cc55cSDimitry Andric 
45620b57cec5SDimitry Andric   if (I.getMetadata(LLVMContext::MD_nonnull)) {
45630b57cec5SDimitry Andric     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
45640b57cec5SDimitry Andric            &I);
45650b57cec5SDimitry Andric     Assert(isa<LoadInst>(I),
45660b57cec5SDimitry Andric            "nonnull applies only to load instructions, use attributes"
45670b57cec5SDimitry Andric            " for calls or invokes",
45680b57cec5SDimitry Andric            &I);
45690b57cec5SDimitry Andric   }
45700b57cec5SDimitry Andric 
45710b57cec5SDimitry Andric   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
45720b57cec5SDimitry Andric     visitDereferenceableMetadata(I, MD);
45730b57cec5SDimitry Andric 
45740b57cec5SDimitry Andric   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
45750b57cec5SDimitry Andric     visitDereferenceableMetadata(I, MD);
45760b57cec5SDimitry Andric 
45770b57cec5SDimitry Andric   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
45780b57cec5SDimitry Andric     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
45790b57cec5SDimitry Andric 
4580349cc55cSDimitry Andric   if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4581349cc55cSDimitry Andric     visitAliasScopeListMetadata(MD);
4582349cc55cSDimitry Andric   if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4583349cc55cSDimitry Andric     visitAliasScopeListMetadata(MD);
4584349cc55cSDimitry Andric 
45850b57cec5SDimitry Andric   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
45860b57cec5SDimitry Andric     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
45870b57cec5SDimitry Andric            &I);
45880b57cec5SDimitry Andric     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
45890b57cec5SDimitry Andric            "use attributes for calls or invokes", &I);
45900b57cec5SDimitry Andric     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
45910b57cec5SDimitry Andric     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
45920b57cec5SDimitry Andric     Assert(CI && CI->getType()->isIntegerTy(64),
45930b57cec5SDimitry Andric            "align metadata value must be an i64!", &I);
45940b57cec5SDimitry Andric     uint64_t Align = CI->getZExtValue();
45950b57cec5SDimitry Andric     Assert(isPowerOf2_64(Align),
45960b57cec5SDimitry Andric            "align metadata value must be a power of 2!", &I);
45970b57cec5SDimitry Andric     Assert(Align <= Value::MaximumAlignment,
45980b57cec5SDimitry Andric            "alignment is larger that implementation defined limit", &I);
45990b57cec5SDimitry Andric   }
46000b57cec5SDimitry Andric 
46018bcb0991SDimitry Andric   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
46028bcb0991SDimitry Andric     visitProfMetadata(I, MD);
46038bcb0991SDimitry Andric 
4604e8d8bef9SDimitry Andric   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4605e8d8bef9SDimitry Andric     visitAnnotationMetadata(Annotation);
4606e8d8bef9SDimitry Andric 
46070b57cec5SDimitry Andric   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
46080b57cec5SDimitry Andric     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
46095ffd83dbSDimitry Andric     visitMDNode(*N, AreDebugLocsAllowed::Yes);
46100b57cec5SDimitry Andric   }
46110b57cec5SDimitry Andric 
46128bcb0991SDimitry Andric   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
46130b57cec5SDimitry Andric     verifyFragmentExpression(*DII);
46148bcb0991SDimitry Andric     verifyNotEntryValue(*DII);
46158bcb0991SDimitry Andric   }
46160b57cec5SDimitry Andric 
46175ffd83dbSDimitry Andric   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
46185ffd83dbSDimitry Andric   I.getAllMetadata(MDs);
46195ffd83dbSDimitry Andric   for (auto Attachment : MDs) {
46205ffd83dbSDimitry Andric     unsigned Kind = Attachment.first;
46215ffd83dbSDimitry Andric     auto AllowLocs =
46225ffd83dbSDimitry Andric         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
46235ffd83dbSDimitry Andric             ? AreDebugLocsAllowed::Yes
46245ffd83dbSDimitry Andric             : AreDebugLocsAllowed::No;
46255ffd83dbSDimitry Andric     visitMDNode(*Attachment.second, AllowLocs);
46265ffd83dbSDimitry Andric   }
46275ffd83dbSDimitry Andric 
46280b57cec5SDimitry Andric   InstsInThisBlock.insert(&I);
46290b57cec5SDimitry Andric }
46300b57cec5SDimitry Andric 
46310b57cec5SDimitry Andric /// Allow intrinsics to be verified in different ways.
46320b57cec5SDimitry Andric void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
46330b57cec5SDimitry Andric   Function *IF = Call.getCalledFunction();
46340b57cec5SDimitry Andric   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
46350b57cec5SDimitry Andric          IF);
46360b57cec5SDimitry Andric 
46370b57cec5SDimitry Andric   // Verify that the intrinsic prototype lines up with what the .td files
46380b57cec5SDimitry Andric   // describe.
46390b57cec5SDimitry Andric   FunctionType *IFTy = IF->getFunctionType();
46400b57cec5SDimitry Andric   bool IsVarArg = IFTy->isVarArg();
46410b57cec5SDimitry Andric 
46420b57cec5SDimitry Andric   SmallVector<Intrinsic::IITDescriptor, 8> Table;
46430b57cec5SDimitry Andric   getIntrinsicInfoTableEntries(ID, Table);
46440b57cec5SDimitry Andric   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
46450b57cec5SDimitry Andric 
46460b57cec5SDimitry Andric   // Walk the descriptors to extract overloaded types.
46470b57cec5SDimitry Andric   SmallVector<Type *, 4> ArgTys;
46480b57cec5SDimitry Andric   Intrinsic::MatchIntrinsicTypesResult Res =
46490b57cec5SDimitry Andric       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
46500b57cec5SDimitry Andric   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
46510b57cec5SDimitry Andric          "Intrinsic has incorrect return type!", IF);
46520b57cec5SDimitry Andric   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
46530b57cec5SDimitry Andric          "Intrinsic has incorrect argument type!", IF);
46540b57cec5SDimitry Andric 
46550b57cec5SDimitry Andric   // Verify if the intrinsic call matches the vararg property.
46560b57cec5SDimitry Andric   if (IsVarArg)
46570b57cec5SDimitry Andric     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
46580b57cec5SDimitry Andric            "Intrinsic was not defined with variable arguments!", IF);
46590b57cec5SDimitry Andric   else
46600b57cec5SDimitry Andric     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
46610b57cec5SDimitry Andric            "Callsite was not defined with variable arguments!", IF);
46620b57cec5SDimitry Andric 
46630b57cec5SDimitry Andric   // All descriptors should be absorbed by now.
46640b57cec5SDimitry Andric   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
46650b57cec5SDimitry Andric 
46660b57cec5SDimitry Andric   // Now that we have the intrinsic ID and the actual argument types (and we
46670b57cec5SDimitry Andric   // know they are legal for the intrinsic!) get the intrinsic name through the
46680b57cec5SDimitry Andric   // usual means.  This allows us to verify the mangling of argument types into
46690b57cec5SDimitry Andric   // the name.
4670fe6060f1SDimitry Andric   const std::string ExpectedName =
4671fe6060f1SDimitry Andric       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
46720b57cec5SDimitry Andric   Assert(ExpectedName == IF->getName(),
46730b57cec5SDimitry Andric          "Intrinsic name not mangled correctly for type arguments! "
46740b57cec5SDimitry Andric          "Should be: " +
46750b57cec5SDimitry Andric              ExpectedName,
46760b57cec5SDimitry Andric          IF);
46770b57cec5SDimitry Andric 
46780b57cec5SDimitry Andric   // If the intrinsic takes MDNode arguments, verify that they are either global
46790b57cec5SDimitry Andric   // or are local to *this* function.
4680fe6060f1SDimitry Andric   for (Value *V : Call.args()) {
46810b57cec5SDimitry Andric     if (auto *MD = dyn_cast<MetadataAsValue>(V))
46820b57cec5SDimitry Andric       visitMetadataAsValue(*MD, Call.getCaller());
4683fe6060f1SDimitry Andric     if (auto *Const = dyn_cast<Constant>(V))
4684fe6060f1SDimitry Andric       Assert(!Const->getType()->isX86_AMXTy(),
4685fe6060f1SDimitry Andric              "const x86_amx is not allowed in argument!");
4686fe6060f1SDimitry Andric   }
46870b57cec5SDimitry Andric 
46880b57cec5SDimitry Andric   switch (ID) {
46890b57cec5SDimitry Andric   default:
46900b57cec5SDimitry Andric     break;
46915ffd83dbSDimitry Andric   case Intrinsic::assume: {
46925ffd83dbSDimitry Andric     for (auto &Elem : Call.bundle_op_infos()) {
46935ffd83dbSDimitry Andric       Assert(Elem.Tag->getKey() == "ignore" ||
46945ffd83dbSDimitry Andric                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4695349cc55cSDimitry Andric              "tags must be valid attribute names", Call);
46965ffd83dbSDimitry Andric       Attribute::AttrKind Kind =
46975ffd83dbSDimitry Andric           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4698e8d8bef9SDimitry Andric       unsigned ArgCount = Elem.End - Elem.Begin;
4699e8d8bef9SDimitry Andric       if (Kind == Attribute::Alignment) {
4700e8d8bef9SDimitry Andric         Assert(ArgCount <= 3 && ArgCount >= 2,
4701349cc55cSDimitry Andric                "alignment assumptions should have 2 or 3 arguments", Call);
4702e8d8bef9SDimitry Andric         Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4703349cc55cSDimitry Andric                "first argument should be a pointer", Call);
4704e8d8bef9SDimitry Andric         Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4705349cc55cSDimitry Andric                "second argument should be an integer", Call);
4706e8d8bef9SDimitry Andric         if (ArgCount == 3)
4707e8d8bef9SDimitry Andric           Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4708349cc55cSDimitry Andric                  "third argument should be an integer if present", Call);
4709e8d8bef9SDimitry Andric         return;
4710e8d8bef9SDimitry Andric       }
4711349cc55cSDimitry Andric       Assert(ArgCount <= 2, "too many arguments", Call);
47125ffd83dbSDimitry Andric       if (Kind == Attribute::None)
47135ffd83dbSDimitry Andric         break;
4714fe6060f1SDimitry Andric       if (Attribute::isIntAttrKind(Kind)) {
4715349cc55cSDimitry Andric         Assert(ArgCount == 2, "this attribute should have 2 arguments", Call);
47165ffd83dbSDimitry Andric         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4717349cc55cSDimitry Andric                "the second argument should be a constant integral value", Call);
4718fe6060f1SDimitry Andric       } else if (Attribute::canUseAsParamAttr(Kind)) {
4719349cc55cSDimitry Andric         Assert((ArgCount) == 1, "this attribute should have one argument",
4720349cc55cSDimitry Andric                Call);
4721fe6060f1SDimitry Andric       } else if (Attribute::canUseAsFnAttr(Kind)) {
4722349cc55cSDimitry Andric         Assert((ArgCount) == 0, "this attribute has no argument", Call);
47235ffd83dbSDimitry Andric       }
47245ffd83dbSDimitry Andric     }
47255ffd83dbSDimitry Andric     break;
47265ffd83dbSDimitry Andric   }
47270b57cec5SDimitry Andric   case Intrinsic::coro_id: {
47280b57cec5SDimitry Andric     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
47290b57cec5SDimitry Andric     if (isa<ConstantPointerNull>(InfoArg))
47300b57cec5SDimitry Andric       break;
47310b57cec5SDimitry Andric     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
47320b57cec5SDimitry Andric     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4733fe6060f1SDimitry Andric            "info argument of llvm.coro.id must refer to an initialized "
47340b57cec5SDimitry Andric            "constant");
47350b57cec5SDimitry Andric     Constant *Init = GV->getInitializer();
47360b57cec5SDimitry Andric     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4737fe6060f1SDimitry Andric            "info argument of llvm.coro.id must refer to either a struct or "
47380b57cec5SDimitry Andric            "an array");
47390b57cec5SDimitry Andric     break;
47400b57cec5SDimitry Andric   }
47415ffd83dbSDimitry Andric #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4742480093f4SDimitry Andric   case Intrinsic::INTRINSIC:
4743480093f4SDimitry Andric #include "llvm/IR/ConstrainedOps.def"
47440b57cec5SDimitry Andric     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
47450b57cec5SDimitry Andric     break;
47460b57cec5SDimitry Andric   case Intrinsic::dbg_declare: // llvm.dbg.declare
47470b57cec5SDimitry Andric     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
47480b57cec5SDimitry Andric            "invalid llvm.dbg.declare intrinsic call 1", Call);
47490b57cec5SDimitry Andric     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
47500b57cec5SDimitry Andric     break;
47510b57cec5SDimitry Andric   case Intrinsic::dbg_addr: // llvm.dbg.addr
47520b57cec5SDimitry Andric     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
47530b57cec5SDimitry Andric     break;
47540b57cec5SDimitry Andric   case Intrinsic::dbg_value: // llvm.dbg.value
47550b57cec5SDimitry Andric     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
47560b57cec5SDimitry Andric     break;
47570b57cec5SDimitry Andric   case Intrinsic::dbg_label: // llvm.dbg.label
47580b57cec5SDimitry Andric     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
47590b57cec5SDimitry Andric     break;
47600b57cec5SDimitry Andric   case Intrinsic::memcpy:
47615ffd83dbSDimitry Andric   case Intrinsic::memcpy_inline:
47620b57cec5SDimitry Andric   case Intrinsic::memmove:
47630b57cec5SDimitry Andric   case Intrinsic::memset: {
47640b57cec5SDimitry Andric     const auto *MI = cast<MemIntrinsic>(&Call);
47650b57cec5SDimitry Andric     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
47660b57cec5SDimitry Andric       return Alignment == 0 || isPowerOf2_32(Alignment);
47670b57cec5SDimitry Andric     };
47680b57cec5SDimitry Andric     Assert(IsValidAlignment(MI->getDestAlignment()),
47690b57cec5SDimitry Andric            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
47700b57cec5SDimitry Andric            Call);
47710b57cec5SDimitry Andric     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
47720b57cec5SDimitry Andric       Assert(IsValidAlignment(MTI->getSourceAlignment()),
47730b57cec5SDimitry Andric              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
47740b57cec5SDimitry Andric              Call);
47750b57cec5SDimitry Andric     }
47760b57cec5SDimitry Andric 
47770b57cec5SDimitry Andric     break;
47780b57cec5SDimitry Andric   }
47790b57cec5SDimitry Andric   case Intrinsic::memcpy_element_unordered_atomic:
47800b57cec5SDimitry Andric   case Intrinsic::memmove_element_unordered_atomic:
47810b57cec5SDimitry Andric   case Intrinsic::memset_element_unordered_atomic: {
47820b57cec5SDimitry Andric     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
47830b57cec5SDimitry Andric 
47840b57cec5SDimitry Andric     ConstantInt *ElementSizeCI =
47850b57cec5SDimitry Andric         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
47860b57cec5SDimitry Andric     const APInt &ElementSizeVal = ElementSizeCI->getValue();
47870b57cec5SDimitry Andric     Assert(ElementSizeVal.isPowerOf2(),
47880b57cec5SDimitry Andric            "element size of the element-wise atomic memory intrinsic "
47890b57cec5SDimitry Andric            "must be a power of 2",
47900b57cec5SDimitry Andric            Call);
47910b57cec5SDimitry Andric 
47920b57cec5SDimitry Andric     auto IsValidAlignment = [&](uint64_t Alignment) {
47930b57cec5SDimitry Andric       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
47940b57cec5SDimitry Andric     };
47950b57cec5SDimitry Andric     uint64_t DstAlignment = AMI->getDestAlignment();
47960b57cec5SDimitry Andric     Assert(IsValidAlignment(DstAlignment),
47970b57cec5SDimitry Andric            "incorrect alignment of the destination argument", Call);
47980b57cec5SDimitry Andric     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
47990b57cec5SDimitry Andric       uint64_t SrcAlignment = AMT->getSourceAlignment();
48000b57cec5SDimitry Andric       Assert(IsValidAlignment(SrcAlignment),
48010b57cec5SDimitry Andric              "incorrect alignment of the source argument", Call);
48020b57cec5SDimitry Andric     }
48030b57cec5SDimitry Andric     break;
48040b57cec5SDimitry Andric   }
48055ffd83dbSDimitry Andric   case Intrinsic::call_preallocated_setup: {
48065ffd83dbSDimitry Andric     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
48075ffd83dbSDimitry Andric     Assert(NumArgs != nullptr,
48085ffd83dbSDimitry Andric            "llvm.call.preallocated.setup argument must be a constant");
48095ffd83dbSDimitry Andric     bool FoundCall = false;
48105ffd83dbSDimitry Andric     for (User *U : Call.users()) {
48115ffd83dbSDimitry Andric       auto *UseCall = dyn_cast<CallBase>(U);
48125ffd83dbSDimitry Andric       Assert(UseCall != nullptr,
48135ffd83dbSDimitry Andric              "Uses of llvm.call.preallocated.setup must be calls");
48145ffd83dbSDimitry Andric       const Function *Fn = UseCall->getCalledFunction();
48155ffd83dbSDimitry Andric       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
48165ffd83dbSDimitry Andric         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
48175ffd83dbSDimitry Andric         Assert(AllocArgIndex != nullptr,
48185ffd83dbSDimitry Andric                "llvm.call.preallocated.alloc arg index must be a constant");
48195ffd83dbSDimitry Andric         auto AllocArgIndexInt = AllocArgIndex->getValue();
48205ffd83dbSDimitry Andric         Assert(AllocArgIndexInt.sge(0) &&
48215ffd83dbSDimitry Andric                    AllocArgIndexInt.slt(NumArgs->getValue()),
48225ffd83dbSDimitry Andric                "llvm.call.preallocated.alloc arg index must be between 0 and "
48235ffd83dbSDimitry Andric                "corresponding "
48245ffd83dbSDimitry Andric                "llvm.call.preallocated.setup's argument count");
48255ffd83dbSDimitry Andric       } else if (Fn && Fn->getIntrinsicID() ==
48265ffd83dbSDimitry Andric                            Intrinsic::call_preallocated_teardown) {
48275ffd83dbSDimitry Andric         // nothing to do
48285ffd83dbSDimitry Andric       } else {
48295ffd83dbSDimitry Andric         Assert(!FoundCall, "Can have at most one call corresponding to a "
48305ffd83dbSDimitry Andric                            "llvm.call.preallocated.setup");
48315ffd83dbSDimitry Andric         FoundCall = true;
48325ffd83dbSDimitry Andric         size_t NumPreallocatedArgs = 0;
4833349cc55cSDimitry Andric         for (unsigned i = 0; i < UseCall->arg_size(); i++) {
48345ffd83dbSDimitry Andric           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
48355ffd83dbSDimitry Andric             ++NumPreallocatedArgs;
48365ffd83dbSDimitry Andric           }
48375ffd83dbSDimitry Andric         }
48385ffd83dbSDimitry Andric         Assert(NumPreallocatedArgs != 0,
48395ffd83dbSDimitry Andric                "cannot use preallocated intrinsics on a call without "
48405ffd83dbSDimitry Andric                "preallocated arguments");
48415ffd83dbSDimitry Andric         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
48425ffd83dbSDimitry Andric                "llvm.call.preallocated.setup arg size must be equal to number "
48435ffd83dbSDimitry Andric                "of preallocated arguments "
48445ffd83dbSDimitry Andric                "at call site",
48455ffd83dbSDimitry Andric                Call, *UseCall);
48465ffd83dbSDimitry Andric         // getOperandBundle() cannot be called if more than one of the operand
48475ffd83dbSDimitry Andric         // bundle exists. There is already a check elsewhere for this, so skip
48485ffd83dbSDimitry Andric         // here if we see more than one.
48495ffd83dbSDimitry Andric         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
48505ffd83dbSDimitry Andric             1) {
48515ffd83dbSDimitry Andric           return;
48525ffd83dbSDimitry Andric         }
48535ffd83dbSDimitry Andric         auto PreallocatedBundle =
48545ffd83dbSDimitry Andric             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
48555ffd83dbSDimitry Andric         Assert(PreallocatedBundle,
48565ffd83dbSDimitry Andric                "Use of llvm.call.preallocated.setup outside intrinsics "
48575ffd83dbSDimitry Andric                "must be in \"preallocated\" operand bundle");
48585ffd83dbSDimitry Andric         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
48595ffd83dbSDimitry Andric                "preallocated bundle must have token from corresponding "
48605ffd83dbSDimitry Andric                "llvm.call.preallocated.setup");
48615ffd83dbSDimitry Andric       }
48625ffd83dbSDimitry Andric     }
48635ffd83dbSDimitry Andric     break;
48645ffd83dbSDimitry Andric   }
48655ffd83dbSDimitry Andric   case Intrinsic::call_preallocated_arg: {
48665ffd83dbSDimitry Andric     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
48675ffd83dbSDimitry Andric     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
48685ffd83dbSDimitry Andric                         Intrinsic::call_preallocated_setup,
48695ffd83dbSDimitry Andric            "llvm.call.preallocated.arg token argument must be a "
48705ffd83dbSDimitry Andric            "llvm.call.preallocated.setup");
48715ffd83dbSDimitry Andric     Assert(Call.hasFnAttr(Attribute::Preallocated),
48725ffd83dbSDimitry Andric            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
48735ffd83dbSDimitry Andric            "call site attribute");
48745ffd83dbSDimitry Andric     break;
48755ffd83dbSDimitry Andric   }
48765ffd83dbSDimitry Andric   case Intrinsic::call_preallocated_teardown: {
48775ffd83dbSDimitry Andric     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
48785ffd83dbSDimitry Andric     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
48795ffd83dbSDimitry Andric                         Intrinsic::call_preallocated_setup,
48805ffd83dbSDimitry Andric            "llvm.call.preallocated.teardown token argument must be a "
48815ffd83dbSDimitry Andric            "llvm.call.preallocated.setup");
48825ffd83dbSDimitry Andric     break;
48835ffd83dbSDimitry Andric   }
48840b57cec5SDimitry Andric   case Intrinsic::gcroot:
48850b57cec5SDimitry Andric   case Intrinsic::gcwrite:
48860b57cec5SDimitry Andric   case Intrinsic::gcread:
48870b57cec5SDimitry Andric     if (ID == Intrinsic::gcroot) {
48880b57cec5SDimitry Andric       AllocaInst *AI =
48890b57cec5SDimitry Andric           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
48900b57cec5SDimitry Andric       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
48910b57cec5SDimitry Andric       Assert(isa<Constant>(Call.getArgOperand(1)),
48920b57cec5SDimitry Andric              "llvm.gcroot parameter #2 must be a constant.", Call);
48930b57cec5SDimitry Andric       if (!AI->getAllocatedType()->isPointerTy()) {
48940b57cec5SDimitry Andric         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
48950b57cec5SDimitry Andric                "llvm.gcroot parameter #1 must either be a pointer alloca, "
48960b57cec5SDimitry Andric                "or argument #2 must be a non-null constant.",
48970b57cec5SDimitry Andric                Call);
48980b57cec5SDimitry Andric       }
48990b57cec5SDimitry Andric     }
49000b57cec5SDimitry Andric 
49010b57cec5SDimitry Andric     Assert(Call.getParent()->getParent()->hasGC(),
49020b57cec5SDimitry Andric            "Enclosing function does not use GC.", Call);
49030b57cec5SDimitry Andric     break;
49040b57cec5SDimitry Andric   case Intrinsic::init_trampoline:
49050b57cec5SDimitry Andric     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
49060b57cec5SDimitry Andric            "llvm.init_trampoline parameter #2 must resolve to a function.",
49070b57cec5SDimitry Andric            Call);
49080b57cec5SDimitry Andric     break;
49090b57cec5SDimitry Andric   case Intrinsic::prefetch:
49100b57cec5SDimitry Andric     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
49110b57cec5SDimitry Andric            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
49120b57cec5SDimitry Andric            "invalid arguments to llvm.prefetch", Call);
49130b57cec5SDimitry Andric     break;
49140b57cec5SDimitry Andric   case Intrinsic::stackprotector:
49150b57cec5SDimitry Andric     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
49160b57cec5SDimitry Andric            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
49170b57cec5SDimitry Andric     break;
49180b57cec5SDimitry Andric   case Intrinsic::localescape: {
49190b57cec5SDimitry Andric     BasicBlock *BB = Call.getParent();
49200b57cec5SDimitry Andric     Assert(BB == &BB->getParent()->front(),
49210b57cec5SDimitry Andric            "llvm.localescape used outside of entry block", Call);
49220b57cec5SDimitry Andric     Assert(!SawFrameEscape,
49230b57cec5SDimitry Andric            "multiple calls to llvm.localescape in one function", Call);
49240b57cec5SDimitry Andric     for (Value *Arg : Call.args()) {
49250b57cec5SDimitry Andric       if (isa<ConstantPointerNull>(Arg))
49260b57cec5SDimitry Andric         continue; // Null values are allowed as placeholders.
49270b57cec5SDimitry Andric       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
49280b57cec5SDimitry Andric       Assert(AI && AI->isStaticAlloca(),
49290b57cec5SDimitry Andric              "llvm.localescape only accepts static allocas", Call);
49300b57cec5SDimitry Andric     }
4931349cc55cSDimitry Andric     FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
49320b57cec5SDimitry Andric     SawFrameEscape = true;
49330b57cec5SDimitry Andric     break;
49340b57cec5SDimitry Andric   }
49350b57cec5SDimitry Andric   case Intrinsic::localrecover: {
49360b57cec5SDimitry Andric     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
49370b57cec5SDimitry Andric     Function *Fn = dyn_cast<Function>(FnArg);
49380b57cec5SDimitry Andric     Assert(Fn && !Fn->isDeclaration(),
49390b57cec5SDimitry Andric            "llvm.localrecover first "
49400b57cec5SDimitry Andric            "argument must be function defined in this module",
49410b57cec5SDimitry Andric            Call);
49420b57cec5SDimitry Andric     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
49430b57cec5SDimitry Andric     auto &Entry = FrameEscapeInfo[Fn];
49440b57cec5SDimitry Andric     Entry.second = unsigned(
49450b57cec5SDimitry Andric         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
49460b57cec5SDimitry Andric     break;
49470b57cec5SDimitry Andric   }
49480b57cec5SDimitry Andric 
49490b57cec5SDimitry Andric   case Intrinsic::experimental_gc_statepoint:
49500b57cec5SDimitry Andric     if (auto *CI = dyn_cast<CallInst>(&Call))
49510b57cec5SDimitry Andric       Assert(!CI->isInlineAsm(),
49520b57cec5SDimitry Andric              "gc.statepoint support for inline assembly unimplemented", CI);
49530b57cec5SDimitry Andric     Assert(Call.getParent()->getParent()->hasGC(),
49540b57cec5SDimitry Andric            "Enclosing function does not use GC.", Call);
49550b57cec5SDimitry Andric 
49560b57cec5SDimitry Andric     verifyStatepoint(Call);
49570b57cec5SDimitry Andric     break;
49580b57cec5SDimitry Andric   case Intrinsic::experimental_gc_result: {
49590b57cec5SDimitry Andric     Assert(Call.getParent()->getParent()->hasGC(),
49600b57cec5SDimitry Andric            "Enclosing function does not use GC.", Call);
49610b57cec5SDimitry Andric     // Are we tied to a statepoint properly?
49620b57cec5SDimitry Andric     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
49630b57cec5SDimitry Andric     const Function *StatepointFn =
49640b57cec5SDimitry Andric         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
49650b57cec5SDimitry Andric     Assert(StatepointFn && StatepointFn->isDeclaration() &&
49660b57cec5SDimitry Andric                StatepointFn->getIntrinsicID() ==
49670b57cec5SDimitry Andric                    Intrinsic::experimental_gc_statepoint,
49680b57cec5SDimitry Andric            "gc.result operand #1 must be from a statepoint", Call,
49690b57cec5SDimitry Andric            Call.getArgOperand(0));
49700b57cec5SDimitry Andric 
49710b57cec5SDimitry Andric     // Assert that result type matches wrapped callee.
49720b57cec5SDimitry Andric     const Value *Target = StatepointCall->getArgOperand(2);
49730b57cec5SDimitry Andric     auto *PT = cast<PointerType>(Target->getType());
49740b57cec5SDimitry Andric     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
49750b57cec5SDimitry Andric     Assert(Call.getType() == TargetFuncType->getReturnType(),
49760b57cec5SDimitry Andric            "gc.result result type does not match wrapped callee", Call);
49770b57cec5SDimitry Andric     break;
49780b57cec5SDimitry Andric   }
49790b57cec5SDimitry Andric   case Intrinsic::experimental_gc_relocate: {
4980349cc55cSDimitry Andric     Assert(Call.arg_size() == 3, "wrong number of arguments", Call);
49810b57cec5SDimitry Andric 
49820b57cec5SDimitry Andric     Assert(isa<PointerType>(Call.getType()->getScalarType()),
49830b57cec5SDimitry Andric            "gc.relocate must return a pointer or a vector of pointers", Call);
49840b57cec5SDimitry Andric 
49850b57cec5SDimitry Andric     // Check that this relocate is correctly tied to the statepoint
49860b57cec5SDimitry Andric 
49870b57cec5SDimitry Andric     // This is case for relocate on the unwinding path of an invoke statepoint
49880b57cec5SDimitry Andric     if (LandingPadInst *LandingPad =
49890b57cec5SDimitry Andric             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
49900b57cec5SDimitry Andric 
49910b57cec5SDimitry Andric       const BasicBlock *InvokeBB =
49920b57cec5SDimitry Andric           LandingPad->getParent()->getUniquePredecessor();
49930b57cec5SDimitry Andric 
49940b57cec5SDimitry Andric       // Landingpad relocates should have only one predecessor with invoke
49950b57cec5SDimitry Andric       // statepoint terminator
49960b57cec5SDimitry Andric       Assert(InvokeBB, "safepoints should have unique landingpads",
49970b57cec5SDimitry Andric              LandingPad->getParent());
49980b57cec5SDimitry Andric       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
49990b57cec5SDimitry Andric              InvokeBB);
50005ffd83dbSDimitry Andric       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
50010b57cec5SDimitry Andric              "gc relocate should be linked to a statepoint", InvokeBB);
50020b57cec5SDimitry Andric     } else {
50030b57cec5SDimitry Andric       // In all other cases relocate should be tied to the statepoint directly.
50040b57cec5SDimitry Andric       // This covers relocates on a normal return path of invoke statepoint and
50050b57cec5SDimitry Andric       // relocates of a call statepoint.
50060b57cec5SDimitry Andric       auto Token = Call.getArgOperand(0);
50075ffd83dbSDimitry Andric       Assert(isa<GCStatepointInst>(Token),
50080b57cec5SDimitry Andric              "gc relocate is incorrectly tied to the statepoint", Call, Token);
50090b57cec5SDimitry Andric     }
50100b57cec5SDimitry Andric 
50110b57cec5SDimitry Andric     // Verify rest of the relocate arguments.
50120b57cec5SDimitry Andric     const CallBase &StatepointCall =
50135ffd83dbSDimitry Andric       *cast<GCRelocateInst>(Call).getStatepoint();
50140b57cec5SDimitry Andric 
50150b57cec5SDimitry Andric     // Both the base and derived must be piped through the safepoint.
50160b57cec5SDimitry Andric     Value *Base = Call.getArgOperand(1);
50170b57cec5SDimitry Andric     Assert(isa<ConstantInt>(Base),
50180b57cec5SDimitry Andric            "gc.relocate operand #2 must be integer offset", Call);
50190b57cec5SDimitry Andric 
50200b57cec5SDimitry Andric     Value *Derived = Call.getArgOperand(2);
50210b57cec5SDimitry Andric     Assert(isa<ConstantInt>(Derived),
50220b57cec5SDimitry Andric            "gc.relocate operand #3 must be integer offset", Call);
50230b57cec5SDimitry Andric 
50245ffd83dbSDimitry Andric     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
50255ffd83dbSDimitry Andric     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
50265ffd83dbSDimitry Andric 
50270b57cec5SDimitry Andric     // Check the bounds
50285ffd83dbSDimitry Andric     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
50295ffd83dbSDimitry Andric       Assert(BaseIndex < Opt->Inputs.size(),
50300b57cec5SDimitry Andric              "gc.relocate: statepoint base index out of bounds", Call);
50315ffd83dbSDimitry Andric       Assert(DerivedIndex < Opt->Inputs.size(),
50325ffd83dbSDimitry Andric              "gc.relocate: statepoint derived index out of bounds", Call);
50335ffd83dbSDimitry Andric     }
50340b57cec5SDimitry Andric 
50350b57cec5SDimitry Andric     // Relocated value must be either a pointer type or vector-of-pointer type,
50360b57cec5SDimitry Andric     // but gc_relocate does not need to return the same pointer type as the
50370b57cec5SDimitry Andric     // relocated pointer. It can be casted to the correct type later if it's
50380b57cec5SDimitry Andric     // desired. However, they must have the same address space and 'vectorness'
50390b57cec5SDimitry Andric     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
50400b57cec5SDimitry Andric     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
50410b57cec5SDimitry Andric            "gc.relocate: relocated value must be a gc pointer", Call);
50420b57cec5SDimitry Andric 
50430b57cec5SDimitry Andric     auto ResultType = Call.getType();
50440b57cec5SDimitry Andric     auto DerivedType = Relocate.getDerivedPtr()->getType();
50450b57cec5SDimitry Andric     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
50460b57cec5SDimitry Andric            "gc.relocate: vector relocates to vector and pointer to pointer",
50470b57cec5SDimitry Andric            Call);
50480b57cec5SDimitry Andric     Assert(
50490b57cec5SDimitry Andric         ResultType->getPointerAddressSpace() ==
50500b57cec5SDimitry Andric             DerivedType->getPointerAddressSpace(),
50510b57cec5SDimitry Andric         "gc.relocate: relocating a pointer shouldn't change its address space",
50520b57cec5SDimitry Andric         Call);
50530b57cec5SDimitry Andric     break;
50540b57cec5SDimitry Andric   }
50550b57cec5SDimitry Andric   case Intrinsic::eh_exceptioncode:
50560b57cec5SDimitry Andric   case Intrinsic::eh_exceptionpointer: {
50570b57cec5SDimitry Andric     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
50580b57cec5SDimitry Andric            "eh.exceptionpointer argument must be a catchpad", Call);
50590b57cec5SDimitry Andric     break;
50600b57cec5SDimitry Andric   }
50615ffd83dbSDimitry Andric   case Intrinsic::get_active_lane_mask: {
50625ffd83dbSDimitry Andric     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
50635ffd83dbSDimitry Andric            "vector", Call);
50645ffd83dbSDimitry Andric     auto *ElemTy = Call.getType()->getScalarType();
50655ffd83dbSDimitry Andric     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
50665ffd83dbSDimitry Andric            "i1", Call);
50675ffd83dbSDimitry Andric     break;
50685ffd83dbSDimitry Andric   }
50690b57cec5SDimitry Andric   case Intrinsic::masked_load: {
50700b57cec5SDimitry Andric     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
50710b57cec5SDimitry Andric            Call);
50720b57cec5SDimitry Andric 
50730b57cec5SDimitry Andric     Value *Ptr = Call.getArgOperand(0);
50740b57cec5SDimitry Andric     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
50750b57cec5SDimitry Andric     Value *Mask = Call.getArgOperand(2);
50760b57cec5SDimitry Andric     Value *PassThru = Call.getArgOperand(3);
50770b57cec5SDimitry Andric     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
50780b57cec5SDimitry Andric            Call);
50790b57cec5SDimitry Andric     Assert(Alignment->getValue().isPowerOf2(),
50800b57cec5SDimitry Andric            "masked_load: alignment must be a power of 2", Call);
50810b57cec5SDimitry Andric 
5082fe6060f1SDimitry Andric     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5083fe6060f1SDimitry Andric     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
50840b57cec5SDimitry Andric            "masked_load: return must match pointer type", Call);
5085fe6060f1SDimitry Andric     Assert(PassThru->getType() == Call.getType(),
5086fe6060f1SDimitry Andric            "masked_load: pass through and return type must match", Call);
50875ffd83dbSDimitry Andric     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5088fe6060f1SDimitry Andric                cast<VectorType>(Call.getType())->getElementCount(),
5089fe6060f1SDimitry Andric            "masked_load: vector mask must be same length as return", Call);
50900b57cec5SDimitry Andric     break;
50910b57cec5SDimitry Andric   }
50920b57cec5SDimitry Andric   case Intrinsic::masked_store: {
50930b57cec5SDimitry Andric     Value *Val = Call.getArgOperand(0);
50940b57cec5SDimitry Andric     Value *Ptr = Call.getArgOperand(1);
50950b57cec5SDimitry Andric     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
50960b57cec5SDimitry Andric     Value *Mask = Call.getArgOperand(3);
50970b57cec5SDimitry Andric     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
50980b57cec5SDimitry Andric            Call);
50990b57cec5SDimitry Andric     Assert(Alignment->getValue().isPowerOf2(),
51000b57cec5SDimitry Andric            "masked_store: alignment must be a power of 2", Call);
51010b57cec5SDimitry Andric 
5102fe6060f1SDimitry Andric     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5103fe6060f1SDimitry Andric     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
51040b57cec5SDimitry Andric            "masked_store: storee must match pointer type", Call);
51055ffd83dbSDimitry Andric     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5106fe6060f1SDimitry Andric                cast<VectorType>(Val->getType())->getElementCount(),
5107fe6060f1SDimitry Andric            "masked_store: vector mask must be same length as value", Call);
51080b57cec5SDimitry Andric     break;
51090b57cec5SDimitry Andric   }
51100b57cec5SDimitry Andric 
51115ffd83dbSDimitry Andric   case Intrinsic::masked_gather: {
51125ffd83dbSDimitry Andric     const APInt &Alignment =
51135ffd83dbSDimitry Andric         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5114349cc55cSDimitry Andric     Assert(Alignment.isZero() || Alignment.isPowerOf2(),
51155ffd83dbSDimitry Andric            "masked_gather: alignment must be 0 or a power of 2", Call);
51165ffd83dbSDimitry Andric     break;
51175ffd83dbSDimitry Andric   }
51185ffd83dbSDimitry Andric   case Intrinsic::masked_scatter: {
51195ffd83dbSDimitry Andric     const APInt &Alignment =
51205ffd83dbSDimitry Andric         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5121349cc55cSDimitry Andric     Assert(Alignment.isZero() || Alignment.isPowerOf2(),
51225ffd83dbSDimitry Andric            "masked_scatter: alignment must be 0 or a power of 2", Call);
51235ffd83dbSDimitry Andric     break;
51245ffd83dbSDimitry Andric   }
51255ffd83dbSDimitry Andric 
51260b57cec5SDimitry Andric   case Intrinsic::experimental_guard: {
51270b57cec5SDimitry Andric     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
51280b57cec5SDimitry Andric     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
51290b57cec5SDimitry Andric            "experimental_guard must have exactly one "
51300b57cec5SDimitry Andric            "\"deopt\" operand bundle");
51310b57cec5SDimitry Andric     break;
51320b57cec5SDimitry Andric   }
51330b57cec5SDimitry Andric 
51340b57cec5SDimitry Andric   case Intrinsic::experimental_deoptimize: {
51350b57cec5SDimitry Andric     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
51360b57cec5SDimitry Andric            Call);
51370b57cec5SDimitry Andric     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
51380b57cec5SDimitry Andric            "experimental_deoptimize must have exactly one "
51390b57cec5SDimitry Andric            "\"deopt\" operand bundle");
51400b57cec5SDimitry Andric     Assert(Call.getType() == Call.getFunction()->getReturnType(),
51410b57cec5SDimitry Andric            "experimental_deoptimize return type must match caller return type");
51420b57cec5SDimitry Andric 
51430b57cec5SDimitry Andric     if (isa<CallInst>(Call)) {
51440b57cec5SDimitry Andric       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
51450b57cec5SDimitry Andric       Assert(RI,
51460b57cec5SDimitry Andric              "calls to experimental_deoptimize must be followed by a return");
51470b57cec5SDimitry Andric 
51480b57cec5SDimitry Andric       if (!Call.getType()->isVoidTy() && RI)
51490b57cec5SDimitry Andric         Assert(RI->getReturnValue() == &Call,
51500b57cec5SDimitry Andric                "calls to experimental_deoptimize must be followed by a return "
51510b57cec5SDimitry Andric                "of the value computed by experimental_deoptimize");
51520b57cec5SDimitry Andric     }
51530b57cec5SDimitry Andric 
51540b57cec5SDimitry Andric     break;
51550b57cec5SDimitry Andric   }
5156fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_and:
5157fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_or:
5158fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_xor:
5159fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_add:
5160fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_mul:
5161fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_smax:
5162fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_smin:
5163fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_umax:
5164fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_umin: {
5165fe6060f1SDimitry Andric     Type *ArgTy = Call.getArgOperand(0)->getType();
5166fe6060f1SDimitry Andric     Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5167fe6060f1SDimitry Andric            "Intrinsic has incorrect argument type!");
5168fe6060f1SDimitry Andric     break;
5169fe6060f1SDimitry Andric   }
5170fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_fmax:
5171fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_fmin: {
5172fe6060f1SDimitry Andric     Type *ArgTy = Call.getArgOperand(0)->getType();
5173fe6060f1SDimitry Andric     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5174fe6060f1SDimitry Andric            "Intrinsic has incorrect argument type!");
5175fe6060f1SDimitry Andric     break;
5176fe6060f1SDimitry Andric   }
5177fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_fadd:
5178fe6060f1SDimitry Andric   case Intrinsic::vector_reduce_fmul: {
5179fe6060f1SDimitry Andric     // Unlike the other reductions, the first argument is a start value. The
5180fe6060f1SDimitry Andric     // second argument is the vector to be reduced.
5181fe6060f1SDimitry Andric     Type *ArgTy = Call.getArgOperand(1)->getType();
5182fe6060f1SDimitry Andric     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5183fe6060f1SDimitry Andric            "Intrinsic has incorrect argument type!");
51840b57cec5SDimitry Andric     break;
51850b57cec5SDimitry Andric   }
51860b57cec5SDimitry Andric   case Intrinsic::smul_fix:
51870b57cec5SDimitry Andric   case Intrinsic::smul_fix_sat:
51888bcb0991SDimitry Andric   case Intrinsic::umul_fix:
5189480093f4SDimitry Andric   case Intrinsic::umul_fix_sat:
5190480093f4SDimitry Andric   case Intrinsic::sdiv_fix:
51915ffd83dbSDimitry Andric   case Intrinsic::sdiv_fix_sat:
51925ffd83dbSDimitry Andric   case Intrinsic::udiv_fix:
51935ffd83dbSDimitry Andric   case Intrinsic::udiv_fix_sat: {
51940b57cec5SDimitry Andric     Value *Op1 = Call.getArgOperand(0);
51950b57cec5SDimitry Andric     Value *Op2 = Call.getArgOperand(1);
51960b57cec5SDimitry Andric     Assert(Op1->getType()->isIntOrIntVectorTy(),
5197480093f4SDimitry Andric            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5198480093f4SDimitry Andric            "vector of ints");
51990b57cec5SDimitry Andric     Assert(Op2->getType()->isIntOrIntVectorTy(),
5200480093f4SDimitry Andric            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5201480093f4SDimitry Andric            "vector of ints");
52020b57cec5SDimitry Andric 
52030b57cec5SDimitry Andric     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
52040b57cec5SDimitry Andric     Assert(Op3->getType()->getBitWidth() <= 32,
5205480093f4SDimitry Andric            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
52060b57cec5SDimitry Andric 
5207480093f4SDimitry Andric     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
52085ffd83dbSDimitry Andric         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
52090b57cec5SDimitry Andric       Assert(
52100b57cec5SDimitry Andric           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5211480093f4SDimitry Andric           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5212480093f4SDimitry Andric           "the operands");
52130b57cec5SDimitry Andric     } else {
52140b57cec5SDimitry Andric       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5215480093f4SDimitry Andric              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5216480093f4SDimitry Andric              "to the width of the operands");
52170b57cec5SDimitry Andric     }
52180b57cec5SDimitry Andric     break;
52190b57cec5SDimitry Andric   }
52200b57cec5SDimitry Andric   case Intrinsic::lround:
52210b57cec5SDimitry Andric   case Intrinsic::llround:
52220b57cec5SDimitry Andric   case Intrinsic::lrint:
52230b57cec5SDimitry Andric   case Intrinsic::llrint: {
52240b57cec5SDimitry Andric     Type *ValTy = Call.getArgOperand(0)->getType();
52250b57cec5SDimitry Andric     Type *ResultTy = Call.getType();
52260b57cec5SDimitry Andric     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
52270b57cec5SDimitry Andric            "Intrinsic does not support vectors", &Call);
52280b57cec5SDimitry Andric     break;
52290b57cec5SDimitry Andric   }
52305ffd83dbSDimitry Andric   case Intrinsic::bswap: {
52315ffd83dbSDimitry Andric     Type *Ty = Call.getType();
52325ffd83dbSDimitry Andric     unsigned Size = Ty->getScalarSizeInBits();
52335ffd83dbSDimitry Andric     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
52345ffd83dbSDimitry Andric     break;
52355ffd83dbSDimitry Andric   }
5236e8d8bef9SDimitry Andric   case Intrinsic::invariant_start: {
5237e8d8bef9SDimitry Andric     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5238e8d8bef9SDimitry Andric     Assert(InvariantSize &&
5239e8d8bef9SDimitry Andric                (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5240e8d8bef9SDimitry Andric            "invariant_start parameter must be -1, 0 or a positive number",
5241e8d8bef9SDimitry Andric            &Call);
5242e8d8bef9SDimitry Andric     break;
5243e8d8bef9SDimitry Andric   }
52445ffd83dbSDimitry Andric   case Intrinsic::matrix_multiply:
52455ffd83dbSDimitry Andric   case Intrinsic::matrix_transpose:
52465ffd83dbSDimitry Andric   case Intrinsic::matrix_column_major_load:
52475ffd83dbSDimitry Andric   case Intrinsic::matrix_column_major_store: {
52485ffd83dbSDimitry Andric     Function *IF = Call.getCalledFunction();
52495ffd83dbSDimitry Andric     ConstantInt *Stride = nullptr;
52505ffd83dbSDimitry Andric     ConstantInt *NumRows;
52515ffd83dbSDimitry Andric     ConstantInt *NumColumns;
52525ffd83dbSDimitry Andric     VectorType *ResultTy;
52535ffd83dbSDimitry Andric     Type *Op0ElemTy = nullptr;
52545ffd83dbSDimitry Andric     Type *Op1ElemTy = nullptr;
52555ffd83dbSDimitry Andric     switch (ID) {
52565ffd83dbSDimitry Andric     case Intrinsic::matrix_multiply:
52575ffd83dbSDimitry Andric       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
52585ffd83dbSDimitry Andric       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
52595ffd83dbSDimitry Andric       ResultTy = cast<VectorType>(Call.getType());
52605ffd83dbSDimitry Andric       Op0ElemTy =
52615ffd83dbSDimitry Andric           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
52625ffd83dbSDimitry Andric       Op1ElemTy =
52635ffd83dbSDimitry Andric           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
52645ffd83dbSDimitry Andric       break;
52655ffd83dbSDimitry Andric     case Intrinsic::matrix_transpose:
52665ffd83dbSDimitry Andric       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
52675ffd83dbSDimitry Andric       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
52685ffd83dbSDimitry Andric       ResultTy = cast<VectorType>(Call.getType());
52695ffd83dbSDimitry Andric       Op0ElemTy =
52705ffd83dbSDimitry Andric           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
52715ffd83dbSDimitry Andric       break;
5272*4824e7fdSDimitry Andric     case Intrinsic::matrix_column_major_load: {
52735ffd83dbSDimitry Andric       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
52745ffd83dbSDimitry Andric       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
52755ffd83dbSDimitry Andric       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
52765ffd83dbSDimitry Andric       ResultTy = cast<VectorType>(Call.getType());
5277*4824e7fdSDimitry Andric 
5278*4824e7fdSDimitry Andric       PointerType *Op0PtrTy =
5279*4824e7fdSDimitry Andric           cast<PointerType>(Call.getArgOperand(0)->getType());
5280*4824e7fdSDimitry Andric       if (!Op0PtrTy->isOpaque())
5281*4824e7fdSDimitry Andric         Op0ElemTy = Op0PtrTy->getElementType();
52825ffd83dbSDimitry Andric       break;
5283*4824e7fdSDimitry Andric     }
5284*4824e7fdSDimitry Andric     case Intrinsic::matrix_column_major_store: {
52855ffd83dbSDimitry Andric       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
52865ffd83dbSDimitry Andric       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
52875ffd83dbSDimitry Andric       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
52885ffd83dbSDimitry Andric       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
52895ffd83dbSDimitry Andric       Op0ElemTy =
52905ffd83dbSDimitry Andric           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5291*4824e7fdSDimitry Andric 
5292*4824e7fdSDimitry Andric       PointerType *Op1PtrTy =
5293*4824e7fdSDimitry Andric           cast<PointerType>(Call.getArgOperand(1)->getType());
5294*4824e7fdSDimitry Andric       if (!Op1PtrTy->isOpaque())
5295*4824e7fdSDimitry Andric         Op1ElemTy = Op1PtrTy->getElementType();
52965ffd83dbSDimitry Andric       break;
5297*4824e7fdSDimitry Andric     }
52985ffd83dbSDimitry Andric     default:
52995ffd83dbSDimitry Andric       llvm_unreachable("unexpected intrinsic");
53005ffd83dbSDimitry Andric     }
53015ffd83dbSDimitry Andric 
53025ffd83dbSDimitry Andric     Assert(ResultTy->getElementType()->isIntegerTy() ||
53035ffd83dbSDimitry Andric            ResultTy->getElementType()->isFloatingPointTy(),
53045ffd83dbSDimitry Andric            "Result type must be an integer or floating-point type!", IF);
53055ffd83dbSDimitry Andric 
5306*4824e7fdSDimitry Andric     if (Op0ElemTy)
53075ffd83dbSDimitry Andric       Assert(ResultTy->getElementType() == Op0ElemTy,
53085ffd83dbSDimitry Andric              "Vector element type mismatch of the result and first operand "
53095ffd83dbSDimitry Andric              "vector!", IF);
53105ffd83dbSDimitry Andric 
53115ffd83dbSDimitry Andric     if (Op1ElemTy)
53125ffd83dbSDimitry Andric       Assert(ResultTy->getElementType() == Op1ElemTy,
53135ffd83dbSDimitry Andric              "Vector element type mismatch of the result and second operand "
53145ffd83dbSDimitry Andric              "vector!", IF);
53155ffd83dbSDimitry Andric 
5316e8d8bef9SDimitry Andric     Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
53175ffd83dbSDimitry Andric                NumRows->getZExtValue() * NumColumns->getZExtValue(),
53185ffd83dbSDimitry Andric            "Result of a matrix operation does not fit in the returned vector!");
53195ffd83dbSDimitry Andric 
53205ffd83dbSDimitry Andric     if (Stride)
53215ffd83dbSDimitry Andric       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
53225ffd83dbSDimitry Andric              "Stride must be greater or equal than the number of rows!", IF);
53235ffd83dbSDimitry Andric 
53245ffd83dbSDimitry Andric     break;
53255ffd83dbSDimitry Andric   }
5326fe6060f1SDimitry Andric   case Intrinsic::experimental_stepvector: {
5327fe6060f1SDimitry Andric     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5328fe6060f1SDimitry Andric     Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5329fe6060f1SDimitry Andric                VecTy->getScalarSizeInBits() >= 8,
5330fe6060f1SDimitry Andric            "experimental_stepvector only supported for vectors of integers "
5331fe6060f1SDimitry Andric            "with a bitwidth of at least 8.",
5332fe6060f1SDimitry Andric            &Call);
5333fe6060f1SDimitry Andric     break;
5334fe6060f1SDimitry Andric   }
5335e8d8bef9SDimitry Andric   case Intrinsic::experimental_vector_insert: {
5336fe6060f1SDimitry Andric     Value *Vec = Call.getArgOperand(0);
5337fe6060f1SDimitry Andric     Value *SubVec = Call.getArgOperand(1);
5338fe6060f1SDimitry Andric     Value *Idx = Call.getArgOperand(2);
5339fe6060f1SDimitry Andric     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5340e8d8bef9SDimitry Andric 
5341fe6060f1SDimitry Andric     VectorType *VecTy = cast<VectorType>(Vec->getType());
5342fe6060f1SDimitry Andric     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5343fe6060f1SDimitry Andric 
5344fe6060f1SDimitry Andric     ElementCount VecEC = VecTy->getElementCount();
5345fe6060f1SDimitry Andric     ElementCount SubVecEC = SubVecTy->getElementCount();
5346e8d8bef9SDimitry Andric     Assert(VecTy->getElementType() == SubVecTy->getElementType(),
5347e8d8bef9SDimitry Andric            "experimental_vector_insert parameters must have the same element "
5348e8d8bef9SDimitry Andric            "type.",
5349e8d8bef9SDimitry Andric            &Call);
5350fe6060f1SDimitry Andric     Assert(IdxN % SubVecEC.getKnownMinValue() == 0,
5351fe6060f1SDimitry Andric            "experimental_vector_insert index must be a constant multiple of "
5352fe6060f1SDimitry Andric            "the subvector's known minimum vector length.");
5353fe6060f1SDimitry Andric 
5354fe6060f1SDimitry Andric     // If this insertion is not the 'mixed' case where a fixed vector is
5355fe6060f1SDimitry Andric     // inserted into a scalable vector, ensure that the insertion of the
5356fe6060f1SDimitry Andric     // subvector does not overrun the parent vector.
5357fe6060f1SDimitry Andric     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5358fe6060f1SDimitry Andric       Assert(
5359fe6060f1SDimitry Andric           IdxN < VecEC.getKnownMinValue() &&
5360fe6060f1SDimitry Andric               IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5361fe6060f1SDimitry Andric           "subvector operand of experimental_vector_insert would overrun the "
5362fe6060f1SDimitry Andric           "vector being inserted into.");
5363fe6060f1SDimitry Andric     }
5364e8d8bef9SDimitry Andric     break;
5365e8d8bef9SDimitry Andric   }
5366e8d8bef9SDimitry Andric   case Intrinsic::experimental_vector_extract: {
5367fe6060f1SDimitry Andric     Value *Vec = Call.getArgOperand(0);
5368fe6060f1SDimitry Andric     Value *Idx = Call.getArgOperand(1);
5369fe6060f1SDimitry Andric     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5370fe6060f1SDimitry Andric 
5371e8d8bef9SDimitry Andric     VectorType *ResultTy = cast<VectorType>(Call.getType());
5372fe6060f1SDimitry Andric     VectorType *VecTy = cast<VectorType>(Vec->getType());
5373fe6060f1SDimitry Andric 
5374fe6060f1SDimitry Andric     ElementCount VecEC = VecTy->getElementCount();
5375fe6060f1SDimitry Andric     ElementCount ResultEC = ResultTy->getElementCount();
5376e8d8bef9SDimitry Andric 
5377e8d8bef9SDimitry Andric     Assert(ResultTy->getElementType() == VecTy->getElementType(),
5378e8d8bef9SDimitry Andric            "experimental_vector_extract result must have the same element "
5379e8d8bef9SDimitry Andric            "type as the input vector.",
5380e8d8bef9SDimitry Andric            &Call);
5381fe6060f1SDimitry Andric     Assert(IdxN % ResultEC.getKnownMinValue() == 0,
5382fe6060f1SDimitry Andric            "experimental_vector_extract index must be a constant multiple of "
5383fe6060f1SDimitry Andric            "the result type's known minimum vector length.");
5384fe6060f1SDimitry Andric 
5385fe6060f1SDimitry Andric     // If this extraction is not the 'mixed' case where a fixed vector is is
5386fe6060f1SDimitry Andric     // extracted from a scalable vector, ensure that the extraction does not
5387fe6060f1SDimitry Andric     // overrun the parent vector.
5388fe6060f1SDimitry Andric     if (VecEC.isScalable() == ResultEC.isScalable()) {
5389fe6060f1SDimitry Andric       Assert(IdxN < VecEC.getKnownMinValue() &&
5390fe6060f1SDimitry Andric                  IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5391fe6060f1SDimitry Andric              "experimental_vector_extract would overrun.");
5392fe6060f1SDimitry Andric     }
5393e8d8bef9SDimitry Andric     break;
5394e8d8bef9SDimitry Andric   }
5395e8d8bef9SDimitry Andric   case Intrinsic::experimental_noalias_scope_decl: {
5396e8d8bef9SDimitry Andric     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5397e8d8bef9SDimitry Andric     break;
5398e8d8bef9SDimitry Andric   }
5399fe6060f1SDimitry Andric   case Intrinsic::preserve_array_access_index:
5400fe6060f1SDimitry Andric   case Intrinsic::preserve_struct_access_index: {
5401fe6060f1SDimitry Andric     Type *ElemTy = Call.getAttributes().getParamElementType(0);
5402fe6060f1SDimitry Andric     Assert(ElemTy,
5403fe6060f1SDimitry Andric            "Intrinsic requires elementtype attribute on first argument.",
5404fe6060f1SDimitry Andric            &Call);
5405fe6060f1SDimitry Andric     break;
5406fe6060f1SDimitry Andric   }
54070b57cec5SDimitry Andric   };
54080b57cec5SDimitry Andric }
54090b57cec5SDimitry Andric 
54100b57cec5SDimitry Andric /// Carefully grab the subprogram from a local scope.
54110b57cec5SDimitry Andric ///
54120b57cec5SDimitry Andric /// This carefully grabs the subprogram from a local scope, avoiding the
54130b57cec5SDimitry Andric /// built-in assertions that would typically fire.
54140b57cec5SDimitry Andric static DISubprogram *getSubprogram(Metadata *LocalScope) {
54150b57cec5SDimitry Andric   if (!LocalScope)
54160b57cec5SDimitry Andric     return nullptr;
54170b57cec5SDimitry Andric 
54180b57cec5SDimitry Andric   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
54190b57cec5SDimitry Andric     return SP;
54200b57cec5SDimitry Andric 
54210b57cec5SDimitry Andric   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
54220b57cec5SDimitry Andric     return getSubprogram(LB->getRawScope());
54230b57cec5SDimitry Andric 
54240b57cec5SDimitry Andric   // Just return null; broken scope chains are checked elsewhere.
54250b57cec5SDimitry Andric   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
54260b57cec5SDimitry Andric   return nullptr;
54270b57cec5SDimitry Andric }
54280b57cec5SDimitry Andric 
54290b57cec5SDimitry Andric void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5430480093f4SDimitry Andric   unsigned NumOperands;
5431480093f4SDimitry Andric   bool HasRoundingMD;
54320b57cec5SDimitry Andric   switch (FPI.getIntrinsicID()) {
54335ffd83dbSDimitry Andric #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5434480093f4SDimitry Andric   case Intrinsic::INTRINSIC:                                                   \
5435480093f4SDimitry Andric     NumOperands = NARG;                                                        \
5436480093f4SDimitry Andric     HasRoundingMD = ROUND_MODE;                                                \
54370b57cec5SDimitry Andric     break;
5438480093f4SDimitry Andric #include "llvm/IR/ConstrainedOps.def"
5439480093f4SDimitry Andric   default:
5440480093f4SDimitry Andric     llvm_unreachable("Invalid constrained FP intrinsic!");
5441480093f4SDimitry Andric   }
5442480093f4SDimitry Andric   NumOperands += (1 + HasRoundingMD);
5443480093f4SDimitry Andric   // Compare intrinsics carry an extra predicate metadata operand.
5444480093f4SDimitry Andric   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5445480093f4SDimitry Andric     NumOperands += 1;
5446349cc55cSDimitry Andric   Assert((FPI.arg_size() == NumOperands),
5447480093f4SDimitry Andric          "invalid arguments for constrained FP intrinsic", &FPI);
54480b57cec5SDimitry Andric 
5449480093f4SDimitry Andric   switch (FPI.getIntrinsicID()) {
54508bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_lrint:
54518bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_llrint: {
54528bcb0991SDimitry Andric     Type *ValTy = FPI.getArgOperand(0)->getType();
54538bcb0991SDimitry Andric     Type *ResultTy = FPI.getType();
54548bcb0991SDimitry Andric     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
54558bcb0991SDimitry Andric            "Intrinsic does not support vectors", &FPI);
54568bcb0991SDimitry Andric   }
54578bcb0991SDimitry Andric     break;
54588bcb0991SDimitry Andric 
54598bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_lround:
54608bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_llround: {
54618bcb0991SDimitry Andric     Type *ValTy = FPI.getArgOperand(0)->getType();
54628bcb0991SDimitry Andric     Type *ResultTy = FPI.getType();
54638bcb0991SDimitry Andric     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
54648bcb0991SDimitry Andric            "Intrinsic does not support vectors", &FPI);
54658bcb0991SDimitry Andric     break;
54668bcb0991SDimitry Andric   }
54678bcb0991SDimitry Andric 
5468480093f4SDimitry Andric   case Intrinsic::experimental_constrained_fcmp:
5469480093f4SDimitry Andric   case Intrinsic::experimental_constrained_fcmps: {
5470480093f4SDimitry Andric     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5471480093f4SDimitry Andric     Assert(CmpInst::isFPPredicate(Pred),
5472480093f4SDimitry Andric            "invalid predicate for constrained FP comparison intrinsic", &FPI);
54730b57cec5SDimitry Andric     break;
5474480093f4SDimitry Andric   }
54750b57cec5SDimitry Andric 
54768bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_fptosi:
54778bcb0991SDimitry Andric   case Intrinsic::experimental_constrained_fptoui: {
54788bcb0991SDimitry Andric     Value *Operand = FPI.getArgOperand(0);
54798bcb0991SDimitry Andric     uint64_t NumSrcElem = 0;
54808bcb0991SDimitry Andric     Assert(Operand->getType()->isFPOrFPVectorTy(),
54818bcb0991SDimitry Andric            "Intrinsic first argument must be floating point", &FPI);
54828bcb0991SDimitry Andric     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5483e8d8bef9SDimitry Andric       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
54848bcb0991SDimitry Andric     }
54858bcb0991SDimitry Andric 
54868bcb0991SDimitry Andric     Operand = &FPI;
54878bcb0991SDimitry Andric     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
54888bcb0991SDimitry Andric            "Intrinsic first argument and result disagree on vector use", &FPI);
54898bcb0991SDimitry Andric     Assert(Operand->getType()->isIntOrIntVectorTy(),
54908bcb0991SDimitry Andric            "Intrinsic result must be an integer", &FPI);
54918bcb0991SDimitry Andric     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5492e8d8bef9SDimitry Andric       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
54938bcb0991SDimitry Andric              "Intrinsic first argument and result vector lengths must be equal",
54948bcb0991SDimitry Andric              &FPI);
54958bcb0991SDimitry Andric     }
54968bcb0991SDimitry Andric   }
54978bcb0991SDimitry Andric     break;
54988bcb0991SDimitry Andric 
5499480093f4SDimitry Andric   case Intrinsic::experimental_constrained_sitofp:
5500480093f4SDimitry Andric   case Intrinsic::experimental_constrained_uitofp: {
5501480093f4SDimitry Andric     Value *Operand = FPI.getArgOperand(0);
5502480093f4SDimitry Andric     uint64_t NumSrcElem = 0;
5503480093f4SDimitry Andric     Assert(Operand->getType()->isIntOrIntVectorTy(),
5504480093f4SDimitry Andric            "Intrinsic first argument must be integer", &FPI);
5505480093f4SDimitry Andric     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5506e8d8bef9SDimitry Andric       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5507480093f4SDimitry Andric     }
5508480093f4SDimitry Andric 
5509480093f4SDimitry Andric     Operand = &FPI;
5510480093f4SDimitry Andric     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5511480093f4SDimitry Andric            "Intrinsic first argument and result disagree on vector use", &FPI);
5512480093f4SDimitry Andric     Assert(Operand->getType()->isFPOrFPVectorTy(),
5513480093f4SDimitry Andric            "Intrinsic result must be a floating point", &FPI);
5514480093f4SDimitry Andric     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5515e8d8bef9SDimitry Andric       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5516480093f4SDimitry Andric              "Intrinsic first argument and result vector lengths must be equal",
5517480093f4SDimitry Andric              &FPI);
5518480093f4SDimitry Andric     }
5519480093f4SDimitry Andric   } break;
5520480093f4SDimitry Andric 
55210b57cec5SDimitry Andric   case Intrinsic::experimental_constrained_fptrunc:
55220b57cec5SDimitry Andric   case Intrinsic::experimental_constrained_fpext: {
55230b57cec5SDimitry Andric     Value *Operand = FPI.getArgOperand(0);
55240b57cec5SDimitry Andric     Type *OperandTy = Operand->getType();
55250b57cec5SDimitry Andric     Value *Result = &FPI;
55260b57cec5SDimitry Andric     Type *ResultTy = Result->getType();
55270b57cec5SDimitry Andric     Assert(OperandTy->isFPOrFPVectorTy(),
55280b57cec5SDimitry Andric            "Intrinsic first argument must be FP or FP vector", &FPI);
55290b57cec5SDimitry Andric     Assert(ResultTy->isFPOrFPVectorTy(),
55300b57cec5SDimitry Andric            "Intrinsic result must be FP or FP vector", &FPI);
55310b57cec5SDimitry Andric     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
55320b57cec5SDimitry Andric            "Intrinsic first argument and result disagree on vector use", &FPI);
55330b57cec5SDimitry Andric     if (OperandTy->isVectorTy()) {
5534e8d8bef9SDimitry Andric       Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5535e8d8bef9SDimitry Andric                  cast<FixedVectorType>(ResultTy)->getNumElements(),
55360b57cec5SDimitry Andric              "Intrinsic first argument and result vector lengths must be equal",
55370b57cec5SDimitry Andric              &FPI);
55380b57cec5SDimitry Andric     }
55390b57cec5SDimitry Andric     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
55400b57cec5SDimitry Andric       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
55410b57cec5SDimitry Andric              "Intrinsic first argument's type must be larger than result type",
55420b57cec5SDimitry Andric              &FPI);
55430b57cec5SDimitry Andric     } else {
55440b57cec5SDimitry Andric       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
55450b57cec5SDimitry Andric              "Intrinsic first argument's type must be smaller than result type",
55460b57cec5SDimitry Andric              &FPI);
55470b57cec5SDimitry Andric     }
55480b57cec5SDimitry Andric   }
55490b57cec5SDimitry Andric     break;
55500b57cec5SDimitry Andric 
55510b57cec5SDimitry Andric   default:
5552480093f4SDimitry Andric     break;
55530b57cec5SDimitry Andric   }
55540b57cec5SDimitry Andric 
55550b57cec5SDimitry Andric   // If a non-metadata argument is passed in a metadata slot then the
55560b57cec5SDimitry Andric   // error will be caught earlier when the incorrect argument doesn't
55570b57cec5SDimitry Andric   // match the specification in the intrinsic call table. Thus, no
55580b57cec5SDimitry Andric   // argument type check is needed here.
55590b57cec5SDimitry Andric 
55600b57cec5SDimitry Andric   Assert(FPI.getExceptionBehavior().hasValue(),
55610b57cec5SDimitry Andric          "invalid exception behavior argument", &FPI);
55620b57cec5SDimitry Andric   if (HasRoundingMD) {
55630b57cec5SDimitry Andric     Assert(FPI.getRoundingMode().hasValue(),
55640b57cec5SDimitry Andric            "invalid rounding mode argument", &FPI);
55650b57cec5SDimitry Andric   }
55660b57cec5SDimitry Andric }
55670b57cec5SDimitry Andric 
55680b57cec5SDimitry Andric void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5569fe6060f1SDimitry Andric   auto *MD = DII.getRawLocation();
5570fe6060f1SDimitry Andric   AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
55710b57cec5SDimitry Andric                (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
55720b57cec5SDimitry Andric            "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
55730b57cec5SDimitry Andric   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
55740b57cec5SDimitry Andric          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
55750b57cec5SDimitry Andric          DII.getRawVariable());
55760b57cec5SDimitry Andric   AssertDI(isa<DIExpression>(DII.getRawExpression()),
55770b57cec5SDimitry Andric          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
55780b57cec5SDimitry Andric          DII.getRawExpression());
55790b57cec5SDimitry Andric 
55800b57cec5SDimitry Andric   // Ignore broken !dbg attachments; they're checked elsewhere.
55810b57cec5SDimitry Andric   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
55820b57cec5SDimitry Andric     if (!isa<DILocation>(N))
55830b57cec5SDimitry Andric       return;
55840b57cec5SDimitry Andric 
55850b57cec5SDimitry Andric   BasicBlock *BB = DII.getParent();
55860b57cec5SDimitry Andric   Function *F = BB ? BB->getParent() : nullptr;
55870b57cec5SDimitry Andric 
55880b57cec5SDimitry Andric   // The scopes for variables and !dbg attachments must agree.
55890b57cec5SDimitry Andric   DILocalVariable *Var = DII.getVariable();
55900b57cec5SDimitry Andric   DILocation *Loc = DII.getDebugLoc();
55910b57cec5SDimitry Andric   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
55920b57cec5SDimitry Andric            &DII, BB, F);
55930b57cec5SDimitry Andric 
55940b57cec5SDimitry Andric   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
55950b57cec5SDimitry Andric   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
55960b57cec5SDimitry Andric   if (!VarSP || !LocSP)
55970b57cec5SDimitry Andric     return; // Broken scope chains are checked elsewhere.
55980b57cec5SDimitry Andric 
55990b57cec5SDimitry Andric   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
56000b57cec5SDimitry Andric                                " variable and !dbg attachment",
56010b57cec5SDimitry Andric            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
56020b57cec5SDimitry Andric            Loc->getScope()->getSubprogram());
56030b57cec5SDimitry Andric 
56040b57cec5SDimitry Andric   // This check is redundant with one in visitLocalVariable().
56050b57cec5SDimitry Andric   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
56060b57cec5SDimitry Andric            Var->getRawType());
56070b57cec5SDimitry Andric   verifyFnArgs(DII);
56080b57cec5SDimitry Andric }
56090b57cec5SDimitry Andric 
56100b57cec5SDimitry Andric void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
56110b57cec5SDimitry Andric   AssertDI(isa<DILabel>(DLI.getRawLabel()),
56120b57cec5SDimitry Andric          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
56130b57cec5SDimitry Andric          DLI.getRawLabel());
56140b57cec5SDimitry Andric 
56150b57cec5SDimitry Andric   // Ignore broken !dbg attachments; they're checked elsewhere.
56160b57cec5SDimitry Andric   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
56170b57cec5SDimitry Andric     if (!isa<DILocation>(N))
56180b57cec5SDimitry Andric       return;
56190b57cec5SDimitry Andric 
56200b57cec5SDimitry Andric   BasicBlock *BB = DLI.getParent();
56210b57cec5SDimitry Andric   Function *F = BB ? BB->getParent() : nullptr;
56220b57cec5SDimitry Andric 
56230b57cec5SDimitry Andric   // The scopes for variables and !dbg attachments must agree.
56240b57cec5SDimitry Andric   DILabel *Label = DLI.getLabel();
56250b57cec5SDimitry Andric   DILocation *Loc = DLI.getDebugLoc();
56260b57cec5SDimitry Andric   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
56270b57cec5SDimitry Andric          &DLI, BB, F);
56280b57cec5SDimitry Andric 
56290b57cec5SDimitry Andric   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
56300b57cec5SDimitry Andric   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
56310b57cec5SDimitry Andric   if (!LabelSP || !LocSP)
56320b57cec5SDimitry Andric     return;
56330b57cec5SDimitry Andric 
56340b57cec5SDimitry Andric   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
56350b57cec5SDimitry Andric                              " label and !dbg attachment",
56360b57cec5SDimitry Andric            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
56370b57cec5SDimitry Andric            Loc->getScope()->getSubprogram());
56380b57cec5SDimitry Andric }
56390b57cec5SDimitry Andric 
56400b57cec5SDimitry Andric void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
56410b57cec5SDimitry Andric   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
56420b57cec5SDimitry Andric   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
56430b57cec5SDimitry Andric 
56440b57cec5SDimitry Andric   // We don't know whether this intrinsic verified correctly.
56450b57cec5SDimitry Andric   if (!V || !E || !E->isValid())
56460b57cec5SDimitry Andric     return;
56470b57cec5SDimitry Andric 
56480b57cec5SDimitry Andric   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
56490b57cec5SDimitry Andric   auto Fragment = E->getFragmentInfo();
56500b57cec5SDimitry Andric   if (!Fragment)
56510b57cec5SDimitry Andric     return;
56520b57cec5SDimitry Andric 
56530b57cec5SDimitry Andric   // The frontend helps out GDB by emitting the members of local anonymous
56540b57cec5SDimitry Andric   // unions as artificial local variables with shared storage. When SROA splits
56550b57cec5SDimitry Andric   // the storage for artificial local variables that are smaller than the entire
56560b57cec5SDimitry Andric   // union, the overhang piece will be outside of the allotted space for the
56570b57cec5SDimitry Andric   // variable and this check fails.
56580b57cec5SDimitry Andric   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
56590b57cec5SDimitry Andric   if (V->isArtificial())
56600b57cec5SDimitry Andric     return;
56610b57cec5SDimitry Andric 
56620b57cec5SDimitry Andric   verifyFragmentExpression(*V, *Fragment, &I);
56630b57cec5SDimitry Andric }
56640b57cec5SDimitry Andric 
56650b57cec5SDimitry Andric template <typename ValueOrMetadata>
56660b57cec5SDimitry Andric void Verifier::verifyFragmentExpression(const DIVariable &V,
56670b57cec5SDimitry Andric                                         DIExpression::FragmentInfo Fragment,
56680b57cec5SDimitry Andric                                         ValueOrMetadata *Desc) {
56690b57cec5SDimitry Andric   // If there's no size, the type is broken, but that should be checked
56700b57cec5SDimitry Andric   // elsewhere.
56710b57cec5SDimitry Andric   auto VarSize = V.getSizeInBits();
56720b57cec5SDimitry Andric   if (!VarSize)
56730b57cec5SDimitry Andric     return;
56740b57cec5SDimitry Andric 
56750b57cec5SDimitry Andric   unsigned FragSize = Fragment.SizeInBits;
56760b57cec5SDimitry Andric   unsigned FragOffset = Fragment.OffsetInBits;
56770b57cec5SDimitry Andric   AssertDI(FragSize + FragOffset <= *VarSize,
56780b57cec5SDimitry Andric          "fragment is larger than or outside of variable", Desc, &V);
56790b57cec5SDimitry Andric   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
56800b57cec5SDimitry Andric }
56810b57cec5SDimitry Andric 
56820b57cec5SDimitry Andric void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
56830b57cec5SDimitry Andric   // This function does not take the scope of noninlined function arguments into
56840b57cec5SDimitry Andric   // account. Don't run it if current function is nodebug, because it may
56850b57cec5SDimitry Andric   // contain inlined debug intrinsics.
56860b57cec5SDimitry Andric   if (!HasDebugInfo)
56870b57cec5SDimitry Andric     return;
56880b57cec5SDimitry Andric 
56890b57cec5SDimitry Andric   // For performance reasons only check non-inlined ones.
56900b57cec5SDimitry Andric   if (I.getDebugLoc()->getInlinedAt())
56910b57cec5SDimitry Andric     return;
56920b57cec5SDimitry Andric 
56930b57cec5SDimitry Andric   DILocalVariable *Var = I.getVariable();
56940b57cec5SDimitry Andric   AssertDI(Var, "dbg intrinsic without variable");
56950b57cec5SDimitry Andric 
56960b57cec5SDimitry Andric   unsigned ArgNo = Var->getArg();
56970b57cec5SDimitry Andric   if (!ArgNo)
56980b57cec5SDimitry Andric     return;
56990b57cec5SDimitry Andric 
57000b57cec5SDimitry Andric   // Verify there are no duplicate function argument debug info entries.
57010b57cec5SDimitry Andric   // These will cause hard-to-debug assertions in the DWARF backend.
57020b57cec5SDimitry Andric   if (DebugFnArgs.size() < ArgNo)
57030b57cec5SDimitry Andric     DebugFnArgs.resize(ArgNo, nullptr);
57040b57cec5SDimitry Andric 
57050b57cec5SDimitry Andric   auto *Prev = DebugFnArgs[ArgNo - 1];
57060b57cec5SDimitry Andric   DebugFnArgs[ArgNo - 1] = Var;
57070b57cec5SDimitry Andric   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
57080b57cec5SDimitry Andric            Prev, Var);
57090b57cec5SDimitry Andric }
57100b57cec5SDimitry Andric 
57118bcb0991SDimitry Andric void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
57128bcb0991SDimitry Andric   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
57138bcb0991SDimitry Andric 
57148bcb0991SDimitry Andric   // We don't know whether this intrinsic verified correctly.
57158bcb0991SDimitry Andric   if (!E || !E->isValid())
57168bcb0991SDimitry Andric     return;
57178bcb0991SDimitry Andric 
57188bcb0991SDimitry Andric   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
57198bcb0991SDimitry Andric }
57208bcb0991SDimitry Andric 
57210b57cec5SDimitry Andric void Verifier::verifyCompileUnits() {
57220b57cec5SDimitry Andric   // When more than one Module is imported into the same context, such as during
57230b57cec5SDimitry Andric   // an LTO build before linking the modules, ODR type uniquing may cause types
57240b57cec5SDimitry Andric   // to point to a different CU. This check does not make sense in this case.
57250b57cec5SDimitry Andric   if (M.getContext().isODRUniquingDebugTypes())
57260b57cec5SDimitry Andric     return;
57270b57cec5SDimitry Andric   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
57280b57cec5SDimitry Andric   SmallPtrSet<const Metadata *, 2> Listed;
57290b57cec5SDimitry Andric   if (CUs)
57300b57cec5SDimitry Andric     Listed.insert(CUs->op_begin(), CUs->op_end());
57310b57cec5SDimitry Andric   for (auto *CU : CUVisited)
57320b57cec5SDimitry Andric     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
57330b57cec5SDimitry Andric   CUVisited.clear();
57340b57cec5SDimitry Andric }
57350b57cec5SDimitry Andric 
57360b57cec5SDimitry Andric void Verifier::verifyDeoptimizeCallingConvs() {
57370b57cec5SDimitry Andric   if (DeoptimizeDeclarations.empty())
57380b57cec5SDimitry Andric     return;
57390b57cec5SDimitry Andric 
57400b57cec5SDimitry Andric   const Function *First = DeoptimizeDeclarations[0];
57410b57cec5SDimitry Andric   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
57420b57cec5SDimitry Andric     Assert(First->getCallingConv() == F->getCallingConv(),
57430b57cec5SDimitry Andric            "All llvm.experimental.deoptimize declarations must have the same "
57440b57cec5SDimitry Andric            "calling convention",
57450b57cec5SDimitry Andric            First, F);
57460b57cec5SDimitry Andric   }
57470b57cec5SDimitry Andric }
57480b57cec5SDimitry Andric 
5749349cc55cSDimitry Andric void Verifier::verifyAttachedCallBundle(const CallBase &Call,
5750349cc55cSDimitry Andric                                         const OperandBundleUse &BU) {
5751349cc55cSDimitry Andric   FunctionType *FTy = Call.getFunctionType();
5752349cc55cSDimitry Andric 
5753349cc55cSDimitry Andric   Assert((FTy->getReturnType()->isPointerTy() ||
5754349cc55cSDimitry Andric           (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
5755349cc55cSDimitry Andric          "a call with operand bundle \"clang.arc.attachedcall\" must call a "
5756349cc55cSDimitry Andric          "function returning a pointer or a non-returning function that has a "
5757349cc55cSDimitry Andric          "void return type",
5758349cc55cSDimitry Andric          Call);
5759349cc55cSDimitry Andric 
5760349cc55cSDimitry Andric   Assert((BU.Inputs.empty() ||
5761349cc55cSDimitry Andric           (BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()))),
5762349cc55cSDimitry Andric          "operand bundle \"clang.arc.attachedcall\" can take either no "
5763349cc55cSDimitry Andric          "arguments or one function as an argument",
5764349cc55cSDimitry Andric          Call);
5765349cc55cSDimitry Andric 
5766349cc55cSDimitry Andric   if (BU.Inputs.empty())
5767349cc55cSDimitry Andric     return;
5768349cc55cSDimitry Andric 
5769349cc55cSDimitry Andric   auto *Fn = cast<Function>(BU.Inputs.front());
5770349cc55cSDimitry Andric   Intrinsic::ID IID = Fn->getIntrinsicID();
5771349cc55cSDimitry Andric 
5772349cc55cSDimitry Andric   if (IID) {
5773349cc55cSDimitry Andric     Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
5774349cc55cSDimitry Andric             IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
5775349cc55cSDimitry Andric            "invalid function argument", Call);
5776349cc55cSDimitry Andric   } else {
5777349cc55cSDimitry Andric     StringRef FnName = Fn->getName();
5778349cc55cSDimitry Andric     Assert((FnName == "objc_retainAutoreleasedReturnValue" ||
5779349cc55cSDimitry Andric             FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
5780349cc55cSDimitry Andric            "invalid function argument", Call);
5781349cc55cSDimitry Andric   }
5782349cc55cSDimitry Andric }
5783349cc55cSDimitry Andric 
57840b57cec5SDimitry Andric void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
57850b57cec5SDimitry Andric   bool HasSource = F.getSource().hasValue();
57860b57cec5SDimitry Andric   if (!HasSourceDebugInfo.count(&U))
57870b57cec5SDimitry Andric     HasSourceDebugInfo[&U] = HasSource;
57880b57cec5SDimitry Andric   AssertDI(HasSource == HasSourceDebugInfo[&U],
57890b57cec5SDimitry Andric            "inconsistent use of embedded source");
57900b57cec5SDimitry Andric }
57910b57cec5SDimitry Andric 
5792e8d8bef9SDimitry Andric void Verifier::verifyNoAliasScopeDecl() {
5793e8d8bef9SDimitry Andric   if (NoAliasScopeDecls.empty())
5794e8d8bef9SDimitry Andric     return;
5795e8d8bef9SDimitry Andric 
5796e8d8bef9SDimitry Andric   // only a single scope must be declared at a time.
5797e8d8bef9SDimitry Andric   for (auto *II : NoAliasScopeDecls) {
5798e8d8bef9SDimitry Andric     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
5799e8d8bef9SDimitry Andric            "Not a llvm.experimental.noalias.scope.decl ?");
5800e8d8bef9SDimitry Andric     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
5801e8d8bef9SDimitry Andric         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5802e8d8bef9SDimitry Andric     Assert(ScopeListMV != nullptr,
5803e8d8bef9SDimitry Andric            "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
5804e8d8bef9SDimitry Andric            "argument",
5805e8d8bef9SDimitry Andric            II);
5806e8d8bef9SDimitry Andric 
5807e8d8bef9SDimitry Andric     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
5808e8d8bef9SDimitry Andric     Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",
5809e8d8bef9SDimitry Andric            II);
5810e8d8bef9SDimitry Andric     Assert(ScopeListMD->getNumOperands() == 1,
5811e8d8bef9SDimitry Andric            "!id.scope.list must point to a list with a single scope", II);
5812349cc55cSDimitry Andric     visitAliasScopeListMetadata(ScopeListMD);
5813e8d8bef9SDimitry Andric   }
5814e8d8bef9SDimitry Andric 
5815e8d8bef9SDimitry Andric   // Only check the domination rule when requested. Once all passes have been
5816e8d8bef9SDimitry Andric   // adapted this option can go away.
5817e8d8bef9SDimitry Andric   if (!VerifyNoAliasScopeDomination)
5818e8d8bef9SDimitry Andric     return;
5819e8d8bef9SDimitry Andric 
5820e8d8bef9SDimitry Andric   // Now sort the intrinsics based on the scope MDNode so that declarations of
5821e8d8bef9SDimitry Andric   // the same scopes are next to each other.
5822e8d8bef9SDimitry Andric   auto GetScope = [](IntrinsicInst *II) {
5823e8d8bef9SDimitry Andric     const auto *ScopeListMV = cast<MetadataAsValue>(
5824e8d8bef9SDimitry Andric         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5825e8d8bef9SDimitry Andric     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
5826e8d8bef9SDimitry Andric   };
5827e8d8bef9SDimitry Andric 
5828e8d8bef9SDimitry Andric   // We are sorting on MDNode pointers here. For valid input IR this is ok.
5829e8d8bef9SDimitry Andric   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
5830e8d8bef9SDimitry Andric   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
5831e8d8bef9SDimitry Andric     return GetScope(Lhs) < GetScope(Rhs);
5832e8d8bef9SDimitry Andric   };
5833e8d8bef9SDimitry Andric 
5834e8d8bef9SDimitry Andric   llvm::sort(NoAliasScopeDecls, Compare);
5835e8d8bef9SDimitry Andric 
5836e8d8bef9SDimitry Andric   // Go over the intrinsics and check that for the same scope, they are not
5837e8d8bef9SDimitry Andric   // dominating each other.
5838e8d8bef9SDimitry Andric   auto ItCurrent = NoAliasScopeDecls.begin();
5839e8d8bef9SDimitry Andric   while (ItCurrent != NoAliasScopeDecls.end()) {
5840e8d8bef9SDimitry Andric     auto CurScope = GetScope(*ItCurrent);
5841e8d8bef9SDimitry Andric     auto ItNext = ItCurrent;
5842e8d8bef9SDimitry Andric     do {
5843e8d8bef9SDimitry Andric       ++ItNext;
5844e8d8bef9SDimitry Andric     } while (ItNext != NoAliasScopeDecls.end() &&
5845e8d8bef9SDimitry Andric              GetScope(*ItNext) == CurScope);
5846e8d8bef9SDimitry Andric 
5847e8d8bef9SDimitry Andric     // [ItCurrent, ItNext) represents the declarations for the same scope.
5848e8d8bef9SDimitry Andric     // Ensure they are not dominating each other.. but only if it is not too
5849e8d8bef9SDimitry Andric     // expensive.
5850e8d8bef9SDimitry Andric     if (ItNext - ItCurrent < 32)
5851e8d8bef9SDimitry Andric       for (auto *I : llvm::make_range(ItCurrent, ItNext))
5852e8d8bef9SDimitry Andric         for (auto *J : llvm::make_range(ItCurrent, ItNext))
5853e8d8bef9SDimitry Andric           if (I != J)
5854e8d8bef9SDimitry Andric             Assert(!DT.dominates(I, J),
5855e8d8bef9SDimitry Andric                    "llvm.experimental.noalias.scope.decl dominates another one "
5856e8d8bef9SDimitry Andric                    "with the same scope",
5857e8d8bef9SDimitry Andric                    I);
5858e8d8bef9SDimitry Andric     ItCurrent = ItNext;
5859e8d8bef9SDimitry Andric   }
5860e8d8bef9SDimitry Andric }
5861e8d8bef9SDimitry Andric 
58620b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
58630b57cec5SDimitry Andric //  Implement the public interfaces to this file...
58640b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
58650b57cec5SDimitry Andric 
58660b57cec5SDimitry Andric bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
58670b57cec5SDimitry Andric   Function &F = const_cast<Function &>(f);
58680b57cec5SDimitry Andric 
58690b57cec5SDimitry Andric   // Don't use a raw_null_ostream.  Printing IR is expensive.
58700b57cec5SDimitry Andric   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
58710b57cec5SDimitry Andric 
58720b57cec5SDimitry Andric   // Note that this function's return value is inverted from what you would
58730b57cec5SDimitry Andric   // expect of a function called "verify".
58740b57cec5SDimitry Andric   return !V.verify(F);
58750b57cec5SDimitry Andric }
58760b57cec5SDimitry Andric 
58770b57cec5SDimitry Andric bool llvm::verifyModule(const Module &M, raw_ostream *OS,
58780b57cec5SDimitry Andric                         bool *BrokenDebugInfo) {
58790b57cec5SDimitry Andric   // Don't use a raw_null_ostream.  Printing IR is expensive.
58800b57cec5SDimitry Andric   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
58810b57cec5SDimitry Andric 
58820b57cec5SDimitry Andric   bool Broken = false;
58830b57cec5SDimitry Andric   for (const Function &F : M)
58840b57cec5SDimitry Andric     Broken |= !V.verify(F);
58850b57cec5SDimitry Andric 
58860b57cec5SDimitry Andric   Broken |= !V.verify();
58870b57cec5SDimitry Andric   if (BrokenDebugInfo)
58880b57cec5SDimitry Andric     *BrokenDebugInfo = V.hasBrokenDebugInfo();
58890b57cec5SDimitry Andric   // Note that this function's return value is inverted from what you would
58900b57cec5SDimitry Andric   // expect of a function called "verify".
58910b57cec5SDimitry Andric   return Broken;
58920b57cec5SDimitry Andric }
58930b57cec5SDimitry Andric 
58940b57cec5SDimitry Andric namespace {
58950b57cec5SDimitry Andric 
58960b57cec5SDimitry Andric struct VerifierLegacyPass : public FunctionPass {
58970b57cec5SDimitry Andric   static char ID;
58980b57cec5SDimitry Andric 
58990b57cec5SDimitry Andric   std::unique_ptr<Verifier> V;
59000b57cec5SDimitry Andric   bool FatalErrors = true;
59010b57cec5SDimitry Andric 
59020b57cec5SDimitry Andric   VerifierLegacyPass() : FunctionPass(ID) {
59030b57cec5SDimitry Andric     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
59040b57cec5SDimitry Andric   }
59050b57cec5SDimitry Andric   explicit VerifierLegacyPass(bool FatalErrors)
59060b57cec5SDimitry Andric       : FunctionPass(ID),
59070b57cec5SDimitry Andric         FatalErrors(FatalErrors) {
59080b57cec5SDimitry Andric     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
59090b57cec5SDimitry Andric   }
59100b57cec5SDimitry Andric 
59110b57cec5SDimitry Andric   bool doInitialization(Module &M) override {
59128bcb0991SDimitry Andric     V = std::make_unique<Verifier>(
59130b57cec5SDimitry Andric         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
59140b57cec5SDimitry Andric     return false;
59150b57cec5SDimitry Andric   }
59160b57cec5SDimitry Andric 
59170b57cec5SDimitry Andric   bool runOnFunction(Function &F) override {
59180b57cec5SDimitry Andric     if (!V->verify(F) && FatalErrors) {
59190b57cec5SDimitry Andric       errs() << "in function " << F.getName() << '\n';
59200b57cec5SDimitry Andric       report_fatal_error("Broken function found, compilation aborted!");
59210b57cec5SDimitry Andric     }
59220b57cec5SDimitry Andric     return false;
59230b57cec5SDimitry Andric   }
59240b57cec5SDimitry Andric 
59250b57cec5SDimitry Andric   bool doFinalization(Module &M) override {
59260b57cec5SDimitry Andric     bool HasErrors = false;
59270b57cec5SDimitry Andric     for (Function &F : M)
59280b57cec5SDimitry Andric       if (F.isDeclaration())
59290b57cec5SDimitry Andric         HasErrors |= !V->verify(F);
59300b57cec5SDimitry Andric 
59310b57cec5SDimitry Andric     HasErrors |= !V->verify();
59320b57cec5SDimitry Andric     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
59330b57cec5SDimitry Andric       report_fatal_error("Broken module found, compilation aborted!");
59340b57cec5SDimitry Andric     return false;
59350b57cec5SDimitry Andric   }
59360b57cec5SDimitry Andric 
59370b57cec5SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
59380b57cec5SDimitry Andric     AU.setPreservesAll();
59390b57cec5SDimitry Andric   }
59400b57cec5SDimitry Andric };
59410b57cec5SDimitry Andric 
59420b57cec5SDimitry Andric } // end anonymous namespace
59430b57cec5SDimitry Andric 
59440b57cec5SDimitry Andric /// Helper to issue failure from the TBAA verification
59450b57cec5SDimitry Andric template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
59460b57cec5SDimitry Andric   if (Diagnostic)
59470b57cec5SDimitry Andric     return Diagnostic->CheckFailed(Args...);
59480b57cec5SDimitry Andric }
59490b57cec5SDimitry Andric 
59500b57cec5SDimitry Andric #define AssertTBAA(C, ...)                                                     \
59510b57cec5SDimitry Andric   do {                                                                         \
59520b57cec5SDimitry Andric     if (!(C)) {                                                                \
59530b57cec5SDimitry Andric       CheckFailed(__VA_ARGS__);                                                \
59540b57cec5SDimitry Andric       return false;                                                            \
59550b57cec5SDimitry Andric     }                                                                          \
59560b57cec5SDimitry Andric   } while (false)
59570b57cec5SDimitry Andric 
59580b57cec5SDimitry Andric /// Verify that \p BaseNode can be used as the "base type" in the struct-path
59590b57cec5SDimitry Andric /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
59600b57cec5SDimitry Andric /// struct-type node describing an aggregate data structure (like a struct).
59610b57cec5SDimitry Andric TBAAVerifier::TBAABaseNodeSummary
59620b57cec5SDimitry Andric TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
59630b57cec5SDimitry Andric                                  bool IsNewFormat) {
59640b57cec5SDimitry Andric   if (BaseNode->getNumOperands() < 2) {
59650b57cec5SDimitry Andric     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
59660b57cec5SDimitry Andric     return {true, ~0u};
59670b57cec5SDimitry Andric   }
59680b57cec5SDimitry Andric 
59690b57cec5SDimitry Andric   auto Itr = TBAABaseNodes.find(BaseNode);
59700b57cec5SDimitry Andric   if (Itr != TBAABaseNodes.end())
59710b57cec5SDimitry Andric     return Itr->second;
59720b57cec5SDimitry Andric 
59730b57cec5SDimitry Andric   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
59740b57cec5SDimitry Andric   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
59750b57cec5SDimitry Andric   (void)InsertResult;
59760b57cec5SDimitry Andric   assert(InsertResult.second && "We just checked!");
59770b57cec5SDimitry Andric   return Result;
59780b57cec5SDimitry Andric }
59790b57cec5SDimitry Andric 
59800b57cec5SDimitry Andric TBAAVerifier::TBAABaseNodeSummary
59810b57cec5SDimitry Andric TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
59820b57cec5SDimitry Andric                                      bool IsNewFormat) {
59830b57cec5SDimitry Andric   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
59840b57cec5SDimitry Andric 
59850b57cec5SDimitry Andric   if (BaseNode->getNumOperands() == 2) {
59860b57cec5SDimitry Andric     // Scalar nodes can only be accessed at offset 0.
59870b57cec5SDimitry Andric     return isValidScalarTBAANode(BaseNode)
59880b57cec5SDimitry Andric                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
59890b57cec5SDimitry Andric                : InvalidNode;
59900b57cec5SDimitry Andric   }
59910b57cec5SDimitry Andric 
59920b57cec5SDimitry Andric   if (IsNewFormat) {
59930b57cec5SDimitry Andric     if (BaseNode->getNumOperands() % 3 != 0) {
59940b57cec5SDimitry Andric       CheckFailed("Access tag nodes must have the number of operands that is a "
59950b57cec5SDimitry Andric                   "multiple of 3!", BaseNode);
59960b57cec5SDimitry Andric       return InvalidNode;
59970b57cec5SDimitry Andric     }
59980b57cec5SDimitry Andric   } else {
59990b57cec5SDimitry Andric     if (BaseNode->getNumOperands() % 2 != 1) {
60000b57cec5SDimitry Andric       CheckFailed("Struct tag nodes must have an odd number of operands!",
60010b57cec5SDimitry Andric                   BaseNode);
60020b57cec5SDimitry Andric       return InvalidNode;
60030b57cec5SDimitry Andric     }
60040b57cec5SDimitry Andric   }
60050b57cec5SDimitry Andric 
60060b57cec5SDimitry Andric   // Check the type size field.
60070b57cec5SDimitry Andric   if (IsNewFormat) {
60080b57cec5SDimitry Andric     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
60090b57cec5SDimitry Andric         BaseNode->getOperand(1));
60100b57cec5SDimitry Andric     if (!TypeSizeNode) {
60110b57cec5SDimitry Andric       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
60120b57cec5SDimitry Andric       return InvalidNode;
60130b57cec5SDimitry Andric     }
60140b57cec5SDimitry Andric   }
60150b57cec5SDimitry Andric 
60160b57cec5SDimitry Andric   // Check the type name field. In the new format it can be anything.
60170b57cec5SDimitry Andric   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
60180b57cec5SDimitry Andric     CheckFailed("Struct tag nodes have a string as their first operand",
60190b57cec5SDimitry Andric                 BaseNode);
60200b57cec5SDimitry Andric     return InvalidNode;
60210b57cec5SDimitry Andric   }
60220b57cec5SDimitry Andric 
60230b57cec5SDimitry Andric   bool Failed = false;
60240b57cec5SDimitry Andric 
60250b57cec5SDimitry Andric   Optional<APInt> PrevOffset;
60260b57cec5SDimitry Andric   unsigned BitWidth = ~0u;
60270b57cec5SDimitry Andric 
60280b57cec5SDimitry Andric   // We've already checked that BaseNode is not a degenerate root node with one
60290b57cec5SDimitry Andric   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
60300b57cec5SDimitry Andric   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
60310b57cec5SDimitry Andric   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
60320b57cec5SDimitry Andric   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
60330b57cec5SDimitry Andric            Idx += NumOpsPerField) {
60340b57cec5SDimitry Andric     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
60350b57cec5SDimitry Andric     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
60360b57cec5SDimitry Andric     if (!isa<MDNode>(FieldTy)) {
60370b57cec5SDimitry Andric       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
60380b57cec5SDimitry Andric       Failed = true;
60390b57cec5SDimitry Andric       continue;
60400b57cec5SDimitry Andric     }
60410b57cec5SDimitry Andric 
60420b57cec5SDimitry Andric     auto *OffsetEntryCI =
60430b57cec5SDimitry Andric         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
60440b57cec5SDimitry Andric     if (!OffsetEntryCI) {
60450b57cec5SDimitry Andric       CheckFailed("Offset entries must be constants!", &I, BaseNode);
60460b57cec5SDimitry Andric       Failed = true;
60470b57cec5SDimitry Andric       continue;
60480b57cec5SDimitry Andric     }
60490b57cec5SDimitry Andric 
60500b57cec5SDimitry Andric     if (BitWidth == ~0u)
60510b57cec5SDimitry Andric       BitWidth = OffsetEntryCI->getBitWidth();
60520b57cec5SDimitry Andric 
60530b57cec5SDimitry Andric     if (OffsetEntryCI->getBitWidth() != BitWidth) {
60540b57cec5SDimitry Andric       CheckFailed(
60550b57cec5SDimitry Andric           "Bitwidth between the offsets and struct type entries must match", &I,
60560b57cec5SDimitry Andric           BaseNode);
60570b57cec5SDimitry Andric       Failed = true;
60580b57cec5SDimitry Andric       continue;
60590b57cec5SDimitry Andric     }
60600b57cec5SDimitry Andric 
60610b57cec5SDimitry Andric     // NB! As far as I can tell, we generate a non-strictly increasing offset
60620b57cec5SDimitry Andric     // sequence only from structs that have zero size bit fields.  When
60630b57cec5SDimitry Andric     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
60640b57cec5SDimitry Andric     // pick the field lexically the latest in struct type metadata node.  This
60650b57cec5SDimitry Andric     // mirrors the actual behavior of the alias analysis implementation.
60660b57cec5SDimitry Andric     bool IsAscending =
60670b57cec5SDimitry Andric         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
60680b57cec5SDimitry Andric 
60690b57cec5SDimitry Andric     if (!IsAscending) {
60700b57cec5SDimitry Andric       CheckFailed("Offsets must be increasing!", &I, BaseNode);
60710b57cec5SDimitry Andric       Failed = true;
60720b57cec5SDimitry Andric     }
60730b57cec5SDimitry Andric 
60740b57cec5SDimitry Andric     PrevOffset = OffsetEntryCI->getValue();
60750b57cec5SDimitry Andric 
60760b57cec5SDimitry Andric     if (IsNewFormat) {
60770b57cec5SDimitry Andric       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
60780b57cec5SDimitry Andric           BaseNode->getOperand(Idx + 2));
60790b57cec5SDimitry Andric       if (!MemberSizeNode) {
60800b57cec5SDimitry Andric         CheckFailed("Member size entries must be constants!", &I, BaseNode);
60810b57cec5SDimitry Andric         Failed = true;
60820b57cec5SDimitry Andric         continue;
60830b57cec5SDimitry Andric       }
60840b57cec5SDimitry Andric     }
60850b57cec5SDimitry Andric   }
60860b57cec5SDimitry Andric 
60870b57cec5SDimitry Andric   return Failed ? InvalidNode
60880b57cec5SDimitry Andric                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
60890b57cec5SDimitry Andric }
60900b57cec5SDimitry Andric 
60910b57cec5SDimitry Andric static bool IsRootTBAANode(const MDNode *MD) {
60920b57cec5SDimitry Andric   return MD->getNumOperands() < 2;
60930b57cec5SDimitry Andric }
60940b57cec5SDimitry Andric 
60950b57cec5SDimitry Andric static bool IsScalarTBAANodeImpl(const MDNode *MD,
60960b57cec5SDimitry Andric                                  SmallPtrSetImpl<const MDNode *> &Visited) {
60970b57cec5SDimitry Andric   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
60980b57cec5SDimitry Andric     return false;
60990b57cec5SDimitry Andric 
61000b57cec5SDimitry Andric   if (!isa<MDString>(MD->getOperand(0)))
61010b57cec5SDimitry Andric     return false;
61020b57cec5SDimitry Andric 
61030b57cec5SDimitry Andric   if (MD->getNumOperands() == 3) {
61040b57cec5SDimitry Andric     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
61050b57cec5SDimitry Andric     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
61060b57cec5SDimitry Andric       return false;
61070b57cec5SDimitry Andric   }
61080b57cec5SDimitry Andric 
61090b57cec5SDimitry Andric   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
61100b57cec5SDimitry Andric   return Parent && Visited.insert(Parent).second &&
61110b57cec5SDimitry Andric          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
61120b57cec5SDimitry Andric }
61130b57cec5SDimitry Andric 
61140b57cec5SDimitry Andric bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
61150b57cec5SDimitry Andric   auto ResultIt = TBAAScalarNodes.find(MD);
61160b57cec5SDimitry Andric   if (ResultIt != TBAAScalarNodes.end())
61170b57cec5SDimitry Andric     return ResultIt->second;
61180b57cec5SDimitry Andric 
61190b57cec5SDimitry Andric   SmallPtrSet<const MDNode *, 4> Visited;
61200b57cec5SDimitry Andric   bool Result = IsScalarTBAANodeImpl(MD, Visited);
61210b57cec5SDimitry Andric   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
61220b57cec5SDimitry Andric   (void)InsertResult;
61230b57cec5SDimitry Andric   assert(InsertResult.second && "Just checked!");
61240b57cec5SDimitry Andric 
61250b57cec5SDimitry Andric   return Result;
61260b57cec5SDimitry Andric }
61270b57cec5SDimitry Andric 
61280b57cec5SDimitry Andric /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
61290b57cec5SDimitry Andric /// Offset in place to be the offset within the field node returned.
61300b57cec5SDimitry Andric ///
61310b57cec5SDimitry Andric /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
61320b57cec5SDimitry Andric MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
61330b57cec5SDimitry Andric                                                    const MDNode *BaseNode,
61340b57cec5SDimitry Andric                                                    APInt &Offset,
61350b57cec5SDimitry Andric                                                    bool IsNewFormat) {
61360b57cec5SDimitry Andric   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
61370b57cec5SDimitry Andric 
61380b57cec5SDimitry Andric   // Scalar nodes have only one possible "field" -- their parent in the access
61390b57cec5SDimitry Andric   // hierarchy.  Offset must be zero at this point, but our caller is supposed
61400b57cec5SDimitry Andric   // to Assert that.
61410b57cec5SDimitry Andric   if (BaseNode->getNumOperands() == 2)
61420b57cec5SDimitry Andric     return cast<MDNode>(BaseNode->getOperand(1));
61430b57cec5SDimitry Andric 
61440b57cec5SDimitry Andric   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
61450b57cec5SDimitry Andric   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
61460b57cec5SDimitry Andric   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
61470b57cec5SDimitry Andric            Idx += NumOpsPerField) {
61480b57cec5SDimitry Andric     auto *OffsetEntryCI =
61490b57cec5SDimitry Andric         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
61500b57cec5SDimitry Andric     if (OffsetEntryCI->getValue().ugt(Offset)) {
61510b57cec5SDimitry Andric       if (Idx == FirstFieldOpNo) {
61520b57cec5SDimitry Andric         CheckFailed("Could not find TBAA parent in struct type node", &I,
61530b57cec5SDimitry Andric                     BaseNode, &Offset);
61540b57cec5SDimitry Andric         return nullptr;
61550b57cec5SDimitry Andric       }
61560b57cec5SDimitry Andric 
61570b57cec5SDimitry Andric       unsigned PrevIdx = Idx - NumOpsPerField;
61580b57cec5SDimitry Andric       auto *PrevOffsetEntryCI =
61590b57cec5SDimitry Andric           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
61600b57cec5SDimitry Andric       Offset -= PrevOffsetEntryCI->getValue();
61610b57cec5SDimitry Andric       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
61620b57cec5SDimitry Andric     }
61630b57cec5SDimitry Andric   }
61640b57cec5SDimitry Andric 
61650b57cec5SDimitry Andric   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
61660b57cec5SDimitry Andric   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
61670b57cec5SDimitry Andric       BaseNode->getOperand(LastIdx + 1));
61680b57cec5SDimitry Andric   Offset -= LastOffsetEntryCI->getValue();
61690b57cec5SDimitry Andric   return cast<MDNode>(BaseNode->getOperand(LastIdx));
61700b57cec5SDimitry Andric }
61710b57cec5SDimitry Andric 
61720b57cec5SDimitry Andric static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
61730b57cec5SDimitry Andric   if (!Type || Type->getNumOperands() < 3)
61740b57cec5SDimitry Andric     return false;
61750b57cec5SDimitry Andric 
61760b57cec5SDimitry Andric   // In the new format type nodes shall have a reference to the parent type as
61770b57cec5SDimitry Andric   // its first operand.
6178349cc55cSDimitry Andric   return isa_and_nonnull<MDNode>(Type->getOperand(0));
61790b57cec5SDimitry Andric }
61800b57cec5SDimitry Andric 
61810b57cec5SDimitry Andric bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
61820b57cec5SDimitry Andric   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
61830b57cec5SDimitry Andric                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
61840b57cec5SDimitry Andric                  isa<AtomicCmpXchgInst>(I),
61850b57cec5SDimitry Andric              "This instruction shall not have a TBAA access tag!", &I);
61860b57cec5SDimitry Andric 
61870b57cec5SDimitry Andric   bool IsStructPathTBAA =
61880b57cec5SDimitry Andric       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
61890b57cec5SDimitry Andric 
61900b57cec5SDimitry Andric   AssertTBAA(
61910b57cec5SDimitry Andric       IsStructPathTBAA,
61920b57cec5SDimitry Andric       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
61930b57cec5SDimitry Andric 
61940b57cec5SDimitry Andric   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
61950b57cec5SDimitry Andric   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
61960b57cec5SDimitry Andric 
61970b57cec5SDimitry Andric   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
61980b57cec5SDimitry Andric 
61990b57cec5SDimitry Andric   if (IsNewFormat) {
62000b57cec5SDimitry Andric     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
62010b57cec5SDimitry Andric                "Access tag metadata must have either 4 or 5 operands", &I, MD);
62020b57cec5SDimitry Andric   } else {
62030b57cec5SDimitry Andric     AssertTBAA(MD->getNumOperands() < 5,
62040b57cec5SDimitry Andric                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
62050b57cec5SDimitry Andric   }
62060b57cec5SDimitry Andric 
62070b57cec5SDimitry Andric   // Check the access size field.
62080b57cec5SDimitry Andric   if (IsNewFormat) {
62090b57cec5SDimitry Andric     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
62100b57cec5SDimitry Andric         MD->getOperand(3));
62110b57cec5SDimitry Andric     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
62120b57cec5SDimitry Andric   }
62130b57cec5SDimitry Andric 
62140b57cec5SDimitry Andric   // Check the immutability flag.
62150b57cec5SDimitry Andric   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
62160b57cec5SDimitry Andric   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
62170b57cec5SDimitry Andric     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
62180b57cec5SDimitry Andric         MD->getOperand(ImmutabilityFlagOpNo));
62190b57cec5SDimitry Andric     AssertTBAA(IsImmutableCI,
62200b57cec5SDimitry Andric                "Immutability tag on struct tag metadata must be a constant",
62210b57cec5SDimitry Andric                &I, MD);
62220b57cec5SDimitry Andric     AssertTBAA(
62230b57cec5SDimitry Andric         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
62240b57cec5SDimitry Andric         "Immutability part of the struct tag metadata must be either 0 or 1",
62250b57cec5SDimitry Andric         &I, MD);
62260b57cec5SDimitry Andric   }
62270b57cec5SDimitry Andric 
62280b57cec5SDimitry Andric   AssertTBAA(BaseNode && AccessType,
62290b57cec5SDimitry Andric              "Malformed struct tag metadata: base and access-type "
62300b57cec5SDimitry Andric              "should be non-null and point to Metadata nodes",
62310b57cec5SDimitry Andric              &I, MD, BaseNode, AccessType);
62320b57cec5SDimitry Andric 
62330b57cec5SDimitry Andric   if (!IsNewFormat) {
62340b57cec5SDimitry Andric     AssertTBAA(isValidScalarTBAANode(AccessType),
62350b57cec5SDimitry Andric                "Access type node must be a valid scalar type", &I, MD,
62360b57cec5SDimitry Andric                AccessType);
62370b57cec5SDimitry Andric   }
62380b57cec5SDimitry Andric 
62390b57cec5SDimitry Andric   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
62400b57cec5SDimitry Andric   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
62410b57cec5SDimitry Andric 
62420b57cec5SDimitry Andric   APInt Offset = OffsetCI->getValue();
62430b57cec5SDimitry Andric   bool SeenAccessTypeInPath = false;
62440b57cec5SDimitry Andric 
62450b57cec5SDimitry Andric   SmallPtrSet<MDNode *, 4> StructPath;
62460b57cec5SDimitry Andric 
62470b57cec5SDimitry Andric   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
62480b57cec5SDimitry Andric        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
62490b57cec5SDimitry Andric                                                IsNewFormat)) {
62500b57cec5SDimitry Andric     if (!StructPath.insert(BaseNode).second) {
62510b57cec5SDimitry Andric       CheckFailed("Cycle detected in struct path", &I, MD);
62520b57cec5SDimitry Andric       return false;
62530b57cec5SDimitry Andric     }
62540b57cec5SDimitry Andric 
62550b57cec5SDimitry Andric     bool Invalid;
62560b57cec5SDimitry Andric     unsigned BaseNodeBitWidth;
62570b57cec5SDimitry Andric     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
62580b57cec5SDimitry Andric                                                              IsNewFormat);
62590b57cec5SDimitry Andric 
62600b57cec5SDimitry Andric     // If the base node is invalid in itself, then we've already printed all the
62610b57cec5SDimitry Andric     // errors we wanted to print.
62620b57cec5SDimitry Andric     if (Invalid)
62630b57cec5SDimitry Andric       return false;
62640b57cec5SDimitry Andric 
62650b57cec5SDimitry Andric     SeenAccessTypeInPath |= BaseNode == AccessType;
62660b57cec5SDimitry Andric 
62670b57cec5SDimitry Andric     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
62680b57cec5SDimitry Andric       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
62690b57cec5SDimitry Andric                  &I, MD, &Offset);
62700b57cec5SDimitry Andric 
62710b57cec5SDimitry Andric     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
62720b57cec5SDimitry Andric                    (BaseNodeBitWidth == 0 && Offset == 0) ||
62730b57cec5SDimitry Andric                    (IsNewFormat && BaseNodeBitWidth == ~0u),
62740b57cec5SDimitry Andric                "Access bit-width not the same as description bit-width", &I, MD,
62750b57cec5SDimitry Andric                BaseNodeBitWidth, Offset.getBitWidth());
62760b57cec5SDimitry Andric 
62770b57cec5SDimitry Andric     if (IsNewFormat && SeenAccessTypeInPath)
62780b57cec5SDimitry Andric       break;
62790b57cec5SDimitry Andric   }
62800b57cec5SDimitry Andric 
62810b57cec5SDimitry Andric   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
62820b57cec5SDimitry Andric              &I, MD);
62830b57cec5SDimitry Andric   return true;
62840b57cec5SDimitry Andric }
62850b57cec5SDimitry Andric 
62860b57cec5SDimitry Andric char VerifierLegacyPass::ID = 0;
62870b57cec5SDimitry Andric INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
62880b57cec5SDimitry Andric 
62890b57cec5SDimitry Andric FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
62900b57cec5SDimitry Andric   return new VerifierLegacyPass(FatalErrors);
62910b57cec5SDimitry Andric }
62920b57cec5SDimitry Andric 
62930b57cec5SDimitry Andric AnalysisKey VerifierAnalysis::Key;
62940b57cec5SDimitry Andric VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
62950b57cec5SDimitry Andric                                                ModuleAnalysisManager &) {
62960b57cec5SDimitry Andric   Result Res;
62970b57cec5SDimitry Andric   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
62980b57cec5SDimitry Andric   return Res;
62990b57cec5SDimitry Andric }
63000b57cec5SDimitry Andric 
63010b57cec5SDimitry Andric VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
63020b57cec5SDimitry Andric                                                FunctionAnalysisManager &) {
63030b57cec5SDimitry Andric   return { llvm::verifyFunction(F, &dbgs()), false };
63040b57cec5SDimitry Andric }
63050b57cec5SDimitry Andric 
63060b57cec5SDimitry Andric PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
63070b57cec5SDimitry Andric   auto Res = AM.getResult<VerifierAnalysis>(M);
63080b57cec5SDimitry Andric   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
63090b57cec5SDimitry Andric     report_fatal_error("Broken module found, compilation aborted!");
63100b57cec5SDimitry Andric 
63110b57cec5SDimitry Andric   return PreservedAnalyses::all();
63120b57cec5SDimitry Andric }
63130b57cec5SDimitry Andric 
63140b57cec5SDimitry Andric PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
63150b57cec5SDimitry Andric   auto res = AM.getResult<VerifierAnalysis>(F);
63160b57cec5SDimitry Andric   if (res.IRBroken && FatalErrors)
63170b57cec5SDimitry Andric     report_fatal_error("Broken function found, compilation aborted!");
63180b57cec5SDimitry Andric 
63190b57cec5SDimitry Andric   return PreservedAnalyses::all();
63200b57cec5SDimitry Andric }
6321