10b57cec5SDimitry Andric //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file defines the function verifier interface, that can be used for some 10*4824e7fdSDimitry Andric // basic correctness checking of input to the system. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric // Note that this does not provide full `Java style' security and verifications, 130b57cec5SDimitry Andric // instead it just tries to ensure that code is well-formed. 140b57cec5SDimitry Andric // 150b57cec5SDimitry Andric // * Both of a binary operator's parameters are of the same type 160b57cec5SDimitry Andric // * Verify that the indices of mem access instructions match other operands 170b57cec5SDimitry Andric // * Verify that arithmetic and other things are only performed on first-class 180b57cec5SDimitry Andric // types. Verify that shifts & logicals only happen on integrals f.e. 190b57cec5SDimitry Andric // * All of the constants in a switch statement are of the correct type 200b57cec5SDimitry Andric // * The code is in valid SSA form 210b57cec5SDimitry Andric // * It should be illegal to put a label into any other type (like a structure) 220b57cec5SDimitry Andric // or to return one. [except constant arrays!] 230b57cec5SDimitry Andric // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 240b57cec5SDimitry Andric // * PHI nodes must have an entry for each predecessor, with no extras. 250b57cec5SDimitry Andric // * PHI nodes must be the first thing in a basic block, all grouped together 260b57cec5SDimitry Andric // * PHI nodes must have at least one entry 270b57cec5SDimitry Andric // * All basic blocks should only end with terminator insts, not contain them 280b57cec5SDimitry Andric // * The entry node to a function must not have predecessors 290b57cec5SDimitry Andric // * All Instructions must be embedded into a basic block 300b57cec5SDimitry Andric // * Functions cannot take a void-typed parameter 310b57cec5SDimitry Andric // * Verify that a function's argument list agrees with it's declared type. 320b57cec5SDimitry Andric // * It is illegal to specify a name for a void value. 330b57cec5SDimitry Andric // * It is illegal to have a internal global value with no initializer 340b57cec5SDimitry Andric // * It is illegal to have a ret instruction that returns a value that does not 350b57cec5SDimitry Andric // agree with the function return value type. 360b57cec5SDimitry Andric // * Function call argument types match the function prototype 370b57cec5SDimitry Andric // * A landing pad is defined by a landingpad instruction, and can be jumped to 380b57cec5SDimitry Andric // only by the unwind edge of an invoke instruction. 390b57cec5SDimitry Andric // * A landingpad instruction must be the first non-PHI instruction in the 400b57cec5SDimitry Andric // block. 410b57cec5SDimitry Andric // * Landingpad instructions must be in a function with a personality function. 420b57cec5SDimitry Andric // * All other things that are tested by asserts spread about the code... 430b57cec5SDimitry Andric // 440b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 450b57cec5SDimitry Andric 460b57cec5SDimitry Andric #include "llvm/IR/Verifier.h" 470b57cec5SDimitry Andric #include "llvm/ADT/APFloat.h" 480b57cec5SDimitry Andric #include "llvm/ADT/APInt.h" 490b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 500b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h" 510b57cec5SDimitry Andric #include "llvm/ADT/MapVector.h" 520b57cec5SDimitry Andric #include "llvm/ADT/Optional.h" 530b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 540b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 550b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h" 560b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 570b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h" 580b57cec5SDimitry Andric #include "llvm/ADT/StringMap.h" 590b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h" 600b57cec5SDimitry Andric #include "llvm/ADT/Twine.h" 610b57cec5SDimitry Andric #include "llvm/ADT/ilist.h" 620b57cec5SDimitry Andric #include "llvm/BinaryFormat/Dwarf.h" 630b57cec5SDimitry Andric #include "llvm/IR/Argument.h" 640b57cec5SDimitry Andric #include "llvm/IR/Attributes.h" 650b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 660b57cec5SDimitry Andric #include "llvm/IR/CFG.h" 670b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h" 680b57cec5SDimitry Andric #include "llvm/IR/Comdat.h" 690b57cec5SDimitry Andric #include "llvm/IR/Constant.h" 700b57cec5SDimitry Andric #include "llvm/IR/ConstantRange.h" 710b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 720b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 730b57cec5SDimitry Andric #include "llvm/IR/DebugInfo.h" 740b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h" 750b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h" 760b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 770b57cec5SDimitry Andric #include "llvm/IR/Dominators.h" 780b57cec5SDimitry Andric #include "llvm/IR/Function.h" 790b57cec5SDimitry Andric #include "llvm/IR/GlobalAlias.h" 800b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h" 810b57cec5SDimitry Andric #include "llvm/IR/GlobalVariable.h" 820b57cec5SDimitry Andric #include "llvm/IR/InlineAsm.h" 830b57cec5SDimitry Andric #include "llvm/IR/InstVisitor.h" 840b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 850b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 860b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 870b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 880b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 89480093f4SDimitry Andric #include "llvm/IR/IntrinsicsWebAssembly.h" 900b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h" 910b57cec5SDimitry Andric #include "llvm/IR/Metadata.h" 920b57cec5SDimitry Andric #include "llvm/IR/Module.h" 930b57cec5SDimitry Andric #include "llvm/IR/ModuleSlotTracker.h" 940b57cec5SDimitry Andric #include "llvm/IR/PassManager.h" 950b57cec5SDimitry Andric #include "llvm/IR/Statepoint.h" 960b57cec5SDimitry Andric #include "llvm/IR/Type.h" 970b57cec5SDimitry Andric #include "llvm/IR/Use.h" 980b57cec5SDimitry Andric #include "llvm/IR/User.h" 990b57cec5SDimitry Andric #include "llvm/IR/Value.h" 100480093f4SDimitry Andric #include "llvm/InitializePasses.h" 1010b57cec5SDimitry Andric #include "llvm/Pass.h" 1020b57cec5SDimitry Andric #include "llvm/Support/AtomicOrdering.h" 1030b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 1040b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 1050b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 1060b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 1070b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h" 1080b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 1090b57cec5SDimitry Andric #include <algorithm> 1100b57cec5SDimitry Andric #include <cassert> 1110b57cec5SDimitry Andric #include <cstdint> 1120b57cec5SDimitry Andric #include <memory> 1130b57cec5SDimitry Andric #include <string> 1140b57cec5SDimitry Andric #include <utility> 1150b57cec5SDimitry Andric 1160b57cec5SDimitry Andric using namespace llvm; 1170b57cec5SDimitry Andric 118e8d8bef9SDimitry Andric static cl::opt<bool> VerifyNoAliasScopeDomination( 119e8d8bef9SDimitry Andric "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120e8d8bef9SDimitry Andric cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121e8d8bef9SDimitry Andric "scopes are not dominating")); 122e8d8bef9SDimitry Andric 1230b57cec5SDimitry Andric namespace llvm { 1240b57cec5SDimitry Andric 1250b57cec5SDimitry Andric struct VerifierSupport { 1260b57cec5SDimitry Andric raw_ostream *OS; 1270b57cec5SDimitry Andric const Module &M; 1280b57cec5SDimitry Andric ModuleSlotTracker MST; 1298bcb0991SDimitry Andric Triple TT; 1300b57cec5SDimitry Andric const DataLayout &DL; 1310b57cec5SDimitry Andric LLVMContext &Context; 1320b57cec5SDimitry Andric 1330b57cec5SDimitry Andric /// Track the brokenness of the module while recursively visiting. 1340b57cec5SDimitry Andric bool Broken = false; 1350b57cec5SDimitry Andric /// Broken debug info can be "recovered" from by stripping the debug info. 1360b57cec5SDimitry Andric bool BrokenDebugInfo = false; 1370b57cec5SDimitry Andric /// Whether to treat broken debug info as an error. 1380b57cec5SDimitry Andric bool TreatBrokenDebugInfoAsError = true; 1390b57cec5SDimitry Andric 1400b57cec5SDimitry Andric explicit VerifierSupport(raw_ostream *OS, const Module &M) 1418bcb0991SDimitry Andric : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 1428bcb0991SDimitry Andric Context(M.getContext()) {} 1430b57cec5SDimitry Andric 1440b57cec5SDimitry Andric private: 1450b57cec5SDimitry Andric void Write(const Module *M) { 1460b57cec5SDimitry Andric *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 1470b57cec5SDimitry Andric } 1480b57cec5SDimitry Andric 1490b57cec5SDimitry Andric void Write(const Value *V) { 1500b57cec5SDimitry Andric if (V) 1510b57cec5SDimitry Andric Write(*V); 1520b57cec5SDimitry Andric } 1530b57cec5SDimitry Andric 1540b57cec5SDimitry Andric void Write(const Value &V) { 1550b57cec5SDimitry Andric if (isa<Instruction>(V)) { 1560b57cec5SDimitry Andric V.print(*OS, MST); 1570b57cec5SDimitry Andric *OS << '\n'; 1580b57cec5SDimitry Andric } else { 1590b57cec5SDimitry Andric V.printAsOperand(*OS, true, MST); 1600b57cec5SDimitry Andric *OS << '\n'; 1610b57cec5SDimitry Andric } 1620b57cec5SDimitry Andric } 1630b57cec5SDimitry Andric 1640b57cec5SDimitry Andric void Write(const Metadata *MD) { 1650b57cec5SDimitry Andric if (!MD) 1660b57cec5SDimitry Andric return; 1670b57cec5SDimitry Andric MD->print(*OS, MST, &M); 1680b57cec5SDimitry Andric *OS << '\n'; 1690b57cec5SDimitry Andric } 1700b57cec5SDimitry Andric 1710b57cec5SDimitry Andric template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 1720b57cec5SDimitry Andric Write(MD.get()); 1730b57cec5SDimitry Andric } 1740b57cec5SDimitry Andric 1750b57cec5SDimitry Andric void Write(const NamedMDNode *NMD) { 1760b57cec5SDimitry Andric if (!NMD) 1770b57cec5SDimitry Andric return; 1780b57cec5SDimitry Andric NMD->print(*OS, MST); 1790b57cec5SDimitry Andric *OS << '\n'; 1800b57cec5SDimitry Andric } 1810b57cec5SDimitry Andric 1820b57cec5SDimitry Andric void Write(Type *T) { 1830b57cec5SDimitry Andric if (!T) 1840b57cec5SDimitry Andric return; 1850b57cec5SDimitry Andric *OS << ' ' << *T; 1860b57cec5SDimitry Andric } 1870b57cec5SDimitry Andric 1880b57cec5SDimitry Andric void Write(const Comdat *C) { 1890b57cec5SDimitry Andric if (!C) 1900b57cec5SDimitry Andric return; 1910b57cec5SDimitry Andric *OS << *C; 1920b57cec5SDimitry Andric } 1930b57cec5SDimitry Andric 1940b57cec5SDimitry Andric void Write(const APInt *AI) { 1950b57cec5SDimitry Andric if (!AI) 1960b57cec5SDimitry Andric return; 1970b57cec5SDimitry Andric *OS << *AI << '\n'; 1980b57cec5SDimitry Andric } 1990b57cec5SDimitry Andric 2000b57cec5SDimitry Andric void Write(const unsigned i) { *OS << i << '\n'; } 2010b57cec5SDimitry Andric 202fe6060f1SDimitry Andric // NOLINTNEXTLINE(readability-identifier-naming) 203fe6060f1SDimitry Andric void Write(const Attribute *A) { 204fe6060f1SDimitry Andric if (!A) 205fe6060f1SDimitry Andric return; 206fe6060f1SDimitry Andric *OS << A->getAsString() << '\n'; 207fe6060f1SDimitry Andric } 208fe6060f1SDimitry Andric 209fe6060f1SDimitry Andric // NOLINTNEXTLINE(readability-identifier-naming) 210fe6060f1SDimitry Andric void Write(const AttributeSet *AS) { 211fe6060f1SDimitry Andric if (!AS) 212fe6060f1SDimitry Andric return; 213fe6060f1SDimitry Andric *OS << AS->getAsString() << '\n'; 214fe6060f1SDimitry Andric } 215fe6060f1SDimitry Andric 216fe6060f1SDimitry Andric // NOLINTNEXTLINE(readability-identifier-naming) 217fe6060f1SDimitry Andric void Write(const AttributeList *AL) { 218fe6060f1SDimitry Andric if (!AL) 219fe6060f1SDimitry Andric return; 220fe6060f1SDimitry Andric AL->print(*OS); 221fe6060f1SDimitry Andric } 222fe6060f1SDimitry Andric 2230b57cec5SDimitry Andric template <typename T> void Write(ArrayRef<T> Vs) { 2240b57cec5SDimitry Andric for (const T &V : Vs) 2250b57cec5SDimitry Andric Write(V); 2260b57cec5SDimitry Andric } 2270b57cec5SDimitry Andric 2280b57cec5SDimitry Andric template <typename T1, typename... Ts> 2290b57cec5SDimitry Andric void WriteTs(const T1 &V1, const Ts &... Vs) { 2300b57cec5SDimitry Andric Write(V1); 2310b57cec5SDimitry Andric WriteTs(Vs...); 2320b57cec5SDimitry Andric } 2330b57cec5SDimitry Andric 2340b57cec5SDimitry Andric template <typename... Ts> void WriteTs() {} 2350b57cec5SDimitry Andric 2360b57cec5SDimitry Andric public: 2370b57cec5SDimitry Andric /// A check failed, so printout out the condition and the message. 2380b57cec5SDimitry Andric /// 2390b57cec5SDimitry Andric /// This provides a nice place to put a breakpoint if you want to see why 2400b57cec5SDimitry Andric /// something is not correct. 2410b57cec5SDimitry Andric void CheckFailed(const Twine &Message) { 2420b57cec5SDimitry Andric if (OS) 2430b57cec5SDimitry Andric *OS << Message << '\n'; 2440b57cec5SDimitry Andric Broken = true; 2450b57cec5SDimitry Andric } 2460b57cec5SDimitry Andric 2470b57cec5SDimitry Andric /// A check failed (with values to print). 2480b57cec5SDimitry Andric /// 2490b57cec5SDimitry Andric /// This calls the Message-only version so that the above is easier to set a 2500b57cec5SDimitry Andric /// breakpoint on. 2510b57cec5SDimitry Andric template <typename T1, typename... Ts> 2520b57cec5SDimitry Andric void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 2530b57cec5SDimitry Andric CheckFailed(Message); 2540b57cec5SDimitry Andric if (OS) 2550b57cec5SDimitry Andric WriteTs(V1, Vs...); 2560b57cec5SDimitry Andric } 2570b57cec5SDimitry Andric 2580b57cec5SDimitry Andric /// A debug info check failed. 2590b57cec5SDimitry Andric void DebugInfoCheckFailed(const Twine &Message) { 2600b57cec5SDimitry Andric if (OS) 2610b57cec5SDimitry Andric *OS << Message << '\n'; 2620b57cec5SDimitry Andric Broken |= TreatBrokenDebugInfoAsError; 2630b57cec5SDimitry Andric BrokenDebugInfo = true; 2640b57cec5SDimitry Andric } 2650b57cec5SDimitry Andric 2660b57cec5SDimitry Andric /// A debug info check failed (with values to print). 2670b57cec5SDimitry Andric template <typename T1, typename... Ts> 2680b57cec5SDimitry Andric void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 2690b57cec5SDimitry Andric const Ts &... Vs) { 2700b57cec5SDimitry Andric DebugInfoCheckFailed(Message); 2710b57cec5SDimitry Andric if (OS) 2720b57cec5SDimitry Andric WriteTs(V1, Vs...); 2730b57cec5SDimitry Andric } 2740b57cec5SDimitry Andric }; 2750b57cec5SDimitry Andric 2760b57cec5SDimitry Andric } // namespace llvm 2770b57cec5SDimitry Andric 2780b57cec5SDimitry Andric namespace { 2790b57cec5SDimitry Andric 2800b57cec5SDimitry Andric class Verifier : public InstVisitor<Verifier>, VerifierSupport { 2810b57cec5SDimitry Andric friend class InstVisitor<Verifier>; 2820b57cec5SDimitry Andric 2830b57cec5SDimitry Andric DominatorTree DT; 2840b57cec5SDimitry Andric 2850b57cec5SDimitry Andric /// When verifying a basic block, keep track of all of the 2860b57cec5SDimitry Andric /// instructions we have seen so far. 2870b57cec5SDimitry Andric /// 2880b57cec5SDimitry Andric /// This allows us to do efficient dominance checks for the case when an 2890b57cec5SDimitry Andric /// instruction has an operand that is an instruction in the same block. 2900b57cec5SDimitry Andric SmallPtrSet<Instruction *, 16> InstsInThisBlock; 2910b57cec5SDimitry Andric 2920b57cec5SDimitry Andric /// Keep track of the metadata nodes that have been checked already. 2930b57cec5SDimitry Andric SmallPtrSet<const Metadata *, 32> MDNodes; 2940b57cec5SDimitry Andric 2950b57cec5SDimitry Andric /// Keep track which DISubprogram is attached to which function. 2960b57cec5SDimitry Andric DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 2970b57cec5SDimitry Andric 2980b57cec5SDimitry Andric /// Track all DICompileUnits visited. 2990b57cec5SDimitry Andric SmallPtrSet<const Metadata *, 2> CUVisited; 3000b57cec5SDimitry Andric 3010b57cec5SDimitry Andric /// The result type for a landingpad. 3020b57cec5SDimitry Andric Type *LandingPadResultTy; 3030b57cec5SDimitry Andric 3040b57cec5SDimitry Andric /// Whether we've seen a call to @llvm.localescape in this function 3050b57cec5SDimitry Andric /// already. 3060b57cec5SDimitry Andric bool SawFrameEscape; 3070b57cec5SDimitry Andric 3080b57cec5SDimitry Andric /// Whether the current function has a DISubprogram attached to it. 3090b57cec5SDimitry Andric bool HasDebugInfo = false; 3100b57cec5SDimitry Andric 311e8d8bef9SDimitry Andric /// The current source language. 312e8d8bef9SDimitry Andric dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 313e8d8bef9SDimitry Andric 3140b57cec5SDimitry Andric /// Whether source was present on the first DIFile encountered in each CU. 3150b57cec5SDimitry Andric DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 3160b57cec5SDimitry Andric 3170b57cec5SDimitry Andric /// Stores the count of how many objects were passed to llvm.localescape for a 3180b57cec5SDimitry Andric /// given function and the largest index passed to llvm.localrecover. 3190b57cec5SDimitry Andric DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 3200b57cec5SDimitry Andric 3210b57cec5SDimitry Andric // Maps catchswitches and cleanuppads that unwind to siblings to the 3220b57cec5SDimitry Andric // terminators that indicate the unwind, used to detect cycles therein. 3230b57cec5SDimitry Andric MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 3240b57cec5SDimitry Andric 3250b57cec5SDimitry Andric /// Cache of constants visited in search of ConstantExprs. 3260b57cec5SDimitry Andric SmallPtrSet<const Constant *, 32> ConstantExprVisited; 3270b57cec5SDimitry Andric 3280b57cec5SDimitry Andric /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 3290b57cec5SDimitry Andric SmallVector<const Function *, 4> DeoptimizeDeclarations; 3300b57cec5SDimitry Andric 331fe6060f1SDimitry Andric /// Cache of attribute lists verified. 332fe6060f1SDimitry Andric SmallPtrSet<const void *, 32> AttributeListsVisited; 333fe6060f1SDimitry Andric 3340b57cec5SDimitry Andric // Verify that this GlobalValue is only used in this module. 3350b57cec5SDimitry Andric // This map is used to avoid visiting uses twice. We can arrive at a user 3360b57cec5SDimitry Andric // twice, if they have multiple operands. In particular for very large 3370b57cec5SDimitry Andric // constant expressions, we can arrive at a particular user many times. 3380b57cec5SDimitry Andric SmallPtrSet<const Value *, 32> GlobalValueVisited; 3390b57cec5SDimitry Andric 3400b57cec5SDimitry Andric // Keeps track of duplicate function argument debug info. 3410b57cec5SDimitry Andric SmallVector<const DILocalVariable *, 16> DebugFnArgs; 3420b57cec5SDimitry Andric 3430b57cec5SDimitry Andric TBAAVerifier TBAAVerifyHelper; 3440b57cec5SDimitry Andric 345e8d8bef9SDimitry Andric SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 346e8d8bef9SDimitry Andric 3470b57cec5SDimitry Andric void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 3480b57cec5SDimitry Andric 3490b57cec5SDimitry Andric public: 3500b57cec5SDimitry Andric explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 3510b57cec5SDimitry Andric const Module &M) 3520b57cec5SDimitry Andric : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 3530b57cec5SDimitry Andric SawFrameEscape(false), TBAAVerifyHelper(this) { 3540b57cec5SDimitry Andric TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 3550b57cec5SDimitry Andric } 3560b57cec5SDimitry Andric 3570b57cec5SDimitry Andric bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 3580b57cec5SDimitry Andric 3590b57cec5SDimitry Andric bool verify(const Function &F) { 3600b57cec5SDimitry Andric assert(F.getParent() == &M && 3610b57cec5SDimitry Andric "An instance of this class only works with a specific module!"); 3620b57cec5SDimitry Andric 3630b57cec5SDimitry Andric // First ensure the function is well-enough formed to compute dominance 3640b57cec5SDimitry Andric // information, and directly compute a dominance tree. We don't rely on the 3650b57cec5SDimitry Andric // pass manager to provide this as it isolates us from a potentially 3660b57cec5SDimitry Andric // out-of-date dominator tree and makes it significantly more complex to run 3670b57cec5SDimitry Andric // this code outside of a pass manager. 3680b57cec5SDimitry Andric // FIXME: It's really gross that we have to cast away constness here. 3690b57cec5SDimitry Andric if (!F.empty()) 3700b57cec5SDimitry Andric DT.recalculate(const_cast<Function &>(F)); 3710b57cec5SDimitry Andric 3720b57cec5SDimitry Andric for (const BasicBlock &BB : F) { 3730b57cec5SDimitry Andric if (!BB.empty() && BB.back().isTerminator()) 3740b57cec5SDimitry Andric continue; 3750b57cec5SDimitry Andric 3760b57cec5SDimitry Andric if (OS) { 3770b57cec5SDimitry Andric *OS << "Basic Block in function '" << F.getName() 3780b57cec5SDimitry Andric << "' does not have terminator!\n"; 3790b57cec5SDimitry Andric BB.printAsOperand(*OS, true, MST); 3800b57cec5SDimitry Andric *OS << "\n"; 3810b57cec5SDimitry Andric } 3820b57cec5SDimitry Andric return false; 3830b57cec5SDimitry Andric } 3840b57cec5SDimitry Andric 3850b57cec5SDimitry Andric Broken = false; 3860b57cec5SDimitry Andric // FIXME: We strip const here because the inst visitor strips const. 3870b57cec5SDimitry Andric visit(const_cast<Function &>(F)); 3880b57cec5SDimitry Andric verifySiblingFuncletUnwinds(); 3890b57cec5SDimitry Andric InstsInThisBlock.clear(); 3900b57cec5SDimitry Andric DebugFnArgs.clear(); 3910b57cec5SDimitry Andric LandingPadResultTy = nullptr; 3920b57cec5SDimitry Andric SawFrameEscape = false; 3930b57cec5SDimitry Andric SiblingFuncletInfo.clear(); 394e8d8bef9SDimitry Andric verifyNoAliasScopeDecl(); 395e8d8bef9SDimitry Andric NoAliasScopeDecls.clear(); 3960b57cec5SDimitry Andric 3970b57cec5SDimitry Andric return !Broken; 3980b57cec5SDimitry Andric } 3990b57cec5SDimitry Andric 4000b57cec5SDimitry Andric /// Verify the module that this instance of \c Verifier was initialized with. 4010b57cec5SDimitry Andric bool verify() { 4020b57cec5SDimitry Andric Broken = false; 4030b57cec5SDimitry Andric 4040b57cec5SDimitry Andric // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 4050b57cec5SDimitry Andric for (const Function &F : M) 4060b57cec5SDimitry Andric if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 4070b57cec5SDimitry Andric DeoptimizeDeclarations.push_back(&F); 4080b57cec5SDimitry Andric 4090b57cec5SDimitry Andric // Now that we've visited every function, verify that we never asked to 4100b57cec5SDimitry Andric // recover a frame index that wasn't escaped. 4110b57cec5SDimitry Andric verifyFrameRecoverIndices(); 4120b57cec5SDimitry Andric for (const GlobalVariable &GV : M.globals()) 4130b57cec5SDimitry Andric visitGlobalVariable(GV); 4140b57cec5SDimitry Andric 4150b57cec5SDimitry Andric for (const GlobalAlias &GA : M.aliases()) 4160b57cec5SDimitry Andric visitGlobalAlias(GA); 4170b57cec5SDimitry Andric 418349cc55cSDimitry Andric for (const GlobalIFunc &GI : M.ifuncs()) 419349cc55cSDimitry Andric visitGlobalIFunc(GI); 420349cc55cSDimitry Andric 4210b57cec5SDimitry Andric for (const NamedMDNode &NMD : M.named_metadata()) 4220b57cec5SDimitry Andric visitNamedMDNode(NMD); 4230b57cec5SDimitry Andric 4240b57cec5SDimitry Andric for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 4250b57cec5SDimitry Andric visitComdat(SMEC.getValue()); 4260b57cec5SDimitry Andric 427349cc55cSDimitry Andric visitModuleFlags(); 428349cc55cSDimitry Andric visitModuleIdents(); 429349cc55cSDimitry Andric visitModuleCommandLines(); 4300b57cec5SDimitry Andric 4310b57cec5SDimitry Andric verifyCompileUnits(); 4320b57cec5SDimitry Andric 4330b57cec5SDimitry Andric verifyDeoptimizeCallingConvs(); 4340b57cec5SDimitry Andric DISubprogramAttachments.clear(); 4350b57cec5SDimitry Andric return !Broken; 4360b57cec5SDimitry Andric } 4370b57cec5SDimitry Andric 4380b57cec5SDimitry Andric private: 4395ffd83dbSDimitry Andric /// Whether a metadata node is allowed to be, or contain, a DILocation. 4405ffd83dbSDimitry Andric enum class AreDebugLocsAllowed { No, Yes }; 4415ffd83dbSDimitry Andric 4420b57cec5SDimitry Andric // Verification methods... 4430b57cec5SDimitry Andric void visitGlobalValue(const GlobalValue &GV); 4440b57cec5SDimitry Andric void visitGlobalVariable(const GlobalVariable &GV); 4450b57cec5SDimitry Andric void visitGlobalAlias(const GlobalAlias &GA); 446349cc55cSDimitry Andric void visitGlobalIFunc(const GlobalIFunc &GI); 4470b57cec5SDimitry Andric void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 4480b57cec5SDimitry Andric void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 4490b57cec5SDimitry Andric const GlobalAlias &A, const Constant &C); 4500b57cec5SDimitry Andric void visitNamedMDNode(const NamedMDNode &NMD); 4515ffd83dbSDimitry Andric void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 4520b57cec5SDimitry Andric void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 4530b57cec5SDimitry Andric void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 4540b57cec5SDimitry Andric void visitComdat(const Comdat &C); 455349cc55cSDimitry Andric void visitModuleIdents(); 456349cc55cSDimitry Andric void visitModuleCommandLines(); 457349cc55cSDimitry Andric void visitModuleFlags(); 4580b57cec5SDimitry Andric void visitModuleFlag(const MDNode *Op, 4590b57cec5SDimitry Andric DenseMap<const MDString *, const MDNode *> &SeenIDs, 4600b57cec5SDimitry Andric SmallVectorImpl<const MDNode *> &Requirements); 4610b57cec5SDimitry Andric void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 4620b57cec5SDimitry Andric void visitFunction(const Function &F); 4630b57cec5SDimitry Andric void visitBasicBlock(BasicBlock &BB); 4640b57cec5SDimitry Andric void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 4650b57cec5SDimitry Andric void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 4668bcb0991SDimitry Andric void visitProfMetadata(Instruction &I, MDNode *MD); 467e8d8bef9SDimitry Andric void visitAnnotationMetadata(MDNode *Annotation); 468349cc55cSDimitry Andric void visitAliasScopeMetadata(const MDNode *MD); 469349cc55cSDimitry Andric void visitAliasScopeListMetadata(const MDNode *MD); 4700b57cec5SDimitry Andric 4710b57cec5SDimitry Andric template <class Ty> bool isValidMetadataArray(const MDTuple &N); 4720b57cec5SDimitry Andric #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 4730b57cec5SDimitry Andric #include "llvm/IR/Metadata.def" 4740b57cec5SDimitry Andric void visitDIScope(const DIScope &N); 4750b57cec5SDimitry Andric void visitDIVariable(const DIVariable &N); 4760b57cec5SDimitry Andric void visitDILexicalBlockBase(const DILexicalBlockBase &N); 4770b57cec5SDimitry Andric void visitDITemplateParameter(const DITemplateParameter &N); 4780b57cec5SDimitry Andric 4790b57cec5SDimitry Andric void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 4800b57cec5SDimitry Andric 4810b57cec5SDimitry Andric // InstVisitor overrides... 4820b57cec5SDimitry Andric using InstVisitor<Verifier>::visit; 4830b57cec5SDimitry Andric void visit(Instruction &I); 4840b57cec5SDimitry Andric 4850b57cec5SDimitry Andric void visitTruncInst(TruncInst &I); 4860b57cec5SDimitry Andric void visitZExtInst(ZExtInst &I); 4870b57cec5SDimitry Andric void visitSExtInst(SExtInst &I); 4880b57cec5SDimitry Andric void visitFPTruncInst(FPTruncInst &I); 4890b57cec5SDimitry Andric void visitFPExtInst(FPExtInst &I); 4900b57cec5SDimitry Andric void visitFPToUIInst(FPToUIInst &I); 4910b57cec5SDimitry Andric void visitFPToSIInst(FPToSIInst &I); 4920b57cec5SDimitry Andric void visitUIToFPInst(UIToFPInst &I); 4930b57cec5SDimitry Andric void visitSIToFPInst(SIToFPInst &I); 4940b57cec5SDimitry Andric void visitIntToPtrInst(IntToPtrInst &I); 4950b57cec5SDimitry Andric void visitPtrToIntInst(PtrToIntInst &I); 4960b57cec5SDimitry Andric void visitBitCastInst(BitCastInst &I); 4970b57cec5SDimitry Andric void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 4980b57cec5SDimitry Andric void visitPHINode(PHINode &PN); 4990b57cec5SDimitry Andric void visitCallBase(CallBase &Call); 5000b57cec5SDimitry Andric void visitUnaryOperator(UnaryOperator &U); 5010b57cec5SDimitry Andric void visitBinaryOperator(BinaryOperator &B); 5020b57cec5SDimitry Andric void visitICmpInst(ICmpInst &IC); 5030b57cec5SDimitry Andric void visitFCmpInst(FCmpInst &FC); 5040b57cec5SDimitry Andric void visitExtractElementInst(ExtractElementInst &EI); 5050b57cec5SDimitry Andric void visitInsertElementInst(InsertElementInst &EI); 5060b57cec5SDimitry Andric void visitShuffleVectorInst(ShuffleVectorInst &EI); 5070b57cec5SDimitry Andric void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 5080b57cec5SDimitry Andric void visitCallInst(CallInst &CI); 5090b57cec5SDimitry Andric void visitInvokeInst(InvokeInst &II); 5100b57cec5SDimitry Andric void visitGetElementPtrInst(GetElementPtrInst &GEP); 5110b57cec5SDimitry Andric void visitLoadInst(LoadInst &LI); 5120b57cec5SDimitry Andric void visitStoreInst(StoreInst &SI); 5130b57cec5SDimitry Andric void verifyDominatesUse(Instruction &I, unsigned i); 5140b57cec5SDimitry Andric void visitInstruction(Instruction &I); 5150b57cec5SDimitry Andric void visitTerminator(Instruction &I); 5160b57cec5SDimitry Andric void visitBranchInst(BranchInst &BI); 5170b57cec5SDimitry Andric void visitReturnInst(ReturnInst &RI); 5180b57cec5SDimitry Andric void visitSwitchInst(SwitchInst &SI); 5190b57cec5SDimitry Andric void visitIndirectBrInst(IndirectBrInst &BI); 5200b57cec5SDimitry Andric void visitCallBrInst(CallBrInst &CBI); 5210b57cec5SDimitry Andric void visitSelectInst(SelectInst &SI); 5220b57cec5SDimitry Andric void visitUserOp1(Instruction &I); 5230b57cec5SDimitry Andric void visitUserOp2(Instruction &I) { visitUserOp1(I); } 5240b57cec5SDimitry Andric void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 5250b57cec5SDimitry Andric void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 5260b57cec5SDimitry Andric void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 5270b57cec5SDimitry Andric void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 5280b57cec5SDimitry Andric void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 5290b57cec5SDimitry Andric void visitAtomicRMWInst(AtomicRMWInst &RMWI); 5300b57cec5SDimitry Andric void visitFenceInst(FenceInst &FI); 5310b57cec5SDimitry Andric void visitAllocaInst(AllocaInst &AI); 5320b57cec5SDimitry Andric void visitExtractValueInst(ExtractValueInst &EVI); 5330b57cec5SDimitry Andric void visitInsertValueInst(InsertValueInst &IVI); 5340b57cec5SDimitry Andric void visitEHPadPredecessors(Instruction &I); 5350b57cec5SDimitry Andric void visitLandingPadInst(LandingPadInst &LPI); 5360b57cec5SDimitry Andric void visitResumeInst(ResumeInst &RI); 5370b57cec5SDimitry Andric void visitCatchPadInst(CatchPadInst &CPI); 5380b57cec5SDimitry Andric void visitCatchReturnInst(CatchReturnInst &CatchReturn); 5390b57cec5SDimitry Andric void visitCleanupPadInst(CleanupPadInst &CPI); 5400b57cec5SDimitry Andric void visitFuncletPadInst(FuncletPadInst &FPI); 5410b57cec5SDimitry Andric void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 5420b57cec5SDimitry Andric void visitCleanupReturnInst(CleanupReturnInst &CRI); 5430b57cec5SDimitry Andric 5440b57cec5SDimitry Andric void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 5450b57cec5SDimitry Andric void verifySwiftErrorValue(const Value *SwiftErrorVal); 546fe6060f1SDimitry Andric void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context); 5470b57cec5SDimitry Andric void verifyMustTailCall(CallInst &CI); 5480b57cec5SDimitry Andric bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 549fe6060f1SDimitry Andric void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 5500b57cec5SDimitry Andric void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 551fe6060f1SDimitry Andric void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 552fe6060f1SDimitry Andric const Value *V); 5530b57cec5SDimitry Andric void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 5540b57cec5SDimitry Andric const Value *V, bool IsIntrinsic); 5550b57cec5SDimitry Andric void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 556349cc55cSDimitry Andric template <typename T> 557349cc55cSDimitry Andric void verifyODRTypeAsScopeOperand(const MDNode &MD, T * = nullptr); 5580b57cec5SDimitry Andric 5590b57cec5SDimitry Andric void visitConstantExprsRecursively(const Constant *EntryC); 5600b57cec5SDimitry Andric void visitConstantExpr(const ConstantExpr *CE); 5610b57cec5SDimitry Andric void verifyStatepoint(const CallBase &Call); 5620b57cec5SDimitry Andric void verifyFrameRecoverIndices(); 5630b57cec5SDimitry Andric void verifySiblingFuncletUnwinds(); 5640b57cec5SDimitry Andric 5650b57cec5SDimitry Andric void verifyFragmentExpression(const DbgVariableIntrinsic &I); 5660b57cec5SDimitry Andric template <typename ValueOrMetadata> 5670b57cec5SDimitry Andric void verifyFragmentExpression(const DIVariable &V, 5680b57cec5SDimitry Andric DIExpression::FragmentInfo Fragment, 5690b57cec5SDimitry Andric ValueOrMetadata *Desc); 5700b57cec5SDimitry Andric void verifyFnArgs(const DbgVariableIntrinsic &I); 5718bcb0991SDimitry Andric void verifyNotEntryValue(const DbgVariableIntrinsic &I); 5720b57cec5SDimitry Andric 5730b57cec5SDimitry Andric /// Module-level debug info verification... 5740b57cec5SDimitry Andric void verifyCompileUnits(); 5750b57cec5SDimitry Andric 5760b57cec5SDimitry Andric /// Module-level verification that all @llvm.experimental.deoptimize 5770b57cec5SDimitry Andric /// declarations share the same calling convention. 5780b57cec5SDimitry Andric void verifyDeoptimizeCallingConvs(); 5790b57cec5SDimitry Andric 580349cc55cSDimitry Andric void verifyAttachedCallBundle(const CallBase &Call, 581349cc55cSDimitry Andric const OperandBundleUse &BU); 582349cc55cSDimitry Andric 5830b57cec5SDimitry Andric /// Verify all-or-nothing property of DIFile source attribute within a CU. 5840b57cec5SDimitry Andric void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 585e8d8bef9SDimitry Andric 586e8d8bef9SDimitry Andric /// Verify the llvm.experimental.noalias.scope.decl declarations 587e8d8bef9SDimitry Andric void verifyNoAliasScopeDecl(); 5880b57cec5SDimitry Andric }; 5890b57cec5SDimitry Andric 5900b57cec5SDimitry Andric } // end anonymous namespace 5910b57cec5SDimitry Andric 5920b57cec5SDimitry Andric /// We know that cond should be true, if not print an error message. 5930b57cec5SDimitry Andric #define Assert(C, ...) \ 5940b57cec5SDimitry Andric do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 5950b57cec5SDimitry Andric 5960b57cec5SDimitry Andric /// We know that a debug info condition should be true, if not print 5970b57cec5SDimitry Andric /// an error message. 5980b57cec5SDimitry Andric #define AssertDI(C, ...) \ 5990b57cec5SDimitry Andric do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 6000b57cec5SDimitry Andric 6010b57cec5SDimitry Andric void Verifier::visit(Instruction &I) { 6020b57cec5SDimitry Andric for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 6030b57cec5SDimitry Andric Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 6040b57cec5SDimitry Andric InstVisitor<Verifier>::visit(I); 6050b57cec5SDimitry Andric } 6060b57cec5SDimitry Andric 6070b57cec5SDimitry Andric // Helper to recursively iterate over indirect users. By 6080b57cec5SDimitry Andric // returning false, the callback can ask to stop recursing 6090b57cec5SDimitry Andric // further. 6100b57cec5SDimitry Andric static void forEachUser(const Value *User, 6110b57cec5SDimitry Andric SmallPtrSet<const Value *, 32> &Visited, 6120b57cec5SDimitry Andric llvm::function_ref<bool(const Value *)> Callback) { 6130b57cec5SDimitry Andric if (!Visited.insert(User).second) 6140b57cec5SDimitry Andric return; 6150b57cec5SDimitry Andric for (const Value *TheNextUser : User->materialized_users()) 6160b57cec5SDimitry Andric if (Callback(TheNextUser)) 6170b57cec5SDimitry Andric forEachUser(TheNextUser, Visited, Callback); 6180b57cec5SDimitry Andric } 6190b57cec5SDimitry Andric 6200b57cec5SDimitry Andric void Verifier::visitGlobalValue(const GlobalValue &GV) { 6210b57cec5SDimitry Andric Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 6220b57cec5SDimitry Andric "Global is external, but doesn't have external or weak linkage!", &GV); 6230b57cec5SDimitry Andric 6245ffd83dbSDimitry Andric if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 6255ffd83dbSDimitry Andric Assert(GO->getAlignment() <= Value::MaximumAlignment, 6265ffd83dbSDimitry Andric "huge alignment values are unsupported", GO); 6270b57cec5SDimitry Andric Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 6280b57cec5SDimitry Andric "Only global variables can have appending linkage!", &GV); 6290b57cec5SDimitry Andric 6300b57cec5SDimitry Andric if (GV.hasAppendingLinkage()) { 6310b57cec5SDimitry Andric const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 6320b57cec5SDimitry Andric Assert(GVar && GVar->getValueType()->isArrayTy(), 6330b57cec5SDimitry Andric "Only global arrays can have appending linkage!", GVar); 6340b57cec5SDimitry Andric } 6350b57cec5SDimitry Andric 6360b57cec5SDimitry Andric if (GV.isDeclarationForLinker()) 6370b57cec5SDimitry Andric Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 6380b57cec5SDimitry Andric 6390b57cec5SDimitry Andric if (GV.hasDLLImportStorageClass()) { 6400b57cec5SDimitry Andric Assert(!GV.isDSOLocal(), 6410b57cec5SDimitry Andric "GlobalValue with DLLImport Storage is dso_local!", &GV); 6420b57cec5SDimitry Andric 643e8d8bef9SDimitry Andric Assert((GV.isDeclaration() && 644e8d8bef9SDimitry Andric (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 6450b57cec5SDimitry Andric GV.hasAvailableExternallyLinkage(), 6460b57cec5SDimitry Andric "Global is marked as dllimport, but not external", &GV); 6470b57cec5SDimitry Andric } 6480b57cec5SDimitry Andric 6495ffd83dbSDimitry Andric if (GV.isImplicitDSOLocal()) 6500b57cec5SDimitry Andric Assert(GV.isDSOLocal(), 6515ffd83dbSDimitry Andric "GlobalValue with local linkage or non-default " 6525ffd83dbSDimitry Andric "visibility must be dso_local!", 6530b57cec5SDimitry Andric &GV); 6540b57cec5SDimitry Andric 6550b57cec5SDimitry Andric forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 6560b57cec5SDimitry Andric if (const Instruction *I = dyn_cast<Instruction>(V)) { 6570b57cec5SDimitry Andric if (!I->getParent() || !I->getParent()->getParent()) 6580b57cec5SDimitry Andric CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 6590b57cec5SDimitry Andric I); 6600b57cec5SDimitry Andric else if (I->getParent()->getParent()->getParent() != &M) 6610b57cec5SDimitry Andric CheckFailed("Global is referenced in a different module!", &GV, &M, I, 6620b57cec5SDimitry Andric I->getParent()->getParent(), 6630b57cec5SDimitry Andric I->getParent()->getParent()->getParent()); 6640b57cec5SDimitry Andric return false; 6650b57cec5SDimitry Andric } else if (const Function *F = dyn_cast<Function>(V)) { 6660b57cec5SDimitry Andric if (F->getParent() != &M) 6670b57cec5SDimitry Andric CheckFailed("Global is used by function in a different module", &GV, &M, 6680b57cec5SDimitry Andric F, F->getParent()); 6690b57cec5SDimitry Andric return false; 6700b57cec5SDimitry Andric } 6710b57cec5SDimitry Andric return true; 6720b57cec5SDimitry Andric }); 6730b57cec5SDimitry Andric } 6740b57cec5SDimitry Andric 6750b57cec5SDimitry Andric void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 6760b57cec5SDimitry Andric if (GV.hasInitializer()) { 6770b57cec5SDimitry Andric Assert(GV.getInitializer()->getType() == GV.getValueType(), 6780b57cec5SDimitry Andric "Global variable initializer type does not match global " 6790b57cec5SDimitry Andric "variable type!", 6800b57cec5SDimitry Andric &GV); 6810b57cec5SDimitry Andric // If the global has common linkage, it must have a zero initializer and 6820b57cec5SDimitry Andric // cannot be constant. 6830b57cec5SDimitry Andric if (GV.hasCommonLinkage()) { 6840b57cec5SDimitry Andric Assert(GV.getInitializer()->isNullValue(), 6850b57cec5SDimitry Andric "'common' global must have a zero initializer!", &GV); 6860b57cec5SDimitry Andric Assert(!GV.isConstant(), "'common' global may not be marked constant!", 6870b57cec5SDimitry Andric &GV); 6880b57cec5SDimitry Andric Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 6890b57cec5SDimitry Andric } 6900b57cec5SDimitry Andric } 6910b57cec5SDimitry Andric 6920b57cec5SDimitry Andric if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 6930b57cec5SDimitry Andric GV.getName() == "llvm.global_dtors")) { 6940b57cec5SDimitry Andric Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 6950b57cec5SDimitry Andric "invalid linkage for intrinsic global variable", &GV); 6960b57cec5SDimitry Andric // Don't worry about emitting an error for it not being an array, 6970b57cec5SDimitry Andric // visitGlobalValue will complain on appending non-array. 6980b57cec5SDimitry Andric if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 6990b57cec5SDimitry Andric StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 7000b57cec5SDimitry Andric PointerType *FuncPtrTy = 7010b57cec5SDimitry Andric FunctionType::get(Type::getVoidTy(Context), false)-> 7020b57cec5SDimitry Andric getPointerTo(DL.getProgramAddressSpace()); 7030b57cec5SDimitry Andric Assert(STy && 7040b57cec5SDimitry Andric (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 7050b57cec5SDimitry Andric STy->getTypeAtIndex(0u)->isIntegerTy(32) && 7060b57cec5SDimitry Andric STy->getTypeAtIndex(1) == FuncPtrTy, 7070b57cec5SDimitry Andric "wrong type for intrinsic global variable", &GV); 7080b57cec5SDimitry Andric Assert(STy->getNumElements() == 3, 7090b57cec5SDimitry Andric "the third field of the element type is mandatory, " 7100b57cec5SDimitry Andric "specify i8* null to migrate from the obsoleted 2-field form"); 7110b57cec5SDimitry Andric Type *ETy = STy->getTypeAtIndex(2); 712fe6060f1SDimitry Andric Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); 7130b57cec5SDimitry Andric Assert(ETy->isPointerTy() && 714fe6060f1SDimitry Andric cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), 7150b57cec5SDimitry Andric "wrong type for intrinsic global variable", &GV); 7160b57cec5SDimitry Andric } 7170b57cec5SDimitry Andric } 7180b57cec5SDimitry Andric 7190b57cec5SDimitry Andric if (GV.hasName() && (GV.getName() == "llvm.used" || 7200b57cec5SDimitry Andric GV.getName() == "llvm.compiler.used")) { 7210b57cec5SDimitry Andric Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 7220b57cec5SDimitry Andric "invalid linkage for intrinsic global variable", &GV); 7230b57cec5SDimitry Andric Type *GVType = GV.getValueType(); 7240b57cec5SDimitry Andric if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 7250b57cec5SDimitry Andric PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 7260b57cec5SDimitry Andric Assert(PTy, "wrong type for intrinsic global variable", &GV); 7270b57cec5SDimitry Andric if (GV.hasInitializer()) { 7280b57cec5SDimitry Andric const Constant *Init = GV.getInitializer(); 7290b57cec5SDimitry Andric const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 7300b57cec5SDimitry Andric Assert(InitArray, "wrong initalizer for intrinsic global variable", 7310b57cec5SDimitry Andric Init); 7320b57cec5SDimitry Andric for (Value *Op : InitArray->operands()) { 7338bcb0991SDimitry Andric Value *V = Op->stripPointerCasts(); 7340b57cec5SDimitry Andric Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 7350b57cec5SDimitry Andric isa<GlobalAlias>(V), 7360b57cec5SDimitry Andric "invalid llvm.used member", V); 7370b57cec5SDimitry Andric Assert(V->hasName(), "members of llvm.used must be named", V); 7380b57cec5SDimitry Andric } 7390b57cec5SDimitry Andric } 7400b57cec5SDimitry Andric } 7410b57cec5SDimitry Andric } 7420b57cec5SDimitry Andric 7430b57cec5SDimitry Andric // Visit any debug info attachments. 7440b57cec5SDimitry Andric SmallVector<MDNode *, 1> MDs; 7450b57cec5SDimitry Andric GV.getMetadata(LLVMContext::MD_dbg, MDs); 7460b57cec5SDimitry Andric for (auto *MD : MDs) { 7470b57cec5SDimitry Andric if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 7480b57cec5SDimitry Andric visitDIGlobalVariableExpression(*GVE); 7490b57cec5SDimitry Andric else 7500b57cec5SDimitry Andric AssertDI(false, "!dbg attachment of global variable must be a " 7510b57cec5SDimitry Andric "DIGlobalVariableExpression"); 7520b57cec5SDimitry Andric } 7530b57cec5SDimitry Andric 7540b57cec5SDimitry Andric // Scalable vectors cannot be global variables, since we don't know 755e8d8bef9SDimitry Andric // the runtime size. If the global is an array containing scalable vectors, 756e8d8bef9SDimitry Andric // that will be caught by the isValidElementType methods in StructType or 757e8d8bef9SDimitry Andric // ArrayType instead. 7585ffd83dbSDimitry Andric Assert(!isa<ScalableVectorType>(GV.getValueType()), 7595ffd83dbSDimitry Andric "Globals cannot contain scalable vectors", &GV); 7600b57cec5SDimitry Andric 761e8d8bef9SDimitry Andric if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 762e8d8bef9SDimitry Andric Assert(!STy->containsScalableVectorType(), 763e8d8bef9SDimitry Andric "Globals cannot contain scalable vectors", &GV); 764e8d8bef9SDimitry Andric 7650b57cec5SDimitry Andric if (!GV.hasInitializer()) { 7660b57cec5SDimitry Andric visitGlobalValue(GV); 7670b57cec5SDimitry Andric return; 7680b57cec5SDimitry Andric } 7690b57cec5SDimitry Andric 7700b57cec5SDimitry Andric // Walk any aggregate initializers looking for bitcasts between address spaces 7710b57cec5SDimitry Andric visitConstantExprsRecursively(GV.getInitializer()); 7720b57cec5SDimitry Andric 7730b57cec5SDimitry Andric visitGlobalValue(GV); 7740b57cec5SDimitry Andric } 7750b57cec5SDimitry Andric 7760b57cec5SDimitry Andric void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 7770b57cec5SDimitry Andric SmallPtrSet<const GlobalAlias*, 4> Visited; 7780b57cec5SDimitry Andric Visited.insert(&GA); 7790b57cec5SDimitry Andric visitAliaseeSubExpr(Visited, GA, C); 7800b57cec5SDimitry Andric } 7810b57cec5SDimitry Andric 7820b57cec5SDimitry Andric void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 7830b57cec5SDimitry Andric const GlobalAlias &GA, const Constant &C) { 7840b57cec5SDimitry Andric if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 7850b57cec5SDimitry Andric Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 7860b57cec5SDimitry Andric &GA); 7870b57cec5SDimitry Andric 7880b57cec5SDimitry Andric if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 7890b57cec5SDimitry Andric Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 7900b57cec5SDimitry Andric 7910b57cec5SDimitry Andric Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 7920b57cec5SDimitry Andric &GA); 7930b57cec5SDimitry Andric } else { 7940b57cec5SDimitry Andric // Only continue verifying subexpressions of GlobalAliases. 7950b57cec5SDimitry Andric // Do not recurse into global initializers. 7960b57cec5SDimitry Andric return; 7970b57cec5SDimitry Andric } 7980b57cec5SDimitry Andric } 7990b57cec5SDimitry Andric 8000b57cec5SDimitry Andric if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 8010b57cec5SDimitry Andric visitConstantExprsRecursively(CE); 8020b57cec5SDimitry Andric 8030b57cec5SDimitry Andric for (const Use &U : C.operands()) { 8040b57cec5SDimitry Andric Value *V = &*U; 8050b57cec5SDimitry Andric if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 8060b57cec5SDimitry Andric visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 8070b57cec5SDimitry Andric else if (const auto *C2 = dyn_cast<Constant>(V)) 8080b57cec5SDimitry Andric visitAliaseeSubExpr(Visited, GA, *C2); 8090b57cec5SDimitry Andric } 8100b57cec5SDimitry Andric } 8110b57cec5SDimitry Andric 8120b57cec5SDimitry Andric void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 8130b57cec5SDimitry Andric Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 8140b57cec5SDimitry Andric "Alias should have private, internal, linkonce, weak, linkonce_odr, " 8150b57cec5SDimitry Andric "weak_odr, or external linkage!", 8160b57cec5SDimitry Andric &GA); 8170b57cec5SDimitry Andric const Constant *Aliasee = GA.getAliasee(); 8180b57cec5SDimitry Andric Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 8190b57cec5SDimitry Andric Assert(GA.getType() == Aliasee->getType(), 8200b57cec5SDimitry Andric "Alias and aliasee types should match!", &GA); 8210b57cec5SDimitry Andric 8220b57cec5SDimitry Andric Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 8230b57cec5SDimitry Andric "Aliasee should be either GlobalValue or ConstantExpr", &GA); 8240b57cec5SDimitry Andric 8250b57cec5SDimitry Andric visitAliaseeSubExpr(GA, *Aliasee); 8260b57cec5SDimitry Andric 8270b57cec5SDimitry Andric visitGlobalValue(GA); 8280b57cec5SDimitry Andric } 8290b57cec5SDimitry Andric 830349cc55cSDimitry Andric void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { 831349cc55cSDimitry Andric // Pierce through ConstantExprs and GlobalAliases and check that the resolver 832349cc55cSDimitry Andric // has a Function 833349cc55cSDimitry Andric const Function *Resolver = GI.getResolverFunction(); 834349cc55cSDimitry Andric Assert(Resolver, "IFunc must have a Function resolver", &GI); 835349cc55cSDimitry Andric 836349cc55cSDimitry Andric // Check that the immediate resolver operand (prior to any bitcasts) has the 837349cc55cSDimitry Andric // correct type 838349cc55cSDimitry Andric const Type *ResolverTy = GI.getResolver()->getType(); 839349cc55cSDimitry Andric const Type *ResolverFuncTy = 840349cc55cSDimitry Andric GlobalIFunc::getResolverFunctionType(GI.getValueType()); 841349cc55cSDimitry Andric Assert(ResolverTy == ResolverFuncTy->getPointerTo(), 842349cc55cSDimitry Andric "IFunc resolver has incorrect type", &GI); 843349cc55cSDimitry Andric } 844349cc55cSDimitry Andric 8450b57cec5SDimitry Andric void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 8460b57cec5SDimitry Andric // There used to be various other llvm.dbg.* nodes, but we don't support 8470b57cec5SDimitry Andric // upgrading them and we want to reserve the namespace for future uses. 8480b57cec5SDimitry Andric if (NMD.getName().startswith("llvm.dbg.")) 8490b57cec5SDimitry Andric AssertDI(NMD.getName() == "llvm.dbg.cu", 8500b57cec5SDimitry Andric "unrecognized named metadata node in the llvm.dbg namespace", 8510b57cec5SDimitry Andric &NMD); 8520b57cec5SDimitry Andric for (const MDNode *MD : NMD.operands()) { 8530b57cec5SDimitry Andric if (NMD.getName() == "llvm.dbg.cu") 8540b57cec5SDimitry Andric AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 8550b57cec5SDimitry Andric 8560b57cec5SDimitry Andric if (!MD) 8570b57cec5SDimitry Andric continue; 8580b57cec5SDimitry Andric 8595ffd83dbSDimitry Andric visitMDNode(*MD, AreDebugLocsAllowed::Yes); 8600b57cec5SDimitry Andric } 8610b57cec5SDimitry Andric } 8620b57cec5SDimitry Andric 863349cc55cSDimitry Andric template <typename T> 864349cc55cSDimitry Andric void Verifier::verifyODRTypeAsScopeOperand(const MDNode &MD, T *) { 865349cc55cSDimitry Andric if (isa<T>(MD)) { 866349cc55cSDimitry Andric if (auto *N = dyn_cast_or_null<DICompositeType>(cast<T>(MD).getScope())) 867349cc55cSDimitry Andric // Of all the supported tags for DICompositeType(see visitDICompositeType) 868349cc55cSDimitry Andric // we know that enum type cannot be a scope. 869349cc55cSDimitry Andric AssertDI(N->getTag() != dwarf::DW_TAG_enumeration_type, 870349cc55cSDimitry Andric "enum type is not a scope; check enum type ODR " 871349cc55cSDimitry Andric "violation", 872349cc55cSDimitry Andric N, &MD); 873349cc55cSDimitry Andric } 874349cc55cSDimitry Andric } 875349cc55cSDimitry Andric 8765ffd83dbSDimitry Andric void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 8770b57cec5SDimitry Andric // Only visit each node once. Metadata can be mutually recursive, so this 8780b57cec5SDimitry Andric // avoids infinite recursion here, as well as being an optimization. 8790b57cec5SDimitry Andric if (!MDNodes.insert(&MD).second) 8800b57cec5SDimitry Andric return; 8810b57cec5SDimitry Andric 882fe6060f1SDimitry Andric Assert(&MD.getContext() == &Context, 883fe6060f1SDimitry Andric "MDNode context does not match Module context!", &MD); 884fe6060f1SDimitry Andric 885349cc55cSDimitry Andric // Makes sure when a scope operand is a ODR type, the ODR type uniquing does 886349cc55cSDimitry Andric // not create invalid debug metadata. 887349cc55cSDimitry Andric // TODO: check that the non-ODR-type scope operand is valid. 888349cc55cSDimitry Andric verifyODRTypeAsScopeOperand<DIType>(MD); 889349cc55cSDimitry Andric verifyODRTypeAsScopeOperand<DILocalScope>(MD); 890349cc55cSDimitry Andric 8910b57cec5SDimitry Andric switch (MD.getMetadataID()) { 8920b57cec5SDimitry Andric default: 8930b57cec5SDimitry Andric llvm_unreachable("Invalid MDNode subclass"); 8940b57cec5SDimitry Andric case Metadata::MDTupleKind: 8950b57cec5SDimitry Andric break; 8960b57cec5SDimitry Andric #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 8970b57cec5SDimitry Andric case Metadata::CLASS##Kind: \ 8980b57cec5SDimitry Andric visit##CLASS(cast<CLASS>(MD)); \ 8990b57cec5SDimitry Andric break; 9000b57cec5SDimitry Andric #include "llvm/IR/Metadata.def" 9010b57cec5SDimitry Andric } 9020b57cec5SDimitry Andric 9030b57cec5SDimitry Andric for (const Metadata *Op : MD.operands()) { 9040b57cec5SDimitry Andric if (!Op) 9050b57cec5SDimitry Andric continue; 9060b57cec5SDimitry Andric Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 9070b57cec5SDimitry Andric &MD, Op); 9085ffd83dbSDimitry Andric AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 9095ffd83dbSDimitry Andric "DILocation not allowed within this metadata node", &MD, Op); 9100b57cec5SDimitry Andric if (auto *N = dyn_cast<MDNode>(Op)) { 9115ffd83dbSDimitry Andric visitMDNode(*N, AllowLocs); 9120b57cec5SDimitry Andric continue; 9130b57cec5SDimitry Andric } 9140b57cec5SDimitry Andric if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 9150b57cec5SDimitry Andric visitValueAsMetadata(*V, nullptr); 9160b57cec5SDimitry Andric continue; 9170b57cec5SDimitry Andric } 9180b57cec5SDimitry Andric } 9190b57cec5SDimitry Andric 9200b57cec5SDimitry Andric // Check these last, so we diagnose problems in operands first. 9210b57cec5SDimitry Andric Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 9220b57cec5SDimitry Andric Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 9230b57cec5SDimitry Andric } 9240b57cec5SDimitry Andric 9250b57cec5SDimitry Andric void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 9260b57cec5SDimitry Andric Assert(MD.getValue(), "Expected valid value", &MD); 9270b57cec5SDimitry Andric Assert(!MD.getValue()->getType()->isMetadataTy(), 9280b57cec5SDimitry Andric "Unexpected metadata round-trip through values", &MD, MD.getValue()); 9290b57cec5SDimitry Andric 9300b57cec5SDimitry Andric auto *L = dyn_cast<LocalAsMetadata>(&MD); 9310b57cec5SDimitry Andric if (!L) 9320b57cec5SDimitry Andric return; 9330b57cec5SDimitry Andric 9340b57cec5SDimitry Andric Assert(F, "function-local metadata used outside a function", L); 9350b57cec5SDimitry Andric 9360b57cec5SDimitry Andric // If this was an instruction, bb, or argument, verify that it is in the 9370b57cec5SDimitry Andric // function that we expect. 9380b57cec5SDimitry Andric Function *ActualF = nullptr; 9390b57cec5SDimitry Andric if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 9400b57cec5SDimitry Andric Assert(I->getParent(), "function-local metadata not in basic block", L, I); 9410b57cec5SDimitry Andric ActualF = I->getParent()->getParent(); 9420b57cec5SDimitry Andric } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 9430b57cec5SDimitry Andric ActualF = BB->getParent(); 9440b57cec5SDimitry Andric else if (Argument *A = dyn_cast<Argument>(L->getValue())) 9450b57cec5SDimitry Andric ActualF = A->getParent(); 9460b57cec5SDimitry Andric assert(ActualF && "Unimplemented function local metadata case!"); 9470b57cec5SDimitry Andric 9480b57cec5SDimitry Andric Assert(ActualF == F, "function-local metadata used in wrong function", L); 9490b57cec5SDimitry Andric } 9500b57cec5SDimitry Andric 9510b57cec5SDimitry Andric void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 9520b57cec5SDimitry Andric Metadata *MD = MDV.getMetadata(); 9530b57cec5SDimitry Andric if (auto *N = dyn_cast<MDNode>(MD)) { 9545ffd83dbSDimitry Andric visitMDNode(*N, AreDebugLocsAllowed::No); 9550b57cec5SDimitry Andric return; 9560b57cec5SDimitry Andric } 9570b57cec5SDimitry Andric 9580b57cec5SDimitry Andric // Only visit each node once. Metadata can be mutually recursive, so this 9590b57cec5SDimitry Andric // avoids infinite recursion here, as well as being an optimization. 9600b57cec5SDimitry Andric if (!MDNodes.insert(MD).second) 9610b57cec5SDimitry Andric return; 9620b57cec5SDimitry Andric 9630b57cec5SDimitry Andric if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 9640b57cec5SDimitry Andric visitValueAsMetadata(*V, F); 9650b57cec5SDimitry Andric } 9660b57cec5SDimitry Andric 9670b57cec5SDimitry Andric static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 9680b57cec5SDimitry Andric static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 9690b57cec5SDimitry Andric static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 9700b57cec5SDimitry Andric 9710b57cec5SDimitry Andric void Verifier::visitDILocation(const DILocation &N) { 9720b57cec5SDimitry Andric AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 9730b57cec5SDimitry Andric "location requires a valid scope", &N, N.getRawScope()); 9740b57cec5SDimitry Andric if (auto *IA = N.getRawInlinedAt()) 9750b57cec5SDimitry Andric AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 9760b57cec5SDimitry Andric if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 9770b57cec5SDimitry Andric AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 9780b57cec5SDimitry Andric } 9790b57cec5SDimitry Andric 9800b57cec5SDimitry Andric void Verifier::visitGenericDINode(const GenericDINode &N) { 9810b57cec5SDimitry Andric AssertDI(N.getTag(), "invalid tag", &N); 9820b57cec5SDimitry Andric } 9830b57cec5SDimitry Andric 9840b57cec5SDimitry Andric void Verifier::visitDIScope(const DIScope &N) { 9850b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 9860b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 9870b57cec5SDimitry Andric } 9880b57cec5SDimitry Andric 9890b57cec5SDimitry Andric void Verifier::visitDISubrange(const DISubrange &N) { 9900b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 991e8d8bef9SDimitry Andric bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 992e8d8bef9SDimitry Andric AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 993e8d8bef9SDimitry Andric N.getRawUpperBound(), 9945ffd83dbSDimitry Andric "Subrange must contain count or upperBound", &N); 9955ffd83dbSDimitry Andric AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 9965ffd83dbSDimitry Andric "Subrange can have any one of count or upperBound", &N); 997fe6060f1SDimitry Andric auto *CBound = N.getRawCountNode(); 998fe6060f1SDimitry Andric AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) || 999fe6060f1SDimitry Andric isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1000fe6060f1SDimitry Andric "Count must be signed constant or DIVariable or DIExpression", &N); 10010b57cec5SDimitry Andric auto Count = N.getCount(); 10025ffd83dbSDimitry Andric AssertDI(!Count || !Count.is<ConstantInt *>() || 10030b57cec5SDimitry Andric Count.get<ConstantInt *>()->getSExtValue() >= -1, 10040b57cec5SDimitry Andric "invalid subrange count", &N); 10055ffd83dbSDimitry Andric auto *LBound = N.getRawLowerBound(); 10065ffd83dbSDimitry Andric AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 10075ffd83dbSDimitry Andric isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 10085ffd83dbSDimitry Andric "LowerBound must be signed constant or DIVariable or DIExpression", 10095ffd83dbSDimitry Andric &N); 10105ffd83dbSDimitry Andric auto *UBound = N.getRawUpperBound(); 10115ffd83dbSDimitry Andric AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 10125ffd83dbSDimitry Andric isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 10135ffd83dbSDimitry Andric "UpperBound must be signed constant or DIVariable or DIExpression", 10145ffd83dbSDimitry Andric &N); 10155ffd83dbSDimitry Andric auto *Stride = N.getRawStride(); 10165ffd83dbSDimitry Andric AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 10175ffd83dbSDimitry Andric isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 10185ffd83dbSDimitry Andric "Stride must be signed constant or DIVariable or DIExpression", &N); 10190b57cec5SDimitry Andric } 10200b57cec5SDimitry Andric 1021e8d8bef9SDimitry Andric void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 1022e8d8bef9SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 1023e8d8bef9SDimitry Andric AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 1024e8d8bef9SDimitry Andric "GenericSubrange must contain count or upperBound", &N); 1025e8d8bef9SDimitry Andric AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1026e8d8bef9SDimitry Andric "GenericSubrange can have any one of count or upperBound", &N); 1027e8d8bef9SDimitry Andric auto *CBound = N.getRawCountNode(); 1028e8d8bef9SDimitry Andric AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1029e8d8bef9SDimitry Andric "Count must be signed constant or DIVariable or DIExpression", &N); 1030e8d8bef9SDimitry Andric auto *LBound = N.getRawLowerBound(); 1031e8d8bef9SDimitry Andric AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 1032e8d8bef9SDimitry Andric AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1033e8d8bef9SDimitry Andric "LowerBound must be signed constant or DIVariable or DIExpression", 1034e8d8bef9SDimitry Andric &N); 1035e8d8bef9SDimitry Andric auto *UBound = N.getRawUpperBound(); 1036e8d8bef9SDimitry Andric AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1037e8d8bef9SDimitry Andric "UpperBound must be signed constant or DIVariable or DIExpression", 1038e8d8bef9SDimitry Andric &N); 1039e8d8bef9SDimitry Andric auto *Stride = N.getRawStride(); 1040e8d8bef9SDimitry Andric AssertDI(Stride, "GenericSubrange must contain stride", &N); 1041e8d8bef9SDimitry Andric AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1042e8d8bef9SDimitry Andric "Stride must be signed constant or DIVariable or DIExpression", &N); 1043e8d8bef9SDimitry Andric } 1044e8d8bef9SDimitry Andric 10450b57cec5SDimitry Andric void Verifier::visitDIEnumerator(const DIEnumerator &N) { 10460b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 10470b57cec5SDimitry Andric } 10480b57cec5SDimitry Andric 10490b57cec5SDimitry Andric void Verifier::visitDIBasicType(const DIBasicType &N) { 10500b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 1051e8d8bef9SDimitry Andric N.getTag() == dwarf::DW_TAG_unspecified_type || 1052e8d8bef9SDimitry Andric N.getTag() == dwarf::DW_TAG_string_type, 10530b57cec5SDimitry Andric "invalid tag", &N); 1054e8d8bef9SDimitry Andric } 1055e8d8bef9SDimitry Andric 1056e8d8bef9SDimitry Andric void Verifier::visitDIStringType(const DIStringType &N) { 1057e8d8bef9SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 10580b57cec5SDimitry Andric AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 10590b57cec5SDimitry Andric "has conflicting flags", &N); 10600b57cec5SDimitry Andric } 10610b57cec5SDimitry Andric 10620b57cec5SDimitry Andric void Verifier::visitDIDerivedType(const DIDerivedType &N) { 10630b57cec5SDimitry Andric // Common scope checks. 10640b57cec5SDimitry Andric visitDIScope(N); 10650b57cec5SDimitry Andric 10660b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 10670b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_pointer_type || 10680b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 10690b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_reference_type || 10700b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 10710b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_const_type || 10720b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_volatile_type || 10730b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_restrict_type || 10740b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_atomic_type || 10750b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_member || 10760b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_inheritance || 1077fe6060f1SDimitry Andric N.getTag() == dwarf::DW_TAG_friend || 1078fe6060f1SDimitry Andric N.getTag() == dwarf::DW_TAG_set_type, 10790b57cec5SDimitry Andric "invalid tag", &N); 10800b57cec5SDimitry Andric if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 10810b57cec5SDimitry Andric AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 10820b57cec5SDimitry Andric N.getRawExtraData()); 10830b57cec5SDimitry Andric } 10840b57cec5SDimitry Andric 1085fe6060f1SDimitry Andric if (N.getTag() == dwarf::DW_TAG_set_type) { 1086fe6060f1SDimitry Andric if (auto *T = N.getRawBaseType()) { 1087fe6060f1SDimitry Andric auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1088fe6060f1SDimitry Andric auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1089fe6060f1SDimitry Andric AssertDI( 1090fe6060f1SDimitry Andric (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1091fe6060f1SDimitry Andric (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1092fe6060f1SDimitry Andric Basic->getEncoding() == dwarf::DW_ATE_signed || 1093fe6060f1SDimitry Andric Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1094fe6060f1SDimitry Andric Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1095fe6060f1SDimitry Andric Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1096fe6060f1SDimitry Andric "invalid set base type", &N, T); 1097fe6060f1SDimitry Andric } 1098fe6060f1SDimitry Andric } 1099fe6060f1SDimitry Andric 11000b57cec5SDimitry Andric AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 11010b57cec5SDimitry Andric AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 11020b57cec5SDimitry Andric N.getRawBaseType()); 11030b57cec5SDimitry Andric 11040b57cec5SDimitry Andric if (N.getDWARFAddressSpace()) { 11050b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 11060b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_reference_type || 11070b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 11080b57cec5SDimitry Andric "DWARF address space only applies to pointer or reference types", 11090b57cec5SDimitry Andric &N); 11100b57cec5SDimitry Andric } 11110b57cec5SDimitry Andric } 11120b57cec5SDimitry Andric 11130b57cec5SDimitry Andric /// Detect mutually exclusive flags. 11140b57cec5SDimitry Andric static bool hasConflictingReferenceFlags(unsigned Flags) { 11150b57cec5SDimitry Andric return ((Flags & DINode::FlagLValueReference) && 11160b57cec5SDimitry Andric (Flags & DINode::FlagRValueReference)) || 11170b57cec5SDimitry Andric ((Flags & DINode::FlagTypePassByValue) && 11180b57cec5SDimitry Andric (Flags & DINode::FlagTypePassByReference)); 11190b57cec5SDimitry Andric } 11200b57cec5SDimitry Andric 11210b57cec5SDimitry Andric void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 11220b57cec5SDimitry Andric auto *Params = dyn_cast<MDTuple>(&RawParams); 11230b57cec5SDimitry Andric AssertDI(Params, "invalid template params", &N, &RawParams); 11240b57cec5SDimitry Andric for (Metadata *Op : Params->operands()) { 11250b57cec5SDimitry Andric AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 11260b57cec5SDimitry Andric &N, Params, Op); 11270b57cec5SDimitry Andric } 11280b57cec5SDimitry Andric } 11290b57cec5SDimitry Andric 11300b57cec5SDimitry Andric void Verifier::visitDICompositeType(const DICompositeType &N) { 11310b57cec5SDimitry Andric // Common scope checks. 11320b57cec5SDimitry Andric visitDIScope(N); 11330b57cec5SDimitry Andric 11340b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 11350b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_structure_type || 11360b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_union_type || 11370b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_enumeration_type || 11380b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_class_type || 1139349cc55cSDimitry Andric N.getTag() == dwarf::DW_TAG_variant_part || 1140349cc55cSDimitry Andric N.getTag() == dwarf::DW_TAG_namelist, 11410b57cec5SDimitry Andric "invalid tag", &N); 11420b57cec5SDimitry Andric 11430b57cec5SDimitry Andric AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 11440b57cec5SDimitry Andric AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 11450b57cec5SDimitry Andric N.getRawBaseType()); 11460b57cec5SDimitry Andric 11470b57cec5SDimitry Andric AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 11480b57cec5SDimitry Andric "invalid composite elements", &N, N.getRawElements()); 11490b57cec5SDimitry Andric AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 11500b57cec5SDimitry Andric N.getRawVTableHolder()); 11510b57cec5SDimitry Andric AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 11520b57cec5SDimitry Andric "invalid reference flags", &N); 11538bcb0991SDimitry Andric unsigned DIBlockByRefStruct = 1 << 4; 11548bcb0991SDimitry Andric AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 11558bcb0991SDimitry Andric "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 11560b57cec5SDimitry Andric 11570b57cec5SDimitry Andric if (N.isVector()) { 11580b57cec5SDimitry Andric const DINodeArray Elements = N.getElements(); 11590b57cec5SDimitry Andric AssertDI(Elements.size() == 1 && 11600b57cec5SDimitry Andric Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 11610b57cec5SDimitry Andric "invalid vector, expected one element of type subrange", &N); 11620b57cec5SDimitry Andric } 11630b57cec5SDimitry Andric 11640b57cec5SDimitry Andric if (auto *Params = N.getRawTemplateParams()) 11650b57cec5SDimitry Andric visitTemplateParams(N, *Params); 11660b57cec5SDimitry Andric 11670b57cec5SDimitry Andric if (auto *D = N.getRawDiscriminator()) { 11680b57cec5SDimitry Andric AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 11690b57cec5SDimitry Andric "discriminator can only appear on variant part"); 11700b57cec5SDimitry Andric } 11715ffd83dbSDimitry Andric 11725ffd83dbSDimitry Andric if (N.getRawDataLocation()) { 11735ffd83dbSDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 11745ffd83dbSDimitry Andric "dataLocation can only appear in array type"); 11755ffd83dbSDimitry Andric } 1176e8d8bef9SDimitry Andric 1177e8d8bef9SDimitry Andric if (N.getRawAssociated()) { 1178e8d8bef9SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1179e8d8bef9SDimitry Andric "associated can only appear in array type"); 1180e8d8bef9SDimitry Andric } 1181e8d8bef9SDimitry Andric 1182e8d8bef9SDimitry Andric if (N.getRawAllocated()) { 1183e8d8bef9SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1184e8d8bef9SDimitry Andric "allocated can only appear in array type"); 1185e8d8bef9SDimitry Andric } 1186e8d8bef9SDimitry Andric 1187e8d8bef9SDimitry Andric if (N.getRawRank()) { 1188e8d8bef9SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1189e8d8bef9SDimitry Andric "rank can only appear in array type"); 1190e8d8bef9SDimitry Andric } 11910b57cec5SDimitry Andric } 11920b57cec5SDimitry Andric 11930b57cec5SDimitry Andric void Verifier::visitDISubroutineType(const DISubroutineType &N) { 11940b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 11950b57cec5SDimitry Andric if (auto *Types = N.getRawTypeArray()) { 11960b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 11970b57cec5SDimitry Andric for (Metadata *Ty : N.getTypeArray()->operands()) { 11980b57cec5SDimitry Andric AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 11990b57cec5SDimitry Andric } 12000b57cec5SDimitry Andric } 12010b57cec5SDimitry Andric AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 12020b57cec5SDimitry Andric "invalid reference flags", &N); 12030b57cec5SDimitry Andric } 12040b57cec5SDimitry Andric 12050b57cec5SDimitry Andric void Verifier::visitDIFile(const DIFile &N) { 12060b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 12070b57cec5SDimitry Andric Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 12080b57cec5SDimitry Andric if (Checksum) { 12090b57cec5SDimitry Andric AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 12100b57cec5SDimitry Andric "invalid checksum kind", &N); 12110b57cec5SDimitry Andric size_t Size; 12120b57cec5SDimitry Andric switch (Checksum->Kind) { 12130b57cec5SDimitry Andric case DIFile::CSK_MD5: 12140b57cec5SDimitry Andric Size = 32; 12150b57cec5SDimitry Andric break; 12160b57cec5SDimitry Andric case DIFile::CSK_SHA1: 12170b57cec5SDimitry Andric Size = 40; 12180b57cec5SDimitry Andric break; 12195ffd83dbSDimitry Andric case DIFile::CSK_SHA256: 12205ffd83dbSDimitry Andric Size = 64; 12215ffd83dbSDimitry Andric break; 12220b57cec5SDimitry Andric } 12230b57cec5SDimitry Andric AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 12240b57cec5SDimitry Andric AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 12250b57cec5SDimitry Andric "invalid checksum", &N); 12260b57cec5SDimitry Andric } 12270b57cec5SDimitry Andric } 12280b57cec5SDimitry Andric 12290b57cec5SDimitry Andric void Verifier::visitDICompileUnit(const DICompileUnit &N) { 12300b57cec5SDimitry Andric AssertDI(N.isDistinct(), "compile units must be distinct", &N); 12310b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 12320b57cec5SDimitry Andric 12330b57cec5SDimitry Andric // Don't bother verifying the compilation directory or producer string 12340b57cec5SDimitry Andric // as those could be empty. 12350b57cec5SDimitry Andric AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 12360b57cec5SDimitry Andric N.getRawFile()); 12370b57cec5SDimitry Andric AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 12380b57cec5SDimitry Andric N.getFile()); 12390b57cec5SDimitry Andric 1240e8d8bef9SDimitry Andric CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1241e8d8bef9SDimitry Andric 12420b57cec5SDimitry Andric verifySourceDebugInfo(N, *N.getFile()); 12430b57cec5SDimitry Andric 12440b57cec5SDimitry Andric AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 12450b57cec5SDimitry Andric "invalid emission kind", &N); 12460b57cec5SDimitry Andric 12470b57cec5SDimitry Andric if (auto *Array = N.getRawEnumTypes()) { 12480b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 12490b57cec5SDimitry Andric for (Metadata *Op : N.getEnumTypes()->operands()) { 12500b57cec5SDimitry Andric auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 12510b57cec5SDimitry Andric AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 12520b57cec5SDimitry Andric "invalid enum type", &N, N.getEnumTypes(), Op); 12530b57cec5SDimitry Andric } 12540b57cec5SDimitry Andric } 12550b57cec5SDimitry Andric if (auto *Array = N.getRawRetainedTypes()) { 12560b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 12570b57cec5SDimitry Andric for (Metadata *Op : N.getRetainedTypes()->operands()) { 12580b57cec5SDimitry Andric AssertDI(Op && (isa<DIType>(Op) || 12590b57cec5SDimitry Andric (isa<DISubprogram>(Op) && 12600b57cec5SDimitry Andric !cast<DISubprogram>(Op)->isDefinition())), 12610b57cec5SDimitry Andric "invalid retained type", &N, Op); 12620b57cec5SDimitry Andric } 12630b57cec5SDimitry Andric } 12640b57cec5SDimitry Andric if (auto *Array = N.getRawGlobalVariables()) { 12650b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 12660b57cec5SDimitry Andric for (Metadata *Op : N.getGlobalVariables()->operands()) { 12670b57cec5SDimitry Andric AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 12680b57cec5SDimitry Andric "invalid global variable ref", &N, Op); 12690b57cec5SDimitry Andric } 12700b57cec5SDimitry Andric } 12710b57cec5SDimitry Andric if (auto *Array = N.getRawImportedEntities()) { 12720b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 12730b57cec5SDimitry Andric for (Metadata *Op : N.getImportedEntities()->operands()) { 12740b57cec5SDimitry Andric AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 12750b57cec5SDimitry Andric &N, Op); 12760b57cec5SDimitry Andric } 12770b57cec5SDimitry Andric } 12780b57cec5SDimitry Andric if (auto *Array = N.getRawMacros()) { 12790b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 12800b57cec5SDimitry Andric for (Metadata *Op : N.getMacros()->operands()) { 12810b57cec5SDimitry Andric AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 12820b57cec5SDimitry Andric } 12830b57cec5SDimitry Andric } 12840b57cec5SDimitry Andric CUVisited.insert(&N); 12850b57cec5SDimitry Andric } 12860b57cec5SDimitry Andric 12870b57cec5SDimitry Andric void Verifier::visitDISubprogram(const DISubprogram &N) { 12880b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 12890b57cec5SDimitry Andric AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 12900b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 12910b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 12920b57cec5SDimitry Andric else 12930b57cec5SDimitry Andric AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 12940b57cec5SDimitry Andric if (auto *T = N.getRawType()) 12950b57cec5SDimitry Andric AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 12960b57cec5SDimitry Andric AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 12970b57cec5SDimitry Andric N.getRawContainingType()); 12980b57cec5SDimitry Andric if (auto *Params = N.getRawTemplateParams()) 12990b57cec5SDimitry Andric visitTemplateParams(N, *Params); 13000b57cec5SDimitry Andric if (auto *S = N.getRawDeclaration()) 13010b57cec5SDimitry Andric AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 13020b57cec5SDimitry Andric "invalid subprogram declaration", &N, S); 13030b57cec5SDimitry Andric if (auto *RawNode = N.getRawRetainedNodes()) { 13040b57cec5SDimitry Andric auto *Node = dyn_cast<MDTuple>(RawNode); 13050b57cec5SDimitry Andric AssertDI(Node, "invalid retained nodes list", &N, RawNode); 13060b57cec5SDimitry Andric for (Metadata *Op : Node->operands()) { 13070b57cec5SDimitry Andric AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 13080b57cec5SDimitry Andric "invalid retained nodes, expected DILocalVariable or DILabel", 13090b57cec5SDimitry Andric &N, Node, Op); 13100b57cec5SDimitry Andric } 13110b57cec5SDimitry Andric } 13120b57cec5SDimitry Andric AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 13130b57cec5SDimitry Andric "invalid reference flags", &N); 13140b57cec5SDimitry Andric 13150b57cec5SDimitry Andric auto *Unit = N.getRawUnit(); 13160b57cec5SDimitry Andric if (N.isDefinition()) { 13170b57cec5SDimitry Andric // Subprogram definitions (not part of the type hierarchy). 13180b57cec5SDimitry Andric AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 13190b57cec5SDimitry Andric AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 13200b57cec5SDimitry Andric AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 13210b57cec5SDimitry Andric if (N.getFile()) 13220b57cec5SDimitry Andric verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 13230b57cec5SDimitry Andric } else { 13240b57cec5SDimitry Andric // Subprogram declarations (part of the type hierarchy). 13250b57cec5SDimitry Andric AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 13260b57cec5SDimitry Andric } 13270b57cec5SDimitry Andric 13280b57cec5SDimitry Andric if (auto *RawThrownTypes = N.getRawThrownTypes()) { 13290b57cec5SDimitry Andric auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 13300b57cec5SDimitry Andric AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 13310b57cec5SDimitry Andric for (Metadata *Op : ThrownTypes->operands()) 13320b57cec5SDimitry Andric AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 13330b57cec5SDimitry Andric Op); 13340b57cec5SDimitry Andric } 13350b57cec5SDimitry Andric 13360b57cec5SDimitry Andric if (N.areAllCallsDescribed()) 13370b57cec5SDimitry Andric AssertDI(N.isDefinition(), 13380b57cec5SDimitry Andric "DIFlagAllCallsDescribed must be attached to a definition"); 13390b57cec5SDimitry Andric } 13400b57cec5SDimitry Andric 13410b57cec5SDimitry Andric void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 13420b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 13430b57cec5SDimitry Andric AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 13440b57cec5SDimitry Andric "invalid local scope", &N, N.getRawScope()); 13450b57cec5SDimitry Andric if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 13460b57cec5SDimitry Andric AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 13470b57cec5SDimitry Andric } 13480b57cec5SDimitry Andric 13490b57cec5SDimitry Andric void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 13500b57cec5SDimitry Andric visitDILexicalBlockBase(N); 13510b57cec5SDimitry Andric 13520b57cec5SDimitry Andric AssertDI(N.getLine() || !N.getColumn(), 13530b57cec5SDimitry Andric "cannot have column info without line info", &N); 13540b57cec5SDimitry Andric } 13550b57cec5SDimitry Andric 13560b57cec5SDimitry Andric void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 13570b57cec5SDimitry Andric visitDILexicalBlockBase(N); 13580b57cec5SDimitry Andric } 13590b57cec5SDimitry Andric 13600b57cec5SDimitry Andric void Verifier::visitDICommonBlock(const DICommonBlock &N) { 13610b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 13620b57cec5SDimitry Andric if (auto *S = N.getRawScope()) 13630b57cec5SDimitry Andric AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 13640b57cec5SDimitry Andric if (auto *S = N.getRawDecl()) 13650b57cec5SDimitry Andric AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 13660b57cec5SDimitry Andric } 13670b57cec5SDimitry Andric 13680b57cec5SDimitry Andric void Verifier::visitDINamespace(const DINamespace &N) { 13690b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 13700b57cec5SDimitry Andric if (auto *S = N.getRawScope()) 13710b57cec5SDimitry Andric AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 13720b57cec5SDimitry Andric } 13730b57cec5SDimitry Andric 13740b57cec5SDimitry Andric void Verifier::visitDIMacro(const DIMacro &N) { 13750b57cec5SDimitry Andric AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 13760b57cec5SDimitry Andric N.getMacinfoType() == dwarf::DW_MACINFO_undef, 13770b57cec5SDimitry Andric "invalid macinfo type", &N); 13780b57cec5SDimitry Andric AssertDI(!N.getName().empty(), "anonymous macro", &N); 13790b57cec5SDimitry Andric if (!N.getValue().empty()) { 13800b57cec5SDimitry Andric assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 13810b57cec5SDimitry Andric } 13820b57cec5SDimitry Andric } 13830b57cec5SDimitry Andric 13840b57cec5SDimitry Andric void Verifier::visitDIMacroFile(const DIMacroFile &N) { 13850b57cec5SDimitry Andric AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 13860b57cec5SDimitry Andric "invalid macinfo type", &N); 13870b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 13880b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 13890b57cec5SDimitry Andric 13900b57cec5SDimitry Andric if (auto *Array = N.getRawElements()) { 13910b57cec5SDimitry Andric AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 13920b57cec5SDimitry Andric for (Metadata *Op : N.getElements()->operands()) { 13930b57cec5SDimitry Andric AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 13940b57cec5SDimitry Andric } 13950b57cec5SDimitry Andric } 13960b57cec5SDimitry Andric } 13970b57cec5SDimitry Andric 1398fe6060f1SDimitry Andric void Verifier::visitDIArgList(const DIArgList &N) { 1399fe6060f1SDimitry Andric AssertDI(!N.getNumOperands(), 1400fe6060f1SDimitry Andric "DIArgList should have no operands other than a list of " 1401fe6060f1SDimitry Andric "ValueAsMetadata", 1402fe6060f1SDimitry Andric &N); 1403fe6060f1SDimitry Andric } 1404fe6060f1SDimitry Andric 14050b57cec5SDimitry Andric void Verifier::visitDIModule(const DIModule &N) { 14060b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 14070b57cec5SDimitry Andric AssertDI(!N.getName().empty(), "anonymous module", &N); 14080b57cec5SDimitry Andric } 14090b57cec5SDimitry Andric 14100b57cec5SDimitry Andric void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 14110b57cec5SDimitry Andric AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 14120b57cec5SDimitry Andric } 14130b57cec5SDimitry Andric 14140b57cec5SDimitry Andric void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 14150b57cec5SDimitry Andric visitDITemplateParameter(N); 14160b57cec5SDimitry Andric 14170b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 14180b57cec5SDimitry Andric &N); 14190b57cec5SDimitry Andric } 14200b57cec5SDimitry Andric 14210b57cec5SDimitry Andric void Verifier::visitDITemplateValueParameter( 14220b57cec5SDimitry Andric const DITemplateValueParameter &N) { 14230b57cec5SDimitry Andric visitDITemplateParameter(N); 14240b57cec5SDimitry Andric 14250b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 14260b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 14270b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 14280b57cec5SDimitry Andric "invalid tag", &N); 14290b57cec5SDimitry Andric } 14300b57cec5SDimitry Andric 14310b57cec5SDimitry Andric void Verifier::visitDIVariable(const DIVariable &N) { 14320b57cec5SDimitry Andric if (auto *S = N.getRawScope()) 14330b57cec5SDimitry Andric AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 14340b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 14350b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 14360b57cec5SDimitry Andric } 14370b57cec5SDimitry Andric 14380b57cec5SDimitry Andric void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 14390b57cec5SDimitry Andric // Checks common to all variables. 14400b57cec5SDimitry Andric visitDIVariable(N); 14410b57cec5SDimitry Andric 14420b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 14430b57cec5SDimitry Andric AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 14445ffd83dbSDimitry Andric // Assert only if the global variable is not an extern 14455ffd83dbSDimitry Andric if (N.isDefinition()) 14460b57cec5SDimitry Andric AssertDI(N.getType(), "missing global variable type", &N); 14470b57cec5SDimitry Andric if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 14480b57cec5SDimitry Andric AssertDI(isa<DIDerivedType>(Member), 14490b57cec5SDimitry Andric "invalid static data member declaration", &N, Member); 14500b57cec5SDimitry Andric } 14510b57cec5SDimitry Andric } 14520b57cec5SDimitry Andric 14530b57cec5SDimitry Andric void Verifier::visitDILocalVariable(const DILocalVariable &N) { 14540b57cec5SDimitry Andric // Checks common to all variables. 14550b57cec5SDimitry Andric visitDIVariable(N); 14560b57cec5SDimitry Andric 14570b57cec5SDimitry Andric AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 14580b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 14590b57cec5SDimitry Andric AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 14600b57cec5SDimitry Andric "local variable requires a valid scope", &N, N.getRawScope()); 14610b57cec5SDimitry Andric if (auto Ty = N.getType()) 14620b57cec5SDimitry Andric AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 14630b57cec5SDimitry Andric } 14640b57cec5SDimitry Andric 14650b57cec5SDimitry Andric void Verifier::visitDILabel(const DILabel &N) { 14660b57cec5SDimitry Andric if (auto *S = N.getRawScope()) 14670b57cec5SDimitry Andric AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 14680b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 14690b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 14700b57cec5SDimitry Andric 14710b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 14720b57cec5SDimitry Andric AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 14730b57cec5SDimitry Andric "label requires a valid scope", &N, N.getRawScope()); 14740b57cec5SDimitry Andric } 14750b57cec5SDimitry Andric 14760b57cec5SDimitry Andric void Verifier::visitDIExpression(const DIExpression &N) { 14770b57cec5SDimitry Andric AssertDI(N.isValid(), "invalid expression", &N); 14780b57cec5SDimitry Andric } 14790b57cec5SDimitry Andric 14800b57cec5SDimitry Andric void Verifier::visitDIGlobalVariableExpression( 14810b57cec5SDimitry Andric const DIGlobalVariableExpression &GVE) { 14820b57cec5SDimitry Andric AssertDI(GVE.getVariable(), "missing variable"); 14830b57cec5SDimitry Andric if (auto *Var = GVE.getVariable()) 14840b57cec5SDimitry Andric visitDIGlobalVariable(*Var); 14850b57cec5SDimitry Andric if (auto *Expr = GVE.getExpression()) { 14860b57cec5SDimitry Andric visitDIExpression(*Expr); 14870b57cec5SDimitry Andric if (auto Fragment = Expr->getFragmentInfo()) 14880b57cec5SDimitry Andric verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 14890b57cec5SDimitry Andric } 14900b57cec5SDimitry Andric } 14910b57cec5SDimitry Andric 14920b57cec5SDimitry Andric void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 14930b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 14940b57cec5SDimitry Andric if (auto *T = N.getRawType()) 14950b57cec5SDimitry Andric AssertDI(isType(T), "invalid type ref", &N, T); 14960b57cec5SDimitry Andric if (auto *F = N.getRawFile()) 14970b57cec5SDimitry Andric AssertDI(isa<DIFile>(F), "invalid file", &N, F); 14980b57cec5SDimitry Andric } 14990b57cec5SDimitry Andric 15000b57cec5SDimitry Andric void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 15010b57cec5SDimitry Andric AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 15020b57cec5SDimitry Andric N.getTag() == dwarf::DW_TAG_imported_declaration, 15030b57cec5SDimitry Andric "invalid tag", &N); 15040b57cec5SDimitry Andric if (auto *S = N.getRawScope()) 15050b57cec5SDimitry Andric AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 15060b57cec5SDimitry Andric AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 15070b57cec5SDimitry Andric N.getRawEntity()); 15080b57cec5SDimitry Andric } 15090b57cec5SDimitry Andric 15100b57cec5SDimitry Andric void Verifier::visitComdat(const Comdat &C) { 15118bcb0991SDimitry Andric // In COFF the Module is invalid if the GlobalValue has private linkage. 15128bcb0991SDimitry Andric // Entities with private linkage don't have entries in the symbol table. 15138bcb0991SDimitry Andric if (TT.isOSBinFormatCOFF()) 15140b57cec5SDimitry Andric if (const GlobalValue *GV = M.getNamedValue(C.getName())) 15158bcb0991SDimitry Andric Assert(!GV->hasPrivateLinkage(), 15168bcb0991SDimitry Andric "comdat global value has private linkage", GV); 15170b57cec5SDimitry Andric } 15180b57cec5SDimitry Andric 1519349cc55cSDimitry Andric void Verifier::visitModuleIdents() { 15200b57cec5SDimitry Andric const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 15210b57cec5SDimitry Andric if (!Idents) 15220b57cec5SDimitry Andric return; 15230b57cec5SDimitry Andric 15240b57cec5SDimitry Andric // llvm.ident takes a list of metadata entry. Each entry has only one string. 15250b57cec5SDimitry Andric // Scan each llvm.ident entry and make sure that this requirement is met. 15260b57cec5SDimitry Andric for (const MDNode *N : Idents->operands()) { 15270b57cec5SDimitry Andric Assert(N->getNumOperands() == 1, 15280b57cec5SDimitry Andric "incorrect number of operands in llvm.ident metadata", N); 15290b57cec5SDimitry Andric Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 15300b57cec5SDimitry Andric ("invalid value for llvm.ident metadata entry operand" 15310b57cec5SDimitry Andric "(the operand should be a string)"), 15320b57cec5SDimitry Andric N->getOperand(0)); 15330b57cec5SDimitry Andric } 15340b57cec5SDimitry Andric } 15350b57cec5SDimitry Andric 1536349cc55cSDimitry Andric void Verifier::visitModuleCommandLines() { 15370b57cec5SDimitry Andric const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 15380b57cec5SDimitry Andric if (!CommandLines) 15390b57cec5SDimitry Andric return; 15400b57cec5SDimitry Andric 15410b57cec5SDimitry Andric // llvm.commandline takes a list of metadata entry. Each entry has only one 15420b57cec5SDimitry Andric // string. Scan each llvm.commandline entry and make sure that this 15430b57cec5SDimitry Andric // requirement is met. 15440b57cec5SDimitry Andric for (const MDNode *N : CommandLines->operands()) { 15450b57cec5SDimitry Andric Assert(N->getNumOperands() == 1, 15460b57cec5SDimitry Andric "incorrect number of operands in llvm.commandline metadata", N); 15470b57cec5SDimitry Andric Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 15480b57cec5SDimitry Andric ("invalid value for llvm.commandline metadata entry operand" 15490b57cec5SDimitry Andric "(the operand should be a string)"), 15500b57cec5SDimitry Andric N->getOperand(0)); 15510b57cec5SDimitry Andric } 15520b57cec5SDimitry Andric } 15530b57cec5SDimitry Andric 1554349cc55cSDimitry Andric void Verifier::visitModuleFlags() { 15550b57cec5SDimitry Andric const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 15560b57cec5SDimitry Andric if (!Flags) return; 15570b57cec5SDimitry Andric 15580b57cec5SDimitry Andric // Scan each flag, and track the flags and requirements. 15590b57cec5SDimitry Andric DenseMap<const MDString*, const MDNode*> SeenIDs; 15600b57cec5SDimitry Andric SmallVector<const MDNode*, 16> Requirements; 15610b57cec5SDimitry Andric for (const MDNode *MDN : Flags->operands()) 15620b57cec5SDimitry Andric visitModuleFlag(MDN, SeenIDs, Requirements); 15630b57cec5SDimitry Andric 15640b57cec5SDimitry Andric // Validate that the requirements in the module are valid. 15650b57cec5SDimitry Andric for (const MDNode *Requirement : Requirements) { 15660b57cec5SDimitry Andric const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 15670b57cec5SDimitry Andric const Metadata *ReqValue = Requirement->getOperand(1); 15680b57cec5SDimitry Andric 15690b57cec5SDimitry Andric const MDNode *Op = SeenIDs.lookup(Flag); 15700b57cec5SDimitry Andric if (!Op) { 15710b57cec5SDimitry Andric CheckFailed("invalid requirement on flag, flag is not present in module", 15720b57cec5SDimitry Andric Flag); 15730b57cec5SDimitry Andric continue; 15740b57cec5SDimitry Andric } 15750b57cec5SDimitry Andric 15760b57cec5SDimitry Andric if (Op->getOperand(2) != ReqValue) { 15770b57cec5SDimitry Andric CheckFailed(("invalid requirement on flag, " 15780b57cec5SDimitry Andric "flag does not have the required value"), 15790b57cec5SDimitry Andric Flag); 15800b57cec5SDimitry Andric continue; 15810b57cec5SDimitry Andric } 15820b57cec5SDimitry Andric } 15830b57cec5SDimitry Andric } 15840b57cec5SDimitry Andric 15850b57cec5SDimitry Andric void 15860b57cec5SDimitry Andric Verifier::visitModuleFlag(const MDNode *Op, 15870b57cec5SDimitry Andric DenseMap<const MDString *, const MDNode *> &SeenIDs, 15880b57cec5SDimitry Andric SmallVectorImpl<const MDNode *> &Requirements) { 15890b57cec5SDimitry Andric // Each module flag should have three arguments, the merge behavior (a 15900b57cec5SDimitry Andric // constant int), the flag ID (an MDString), and the value. 15910b57cec5SDimitry Andric Assert(Op->getNumOperands() == 3, 15920b57cec5SDimitry Andric "incorrect number of operands in module flag", Op); 15930b57cec5SDimitry Andric Module::ModFlagBehavior MFB; 15940b57cec5SDimitry Andric if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 15950b57cec5SDimitry Andric Assert( 15960b57cec5SDimitry Andric mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 15970b57cec5SDimitry Andric "invalid behavior operand in module flag (expected constant integer)", 15980b57cec5SDimitry Andric Op->getOperand(0)); 15990b57cec5SDimitry Andric Assert(false, 16000b57cec5SDimitry Andric "invalid behavior operand in module flag (unexpected constant)", 16010b57cec5SDimitry Andric Op->getOperand(0)); 16020b57cec5SDimitry Andric } 16030b57cec5SDimitry Andric MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 16040b57cec5SDimitry Andric Assert(ID, "invalid ID operand in module flag (expected metadata string)", 16050b57cec5SDimitry Andric Op->getOperand(1)); 16060b57cec5SDimitry Andric 1607*4824e7fdSDimitry Andric // Check the values for behaviors with additional requirements. 16080b57cec5SDimitry Andric switch (MFB) { 16090b57cec5SDimitry Andric case Module::Error: 16100b57cec5SDimitry Andric case Module::Warning: 16110b57cec5SDimitry Andric case Module::Override: 16120b57cec5SDimitry Andric // These behavior types accept any value. 16130b57cec5SDimitry Andric break; 16140b57cec5SDimitry Andric 16150b57cec5SDimitry Andric case Module::Max: { 16160b57cec5SDimitry Andric Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 16170b57cec5SDimitry Andric "invalid value for 'max' module flag (expected constant integer)", 16180b57cec5SDimitry Andric Op->getOperand(2)); 16190b57cec5SDimitry Andric break; 16200b57cec5SDimitry Andric } 16210b57cec5SDimitry Andric 16220b57cec5SDimitry Andric case Module::Require: { 16230b57cec5SDimitry Andric // The value should itself be an MDNode with two operands, a flag ID (an 16240b57cec5SDimitry Andric // MDString), and a value. 16250b57cec5SDimitry Andric MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 16260b57cec5SDimitry Andric Assert(Value && Value->getNumOperands() == 2, 16270b57cec5SDimitry Andric "invalid value for 'require' module flag (expected metadata pair)", 16280b57cec5SDimitry Andric Op->getOperand(2)); 16290b57cec5SDimitry Andric Assert(isa<MDString>(Value->getOperand(0)), 16300b57cec5SDimitry Andric ("invalid value for 'require' module flag " 16310b57cec5SDimitry Andric "(first value operand should be a string)"), 16320b57cec5SDimitry Andric Value->getOperand(0)); 16330b57cec5SDimitry Andric 16340b57cec5SDimitry Andric // Append it to the list of requirements, to check once all module flags are 16350b57cec5SDimitry Andric // scanned. 16360b57cec5SDimitry Andric Requirements.push_back(Value); 16370b57cec5SDimitry Andric break; 16380b57cec5SDimitry Andric } 16390b57cec5SDimitry Andric 16400b57cec5SDimitry Andric case Module::Append: 16410b57cec5SDimitry Andric case Module::AppendUnique: { 16420b57cec5SDimitry Andric // These behavior types require the operand be an MDNode. 16430b57cec5SDimitry Andric Assert(isa<MDNode>(Op->getOperand(2)), 16440b57cec5SDimitry Andric "invalid value for 'append'-type module flag " 16450b57cec5SDimitry Andric "(expected a metadata node)", 16460b57cec5SDimitry Andric Op->getOperand(2)); 16470b57cec5SDimitry Andric break; 16480b57cec5SDimitry Andric } 16490b57cec5SDimitry Andric } 16500b57cec5SDimitry Andric 16510b57cec5SDimitry Andric // Unless this is a "requires" flag, check the ID is unique. 16520b57cec5SDimitry Andric if (MFB != Module::Require) { 16530b57cec5SDimitry Andric bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 16540b57cec5SDimitry Andric Assert(Inserted, 16550b57cec5SDimitry Andric "module flag identifiers must be unique (or of 'require' type)", ID); 16560b57cec5SDimitry Andric } 16570b57cec5SDimitry Andric 16580b57cec5SDimitry Andric if (ID->getString() == "wchar_size") { 16590b57cec5SDimitry Andric ConstantInt *Value 16600b57cec5SDimitry Andric = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 16610b57cec5SDimitry Andric Assert(Value, "wchar_size metadata requires constant integer argument"); 16620b57cec5SDimitry Andric } 16630b57cec5SDimitry Andric 16640b57cec5SDimitry Andric if (ID->getString() == "Linker Options") { 16650b57cec5SDimitry Andric // If the llvm.linker.options named metadata exists, we assume that the 16660b57cec5SDimitry Andric // bitcode reader has upgraded the module flag. Otherwise the flag might 16670b57cec5SDimitry Andric // have been created by a client directly. 16680b57cec5SDimitry Andric Assert(M.getNamedMetadata("llvm.linker.options"), 16690b57cec5SDimitry Andric "'Linker Options' named metadata no longer supported"); 16700b57cec5SDimitry Andric } 16710b57cec5SDimitry Andric 16725ffd83dbSDimitry Andric if (ID->getString() == "SemanticInterposition") { 16735ffd83dbSDimitry Andric ConstantInt *Value = 16745ffd83dbSDimitry Andric mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 16755ffd83dbSDimitry Andric Assert(Value, 16765ffd83dbSDimitry Andric "SemanticInterposition metadata requires constant integer argument"); 16775ffd83dbSDimitry Andric } 16785ffd83dbSDimitry Andric 16790b57cec5SDimitry Andric if (ID->getString() == "CG Profile") { 16800b57cec5SDimitry Andric for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 16810b57cec5SDimitry Andric visitModuleFlagCGProfileEntry(MDO); 16820b57cec5SDimitry Andric } 16830b57cec5SDimitry Andric } 16840b57cec5SDimitry Andric 16850b57cec5SDimitry Andric void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 16860b57cec5SDimitry Andric auto CheckFunction = [&](const MDOperand &FuncMDO) { 16870b57cec5SDimitry Andric if (!FuncMDO) 16880b57cec5SDimitry Andric return; 16890b57cec5SDimitry Andric auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1690e8d8bef9SDimitry Andric Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1691e8d8bef9SDimitry Andric "expected a Function or null", FuncMDO); 16920b57cec5SDimitry Andric }; 16930b57cec5SDimitry Andric auto Node = dyn_cast_or_null<MDNode>(MDO); 16940b57cec5SDimitry Andric Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 16950b57cec5SDimitry Andric CheckFunction(Node->getOperand(0)); 16960b57cec5SDimitry Andric CheckFunction(Node->getOperand(1)); 16970b57cec5SDimitry Andric auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 16980b57cec5SDimitry Andric Assert(Count && Count->getType()->isIntegerTy(), 16990b57cec5SDimitry Andric "expected an integer constant", Node->getOperand(2)); 17000b57cec5SDimitry Andric } 17010b57cec5SDimitry Andric 1702fe6060f1SDimitry Andric void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 17030b57cec5SDimitry Andric for (Attribute A : Attrs) { 1704fe6060f1SDimitry Andric 1705fe6060f1SDimitry Andric if (A.isStringAttribute()) { 1706fe6060f1SDimitry Andric #define GET_ATTR_NAMES 1707fe6060f1SDimitry Andric #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1708fe6060f1SDimitry Andric #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1709fe6060f1SDimitry Andric if (A.getKindAsString() == #DISPLAY_NAME) { \ 1710fe6060f1SDimitry Andric auto V = A.getValueAsString(); \ 1711fe6060f1SDimitry Andric if (!(V.empty() || V == "true" || V == "false")) \ 1712fe6060f1SDimitry Andric CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1713fe6060f1SDimitry Andric ""); \ 1714fe6060f1SDimitry Andric } 1715fe6060f1SDimitry Andric 1716fe6060f1SDimitry Andric #include "llvm/IR/Attributes.inc" 17170b57cec5SDimitry Andric continue; 1718fe6060f1SDimitry Andric } 17190b57cec5SDimitry Andric 1720fe6060f1SDimitry Andric if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 17215ffd83dbSDimitry Andric CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 17225ffd83dbSDimitry Andric V); 17235ffd83dbSDimitry Andric return; 17245ffd83dbSDimitry Andric } 17250b57cec5SDimitry Andric } 17260b57cec5SDimitry Andric } 17270b57cec5SDimitry Andric 17280b57cec5SDimitry Andric // VerifyParameterAttrs - Check the given attributes for an argument or return 17290b57cec5SDimitry Andric // value of the specified type. The value V is printed in error messages. 17300b57cec5SDimitry Andric void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 17310b57cec5SDimitry Andric const Value *V) { 17320b57cec5SDimitry Andric if (!Attrs.hasAttributes()) 17330b57cec5SDimitry Andric return; 17340b57cec5SDimitry Andric 1735fe6060f1SDimitry Andric verifyAttributeTypes(Attrs, V); 1736fe6060f1SDimitry Andric 1737fe6060f1SDimitry Andric for (Attribute Attr : Attrs) 1738fe6060f1SDimitry Andric Assert(Attr.isStringAttribute() || 1739fe6060f1SDimitry Andric Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1740fe6060f1SDimitry Andric "Attribute '" + Attr.getAsString() + 1741fe6060f1SDimitry Andric "' does not apply to parameters", 1742fe6060f1SDimitry Andric V); 17430b57cec5SDimitry Andric 17440b57cec5SDimitry Andric if (Attrs.hasAttribute(Attribute::ImmArg)) { 17450b57cec5SDimitry Andric Assert(Attrs.getNumAttributes() == 1, 17460b57cec5SDimitry Andric "Attribute 'immarg' is incompatible with other attributes", V); 17470b57cec5SDimitry Andric } 17480b57cec5SDimitry Andric 17490b57cec5SDimitry Andric // Check for mutually incompatible attributes. Only inreg is compatible with 17500b57cec5SDimitry Andric // sret. 17510b57cec5SDimitry Andric unsigned AttrCount = 0; 17520b57cec5SDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::ByVal); 17530b57cec5SDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 17545ffd83dbSDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 17550b57cec5SDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 17560b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::InReg); 17570b57cec5SDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::Nest); 1758e8d8bef9SDimitry Andric AttrCount += Attrs.hasAttribute(Attribute::ByRef); 17595ffd83dbSDimitry Andric Assert(AttrCount <= 1, 17605ffd83dbSDimitry Andric "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1761e8d8bef9SDimitry Andric "'byref', and 'sret' are incompatible!", 17620b57cec5SDimitry Andric V); 17630b57cec5SDimitry Andric 17640b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 17650b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::ReadOnly)), 17660b57cec5SDimitry Andric "Attributes " 17670b57cec5SDimitry Andric "'inalloca and readonly' are incompatible!", 17680b57cec5SDimitry Andric V); 17690b57cec5SDimitry Andric 17700b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 17710b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::Returned)), 17720b57cec5SDimitry Andric "Attributes " 17730b57cec5SDimitry Andric "'sret and returned' are incompatible!", 17740b57cec5SDimitry Andric V); 17750b57cec5SDimitry Andric 17760b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 17770b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::SExt)), 17780b57cec5SDimitry Andric "Attributes " 17790b57cec5SDimitry Andric "'zeroext and signext' are incompatible!", 17800b57cec5SDimitry Andric V); 17810b57cec5SDimitry Andric 17820b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 17830b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::ReadOnly)), 17840b57cec5SDimitry Andric "Attributes " 17850b57cec5SDimitry Andric "'readnone and readonly' are incompatible!", 17860b57cec5SDimitry Andric V); 17870b57cec5SDimitry Andric 17880b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 17890b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::WriteOnly)), 17900b57cec5SDimitry Andric "Attributes " 17910b57cec5SDimitry Andric "'readnone and writeonly' are incompatible!", 17920b57cec5SDimitry Andric V); 17930b57cec5SDimitry Andric 17940b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 17950b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::WriteOnly)), 17960b57cec5SDimitry Andric "Attributes " 17970b57cec5SDimitry Andric "'readonly and writeonly' are incompatible!", 17980b57cec5SDimitry Andric V); 17990b57cec5SDimitry Andric 18000b57cec5SDimitry Andric Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 18010b57cec5SDimitry Andric Attrs.hasAttribute(Attribute::AlwaysInline)), 18020b57cec5SDimitry Andric "Attributes " 18030b57cec5SDimitry Andric "'noinline and alwaysinline' are incompatible!", 18040b57cec5SDimitry Andric V); 18050b57cec5SDimitry Andric 18060b57cec5SDimitry Andric AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1807fe6060f1SDimitry Andric for (Attribute Attr : Attrs) { 1808fe6060f1SDimitry Andric if (!Attr.isStringAttribute() && 1809fe6060f1SDimitry Andric IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1810fe6060f1SDimitry Andric CheckFailed("Attribute '" + Attr.getAsString() + 1811fe6060f1SDimitry Andric "' applied to incompatible type!", V); 1812fe6060f1SDimitry Andric return; 1813fe6060f1SDimitry Andric } 1814fe6060f1SDimitry Andric } 18150b57cec5SDimitry Andric 18160b57cec5SDimitry Andric if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1817fe6060f1SDimitry Andric if (Attrs.hasAttribute(Attribute::ByVal)) { 18180b57cec5SDimitry Andric SmallPtrSet<Type *, 4> Visited; 1819fe6060f1SDimitry Andric Assert(Attrs.getByValType()->isSized(&Visited), 1820fe6060f1SDimitry Andric "Attribute 'byval' does not support unsized types!", V); 18210b57cec5SDimitry Andric } 1822fe6060f1SDimitry Andric if (Attrs.hasAttribute(Attribute::ByRef)) { 1823fe6060f1SDimitry Andric SmallPtrSet<Type *, 4> Visited; 1824fe6060f1SDimitry Andric Assert(Attrs.getByRefType()->isSized(&Visited), 1825fe6060f1SDimitry Andric "Attribute 'byref' does not support unsized types!", V); 1826fe6060f1SDimitry Andric } 1827fe6060f1SDimitry Andric if (Attrs.hasAttribute(Attribute::InAlloca)) { 1828fe6060f1SDimitry Andric SmallPtrSet<Type *, 4> Visited; 1829fe6060f1SDimitry Andric Assert(Attrs.getInAllocaType()->isSized(&Visited), 1830fe6060f1SDimitry Andric "Attribute 'inalloca' does not support unsized types!", V); 1831fe6060f1SDimitry Andric } 1832fe6060f1SDimitry Andric if (Attrs.hasAttribute(Attribute::Preallocated)) { 1833fe6060f1SDimitry Andric SmallPtrSet<Type *, 4> Visited; 1834fe6060f1SDimitry Andric Assert(Attrs.getPreallocatedType()->isSized(&Visited), 1835fe6060f1SDimitry Andric "Attribute 'preallocated' does not support unsized types!", V); 1836fe6060f1SDimitry Andric } 1837fe6060f1SDimitry Andric if (!PTy->isOpaque()) { 18380b57cec5SDimitry Andric if (!isa<PointerType>(PTy->getElementType())) 18390b57cec5SDimitry Andric Assert(!Attrs.hasAttribute(Attribute::SwiftError), 18400b57cec5SDimitry Andric "Attribute 'swifterror' only applies to parameters " 18410b57cec5SDimitry Andric "with pointer to pointer type!", 18420b57cec5SDimitry Andric V); 1843e8d8bef9SDimitry Andric if (Attrs.hasAttribute(Attribute::ByRef)) { 1844e8d8bef9SDimitry Andric Assert(Attrs.getByRefType() == PTy->getElementType(), 1845e8d8bef9SDimitry Andric "Attribute 'byref' type does not match parameter!", V); 1846e8d8bef9SDimitry Andric } 1847e8d8bef9SDimitry Andric 1848e8d8bef9SDimitry Andric if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1849e8d8bef9SDimitry Andric Assert(Attrs.getByValType() == PTy->getElementType(), 1850e8d8bef9SDimitry Andric "Attribute 'byval' type does not match parameter!", V); 1851e8d8bef9SDimitry Andric } 1852e8d8bef9SDimitry Andric 1853e8d8bef9SDimitry Andric if (Attrs.hasAttribute(Attribute::Preallocated)) { 1854e8d8bef9SDimitry Andric Assert(Attrs.getPreallocatedType() == PTy->getElementType(), 1855e8d8bef9SDimitry Andric "Attribute 'preallocated' type does not match parameter!", V); 1856e8d8bef9SDimitry Andric } 1857fe6060f1SDimitry Andric 1858fe6060f1SDimitry Andric if (Attrs.hasAttribute(Attribute::InAlloca)) { 1859fe6060f1SDimitry Andric Assert(Attrs.getInAllocaType() == PTy->getElementType(), 1860fe6060f1SDimitry Andric "Attribute 'inalloca' type does not match parameter!", V); 1861fe6060f1SDimitry Andric } 1862fe6060f1SDimitry Andric 1863fe6060f1SDimitry Andric if (Attrs.hasAttribute(Attribute::ElementType)) { 1864fe6060f1SDimitry Andric Assert(Attrs.getElementType() == PTy->getElementType(), 1865fe6060f1SDimitry Andric "Attribute 'elementtype' type does not match parameter!", V); 1866fe6060f1SDimitry Andric } 1867fe6060f1SDimitry Andric } 1868fe6060f1SDimitry Andric } 1869fe6060f1SDimitry Andric } 1870fe6060f1SDimitry Andric 1871fe6060f1SDimitry Andric void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1872fe6060f1SDimitry Andric const Value *V) { 1873349cc55cSDimitry Andric if (Attrs.hasFnAttr(Attr)) { 1874349cc55cSDimitry Andric StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 1875fe6060f1SDimitry Andric unsigned N; 1876fe6060f1SDimitry Andric if (S.getAsInteger(10, N)) 1877fe6060f1SDimitry Andric CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 18780b57cec5SDimitry Andric } 18790b57cec5SDimitry Andric } 18800b57cec5SDimitry Andric 18810b57cec5SDimitry Andric // Check parameter attributes against a function type. 18820b57cec5SDimitry Andric // The value V is printed in error messages. 18830b57cec5SDimitry Andric void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 18840b57cec5SDimitry Andric const Value *V, bool IsIntrinsic) { 18850b57cec5SDimitry Andric if (Attrs.isEmpty()) 18860b57cec5SDimitry Andric return; 18870b57cec5SDimitry Andric 1888fe6060f1SDimitry Andric if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1889fe6060f1SDimitry Andric Assert(Attrs.hasParentContext(Context), 1890fe6060f1SDimitry Andric "Attribute list does not match Module context!", &Attrs, V); 1891fe6060f1SDimitry Andric for (const auto &AttrSet : Attrs) { 1892fe6060f1SDimitry Andric Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1893fe6060f1SDimitry Andric "Attribute set does not match Module context!", &AttrSet, V); 1894fe6060f1SDimitry Andric for (const auto &A : AttrSet) { 1895fe6060f1SDimitry Andric Assert(A.hasParentContext(Context), 1896fe6060f1SDimitry Andric "Attribute does not match Module context!", &A, V); 1897fe6060f1SDimitry Andric } 1898fe6060f1SDimitry Andric } 1899fe6060f1SDimitry Andric } 1900fe6060f1SDimitry Andric 19010b57cec5SDimitry Andric bool SawNest = false; 19020b57cec5SDimitry Andric bool SawReturned = false; 19030b57cec5SDimitry Andric bool SawSRet = false; 19040b57cec5SDimitry Andric bool SawSwiftSelf = false; 1905fe6060f1SDimitry Andric bool SawSwiftAsync = false; 19060b57cec5SDimitry Andric bool SawSwiftError = false; 19070b57cec5SDimitry Andric 19080b57cec5SDimitry Andric // Verify return value attributes. 1909349cc55cSDimitry Andric AttributeSet RetAttrs = Attrs.getRetAttrs(); 1910fe6060f1SDimitry Andric for (Attribute RetAttr : RetAttrs) 1911fe6060f1SDimitry Andric Assert(RetAttr.isStringAttribute() || 1912fe6060f1SDimitry Andric Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 1913fe6060f1SDimitry Andric "Attribute '" + RetAttr.getAsString() + 1914fe6060f1SDimitry Andric "' does not apply to function return values", 19150b57cec5SDimitry Andric V); 1916fe6060f1SDimitry Andric 19170b57cec5SDimitry Andric verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 19180b57cec5SDimitry Andric 19190b57cec5SDimitry Andric // Verify parameter attributes. 19200b57cec5SDimitry Andric for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 19210b57cec5SDimitry Andric Type *Ty = FT->getParamType(i); 1922349cc55cSDimitry Andric AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 19230b57cec5SDimitry Andric 19240b57cec5SDimitry Andric if (!IsIntrinsic) { 19250b57cec5SDimitry Andric Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 19260b57cec5SDimitry Andric "immarg attribute only applies to intrinsics",V); 1927fe6060f1SDimitry Andric Assert(!ArgAttrs.hasAttribute(Attribute::ElementType), 1928fe6060f1SDimitry Andric "Attribute 'elementtype' can only be applied to intrinsics.", V); 19290b57cec5SDimitry Andric } 19300b57cec5SDimitry Andric 19310b57cec5SDimitry Andric verifyParameterAttrs(ArgAttrs, Ty, V); 19320b57cec5SDimitry Andric 19330b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::Nest)) { 19340b57cec5SDimitry Andric Assert(!SawNest, "More than one parameter has attribute nest!", V); 19350b57cec5SDimitry Andric SawNest = true; 19360b57cec5SDimitry Andric } 19370b57cec5SDimitry Andric 19380b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::Returned)) { 19390b57cec5SDimitry Andric Assert(!SawReturned, "More than one parameter has attribute returned!", 19400b57cec5SDimitry Andric V); 19410b57cec5SDimitry Andric Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 19420b57cec5SDimitry Andric "Incompatible argument and return types for 'returned' attribute", 19430b57cec5SDimitry Andric V); 19440b57cec5SDimitry Andric SawReturned = true; 19450b57cec5SDimitry Andric } 19460b57cec5SDimitry Andric 19470b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 19480b57cec5SDimitry Andric Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 19490b57cec5SDimitry Andric Assert(i == 0 || i == 1, 19500b57cec5SDimitry Andric "Attribute 'sret' is not on first or second parameter!", V); 19510b57cec5SDimitry Andric SawSRet = true; 19520b57cec5SDimitry Andric } 19530b57cec5SDimitry Andric 19540b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 19550b57cec5SDimitry Andric Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 19560b57cec5SDimitry Andric SawSwiftSelf = true; 19570b57cec5SDimitry Andric } 19580b57cec5SDimitry Andric 1959fe6060f1SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 1960fe6060f1SDimitry Andric Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 1961fe6060f1SDimitry Andric SawSwiftAsync = true; 1962fe6060f1SDimitry Andric } 1963fe6060f1SDimitry Andric 19640b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 19650b57cec5SDimitry Andric Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 19660b57cec5SDimitry Andric V); 19670b57cec5SDimitry Andric SawSwiftError = true; 19680b57cec5SDimitry Andric } 19690b57cec5SDimitry Andric 19700b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 19710b57cec5SDimitry Andric Assert(i == FT->getNumParams() - 1, 19720b57cec5SDimitry Andric "inalloca isn't on the last parameter!", V); 19730b57cec5SDimitry Andric } 19740b57cec5SDimitry Andric } 19750b57cec5SDimitry Andric 1976349cc55cSDimitry Andric if (!Attrs.hasFnAttrs()) 19770b57cec5SDimitry Andric return; 19780b57cec5SDimitry Andric 1979349cc55cSDimitry Andric verifyAttributeTypes(Attrs.getFnAttrs(), V); 1980349cc55cSDimitry Andric for (Attribute FnAttr : Attrs.getFnAttrs()) 1981fe6060f1SDimitry Andric Assert(FnAttr.isStringAttribute() || 1982fe6060f1SDimitry Andric Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 1983fe6060f1SDimitry Andric "Attribute '" + FnAttr.getAsString() + 1984fe6060f1SDimitry Andric "' does not apply to functions!", 1985fe6060f1SDimitry Andric V); 19860b57cec5SDimitry Andric 1987349cc55cSDimitry Andric Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1988349cc55cSDimitry Andric Attrs.hasFnAttr(Attribute::ReadOnly)), 19890b57cec5SDimitry Andric "Attributes 'readnone and readonly' are incompatible!", V); 19900b57cec5SDimitry Andric 1991349cc55cSDimitry Andric Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1992349cc55cSDimitry Andric Attrs.hasFnAttr(Attribute::WriteOnly)), 19930b57cec5SDimitry Andric "Attributes 'readnone and writeonly' are incompatible!", V); 19940b57cec5SDimitry Andric 1995349cc55cSDimitry Andric Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) && 1996349cc55cSDimitry Andric Attrs.hasFnAttr(Attribute::WriteOnly)), 19970b57cec5SDimitry Andric "Attributes 'readonly and writeonly' are incompatible!", V); 19980b57cec5SDimitry Andric 1999349cc55cSDimitry Andric Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2000349cc55cSDimitry Andric Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)), 20010b57cec5SDimitry Andric "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 20020b57cec5SDimitry Andric "incompatible!", 20030b57cec5SDimitry Andric V); 20040b57cec5SDimitry Andric 2005349cc55cSDimitry Andric Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2006349cc55cSDimitry Andric Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)), 20070b57cec5SDimitry Andric "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 20080b57cec5SDimitry Andric 2009349cc55cSDimitry Andric Assert(!(Attrs.hasFnAttr(Attribute::NoInline) && 2010349cc55cSDimitry Andric Attrs.hasFnAttr(Attribute::AlwaysInline)), 20110b57cec5SDimitry Andric "Attributes 'noinline and alwaysinline' are incompatible!", V); 20120b57cec5SDimitry Andric 2013349cc55cSDimitry Andric if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 2014349cc55cSDimitry Andric Assert(Attrs.hasFnAttr(Attribute::NoInline), 20150b57cec5SDimitry Andric "Attribute 'optnone' requires 'noinline'!", V); 20160b57cec5SDimitry Andric 2017349cc55cSDimitry Andric Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 20180b57cec5SDimitry Andric "Attributes 'optsize and optnone' are incompatible!", V); 20190b57cec5SDimitry Andric 2020349cc55cSDimitry Andric Assert(!Attrs.hasFnAttr(Attribute::MinSize), 20210b57cec5SDimitry Andric "Attributes 'minsize and optnone' are incompatible!", V); 20220b57cec5SDimitry Andric } 20230b57cec5SDimitry Andric 2024349cc55cSDimitry Andric if (Attrs.hasFnAttr(Attribute::JumpTable)) { 20250b57cec5SDimitry Andric const GlobalValue *GV = cast<GlobalValue>(V); 20260b57cec5SDimitry Andric Assert(GV->hasGlobalUnnamedAddr(), 20270b57cec5SDimitry Andric "Attribute 'jumptable' requires 'unnamed_addr'", V); 20280b57cec5SDimitry Andric } 20290b57cec5SDimitry Andric 2030349cc55cSDimitry Andric if (Attrs.hasFnAttr(Attribute::AllocSize)) { 20310b57cec5SDimitry Andric std::pair<unsigned, Optional<unsigned>> Args = 2032349cc55cSDimitry Andric Attrs.getFnAttrs().getAllocSizeArgs(); 20330b57cec5SDimitry Andric 20340b57cec5SDimitry Andric auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 20350b57cec5SDimitry Andric if (ParamNo >= FT->getNumParams()) { 20360b57cec5SDimitry Andric CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 20370b57cec5SDimitry Andric return false; 20380b57cec5SDimitry Andric } 20390b57cec5SDimitry Andric 20400b57cec5SDimitry Andric if (!FT->getParamType(ParamNo)->isIntegerTy()) { 20410b57cec5SDimitry Andric CheckFailed("'allocsize' " + Name + 20420b57cec5SDimitry Andric " argument must refer to an integer parameter", 20430b57cec5SDimitry Andric V); 20440b57cec5SDimitry Andric return false; 20450b57cec5SDimitry Andric } 20460b57cec5SDimitry Andric 20470b57cec5SDimitry Andric return true; 20480b57cec5SDimitry Andric }; 20490b57cec5SDimitry Andric 20500b57cec5SDimitry Andric if (!CheckParam("element size", Args.first)) 20510b57cec5SDimitry Andric return; 20520b57cec5SDimitry Andric 20530b57cec5SDimitry Andric if (Args.second && !CheckParam("number of elements", *Args.second)) 20540b57cec5SDimitry Andric return; 20550b57cec5SDimitry Andric } 2056480093f4SDimitry Andric 2057349cc55cSDimitry Andric if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2058fe6060f1SDimitry Andric std::pair<unsigned, unsigned> Args = 2059349cc55cSDimitry Andric Attrs.getFnAttrs().getVScaleRangeArgs(); 2060fe6060f1SDimitry Andric 2061fe6060f1SDimitry Andric if (Args.first > Args.second && Args.second != 0) 2062fe6060f1SDimitry Andric CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2063fe6060f1SDimitry Andric } 2064fe6060f1SDimitry Andric 2065349cc55cSDimitry Andric if (Attrs.hasFnAttr("frame-pointer")) { 2066349cc55cSDimitry Andric StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2067480093f4SDimitry Andric if (FP != "all" && FP != "non-leaf" && FP != "none") 2068480093f4SDimitry Andric CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2069480093f4SDimitry Andric } 2070480093f4SDimitry Andric 2071fe6060f1SDimitry Andric checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2072fe6060f1SDimitry Andric checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2073fe6060f1SDimitry Andric checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 20740b57cec5SDimitry Andric } 20750b57cec5SDimitry Andric 20760b57cec5SDimitry Andric void Verifier::verifyFunctionMetadata( 20770b57cec5SDimitry Andric ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 20780b57cec5SDimitry Andric for (const auto &Pair : MDs) { 20790b57cec5SDimitry Andric if (Pair.first == LLVMContext::MD_prof) { 20800b57cec5SDimitry Andric MDNode *MD = Pair.second; 20810b57cec5SDimitry Andric Assert(MD->getNumOperands() >= 2, 20820b57cec5SDimitry Andric "!prof annotations should have no less than 2 operands", MD); 20830b57cec5SDimitry Andric 20840b57cec5SDimitry Andric // Check first operand. 20850b57cec5SDimitry Andric Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 20860b57cec5SDimitry Andric MD); 20870b57cec5SDimitry Andric Assert(isa<MDString>(MD->getOperand(0)), 20880b57cec5SDimitry Andric "expected string with name of the !prof annotation", MD); 20890b57cec5SDimitry Andric MDString *MDS = cast<MDString>(MD->getOperand(0)); 20900b57cec5SDimitry Andric StringRef ProfName = MDS->getString(); 20910b57cec5SDimitry Andric Assert(ProfName.equals("function_entry_count") || 20920b57cec5SDimitry Andric ProfName.equals("synthetic_function_entry_count"), 20930b57cec5SDimitry Andric "first operand should be 'function_entry_count'" 20940b57cec5SDimitry Andric " or 'synthetic_function_entry_count'", 20950b57cec5SDimitry Andric MD); 20960b57cec5SDimitry Andric 20970b57cec5SDimitry Andric // Check second operand. 20980b57cec5SDimitry Andric Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 20990b57cec5SDimitry Andric MD); 21000b57cec5SDimitry Andric Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 21010b57cec5SDimitry Andric "expected integer argument to function_entry_count", MD); 21020b57cec5SDimitry Andric } 21030b57cec5SDimitry Andric } 21040b57cec5SDimitry Andric } 21050b57cec5SDimitry Andric 21060b57cec5SDimitry Andric void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 21070b57cec5SDimitry Andric if (!ConstantExprVisited.insert(EntryC).second) 21080b57cec5SDimitry Andric return; 21090b57cec5SDimitry Andric 21100b57cec5SDimitry Andric SmallVector<const Constant *, 16> Stack; 21110b57cec5SDimitry Andric Stack.push_back(EntryC); 21120b57cec5SDimitry Andric 21130b57cec5SDimitry Andric while (!Stack.empty()) { 21140b57cec5SDimitry Andric const Constant *C = Stack.pop_back_val(); 21150b57cec5SDimitry Andric 21160b57cec5SDimitry Andric // Check this constant expression. 21170b57cec5SDimitry Andric if (const auto *CE = dyn_cast<ConstantExpr>(C)) 21180b57cec5SDimitry Andric visitConstantExpr(CE); 21190b57cec5SDimitry Andric 21200b57cec5SDimitry Andric if (const auto *GV = dyn_cast<GlobalValue>(C)) { 21210b57cec5SDimitry Andric // Global Values get visited separately, but we do need to make sure 21220b57cec5SDimitry Andric // that the global value is in the correct module 21230b57cec5SDimitry Andric Assert(GV->getParent() == &M, "Referencing global in another module!", 21240b57cec5SDimitry Andric EntryC, &M, GV, GV->getParent()); 21250b57cec5SDimitry Andric continue; 21260b57cec5SDimitry Andric } 21270b57cec5SDimitry Andric 21280b57cec5SDimitry Andric // Visit all sub-expressions. 21290b57cec5SDimitry Andric for (const Use &U : C->operands()) { 21300b57cec5SDimitry Andric const auto *OpC = dyn_cast<Constant>(U); 21310b57cec5SDimitry Andric if (!OpC) 21320b57cec5SDimitry Andric continue; 21330b57cec5SDimitry Andric if (!ConstantExprVisited.insert(OpC).second) 21340b57cec5SDimitry Andric continue; 21350b57cec5SDimitry Andric Stack.push_back(OpC); 21360b57cec5SDimitry Andric } 21370b57cec5SDimitry Andric } 21380b57cec5SDimitry Andric } 21390b57cec5SDimitry Andric 21400b57cec5SDimitry Andric void Verifier::visitConstantExpr(const ConstantExpr *CE) { 21410b57cec5SDimitry Andric if (CE->getOpcode() == Instruction::BitCast) 21420b57cec5SDimitry Andric Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 21430b57cec5SDimitry Andric CE->getType()), 21440b57cec5SDimitry Andric "Invalid bitcast", CE); 21450b57cec5SDimitry Andric } 21460b57cec5SDimitry Andric 21470b57cec5SDimitry Andric bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 21480b57cec5SDimitry Andric // There shouldn't be more attribute sets than there are parameters plus the 21490b57cec5SDimitry Andric // function and return value. 21500b57cec5SDimitry Andric return Attrs.getNumAttrSets() <= Params + 2; 21510b57cec5SDimitry Andric } 21520b57cec5SDimitry Andric 21530b57cec5SDimitry Andric /// Verify that statepoint intrinsic is well formed. 21540b57cec5SDimitry Andric void Verifier::verifyStatepoint(const CallBase &Call) { 21550b57cec5SDimitry Andric assert(Call.getCalledFunction() && 21560b57cec5SDimitry Andric Call.getCalledFunction()->getIntrinsicID() == 21570b57cec5SDimitry Andric Intrinsic::experimental_gc_statepoint); 21580b57cec5SDimitry Andric 21590b57cec5SDimitry Andric Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 21600b57cec5SDimitry Andric !Call.onlyAccessesArgMemory(), 21610b57cec5SDimitry Andric "gc.statepoint must read and write all memory to preserve " 21620b57cec5SDimitry Andric "reordering restrictions required by safepoint semantics", 21630b57cec5SDimitry Andric Call); 21640b57cec5SDimitry Andric 21650b57cec5SDimitry Andric const int64_t NumPatchBytes = 21660b57cec5SDimitry Andric cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 21670b57cec5SDimitry Andric assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 21680b57cec5SDimitry Andric Assert(NumPatchBytes >= 0, 21690b57cec5SDimitry Andric "gc.statepoint number of patchable bytes must be " 21700b57cec5SDimitry Andric "positive", 21710b57cec5SDimitry Andric Call); 21720b57cec5SDimitry Andric 21730b57cec5SDimitry Andric const Value *Target = Call.getArgOperand(2); 21740b57cec5SDimitry Andric auto *PT = dyn_cast<PointerType>(Target->getType()); 21750b57cec5SDimitry Andric Assert(PT && PT->getElementType()->isFunctionTy(), 21760b57cec5SDimitry Andric "gc.statepoint callee must be of function pointer type", Call, Target); 21770b57cec5SDimitry Andric FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 21780b57cec5SDimitry Andric 21790b57cec5SDimitry Andric const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 21800b57cec5SDimitry Andric Assert(NumCallArgs >= 0, 21810b57cec5SDimitry Andric "gc.statepoint number of arguments to underlying call " 21820b57cec5SDimitry Andric "must be positive", 21830b57cec5SDimitry Andric Call); 21840b57cec5SDimitry Andric const int NumParams = (int)TargetFuncType->getNumParams(); 21850b57cec5SDimitry Andric if (TargetFuncType->isVarArg()) { 21860b57cec5SDimitry Andric Assert(NumCallArgs >= NumParams, 21870b57cec5SDimitry Andric "gc.statepoint mismatch in number of vararg call args", Call); 21880b57cec5SDimitry Andric 21890b57cec5SDimitry Andric // TODO: Remove this limitation 21900b57cec5SDimitry Andric Assert(TargetFuncType->getReturnType()->isVoidTy(), 21910b57cec5SDimitry Andric "gc.statepoint doesn't support wrapping non-void " 21920b57cec5SDimitry Andric "vararg functions yet", 21930b57cec5SDimitry Andric Call); 21940b57cec5SDimitry Andric } else 21950b57cec5SDimitry Andric Assert(NumCallArgs == NumParams, 21960b57cec5SDimitry Andric "gc.statepoint mismatch in number of call args", Call); 21970b57cec5SDimitry Andric 21980b57cec5SDimitry Andric const uint64_t Flags 21990b57cec5SDimitry Andric = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 22000b57cec5SDimitry Andric Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 22010b57cec5SDimitry Andric "unknown flag used in gc.statepoint flags argument", Call); 22020b57cec5SDimitry Andric 22030b57cec5SDimitry Andric // Verify that the types of the call parameter arguments match 22040b57cec5SDimitry Andric // the type of the wrapped callee. 22050b57cec5SDimitry Andric AttributeList Attrs = Call.getAttributes(); 22060b57cec5SDimitry Andric for (int i = 0; i < NumParams; i++) { 22070b57cec5SDimitry Andric Type *ParamType = TargetFuncType->getParamType(i); 22080b57cec5SDimitry Andric Type *ArgType = Call.getArgOperand(5 + i)->getType(); 22090b57cec5SDimitry Andric Assert(ArgType == ParamType, 22100b57cec5SDimitry Andric "gc.statepoint call argument does not match wrapped " 22110b57cec5SDimitry Andric "function type", 22120b57cec5SDimitry Andric Call); 22130b57cec5SDimitry Andric 22140b57cec5SDimitry Andric if (TargetFuncType->isVarArg()) { 2215349cc55cSDimitry Andric AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 22160b57cec5SDimitry Andric Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 22170b57cec5SDimitry Andric "Attribute 'sret' cannot be used for vararg call arguments!", 22180b57cec5SDimitry Andric Call); 22190b57cec5SDimitry Andric } 22200b57cec5SDimitry Andric } 22210b57cec5SDimitry Andric 22220b57cec5SDimitry Andric const int EndCallArgsInx = 4 + NumCallArgs; 22230b57cec5SDimitry Andric 22240b57cec5SDimitry Andric const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 22250b57cec5SDimitry Andric Assert(isa<ConstantInt>(NumTransitionArgsV), 22260b57cec5SDimitry Andric "gc.statepoint number of transition arguments " 22270b57cec5SDimitry Andric "must be constant integer", 22280b57cec5SDimitry Andric Call); 22290b57cec5SDimitry Andric const int NumTransitionArgs = 22300b57cec5SDimitry Andric cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 22315ffd83dbSDimitry Andric Assert(NumTransitionArgs == 0, 2232e8d8bef9SDimitry Andric "gc.statepoint w/inline transition bundle is deprecated", Call); 2233e8d8bef9SDimitry Andric const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 22345ffd83dbSDimitry Andric 22350b57cec5SDimitry Andric const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 22360b57cec5SDimitry Andric Assert(isa<ConstantInt>(NumDeoptArgsV), 22370b57cec5SDimitry Andric "gc.statepoint number of deoptimization arguments " 22380b57cec5SDimitry Andric "must be constant integer", 22390b57cec5SDimitry Andric Call); 22400b57cec5SDimitry Andric const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 22415ffd83dbSDimitry Andric Assert(NumDeoptArgs == 0, 2242e8d8bef9SDimitry Andric "gc.statepoint w/inline deopt operands is deprecated", Call); 22435ffd83dbSDimitry Andric 2244e8d8bef9SDimitry Andric const int ExpectedNumArgs = 7 + NumCallArgs; 2245e8d8bef9SDimitry Andric Assert(ExpectedNumArgs == (int)Call.arg_size(), 2246e8d8bef9SDimitry Andric "gc.statepoint too many arguments", Call); 22470b57cec5SDimitry Andric 22480b57cec5SDimitry Andric // Check that the only uses of this gc.statepoint are gc.result or 22490b57cec5SDimitry Andric // gc.relocate calls which are tied to this statepoint and thus part 22500b57cec5SDimitry Andric // of the same statepoint sequence 22510b57cec5SDimitry Andric for (const User *U : Call.users()) { 22520b57cec5SDimitry Andric const CallInst *UserCall = dyn_cast<const CallInst>(U); 22530b57cec5SDimitry Andric Assert(UserCall, "illegal use of statepoint token", Call, U); 22540b57cec5SDimitry Andric if (!UserCall) 22550b57cec5SDimitry Andric continue; 22560b57cec5SDimitry Andric Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 22570b57cec5SDimitry Andric "gc.result or gc.relocate are the only value uses " 22580b57cec5SDimitry Andric "of a gc.statepoint", 22590b57cec5SDimitry Andric Call, U); 22600b57cec5SDimitry Andric if (isa<GCResultInst>(UserCall)) { 22610b57cec5SDimitry Andric Assert(UserCall->getArgOperand(0) == &Call, 22620b57cec5SDimitry Andric "gc.result connected to wrong gc.statepoint", Call, UserCall); 22630b57cec5SDimitry Andric } else if (isa<GCRelocateInst>(Call)) { 22640b57cec5SDimitry Andric Assert(UserCall->getArgOperand(0) == &Call, 22650b57cec5SDimitry Andric "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 22660b57cec5SDimitry Andric } 22670b57cec5SDimitry Andric } 22680b57cec5SDimitry Andric 22690b57cec5SDimitry Andric // Note: It is legal for a single derived pointer to be listed multiple 22700b57cec5SDimitry Andric // times. It's non-optimal, but it is legal. It can also happen after 22710b57cec5SDimitry Andric // insertion if we strip a bitcast away. 22720b57cec5SDimitry Andric // Note: It is really tempting to check that each base is relocated and 22730b57cec5SDimitry Andric // that a derived pointer is never reused as a base pointer. This turns 22740b57cec5SDimitry Andric // out to be problematic since optimizations run after safepoint insertion 22750b57cec5SDimitry Andric // can recognize equality properties that the insertion logic doesn't know 22760b57cec5SDimitry Andric // about. See example statepoint.ll in the verifier subdirectory 22770b57cec5SDimitry Andric } 22780b57cec5SDimitry Andric 22790b57cec5SDimitry Andric void Verifier::verifyFrameRecoverIndices() { 22800b57cec5SDimitry Andric for (auto &Counts : FrameEscapeInfo) { 22810b57cec5SDimitry Andric Function *F = Counts.first; 22820b57cec5SDimitry Andric unsigned EscapedObjectCount = Counts.second.first; 22830b57cec5SDimitry Andric unsigned MaxRecoveredIndex = Counts.second.second; 22840b57cec5SDimitry Andric Assert(MaxRecoveredIndex <= EscapedObjectCount, 22850b57cec5SDimitry Andric "all indices passed to llvm.localrecover must be less than the " 22860b57cec5SDimitry Andric "number of arguments passed to llvm.localescape in the parent " 22870b57cec5SDimitry Andric "function", 22880b57cec5SDimitry Andric F); 22890b57cec5SDimitry Andric } 22900b57cec5SDimitry Andric } 22910b57cec5SDimitry Andric 22920b57cec5SDimitry Andric static Instruction *getSuccPad(Instruction *Terminator) { 22930b57cec5SDimitry Andric BasicBlock *UnwindDest; 22940b57cec5SDimitry Andric if (auto *II = dyn_cast<InvokeInst>(Terminator)) 22950b57cec5SDimitry Andric UnwindDest = II->getUnwindDest(); 22960b57cec5SDimitry Andric else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 22970b57cec5SDimitry Andric UnwindDest = CSI->getUnwindDest(); 22980b57cec5SDimitry Andric else 22990b57cec5SDimitry Andric UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 23000b57cec5SDimitry Andric return UnwindDest->getFirstNonPHI(); 23010b57cec5SDimitry Andric } 23020b57cec5SDimitry Andric 23030b57cec5SDimitry Andric void Verifier::verifySiblingFuncletUnwinds() { 23040b57cec5SDimitry Andric SmallPtrSet<Instruction *, 8> Visited; 23050b57cec5SDimitry Andric SmallPtrSet<Instruction *, 8> Active; 23060b57cec5SDimitry Andric for (const auto &Pair : SiblingFuncletInfo) { 23070b57cec5SDimitry Andric Instruction *PredPad = Pair.first; 23080b57cec5SDimitry Andric if (Visited.count(PredPad)) 23090b57cec5SDimitry Andric continue; 23100b57cec5SDimitry Andric Active.insert(PredPad); 23110b57cec5SDimitry Andric Instruction *Terminator = Pair.second; 23120b57cec5SDimitry Andric do { 23130b57cec5SDimitry Andric Instruction *SuccPad = getSuccPad(Terminator); 23140b57cec5SDimitry Andric if (Active.count(SuccPad)) { 23150b57cec5SDimitry Andric // Found a cycle; report error 23160b57cec5SDimitry Andric Instruction *CyclePad = SuccPad; 23170b57cec5SDimitry Andric SmallVector<Instruction *, 8> CycleNodes; 23180b57cec5SDimitry Andric do { 23190b57cec5SDimitry Andric CycleNodes.push_back(CyclePad); 23200b57cec5SDimitry Andric Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 23210b57cec5SDimitry Andric if (CycleTerminator != CyclePad) 23220b57cec5SDimitry Andric CycleNodes.push_back(CycleTerminator); 23230b57cec5SDimitry Andric CyclePad = getSuccPad(CycleTerminator); 23240b57cec5SDimitry Andric } while (CyclePad != SuccPad); 23250b57cec5SDimitry Andric Assert(false, "EH pads can't handle each other's exceptions", 23260b57cec5SDimitry Andric ArrayRef<Instruction *>(CycleNodes)); 23270b57cec5SDimitry Andric } 23280b57cec5SDimitry Andric // Don't re-walk a node we've already checked 23290b57cec5SDimitry Andric if (!Visited.insert(SuccPad).second) 23300b57cec5SDimitry Andric break; 23310b57cec5SDimitry Andric // Walk to this successor if it has a map entry. 23320b57cec5SDimitry Andric PredPad = SuccPad; 23330b57cec5SDimitry Andric auto TermI = SiblingFuncletInfo.find(PredPad); 23340b57cec5SDimitry Andric if (TermI == SiblingFuncletInfo.end()) 23350b57cec5SDimitry Andric break; 23360b57cec5SDimitry Andric Terminator = TermI->second; 23370b57cec5SDimitry Andric Active.insert(PredPad); 23380b57cec5SDimitry Andric } while (true); 23390b57cec5SDimitry Andric // Each node only has one successor, so we've walked all the active 23400b57cec5SDimitry Andric // nodes' successors. 23410b57cec5SDimitry Andric Active.clear(); 23420b57cec5SDimitry Andric } 23430b57cec5SDimitry Andric } 23440b57cec5SDimitry Andric 23450b57cec5SDimitry Andric // visitFunction - Verify that a function is ok. 23460b57cec5SDimitry Andric // 23470b57cec5SDimitry Andric void Verifier::visitFunction(const Function &F) { 23480b57cec5SDimitry Andric visitGlobalValue(F); 23490b57cec5SDimitry Andric 23500b57cec5SDimitry Andric // Check function arguments. 23510b57cec5SDimitry Andric FunctionType *FT = F.getFunctionType(); 23520b57cec5SDimitry Andric unsigned NumArgs = F.arg_size(); 23530b57cec5SDimitry Andric 23540b57cec5SDimitry Andric Assert(&Context == &F.getContext(), 23550b57cec5SDimitry Andric "Function context does not match Module context!", &F); 23560b57cec5SDimitry Andric 23570b57cec5SDimitry Andric Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 23580b57cec5SDimitry Andric Assert(FT->getNumParams() == NumArgs, 23590b57cec5SDimitry Andric "# formal arguments must match # of arguments for function type!", &F, 23600b57cec5SDimitry Andric FT); 23610b57cec5SDimitry Andric Assert(F.getReturnType()->isFirstClassType() || 23620b57cec5SDimitry Andric F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 23630b57cec5SDimitry Andric "Functions cannot return aggregate values!", &F); 23640b57cec5SDimitry Andric 23650b57cec5SDimitry Andric Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 23660b57cec5SDimitry Andric "Invalid struct return type!", &F); 23670b57cec5SDimitry Andric 23680b57cec5SDimitry Andric AttributeList Attrs = F.getAttributes(); 23690b57cec5SDimitry Andric 23700b57cec5SDimitry Andric Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 23710b57cec5SDimitry Andric "Attribute after last parameter!", &F); 23720b57cec5SDimitry Andric 2373fe6060f1SDimitry Andric bool IsIntrinsic = F.isIntrinsic(); 23740b57cec5SDimitry Andric 23750b57cec5SDimitry Andric // Check function attributes. 2376fe6060f1SDimitry Andric verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic); 23770b57cec5SDimitry Andric 23780b57cec5SDimitry Andric // On function declarations/definitions, we do not support the builtin 23790b57cec5SDimitry Andric // attribute. We do not check this in VerifyFunctionAttrs since that is 23800b57cec5SDimitry Andric // checking for Attributes that can/can not ever be on functions. 2381349cc55cSDimitry Andric Assert(!Attrs.hasFnAttr(Attribute::Builtin), 23820b57cec5SDimitry Andric "Attribute 'builtin' can only be applied to a callsite.", &F); 23830b57cec5SDimitry Andric 2384fe6060f1SDimitry Andric Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2385fe6060f1SDimitry Andric "Attribute 'elementtype' can only be applied to a callsite.", &F); 2386fe6060f1SDimitry Andric 23870b57cec5SDimitry Andric // Check that this function meets the restrictions on this calling convention. 23880b57cec5SDimitry Andric // Sometimes varargs is used for perfectly forwarding thunks, so some of these 23890b57cec5SDimitry Andric // restrictions can be lifted. 23900b57cec5SDimitry Andric switch (F.getCallingConv()) { 23910b57cec5SDimitry Andric default: 23920b57cec5SDimitry Andric case CallingConv::C: 23930b57cec5SDimitry Andric break; 2394e8d8bef9SDimitry Andric case CallingConv::X86_INTR: { 2395349cc55cSDimitry Andric Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2396e8d8bef9SDimitry Andric "Calling convention parameter requires byval", &F); 2397e8d8bef9SDimitry Andric break; 2398e8d8bef9SDimitry Andric } 23990b57cec5SDimitry Andric case CallingConv::AMDGPU_KERNEL: 24000b57cec5SDimitry Andric case CallingConv::SPIR_KERNEL: 24010b57cec5SDimitry Andric Assert(F.getReturnType()->isVoidTy(), 24020b57cec5SDimitry Andric "Calling convention requires void return type", &F); 24030b57cec5SDimitry Andric LLVM_FALLTHROUGH; 24040b57cec5SDimitry Andric case CallingConv::AMDGPU_VS: 24050b57cec5SDimitry Andric case CallingConv::AMDGPU_HS: 24060b57cec5SDimitry Andric case CallingConv::AMDGPU_GS: 24070b57cec5SDimitry Andric case CallingConv::AMDGPU_PS: 24080b57cec5SDimitry Andric case CallingConv::AMDGPU_CS: 24090b57cec5SDimitry Andric Assert(!F.hasStructRetAttr(), 24100b57cec5SDimitry Andric "Calling convention does not allow sret", &F); 2411e8d8bef9SDimitry Andric if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2412e8d8bef9SDimitry Andric const unsigned StackAS = DL.getAllocaAddrSpace(); 2413e8d8bef9SDimitry Andric unsigned i = 0; 2414e8d8bef9SDimitry Andric for (const Argument &Arg : F.args()) { 2415349cc55cSDimitry Andric Assert(!Attrs.hasParamAttr(i, Attribute::ByVal), 2416e8d8bef9SDimitry Andric "Calling convention disallows byval", &F); 2417349cc55cSDimitry Andric Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2418e8d8bef9SDimitry Andric "Calling convention disallows preallocated", &F); 2419349cc55cSDimitry Andric Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2420e8d8bef9SDimitry Andric "Calling convention disallows inalloca", &F); 2421e8d8bef9SDimitry Andric 2422349cc55cSDimitry Andric if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2423e8d8bef9SDimitry Andric // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2424e8d8bef9SDimitry Andric // value here. 2425e8d8bef9SDimitry Andric Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2426e8d8bef9SDimitry Andric "Calling convention disallows stack byref", &F); 2427e8d8bef9SDimitry Andric } 2428e8d8bef9SDimitry Andric 2429e8d8bef9SDimitry Andric ++i; 2430e8d8bef9SDimitry Andric } 2431e8d8bef9SDimitry Andric } 2432e8d8bef9SDimitry Andric 24330b57cec5SDimitry Andric LLVM_FALLTHROUGH; 24340b57cec5SDimitry Andric case CallingConv::Fast: 24350b57cec5SDimitry Andric case CallingConv::Cold: 24360b57cec5SDimitry Andric case CallingConv::Intel_OCL_BI: 24370b57cec5SDimitry Andric case CallingConv::PTX_Kernel: 24380b57cec5SDimitry Andric case CallingConv::PTX_Device: 24390b57cec5SDimitry Andric Assert(!F.isVarArg(), "Calling convention does not support varargs or " 24400b57cec5SDimitry Andric "perfect forwarding!", 24410b57cec5SDimitry Andric &F); 24420b57cec5SDimitry Andric break; 24430b57cec5SDimitry Andric } 24440b57cec5SDimitry Andric 24450b57cec5SDimitry Andric // Check that the argument values match the function type for this function... 24460b57cec5SDimitry Andric unsigned i = 0; 24470b57cec5SDimitry Andric for (const Argument &Arg : F.args()) { 24480b57cec5SDimitry Andric Assert(Arg.getType() == FT->getParamType(i), 24490b57cec5SDimitry Andric "Argument value does not match function argument type!", &Arg, 24500b57cec5SDimitry Andric FT->getParamType(i)); 24510b57cec5SDimitry Andric Assert(Arg.getType()->isFirstClassType(), 24520b57cec5SDimitry Andric "Function arguments must have first-class types!", &Arg); 2453fe6060f1SDimitry Andric if (!IsIntrinsic) { 24540b57cec5SDimitry Andric Assert(!Arg.getType()->isMetadataTy(), 24550b57cec5SDimitry Andric "Function takes metadata but isn't an intrinsic", &Arg, &F); 24560b57cec5SDimitry Andric Assert(!Arg.getType()->isTokenTy(), 24570b57cec5SDimitry Andric "Function takes token but isn't an intrinsic", &Arg, &F); 2458fe6060f1SDimitry Andric Assert(!Arg.getType()->isX86_AMXTy(), 2459fe6060f1SDimitry Andric "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 24600b57cec5SDimitry Andric } 24610b57cec5SDimitry Andric 24620b57cec5SDimitry Andric // Check that swifterror argument is only used by loads and stores. 2463349cc55cSDimitry Andric if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 24640b57cec5SDimitry Andric verifySwiftErrorValue(&Arg); 24650b57cec5SDimitry Andric } 24660b57cec5SDimitry Andric ++i; 24670b57cec5SDimitry Andric } 24680b57cec5SDimitry Andric 2469fe6060f1SDimitry Andric if (!IsIntrinsic) { 24700b57cec5SDimitry Andric Assert(!F.getReturnType()->isTokenTy(), 2471fe6060f1SDimitry Andric "Function returns a token but isn't an intrinsic", &F); 2472fe6060f1SDimitry Andric Assert(!F.getReturnType()->isX86_AMXTy(), 2473fe6060f1SDimitry Andric "Function returns a x86_amx but isn't an intrinsic", &F); 2474fe6060f1SDimitry Andric } 24750b57cec5SDimitry Andric 24760b57cec5SDimitry Andric // Get the function metadata attachments. 24770b57cec5SDimitry Andric SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 24780b57cec5SDimitry Andric F.getAllMetadata(MDs); 24790b57cec5SDimitry Andric assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 24800b57cec5SDimitry Andric verifyFunctionMetadata(MDs); 24810b57cec5SDimitry Andric 24820b57cec5SDimitry Andric // Check validity of the personality function 24830b57cec5SDimitry Andric if (F.hasPersonalityFn()) { 24840b57cec5SDimitry Andric auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 24850b57cec5SDimitry Andric if (Per) 24860b57cec5SDimitry Andric Assert(Per->getParent() == F.getParent(), 24870b57cec5SDimitry Andric "Referencing personality function in another module!", 24880b57cec5SDimitry Andric &F, F.getParent(), Per, Per->getParent()); 24890b57cec5SDimitry Andric } 24900b57cec5SDimitry Andric 24910b57cec5SDimitry Andric if (F.isMaterializable()) { 24920b57cec5SDimitry Andric // Function has a body somewhere we can't see. 24930b57cec5SDimitry Andric Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 24940b57cec5SDimitry Andric MDs.empty() ? nullptr : MDs.front().second); 24950b57cec5SDimitry Andric } else if (F.isDeclaration()) { 24960b57cec5SDimitry Andric for (const auto &I : MDs) { 24970b57cec5SDimitry Andric // This is used for call site debug information. 24980b57cec5SDimitry Andric AssertDI(I.first != LLVMContext::MD_dbg || 24990b57cec5SDimitry Andric !cast<DISubprogram>(I.second)->isDistinct(), 25000b57cec5SDimitry Andric "function declaration may only have a unique !dbg attachment", 25010b57cec5SDimitry Andric &F); 25020b57cec5SDimitry Andric Assert(I.first != LLVMContext::MD_prof, 25030b57cec5SDimitry Andric "function declaration may not have a !prof attachment", &F); 25040b57cec5SDimitry Andric 25050b57cec5SDimitry Andric // Verify the metadata itself. 25065ffd83dbSDimitry Andric visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 25070b57cec5SDimitry Andric } 25080b57cec5SDimitry Andric Assert(!F.hasPersonalityFn(), 25090b57cec5SDimitry Andric "Function declaration shouldn't have a personality routine", &F); 25100b57cec5SDimitry Andric } else { 25110b57cec5SDimitry Andric // Verify that this function (which has a body) is not named "llvm.*". It 25120b57cec5SDimitry Andric // is not legal to define intrinsics. 2513fe6060f1SDimitry Andric Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 25140b57cec5SDimitry Andric 25150b57cec5SDimitry Andric // Check the entry node 25160b57cec5SDimitry Andric const BasicBlock *Entry = &F.getEntryBlock(); 25170b57cec5SDimitry Andric Assert(pred_empty(Entry), 25180b57cec5SDimitry Andric "Entry block to function must not have predecessors!", Entry); 25190b57cec5SDimitry Andric 25200b57cec5SDimitry Andric // The address of the entry block cannot be taken, unless it is dead. 25210b57cec5SDimitry Andric if (Entry->hasAddressTaken()) { 25220b57cec5SDimitry Andric Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 25230b57cec5SDimitry Andric "blockaddress may not be used with the entry block!", Entry); 25240b57cec5SDimitry Andric } 25250b57cec5SDimitry Andric 25260b57cec5SDimitry Andric unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 25270b57cec5SDimitry Andric // Visit metadata attachments. 25280b57cec5SDimitry Andric for (const auto &I : MDs) { 25290b57cec5SDimitry Andric // Verify that the attachment is legal. 25305ffd83dbSDimitry Andric auto AllowLocs = AreDebugLocsAllowed::No; 25310b57cec5SDimitry Andric switch (I.first) { 25320b57cec5SDimitry Andric default: 25330b57cec5SDimitry Andric break; 25340b57cec5SDimitry Andric case LLVMContext::MD_dbg: { 25350b57cec5SDimitry Andric ++NumDebugAttachments; 25360b57cec5SDimitry Andric AssertDI(NumDebugAttachments == 1, 25370b57cec5SDimitry Andric "function must have a single !dbg attachment", &F, I.second); 25380b57cec5SDimitry Andric AssertDI(isa<DISubprogram>(I.second), 25390b57cec5SDimitry Andric "function !dbg attachment must be a subprogram", &F, I.second); 2540e8d8bef9SDimitry Andric AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2541e8d8bef9SDimitry Andric "function definition may only have a distinct !dbg attachment", 2542e8d8bef9SDimitry Andric &F); 2543e8d8bef9SDimitry Andric 25440b57cec5SDimitry Andric auto *SP = cast<DISubprogram>(I.second); 25450b57cec5SDimitry Andric const Function *&AttachedTo = DISubprogramAttachments[SP]; 25460b57cec5SDimitry Andric AssertDI(!AttachedTo || AttachedTo == &F, 25470b57cec5SDimitry Andric "DISubprogram attached to more than one function", SP, &F); 25480b57cec5SDimitry Andric AttachedTo = &F; 25495ffd83dbSDimitry Andric AllowLocs = AreDebugLocsAllowed::Yes; 25500b57cec5SDimitry Andric break; 25510b57cec5SDimitry Andric } 25520b57cec5SDimitry Andric case LLVMContext::MD_prof: 25530b57cec5SDimitry Andric ++NumProfAttachments; 25540b57cec5SDimitry Andric Assert(NumProfAttachments == 1, 25550b57cec5SDimitry Andric "function must have a single !prof attachment", &F, I.second); 25560b57cec5SDimitry Andric break; 25570b57cec5SDimitry Andric } 25580b57cec5SDimitry Andric 25590b57cec5SDimitry Andric // Verify the metadata itself. 25605ffd83dbSDimitry Andric visitMDNode(*I.second, AllowLocs); 25610b57cec5SDimitry Andric } 25620b57cec5SDimitry Andric } 25630b57cec5SDimitry Andric 25640b57cec5SDimitry Andric // If this function is actually an intrinsic, verify that it is only used in 25650b57cec5SDimitry Andric // direct call/invokes, never having its "address taken". 25660b57cec5SDimitry Andric // Only do this if the module is materialized, otherwise we don't have all the 25670b57cec5SDimitry Andric // uses. 2568fe6060f1SDimitry Andric if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 25690b57cec5SDimitry Andric const User *U; 2570349cc55cSDimitry Andric if (F.hasAddressTaken(&U, false, true, false, 2571349cc55cSDimitry Andric /*IgnoreARCAttachedCall=*/true)) 25720b57cec5SDimitry Andric Assert(false, "Invalid user of intrinsic instruction!", U); 25730b57cec5SDimitry Andric } 25740b57cec5SDimitry Andric 2575fe6060f1SDimitry Andric // Check intrinsics' signatures. 2576fe6060f1SDimitry Andric switch (F.getIntrinsicID()) { 2577fe6060f1SDimitry Andric case Intrinsic::experimental_gc_get_pointer_base: { 2578fe6060f1SDimitry Andric FunctionType *FT = F.getFunctionType(); 2579fe6060f1SDimitry Andric Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2580fe6060f1SDimitry Andric Assert(isa<PointerType>(F.getReturnType()), 2581fe6060f1SDimitry Andric "gc.get.pointer.base must return a pointer", F); 2582fe6060f1SDimitry Andric Assert(FT->getParamType(0) == F.getReturnType(), 2583fe6060f1SDimitry Andric "gc.get.pointer.base operand and result must be of the same type", 2584fe6060f1SDimitry Andric F); 2585fe6060f1SDimitry Andric break; 2586fe6060f1SDimitry Andric } 2587fe6060f1SDimitry Andric case Intrinsic::experimental_gc_get_pointer_offset: { 2588fe6060f1SDimitry Andric FunctionType *FT = F.getFunctionType(); 2589fe6060f1SDimitry Andric Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2590fe6060f1SDimitry Andric Assert(isa<PointerType>(FT->getParamType(0)), 2591fe6060f1SDimitry Andric "gc.get.pointer.offset operand must be a pointer", F); 2592fe6060f1SDimitry Andric Assert(F.getReturnType()->isIntegerTy(), 2593fe6060f1SDimitry Andric "gc.get.pointer.offset must return integer", F); 2594fe6060f1SDimitry Andric break; 2595fe6060f1SDimitry Andric } 2596fe6060f1SDimitry Andric } 2597fe6060f1SDimitry Andric 25980b57cec5SDimitry Andric auto *N = F.getSubprogram(); 25990b57cec5SDimitry Andric HasDebugInfo = (N != nullptr); 26000b57cec5SDimitry Andric if (!HasDebugInfo) 26010b57cec5SDimitry Andric return; 26020b57cec5SDimitry Andric 26035ffd83dbSDimitry Andric // Check that all !dbg attachments lead to back to N. 26040b57cec5SDimitry Andric // 26050b57cec5SDimitry Andric // FIXME: Check this incrementally while visiting !dbg attachments. 26060b57cec5SDimitry Andric // FIXME: Only check when N is the canonical subprogram for F. 26070b57cec5SDimitry Andric SmallPtrSet<const MDNode *, 32> Seen; 26080b57cec5SDimitry Andric auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 26090b57cec5SDimitry Andric // Be careful about using DILocation here since we might be dealing with 26100b57cec5SDimitry Andric // broken code (this is the Verifier after all). 26110b57cec5SDimitry Andric const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 26120b57cec5SDimitry Andric if (!DL) 26130b57cec5SDimitry Andric return; 26140b57cec5SDimitry Andric if (!Seen.insert(DL).second) 26150b57cec5SDimitry Andric return; 26160b57cec5SDimitry Andric 26170b57cec5SDimitry Andric Metadata *Parent = DL->getRawScope(); 26180b57cec5SDimitry Andric AssertDI(Parent && isa<DILocalScope>(Parent), 26190b57cec5SDimitry Andric "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 26200b57cec5SDimitry Andric Parent); 26215ffd83dbSDimitry Andric 26220b57cec5SDimitry Andric DILocalScope *Scope = DL->getInlinedAtScope(); 26235ffd83dbSDimitry Andric Assert(Scope, "Failed to find DILocalScope", DL); 26245ffd83dbSDimitry Andric 26255ffd83dbSDimitry Andric if (!Seen.insert(Scope).second) 26260b57cec5SDimitry Andric return; 26270b57cec5SDimitry Andric 26285ffd83dbSDimitry Andric DISubprogram *SP = Scope->getSubprogram(); 26290b57cec5SDimitry Andric 26300b57cec5SDimitry Andric // Scope and SP could be the same MDNode and we don't want to skip 26310b57cec5SDimitry Andric // validation in that case 26320b57cec5SDimitry Andric if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 26330b57cec5SDimitry Andric return; 26340b57cec5SDimitry Andric 26350b57cec5SDimitry Andric AssertDI(SP->describes(&F), 26360b57cec5SDimitry Andric "!dbg attachment points at wrong subprogram for function", N, &F, 26370b57cec5SDimitry Andric &I, DL, Scope, SP); 26380b57cec5SDimitry Andric }; 26390b57cec5SDimitry Andric for (auto &BB : F) 26400b57cec5SDimitry Andric for (auto &I : BB) { 26410b57cec5SDimitry Andric VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 26420b57cec5SDimitry Andric // The llvm.loop annotations also contain two DILocations. 26430b57cec5SDimitry Andric if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 26440b57cec5SDimitry Andric for (unsigned i = 1; i < MD->getNumOperands(); ++i) 26450b57cec5SDimitry Andric VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 26460b57cec5SDimitry Andric if (BrokenDebugInfo) 26470b57cec5SDimitry Andric return; 26480b57cec5SDimitry Andric } 26490b57cec5SDimitry Andric } 26500b57cec5SDimitry Andric 26510b57cec5SDimitry Andric // verifyBasicBlock - Verify that a basic block is well formed... 26520b57cec5SDimitry Andric // 26530b57cec5SDimitry Andric void Verifier::visitBasicBlock(BasicBlock &BB) { 26540b57cec5SDimitry Andric InstsInThisBlock.clear(); 26550b57cec5SDimitry Andric 26560b57cec5SDimitry Andric // Ensure that basic blocks have terminators! 26570b57cec5SDimitry Andric Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 26580b57cec5SDimitry Andric 26590b57cec5SDimitry Andric // Check constraints that this basic block imposes on all of the PHI nodes in 26600b57cec5SDimitry Andric // it. 26610b57cec5SDimitry Andric if (isa<PHINode>(BB.front())) { 2662e8d8bef9SDimitry Andric SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 26630b57cec5SDimitry Andric SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 26640b57cec5SDimitry Andric llvm::sort(Preds); 26650b57cec5SDimitry Andric for (const PHINode &PN : BB.phis()) { 26660b57cec5SDimitry Andric Assert(PN.getNumIncomingValues() == Preds.size(), 26670b57cec5SDimitry Andric "PHINode should have one entry for each predecessor of its " 26680b57cec5SDimitry Andric "parent basic block!", 26690b57cec5SDimitry Andric &PN); 26700b57cec5SDimitry Andric 26710b57cec5SDimitry Andric // Get and sort all incoming values in the PHI node... 26720b57cec5SDimitry Andric Values.clear(); 26730b57cec5SDimitry Andric Values.reserve(PN.getNumIncomingValues()); 26740b57cec5SDimitry Andric for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 26750b57cec5SDimitry Andric Values.push_back( 26760b57cec5SDimitry Andric std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 26770b57cec5SDimitry Andric llvm::sort(Values); 26780b57cec5SDimitry Andric 26790b57cec5SDimitry Andric for (unsigned i = 0, e = Values.size(); i != e; ++i) { 26800b57cec5SDimitry Andric // Check to make sure that if there is more than one entry for a 26810b57cec5SDimitry Andric // particular basic block in this PHI node, that the incoming values are 26820b57cec5SDimitry Andric // all identical. 26830b57cec5SDimitry Andric // 26840b57cec5SDimitry Andric Assert(i == 0 || Values[i].first != Values[i - 1].first || 26850b57cec5SDimitry Andric Values[i].second == Values[i - 1].second, 26860b57cec5SDimitry Andric "PHI node has multiple entries for the same basic block with " 26870b57cec5SDimitry Andric "different incoming values!", 26880b57cec5SDimitry Andric &PN, Values[i].first, Values[i].second, Values[i - 1].second); 26890b57cec5SDimitry Andric 26900b57cec5SDimitry Andric // Check to make sure that the predecessors and PHI node entries are 26910b57cec5SDimitry Andric // matched up. 26920b57cec5SDimitry Andric Assert(Values[i].first == Preds[i], 26930b57cec5SDimitry Andric "PHI node entries do not match predecessors!", &PN, 26940b57cec5SDimitry Andric Values[i].first, Preds[i]); 26950b57cec5SDimitry Andric } 26960b57cec5SDimitry Andric } 26970b57cec5SDimitry Andric } 26980b57cec5SDimitry Andric 26990b57cec5SDimitry Andric // Check that all instructions have their parent pointers set up correctly. 27000b57cec5SDimitry Andric for (auto &I : BB) 27010b57cec5SDimitry Andric { 27020b57cec5SDimitry Andric Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 27030b57cec5SDimitry Andric } 27040b57cec5SDimitry Andric } 27050b57cec5SDimitry Andric 27060b57cec5SDimitry Andric void Verifier::visitTerminator(Instruction &I) { 27070b57cec5SDimitry Andric // Ensure that terminators only exist at the end of the basic block. 27080b57cec5SDimitry Andric Assert(&I == I.getParent()->getTerminator(), 27090b57cec5SDimitry Andric "Terminator found in the middle of a basic block!", I.getParent()); 27100b57cec5SDimitry Andric visitInstruction(I); 27110b57cec5SDimitry Andric } 27120b57cec5SDimitry Andric 27130b57cec5SDimitry Andric void Verifier::visitBranchInst(BranchInst &BI) { 27140b57cec5SDimitry Andric if (BI.isConditional()) { 27150b57cec5SDimitry Andric Assert(BI.getCondition()->getType()->isIntegerTy(1), 27160b57cec5SDimitry Andric "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 27170b57cec5SDimitry Andric } 27180b57cec5SDimitry Andric visitTerminator(BI); 27190b57cec5SDimitry Andric } 27200b57cec5SDimitry Andric 27210b57cec5SDimitry Andric void Verifier::visitReturnInst(ReturnInst &RI) { 27220b57cec5SDimitry Andric Function *F = RI.getParent()->getParent(); 27230b57cec5SDimitry Andric unsigned N = RI.getNumOperands(); 27240b57cec5SDimitry Andric if (F->getReturnType()->isVoidTy()) 27250b57cec5SDimitry Andric Assert(N == 0, 27260b57cec5SDimitry Andric "Found return instr that returns non-void in Function of void " 27270b57cec5SDimitry Andric "return type!", 27280b57cec5SDimitry Andric &RI, F->getReturnType()); 27290b57cec5SDimitry Andric else 27300b57cec5SDimitry Andric Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 27310b57cec5SDimitry Andric "Function return type does not match operand " 27320b57cec5SDimitry Andric "type of return inst!", 27330b57cec5SDimitry Andric &RI, F->getReturnType()); 27340b57cec5SDimitry Andric 27350b57cec5SDimitry Andric // Check to make sure that the return value has necessary properties for 27360b57cec5SDimitry Andric // terminators... 27370b57cec5SDimitry Andric visitTerminator(RI); 27380b57cec5SDimitry Andric } 27390b57cec5SDimitry Andric 27400b57cec5SDimitry Andric void Verifier::visitSwitchInst(SwitchInst &SI) { 2741349cc55cSDimitry Andric Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 27420b57cec5SDimitry Andric // Check to make sure that all of the constants in the switch instruction 27430b57cec5SDimitry Andric // have the same type as the switched-on value. 27440b57cec5SDimitry Andric Type *SwitchTy = SI.getCondition()->getType(); 27450b57cec5SDimitry Andric SmallPtrSet<ConstantInt*, 32> Constants; 27460b57cec5SDimitry Andric for (auto &Case : SI.cases()) { 27470b57cec5SDimitry Andric Assert(Case.getCaseValue()->getType() == SwitchTy, 27480b57cec5SDimitry Andric "Switch constants must all be same type as switch value!", &SI); 27490b57cec5SDimitry Andric Assert(Constants.insert(Case.getCaseValue()).second, 27500b57cec5SDimitry Andric "Duplicate integer as switch case", &SI, Case.getCaseValue()); 27510b57cec5SDimitry Andric } 27520b57cec5SDimitry Andric 27530b57cec5SDimitry Andric visitTerminator(SI); 27540b57cec5SDimitry Andric } 27550b57cec5SDimitry Andric 27560b57cec5SDimitry Andric void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 27570b57cec5SDimitry Andric Assert(BI.getAddress()->getType()->isPointerTy(), 27580b57cec5SDimitry Andric "Indirectbr operand must have pointer type!", &BI); 27590b57cec5SDimitry Andric for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 27600b57cec5SDimitry Andric Assert(BI.getDestination(i)->getType()->isLabelTy(), 27610b57cec5SDimitry Andric "Indirectbr destinations must all have pointer type!", &BI); 27620b57cec5SDimitry Andric 27630b57cec5SDimitry Andric visitTerminator(BI); 27640b57cec5SDimitry Andric } 27650b57cec5SDimitry Andric 27660b57cec5SDimitry Andric void Verifier::visitCallBrInst(CallBrInst &CBI) { 27670b57cec5SDimitry Andric Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 27680b57cec5SDimitry Andric &CBI); 2769fe6060f1SDimitry Andric const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2770fe6060f1SDimitry Andric Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 27710b57cec5SDimitry Andric for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 27720b57cec5SDimitry Andric Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 27730b57cec5SDimitry Andric "Callbr successors must all have pointer type!", &CBI); 27740b57cec5SDimitry Andric for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2775349cc55cSDimitry Andric Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)), 27760b57cec5SDimitry Andric "Using an unescaped label as a callbr argument!", &CBI); 27770b57cec5SDimitry Andric if (isa<BasicBlock>(CBI.getOperand(i))) 27780b57cec5SDimitry Andric for (unsigned j = i + 1; j != e; ++j) 27790b57cec5SDimitry Andric Assert(CBI.getOperand(i) != CBI.getOperand(j), 27800b57cec5SDimitry Andric "Duplicate callbr destination!", &CBI); 27810b57cec5SDimitry Andric } 27828bcb0991SDimitry Andric { 27838bcb0991SDimitry Andric SmallPtrSet<BasicBlock *, 4> ArgBBs; 27848bcb0991SDimitry Andric for (Value *V : CBI.args()) 27858bcb0991SDimitry Andric if (auto *BA = dyn_cast<BlockAddress>(V)) 27868bcb0991SDimitry Andric ArgBBs.insert(BA->getBasicBlock()); 27878bcb0991SDimitry Andric for (BasicBlock *BB : CBI.getIndirectDests()) 27885ffd83dbSDimitry Andric Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 27898bcb0991SDimitry Andric } 27900b57cec5SDimitry Andric 27910b57cec5SDimitry Andric visitTerminator(CBI); 27920b57cec5SDimitry Andric } 27930b57cec5SDimitry Andric 27940b57cec5SDimitry Andric void Verifier::visitSelectInst(SelectInst &SI) { 27950b57cec5SDimitry Andric Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 27960b57cec5SDimitry Andric SI.getOperand(2)), 27970b57cec5SDimitry Andric "Invalid operands for select instruction!", &SI); 27980b57cec5SDimitry Andric 27990b57cec5SDimitry Andric Assert(SI.getTrueValue()->getType() == SI.getType(), 28000b57cec5SDimitry Andric "Select values must have same type as select instruction!", &SI); 28010b57cec5SDimitry Andric visitInstruction(SI); 28020b57cec5SDimitry Andric } 28030b57cec5SDimitry Andric 28040b57cec5SDimitry Andric /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 28050b57cec5SDimitry Andric /// a pass, if any exist, it's an error. 28060b57cec5SDimitry Andric /// 28070b57cec5SDimitry Andric void Verifier::visitUserOp1(Instruction &I) { 28080b57cec5SDimitry Andric Assert(false, "User-defined operators should not live outside of a pass!", &I); 28090b57cec5SDimitry Andric } 28100b57cec5SDimitry Andric 28110b57cec5SDimitry Andric void Verifier::visitTruncInst(TruncInst &I) { 28120b57cec5SDimitry Andric // Get the source and destination types 28130b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 28140b57cec5SDimitry Andric Type *DestTy = I.getType(); 28150b57cec5SDimitry Andric 28160b57cec5SDimitry Andric // Get the size of the types in bits, we'll need this later 28170b57cec5SDimitry Andric unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 28180b57cec5SDimitry Andric unsigned DestBitSize = DestTy->getScalarSizeInBits(); 28190b57cec5SDimitry Andric 28200b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 28210b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 28220b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 28230b57cec5SDimitry Andric "trunc source and destination must both be a vector or neither", &I); 28240b57cec5SDimitry Andric Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 28250b57cec5SDimitry Andric 28260b57cec5SDimitry Andric visitInstruction(I); 28270b57cec5SDimitry Andric } 28280b57cec5SDimitry Andric 28290b57cec5SDimitry Andric void Verifier::visitZExtInst(ZExtInst &I) { 28300b57cec5SDimitry Andric // Get the source and destination types 28310b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 28320b57cec5SDimitry Andric Type *DestTy = I.getType(); 28330b57cec5SDimitry Andric 28340b57cec5SDimitry Andric // Get the size of the types in bits, we'll need this later 28350b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 28360b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 28370b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 28380b57cec5SDimitry Andric "zext source and destination must both be a vector or neither", &I); 28390b57cec5SDimitry Andric unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 28400b57cec5SDimitry Andric unsigned DestBitSize = DestTy->getScalarSizeInBits(); 28410b57cec5SDimitry Andric 28420b57cec5SDimitry Andric Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 28430b57cec5SDimitry Andric 28440b57cec5SDimitry Andric visitInstruction(I); 28450b57cec5SDimitry Andric } 28460b57cec5SDimitry Andric 28470b57cec5SDimitry Andric void Verifier::visitSExtInst(SExtInst &I) { 28480b57cec5SDimitry Andric // Get the source and destination types 28490b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 28500b57cec5SDimitry Andric Type *DestTy = I.getType(); 28510b57cec5SDimitry Andric 28520b57cec5SDimitry Andric // Get the size of the types in bits, we'll need this later 28530b57cec5SDimitry Andric unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 28540b57cec5SDimitry Andric unsigned DestBitSize = DestTy->getScalarSizeInBits(); 28550b57cec5SDimitry Andric 28560b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 28570b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 28580b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 28590b57cec5SDimitry Andric "sext source and destination must both be a vector or neither", &I); 28600b57cec5SDimitry Andric Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 28610b57cec5SDimitry Andric 28620b57cec5SDimitry Andric visitInstruction(I); 28630b57cec5SDimitry Andric } 28640b57cec5SDimitry Andric 28650b57cec5SDimitry Andric void Verifier::visitFPTruncInst(FPTruncInst &I) { 28660b57cec5SDimitry Andric // Get the source and destination types 28670b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 28680b57cec5SDimitry Andric Type *DestTy = I.getType(); 28690b57cec5SDimitry Andric // Get the size of the types in bits, we'll need this later 28700b57cec5SDimitry Andric unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 28710b57cec5SDimitry Andric unsigned DestBitSize = DestTy->getScalarSizeInBits(); 28720b57cec5SDimitry Andric 28730b57cec5SDimitry Andric Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 28740b57cec5SDimitry Andric Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 28750b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 28760b57cec5SDimitry Andric "fptrunc source and destination must both be a vector or neither", &I); 28770b57cec5SDimitry Andric Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 28780b57cec5SDimitry Andric 28790b57cec5SDimitry Andric visitInstruction(I); 28800b57cec5SDimitry Andric } 28810b57cec5SDimitry Andric 28820b57cec5SDimitry Andric void Verifier::visitFPExtInst(FPExtInst &I) { 28830b57cec5SDimitry Andric // Get the source and destination types 28840b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 28850b57cec5SDimitry Andric Type *DestTy = I.getType(); 28860b57cec5SDimitry Andric 28870b57cec5SDimitry Andric // Get the size of the types in bits, we'll need this later 28880b57cec5SDimitry Andric unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 28890b57cec5SDimitry Andric unsigned DestBitSize = DestTy->getScalarSizeInBits(); 28900b57cec5SDimitry Andric 28910b57cec5SDimitry Andric Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 28920b57cec5SDimitry Andric Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 28930b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 28940b57cec5SDimitry Andric "fpext source and destination must both be a vector or neither", &I); 28950b57cec5SDimitry Andric Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 28960b57cec5SDimitry Andric 28970b57cec5SDimitry Andric visitInstruction(I); 28980b57cec5SDimitry Andric } 28990b57cec5SDimitry Andric 29000b57cec5SDimitry Andric void Verifier::visitUIToFPInst(UIToFPInst &I) { 29010b57cec5SDimitry Andric // Get the source and destination types 29020b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 29030b57cec5SDimitry Andric Type *DestTy = I.getType(); 29040b57cec5SDimitry Andric 29050b57cec5SDimitry Andric bool SrcVec = SrcTy->isVectorTy(); 29060b57cec5SDimitry Andric bool DstVec = DestTy->isVectorTy(); 29070b57cec5SDimitry Andric 29080b57cec5SDimitry Andric Assert(SrcVec == DstVec, 29090b57cec5SDimitry Andric "UIToFP source and dest must both be vector or scalar", &I); 29100b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), 29110b57cec5SDimitry Andric "UIToFP source must be integer or integer vector", &I); 29120b57cec5SDimitry Andric Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 29130b57cec5SDimitry Andric &I); 29140b57cec5SDimitry Andric 29150b57cec5SDimitry Andric if (SrcVec && DstVec) 29165ffd83dbSDimitry Andric Assert(cast<VectorType>(SrcTy)->getElementCount() == 29175ffd83dbSDimitry Andric cast<VectorType>(DestTy)->getElementCount(), 29180b57cec5SDimitry Andric "UIToFP source and dest vector length mismatch", &I); 29190b57cec5SDimitry Andric 29200b57cec5SDimitry Andric visitInstruction(I); 29210b57cec5SDimitry Andric } 29220b57cec5SDimitry Andric 29230b57cec5SDimitry Andric void Verifier::visitSIToFPInst(SIToFPInst &I) { 29240b57cec5SDimitry Andric // Get the source and destination types 29250b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 29260b57cec5SDimitry Andric Type *DestTy = I.getType(); 29270b57cec5SDimitry Andric 29280b57cec5SDimitry Andric bool SrcVec = SrcTy->isVectorTy(); 29290b57cec5SDimitry Andric bool DstVec = DestTy->isVectorTy(); 29300b57cec5SDimitry Andric 29310b57cec5SDimitry Andric Assert(SrcVec == DstVec, 29320b57cec5SDimitry Andric "SIToFP source and dest must both be vector or scalar", &I); 29330b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), 29340b57cec5SDimitry Andric "SIToFP source must be integer or integer vector", &I); 29350b57cec5SDimitry Andric Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 29360b57cec5SDimitry Andric &I); 29370b57cec5SDimitry Andric 29380b57cec5SDimitry Andric if (SrcVec && DstVec) 29395ffd83dbSDimitry Andric Assert(cast<VectorType>(SrcTy)->getElementCount() == 29405ffd83dbSDimitry Andric cast<VectorType>(DestTy)->getElementCount(), 29410b57cec5SDimitry Andric "SIToFP source and dest vector length mismatch", &I); 29420b57cec5SDimitry Andric 29430b57cec5SDimitry Andric visitInstruction(I); 29440b57cec5SDimitry Andric } 29450b57cec5SDimitry Andric 29460b57cec5SDimitry Andric void Verifier::visitFPToUIInst(FPToUIInst &I) { 29470b57cec5SDimitry Andric // Get the source and destination types 29480b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 29490b57cec5SDimitry Andric Type *DestTy = I.getType(); 29500b57cec5SDimitry Andric 29510b57cec5SDimitry Andric bool SrcVec = SrcTy->isVectorTy(); 29520b57cec5SDimitry Andric bool DstVec = DestTy->isVectorTy(); 29530b57cec5SDimitry Andric 29540b57cec5SDimitry Andric Assert(SrcVec == DstVec, 29550b57cec5SDimitry Andric "FPToUI source and dest must both be vector or scalar", &I); 29560b57cec5SDimitry Andric Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 29570b57cec5SDimitry Andric &I); 29580b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), 29590b57cec5SDimitry Andric "FPToUI result must be integer or integer vector", &I); 29600b57cec5SDimitry Andric 29610b57cec5SDimitry Andric if (SrcVec && DstVec) 29625ffd83dbSDimitry Andric Assert(cast<VectorType>(SrcTy)->getElementCount() == 29635ffd83dbSDimitry Andric cast<VectorType>(DestTy)->getElementCount(), 29640b57cec5SDimitry Andric "FPToUI source and dest vector length mismatch", &I); 29650b57cec5SDimitry Andric 29660b57cec5SDimitry Andric visitInstruction(I); 29670b57cec5SDimitry Andric } 29680b57cec5SDimitry Andric 29690b57cec5SDimitry Andric void Verifier::visitFPToSIInst(FPToSIInst &I) { 29700b57cec5SDimitry Andric // Get the source and destination types 29710b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 29720b57cec5SDimitry Andric Type *DestTy = I.getType(); 29730b57cec5SDimitry Andric 29740b57cec5SDimitry Andric bool SrcVec = SrcTy->isVectorTy(); 29750b57cec5SDimitry Andric bool DstVec = DestTy->isVectorTy(); 29760b57cec5SDimitry Andric 29770b57cec5SDimitry Andric Assert(SrcVec == DstVec, 29780b57cec5SDimitry Andric "FPToSI source and dest must both be vector or scalar", &I); 29790b57cec5SDimitry Andric Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 29800b57cec5SDimitry Andric &I); 29810b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), 29820b57cec5SDimitry Andric "FPToSI result must be integer or integer vector", &I); 29830b57cec5SDimitry Andric 29840b57cec5SDimitry Andric if (SrcVec && DstVec) 29855ffd83dbSDimitry Andric Assert(cast<VectorType>(SrcTy)->getElementCount() == 29865ffd83dbSDimitry Andric cast<VectorType>(DestTy)->getElementCount(), 29870b57cec5SDimitry Andric "FPToSI source and dest vector length mismatch", &I); 29880b57cec5SDimitry Andric 29890b57cec5SDimitry Andric visitInstruction(I); 29900b57cec5SDimitry Andric } 29910b57cec5SDimitry Andric 29920b57cec5SDimitry Andric void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 29930b57cec5SDimitry Andric // Get the source and destination types 29940b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 29950b57cec5SDimitry Andric Type *DestTy = I.getType(); 29960b57cec5SDimitry Andric 29970b57cec5SDimitry Andric Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 29980b57cec5SDimitry Andric 29990b57cec5SDimitry Andric Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 30000b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 30010b57cec5SDimitry Andric &I); 30020b57cec5SDimitry Andric 30030b57cec5SDimitry Andric if (SrcTy->isVectorTy()) { 30045ffd83dbSDimitry Andric auto *VSrc = cast<VectorType>(SrcTy); 30055ffd83dbSDimitry Andric auto *VDest = cast<VectorType>(DestTy); 30065ffd83dbSDimitry Andric Assert(VSrc->getElementCount() == VDest->getElementCount(), 30070b57cec5SDimitry Andric "PtrToInt Vector width mismatch", &I); 30080b57cec5SDimitry Andric } 30090b57cec5SDimitry Andric 30100b57cec5SDimitry Andric visitInstruction(I); 30110b57cec5SDimitry Andric } 30120b57cec5SDimitry Andric 30130b57cec5SDimitry Andric void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 30140b57cec5SDimitry Andric // Get the source and destination types 30150b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 30160b57cec5SDimitry Andric Type *DestTy = I.getType(); 30170b57cec5SDimitry Andric 30180b57cec5SDimitry Andric Assert(SrcTy->isIntOrIntVectorTy(), 30190b57cec5SDimitry Andric "IntToPtr source must be an integral", &I); 30200b57cec5SDimitry Andric Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 30210b57cec5SDimitry Andric 30220b57cec5SDimitry Andric Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 30230b57cec5SDimitry Andric &I); 30240b57cec5SDimitry Andric if (SrcTy->isVectorTy()) { 30255ffd83dbSDimitry Andric auto *VSrc = cast<VectorType>(SrcTy); 30265ffd83dbSDimitry Andric auto *VDest = cast<VectorType>(DestTy); 30275ffd83dbSDimitry Andric Assert(VSrc->getElementCount() == VDest->getElementCount(), 30280b57cec5SDimitry Andric "IntToPtr Vector width mismatch", &I); 30290b57cec5SDimitry Andric } 30300b57cec5SDimitry Andric visitInstruction(I); 30310b57cec5SDimitry Andric } 30320b57cec5SDimitry Andric 30330b57cec5SDimitry Andric void Verifier::visitBitCastInst(BitCastInst &I) { 30340b57cec5SDimitry Andric Assert( 30350b57cec5SDimitry Andric CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 30360b57cec5SDimitry Andric "Invalid bitcast", &I); 30370b57cec5SDimitry Andric visitInstruction(I); 30380b57cec5SDimitry Andric } 30390b57cec5SDimitry Andric 30400b57cec5SDimitry Andric void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 30410b57cec5SDimitry Andric Type *SrcTy = I.getOperand(0)->getType(); 30420b57cec5SDimitry Andric Type *DestTy = I.getType(); 30430b57cec5SDimitry Andric 30440b57cec5SDimitry Andric Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 30450b57cec5SDimitry Andric &I); 30460b57cec5SDimitry Andric Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 30470b57cec5SDimitry Andric &I); 30480b57cec5SDimitry Andric Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 30490b57cec5SDimitry Andric "AddrSpaceCast must be between different address spaces", &I); 30505ffd83dbSDimitry Andric if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3051e8d8bef9SDimitry Andric Assert(SrcVTy->getElementCount() == 3052e8d8bef9SDimitry Andric cast<VectorType>(DestTy)->getElementCount(), 30530b57cec5SDimitry Andric "AddrSpaceCast vector pointer number of elements mismatch", &I); 30540b57cec5SDimitry Andric visitInstruction(I); 30550b57cec5SDimitry Andric } 30560b57cec5SDimitry Andric 30570b57cec5SDimitry Andric /// visitPHINode - Ensure that a PHI node is well formed. 30580b57cec5SDimitry Andric /// 30590b57cec5SDimitry Andric void Verifier::visitPHINode(PHINode &PN) { 30600b57cec5SDimitry Andric // Ensure that the PHI nodes are all grouped together at the top of the block. 30610b57cec5SDimitry Andric // This can be tested by checking whether the instruction before this is 30620b57cec5SDimitry Andric // either nonexistent (because this is begin()) or is a PHI node. If not, 30630b57cec5SDimitry Andric // then there is some other instruction before a PHI. 30640b57cec5SDimitry Andric Assert(&PN == &PN.getParent()->front() || 30650b57cec5SDimitry Andric isa<PHINode>(--BasicBlock::iterator(&PN)), 30660b57cec5SDimitry Andric "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 30670b57cec5SDimitry Andric 30680b57cec5SDimitry Andric // Check that a PHI doesn't yield a Token. 30690b57cec5SDimitry Andric Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 30700b57cec5SDimitry Andric 30710b57cec5SDimitry Andric // Check that all of the values of the PHI node have the same type as the 30720b57cec5SDimitry Andric // result, and that the incoming blocks are really basic blocks. 30730b57cec5SDimitry Andric for (Value *IncValue : PN.incoming_values()) { 30740b57cec5SDimitry Andric Assert(PN.getType() == IncValue->getType(), 30750b57cec5SDimitry Andric "PHI node operands are not the same type as the result!", &PN); 30760b57cec5SDimitry Andric } 30770b57cec5SDimitry Andric 30780b57cec5SDimitry Andric // All other PHI node constraints are checked in the visitBasicBlock method. 30790b57cec5SDimitry Andric 30800b57cec5SDimitry Andric visitInstruction(PN); 30810b57cec5SDimitry Andric } 30820b57cec5SDimitry Andric 30830b57cec5SDimitry Andric void Verifier::visitCallBase(CallBase &Call) { 30845ffd83dbSDimitry Andric Assert(Call.getCalledOperand()->getType()->isPointerTy(), 30850b57cec5SDimitry Andric "Called function must be a pointer!", Call); 30865ffd83dbSDimitry Andric PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 30870b57cec5SDimitry Andric 3088fe6060f1SDimitry Andric Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), 30890b57cec5SDimitry Andric "Called function is not the same type as the call!", Call); 30900b57cec5SDimitry Andric 30910b57cec5SDimitry Andric FunctionType *FTy = Call.getFunctionType(); 30920b57cec5SDimitry Andric 30930b57cec5SDimitry Andric // Verify that the correct number of arguments are being passed 30940b57cec5SDimitry Andric if (FTy->isVarArg()) 30950b57cec5SDimitry Andric Assert(Call.arg_size() >= FTy->getNumParams(), 30960b57cec5SDimitry Andric "Called function requires more parameters than were provided!", 30970b57cec5SDimitry Andric Call); 30980b57cec5SDimitry Andric else 30990b57cec5SDimitry Andric Assert(Call.arg_size() == FTy->getNumParams(), 31000b57cec5SDimitry Andric "Incorrect number of arguments passed to called function!", Call); 31010b57cec5SDimitry Andric 31020b57cec5SDimitry Andric // Verify that all arguments to the call match the function type. 31030b57cec5SDimitry Andric for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 31040b57cec5SDimitry Andric Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 31050b57cec5SDimitry Andric "Call parameter type does not match function signature!", 31060b57cec5SDimitry Andric Call.getArgOperand(i), FTy->getParamType(i), Call); 31070b57cec5SDimitry Andric 31080b57cec5SDimitry Andric AttributeList Attrs = Call.getAttributes(); 31090b57cec5SDimitry Andric 31100b57cec5SDimitry Andric Assert(verifyAttributeCount(Attrs, Call.arg_size()), 31110b57cec5SDimitry Andric "Attribute after last parameter!", Call); 31120b57cec5SDimitry Andric 31135ffd83dbSDimitry Andric Function *Callee = 31145ffd83dbSDimitry Andric dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3115fe6060f1SDimitry Andric bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3116fe6060f1SDimitry Andric if (IsIntrinsic) 3117fe6060f1SDimitry Andric Assert(Callee->getValueType() == FTy, 3118fe6060f1SDimitry Andric "Intrinsic called with incompatible signature", Call); 31190b57cec5SDimitry Andric 3120349cc55cSDimitry Andric if (Attrs.hasFnAttr(Attribute::Speculatable)) { 31210b57cec5SDimitry Andric // Don't allow speculatable on call sites, unless the underlying function 31220b57cec5SDimitry Andric // declaration is also speculatable. 31230b57cec5SDimitry Andric Assert(Callee && Callee->isSpeculatable(), 31240b57cec5SDimitry Andric "speculatable attribute may not apply to call sites", Call); 31250b57cec5SDimitry Andric } 31260b57cec5SDimitry Andric 3127349cc55cSDimitry Andric if (Attrs.hasFnAttr(Attribute::Preallocated)) { 31285ffd83dbSDimitry Andric Assert(Call.getCalledFunction()->getIntrinsicID() == 31295ffd83dbSDimitry Andric Intrinsic::call_preallocated_arg, 31305ffd83dbSDimitry Andric "preallocated as a call site attribute can only be on " 31315ffd83dbSDimitry Andric "llvm.call.preallocated.arg"); 31325ffd83dbSDimitry Andric } 31335ffd83dbSDimitry Andric 31340b57cec5SDimitry Andric // Verify call attributes. 31350b57cec5SDimitry Andric verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 31360b57cec5SDimitry Andric 31370b57cec5SDimitry Andric // Conservatively check the inalloca argument. 31380b57cec5SDimitry Andric // We have a bug if we can find that there is an underlying alloca without 31390b57cec5SDimitry Andric // inalloca. 31400b57cec5SDimitry Andric if (Call.hasInAllocaArgument()) { 31410b57cec5SDimitry Andric Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 31420b57cec5SDimitry Andric if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 31430b57cec5SDimitry Andric Assert(AI->isUsedWithInAlloca(), 31440b57cec5SDimitry Andric "inalloca argument for call has mismatched alloca", AI, Call); 31450b57cec5SDimitry Andric } 31460b57cec5SDimitry Andric 31470b57cec5SDimitry Andric // For each argument of the callsite, if it has the swifterror argument, 31480b57cec5SDimitry Andric // make sure the underlying alloca/parameter it comes from has a swifterror as 31490b57cec5SDimitry Andric // well. 31500b57cec5SDimitry Andric for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 31510b57cec5SDimitry Andric if (Call.paramHasAttr(i, Attribute::SwiftError)) { 31520b57cec5SDimitry Andric Value *SwiftErrorArg = Call.getArgOperand(i); 31530b57cec5SDimitry Andric if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 31540b57cec5SDimitry Andric Assert(AI->isSwiftError(), 31550b57cec5SDimitry Andric "swifterror argument for call has mismatched alloca", AI, Call); 31560b57cec5SDimitry Andric continue; 31570b57cec5SDimitry Andric } 31580b57cec5SDimitry Andric auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 31590b57cec5SDimitry Andric Assert(ArgI, 31600b57cec5SDimitry Andric "swifterror argument should come from an alloca or parameter", 31610b57cec5SDimitry Andric SwiftErrorArg, Call); 31620b57cec5SDimitry Andric Assert(ArgI->hasSwiftErrorAttr(), 31630b57cec5SDimitry Andric "swifterror argument for call has mismatched parameter", ArgI, 31640b57cec5SDimitry Andric Call); 31650b57cec5SDimitry Andric } 31660b57cec5SDimitry Andric 3167349cc55cSDimitry Andric if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 31680b57cec5SDimitry Andric // Don't allow immarg on call sites, unless the underlying declaration 31690b57cec5SDimitry Andric // also has the matching immarg. 31700b57cec5SDimitry Andric Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 31710b57cec5SDimitry Andric "immarg may not apply only to call sites", 31720b57cec5SDimitry Andric Call.getArgOperand(i), Call); 31730b57cec5SDimitry Andric } 31740b57cec5SDimitry Andric 31750b57cec5SDimitry Andric if (Call.paramHasAttr(i, Attribute::ImmArg)) { 31760b57cec5SDimitry Andric Value *ArgVal = Call.getArgOperand(i); 31770b57cec5SDimitry Andric Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 31780b57cec5SDimitry Andric "immarg operand has non-immediate parameter", ArgVal, Call); 31790b57cec5SDimitry Andric } 31805ffd83dbSDimitry Andric 31815ffd83dbSDimitry Andric if (Call.paramHasAttr(i, Attribute::Preallocated)) { 31825ffd83dbSDimitry Andric Value *ArgVal = Call.getArgOperand(i); 31835ffd83dbSDimitry Andric bool hasOB = 31845ffd83dbSDimitry Andric Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 31855ffd83dbSDimitry Andric bool isMustTail = Call.isMustTailCall(); 31865ffd83dbSDimitry Andric Assert(hasOB != isMustTail, 31875ffd83dbSDimitry Andric "preallocated operand either requires a preallocated bundle or " 31885ffd83dbSDimitry Andric "the call to be musttail (but not both)", 31895ffd83dbSDimitry Andric ArgVal, Call); 31905ffd83dbSDimitry Andric } 31910b57cec5SDimitry Andric } 31920b57cec5SDimitry Andric 31930b57cec5SDimitry Andric if (FTy->isVarArg()) { 31940b57cec5SDimitry Andric // FIXME? is 'nest' even legal here? 31950b57cec5SDimitry Andric bool SawNest = false; 31960b57cec5SDimitry Andric bool SawReturned = false; 31970b57cec5SDimitry Andric 31980b57cec5SDimitry Andric for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3199349cc55cSDimitry Andric if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 32000b57cec5SDimitry Andric SawNest = true; 3201349cc55cSDimitry Andric if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 32020b57cec5SDimitry Andric SawReturned = true; 32030b57cec5SDimitry Andric } 32040b57cec5SDimitry Andric 32050b57cec5SDimitry Andric // Check attributes on the varargs part. 32060b57cec5SDimitry Andric for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 32070b57cec5SDimitry Andric Type *Ty = Call.getArgOperand(Idx)->getType(); 3208349cc55cSDimitry Andric AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 32090b57cec5SDimitry Andric verifyParameterAttrs(ArgAttrs, Ty, &Call); 32100b57cec5SDimitry Andric 32110b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::Nest)) { 32120b57cec5SDimitry Andric Assert(!SawNest, "More than one parameter has attribute nest!", Call); 32130b57cec5SDimitry Andric SawNest = true; 32140b57cec5SDimitry Andric } 32150b57cec5SDimitry Andric 32160b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::Returned)) { 32170b57cec5SDimitry Andric Assert(!SawReturned, "More than one parameter has attribute returned!", 32180b57cec5SDimitry Andric Call); 32190b57cec5SDimitry Andric Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 32200b57cec5SDimitry Andric "Incompatible argument and return types for 'returned' " 32210b57cec5SDimitry Andric "attribute", 32220b57cec5SDimitry Andric Call); 32230b57cec5SDimitry Andric SawReturned = true; 32240b57cec5SDimitry Andric } 32250b57cec5SDimitry Andric 32260b57cec5SDimitry Andric // Statepoint intrinsic is vararg but the wrapped function may be not. 32270b57cec5SDimitry Andric // Allow sret here and check the wrapped function in verifyStatepoint. 32280b57cec5SDimitry Andric if (!Call.getCalledFunction() || 32290b57cec5SDimitry Andric Call.getCalledFunction()->getIntrinsicID() != 32300b57cec5SDimitry Andric Intrinsic::experimental_gc_statepoint) 32310b57cec5SDimitry Andric Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 32320b57cec5SDimitry Andric "Attribute 'sret' cannot be used for vararg call arguments!", 32330b57cec5SDimitry Andric Call); 32340b57cec5SDimitry Andric 32350b57cec5SDimitry Andric if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 32360b57cec5SDimitry Andric Assert(Idx == Call.arg_size() - 1, 32370b57cec5SDimitry Andric "inalloca isn't on the last argument!", Call); 32380b57cec5SDimitry Andric } 32390b57cec5SDimitry Andric } 32400b57cec5SDimitry Andric 32410b57cec5SDimitry Andric // Verify that there's no metadata unless it's a direct call to an intrinsic. 32420b57cec5SDimitry Andric if (!IsIntrinsic) { 32430b57cec5SDimitry Andric for (Type *ParamTy : FTy->params()) { 32440b57cec5SDimitry Andric Assert(!ParamTy->isMetadataTy(), 32450b57cec5SDimitry Andric "Function has metadata parameter but isn't an intrinsic", Call); 32460b57cec5SDimitry Andric Assert(!ParamTy->isTokenTy(), 32470b57cec5SDimitry Andric "Function has token parameter but isn't an intrinsic", Call); 32480b57cec5SDimitry Andric } 32490b57cec5SDimitry Andric } 32500b57cec5SDimitry Andric 32510b57cec5SDimitry Andric // Verify that indirect calls don't return tokens. 3252fe6060f1SDimitry Andric if (!Call.getCalledFunction()) { 32530b57cec5SDimitry Andric Assert(!FTy->getReturnType()->isTokenTy(), 32540b57cec5SDimitry Andric "Return type cannot be token for indirect call!"); 3255fe6060f1SDimitry Andric Assert(!FTy->getReturnType()->isX86_AMXTy(), 3256fe6060f1SDimitry Andric "Return type cannot be x86_amx for indirect call!"); 3257fe6060f1SDimitry Andric } 32580b57cec5SDimitry Andric 32590b57cec5SDimitry Andric if (Function *F = Call.getCalledFunction()) 32600b57cec5SDimitry Andric if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 32610b57cec5SDimitry Andric visitIntrinsicCall(ID, Call); 32620b57cec5SDimitry Andric 3263480093f4SDimitry Andric // Verify that a callsite has at most one "deopt", at most one "funclet", at 32645ffd83dbSDimitry Andric // most one "gc-transition", at most one "cfguardtarget", 32655ffd83dbSDimitry Andric // and at most one "preallocated" operand bundle. 32660b57cec5SDimitry Andric bool FoundDeoptBundle = false, FoundFuncletBundle = false, 32675ffd83dbSDimitry Andric FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3268fe6060f1SDimitry Andric FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3269fe6060f1SDimitry Andric FoundAttachedCallBundle = false; 32700b57cec5SDimitry Andric for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 32710b57cec5SDimitry Andric OperandBundleUse BU = Call.getOperandBundleAt(i); 32720b57cec5SDimitry Andric uint32_t Tag = BU.getTagID(); 32730b57cec5SDimitry Andric if (Tag == LLVMContext::OB_deopt) { 32740b57cec5SDimitry Andric Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 32750b57cec5SDimitry Andric FoundDeoptBundle = true; 32760b57cec5SDimitry Andric } else if (Tag == LLVMContext::OB_gc_transition) { 32770b57cec5SDimitry Andric Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 32780b57cec5SDimitry Andric Call); 32790b57cec5SDimitry Andric FoundGCTransitionBundle = true; 32800b57cec5SDimitry Andric } else if (Tag == LLVMContext::OB_funclet) { 32810b57cec5SDimitry Andric Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 32820b57cec5SDimitry Andric FoundFuncletBundle = true; 32830b57cec5SDimitry Andric Assert(BU.Inputs.size() == 1, 32840b57cec5SDimitry Andric "Expected exactly one funclet bundle operand", Call); 32850b57cec5SDimitry Andric Assert(isa<FuncletPadInst>(BU.Inputs.front()), 32860b57cec5SDimitry Andric "Funclet bundle operands should correspond to a FuncletPadInst", 32870b57cec5SDimitry Andric Call); 3288480093f4SDimitry Andric } else if (Tag == LLVMContext::OB_cfguardtarget) { 3289480093f4SDimitry Andric Assert(!FoundCFGuardTargetBundle, 3290480093f4SDimitry Andric "Multiple CFGuardTarget operand bundles", Call); 3291480093f4SDimitry Andric FoundCFGuardTargetBundle = true; 3292480093f4SDimitry Andric Assert(BU.Inputs.size() == 1, 3293480093f4SDimitry Andric "Expected exactly one cfguardtarget bundle operand", Call); 32945ffd83dbSDimitry Andric } else if (Tag == LLVMContext::OB_preallocated) { 32955ffd83dbSDimitry Andric Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 32965ffd83dbSDimitry Andric Call); 32975ffd83dbSDimitry Andric FoundPreallocatedBundle = true; 32985ffd83dbSDimitry Andric Assert(BU.Inputs.size() == 1, 32995ffd83dbSDimitry Andric "Expected exactly one preallocated bundle operand", Call); 33005ffd83dbSDimitry Andric auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 33015ffd83dbSDimitry Andric Assert(Input && 33025ffd83dbSDimitry Andric Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 33035ffd83dbSDimitry Andric "\"preallocated\" argument must be a token from " 33045ffd83dbSDimitry Andric "llvm.call.preallocated.setup", 33055ffd83dbSDimitry Andric Call); 33065ffd83dbSDimitry Andric } else if (Tag == LLVMContext::OB_gc_live) { 33075ffd83dbSDimitry Andric Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 33085ffd83dbSDimitry Andric Call); 33095ffd83dbSDimitry Andric FoundGCLiveBundle = true; 3310fe6060f1SDimitry Andric } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3311fe6060f1SDimitry Andric Assert(!FoundAttachedCallBundle, 3312fe6060f1SDimitry Andric "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3313fe6060f1SDimitry Andric FoundAttachedCallBundle = true; 3314349cc55cSDimitry Andric verifyAttachedCallBundle(Call, BU); 33150b57cec5SDimitry Andric } 33160b57cec5SDimitry Andric } 33170b57cec5SDimitry Andric 33180b57cec5SDimitry Andric // Verify that each inlinable callsite of a debug-info-bearing function in a 33190b57cec5SDimitry Andric // debug-info-bearing function has a debug location attached to it. Failure to 33200b57cec5SDimitry Andric // do so causes assertion failures when the inliner sets up inline scope info. 33210b57cec5SDimitry Andric if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 33220b57cec5SDimitry Andric Call.getCalledFunction()->getSubprogram()) 33230b57cec5SDimitry Andric AssertDI(Call.getDebugLoc(), 33240b57cec5SDimitry Andric "inlinable function call in a function with " 33250b57cec5SDimitry Andric "debug info must have a !dbg location", 33260b57cec5SDimitry Andric Call); 33270b57cec5SDimitry Andric 33280b57cec5SDimitry Andric visitInstruction(Call); 33290b57cec5SDimitry Andric } 33300b57cec5SDimitry Andric 3331fe6060f1SDimitry Andric void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs, 3332fe6060f1SDimitry Andric StringRef Context) { 3333fe6060f1SDimitry Andric Assert(!Attrs.contains(Attribute::InAlloca), 3334fe6060f1SDimitry Andric Twine("inalloca attribute not allowed in ") + Context); 3335fe6060f1SDimitry Andric Assert(!Attrs.contains(Attribute::InReg), 3336fe6060f1SDimitry Andric Twine("inreg attribute not allowed in ") + Context); 3337fe6060f1SDimitry Andric Assert(!Attrs.contains(Attribute::SwiftError), 3338fe6060f1SDimitry Andric Twine("swifterror attribute not allowed in ") + Context); 3339fe6060f1SDimitry Andric Assert(!Attrs.contains(Attribute::Preallocated), 3340fe6060f1SDimitry Andric Twine("preallocated attribute not allowed in ") + Context); 3341fe6060f1SDimitry Andric Assert(!Attrs.contains(Attribute::ByRef), 3342fe6060f1SDimitry Andric Twine("byref attribute not allowed in ") + Context); 3343fe6060f1SDimitry Andric } 3344fe6060f1SDimitry Andric 33450b57cec5SDimitry Andric /// Two types are "congruent" if they are identical, or if they are both pointer 33460b57cec5SDimitry Andric /// types with different pointee types and the same address space. 33470b57cec5SDimitry Andric static bool isTypeCongruent(Type *L, Type *R) { 33480b57cec5SDimitry Andric if (L == R) 33490b57cec5SDimitry Andric return true; 33500b57cec5SDimitry Andric PointerType *PL = dyn_cast<PointerType>(L); 33510b57cec5SDimitry Andric PointerType *PR = dyn_cast<PointerType>(R); 33520b57cec5SDimitry Andric if (!PL || !PR) 33530b57cec5SDimitry Andric return false; 33540b57cec5SDimitry Andric return PL->getAddressSpace() == PR->getAddressSpace(); 33550b57cec5SDimitry Andric } 33560b57cec5SDimitry Andric 3357349cc55cSDimitry Andric static AttrBuilder getParameterABIAttributes(unsigned I, AttributeList Attrs) { 33580b57cec5SDimitry Andric static const Attribute::AttrKind ABIAttrs[] = { 33590b57cec5SDimitry Andric Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3360fe6060f1SDimitry Andric Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3361fe6060f1SDimitry Andric Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3362fe6060f1SDimitry Andric Attribute::ByRef}; 33630b57cec5SDimitry Andric AttrBuilder Copy; 33640b57cec5SDimitry Andric for (auto AK : ABIAttrs) { 3365349cc55cSDimitry Andric Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3366fe6060f1SDimitry Andric if (Attr.isValid()) 3367fe6060f1SDimitry Andric Copy.addAttribute(Attr); 33680b57cec5SDimitry Andric } 3369e8d8bef9SDimitry Andric 3370e8d8bef9SDimitry Andric // `align` is ABI-affecting only in combination with `byval` or `byref`. 3371349cc55cSDimitry Andric if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3372349cc55cSDimitry Andric (Attrs.hasParamAttr(I, Attribute::ByVal) || 3373349cc55cSDimitry Andric Attrs.hasParamAttr(I, Attribute::ByRef))) 33740b57cec5SDimitry Andric Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 33750b57cec5SDimitry Andric return Copy; 33760b57cec5SDimitry Andric } 33770b57cec5SDimitry Andric 33780b57cec5SDimitry Andric void Verifier::verifyMustTailCall(CallInst &CI) { 33790b57cec5SDimitry Andric Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 33800b57cec5SDimitry Andric 33810b57cec5SDimitry Andric Function *F = CI.getParent()->getParent(); 33820b57cec5SDimitry Andric FunctionType *CallerTy = F->getFunctionType(); 33830b57cec5SDimitry Andric FunctionType *CalleeTy = CI.getFunctionType(); 33840b57cec5SDimitry Andric Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 33850b57cec5SDimitry Andric "cannot guarantee tail call due to mismatched varargs", &CI); 33860b57cec5SDimitry Andric Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 33870b57cec5SDimitry Andric "cannot guarantee tail call due to mismatched return types", &CI); 33880b57cec5SDimitry Andric 33890b57cec5SDimitry Andric // - The calling conventions of the caller and callee must match. 33900b57cec5SDimitry Andric Assert(F->getCallingConv() == CI.getCallingConv(), 33910b57cec5SDimitry Andric "cannot guarantee tail call due to mismatched calling conv", &CI); 33920b57cec5SDimitry Andric 33930b57cec5SDimitry Andric // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 33940b57cec5SDimitry Andric // or a pointer bitcast followed by a ret instruction. 33950b57cec5SDimitry Andric // - The ret instruction must return the (possibly bitcasted) value 33960b57cec5SDimitry Andric // produced by the call or void. 33970b57cec5SDimitry Andric Value *RetVal = &CI; 33980b57cec5SDimitry Andric Instruction *Next = CI.getNextNode(); 33990b57cec5SDimitry Andric 34000b57cec5SDimitry Andric // Handle the optional bitcast. 34010b57cec5SDimitry Andric if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 34020b57cec5SDimitry Andric Assert(BI->getOperand(0) == RetVal, 34030b57cec5SDimitry Andric "bitcast following musttail call must use the call", BI); 34040b57cec5SDimitry Andric RetVal = BI; 34050b57cec5SDimitry Andric Next = BI->getNextNode(); 34060b57cec5SDimitry Andric } 34070b57cec5SDimitry Andric 34080b57cec5SDimitry Andric // Check the return. 34090b57cec5SDimitry Andric ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 34100b57cec5SDimitry Andric Assert(Ret, "musttail call must precede a ret with an optional bitcast", 34110b57cec5SDimitry Andric &CI); 3412fe6060f1SDimitry Andric Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3413fe6060f1SDimitry Andric isa<UndefValue>(Ret->getReturnValue()), 34140b57cec5SDimitry Andric "musttail call result must be returned", Ret); 3415fe6060f1SDimitry Andric 3416fe6060f1SDimitry Andric AttributeList CallerAttrs = F->getAttributes(); 3417fe6060f1SDimitry Andric AttributeList CalleeAttrs = CI.getAttributes(); 3418fe6060f1SDimitry Andric if (CI.getCallingConv() == CallingConv::SwiftTail || 3419fe6060f1SDimitry Andric CI.getCallingConv() == CallingConv::Tail) { 3420fe6060f1SDimitry Andric StringRef CCName = 3421fe6060f1SDimitry Andric CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3422fe6060f1SDimitry Andric 3423fe6060f1SDimitry Andric // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3424fe6060f1SDimitry Andric // are allowed in swifttailcc call 3425349cc55cSDimitry Andric for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3426fe6060f1SDimitry Andric AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3427fe6060f1SDimitry Andric SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3428fe6060f1SDimitry Andric verifyTailCCMustTailAttrs(ABIAttrs, Context); 3429fe6060f1SDimitry Andric } 3430349cc55cSDimitry Andric for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3431fe6060f1SDimitry Andric AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3432fe6060f1SDimitry Andric SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3433fe6060f1SDimitry Andric verifyTailCCMustTailAttrs(ABIAttrs, Context); 3434fe6060f1SDimitry Andric } 3435fe6060f1SDimitry Andric // - Varargs functions are not allowed 3436fe6060f1SDimitry Andric Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3437fe6060f1SDimitry Andric " tail call for varargs function"); 3438fe6060f1SDimitry Andric return; 3439fe6060f1SDimitry Andric } 3440fe6060f1SDimitry Andric 3441fe6060f1SDimitry Andric // - The caller and callee prototypes must match. Pointer types of 3442fe6060f1SDimitry Andric // parameters or return types may differ in pointee type, but not 3443fe6060f1SDimitry Andric // address space. 3444fe6060f1SDimitry Andric if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3445fe6060f1SDimitry Andric Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3446fe6060f1SDimitry Andric "cannot guarantee tail call due to mismatched parameter counts", 3447fe6060f1SDimitry Andric &CI); 3448349cc55cSDimitry Andric for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3449fe6060f1SDimitry Andric Assert( 3450fe6060f1SDimitry Andric isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3451fe6060f1SDimitry Andric "cannot guarantee tail call due to mismatched parameter types", &CI); 3452fe6060f1SDimitry Andric } 3453fe6060f1SDimitry Andric } 3454fe6060f1SDimitry Andric 3455fe6060f1SDimitry Andric // - All ABI-impacting function attributes, such as sret, byval, inreg, 3456fe6060f1SDimitry Andric // returned, preallocated, and inalloca, must match. 3457349cc55cSDimitry Andric for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3458fe6060f1SDimitry Andric AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3459fe6060f1SDimitry Andric AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3460fe6060f1SDimitry Andric Assert(CallerABIAttrs == CalleeABIAttrs, 3461fe6060f1SDimitry Andric "cannot guarantee tail call due to mismatched ABI impacting " 3462fe6060f1SDimitry Andric "function attributes", 3463fe6060f1SDimitry Andric &CI, CI.getOperand(I)); 3464fe6060f1SDimitry Andric } 34650b57cec5SDimitry Andric } 34660b57cec5SDimitry Andric 34670b57cec5SDimitry Andric void Verifier::visitCallInst(CallInst &CI) { 34680b57cec5SDimitry Andric visitCallBase(CI); 34690b57cec5SDimitry Andric 34700b57cec5SDimitry Andric if (CI.isMustTailCall()) 34710b57cec5SDimitry Andric verifyMustTailCall(CI); 34720b57cec5SDimitry Andric } 34730b57cec5SDimitry Andric 34740b57cec5SDimitry Andric void Verifier::visitInvokeInst(InvokeInst &II) { 34750b57cec5SDimitry Andric visitCallBase(II); 34760b57cec5SDimitry Andric 34770b57cec5SDimitry Andric // Verify that the first non-PHI instruction of the unwind destination is an 34780b57cec5SDimitry Andric // exception handling instruction. 34790b57cec5SDimitry Andric Assert( 34800b57cec5SDimitry Andric II.getUnwindDest()->isEHPad(), 34810b57cec5SDimitry Andric "The unwind destination does not have an exception handling instruction!", 34820b57cec5SDimitry Andric &II); 34830b57cec5SDimitry Andric 34840b57cec5SDimitry Andric visitTerminator(II); 34850b57cec5SDimitry Andric } 34860b57cec5SDimitry Andric 34870b57cec5SDimitry Andric /// visitUnaryOperator - Check the argument to the unary operator. 34880b57cec5SDimitry Andric /// 34890b57cec5SDimitry Andric void Verifier::visitUnaryOperator(UnaryOperator &U) { 34900b57cec5SDimitry Andric Assert(U.getType() == U.getOperand(0)->getType(), 34910b57cec5SDimitry Andric "Unary operators must have same type for" 34920b57cec5SDimitry Andric "operands and result!", 34930b57cec5SDimitry Andric &U); 34940b57cec5SDimitry Andric 34950b57cec5SDimitry Andric switch (U.getOpcode()) { 34960b57cec5SDimitry Andric // Check that floating-point arithmetic operators are only used with 34970b57cec5SDimitry Andric // floating-point operands. 34980b57cec5SDimitry Andric case Instruction::FNeg: 34990b57cec5SDimitry Andric Assert(U.getType()->isFPOrFPVectorTy(), 35000b57cec5SDimitry Andric "FNeg operator only works with float types!", &U); 35010b57cec5SDimitry Andric break; 35020b57cec5SDimitry Andric default: 35030b57cec5SDimitry Andric llvm_unreachable("Unknown UnaryOperator opcode!"); 35040b57cec5SDimitry Andric } 35050b57cec5SDimitry Andric 35060b57cec5SDimitry Andric visitInstruction(U); 35070b57cec5SDimitry Andric } 35080b57cec5SDimitry Andric 35090b57cec5SDimitry Andric /// visitBinaryOperator - Check that both arguments to the binary operator are 35100b57cec5SDimitry Andric /// of the same type! 35110b57cec5SDimitry Andric /// 35120b57cec5SDimitry Andric void Verifier::visitBinaryOperator(BinaryOperator &B) { 35130b57cec5SDimitry Andric Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 35140b57cec5SDimitry Andric "Both operands to a binary operator are not of the same type!", &B); 35150b57cec5SDimitry Andric 35160b57cec5SDimitry Andric switch (B.getOpcode()) { 35170b57cec5SDimitry Andric // Check that integer arithmetic operators are only used with 35180b57cec5SDimitry Andric // integral operands. 35190b57cec5SDimitry Andric case Instruction::Add: 35200b57cec5SDimitry Andric case Instruction::Sub: 35210b57cec5SDimitry Andric case Instruction::Mul: 35220b57cec5SDimitry Andric case Instruction::SDiv: 35230b57cec5SDimitry Andric case Instruction::UDiv: 35240b57cec5SDimitry Andric case Instruction::SRem: 35250b57cec5SDimitry Andric case Instruction::URem: 35260b57cec5SDimitry Andric Assert(B.getType()->isIntOrIntVectorTy(), 35270b57cec5SDimitry Andric "Integer arithmetic operators only work with integral types!", &B); 35280b57cec5SDimitry Andric Assert(B.getType() == B.getOperand(0)->getType(), 35290b57cec5SDimitry Andric "Integer arithmetic operators must have same type " 35300b57cec5SDimitry Andric "for operands and result!", 35310b57cec5SDimitry Andric &B); 35320b57cec5SDimitry Andric break; 35330b57cec5SDimitry Andric // Check that floating-point arithmetic operators are only used with 35340b57cec5SDimitry Andric // floating-point operands. 35350b57cec5SDimitry Andric case Instruction::FAdd: 35360b57cec5SDimitry Andric case Instruction::FSub: 35370b57cec5SDimitry Andric case Instruction::FMul: 35380b57cec5SDimitry Andric case Instruction::FDiv: 35390b57cec5SDimitry Andric case Instruction::FRem: 35400b57cec5SDimitry Andric Assert(B.getType()->isFPOrFPVectorTy(), 35410b57cec5SDimitry Andric "Floating-point arithmetic operators only work with " 35420b57cec5SDimitry Andric "floating-point types!", 35430b57cec5SDimitry Andric &B); 35440b57cec5SDimitry Andric Assert(B.getType() == B.getOperand(0)->getType(), 35450b57cec5SDimitry Andric "Floating-point arithmetic operators must have same type " 35460b57cec5SDimitry Andric "for operands and result!", 35470b57cec5SDimitry Andric &B); 35480b57cec5SDimitry Andric break; 35490b57cec5SDimitry Andric // Check that logical operators are only used with integral operands. 35500b57cec5SDimitry Andric case Instruction::And: 35510b57cec5SDimitry Andric case Instruction::Or: 35520b57cec5SDimitry Andric case Instruction::Xor: 35530b57cec5SDimitry Andric Assert(B.getType()->isIntOrIntVectorTy(), 35540b57cec5SDimitry Andric "Logical operators only work with integral types!", &B); 35550b57cec5SDimitry Andric Assert(B.getType() == B.getOperand(0)->getType(), 35560b57cec5SDimitry Andric "Logical operators must have same type for operands and result!", 35570b57cec5SDimitry Andric &B); 35580b57cec5SDimitry Andric break; 35590b57cec5SDimitry Andric case Instruction::Shl: 35600b57cec5SDimitry Andric case Instruction::LShr: 35610b57cec5SDimitry Andric case Instruction::AShr: 35620b57cec5SDimitry Andric Assert(B.getType()->isIntOrIntVectorTy(), 35630b57cec5SDimitry Andric "Shifts only work with integral types!", &B); 35640b57cec5SDimitry Andric Assert(B.getType() == B.getOperand(0)->getType(), 35650b57cec5SDimitry Andric "Shift return type must be same as operands!", &B); 35660b57cec5SDimitry Andric break; 35670b57cec5SDimitry Andric default: 35680b57cec5SDimitry Andric llvm_unreachable("Unknown BinaryOperator opcode!"); 35690b57cec5SDimitry Andric } 35700b57cec5SDimitry Andric 35710b57cec5SDimitry Andric visitInstruction(B); 35720b57cec5SDimitry Andric } 35730b57cec5SDimitry Andric 35740b57cec5SDimitry Andric void Verifier::visitICmpInst(ICmpInst &IC) { 35750b57cec5SDimitry Andric // Check that the operands are the same type 35760b57cec5SDimitry Andric Type *Op0Ty = IC.getOperand(0)->getType(); 35770b57cec5SDimitry Andric Type *Op1Ty = IC.getOperand(1)->getType(); 35780b57cec5SDimitry Andric Assert(Op0Ty == Op1Ty, 35790b57cec5SDimitry Andric "Both operands to ICmp instruction are not of the same type!", &IC); 35800b57cec5SDimitry Andric // Check that the operands are the right type 35810b57cec5SDimitry Andric Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 35820b57cec5SDimitry Andric "Invalid operand types for ICmp instruction", &IC); 35830b57cec5SDimitry Andric // Check that the predicate is valid. 35840b57cec5SDimitry Andric Assert(IC.isIntPredicate(), 35850b57cec5SDimitry Andric "Invalid predicate in ICmp instruction!", &IC); 35860b57cec5SDimitry Andric 35870b57cec5SDimitry Andric visitInstruction(IC); 35880b57cec5SDimitry Andric } 35890b57cec5SDimitry Andric 35900b57cec5SDimitry Andric void Verifier::visitFCmpInst(FCmpInst &FC) { 35910b57cec5SDimitry Andric // Check that the operands are the same type 35920b57cec5SDimitry Andric Type *Op0Ty = FC.getOperand(0)->getType(); 35930b57cec5SDimitry Andric Type *Op1Ty = FC.getOperand(1)->getType(); 35940b57cec5SDimitry Andric Assert(Op0Ty == Op1Ty, 35950b57cec5SDimitry Andric "Both operands to FCmp instruction are not of the same type!", &FC); 35960b57cec5SDimitry Andric // Check that the operands are the right type 35970b57cec5SDimitry Andric Assert(Op0Ty->isFPOrFPVectorTy(), 35980b57cec5SDimitry Andric "Invalid operand types for FCmp instruction", &FC); 35990b57cec5SDimitry Andric // Check that the predicate is valid. 36000b57cec5SDimitry Andric Assert(FC.isFPPredicate(), 36010b57cec5SDimitry Andric "Invalid predicate in FCmp instruction!", &FC); 36020b57cec5SDimitry Andric 36030b57cec5SDimitry Andric visitInstruction(FC); 36040b57cec5SDimitry Andric } 36050b57cec5SDimitry Andric 36060b57cec5SDimitry Andric void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 36070b57cec5SDimitry Andric Assert( 36080b57cec5SDimitry Andric ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 36090b57cec5SDimitry Andric "Invalid extractelement operands!", &EI); 36100b57cec5SDimitry Andric visitInstruction(EI); 36110b57cec5SDimitry Andric } 36120b57cec5SDimitry Andric 36130b57cec5SDimitry Andric void Verifier::visitInsertElementInst(InsertElementInst &IE) { 36140b57cec5SDimitry Andric Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 36150b57cec5SDimitry Andric IE.getOperand(2)), 36160b57cec5SDimitry Andric "Invalid insertelement operands!", &IE); 36170b57cec5SDimitry Andric visitInstruction(IE); 36180b57cec5SDimitry Andric } 36190b57cec5SDimitry Andric 36200b57cec5SDimitry Andric void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 36210b57cec5SDimitry Andric Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 36225ffd83dbSDimitry Andric SV.getShuffleMask()), 36230b57cec5SDimitry Andric "Invalid shufflevector operands!", &SV); 36240b57cec5SDimitry Andric visitInstruction(SV); 36250b57cec5SDimitry Andric } 36260b57cec5SDimitry Andric 36270b57cec5SDimitry Andric void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 36280b57cec5SDimitry Andric Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 36290b57cec5SDimitry Andric 36300b57cec5SDimitry Andric Assert(isa<PointerType>(TargetTy), 36310b57cec5SDimitry Andric "GEP base pointer is not a vector or a vector of pointers", &GEP); 36320b57cec5SDimitry Andric Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 36330b57cec5SDimitry Andric 3634e8d8bef9SDimitry Andric SmallVector<Value *, 16> Idxs(GEP.indices()); 36350b57cec5SDimitry Andric Assert(all_of( 36360b57cec5SDimitry Andric Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 36370b57cec5SDimitry Andric "GEP indexes must be integers", &GEP); 36380b57cec5SDimitry Andric Type *ElTy = 36390b57cec5SDimitry Andric GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 36400b57cec5SDimitry Andric Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 36410b57cec5SDimitry Andric 36420b57cec5SDimitry Andric Assert(GEP.getType()->isPtrOrPtrVectorTy() && 36430b57cec5SDimitry Andric GEP.getResultElementType() == ElTy, 36440b57cec5SDimitry Andric "GEP is not of right type for indices!", &GEP, ElTy); 36450b57cec5SDimitry Andric 36465ffd83dbSDimitry Andric if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 36470b57cec5SDimitry Andric // Additional checks for vector GEPs. 36485ffd83dbSDimitry Andric ElementCount GEPWidth = GEPVTy->getElementCount(); 36490b57cec5SDimitry Andric if (GEP.getPointerOperandType()->isVectorTy()) 36505ffd83dbSDimitry Andric Assert( 36515ffd83dbSDimitry Andric GEPWidth == 36525ffd83dbSDimitry Andric cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 36530b57cec5SDimitry Andric "Vector GEP result width doesn't match operand's", &GEP); 36540b57cec5SDimitry Andric for (Value *Idx : Idxs) { 36550b57cec5SDimitry Andric Type *IndexTy = Idx->getType(); 36565ffd83dbSDimitry Andric if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 36575ffd83dbSDimitry Andric ElementCount IndexWidth = IndexVTy->getElementCount(); 36580b57cec5SDimitry Andric Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 36590b57cec5SDimitry Andric } 36600b57cec5SDimitry Andric Assert(IndexTy->isIntOrIntVectorTy(), 36610b57cec5SDimitry Andric "All GEP indices should be of integer type"); 36620b57cec5SDimitry Andric } 36630b57cec5SDimitry Andric } 36640b57cec5SDimitry Andric 36650b57cec5SDimitry Andric if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 36660b57cec5SDimitry Andric Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 36670b57cec5SDimitry Andric "GEP address space doesn't match type", &GEP); 36680b57cec5SDimitry Andric } 36690b57cec5SDimitry Andric 36700b57cec5SDimitry Andric visitInstruction(GEP); 36710b57cec5SDimitry Andric } 36720b57cec5SDimitry Andric 36730b57cec5SDimitry Andric static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 36740b57cec5SDimitry Andric return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 36750b57cec5SDimitry Andric } 36760b57cec5SDimitry Andric 36770b57cec5SDimitry Andric void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 36780b57cec5SDimitry Andric assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 36790b57cec5SDimitry Andric "precondition violation"); 36800b57cec5SDimitry Andric 36810b57cec5SDimitry Andric unsigned NumOperands = Range->getNumOperands(); 36820b57cec5SDimitry Andric Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 36830b57cec5SDimitry Andric unsigned NumRanges = NumOperands / 2; 36840b57cec5SDimitry Andric Assert(NumRanges >= 1, "It should have at least one range!", Range); 36850b57cec5SDimitry Andric 36860b57cec5SDimitry Andric ConstantRange LastRange(1, true); // Dummy initial value 36870b57cec5SDimitry Andric for (unsigned i = 0; i < NumRanges; ++i) { 36880b57cec5SDimitry Andric ConstantInt *Low = 36890b57cec5SDimitry Andric mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 36900b57cec5SDimitry Andric Assert(Low, "The lower limit must be an integer!", Low); 36910b57cec5SDimitry Andric ConstantInt *High = 36920b57cec5SDimitry Andric mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 36930b57cec5SDimitry Andric Assert(High, "The upper limit must be an integer!", High); 36940b57cec5SDimitry Andric Assert(High->getType() == Low->getType() && High->getType() == Ty, 36950b57cec5SDimitry Andric "Range types must match instruction type!", &I); 36960b57cec5SDimitry Andric 36970b57cec5SDimitry Andric APInt HighV = High->getValue(); 36980b57cec5SDimitry Andric APInt LowV = Low->getValue(); 36990b57cec5SDimitry Andric ConstantRange CurRange(LowV, HighV); 37000b57cec5SDimitry Andric Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 37010b57cec5SDimitry Andric "Range must not be empty!", Range); 37020b57cec5SDimitry Andric if (i != 0) { 37030b57cec5SDimitry Andric Assert(CurRange.intersectWith(LastRange).isEmptySet(), 37040b57cec5SDimitry Andric "Intervals are overlapping", Range); 37050b57cec5SDimitry Andric Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 37060b57cec5SDimitry Andric Range); 37070b57cec5SDimitry Andric Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 37080b57cec5SDimitry Andric Range); 37090b57cec5SDimitry Andric } 37100b57cec5SDimitry Andric LastRange = ConstantRange(LowV, HighV); 37110b57cec5SDimitry Andric } 37120b57cec5SDimitry Andric if (NumRanges > 2) { 37130b57cec5SDimitry Andric APInt FirstLow = 37140b57cec5SDimitry Andric mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 37150b57cec5SDimitry Andric APInt FirstHigh = 37160b57cec5SDimitry Andric mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 37170b57cec5SDimitry Andric ConstantRange FirstRange(FirstLow, FirstHigh); 37180b57cec5SDimitry Andric Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 37190b57cec5SDimitry Andric "Intervals are overlapping", Range); 37200b57cec5SDimitry Andric Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 37210b57cec5SDimitry Andric Range); 37220b57cec5SDimitry Andric } 37230b57cec5SDimitry Andric } 37240b57cec5SDimitry Andric 37250b57cec5SDimitry Andric void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 37260b57cec5SDimitry Andric unsigned Size = DL.getTypeSizeInBits(Ty); 37270b57cec5SDimitry Andric Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 37280b57cec5SDimitry Andric Assert(!(Size & (Size - 1)), 37290b57cec5SDimitry Andric "atomic memory access' operand must have a power-of-two size", Ty, I); 37300b57cec5SDimitry Andric } 37310b57cec5SDimitry Andric 37320b57cec5SDimitry Andric void Verifier::visitLoadInst(LoadInst &LI) { 37330b57cec5SDimitry Andric PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 37340b57cec5SDimitry Andric Assert(PTy, "Load operand must be a pointer.", &LI); 37350b57cec5SDimitry Andric Type *ElTy = LI.getType(); 37360b57cec5SDimitry Andric Assert(LI.getAlignment() <= Value::MaximumAlignment, 37370b57cec5SDimitry Andric "huge alignment values are unsupported", &LI); 37380b57cec5SDimitry Andric Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 37390b57cec5SDimitry Andric if (LI.isAtomic()) { 37400b57cec5SDimitry Andric Assert(LI.getOrdering() != AtomicOrdering::Release && 37410b57cec5SDimitry Andric LI.getOrdering() != AtomicOrdering::AcquireRelease, 37420b57cec5SDimitry Andric "Load cannot have Release ordering", &LI); 37430b57cec5SDimitry Andric Assert(LI.getAlignment() != 0, 37440b57cec5SDimitry Andric "Atomic load must specify explicit alignment", &LI); 37450b57cec5SDimitry Andric Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 37460b57cec5SDimitry Andric "atomic load operand must have integer, pointer, or floating point " 37470b57cec5SDimitry Andric "type!", 37480b57cec5SDimitry Andric ElTy, &LI); 37490b57cec5SDimitry Andric checkAtomicMemAccessSize(ElTy, &LI); 37500b57cec5SDimitry Andric } else { 37510b57cec5SDimitry Andric Assert(LI.getSyncScopeID() == SyncScope::System, 37520b57cec5SDimitry Andric "Non-atomic load cannot have SynchronizationScope specified", &LI); 37530b57cec5SDimitry Andric } 37540b57cec5SDimitry Andric 37550b57cec5SDimitry Andric visitInstruction(LI); 37560b57cec5SDimitry Andric } 37570b57cec5SDimitry Andric 37580b57cec5SDimitry Andric void Verifier::visitStoreInst(StoreInst &SI) { 37590b57cec5SDimitry Andric PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 37600b57cec5SDimitry Andric Assert(PTy, "Store operand must be a pointer.", &SI); 3761fe6060f1SDimitry Andric Type *ElTy = SI.getOperand(0)->getType(); 3762fe6060f1SDimitry Andric Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 37630b57cec5SDimitry Andric "Stored value type does not match pointer operand type!", &SI, ElTy); 37640b57cec5SDimitry Andric Assert(SI.getAlignment() <= Value::MaximumAlignment, 37650b57cec5SDimitry Andric "huge alignment values are unsupported", &SI); 37660b57cec5SDimitry Andric Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 37670b57cec5SDimitry Andric if (SI.isAtomic()) { 37680b57cec5SDimitry Andric Assert(SI.getOrdering() != AtomicOrdering::Acquire && 37690b57cec5SDimitry Andric SI.getOrdering() != AtomicOrdering::AcquireRelease, 37700b57cec5SDimitry Andric "Store cannot have Acquire ordering", &SI); 37710b57cec5SDimitry Andric Assert(SI.getAlignment() != 0, 37720b57cec5SDimitry Andric "Atomic store must specify explicit alignment", &SI); 37730b57cec5SDimitry Andric Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 37740b57cec5SDimitry Andric "atomic store operand must have integer, pointer, or floating point " 37750b57cec5SDimitry Andric "type!", 37760b57cec5SDimitry Andric ElTy, &SI); 37770b57cec5SDimitry Andric checkAtomicMemAccessSize(ElTy, &SI); 37780b57cec5SDimitry Andric } else { 37790b57cec5SDimitry Andric Assert(SI.getSyncScopeID() == SyncScope::System, 37800b57cec5SDimitry Andric "Non-atomic store cannot have SynchronizationScope specified", &SI); 37810b57cec5SDimitry Andric } 37820b57cec5SDimitry Andric visitInstruction(SI); 37830b57cec5SDimitry Andric } 37840b57cec5SDimitry Andric 37850b57cec5SDimitry Andric /// Check that SwiftErrorVal is used as a swifterror argument in CS. 37860b57cec5SDimitry Andric void Verifier::verifySwiftErrorCall(CallBase &Call, 37870b57cec5SDimitry Andric const Value *SwiftErrorVal) { 3788fe6060f1SDimitry Andric for (const auto &I : llvm::enumerate(Call.args())) { 3789fe6060f1SDimitry Andric if (I.value() == SwiftErrorVal) { 3790fe6060f1SDimitry Andric Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError), 37910b57cec5SDimitry Andric "swifterror value when used in a callsite should be marked " 37920b57cec5SDimitry Andric "with swifterror attribute", 37930b57cec5SDimitry Andric SwiftErrorVal, Call); 37940b57cec5SDimitry Andric } 37950b57cec5SDimitry Andric } 37960b57cec5SDimitry Andric } 37970b57cec5SDimitry Andric 37980b57cec5SDimitry Andric void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 37990b57cec5SDimitry Andric // Check that swifterror value is only used by loads, stores, or as 38000b57cec5SDimitry Andric // a swifterror argument. 38010b57cec5SDimitry Andric for (const User *U : SwiftErrorVal->users()) { 38020b57cec5SDimitry Andric Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 38030b57cec5SDimitry Andric isa<InvokeInst>(U), 38040b57cec5SDimitry Andric "swifterror value can only be loaded and stored from, or " 38050b57cec5SDimitry Andric "as a swifterror argument!", 38060b57cec5SDimitry Andric SwiftErrorVal, U); 38070b57cec5SDimitry Andric // If it is used by a store, check it is the second operand. 38080b57cec5SDimitry Andric if (auto StoreI = dyn_cast<StoreInst>(U)) 38090b57cec5SDimitry Andric Assert(StoreI->getOperand(1) == SwiftErrorVal, 38100b57cec5SDimitry Andric "swifterror value should be the second operand when used " 38110b57cec5SDimitry Andric "by stores", SwiftErrorVal, U); 38120b57cec5SDimitry Andric if (auto *Call = dyn_cast<CallBase>(U)) 38130b57cec5SDimitry Andric verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 38140b57cec5SDimitry Andric } 38150b57cec5SDimitry Andric } 38160b57cec5SDimitry Andric 38170b57cec5SDimitry Andric void Verifier::visitAllocaInst(AllocaInst &AI) { 38180b57cec5SDimitry Andric SmallPtrSet<Type*, 4> Visited; 38190b57cec5SDimitry Andric Assert(AI.getAllocatedType()->isSized(&Visited), 38200b57cec5SDimitry Andric "Cannot allocate unsized type", &AI); 38210b57cec5SDimitry Andric Assert(AI.getArraySize()->getType()->isIntegerTy(), 38220b57cec5SDimitry Andric "Alloca array size must have integer type", &AI); 38230b57cec5SDimitry Andric Assert(AI.getAlignment() <= Value::MaximumAlignment, 38240b57cec5SDimitry Andric "huge alignment values are unsupported", &AI); 38250b57cec5SDimitry Andric 38260b57cec5SDimitry Andric if (AI.isSwiftError()) { 38270b57cec5SDimitry Andric verifySwiftErrorValue(&AI); 38280b57cec5SDimitry Andric } 38290b57cec5SDimitry Andric 38300b57cec5SDimitry Andric visitInstruction(AI); 38310b57cec5SDimitry Andric } 38320b57cec5SDimitry Andric 38330b57cec5SDimitry Andric void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3834fe6060f1SDimitry Andric Type *ElTy = CXI.getOperand(1)->getType(); 38350b57cec5SDimitry Andric Assert(ElTy->isIntOrPtrTy(), 38360b57cec5SDimitry Andric "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 38370b57cec5SDimitry Andric checkAtomicMemAccessSize(ElTy, &CXI); 38380b57cec5SDimitry Andric visitInstruction(CXI); 38390b57cec5SDimitry Andric } 38400b57cec5SDimitry Andric 38410b57cec5SDimitry Andric void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 38420b57cec5SDimitry Andric Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 38430b57cec5SDimitry Andric "atomicrmw instructions cannot be unordered.", &RMWI); 38440b57cec5SDimitry Andric auto Op = RMWI.getOperation(); 3845fe6060f1SDimitry Andric Type *ElTy = RMWI.getOperand(1)->getType(); 38460b57cec5SDimitry Andric if (Op == AtomicRMWInst::Xchg) { 38470b57cec5SDimitry Andric Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 38480b57cec5SDimitry Andric AtomicRMWInst::getOperationName(Op) + 38490b57cec5SDimitry Andric " operand must have integer or floating point type!", 38500b57cec5SDimitry Andric &RMWI, ElTy); 38510b57cec5SDimitry Andric } else if (AtomicRMWInst::isFPOperation(Op)) { 38520b57cec5SDimitry Andric Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 38530b57cec5SDimitry Andric AtomicRMWInst::getOperationName(Op) + 38540b57cec5SDimitry Andric " operand must have floating point type!", 38550b57cec5SDimitry Andric &RMWI, ElTy); 38560b57cec5SDimitry Andric } else { 38570b57cec5SDimitry Andric Assert(ElTy->isIntegerTy(), "atomicrmw " + 38580b57cec5SDimitry Andric AtomicRMWInst::getOperationName(Op) + 38590b57cec5SDimitry Andric " operand must have integer type!", 38600b57cec5SDimitry Andric &RMWI, ElTy); 38610b57cec5SDimitry Andric } 38620b57cec5SDimitry Andric checkAtomicMemAccessSize(ElTy, &RMWI); 38630b57cec5SDimitry Andric Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 38640b57cec5SDimitry Andric "Invalid binary operation!", &RMWI); 38650b57cec5SDimitry Andric visitInstruction(RMWI); 38660b57cec5SDimitry Andric } 38670b57cec5SDimitry Andric 38680b57cec5SDimitry Andric void Verifier::visitFenceInst(FenceInst &FI) { 38690b57cec5SDimitry Andric const AtomicOrdering Ordering = FI.getOrdering(); 38700b57cec5SDimitry Andric Assert(Ordering == AtomicOrdering::Acquire || 38710b57cec5SDimitry Andric Ordering == AtomicOrdering::Release || 38720b57cec5SDimitry Andric Ordering == AtomicOrdering::AcquireRelease || 38730b57cec5SDimitry Andric Ordering == AtomicOrdering::SequentiallyConsistent, 38740b57cec5SDimitry Andric "fence instructions may only have acquire, release, acq_rel, or " 38750b57cec5SDimitry Andric "seq_cst ordering.", 38760b57cec5SDimitry Andric &FI); 38770b57cec5SDimitry Andric visitInstruction(FI); 38780b57cec5SDimitry Andric } 38790b57cec5SDimitry Andric 38800b57cec5SDimitry Andric void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 38810b57cec5SDimitry Andric Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 38820b57cec5SDimitry Andric EVI.getIndices()) == EVI.getType(), 38830b57cec5SDimitry Andric "Invalid ExtractValueInst operands!", &EVI); 38840b57cec5SDimitry Andric 38850b57cec5SDimitry Andric visitInstruction(EVI); 38860b57cec5SDimitry Andric } 38870b57cec5SDimitry Andric 38880b57cec5SDimitry Andric void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 38890b57cec5SDimitry Andric Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 38900b57cec5SDimitry Andric IVI.getIndices()) == 38910b57cec5SDimitry Andric IVI.getOperand(1)->getType(), 38920b57cec5SDimitry Andric "Invalid InsertValueInst operands!", &IVI); 38930b57cec5SDimitry Andric 38940b57cec5SDimitry Andric visitInstruction(IVI); 38950b57cec5SDimitry Andric } 38960b57cec5SDimitry Andric 38970b57cec5SDimitry Andric static Value *getParentPad(Value *EHPad) { 38980b57cec5SDimitry Andric if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 38990b57cec5SDimitry Andric return FPI->getParentPad(); 39000b57cec5SDimitry Andric 39010b57cec5SDimitry Andric return cast<CatchSwitchInst>(EHPad)->getParentPad(); 39020b57cec5SDimitry Andric } 39030b57cec5SDimitry Andric 39040b57cec5SDimitry Andric void Verifier::visitEHPadPredecessors(Instruction &I) { 39050b57cec5SDimitry Andric assert(I.isEHPad()); 39060b57cec5SDimitry Andric 39070b57cec5SDimitry Andric BasicBlock *BB = I.getParent(); 39080b57cec5SDimitry Andric Function *F = BB->getParent(); 39090b57cec5SDimitry Andric 39100b57cec5SDimitry Andric Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 39110b57cec5SDimitry Andric 39120b57cec5SDimitry Andric if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 39130b57cec5SDimitry Andric // The landingpad instruction defines its parent as a landing pad block. The 39140b57cec5SDimitry Andric // landing pad block may be branched to only by the unwind edge of an 39150b57cec5SDimitry Andric // invoke. 39160b57cec5SDimitry Andric for (BasicBlock *PredBB : predecessors(BB)) { 39170b57cec5SDimitry Andric const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 39180b57cec5SDimitry Andric Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 39190b57cec5SDimitry Andric "Block containing LandingPadInst must be jumped to " 39200b57cec5SDimitry Andric "only by the unwind edge of an invoke.", 39210b57cec5SDimitry Andric LPI); 39220b57cec5SDimitry Andric } 39230b57cec5SDimitry Andric return; 39240b57cec5SDimitry Andric } 39250b57cec5SDimitry Andric if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 39260b57cec5SDimitry Andric if (!pred_empty(BB)) 39270b57cec5SDimitry Andric Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 39280b57cec5SDimitry Andric "Block containg CatchPadInst must be jumped to " 39290b57cec5SDimitry Andric "only by its catchswitch.", 39300b57cec5SDimitry Andric CPI); 39310b57cec5SDimitry Andric Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 39320b57cec5SDimitry Andric "Catchswitch cannot unwind to one of its catchpads", 39330b57cec5SDimitry Andric CPI->getCatchSwitch(), CPI); 39340b57cec5SDimitry Andric return; 39350b57cec5SDimitry Andric } 39360b57cec5SDimitry Andric 39370b57cec5SDimitry Andric // Verify that each pred has a legal terminator with a legal to/from EH 39380b57cec5SDimitry Andric // pad relationship. 39390b57cec5SDimitry Andric Instruction *ToPad = &I; 39400b57cec5SDimitry Andric Value *ToPadParent = getParentPad(ToPad); 39410b57cec5SDimitry Andric for (BasicBlock *PredBB : predecessors(BB)) { 39420b57cec5SDimitry Andric Instruction *TI = PredBB->getTerminator(); 39430b57cec5SDimitry Andric Value *FromPad; 39440b57cec5SDimitry Andric if (auto *II = dyn_cast<InvokeInst>(TI)) { 39450b57cec5SDimitry Andric Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 39460b57cec5SDimitry Andric "EH pad must be jumped to via an unwind edge", ToPad, II); 39470b57cec5SDimitry Andric if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 39480b57cec5SDimitry Andric FromPad = Bundle->Inputs[0]; 39490b57cec5SDimitry Andric else 39500b57cec5SDimitry Andric FromPad = ConstantTokenNone::get(II->getContext()); 39510b57cec5SDimitry Andric } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 39520b57cec5SDimitry Andric FromPad = CRI->getOperand(0); 39530b57cec5SDimitry Andric Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 39540b57cec5SDimitry Andric } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 39550b57cec5SDimitry Andric FromPad = CSI; 39560b57cec5SDimitry Andric } else { 39570b57cec5SDimitry Andric Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 39580b57cec5SDimitry Andric } 39590b57cec5SDimitry Andric 39600b57cec5SDimitry Andric // The edge may exit from zero or more nested pads. 39610b57cec5SDimitry Andric SmallSet<Value *, 8> Seen; 39620b57cec5SDimitry Andric for (;; FromPad = getParentPad(FromPad)) { 39630b57cec5SDimitry Andric Assert(FromPad != ToPad, 39640b57cec5SDimitry Andric "EH pad cannot handle exceptions raised within it", FromPad, TI); 39650b57cec5SDimitry Andric if (FromPad == ToPadParent) { 39660b57cec5SDimitry Andric // This is a legal unwind edge. 39670b57cec5SDimitry Andric break; 39680b57cec5SDimitry Andric } 39690b57cec5SDimitry Andric Assert(!isa<ConstantTokenNone>(FromPad), 39700b57cec5SDimitry Andric "A single unwind edge may only enter one EH pad", TI); 39710b57cec5SDimitry Andric Assert(Seen.insert(FromPad).second, 39720b57cec5SDimitry Andric "EH pad jumps through a cycle of pads", FromPad); 39730b57cec5SDimitry Andric } 39740b57cec5SDimitry Andric } 39750b57cec5SDimitry Andric } 39760b57cec5SDimitry Andric 39770b57cec5SDimitry Andric void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 39780b57cec5SDimitry Andric // The landingpad instruction is ill-formed if it doesn't have any clauses and 39790b57cec5SDimitry Andric // isn't a cleanup. 39800b57cec5SDimitry Andric Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 39810b57cec5SDimitry Andric "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 39820b57cec5SDimitry Andric 39830b57cec5SDimitry Andric visitEHPadPredecessors(LPI); 39840b57cec5SDimitry Andric 39850b57cec5SDimitry Andric if (!LandingPadResultTy) 39860b57cec5SDimitry Andric LandingPadResultTy = LPI.getType(); 39870b57cec5SDimitry Andric else 39880b57cec5SDimitry Andric Assert(LandingPadResultTy == LPI.getType(), 39890b57cec5SDimitry Andric "The landingpad instruction should have a consistent result type " 39900b57cec5SDimitry Andric "inside a function.", 39910b57cec5SDimitry Andric &LPI); 39920b57cec5SDimitry Andric 39930b57cec5SDimitry Andric Function *F = LPI.getParent()->getParent(); 39940b57cec5SDimitry Andric Assert(F->hasPersonalityFn(), 39950b57cec5SDimitry Andric "LandingPadInst needs to be in a function with a personality.", &LPI); 39960b57cec5SDimitry Andric 39970b57cec5SDimitry Andric // The landingpad instruction must be the first non-PHI instruction in the 39980b57cec5SDimitry Andric // block. 39990b57cec5SDimitry Andric Assert(LPI.getParent()->getLandingPadInst() == &LPI, 40000b57cec5SDimitry Andric "LandingPadInst not the first non-PHI instruction in the block.", 40010b57cec5SDimitry Andric &LPI); 40020b57cec5SDimitry Andric 40030b57cec5SDimitry Andric for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 40040b57cec5SDimitry Andric Constant *Clause = LPI.getClause(i); 40050b57cec5SDimitry Andric if (LPI.isCatch(i)) { 40060b57cec5SDimitry Andric Assert(isa<PointerType>(Clause->getType()), 40070b57cec5SDimitry Andric "Catch operand does not have pointer type!", &LPI); 40080b57cec5SDimitry Andric } else { 40090b57cec5SDimitry Andric Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 40100b57cec5SDimitry Andric Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 40110b57cec5SDimitry Andric "Filter operand is not an array of constants!", &LPI); 40120b57cec5SDimitry Andric } 40130b57cec5SDimitry Andric } 40140b57cec5SDimitry Andric 40150b57cec5SDimitry Andric visitInstruction(LPI); 40160b57cec5SDimitry Andric } 40170b57cec5SDimitry Andric 40180b57cec5SDimitry Andric void Verifier::visitResumeInst(ResumeInst &RI) { 40190b57cec5SDimitry Andric Assert(RI.getFunction()->hasPersonalityFn(), 40200b57cec5SDimitry Andric "ResumeInst needs to be in a function with a personality.", &RI); 40210b57cec5SDimitry Andric 40220b57cec5SDimitry Andric if (!LandingPadResultTy) 40230b57cec5SDimitry Andric LandingPadResultTy = RI.getValue()->getType(); 40240b57cec5SDimitry Andric else 40250b57cec5SDimitry Andric Assert(LandingPadResultTy == RI.getValue()->getType(), 40260b57cec5SDimitry Andric "The resume instruction should have a consistent result type " 40270b57cec5SDimitry Andric "inside a function.", 40280b57cec5SDimitry Andric &RI); 40290b57cec5SDimitry Andric 40300b57cec5SDimitry Andric visitTerminator(RI); 40310b57cec5SDimitry Andric } 40320b57cec5SDimitry Andric 40330b57cec5SDimitry Andric void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 40340b57cec5SDimitry Andric BasicBlock *BB = CPI.getParent(); 40350b57cec5SDimitry Andric 40360b57cec5SDimitry Andric Function *F = BB->getParent(); 40370b57cec5SDimitry Andric Assert(F->hasPersonalityFn(), 40380b57cec5SDimitry Andric "CatchPadInst needs to be in a function with a personality.", &CPI); 40390b57cec5SDimitry Andric 40400b57cec5SDimitry Andric Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 40410b57cec5SDimitry Andric "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 40420b57cec5SDimitry Andric CPI.getParentPad()); 40430b57cec5SDimitry Andric 40440b57cec5SDimitry Andric // The catchpad instruction must be the first non-PHI instruction in the 40450b57cec5SDimitry Andric // block. 40460b57cec5SDimitry Andric Assert(BB->getFirstNonPHI() == &CPI, 40470b57cec5SDimitry Andric "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 40480b57cec5SDimitry Andric 40490b57cec5SDimitry Andric visitEHPadPredecessors(CPI); 40500b57cec5SDimitry Andric visitFuncletPadInst(CPI); 40510b57cec5SDimitry Andric } 40520b57cec5SDimitry Andric 40530b57cec5SDimitry Andric void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 40540b57cec5SDimitry Andric Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 40550b57cec5SDimitry Andric "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 40560b57cec5SDimitry Andric CatchReturn.getOperand(0)); 40570b57cec5SDimitry Andric 40580b57cec5SDimitry Andric visitTerminator(CatchReturn); 40590b57cec5SDimitry Andric } 40600b57cec5SDimitry Andric 40610b57cec5SDimitry Andric void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 40620b57cec5SDimitry Andric BasicBlock *BB = CPI.getParent(); 40630b57cec5SDimitry Andric 40640b57cec5SDimitry Andric Function *F = BB->getParent(); 40650b57cec5SDimitry Andric Assert(F->hasPersonalityFn(), 40660b57cec5SDimitry Andric "CleanupPadInst needs to be in a function with a personality.", &CPI); 40670b57cec5SDimitry Andric 40680b57cec5SDimitry Andric // The cleanuppad instruction must be the first non-PHI instruction in the 40690b57cec5SDimitry Andric // block. 40700b57cec5SDimitry Andric Assert(BB->getFirstNonPHI() == &CPI, 40710b57cec5SDimitry Andric "CleanupPadInst not the first non-PHI instruction in the block.", 40720b57cec5SDimitry Andric &CPI); 40730b57cec5SDimitry Andric 40740b57cec5SDimitry Andric auto *ParentPad = CPI.getParentPad(); 40750b57cec5SDimitry Andric Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 40760b57cec5SDimitry Andric "CleanupPadInst has an invalid parent.", &CPI); 40770b57cec5SDimitry Andric 40780b57cec5SDimitry Andric visitEHPadPredecessors(CPI); 40790b57cec5SDimitry Andric visitFuncletPadInst(CPI); 40800b57cec5SDimitry Andric } 40810b57cec5SDimitry Andric 40820b57cec5SDimitry Andric void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 40830b57cec5SDimitry Andric User *FirstUser = nullptr; 40840b57cec5SDimitry Andric Value *FirstUnwindPad = nullptr; 40850b57cec5SDimitry Andric SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 40860b57cec5SDimitry Andric SmallSet<FuncletPadInst *, 8> Seen; 40870b57cec5SDimitry Andric 40880b57cec5SDimitry Andric while (!Worklist.empty()) { 40890b57cec5SDimitry Andric FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 40900b57cec5SDimitry Andric Assert(Seen.insert(CurrentPad).second, 40910b57cec5SDimitry Andric "FuncletPadInst must not be nested within itself", CurrentPad); 40920b57cec5SDimitry Andric Value *UnresolvedAncestorPad = nullptr; 40930b57cec5SDimitry Andric for (User *U : CurrentPad->users()) { 40940b57cec5SDimitry Andric BasicBlock *UnwindDest; 40950b57cec5SDimitry Andric if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 40960b57cec5SDimitry Andric UnwindDest = CRI->getUnwindDest(); 40970b57cec5SDimitry Andric } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 40980b57cec5SDimitry Andric // We allow catchswitch unwind to caller to nest 40990b57cec5SDimitry Andric // within an outer pad that unwinds somewhere else, 41000b57cec5SDimitry Andric // because catchswitch doesn't have a nounwind variant. 41010b57cec5SDimitry Andric // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 41020b57cec5SDimitry Andric if (CSI->unwindsToCaller()) 41030b57cec5SDimitry Andric continue; 41040b57cec5SDimitry Andric UnwindDest = CSI->getUnwindDest(); 41050b57cec5SDimitry Andric } else if (auto *II = dyn_cast<InvokeInst>(U)) { 41060b57cec5SDimitry Andric UnwindDest = II->getUnwindDest(); 41070b57cec5SDimitry Andric } else if (isa<CallInst>(U)) { 41080b57cec5SDimitry Andric // Calls which don't unwind may be found inside funclet 41090b57cec5SDimitry Andric // pads that unwind somewhere else. We don't *require* 41100b57cec5SDimitry Andric // such calls to be annotated nounwind. 41110b57cec5SDimitry Andric continue; 41120b57cec5SDimitry Andric } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 41130b57cec5SDimitry Andric // The unwind dest for a cleanup can only be found by 41140b57cec5SDimitry Andric // recursive search. Add it to the worklist, and we'll 41150b57cec5SDimitry Andric // search for its first use that determines where it unwinds. 41160b57cec5SDimitry Andric Worklist.push_back(CPI); 41170b57cec5SDimitry Andric continue; 41180b57cec5SDimitry Andric } else { 41190b57cec5SDimitry Andric Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 41200b57cec5SDimitry Andric continue; 41210b57cec5SDimitry Andric } 41220b57cec5SDimitry Andric 41230b57cec5SDimitry Andric Value *UnwindPad; 41240b57cec5SDimitry Andric bool ExitsFPI; 41250b57cec5SDimitry Andric if (UnwindDest) { 41260b57cec5SDimitry Andric UnwindPad = UnwindDest->getFirstNonPHI(); 41270b57cec5SDimitry Andric if (!cast<Instruction>(UnwindPad)->isEHPad()) 41280b57cec5SDimitry Andric continue; 41290b57cec5SDimitry Andric Value *UnwindParent = getParentPad(UnwindPad); 41300b57cec5SDimitry Andric // Ignore unwind edges that don't exit CurrentPad. 41310b57cec5SDimitry Andric if (UnwindParent == CurrentPad) 41320b57cec5SDimitry Andric continue; 41330b57cec5SDimitry Andric // Determine whether the original funclet pad is exited, 41340b57cec5SDimitry Andric // and if we are scanning nested pads determine how many 41350b57cec5SDimitry Andric // of them are exited so we can stop searching their 41360b57cec5SDimitry Andric // children. 41370b57cec5SDimitry Andric Value *ExitedPad = CurrentPad; 41380b57cec5SDimitry Andric ExitsFPI = false; 41390b57cec5SDimitry Andric do { 41400b57cec5SDimitry Andric if (ExitedPad == &FPI) { 41410b57cec5SDimitry Andric ExitsFPI = true; 41420b57cec5SDimitry Andric // Now we can resolve any ancestors of CurrentPad up to 41430b57cec5SDimitry Andric // FPI, but not including FPI since we need to make sure 41440b57cec5SDimitry Andric // to check all direct users of FPI for consistency. 41450b57cec5SDimitry Andric UnresolvedAncestorPad = &FPI; 41460b57cec5SDimitry Andric break; 41470b57cec5SDimitry Andric } 41480b57cec5SDimitry Andric Value *ExitedParent = getParentPad(ExitedPad); 41490b57cec5SDimitry Andric if (ExitedParent == UnwindParent) { 41500b57cec5SDimitry Andric // ExitedPad is the ancestor-most pad which this unwind 41510b57cec5SDimitry Andric // edge exits, so we can resolve up to it, meaning that 41520b57cec5SDimitry Andric // ExitedParent is the first ancestor still unresolved. 41530b57cec5SDimitry Andric UnresolvedAncestorPad = ExitedParent; 41540b57cec5SDimitry Andric break; 41550b57cec5SDimitry Andric } 41560b57cec5SDimitry Andric ExitedPad = ExitedParent; 41570b57cec5SDimitry Andric } while (!isa<ConstantTokenNone>(ExitedPad)); 41580b57cec5SDimitry Andric } else { 41590b57cec5SDimitry Andric // Unwinding to caller exits all pads. 41600b57cec5SDimitry Andric UnwindPad = ConstantTokenNone::get(FPI.getContext()); 41610b57cec5SDimitry Andric ExitsFPI = true; 41620b57cec5SDimitry Andric UnresolvedAncestorPad = &FPI; 41630b57cec5SDimitry Andric } 41640b57cec5SDimitry Andric 41650b57cec5SDimitry Andric if (ExitsFPI) { 41660b57cec5SDimitry Andric // This unwind edge exits FPI. Make sure it agrees with other 41670b57cec5SDimitry Andric // such edges. 41680b57cec5SDimitry Andric if (FirstUser) { 41690b57cec5SDimitry Andric Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 41700b57cec5SDimitry Andric "pad must have the same unwind " 41710b57cec5SDimitry Andric "dest", 41720b57cec5SDimitry Andric &FPI, U, FirstUser); 41730b57cec5SDimitry Andric } else { 41740b57cec5SDimitry Andric FirstUser = U; 41750b57cec5SDimitry Andric FirstUnwindPad = UnwindPad; 41760b57cec5SDimitry Andric // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 41770b57cec5SDimitry Andric if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 41780b57cec5SDimitry Andric getParentPad(UnwindPad) == getParentPad(&FPI)) 41790b57cec5SDimitry Andric SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 41800b57cec5SDimitry Andric } 41810b57cec5SDimitry Andric } 41820b57cec5SDimitry Andric // Make sure we visit all uses of FPI, but for nested pads stop as 41830b57cec5SDimitry Andric // soon as we know where they unwind to. 41840b57cec5SDimitry Andric if (CurrentPad != &FPI) 41850b57cec5SDimitry Andric break; 41860b57cec5SDimitry Andric } 41870b57cec5SDimitry Andric if (UnresolvedAncestorPad) { 41880b57cec5SDimitry Andric if (CurrentPad == UnresolvedAncestorPad) { 41890b57cec5SDimitry Andric // When CurrentPad is FPI itself, we don't mark it as resolved even if 41900b57cec5SDimitry Andric // we've found an unwind edge that exits it, because we need to verify 41910b57cec5SDimitry Andric // all direct uses of FPI. 41920b57cec5SDimitry Andric assert(CurrentPad == &FPI); 41930b57cec5SDimitry Andric continue; 41940b57cec5SDimitry Andric } 41950b57cec5SDimitry Andric // Pop off the worklist any nested pads that we've found an unwind 41960b57cec5SDimitry Andric // destination for. The pads on the worklist are the uncles, 41970b57cec5SDimitry Andric // great-uncles, etc. of CurrentPad. We've found an unwind destination 41980b57cec5SDimitry Andric // for all ancestors of CurrentPad up to but not including 41990b57cec5SDimitry Andric // UnresolvedAncestorPad. 42000b57cec5SDimitry Andric Value *ResolvedPad = CurrentPad; 42010b57cec5SDimitry Andric while (!Worklist.empty()) { 42020b57cec5SDimitry Andric Value *UnclePad = Worklist.back(); 42030b57cec5SDimitry Andric Value *AncestorPad = getParentPad(UnclePad); 42040b57cec5SDimitry Andric // Walk ResolvedPad up the ancestor list until we either find the 42050b57cec5SDimitry Andric // uncle's parent or the last resolved ancestor. 42060b57cec5SDimitry Andric while (ResolvedPad != AncestorPad) { 42070b57cec5SDimitry Andric Value *ResolvedParent = getParentPad(ResolvedPad); 42080b57cec5SDimitry Andric if (ResolvedParent == UnresolvedAncestorPad) { 42090b57cec5SDimitry Andric break; 42100b57cec5SDimitry Andric } 42110b57cec5SDimitry Andric ResolvedPad = ResolvedParent; 42120b57cec5SDimitry Andric } 42130b57cec5SDimitry Andric // If the resolved ancestor search didn't find the uncle's parent, 42140b57cec5SDimitry Andric // then the uncle is not yet resolved. 42150b57cec5SDimitry Andric if (ResolvedPad != AncestorPad) 42160b57cec5SDimitry Andric break; 42170b57cec5SDimitry Andric // This uncle is resolved, so pop it from the worklist. 42180b57cec5SDimitry Andric Worklist.pop_back(); 42190b57cec5SDimitry Andric } 42200b57cec5SDimitry Andric } 42210b57cec5SDimitry Andric } 42220b57cec5SDimitry Andric 42230b57cec5SDimitry Andric if (FirstUnwindPad) { 42240b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 42250b57cec5SDimitry Andric BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 42260b57cec5SDimitry Andric Value *SwitchUnwindPad; 42270b57cec5SDimitry Andric if (SwitchUnwindDest) 42280b57cec5SDimitry Andric SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 42290b57cec5SDimitry Andric else 42300b57cec5SDimitry Andric SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 42310b57cec5SDimitry Andric Assert(SwitchUnwindPad == FirstUnwindPad, 42320b57cec5SDimitry Andric "Unwind edges out of a catch must have the same unwind dest as " 42330b57cec5SDimitry Andric "the parent catchswitch", 42340b57cec5SDimitry Andric &FPI, FirstUser, CatchSwitch); 42350b57cec5SDimitry Andric } 42360b57cec5SDimitry Andric } 42370b57cec5SDimitry Andric 42380b57cec5SDimitry Andric visitInstruction(FPI); 42390b57cec5SDimitry Andric } 42400b57cec5SDimitry Andric 42410b57cec5SDimitry Andric void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 42420b57cec5SDimitry Andric BasicBlock *BB = CatchSwitch.getParent(); 42430b57cec5SDimitry Andric 42440b57cec5SDimitry Andric Function *F = BB->getParent(); 42450b57cec5SDimitry Andric Assert(F->hasPersonalityFn(), 42460b57cec5SDimitry Andric "CatchSwitchInst needs to be in a function with a personality.", 42470b57cec5SDimitry Andric &CatchSwitch); 42480b57cec5SDimitry Andric 42490b57cec5SDimitry Andric // The catchswitch instruction must be the first non-PHI instruction in the 42500b57cec5SDimitry Andric // block. 42510b57cec5SDimitry Andric Assert(BB->getFirstNonPHI() == &CatchSwitch, 42520b57cec5SDimitry Andric "CatchSwitchInst not the first non-PHI instruction in the block.", 42530b57cec5SDimitry Andric &CatchSwitch); 42540b57cec5SDimitry Andric 42550b57cec5SDimitry Andric auto *ParentPad = CatchSwitch.getParentPad(); 42560b57cec5SDimitry Andric Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 42570b57cec5SDimitry Andric "CatchSwitchInst has an invalid parent.", ParentPad); 42580b57cec5SDimitry Andric 42590b57cec5SDimitry Andric if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 42600b57cec5SDimitry Andric Instruction *I = UnwindDest->getFirstNonPHI(); 42610b57cec5SDimitry Andric Assert(I->isEHPad() && !isa<LandingPadInst>(I), 42620b57cec5SDimitry Andric "CatchSwitchInst must unwind to an EH block which is not a " 42630b57cec5SDimitry Andric "landingpad.", 42640b57cec5SDimitry Andric &CatchSwitch); 42650b57cec5SDimitry Andric 42660b57cec5SDimitry Andric // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 42670b57cec5SDimitry Andric if (getParentPad(I) == ParentPad) 42680b57cec5SDimitry Andric SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 42690b57cec5SDimitry Andric } 42700b57cec5SDimitry Andric 42710b57cec5SDimitry Andric Assert(CatchSwitch.getNumHandlers() != 0, 42720b57cec5SDimitry Andric "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 42730b57cec5SDimitry Andric 42740b57cec5SDimitry Andric for (BasicBlock *Handler : CatchSwitch.handlers()) { 42750b57cec5SDimitry Andric Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 42760b57cec5SDimitry Andric "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 42770b57cec5SDimitry Andric } 42780b57cec5SDimitry Andric 42790b57cec5SDimitry Andric visitEHPadPredecessors(CatchSwitch); 42800b57cec5SDimitry Andric visitTerminator(CatchSwitch); 42810b57cec5SDimitry Andric } 42820b57cec5SDimitry Andric 42830b57cec5SDimitry Andric void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 42840b57cec5SDimitry Andric Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 42850b57cec5SDimitry Andric "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 42860b57cec5SDimitry Andric CRI.getOperand(0)); 42870b57cec5SDimitry Andric 42880b57cec5SDimitry Andric if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 42890b57cec5SDimitry Andric Instruction *I = UnwindDest->getFirstNonPHI(); 42900b57cec5SDimitry Andric Assert(I->isEHPad() && !isa<LandingPadInst>(I), 42910b57cec5SDimitry Andric "CleanupReturnInst must unwind to an EH block which is not a " 42920b57cec5SDimitry Andric "landingpad.", 42930b57cec5SDimitry Andric &CRI); 42940b57cec5SDimitry Andric } 42950b57cec5SDimitry Andric 42960b57cec5SDimitry Andric visitTerminator(CRI); 42970b57cec5SDimitry Andric } 42980b57cec5SDimitry Andric 42990b57cec5SDimitry Andric void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 43000b57cec5SDimitry Andric Instruction *Op = cast<Instruction>(I.getOperand(i)); 43010b57cec5SDimitry Andric // If the we have an invalid invoke, don't try to compute the dominance. 43020b57cec5SDimitry Andric // We already reject it in the invoke specific checks and the dominance 43030b57cec5SDimitry Andric // computation doesn't handle multiple edges. 43040b57cec5SDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 43050b57cec5SDimitry Andric if (II->getNormalDest() == II->getUnwindDest()) 43060b57cec5SDimitry Andric return; 43070b57cec5SDimitry Andric } 43080b57cec5SDimitry Andric 43090b57cec5SDimitry Andric // Quick check whether the def has already been encountered in the same block. 43100b57cec5SDimitry Andric // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 43110b57cec5SDimitry Andric // uses are defined to happen on the incoming edge, not at the instruction. 43120b57cec5SDimitry Andric // 43130b57cec5SDimitry Andric // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 43140b57cec5SDimitry Andric // wrapping an SSA value, assert that we've already encountered it. See 43150b57cec5SDimitry Andric // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 43160b57cec5SDimitry Andric if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 43170b57cec5SDimitry Andric return; 43180b57cec5SDimitry Andric 43190b57cec5SDimitry Andric const Use &U = I.getOperandUse(i); 43200b57cec5SDimitry Andric Assert(DT.dominates(Op, U), 43210b57cec5SDimitry Andric "Instruction does not dominate all uses!", Op, &I); 43220b57cec5SDimitry Andric } 43230b57cec5SDimitry Andric 43240b57cec5SDimitry Andric void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 43250b57cec5SDimitry Andric Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 43260b57cec5SDimitry Andric "apply only to pointer types", &I); 43278bcb0991SDimitry Andric Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 43280b57cec5SDimitry Andric "dereferenceable, dereferenceable_or_null apply only to load" 43298bcb0991SDimitry Andric " and inttoptr instructions, use attributes for calls or invokes", &I); 43300b57cec5SDimitry Andric Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 43310b57cec5SDimitry Andric "take one operand!", &I); 43320b57cec5SDimitry Andric ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 43330b57cec5SDimitry Andric Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 43340b57cec5SDimitry Andric "dereferenceable_or_null metadata value must be an i64!", &I); 43350b57cec5SDimitry Andric } 43360b57cec5SDimitry Andric 43378bcb0991SDimitry Andric void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 43388bcb0991SDimitry Andric Assert(MD->getNumOperands() >= 2, 43398bcb0991SDimitry Andric "!prof annotations should have no less than 2 operands", MD); 43408bcb0991SDimitry Andric 43418bcb0991SDimitry Andric // Check first operand. 43428bcb0991SDimitry Andric Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 43438bcb0991SDimitry Andric Assert(isa<MDString>(MD->getOperand(0)), 43448bcb0991SDimitry Andric "expected string with name of the !prof annotation", MD); 43458bcb0991SDimitry Andric MDString *MDS = cast<MDString>(MD->getOperand(0)); 43468bcb0991SDimitry Andric StringRef ProfName = MDS->getString(); 43478bcb0991SDimitry Andric 43488bcb0991SDimitry Andric // Check consistency of !prof branch_weights metadata. 43498bcb0991SDimitry Andric if (ProfName.equals("branch_weights")) { 43505ffd83dbSDimitry Andric if (isa<InvokeInst>(&I)) { 43515ffd83dbSDimitry Andric Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 43525ffd83dbSDimitry Andric "Wrong number of InvokeInst branch_weights operands", MD); 43535ffd83dbSDimitry Andric } else { 43548bcb0991SDimitry Andric unsigned ExpectedNumOperands = 0; 43558bcb0991SDimitry Andric if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 43568bcb0991SDimitry Andric ExpectedNumOperands = BI->getNumSuccessors(); 43578bcb0991SDimitry Andric else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 43588bcb0991SDimitry Andric ExpectedNumOperands = SI->getNumSuccessors(); 43595ffd83dbSDimitry Andric else if (isa<CallInst>(&I)) 43608bcb0991SDimitry Andric ExpectedNumOperands = 1; 43618bcb0991SDimitry Andric else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 43628bcb0991SDimitry Andric ExpectedNumOperands = IBI->getNumDestinations(); 43638bcb0991SDimitry Andric else if (isa<SelectInst>(&I)) 43648bcb0991SDimitry Andric ExpectedNumOperands = 2; 43658bcb0991SDimitry Andric else 43668bcb0991SDimitry Andric CheckFailed("!prof branch_weights are not allowed for this instruction", 43678bcb0991SDimitry Andric MD); 43688bcb0991SDimitry Andric 43698bcb0991SDimitry Andric Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 43708bcb0991SDimitry Andric "Wrong number of operands", MD); 43715ffd83dbSDimitry Andric } 43728bcb0991SDimitry Andric for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 43738bcb0991SDimitry Andric auto &MDO = MD->getOperand(i); 43748bcb0991SDimitry Andric Assert(MDO, "second operand should not be null", MD); 43758bcb0991SDimitry Andric Assert(mdconst::dyn_extract<ConstantInt>(MDO), 43768bcb0991SDimitry Andric "!prof brunch_weights operand is not a const int"); 43778bcb0991SDimitry Andric } 43788bcb0991SDimitry Andric } 43798bcb0991SDimitry Andric } 43808bcb0991SDimitry Andric 4381e8d8bef9SDimitry Andric void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4382e8d8bef9SDimitry Andric Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4383e8d8bef9SDimitry Andric Assert(Annotation->getNumOperands() >= 1, 4384e8d8bef9SDimitry Andric "annotation must have at least one operand"); 4385e8d8bef9SDimitry Andric for (const MDOperand &Op : Annotation->operands()) 4386e8d8bef9SDimitry Andric Assert(isa<MDString>(Op.get()), "operands must be strings"); 4387e8d8bef9SDimitry Andric } 4388e8d8bef9SDimitry Andric 4389349cc55cSDimitry Andric void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 4390349cc55cSDimitry Andric unsigned NumOps = MD->getNumOperands(); 4391349cc55cSDimitry Andric Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 4392349cc55cSDimitry Andric MD); 4393349cc55cSDimitry Andric Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 4394349cc55cSDimitry Andric "first scope operand must be self-referential or string", MD); 4395349cc55cSDimitry Andric if (NumOps == 3) 4396349cc55cSDimitry Andric Assert(isa<MDString>(MD->getOperand(2)), 4397349cc55cSDimitry Andric "third scope operand must be string (if used)", MD); 4398349cc55cSDimitry Andric 4399349cc55cSDimitry Andric MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 4400349cc55cSDimitry Andric Assert(Domain != nullptr, "second scope operand must be MDNode", MD); 4401349cc55cSDimitry Andric 4402349cc55cSDimitry Andric unsigned NumDomainOps = Domain->getNumOperands(); 4403349cc55cSDimitry Andric Assert(NumDomainOps >= 1 && NumDomainOps <= 2, 4404349cc55cSDimitry Andric "domain must have one or two operands", Domain); 4405349cc55cSDimitry Andric Assert(Domain->getOperand(0).get() == Domain || 4406349cc55cSDimitry Andric isa<MDString>(Domain->getOperand(0)), 4407349cc55cSDimitry Andric "first domain operand must be self-referential or string", Domain); 4408349cc55cSDimitry Andric if (NumDomainOps == 2) 4409349cc55cSDimitry Andric Assert(isa<MDString>(Domain->getOperand(1)), 4410349cc55cSDimitry Andric "second domain operand must be string (if used)", Domain); 4411349cc55cSDimitry Andric } 4412349cc55cSDimitry Andric 4413349cc55cSDimitry Andric void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 4414349cc55cSDimitry Andric for (const MDOperand &Op : MD->operands()) { 4415349cc55cSDimitry Andric const MDNode *OpMD = dyn_cast<MDNode>(Op); 4416349cc55cSDimitry Andric Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD); 4417349cc55cSDimitry Andric visitAliasScopeMetadata(OpMD); 4418349cc55cSDimitry Andric } 4419349cc55cSDimitry Andric } 4420349cc55cSDimitry Andric 44210b57cec5SDimitry Andric /// verifyInstruction - Verify that an instruction is well formed. 44220b57cec5SDimitry Andric /// 44230b57cec5SDimitry Andric void Verifier::visitInstruction(Instruction &I) { 44240b57cec5SDimitry Andric BasicBlock *BB = I.getParent(); 44250b57cec5SDimitry Andric Assert(BB, "Instruction not embedded in basic block!", &I); 44260b57cec5SDimitry Andric 44270b57cec5SDimitry Andric if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 44280b57cec5SDimitry Andric for (User *U : I.users()) { 44290b57cec5SDimitry Andric Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 44300b57cec5SDimitry Andric "Only PHI nodes may reference their own value!", &I); 44310b57cec5SDimitry Andric } 44320b57cec5SDimitry Andric } 44330b57cec5SDimitry Andric 44340b57cec5SDimitry Andric // Check that void typed values don't have names 44350b57cec5SDimitry Andric Assert(!I.getType()->isVoidTy() || !I.hasName(), 44360b57cec5SDimitry Andric "Instruction has a name, but provides a void value!", &I); 44370b57cec5SDimitry Andric 44380b57cec5SDimitry Andric // Check that the return value of the instruction is either void or a legal 44390b57cec5SDimitry Andric // value type. 44400b57cec5SDimitry Andric Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 44410b57cec5SDimitry Andric "Instruction returns a non-scalar type!", &I); 44420b57cec5SDimitry Andric 44430b57cec5SDimitry Andric // Check that the instruction doesn't produce metadata. Calls are already 44440b57cec5SDimitry Andric // checked against the callee type. 44450b57cec5SDimitry Andric Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 44460b57cec5SDimitry Andric "Invalid use of metadata!", &I); 44470b57cec5SDimitry Andric 44480b57cec5SDimitry Andric // Check that all uses of the instruction, if they are instructions 44490b57cec5SDimitry Andric // themselves, actually have parent basic blocks. If the use is not an 44500b57cec5SDimitry Andric // instruction, it is an error! 44510b57cec5SDimitry Andric for (Use &U : I.uses()) { 44520b57cec5SDimitry Andric if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 44530b57cec5SDimitry Andric Assert(Used->getParent() != nullptr, 44540b57cec5SDimitry Andric "Instruction referencing" 44550b57cec5SDimitry Andric " instruction not embedded in a basic block!", 44560b57cec5SDimitry Andric &I, Used); 44570b57cec5SDimitry Andric else { 44580b57cec5SDimitry Andric CheckFailed("Use of instruction is not an instruction!", U); 44590b57cec5SDimitry Andric return; 44600b57cec5SDimitry Andric } 44610b57cec5SDimitry Andric } 44620b57cec5SDimitry Andric 44630b57cec5SDimitry Andric // Get a pointer to the call base of the instruction if it is some form of 44640b57cec5SDimitry Andric // call. 44650b57cec5SDimitry Andric const CallBase *CBI = dyn_cast<CallBase>(&I); 44660b57cec5SDimitry Andric 44670b57cec5SDimitry Andric for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 44680b57cec5SDimitry Andric Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 44690b57cec5SDimitry Andric 44700b57cec5SDimitry Andric // Check to make sure that only first-class-values are operands to 44710b57cec5SDimitry Andric // instructions. 44720b57cec5SDimitry Andric if (!I.getOperand(i)->getType()->isFirstClassType()) { 44730b57cec5SDimitry Andric Assert(false, "Instruction operands must be first-class values!", &I); 44740b57cec5SDimitry Andric } 44750b57cec5SDimitry Andric 44760b57cec5SDimitry Andric if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4477349cc55cSDimitry Andric // This code checks whether the function is used as the operand of a 4478349cc55cSDimitry Andric // clang_arc_attachedcall operand bundle. 4479349cc55cSDimitry Andric auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 4480349cc55cSDimitry Andric int Idx) { 4481349cc55cSDimitry Andric return CBI && CBI->isOperandBundleOfType( 4482349cc55cSDimitry Andric LLVMContext::OB_clang_arc_attachedcall, Idx); 4483349cc55cSDimitry Andric }; 4484349cc55cSDimitry Andric 44850b57cec5SDimitry Andric // Check to make sure that the "address of" an intrinsic function is never 4486349cc55cSDimitry Andric // taken. Ignore cases where the address of the intrinsic function is used 4487349cc55cSDimitry Andric // as the argument of operand bundle "clang.arc.attachedcall" as those 4488349cc55cSDimitry Andric // cases are handled in verifyAttachedCallBundle. 4489349cc55cSDimitry Andric Assert((!F->isIntrinsic() || 4490349cc55cSDimitry Andric (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 4491349cc55cSDimitry Andric IsAttachedCallOperand(F, CBI, i)), 44920b57cec5SDimitry Andric "Cannot take the address of an intrinsic!", &I); 44930b57cec5SDimitry Andric Assert( 44940b57cec5SDimitry Andric !F->isIntrinsic() || isa<CallInst>(I) || 44950b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::donothing || 4496fe6060f1SDimitry Andric F->getIntrinsicID() == Intrinsic::seh_try_begin || 4497fe6060f1SDimitry Andric F->getIntrinsicID() == Intrinsic::seh_try_end || 4498fe6060f1SDimitry Andric F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4499fe6060f1SDimitry Andric F->getIntrinsicID() == Intrinsic::seh_scope_end || 45000b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::coro_resume || 45010b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::coro_destroy || 45020b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 45030b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 45040b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4505349cc55cSDimitry Andric F->getIntrinsicID() == Intrinsic::wasm_rethrow || 4506349cc55cSDimitry Andric IsAttachedCallOperand(F, CBI, i), 45070b57cec5SDimitry Andric "Cannot invoke an intrinsic other than donothing, patchpoint, " 4508349cc55cSDimitry Andric "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 45090b57cec5SDimitry Andric &I); 45100b57cec5SDimitry Andric Assert(F->getParent() == &M, "Referencing function in another module!", 45110b57cec5SDimitry Andric &I, &M, F, F->getParent()); 45120b57cec5SDimitry Andric } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 45130b57cec5SDimitry Andric Assert(OpBB->getParent() == BB->getParent(), 45140b57cec5SDimitry Andric "Referring to a basic block in another function!", &I); 45150b57cec5SDimitry Andric } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 45160b57cec5SDimitry Andric Assert(OpArg->getParent() == BB->getParent(), 45170b57cec5SDimitry Andric "Referring to an argument in another function!", &I); 45180b57cec5SDimitry Andric } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 45190b57cec5SDimitry Andric Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 45200b57cec5SDimitry Andric &M, GV, GV->getParent()); 45210b57cec5SDimitry Andric } else if (isa<Instruction>(I.getOperand(i))) { 45220b57cec5SDimitry Andric verifyDominatesUse(I, i); 45230b57cec5SDimitry Andric } else if (isa<InlineAsm>(I.getOperand(i))) { 45240b57cec5SDimitry Andric Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 45250b57cec5SDimitry Andric "Cannot take the address of an inline asm!", &I); 45260b57cec5SDimitry Andric } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4527fe6060f1SDimitry Andric if (CE->getType()->isPtrOrPtrVectorTy()) { 45280b57cec5SDimitry Andric // If we have a ConstantExpr pointer, we need to see if it came from an 4529fe6060f1SDimitry Andric // illegal bitcast. 45300b57cec5SDimitry Andric visitConstantExprsRecursively(CE); 45310b57cec5SDimitry Andric } 45320b57cec5SDimitry Andric } 45330b57cec5SDimitry Andric } 45340b57cec5SDimitry Andric 45350b57cec5SDimitry Andric if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 45360b57cec5SDimitry Andric Assert(I.getType()->isFPOrFPVectorTy(), 45370b57cec5SDimitry Andric "fpmath requires a floating point result!", &I); 45380b57cec5SDimitry Andric Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 45390b57cec5SDimitry Andric if (ConstantFP *CFP0 = 45400b57cec5SDimitry Andric mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 45410b57cec5SDimitry Andric const APFloat &Accuracy = CFP0->getValueAPF(); 45420b57cec5SDimitry Andric Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 45430b57cec5SDimitry Andric "fpmath accuracy must have float type", &I); 45440b57cec5SDimitry Andric Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 45450b57cec5SDimitry Andric "fpmath accuracy not a positive number!", &I); 45460b57cec5SDimitry Andric } else { 45470b57cec5SDimitry Andric Assert(false, "invalid fpmath accuracy!", &I); 45480b57cec5SDimitry Andric } 45490b57cec5SDimitry Andric } 45500b57cec5SDimitry Andric 45510b57cec5SDimitry Andric if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 45520b57cec5SDimitry Andric Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 45530b57cec5SDimitry Andric "Ranges are only for loads, calls and invokes!", &I); 45540b57cec5SDimitry Andric visitRangeMetadata(I, Range, I.getType()); 45550b57cec5SDimitry Andric } 45560b57cec5SDimitry Andric 4557349cc55cSDimitry Andric if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 4558349cc55cSDimitry Andric Assert(isa<LoadInst>(I) || isa<StoreInst>(I), 4559349cc55cSDimitry Andric "invariant.group metadata is only for loads and stores", &I); 4560349cc55cSDimitry Andric } 4561349cc55cSDimitry Andric 45620b57cec5SDimitry Andric if (I.getMetadata(LLVMContext::MD_nonnull)) { 45630b57cec5SDimitry Andric Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 45640b57cec5SDimitry Andric &I); 45650b57cec5SDimitry Andric Assert(isa<LoadInst>(I), 45660b57cec5SDimitry Andric "nonnull applies only to load instructions, use attributes" 45670b57cec5SDimitry Andric " for calls or invokes", 45680b57cec5SDimitry Andric &I); 45690b57cec5SDimitry Andric } 45700b57cec5SDimitry Andric 45710b57cec5SDimitry Andric if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 45720b57cec5SDimitry Andric visitDereferenceableMetadata(I, MD); 45730b57cec5SDimitry Andric 45740b57cec5SDimitry Andric if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 45750b57cec5SDimitry Andric visitDereferenceableMetadata(I, MD); 45760b57cec5SDimitry Andric 45770b57cec5SDimitry Andric if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 45780b57cec5SDimitry Andric TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 45790b57cec5SDimitry Andric 4580349cc55cSDimitry Andric if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 4581349cc55cSDimitry Andric visitAliasScopeListMetadata(MD); 4582349cc55cSDimitry Andric if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 4583349cc55cSDimitry Andric visitAliasScopeListMetadata(MD); 4584349cc55cSDimitry Andric 45850b57cec5SDimitry Andric if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 45860b57cec5SDimitry Andric Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 45870b57cec5SDimitry Andric &I); 45880b57cec5SDimitry Andric Assert(isa<LoadInst>(I), "align applies only to load instructions, " 45890b57cec5SDimitry Andric "use attributes for calls or invokes", &I); 45900b57cec5SDimitry Andric Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 45910b57cec5SDimitry Andric ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 45920b57cec5SDimitry Andric Assert(CI && CI->getType()->isIntegerTy(64), 45930b57cec5SDimitry Andric "align metadata value must be an i64!", &I); 45940b57cec5SDimitry Andric uint64_t Align = CI->getZExtValue(); 45950b57cec5SDimitry Andric Assert(isPowerOf2_64(Align), 45960b57cec5SDimitry Andric "align metadata value must be a power of 2!", &I); 45970b57cec5SDimitry Andric Assert(Align <= Value::MaximumAlignment, 45980b57cec5SDimitry Andric "alignment is larger that implementation defined limit", &I); 45990b57cec5SDimitry Andric } 46000b57cec5SDimitry Andric 46018bcb0991SDimitry Andric if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 46028bcb0991SDimitry Andric visitProfMetadata(I, MD); 46038bcb0991SDimitry Andric 4604e8d8bef9SDimitry Andric if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4605e8d8bef9SDimitry Andric visitAnnotationMetadata(Annotation); 4606e8d8bef9SDimitry Andric 46070b57cec5SDimitry Andric if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 46080b57cec5SDimitry Andric AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 46095ffd83dbSDimitry Andric visitMDNode(*N, AreDebugLocsAllowed::Yes); 46100b57cec5SDimitry Andric } 46110b57cec5SDimitry Andric 46128bcb0991SDimitry Andric if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 46130b57cec5SDimitry Andric verifyFragmentExpression(*DII); 46148bcb0991SDimitry Andric verifyNotEntryValue(*DII); 46158bcb0991SDimitry Andric } 46160b57cec5SDimitry Andric 46175ffd83dbSDimitry Andric SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 46185ffd83dbSDimitry Andric I.getAllMetadata(MDs); 46195ffd83dbSDimitry Andric for (auto Attachment : MDs) { 46205ffd83dbSDimitry Andric unsigned Kind = Attachment.first; 46215ffd83dbSDimitry Andric auto AllowLocs = 46225ffd83dbSDimitry Andric (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 46235ffd83dbSDimitry Andric ? AreDebugLocsAllowed::Yes 46245ffd83dbSDimitry Andric : AreDebugLocsAllowed::No; 46255ffd83dbSDimitry Andric visitMDNode(*Attachment.second, AllowLocs); 46265ffd83dbSDimitry Andric } 46275ffd83dbSDimitry Andric 46280b57cec5SDimitry Andric InstsInThisBlock.insert(&I); 46290b57cec5SDimitry Andric } 46300b57cec5SDimitry Andric 46310b57cec5SDimitry Andric /// Allow intrinsics to be verified in different ways. 46320b57cec5SDimitry Andric void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 46330b57cec5SDimitry Andric Function *IF = Call.getCalledFunction(); 46340b57cec5SDimitry Andric Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 46350b57cec5SDimitry Andric IF); 46360b57cec5SDimitry Andric 46370b57cec5SDimitry Andric // Verify that the intrinsic prototype lines up with what the .td files 46380b57cec5SDimitry Andric // describe. 46390b57cec5SDimitry Andric FunctionType *IFTy = IF->getFunctionType(); 46400b57cec5SDimitry Andric bool IsVarArg = IFTy->isVarArg(); 46410b57cec5SDimitry Andric 46420b57cec5SDimitry Andric SmallVector<Intrinsic::IITDescriptor, 8> Table; 46430b57cec5SDimitry Andric getIntrinsicInfoTableEntries(ID, Table); 46440b57cec5SDimitry Andric ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 46450b57cec5SDimitry Andric 46460b57cec5SDimitry Andric // Walk the descriptors to extract overloaded types. 46470b57cec5SDimitry Andric SmallVector<Type *, 4> ArgTys; 46480b57cec5SDimitry Andric Intrinsic::MatchIntrinsicTypesResult Res = 46490b57cec5SDimitry Andric Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 46500b57cec5SDimitry Andric Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 46510b57cec5SDimitry Andric "Intrinsic has incorrect return type!", IF); 46520b57cec5SDimitry Andric Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 46530b57cec5SDimitry Andric "Intrinsic has incorrect argument type!", IF); 46540b57cec5SDimitry Andric 46550b57cec5SDimitry Andric // Verify if the intrinsic call matches the vararg property. 46560b57cec5SDimitry Andric if (IsVarArg) 46570b57cec5SDimitry Andric Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 46580b57cec5SDimitry Andric "Intrinsic was not defined with variable arguments!", IF); 46590b57cec5SDimitry Andric else 46600b57cec5SDimitry Andric Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 46610b57cec5SDimitry Andric "Callsite was not defined with variable arguments!", IF); 46620b57cec5SDimitry Andric 46630b57cec5SDimitry Andric // All descriptors should be absorbed by now. 46640b57cec5SDimitry Andric Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 46650b57cec5SDimitry Andric 46660b57cec5SDimitry Andric // Now that we have the intrinsic ID and the actual argument types (and we 46670b57cec5SDimitry Andric // know they are legal for the intrinsic!) get the intrinsic name through the 46680b57cec5SDimitry Andric // usual means. This allows us to verify the mangling of argument types into 46690b57cec5SDimitry Andric // the name. 4670fe6060f1SDimitry Andric const std::string ExpectedName = 4671fe6060f1SDimitry Andric Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 46720b57cec5SDimitry Andric Assert(ExpectedName == IF->getName(), 46730b57cec5SDimitry Andric "Intrinsic name not mangled correctly for type arguments! " 46740b57cec5SDimitry Andric "Should be: " + 46750b57cec5SDimitry Andric ExpectedName, 46760b57cec5SDimitry Andric IF); 46770b57cec5SDimitry Andric 46780b57cec5SDimitry Andric // If the intrinsic takes MDNode arguments, verify that they are either global 46790b57cec5SDimitry Andric // or are local to *this* function. 4680fe6060f1SDimitry Andric for (Value *V : Call.args()) { 46810b57cec5SDimitry Andric if (auto *MD = dyn_cast<MetadataAsValue>(V)) 46820b57cec5SDimitry Andric visitMetadataAsValue(*MD, Call.getCaller()); 4683fe6060f1SDimitry Andric if (auto *Const = dyn_cast<Constant>(V)) 4684fe6060f1SDimitry Andric Assert(!Const->getType()->isX86_AMXTy(), 4685fe6060f1SDimitry Andric "const x86_amx is not allowed in argument!"); 4686fe6060f1SDimitry Andric } 46870b57cec5SDimitry Andric 46880b57cec5SDimitry Andric switch (ID) { 46890b57cec5SDimitry Andric default: 46900b57cec5SDimitry Andric break; 46915ffd83dbSDimitry Andric case Intrinsic::assume: { 46925ffd83dbSDimitry Andric for (auto &Elem : Call.bundle_op_infos()) { 46935ffd83dbSDimitry Andric Assert(Elem.Tag->getKey() == "ignore" || 46945ffd83dbSDimitry Andric Attribute::isExistingAttribute(Elem.Tag->getKey()), 4695349cc55cSDimitry Andric "tags must be valid attribute names", Call); 46965ffd83dbSDimitry Andric Attribute::AttrKind Kind = 46975ffd83dbSDimitry Andric Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4698e8d8bef9SDimitry Andric unsigned ArgCount = Elem.End - Elem.Begin; 4699e8d8bef9SDimitry Andric if (Kind == Attribute::Alignment) { 4700e8d8bef9SDimitry Andric Assert(ArgCount <= 3 && ArgCount >= 2, 4701349cc55cSDimitry Andric "alignment assumptions should have 2 or 3 arguments", Call); 4702e8d8bef9SDimitry Andric Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4703349cc55cSDimitry Andric "first argument should be a pointer", Call); 4704e8d8bef9SDimitry Andric Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4705349cc55cSDimitry Andric "second argument should be an integer", Call); 4706e8d8bef9SDimitry Andric if (ArgCount == 3) 4707e8d8bef9SDimitry Andric Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4708349cc55cSDimitry Andric "third argument should be an integer if present", Call); 4709e8d8bef9SDimitry Andric return; 4710e8d8bef9SDimitry Andric } 4711349cc55cSDimitry Andric Assert(ArgCount <= 2, "too many arguments", Call); 47125ffd83dbSDimitry Andric if (Kind == Attribute::None) 47135ffd83dbSDimitry Andric break; 4714fe6060f1SDimitry Andric if (Attribute::isIntAttrKind(Kind)) { 4715349cc55cSDimitry Andric Assert(ArgCount == 2, "this attribute should have 2 arguments", Call); 47165ffd83dbSDimitry Andric Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4717349cc55cSDimitry Andric "the second argument should be a constant integral value", Call); 4718fe6060f1SDimitry Andric } else if (Attribute::canUseAsParamAttr(Kind)) { 4719349cc55cSDimitry Andric Assert((ArgCount) == 1, "this attribute should have one argument", 4720349cc55cSDimitry Andric Call); 4721fe6060f1SDimitry Andric } else if (Attribute::canUseAsFnAttr(Kind)) { 4722349cc55cSDimitry Andric Assert((ArgCount) == 0, "this attribute has no argument", Call); 47235ffd83dbSDimitry Andric } 47245ffd83dbSDimitry Andric } 47255ffd83dbSDimitry Andric break; 47265ffd83dbSDimitry Andric } 47270b57cec5SDimitry Andric case Intrinsic::coro_id: { 47280b57cec5SDimitry Andric auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 47290b57cec5SDimitry Andric if (isa<ConstantPointerNull>(InfoArg)) 47300b57cec5SDimitry Andric break; 47310b57cec5SDimitry Andric auto *GV = dyn_cast<GlobalVariable>(InfoArg); 47320b57cec5SDimitry Andric Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4733fe6060f1SDimitry Andric "info argument of llvm.coro.id must refer to an initialized " 47340b57cec5SDimitry Andric "constant"); 47350b57cec5SDimitry Andric Constant *Init = GV->getInitializer(); 47360b57cec5SDimitry Andric Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4737fe6060f1SDimitry Andric "info argument of llvm.coro.id must refer to either a struct or " 47380b57cec5SDimitry Andric "an array"); 47390b57cec5SDimitry Andric break; 47400b57cec5SDimitry Andric } 47415ffd83dbSDimitry Andric #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4742480093f4SDimitry Andric case Intrinsic::INTRINSIC: 4743480093f4SDimitry Andric #include "llvm/IR/ConstrainedOps.def" 47440b57cec5SDimitry Andric visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 47450b57cec5SDimitry Andric break; 47460b57cec5SDimitry Andric case Intrinsic::dbg_declare: // llvm.dbg.declare 47470b57cec5SDimitry Andric Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 47480b57cec5SDimitry Andric "invalid llvm.dbg.declare intrinsic call 1", Call); 47490b57cec5SDimitry Andric visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 47500b57cec5SDimitry Andric break; 47510b57cec5SDimitry Andric case Intrinsic::dbg_addr: // llvm.dbg.addr 47520b57cec5SDimitry Andric visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 47530b57cec5SDimitry Andric break; 47540b57cec5SDimitry Andric case Intrinsic::dbg_value: // llvm.dbg.value 47550b57cec5SDimitry Andric visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 47560b57cec5SDimitry Andric break; 47570b57cec5SDimitry Andric case Intrinsic::dbg_label: // llvm.dbg.label 47580b57cec5SDimitry Andric visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 47590b57cec5SDimitry Andric break; 47600b57cec5SDimitry Andric case Intrinsic::memcpy: 47615ffd83dbSDimitry Andric case Intrinsic::memcpy_inline: 47620b57cec5SDimitry Andric case Intrinsic::memmove: 47630b57cec5SDimitry Andric case Intrinsic::memset: { 47640b57cec5SDimitry Andric const auto *MI = cast<MemIntrinsic>(&Call); 47650b57cec5SDimitry Andric auto IsValidAlignment = [&](unsigned Alignment) -> bool { 47660b57cec5SDimitry Andric return Alignment == 0 || isPowerOf2_32(Alignment); 47670b57cec5SDimitry Andric }; 47680b57cec5SDimitry Andric Assert(IsValidAlignment(MI->getDestAlignment()), 47690b57cec5SDimitry Andric "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 47700b57cec5SDimitry Andric Call); 47710b57cec5SDimitry Andric if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 47720b57cec5SDimitry Andric Assert(IsValidAlignment(MTI->getSourceAlignment()), 47730b57cec5SDimitry Andric "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 47740b57cec5SDimitry Andric Call); 47750b57cec5SDimitry Andric } 47760b57cec5SDimitry Andric 47770b57cec5SDimitry Andric break; 47780b57cec5SDimitry Andric } 47790b57cec5SDimitry Andric case Intrinsic::memcpy_element_unordered_atomic: 47800b57cec5SDimitry Andric case Intrinsic::memmove_element_unordered_atomic: 47810b57cec5SDimitry Andric case Intrinsic::memset_element_unordered_atomic: { 47820b57cec5SDimitry Andric const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 47830b57cec5SDimitry Andric 47840b57cec5SDimitry Andric ConstantInt *ElementSizeCI = 47850b57cec5SDimitry Andric cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 47860b57cec5SDimitry Andric const APInt &ElementSizeVal = ElementSizeCI->getValue(); 47870b57cec5SDimitry Andric Assert(ElementSizeVal.isPowerOf2(), 47880b57cec5SDimitry Andric "element size of the element-wise atomic memory intrinsic " 47890b57cec5SDimitry Andric "must be a power of 2", 47900b57cec5SDimitry Andric Call); 47910b57cec5SDimitry Andric 47920b57cec5SDimitry Andric auto IsValidAlignment = [&](uint64_t Alignment) { 47930b57cec5SDimitry Andric return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 47940b57cec5SDimitry Andric }; 47950b57cec5SDimitry Andric uint64_t DstAlignment = AMI->getDestAlignment(); 47960b57cec5SDimitry Andric Assert(IsValidAlignment(DstAlignment), 47970b57cec5SDimitry Andric "incorrect alignment of the destination argument", Call); 47980b57cec5SDimitry Andric if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 47990b57cec5SDimitry Andric uint64_t SrcAlignment = AMT->getSourceAlignment(); 48000b57cec5SDimitry Andric Assert(IsValidAlignment(SrcAlignment), 48010b57cec5SDimitry Andric "incorrect alignment of the source argument", Call); 48020b57cec5SDimitry Andric } 48030b57cec5SDimitry Andric break; 48040b57cec5SDimitry Andric } 48055ffd83dbSDimitry Andric case Intrinsic::call_preallocated_setup: { 48065ffd83dbSDimitry Andric auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 48075ffd83dbSDimitry Andric Assert(NumArgs != nullptr, 48085ffd83dbSDimitry Andric "llvm.call.preallocated.setup argument must be a constant"); 48095ffd83dbSDimitry Andric bool FoundCall = false; 48105ffd83dbSDimitry Andric for (User *U : Call.users()) { 48115ffd83dbSDimitry Andric auto *UseCall = dyn_cast<CallBase>(U); 48125ffd83dbSDimitry Andric Assert(UseCall != nullptr, 48135ffd83dbSDimitry Andric "Uses of llvm.call.preallocated.setup must be calls"); 48145ffd83dbSDimitry Andric const Function *Fn = UseCall->getCalledFunction(); 48155ffd83dbSDimitry Andric if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 48165ffd83dbSDimitry Andric auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 48175ffd83dbSDimitry Andric Assert(AllocArgIndex != nullptr, 48185ffd83dbSDimitry Andric "llvm.call.preallocated.alloc arg index must be a constant"); 48195ffd83dbSDimitry Andric auto AllocArgIndexInt = AllocArgIndex->getValue(); 48205ffd83dbSDimitry Andric Assert(AllocArgIndexInt.sge(0) && 48215ffd83dbSDimitry Andric AllocArgIndexInt.slt(NumArgs->getValue()), 48225ffd83dbSDimitry Andric "llvm.call.preallocated.alloc arg index must be between 0 and " 48235ffd83dbSDimitry Andric "corresponding " 48245ffd83dbSDimitry Andric "llvm.call.preallocated.setup's argument count"); 48255ffd83dbSDimitry Andric } else if (Fn && Fn->getIntrinsicID() == 48265ffd83dbSDimitry Andric Intrinsic::call_preallocated_teardown) { 48275ffd83dbSDimitry Andric // nothing to do 48285ffd83dbSDimitry Andric } else { 48295ffd83dbSDimitry Andric Assert(!FoundCall, "Can have at most one call corresponding to a " 48305ffd83dbSDimitry Andric "llvm.call.preallocated.setup"); 48315ffd83dbSDimitry Andric FoundCall = true; 48325ffd83dbSDimitry Andric size_t NumPreallocatedArgs = 0; 4833349cc55cSDimitry Andric for (unsigned i = 0; i < UseCall->arg_size(); i++) { 48345ffd83dbSDimitry Andric if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 48355ffd83dbSDimitry Andric ++NumPreallocatedArgs; 48365ffd83dbSDimitry Andric } 48375ffd83dbSDimitry Andric } 48385ffd83dbSDimitry Andric Assert(NumPreallocatedArgs != 0, 48395ffd83dbSDimitry Andric "cannot use preallocated intrinsics on a call without " 48405ffd83dbSDimitry Andric "preallocated arguments"); 48415ffd83dbSDimitry Andric Assert(NumArgs->equalsInt(NumPreallocatedArgs), 48425ffd83dbSDimitry Andric "llvm.call.preallocated.setup arg size must be equal to number " 48435ffd83dbSDimitry Andric "of preallocated arguments " 48445ffd83dbSDimitry Andric "at call site", 48455ffd83dbSDimitry Andric Call, *UseCall); 48465ffd83dbSDimitry Andric // getOperandBundle() cannot be called if more than one of the operand 48475ffd83dbSDimitry Andric // bundle exists. There is already a check elsewhere for this, so skip 48485ffd83dbSDimitry Andric // here if we see more than one. 48495ffd83dbSDimitry Andric if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 48505ffd83dbSDimitry Andric 1) { 48515ffd83dbSDimitry Andric return; 48525ffd83dbSDimitry Andric } 48535ffd83dbSDimitry Andric auto PreallocatedBundle = 48545ffd83dbSDimitry Andric UseCall->getOperandBundle(LLVMContext::OB_preallocated); 48555ffd83dbSDimitry Andric Assert(PreallocatedBundle, 48565ffd83dbSDimitry Andric "Use of llvm.call.preallocated.setup outside intrinsics " 48575ffd83dbSDimitry Andric "must be in \"preallocated\" operand bundle"); 48585ffd83dbSDimitry Andric Assert(PreallocatedBundle->Inputs.front().get() == &Call, 48595ffd83dbSDimitry Andric "preallocated bundle must have token from corresponding " 48605ffd83dbSDimitry Andric "llvm.call.preallocated.setup"); 48615ffd83dbSDimitry Andric } 48625ffd83dbSDimitry Andric } 48635ffd83dbSDimitry Andric break; 48645ffd83dbSDimitry Andric } 48655ffd83dbSDimitry Andric case Intrinsic::call_preallocated_arg: { 48665ffd83dbSDimitry Andric auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 48675ffd83dbSDimitry Andric Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 48685ffd83dbSDimitry Andric Intrinsic::call_preallocated_setup, 48695ffd83dbSDimitry Andric "llvm.call.preallocated.arg token argument must be a " 48705ffd83dbSDimitry Andric "llvm.call.preallocated.setup"); 48715ffd83dbSDimitry Andric Assert(Call.hasFnAttr(Attribute::Preallocated), 48725ffd83dbSDimitry Andric "llvm.call.preallocated.arg must be called with a \"preallocated\" " 48735ffd83dbSDimitry Andric "call site attribute"); 48745ffd83dbSDimitry Andric break; 48755ffd83dbSDimitry Andric } 48765ffd83dbSDimitry Andric case Intrinsic::call_preallocated_teardown: { 48775ffd83dbSDimitry Andric auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 48785ffd83dbSDimitry Andric Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 48795ffd83dbSDimitry Andric Intrinsic::call_preallocated_setup, 48805ffd83dbSDimitry Andric "llvm.call.preallocated.teardown token argument must be a " 48815ffd83dbSDimitry Andric "llvm.call.preallocated.setup"); 48825ffd83dbSDimitry Andric break; 48835ffd83dbSDimitry Andric } 48840b57cec5SDimitry Andric case Intrinsic::gcroot: 48850b57cec5SDimitry Andric case Intrinsic::gcwrite: 48860b57cec5SDimitry Andric case Intrinsic::gcread: 48870b57cec5SDimitry Andric if (ID == Intrinsic::gcroot) { 48880b57cec5SDimitry Andric AllocaInst *AI = 48890b57cec5SDimitry Andric dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 48900b57cec5SDimitry Andric Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 48910b57cec5SDimitry Andric Assert(isa<Constant>(Call.getArgOperand(1)), 48920b57cec5SDimitry Andric "llvm.gcroot parameter #2 must be a constant.", Call); 48930b57cec5SDimitry Andric if (!AI->getAllocatedType()->isPointerTy()) { 48940b57cec5SDimitry Andric Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 48950b57cec5SDimitry Andric "llvm.gcroot parameter #1 must either be a pointer alloca, " 48960b57cec5SDimitry Andric "or argument #2 must be a non-null constant.", 48970b57cec5SDimitry Andric Call); 48980b57cec5SDimitry Andric } 48990b57cec5SDimitry Andric } 49000b57cec5SDimitry Andric 49010b57cec5SDimitry Andric Assert(Call.getParent()->getParent()->hasGC(), 49020b57cec5SDimitry Andric "Enclosing function does not use GC.", Call); 49030b57cec5SDimitry Andric break; 49040b57cec5SDimitry Andric case Intrinsic::init_trampoline: 49050b57cec5SDimitry Andric Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 49060b57cec5SDimitry Andric "llvm.init_trampoline parameter #2 must resolve to a function.", 49070b57cec5SDimitry Andric Call); 49080b57cec5SDimitry Andric break; 49090b57cec5SDimitry Andric case Intrinsic::prefetch: 49100b57cec5SDimitry Andric Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 49110b57cec5SDimitry Andric cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 49120b57cec5SDimitry Andric "invalid arguments to llvm.prefetch", Call); 49130b57cec5SDimitry Andric break; 49140b57cec5SDimitry Andric case Intrinsic::stackprotector: 49150b57cec5SDimitry Andric Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 49160b57cec5SDimitry Andric "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 49170b57cec5SDimitry Andric break; 49180b57cec5SDimitry Andric case Intrinsic::localescape: { 49190b57cec5SDimitry Andric BasicBlock *BB = Call.getParent(); 49200b57cec5SDimitry Andric Assert(BB == &BB->getParent()->front(), 49210b57cec5SDimitry Andric "llvm.localescape used outside of entry block", Call); 49220b57cec5SDimitry Andric Assert(!SawFrameEscape, 49230b57cec5SDimitry Andric "multiple calls to llvm.localescape in one function", Call); 49240b57cec5SDimitry Andric for (Value *Arg : Call.args()) { 49250b57cec5SDimitry Andric if (isa<ConstantPointerNull>(Arg)) 49260b57cec5SDimitry Andric continue; // Null values are allowed as placeholders. 49270b57cec5SDimitry Andric auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 49280b57cec5SDimitry Andric Assert(AI && AI->isStaticAlloca(), 49290b57cec5SDimitry Andric "llvm.localescape only accepts static allocas", Call); 49300b57cec5SDimitry Andric } 4931349cc55cSDimitry Andric FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 49320b57cec5SDimitry Andric SawFrameEscape = true; 49330b57cec5SDimitry Andric break; 49340b57cec5SDimitry Andric } 49350b57cec5SDimitry Andric case Intrinsic::localrecover: { 49360b57cec5SDimitry Andric Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 49370b57cec5SDimitry Andric Function *Fn = dyn_cast<Function>(FnArg); 49380b57cec5SDimitry Andric Assert(Fn && !Fn->isDeclaration(), 49390b57cec5SDimitry Andric "llvm.localrecover first " 49400b57cec5SDimitry Andric "argument must be function defined in this module", 49410b57cec5SDimitry Andric Call); 49420b57cec5SDimitry Andric auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 49430b57cec5SDimitry Andric auto &Entry = FrameEscapeInfo[Fn]; 49440b57cec5SDimitry Andric Entry.second = unsigned( 49450b57cec5SDimitry Andric std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 49460b57cec5SDimitry Andric break; 49470b57cec5SDimitry Andric } 49480b57cec5SDimitry Andric 49490b57cec5SDimitry Andric case Intrinsic::experimental_gc_statepoint: 49500b57cec5SDimitry Andric if (auto *CI = dyn_cast<CallInst>(&Call)) 49510b57cec5SDimitry Andric Assert(!CI->isInlineAsm(), 49520b57cec5SDimitry Andric "gc.statepoint support for inline assembly unimplemented", CI); 49530b57cec5SDimitry Andric Assert(Call.getParent()->getParent()->hasGC(), 49540b57cec5SDimitry Andric "Enclosing function does not use GC.", Call); 49550b57cec5SDimitry Andric 49560b57cec5SDimitry Andric verifyStatepoint(Call); 49570b57cec5SDimitry Andric break; 49580b57cec5SDimitry Andric case Intrinsic::experimental_gc_result: { 49590b57cec5SDimitry Andric Assert(Call.getParent()->getParent()->hasGC(), 49600b57cec5SDimitry Andric "Enclosing function does not use GC.", Call); 49610b57cec5SDimitry Andric // Are we tied to a statepoint properly? 49620b57cec5SDimitry Andric const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 49630b57cec5SDimitry Andric const Function *StatepointFn = 49640b57cec5SDimitry Andric StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 49650b57cec5SDimitry Andric Assert(StatepointFn && StatepointFn->isDeclaration() && 49660b57cec5SDimitry Andric StatepointFn->getIntrinsicID() == 49670b57cec5SDimitry Andric Intrinsic::experimental_gc_statepoint, 49680b57cec5SDimitry Andric "gc.result operand #1 must be from a statepoint", Call, 49690b57cec5SDimitry Andric Call.getArgOperand(0)); 49700b57cec5SDimitry Andric 49710b57cec5SDimitry Andric // Assert that result type matches wrapped callee. 49720b57cec5SDimitry Andric const Value *Target = StatepointCall->getArgOperand(2); 49730b57cec5SDimitry Andric auto *PT = cast<PointerType>(Target->getType()); 49740b57cec5SDimitry Andric auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 49750b57cec5SDimitry Andric Assert(Call.getType() == TargetFuncType->getReturnType(), 49760b57cec5SDimitry Andric "gc.result result type does not match wrapped callee", Call); 49770b57cec5SDimitry Andric break; 49780b57cec5SDimitry Andric } 49790b57cec5SDimitry Andric case Intrinsic::experimental_gc_relocate: { 4980349cc55cSDimitry Andric Assert(Call.arg_size() == 3, "wrong number of arguments", Call); 49810b57cec5SDimitry Andric 49820b57cec5SDimitry Andric Assert(isa<PointerType>(Call.getType()->getScalarType()), 49830b57cec5SDimitry Andric "gc.relocate must return a pointer or a vector of pointers", Call); 49840b57cec5SDimitry Andric 49850b57cec5SDimitry Andric // Check that this relocate is correctly tied to the statepoint 49860b57cec5SDimitry Andric 49870b57cec5SDimitry Andric // This is case for relocate on the unwinding path of an invoke statepoint 49880b57cec5SDimitry Andric if (LandingPadInst *LandingPad = 49890b57cec5SDimitry Andric dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 49900b57cec5SDimitry Andric 49910b57cec5SDimitry Andric const BasicBlock *InvokeBB = 49920b57cec5SDimitry Andric LandingPad->getParent()->getUniquePredecessor(); 49930b57cec5SDimitry Andric 49940b57cec5SDimitry Andric // Landingpad relocates should have only one predecessor with invoke 49950b57cec5SDimitry Andric // statepoint terminator 49960b57cec5SDimitry Andric Assert(InvokeBB, "safepoints should have unique landingpads", 49970b57cec5SDimitry Andric LandingPad->getParent()); 49980b57cec5SDimitry Andric Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 49990b57cec5SDimitry Andric InvokeBB); 50005ffd83dbSDimitry Andric Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 50010b57cec5SDimitry Andric "gc relocate should be linked to a statepoint", InvokeBB); 50020b57cec5SDimitry Andric } else { 50030b57cec5SDimitry Andric // In all other cases relocate should be tied to the statepoint directly. 50040b57cec5SDimitry Andric // This covers relocates on a normal return path of invoke statepoint and 50050b57cec5SDimitry Andric // relocates of a call statepoint. 50060b57cec5SDimitry Andric auto Token = Call.getArgOperand(0); 50075ffd83dbSDimitry Andric Assert(isa<GCStatepointInst>(Token), 50080b57cec5SDimitry Andric "gc relocate is incorrectly tied to the statepoint", Call, Token); 50090b57cec5SDimitry Andric } 50100b57cec5SDimitry Andric 50110b57cec5SDimitry Andric // Verify rest of the relocate arguments. 50120b57cec5SDimitry Andric const CallBase &StatepointCall = 50135ffd83dbSDimitry Andric *cast<GCRelocateInst>(Call).getStatepoint(); 50140b57cec5SDimitry Andric 50150b57cec5SDimitry Andric // Both the base and derived must be piped through the safepoint. 50160b57cec5SDimitry Andric Value *Base = Call.getArgOperand(1); 50170b57cec5SDimitry Andric Assert(isa<ConstantInt>(Base), 50180b57cec5SDimitry Andric "gc.relocate operand #2 must be integer offset", Call); 50190b57cec5SDimitry Andric 50200b57cec5SDimitry Andric Value *Derived = Call.getArgOperand(2); 50210b57cec5SDimitry Andric Assert(isa<ConstantInt>(Derived), 50220b57cec5SDimitry Andric "gc.relocate operand #3 must be integer offset", Call); 50230b57cec5SDimitry Andric 50245ffd83dbSDimitry Andric const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 50255ffd83dbSDimitry Andric const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 50265ffd83dbSDimitry Andric 50270b57cec5SDimitry Andric // Check the bounds 50285ffd83dbSDimitry Andric if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 50295ffd83dbSDimitry Andric Assert(BaseIndex < Opt->Inputs.size(), 50300b57cec5SDimitry Andric "gc.relocate: statepoint base index out of bounds", Call); 50315ffd83dbSDimitry Andric Assert(DerivedIndex < Opt->Inputs.size(), 50325ffd83dbSDimitry Andric "gc.relocate: statepoint derived index out of bounds", Call); 50335ffd83dbSDimitry Andric } 50340b57cec5SDimitry Andric 50350b57cec5SDimitry Andric // Relocated value must be either a pointer type or vector-of-pointer type, 50360b57cec5SDimitry Andric // but gc_relocate does not need to return the same pointer type as the 50370b57cec5SDimitry Andric // relocated pointer. It can be casted to the correct type later if it's 50380b57cec5SDimitry Andric // desired. However, they must have the same address space and 'vectorness' 50390b57cec5SDimitry Andric GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 50400b57cec5SDimitry Andric Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 50410b57cec5SDimitry Andric "gc.relocate: relocated value must be a gc pointer", Call); 50420b57cec5SDimitry Andric 50430b57cec5SDimitry Andric auto ResultType = Call.getType(); 50440b57cec5SDimitry Andric auto DerivedType = Relocate.getDerivedPtr()->getType(); 50450b57cec5SDimitry Andric Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 50460b57cec5SDimitry Andric "gc.relocate: vector relocates to vector and pointer to pointer", 50470b57cec5SDimitry Andric Call); 50480b57cec5SDimitry Andric Assert( 50490b57cec5SDimitry Andric ResultType->getPointerAddressSpace() == 50500b57cec5SDimitry Andric DerivedType->getPointerAddressSpace(), 50510b57cec5SDimitry Andric "gc.relocate: relocating a pointer shouldn't change its address space", 50520b57cec5SDimitry Andric Call); 50530b57cec5SDimitry Andric break; 50540b57cec5SDimitry Andric } 50550b57cec5SDimitry Andric case Intrinsic::eh_exceptioncode: 50560b57cec5SDimitry Andric case Intrinsic::eh_exceptionpointer: { 50570b57cec5SDimitry Andric Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 50580b57cec5SDimitry Andric "eh.exceptionpointer argument must be a catchpad", Call); 50590b57cec5SDimitry Andric break; 50600b57cec5SDimitry Andric } 50615ffd83dbSDimitry Andric case Intrinsic::get_active_lane_mask: { 50625ffd83dbSDimitry Andric Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 50635ffd83dbSDimitry Andric "vector", Call); 50645ffd83dbSDimitry Andric auto *ElemTy = Call.getType()->getScalarType(); 50655ffd83dbSDimitry Andric Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 50665ffd83dbSDimitry Andric "i1", Call); 50675ffd83dbSDimitry Andric break; 50685ffd83dbSDimitry Andric } 50690b57cec5SDimitry Andric case Intrinsic::masked_load: { 50700b57cec5SDimitry Andric Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 50710b57cec5SDimitry Andric Call); 50720b57cec5SDimitry Andric 50730b57cec5SDimitry Andric Value *Ptr = Call.getArgOperand(0); 50740b57cec5SDimitry Andric ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 50750b57cec5SDimitry Andric Value *Mask = Call.getArgOperand(2); 50760b57cec5SDimitry Andric Value *PassThru = Call.getArgOperand(3); 50770b57cec5SDimitry Andric Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 50780b57cec5SDimitry Andric Call); 50790b57cec5SDimitry Andric Assert(Alignment->getValue().isPowerOf2(), 50800b57cec5SDimitry Andric "masked_load: alignment must be a power of 2", Call); 50810b57cec5SDimitry Andric 5082fe6060f1SDimitry Andric PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5083fe6060f1SDimitry Andric Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), 50840b57cec5SDimitry Andric "masked_load: return must match pointer type", Call); 5085fe6060f1SDimitry Andric Assert(PassThru->getType() == Call.getType(), 5086fe6060f1SDimitry Andric "masked_load: pass through and return type must match", Call); 50875ffd83dbSDimitry Andric Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5088fe6060f1SDimitry Andric cast<VectorType>(Call.getType())->getElementCount(), 5089fe6060f1SDimitry Andric "masked_load: vector mask must be same length as return", Call); 50900b57cec5SDimitry Andric break; 50910b57cec5SDimitry Andric } 50920b57cec5SDimitry Andric case Intrinsic::masked_store: { 50930b57cec5SDimitry Andric Value *Val = Call.getArgOperand(0); 50940b57cec5SDimitry Andric Value *Ptr = Call.getArgOperand(1); 50950b57cec5SDimitry Andric ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 50960b57cec5SDimitry Andric Value *Mask = Call.getArgOperand(3); 50970b57cec5SDimitry Andric Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 50980b57cec5SDimitry Andric Call); 50990b57cec5SDimitry Andric Assert(Alignment->getValue().isPowerOf2(), 51000b57cec5SDimitry Andric "masked_store: alignment must be a power of 2", Call); 51010b57cec5SDimitry Andric 5102fe6060f1SDimitry Andric PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5103fe6060f1SDimitry Andric Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), 51040b57cec5SDimitry Andric "masked_store: storee must match pointer type", Call); 51055ffd83dbSDimitry Andric Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5106fe6060f1SDimitry Andric cast<VectorType>(Val->getType())->getElementCount(), 5107fe6060f1SDimitry Andric "masked_store: vector mask must be same length as value", Call); 51080b57cec5SDimitry Andric break; 51090b57cec5SDimitry Andric } 51100b57cec5SDimitry Andric 51115ffd83dbSDimitry Andric case Intrinsic::masked_gather: { 51125ffd83dbSDimitry Andric const APInt &Alignment = 51135ffd83dbSDimitry Andric cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5114349cc55cSDimitry Andric Assert(Alignment.isZero() || Alignment.isPowerOf2(), 51155ffd83dbSDimitry Andric "masked_gather: alignment must be 0 or a power of 2", Call); 51165ffd83dbSDimitry Andric break; 51175ffd83dbSDimitry Andric } 51185ffd83dbSDimitry Andric case Intrinsic::masked_scatter: { 51195ffd83dbSDimitry Andric const APInt &Alignment = 51205ffd83dbSDimitry Andric cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5121349cc55cSDimitry Andric Assert(Alignment.isZero() || Alignment.isPowerOf2(), 51225ffd83dbSDimitry Andric "masked_scatter: alignment must be 0 or a power of 2", Call); 51235ffd83dbSDimitry Andric break; 51245ffd83dbSDimitry Andric } 51255ffd83dbSDimitry Andric 51260b57cec5SDimitry Andric case Intrinsic::experimental_guard: { 51270b57cec5SDimitry Andric Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 51280b57cec5SDimitry Andric Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 51290b57cec5SDimitry Andric "experimental_guard must have exactly one " 51300b57cec5SDimitry Andric "\"deopt\" operand bundle"); 51310b57cec5SDimitry Andric break; 51320b57cec5SDimitry Andric } 51330b57cec5SDimitry Andric 51340b57cec5SDimitry Andric case Intrinsic::experimental_deoptimize: { 51350b57cec5SDimitry Andric Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 51360b57cec5SDimitry Andric Call); 51370b57cec5SDimitry Andric Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 51380b57cec5SDimitry Andric "experimental_deoptimize must have exactly one " 51390b57cec5SDimitry Andric "\"deopt\" operand bundle"); 51400b57cec5SDimitry Andric Assert(Call.getType() == Call.getFunction()->getReturnType(), 51410b57cec5SDimitry Andric "experimental_deoptimize return type must match caller return type"); 51420b57cec5SDimitry Andric 51430b57cec5SDimitry Andric if (isa<CallInst>(Call)) { 51440b57cec5SDimitry Andric auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 51450b57cec5SDimitry Andric Assert(RI, 51460b57cec5SDimitry Andric "calls to experimental_deoptimize must be followed by a return"); 51470b57cec5SDimitry Andric 51480b57cec5SDimitry Andric if (!Call.getType()->isVoidTy() && RI) 51490b57cec5SDimitry Andric Assert(RI->getReturnValue() == &Call, 51500b57cec5SDimitry Andric "calls to experimental_deoptimize must be followed by a return " 51510b57cec5SDimitry Andric "of the value computed by experimental_deoptimize"); 51520b57cec5SDimitry Andric } 51530b57cec5SDimitry Andric 51540b57cec5SDimitry Andric break; 51550b57cec5SDimitry Andric } 5156fe6060f1SDimitry Andric case Intrinsic::vector_reduce_and: 5157fe6060f1SDimitry Andric case Intrinsic::vector_reduce_or: 5158fe6060f1SDimitry Andric case Intrinsic::vector_reduce_xor: 5159fe6060f1SDimitry Andric case Intrinsic::vector_reduce_add: 5160fe6060f1SDimitry Andric case Intrinsic::vector_reduce_mul: 5161fe6060f1SDimitry Andric case Intrinsic::vector_reduce_smax: 5162fe6060f1SDimitry Andric case Intrinsic::vector_reduce_smin: 5163fe6060f1SDimitry Andric case Intrinsic::vector_reduce_umax: 5164fe6060f1SDimitry Andric case Intrinsic::vector_reduce_umin: { 5165fe6060f1SDimitry Andric Type *ArgTy = Call.getArgOperand(0)->getType(); 5166fe6060f1SDimitry Andric Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5167fe6060f1SDimitry Andric "Intrinsic has incorrect argument type!"); 5168fe6060f1SDimitry Andric break; 5169fe6060f1SDimitry Andric } 5170fe6060f1SDimitry Andric case Intrinsic::vector_reduce_fmax: 5171fe6060f1SDimitry Andric case Intrinsic::vector_reduce_fmin: { 5172fe6060f1SDimitry Andric Type *ArgTy = Call.getArgOperand(0)->getType(); 5173fe6060f1SDimitry Andric Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5174fe6060f1SDimitry Andric "Intrinsic has incorrect argument type!"); 5175fe6060f1SDimitry Andric break; 5176fe6060f1SDimitry Andric } 5177fe6060f1SDimitry Andric case Intrinsic::vector_reduce_fadd: 5178fe6060f1SDimitry Andric case Intrinsic::vector_reduce_fmul: { 5179fe6060f1SDimitry Andric // Unlike the other reductions, the first argument is a start value. The 5180fe6060f1SDimitry Andric // second argument is the vector to be reduced. 5181fe6060f1SDimitry Andric Type *ArgTy = Call.getArgOperand(1)->getType(); 5182fe6060f1SDimitry Andric Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5183fe6060f1SDimitry Andric "Intrinsic has incorrect argument type!"); 51840b57cec5SDimitry Andric break; 51850b57cec5SDimitry Andric } 51860b57cec5SDimitry Andric case Intrinsic::smul_fix: 51870b57cec5SDimitry Andric case Intrinsic::smul_fix_sat: 51888bcb0991SDimitry Andric case Intrinsic::umul_fix: 5189480093f4SDimitry Andric case Intrinsic::umul_fix_sat: 5190480093f4SDimitry Andric case Intrinsic::sdiv_fix: 51915ffd83dbSDimitry Andric case Intrinsic::sdiv_fix_sat: 51925ffd83dbSDimitry Andric case Intrinsic::udiv_fix: 51935ffd83dbSDimitry Andric case Intrinsic::udiv_fix_sat: { 51940b57cec5SDimitry Andric Value *Op1 = Call.getArgOperand(0); 51950b57cec5SDimitry Andric Value *Op2 = Call.getArgOperand(1); 51960b57cec5SDimitry Andric Assert(Op1->getType()->isIntOrIntVectorTy(), 5197480093f4SDimitry Andric "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5198480093f4SDimitry Andric "vector of ints"); 51990b57cec5SDimitry Andric Assert(Op2->getType()->isIntOrIntVectorTy(), 5200480093f4SDimitry Andric "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5201480093f4SDimitry Andric "vector of ints"); 52020b57cec5SDimitry Andric 52030b57cec5SDimitry Andric auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 52040b57cec5SDimitry Andric Assert(Op3->getType()->getBitWidth() <= 32, 5205480093f4SDimitry Andric "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 52060b57cec5SDimitry Andric 5207480093f4SDimitry Andric if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 52085ffd83dbSDimitry Andric ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 52090b57cec5SDimitry Andric Assert( 52100b57cec5SDimitry Andric Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5211480093f4SDimitry Andric "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5212480093f4SDimitry Andric "the operands"); 52130b57cec5SDimitry Andric } else { 52140b57cec5SDimitry Andric Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5215480093f4SDimitry Andric "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5216480093f4SDimitry Andric "to the width of the operands"); 52170b57cec5SDimitry Andric } 52180b57cec5SDimitry Andric break; 52190b57cec5SDimitry Andric } 52200b57cec5SDimitry Andric case Intrinsic::lround: 52210b57cec5SDimitry Andric case Intrinsic::llround: 52220b57cec5SDimitry Andric case Intrinsic::lrint: 52230b57cec5SDimitry Andric case Intrinsic::llrint: { 52240b57cec5SDimitry Andric Type *ValTy = Call.getArgOperand(0)->getType(); 52250b57cec5SDimitry Andric Type *ResultTy = Call.getType(); 52260b57cec5SDimitry Andric Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 52270b57cec5SDimitry Andric "Intrinsic does not support vectors", &Call); 52280b57cec5SDimitry Andric break; 52290b57cec5SDimitry Andric } 52305ffd83dbSDimitry Andric case Intrinsic::bswap: { 52315ffd83dbSDimitry Andric Type *Ty = Call.getType(); 52325ffd83dbSDimitry Andric unsigned Size = Ty->getScalarSizeInBits(); 52335ffd83dbSDimitry Andric Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 52345ffd83dbSDimitry Andric break; 52355ffd83dbSDimitry Andric } 5236e8d8bef9SDimitry Andric case Intrinsic::invariant_start: { 5237e8d8bef9SDimitry Andric ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5238e8d8bef9SDimitry Andric Assert(InvariantSize && 5239e8d8bef9SDimitry Andric (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5240e8d8bef9SDimitry Andric "invariant_start parameter must be -1, 0 or a positive number", 5241e8d8bef9SDimitry Andric &Call); 5242e8d8bef9SDimitry Andric break; 5243e8d8bef9SDimitry Andric } 52445ffd83dbSDimitry Andric case Intrinsic::matrix_multiply: 52455ffd83dbSDimitry Andric case Intrinsic::matrix_transpose: 52465ffd83dbSDimitry Andric case Intrinsic::matrix_column_major_load: 52475ffd83dbSDimitry Andric case Intrinsic::matrix_column_major_store: { 52485ffd83dbSDimitry Andric Function *IF = Call.getCalledFunction(); 52495ffd83dbSDimitry Andric ConstantInt *Stride = nullptr; 52505ffd83dbSDimitry Andric ConstantInt *NumRows; 52515ffd83dbSDimitry Andric ConstantInt *NumColumns; 52525ffd83dbSDimitry Andric VectorType *ResultTy; 52535ffd83dbSDimitry Andric Type *Op0ElemTy = nullptr; 52545ffd83dbSDimitry Andric Type *Op1ElemTy = nullptr; 52555ffd83dbSDimitry Andric switch (ID) { 52565ffd83dbSDimitry Andric case Intrinsic::matrix_multiply: 52575ffd83dbSDimitry Andric NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 52585ffd83dbSDimitry Andric NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 52595ffd83dbSDimitry Andric ResultTy = cast<VectorType>(Call.getType()); 52605ffd83dbSDimitry Andric Op0ElemTy = 52615ffd83dbSDimitry Andric cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 52625ffd83dbSDimitry Andric Op1ElemTy = 52635ffd83dbSDimitry Andric cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 52645ffd83dbSDimitry Andric break; 52655ffd83dbSDimitry Andric case Intrinsic::matrix_transpose: 52665ffd83dbSDimitry Andric NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 52675ffd83dbSDimitry Andric NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 52685ffd83dbSDimitry Andric ResultTy = cast<VectorType>(Call.getType()); 52695ffd83dbSDimitry Andric Op0ElemTy = 52705ffd83dbSDimitry Andric cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 52715ffd83dbSDimitry Andric break; 5272*4824e7fdSDimitry Andric case Intrinsic::matrix_column_major_load: { 52735ffd83dbSDimitry Andric Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 52745ffd83dbSDimitry Andric NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 52755ffd83dbSDimitry Andric NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 52765ffd83dbSDimitry Andric ResultTy = cast<VectorType>(Call.getType()); 5277*4824e7fdSDimitry Andric 5278*4824e7fdSDimitry Andric PointerType *Op0PtrTy = 5279*4824e7fdSDimitry Andric cast<PointerType>(Call.getArgOperand(0)->getType()); 5280*4824e7fdSDimitry Andric if (!Op0PtrTy->isOpaque()) 5281*4824e7fdSDimitry Andric Op0ElemTy = Op0PtrTy->getElementType(); 52825ffd83dbSDimitry Andric break; 5283*4824e7fdSDimitry Andric } 5284*4824e7fdSDimitry Andric case Intrinsic::matrix_column_major_store: { 52855ffd83dbSDimitry Andric Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 52865ffd83dbSDimitry Andric NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 52875ffd83dbSDimitry Andric NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 52885ffd83dbSDimitry Andric ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 52895ffd83dbSDimitry Andric Op0ElemTy = 52905ffd83dbSDimitry Andric cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5291*4824e7fdSDimitry Andric 5292*4824e7fdSDimitry Andric PointerType *Op1PtrTy = 5293*4824e7fdSDimitry Andric cast<PointerType>(Call.getArgOperand(1)->getType()); 5294*4824e7fdSDimitry Andric if (!Op1PtrTy->isOpaque()) 5295*4824e7fdSDimitry Andric Op1ElemTy = Op1PtrTy->getElementType(); 52965ffd83dbSDimitry Andric break; 5297*4824e7fdSDimitry Andric } 52985ffd83dbSDimitry Andric default: 52995ffd83dbSDimitry Andric llvm_unreachable("unexpected intrinsic"); 53005ffd83dbSDimitry Andric } 53015ffd83dbSDimitry Andric 53025ffd83dbSDimitry Andric Assert(ResultTy->getElementType()->isIntegerTy() || 53035ffd83dbSDimitry Andric ResultTy->getElementType()->isFloatingPointTy(), 53045ffd83dbSDimitry Andric "Result type must be an integer or floating-point type!", IF); 53055ffd83dbSDimitry Andric 5306*4824e7fdSDimitry Andric if (Op0ElemTy) 53075ffd83dbSDimitry Andric Assert(ResultTy->getElementType() == Op0ElemTy, 53085ffd83dbSDimitry Andric "Vector element type mismatch of the result and first operand " 53095ffd83dbSDimitry Andric "vector!", IF); 53105ffd83dbSDimitry Andric 53115ffd83dbSDimitry Andric if (Op1ElemTy) 53125ffd83dbSDimitry Andric Assert(ResultTy->getElementType() == Op1ElemTy, 53135ffd83dbSDimitry Andric "Vector element type mismatch of the result and second operand " 53145ffd83dbSDimitry Andric "vector!", IF); 53155ffd83dbSDimitry Andric 5316e8d8bef9SDimitry Andric Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 53175ffd83dbSDimitry Andric NumRows->getZExtValue() * NumColumns->getZExtValue(), 53185ffd83dbSDimitry Andric "Result of a matrix operation does not fit in the returned vector!"); 53195ffd83dbSDimitry Andric 53205ffd83dbSDimitry Andric if (Stride) 53215ffd83dbSDimitry Andric Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 53225ffd83dbSDimitry Andric "Stride must be greater or equal than the number of rows!", IF); 53235ffd83dbSDimitry Andric 53245ffd83dbSDimitry Andric break; 53255ffd83dbSDimitry Andric } 5326fe6060f1SDimitry Andric case Intrinsic::experimental_stepvector: { 5327fe6060f1SDimitry Andric VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5328fe6060f1SDimitry Andric Assert(VecTy && VecTy->getScalarType()->isIntegerTy() && 5329fe6060f1SDimitry Andric VecTy->getScalarSizeInBits() >= 8, 5330fe6060f1SDimitry Andric "experimental_stepvector only supported for vectors of integers " 5331fe6060f1SDimitry Andric "with a bitwidth of at least 8.", 5332fe6060f1SDimitry Andric &Call); 5333fe6060f1SDimitry Andric break; 5334fe6060f1SDimitry Andric } 5335e8d8bef9SDimitry Andric case Intrinsic::experimental_vector_insert: { 5336fe6060f1SDimitry Andric Value *Vec = Call.getArgOperand(0); 5337fe6060f1SDimitry Andric Value *SubVec = Call.getArgOperand(1); 5338fe6060f1SDimitry Andric Value *Idx = Call.getArgOperand(2); 5339fe6060f1SDimitry Andric unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5340e8d8bef9SDimitry Andric 5341fe6060f1SDimitry Andric VectorType *VecTy = cast<VectorType>(Vec->getType()); 5342fe6060f1SDimitry Andric VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5343fe6060f1SDimitry Andric 5344fe6060f1SDimitry Andric ElementCount VecEC = VecTy->getElementCount(); 5345fe6060f1SDimitry Andric ElementCount SubVecEC = SubVecTy->getElementCount(); 5346e8d8bef9SDimitry Andric Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5347e8d8bef9SDimitry Andric "experimental_vector_insert parameters must have the same element " 5348e8d8bef9SDimitry Andric "type.", 5349e8d8bef9SDimitry Andric &Call); 5350fe6060f1SDimitry Andric Assert(IdxN % SubVecEC.getKnownMinValue() == 0, 5351fe6060f1SDimitry Andric "experimental_vector_insert index must be a constant multiple of " 5352fe6060f1SDimitry Andric "the subvector's known minimum vector length."); 5353fe6060f1SDimitry Andric 5354fe6060f1SDimitry Andric // If this insertion is not the 'mixed' case where a fixed vector is 5355fe6060f1SDimitry Andric // inserted into a scalable vector, ensure that the insertion of the 5356fe6060f1SDimitry Andric // subvector does not overrun the parent vector. 5357fe6060f1SDimitry Andric if (VecEC.isScalable() == SubVecEC.isScalable()) { 5358fe6060f1SDimitry Andric Assert( 5359fe6060f1SDimitry Andric IdxN < VecEC.getKnownMinValue() && 5360fe6060f1SDimitry Andric IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5361fe6060f1SDimitry Andric "subvector operand of experimental_vector_insert would overrun the " 5362fe6060f1SDimitry Andric "vector being inserted into."); 5363fe6060f1SDimitry Andric } 5364e8d8bef9SDimitry Andric break; 5365e8d8bef9SDimitry Andric } 5366e8d8bef9SDimitry Andric case Intrinsic::experimental_vector_extract: { 5367fe6060f1SDimitry Andric Value *Vec = Call.getArgOperand(0); 5368fe6060f1SDimitry Andric Value *Idx = Call.getArgOperand(1); 5369fe6060f1SDimitry Andric unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5370fe6060f1SDimitry Andric 5371e8d8bef9SDimitry Andric VectorType *ResultTy = cast<VectorType>(Call.getType()); 5372fe6060f1SDimitry Andric VectorType *VecTy = cast<VectorType>(Vec->getType()); 5373fe6060f1SDimitry Andric 5374fe6060f1SDimitry Andric ElementCount VecEC = VecTy->getElementCount(); 5375fe6060f1SDimitry Andric ElementCount ResultEC = ResultTy->getElementCount(); 5376e8d8bef9SDimitry Andric 5377e8d8bef9SDimitry Andric Assert(ResultTy->getElementType() == VecTy->getElementType(), 5378e8d8bef9SDimitry Andric "experimental_vector_extract result must have the same element " 5379e8d8bef9SDimitry Andric "type as the input vector.", 5380e8d8bef9SDimitry Andric &Call); 5381fe6060f1SDimitry Andric Assert(IdxN % ResultEC.getKnownMinValue() == 0, 5382fe6060f1SDimitry Andric "experimental_vector_extract index must be a constant multiple of " 5383fe6060f1SDimitry Andric "the result type's known minimum vector length."); 5384fe6060f1SDimitry Andric 5385fe6060f1SDimitry Andric // If this extraction is not the 'mixed' case where a fixed vector is is 5386fe6060f1SDimitry Andric // extracted from a scalable vector, ensure that the extraction does not 5387fe6060f1SDimitry Andric // overrun the parent vector. 5388fe6060f1SDimitry Andric if (VecEC.isScalable() == ResultEC.isScalable()) { 5389fe6060f1SDimitry Andric Assert(IdxN < VecEC.getKnownMinValue() && 5390fe6060f1SDimitry Andric IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5391fe6060f1SDimitry Andric "experimental_vector_extract would overrun."); 5392fe6060f1SDimitry Andric } 5393e8d8bef9SDimitry Andric break; 5394e8d8bef9SDimitry Andric } 5395e8d8bef9SDimitry Andric case Intrinsic::experimental_noalias_scope_decl: { 5396e8d8bef9SDimitry Andric NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5397e8d8bef9SDimitry Andric break; 5398e8d8bef9SDimitry Andric } 5399fe6060f1SDimitry Andric case Intrinsic::preserve_array_access_index: 5400fe6060f1SDimitry Andric case Intrinsic::preserve_struct_access_index: { 5401fe6060f1SDimitry Andric Type *ElemTy = Call.getAttributes().getParamElementType(0); 5402fe6060f1SDimitry Andric Assert(ElemTy, 5403fe6060f1SDimitry Andric "Intrinsic requires elementtype attribute on first argument.", 5404fe6060f1SDimitry Andric &Call); 5405fe6060f1SDimitry Andric break; 5406fe6060f1SDimitry Andric } 54070b57cec5SDimitry Andric }; 54080b57cec5SDimitry Andric } 54090b57cec5SDimitry Andric 54100b57cec5SDimitry Andric /// Carefully grab the subprogram from a local scope. 54110b57cec5SDimitry Andric /// 54120b57cec5SDimitry Andric /// This carefully grabs the subprogram from a local scope, avoiding the 54130b57cec5SDimitry Andric /// built-in assertions that would typically fire. 54140b57cec5SDimitry Andric static DISubprogram *getSubprogram(Metadata *LocalScope) { 54150b57cec5SDimitry Andric if (!LocalScope) 54160b57cec5SDimitry Andric return nullptr; 54170b57cec5SDimitry Andric 54180b57cec5SDimitry Andric if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 54190b57cec5SDimitry Andric return SP; 54200b57cec5SDimitry Andric 54210b57cec5SDimitry Andric if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 54220b57cec5SDimitry Andric return getSubprogram(LB->getRawScope()); 54230b57cec5SDimitry Andric 54240b57cec5SDimitry Andric // Just return null; broken scope chains are checked elsewhere. 54250b57cec5SDimitry Andric assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 54260b57cec5SDimitry Andric return nullptr; 54270b57cec5SDimitry Andric } 54280b57cec5SDimitry Andric 54290b57cec5SDimitry Andric void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5430480093f4SDimitry Andric unsigned NumOperands; 5431480093f4SDimitry Andric bool HasRoundingMD; 54320b57cec5SDimitry Andric switch (FPI.getIntrinsicID()) { 54335ffd83dbSDimitry Andric #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5434480093f4SDimitry Andric case Intrinsic::INTRINSIC: \ 5435480093f4SDimitry Andric NumOperands = NARG; \ 5436480093f4SDimitry Andric HasRoundingMD = ROUND_MODE; \ 54370b57cec5SDimitry Andric break; 5438480093f4SDimitry Andric #include "llvm/IR/ConstrainedOps.def" 5439480093f4SDimitry Andric default: 5440480093f4SDimitry Andric llvm_unreachable("Invalid constrained FP intrinsic!"); 5441480093f4SDimitry Andric } 5442480093f4SDimitry Andric NumOperands += (1 + HasRoundingMD); 5443480093f4SDimitry Andric // Compare intrinsics carry an extra predicate metadata operand. 5444480093f4SDimitry Andric if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5445480093f4SDimitry Andric NumOperands += 1; 5446349cc55cSDimitry Andric Assert((FPI.arg_size() == NumOperands), 5447480093f4SDimitry Andric "invalid arguments for constrained FP intrinsic", &FPI); 54480b57cec5SDimitry Andric 5449480093f4SDimitry Andric switch (FPI.getIntrinsicID()) { 54508bcb0991SDimitry Andric case Intrinsic::experimental_constrained_lrint: 54518bcb0991SDimitry Andric case Intrinsic::experimental_constrained_llrint: { 54528bcb0991SDimitry Andric Type *ValTy = FPI.getArgOperand(0)->getType(); 54538bcb0991SDimitry Andric Type *ResultTy = FPI.getType(); 54548bcb0991SDimitry Andric Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 54558bcb0991SDimitry Andric "Intrinsic does not support vectors", &FPI); 54568bcb0991SDimitry Andric } 54578bcb0991SDimitry Andric break; 54588bcb0991SDimitry Andric 54598bcb0991SDimitry Andric case Intrinsic::experimental_constrained_lround: 54608bcb0991SDimitry Andric case Intrinsic::experimental_constrained_llround: { 54618bcb0991SDimitry Andric Type *ValTy = FPI.getArgOperand(0)->getType(); 54628bcb0991SDimitry Andric Type *ResultTy = FPI.getType(); 54638bcb0991SDimitry Andric Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 54648bcb0991SDimitry Andric "Intrinsic does not support vectors", &FPI); 54658bcb0991SDimitry Andric break; 54668bcb0991SDimitry Andric } 54678bcb0991SDimitry Andric 5468480093f4SDimitry Andric case Intrinsic::experimental_constrained_fcmp: 5469480093f4SDimitry Andric case Intrinsic::experimental_constrained_fcmps: { 5470480093f4SDimitry Andric auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5471480093f4SDimitry Andric Assert(CmpInst::isFPPredicate(Pred), 5472480093f4SDimitry Andric "invalid predicate for constrained FP comparison intrinsic", &FPI); 54730b57cec5SDimitry Andric break; 5474480093f4SDimitry Andric } 54750b57cec5SDimitry Andric 54768bcb0991SDimitry Andric case Intrinsic::experimental_constrained_fptosi: 54778bcb0991SDimitry Andric case Intrinsic::experimental_constrained_fptoui: { 54788bcb0991SDimitry Andric Value *Operand = FPI.getArgOperand(0); 54798bcb0991SDimitry Andric uint64_t NumSrcElem = 0; 54808bcb0991SDimitry Andric Assert(Operand->getType()->isFPOrFPVectorTy(), 54818bcb0991SDimitry Andric "Intrinsic first argument must be floating point", &FPI); 54828bcb0991SDimitry Andric if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5483e8d8bef9SDimitry Andric NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 54848bcb0991SDimitry Andric } 54858bcb0991SDimitry Andric 54868bcb0991SDimitry Andric Operand = &FPI; 54878bcb0991SDimitry Andric Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 54888bcb0991SDimitry Andric "Intrinsic first argument and result disagree on vector use", &FPI); 54898bcb0991SDimitry Andric Assert(Operand->getType()->isIntOrIntVectorTy(), 54908bcb0991SDimitry Andric "Intrinsic result must be an integer", &FPI); 54918bcb0991SDimitry Andric if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5492e8d8bef9SDimitry Andric Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 54938bcb0991SDimitry Andric "Intrinsic first argument and result vector lengths must be equal", 54948bcb0991SDimitry Andric &FPI); 54958bcb0991SDimitry Andric } 54968bcb0991SDimitry Andric } 54978bcb0991SDimitry Andric break; 54988bcb0991SDimitry Andric 5499480093f4SDimitry Andric case Intrinsic::experimental_constrained_sitofp: 5500480093f4SDimitry Andric case Intrinsic::experimental_constrained_uitofp: { 5501480093f4SDimitry Andric Value *Operand = FPI.getArgOperand(0); 5502480093f4SDimitry Andric uint64_t NumSrcElem = 0; 5503480093f4SDimitry Andric Assert(Operand->getType()->isIntOrIntVectorTy(), 5504480093f4SDimitry Andric "Intrinsic first argument must be integer", &FPI); 5505480093f4SDimitry Andric if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5506e8d8bef9SDimitry Andric NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5507480093f4SDimitry Andric } 5508480093f4SDimitry Andric 5509480093f4SDimitry Andric Operand = &FPI; 5510480093f4SDimitry Andric Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5511480093f4SDimitry Andric "Intrinsic first argument and result disagree on vector use", &FPI); 5512480093f4SDimitry Andric Assert(Operand->getType()->isFPOrFPVectorTy(), 5513480093f4SDimitry Andric "Intrinsic result must be a floating point", &FPI); 5514480093f4SDimitry Andric if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5515e8d8bef9SDimitry Andric Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5516480093f4SDimitry Andric "Intrinsic first argument and result vector lengths must be equal", 5517480093f4SDimitry Andric &FPI); 5518480093f4SDimitry Andric } 5519480093f4SDimitry Andric } break; 5520480093f4SDimitry Andric 55210b57cec5SDimitry Andric case Intrinsic::experimental_constrained_fptrunc: 55220b57cec5SDimitry Andric case Intrinsic::experimental_constrained_fpext: { 55230b57cec5SDimitry Andric Value *Operand = FPI.getArgOperand(0); 55240b57cec5SDimitry Andric Type *OperandTy = Operand->getType(); 55250b57cec5SDimitry Andric Value *Result = &FPI; 55260b57cec5SDimitry Andric Type *ResultTy = Result->getType(); 55270b57cec5SDimitry Andric Assert(OperandTy->isFPOrFPVectorTy(), 55280b57cec5SDimitry Andric "Intrinsic first argument must be FP or FP vector", &FPI); 55290b57cec5SDimitry Andric Assert(ResultTy->isFPOrFPVectorTy(), 55300b57cec5SDimitry Andric "Intrinsic result must be FP or FP vector", &FPI); 55310b57cec5SDimitry Andric Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 55320b57cec5SDimitry Andric "Intrinsic first argument and result disagree on vector use", &FPI); 55330b57cec5SDimitry Andric if (OperandTy->isVectorTy()) { 5534e8d8bef9SDimitry Andric Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5535e8d8bef9SDimitry Andric cast<FixedVectorType>(ResultTy)->getNumElements(), 55360b57cec5SDimitry Andric "Intrinsic first argument and result vector lengths must be equal", 55370b57cec5SDimitry Andric &FPI); 55380b57cec5SDimitry Andric } 55390b57cec5SDimitry Andric if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 55400b57cec5SDimitry Andric Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 55410b57cec5SDimitry Andric "Intrinsic first argument's type must be larger than result type", 55420b57cec5SDimitry Andric &FPI); 55430b57cec5SDimitry Andric } else { 55440b57cec5SDimitry Andric Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 55450b57cec5SDimitry Andric "Intrinsic first argument's type must be smaller than result type", 55460b57cec5SDimitry Andric &FPI); 55470b57cec5SDimitry Andric } 55480b57cec5SDimitry Andric } 55490b57cec5SDimitry Andric break; 55500b57cec5SDimitry Andric 55510b57cec5SDimitry Andric default: 5552480093f4SDimitry Andric break; 55530b57cec5SDimitry Andric } 55540b57cec5SDimitry Andric 55550b57cec5SDimitry Andric // If a non-metadata argument is passed in a metadata slot then the 55560b57cec5SDimitry Andric // error will be caught earlier when the incorrect argument doesn't 55570b57cec5SDimitry Andric // match the specification in the intrinsic call table. Thus, no 55580b57cec5SDimitry Andric // argument type check is needed here. 55590b57cec5SDimitry Andric 55600b57cec5SDimitry Andric Assert(FPI.getExceptionBehavior().hasValue(), 55610b57cec5SDimitry Andric "invalid exception behavior argument", &FPI); 55620b57cec5SDimitry Andric if (HasRoundingMD) { 55630b57cec5SDimitry Andric Assert(FPI.getRoundingMode().hasValue(), 55640b57cec5SDimitry Andric "invalid rounding mode argument", &FPI); 55650b57cec5SDimitry Andric } 55660b57cec5SDimitry Andric } 55670b57cec5SDimitry Andric 55680b57cec5SDimitry Andric void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5569fe6060f1SDimitry Andric auto *MD = DII.getRawLocation(); 5570fe6060f1SDimitry Andric AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 55710b57cec5SDimitry Andric (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 55720b57cec5SDimitry Andric "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 55730b57cec5SDimitry Andric AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 55740b57cec5SDimitry Andric "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 55750b57cec5SDimitry Andric DII.getRawVariable()); 55760b57cec5SDimitry Andric AssertDI(isa<DIExpression>(DII.getRawExpression()), 55770b57cec5SDimitry Andric "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 55780b57cec5SDimitry Andric DII.getRawExpression()); 55790b57cec5SDimitry Andric 55800b57cec5SDimitry Andric // Ignore broken !dbg attachments; they're checked elsewhere. 55810b57cec5SDimitry Andric if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 55820b57cec5SDimitry Andric if (!isa<DILocation>(N)) 55830b57cec5SDimitry Andric return; 55840b57cec5SDimitry Andric 55850b57cec5SDimitry Andric BasicBlock *BB = DII.getParent(); 55860b57cec5SDimitry Andric Function *F = BB ? BB->getParent() : nullptr; 55870b57cec5SDimitry Andric 55880b57cec5SDimitry Andric // The scopes for variables and !dbg attachments must agree. 55890b57cec5SDimitry Andric DILocalVariable *Var = DII.getVariable(); 55900b57cec5SDimitry Andric DILocation *Loc = DII.getDebugLoc(); 55910b57cec5SDimitry Andric AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 55920b57cec5SDimitry Andric &DII, BB, F); 55930b57cec5SDimitry Andric 55940b57cec5SDimitry Andric DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 55950b57cec5SDimitry Andric DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 55960b57cec5SDimitry Andric if (!VarSP || !LocSP) 55970b57cec5SDimitry Andric return; // Broken scope chains are checked elsewhere. 55980b57cec5SDimitry Andric 55990b57cec5SDimitry Andric AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 56000b57cec5SDimitry Andric " variable and !dbg attachment", 56010b57cec5SDimitry Andric &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 56020b57cec5SDimitry Andric Loc->getScope()->getSubprogram()); 56030b57cec5SDimitry Andric 56040b57cec5SDimitry Andric // This check is redundant with one in visitLocalVariable(). 56050b57cec5SDimitry Andric AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 56060b57cec5SDimitry Andric Var->getRawType()); 56070b57cec5SDimitry Andric verifyFnArgs(DII); 56080b57cec5SDimitry Andric } 56090b57cec5SDimitry Andric 56100b57cec5SDimitry Andric void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 56110b57cec5SDimitry Andric AssertDI(isa<DILabel>(DLI.getRawLabel()), 56120b57cec5SDimitry Andric "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 56130b57cec5SDimitry Andric DLI.getRawLabel()); 56140b57cec5SDimitry Andric 56150b57cec5SDimitry Andric // Ignore broken !dbg attachments; they're checked elsewhere. 56160b57cec5SDimitry Andric if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 56170b57cec5SDimitry Andric if (!isa<DILocation>(N)) 56180b57cec5SDimitry Andric return; 56190b57cec5SDimitry Andric 56200b57cec5SDimitry Andric BasicBlock *BB = DLI.getParent(); 56210b57cec5SDimitry Andric Function *F = BB ? BB->getParent() : nullptr; 56220b57cec5SDimitry Andric 56230b57cec5SDimitry Andric // The scopes for variables and !dbg attachments must agree. 56240b57cec5SDimitry Andric DILabel *Label = DLI.getLabel(); 56250b57cec5SDimitry Andric DILocation *Loc = DLI.getDebugLoc(); 56260b57cec5SDimitry Andric Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 56270b57cec5SDimitry Andric &DLI, BB, F); 56280b57cec5SDimitry Andric 56290b57cec5SDimitry Andric DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 56300b57cec5SDimitry Andric DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 56310b57cec5SDimitry Andric if (!LabelSP || !LocSP) 56320b57cec5SDimitry Andric return; 56330b57cec5SDimitry Andric 56340b57cec5SDimitry Andric AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 56350b57cec5SDimitry Andric " label and !dbg attachment", 56360b57cec5SDimitry Andric &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 56370b57cec5SDimitry Andric Loc->getScope()->getSubprogram()); 56380b57cec5SDimitry Andric } 56390b57cec5SDimitry Andric 56400b57cec5SDimitry Andric void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 56410b57cec5SDimitry Andric DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 56420b57cec5SDimitry Andric DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 56430b57cec5SDimitry Andric 56440b57cec5SDimitry Andric // We don't know whether this intrinsic verified correctly. 56450b57cec5SDimitry Andric if (!V || !E || !E->isValid()) 56460b57cec5SDimitry Andric return; 56470b57cec5SDimitry Andric 56480b57cec5SDimitry Andric // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 56490b57cec5SDimitry Andric auto Fragment = E->getFragmentInfo(); 56500b57cec5SDimitry Andric if (!Fragment) 56510b57cec5SDimitry Andric return; 56520b57cec5SDimitry Andric 56530b57cec5SDimitry Andric // The frontend helps out GDB by emitting the members of local anonymous 56540b57cec5SDimitry Andric // unions as artificial local variables with shared storage. When SROA splits 56550b57cec5SDimitry Andric // the storage for artificial local variables that are smaller than the entire 56560b57cec5SDimitry Andric // union, the overhang piece will be outside of the allotted space for the 56570b57cec5SDimitry Andric // variable and this check fails. 56580b57cec5SDimitry Andric // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 56590b57cec5SDimitry Andric if (V->isArtificial()) 56600b57cec5SDimitry Andric return; 56610b57cec5SDimitry Andric 56620b57cec5SDimitry Andric verifyFragmentExpression(*V, *Fragment, &I); 56630b57cec5SDimitry Andric } 56640b57cec5SDimitry Andric 56650b57cec5SDimitry Andric template <typename ValueOrMetadata> 56660b57cec5SDimitry Andric void Verifier::verifyFragmentExpression(const DIVariable &V, 56670b57cec5SDimitry Andric DIExpression::FragmentInfo Fragment, 56680b57cec5SDimitry Andric ValueOrMetadata *Desc) { 56690b57cec5SDimitry Andric // If there's no size, the type is broken, but that should be checked 56700b57cec5SDimitry Andric // elsewhere. 56710b57cec5SDimitry Andric auto VarSize = V.getSizeInBits(); 56720b57cec5SDimitry Andric if (!VarSize) 56730b57cec5SDimitry Andric return; 56740b57cec5SDimitry Andric 56750b57cec5SDimitry Andric unsigned FragSize = Fragment.SizeInBits; 56760b57cec5SDimitry Andric unsigned FragOffset = Fragment.OffsetInBits; 56770b57cec5SDimitry Andric AssertDI(FragSize + FragOffset <= *VarSize, 56780b57cec5SDimitry Andric "fragment is larger than or outside of variable", Desc, &V); 56790b57cec5SDimitry Andric AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 56800b57cec5SDimitry Andric } 56810b57cec5SDimitry Andric 56820b57cec5SDimitry Andric void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 56830b57cec5SDimitry Andric // This function does not take the scope of noninlined function arguments into 56840b57cec5SDimitry Andric // account. Don't run it if current function is nodebug, because it may 56850b57cec5SDimitry Andric // contain inlined debug intrinsics. 56860b57cec5SDimitry Andric if (!HasDebugInfo) 56870b57cec5SDimitry Andric return; 56880b57cec5SDimitry Andric 56890b57cec5SDimitry Andric // For performance reasons only check non-inlined ones. 56900b57cec5SDimitry Andric if (I.getDebugLoc()->getInlinedAt()) 56910b57cec5SDimitry Andric return; 56920b57cec5SDimitry Andric 56930b57cec5SDimitry Andric DILocalVariable *Var = I.getVariable(); 56940b57cec5SDimitry Andric AssertDI(Var, "dbg intrinsic without variable"); 56950b57cec5SDimitry Andric 56960b57cec5SDimitry Andric unsigned ArgNo = Var->getArg(); 56970b57cec5SDimitry Andric if (!ArgNo) 56980b57cec5SDimitry Andric return; 56990b57cec5SDimitry Andric 57000b57cec5SDimitry Andric // Verify there are no duplicate function argument debug info entries. 57010b57cec5SDimitry Andric // These will cause hard-to-debug assertions in the DWARF backend. 57020b57cec5SDimitry Andric if (DebugFnArgs.size() < ArgNo) 57030b57cec5SDimitry Andric DebugFnArgs.resize(ArgNo, nullptr); 57040b57cec5SDimitry Andric 57050b57cec5SDimitry Andric auto *Prev = DebugFnArgs[ArgNo - 1]; 57060b57cec5SDimitry Andric DebugFnArgs[ArgNo - 1] = Var; 57070b57cec5SDimitry Andric AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 57080b57cec5SDimitry Andric Prev, Var); 57090b57cec5SDimitry Andric } 57100b57cec5SDimitry Andric 57118bcb0991SDimitry Andric void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 57128bcb0991SDimitry Andric DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 57138bcb0991SDimitry Andric 57148bcb0991SDimitry Andric // We don't know whether this intrinsic verified correctly. 57158bcb0991SDimitry Andric if (!E || !E->isValid()) 57168bcb0991SDimitry Andric return; 57178bcb0991SDimitry Andric 57188bcb0991SDimitry Andric AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 57198bcb0991SDimitry Andric } 57208bcb0991SDimitry Andric 57210b57cec5SDimitry Andric void Verifier::verifyCompileUnits() { 57220b57cec5SDimitry Andric // When more than one Module is imported into the same context, such as during 57230b57cec5SDimitry Andric // an LTO build before linking the modules, ODR type uniquing may cause types 57240b57cec5SDimitry Andric // to point to a different CU. This check does not make sense in this case. 57250b57cec5SDimitry Andric if (M.getContext().isODRUniquingDebugTypes()) 57260b57cec5SDimitry Andric return; 57270b57cec5SDimitry Andric auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 57280b57cec5SDimitry Andric SmallPtrSet<const Metadata *, 2> Listed; 57290b57cec5SDimitry Andric if (CUs) 57300b57cec5SDimitry Andric Listed.insert(CUs->op_begin(), CUs->op_end()); 57310b57cec5SDimitry Andric for (auto *CU : CUVisited) 57320b57cec5SDimitry Andric AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 57330b57cec5SDimitry Andric CUVisited.clear(); 57340b57cec5SDimitry Andric } 57350b57cec5SDimitry Andric 57360b57cec5SDimitry Andric void Verifier::verifyDeoptimizeCallingConvs() { 57370b57cec5SDimitry Andric if (DeoptimizeDeclarations.empty()) 57380b57cec5SDimitry Andric return; 57390b57cec5SDimitry Andric 57400b57cec5SDimitry Andric const Function *First = DeoptimizeDeclarations[0]; 57410b57cec5SDimitry Andric for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 57420b57cec5SDimitry Andric Assert(First->getCallingConv() == F->getCallingConv(), 57430b57cec5SDimitry Andric "All llvm.experimental.deoptimize declarations must have the same " 57440b57cec5SDimitry Andric "calling convention", 57450b57cec5SDimitry Andric First, F); 57460b57cec5SDimitry Andric } 57470b57cec5SDimitry Andric } 57480b57cec5SDimitry Andric 5749349cc55cSDimitry Andric void Verifier::verifyAttachedCallBundle(const CallBase &Call, 5750349cc55cSDimitry Andric const OperandBundleUse &BU) { 5751349cc55cSDimitry Andric FunctionType *FTy = Call.getFunctionType(); 5752349cc55cSDimitry Andric 5753349cc55cSDimitry Andric Assert((FTy->getReturnType()->isPointerTy() || 5754349cc55cSDimitry Andric (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 5755349cc55cSDimitry Andric "a call with operand bundle \"clang.arc.attachedcall\" must call a " 5756349cc55cSDimitry Andric "function returning a pointer or a non-returning function that has a " 5757349cc55cSDimitry Andric "void return type", 5758349cc55cSDimitry Andric Call); 5759349cc55cSDimitry Andric 5760349cc55cSDimitry Andric Assert((BU.Inputs.empty() || 5761349cc55cSDimitry Andric (BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()))), 5762349cc55cSDimitry Andric "operand bundle \"clang.arc.attachedcall\" can take either no " 5763349cc55cSDimitry Andric "arguments or one function as an argument", 5764349cc55cSDimitry Andric Call); 5765349cc55cSDimitry Andric 5766349cc55cSDimitry Andric if (BU.Inputs.empty()) 5767349cc55cSDimitry Andric return; 5768349cc55cSDimitry Andric 5769349cc55cSDimitry Andric auto *Fn = cast<Function>(BU.Inputs.front()); 5770349cc55cSDimitry Andric Intrinsic::ID IID = Fn->getIntrinsicID(); 5771349cc55cSDimitry Andric 5772349cc55cSDimitry Andric if (IID) { 5773349cc55cSDimitry Andric Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 5774349cc55cSDimitry Andric IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 5775349cc55cSDimitry Andric "invalid function argument", Call); 5776349cc55cSDimitry Andric } else { 5777349cc55cSDimitry Andric StringRef FnName = Fn->getName(); 5778349cc55cSDimitry Andric Assert((FnName == "objc_retainAutoreleasedReturnValue" || 5779349cc55cSDimitry Andric FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 5780349cc55cSDimitry Andric "invalid function argument", Call); 5781349cc55cSDimitry Andric } 5782349cc55cSDimitry Andric } 5783349cc55cSDimitry Andric 57840b57cec5SDimitry Andric void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 57850b57cec5SDimitry Andric bool HasSource = F.getSource().hasValue(); 57860b57cec5SDimitry Andric if (!HasSourceDebugInfo.count(&U)) 57870b57cec5SDimitry Andric HasSourceDebugInfo[&U] = HasSource; 57880b57cec5SDimitry Andric AssertDI(HasSource == HasSourceDebugInfo[&U], 57890b57cec5SDimitry Andric "inconsistent use of embedded source"); 57900b57cec5SDimitry Andric } 57910b57cec5SDimitry Andric 5792e8d8bef9SDimitry Andric void Verifier::verifyNoAliasScopeDecl() { 5793e8d8bef9SDimitry Andric if (NoAliasScopeDecls.empty()) 5794e8d8bef9SDimitry Andric return; 5795e8d8bef9SDimitry Andric 5796e8d8bef9SDimitry Andric // only a single scope must be declared at a time. 5797e8d8bef9SDimitry Andric for (auto *II : NoAliasScopeDecls) { 5798e8d8bef9SDimitry Andric assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5799e8d8bef9SDimitry Andric "Not a llvm.experimental.noalias.scope.decl ?"); 5800e8d8bef9SDimitry Andric const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5801e8d8bef9SDimitry Andric II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5802e8d8bef9SDimitry Andric Assert(ScopeListMV != nullptr, 5803e8d8bef9SDimitry Andric "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5804e8d8bef9SDimitry Andric "argument", 5805e8d8bef9SDimitry Andric II); 5806e8d8bef9SDimitry Andric 5807e8d8bef9SDimitry Andric const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5808e8d8bef9SDimitry Andric Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5809e8d8bef9SDimitry Andric II); 5810e8d8bef9SDimitry Andric Assert(ScopeListMD->getNumOperands() == 1, 5811e8d8bef9SDimitry Andric "!id.scope.list must point to a list with a single scope", II); 5812349cc55cSDimitry Andric visitAliasScopeListMetadata(ScopeListMD); 5813e8d8bef9SDimitry Andric } 5814e8d8bef9SDimitry Andric 5815e8d8bef9SDimitry Andric // Only check the domination rule when requested. Once all passes have been 5816e8d8bef9SDimitry Andric // adapted this option can go away. 5817e8d8bef9SDimitry Andric if (!VerifyNoAliasScopeDomination) 5818e8d8bef9SDimitry Andric return; 5819e8d8bef9SDimitry Andric 5820e8d8bef9SDimitry Andric // Now sort the intrinsics based on the scope MDNode so that declarations of 5821e8d8bef9SDimitry Andric // the same scopes are next to each other. 5822e8d8bef9SDimitry Andric auto GetScope = [](IntrinsicInst *II) { 5823e8d8bef9SDimitry Andric const auto *ScopeListMV = cast<MetadataAsValue>( 5824e8d8bef9SDimitry Andric II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5825e8d8bef9SDimitry Andric return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5826e8d8bef9SDimitry Andric }; 5827e8d8bef9SDimitry Andric 5828e8d8bef9SDimitry Andric // We are sorting on MDNode pointers here. For valid input IR this is ok. 5829e8d8bef9SDimitry Andric // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5830e8d8bef9SDimitry Andric auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5831e8d8bef9SDimitry Andric return GetScope(Lhs) < GetScope(Rhs); 5832e8d8bef9SDimitry Andric }; 5833e8d8bef9SDimitry Andric 5834e8d8bef9SDimitry Andric llvm::sort(NoAliasScopeDecls, Compare); 5835e8d8bef9SDimitry Andric 5836e8d8bef9SDimitry Andric // Go over the intrinsics and check that for the same scope, they are not 5837e8d8bef9SDimitry Andric // dominating each other. 5838e8d8bef9SDimitry Andric auto ItCurrent = NoAliasScopeDecls.begin(); 5839e8d8bef9SDimitry Andric while (ItCurrent != NoAliasScopeDecls.end()) { 5840e8d8bef9SDimitry Andric auto CurScope = GetScope(*ItCurrent); 5841e8d8bef9SDimitry Andric auto ItNext = ItCurrent; 5842e8d8bef9SDimitry Andric do { 5843e8d8bef9SDimitry Andric ++ItNext; 5844e8d8bef9SDimitry Andric } while (ItNext != NoAliasScopeDecls.end() && 5845e8d8bef9SDimitry Andric GetScope(*ItNext) == CurScope); 5846e8d8bef9SDimitry Andric 5847e8d8bef9SDimitry Andric // [ItCurrent, ItNext) represents the declarations for the same scope. 5848e8d8bef9SDimitry Andric // Ensure they are not dominating each other.. but only if it is not too 5849e8d8bef9SDimitry Andric // expensive. 5850e8d8bef9SDimitry Andric if (ItNext - ItCurrent < 32) 5851e8d8bef9SDimitry Andric for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5852e8d8bef9SDimitry Andric for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5853e8d8bef9SDimitry Andric if (I != J) 5854e8d8bef9SDimitry Andric Assert(!DT.dominates(I, J), 5855e8d8bef9SDimitry Andric "llvm.experimental.noalias.scope.decl dominates another one " 5856e8d8bef9SDimitry Andric "with the same scope", 5857e8d8bef9SDimitry Andric I); 5858e8d8bef9SDimitry Andric ItCurrent = ItNext; 5859e8d8bef9SDimitry Andric } 5860e8d8bef9SDimitry Andric } 5861e8d8bef9SDimitry Andric 58620b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 58630b57cec5SDimitry Andric // Implement the public interfaces to this file... 58640b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 58650b57cec5SDimitry Andric 58660b57cec5SDimitry Andric bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 58670b57cec5SDimitry Andric Function &F = const_cast<Function &>(f); 58680b57cec5SDimitry Andric 58690b57cec5SDimitry Andric // Don't use a raw_null_ostream. Printing IR is expensive. 58700b57cec5SDimitry Andric Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 58710b57cec5SDimitry Andric 58720b57cec5SDimitry Andric // Note that this function's return value is inverted from what you would 58730b57cec5SDimitry Andric // expect of a function called "verify". 58740b57cec5SDimitry Andric return !V.verify(F); 58750b57cec5SDimitry Andric } 58760b57cec5SDimitry Andric 58770b57cec5SDimitry Andric bool llvm::verifyModule(const Module &M, raw_ostream *OS, 58780b57cec5SDimitry Andric bool *BrokenDebugInfo) { 58790b57cec5SDimitry Andric // Don't use a raw_null_ostream. Printing IR is expensive. 58800b57cec5SDimitry Andric Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 58810b57cec5SDimitry Andric 58820b57cec5SDimitry Andric bool Broken = false; 58830b57cec5SDimitry Andric for (const Function &F : M) 58840b57cec5SDimitry Andric Broken |= !V.verify(F); 58850b57cec5SDimitry Andric 58860b57cec5SDimitry Andric Broken |= !V.verify(); 58870b57cec5SDimitry Andric if (BrokenDebugInfo) 58880b57cec5SDimitry Andric *BrokenDebugInfo = V.hasBrokenDebugInfo(); 58890b57cec5SDimitry Andric // Note that this function's return value is inverted from what you would 58900b57cec5SDimitry Andric // expect of a function called "verify". 58910b57cec5SDimitry Andric return Broken; 58920b57cec5SDimitry Andric } 58930b57cec5SDimitry Andric 58940b57cec5SDimitry Andric namespace { 58950b57cec5SDimitry Andric 58960b57cec5SDimitry Andric struct VerifierLegacyPass : public FunctionPass { 58970b57cec5SDimitry Andric static char ID; 58980b57cec5SDimitry Andric 58990b57cec5SDimitry Andric std::unique_ptr<Verifier> V; 59000b57cec5SDimitry Andric bool FatalErrors = true; 59010b57cec5SDimitry Andric 59020b57cec5SDimitry Andric VerifierLegacyPass() : FunctionPass(ID) { 59030b57cec5SDimitry Andric initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 59040b57cec5SDimitry Andric } 59050b57cec5SDimitry Andric explicit VerifierLegacyPass(bool FatalErrors) 59060b57cec5SDimitry Andric : FunctionPass(ID), 59070b57cec5SDimitry Andric FatalErrors(FatalErrors) { 59080b57cec5SDimitry Andric initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 59090b57cec5SDimitry Andric } 59100b57cec5SDimitry Andric 59110b57cec5SDimitry Andric bool doInitialization(Module &M) override { 59128bcb0991SDimitry Andric V = std::make_unique<Verifier>( 59130b57cec5SDimitry Andric &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 59140b57cec5SDimitry Andric return false; 59150b57cec5SDimitry Andric } 59160b57cec5SDimitry Andric 59170b57cec5SDimitry Andric bool runOnFunction(Function &F) override { 59180b57cec5SDimitry Andric if (!V->verify(F) && FatalErrors) { 59190b57cec5SDimitry Andric errs() << "in function " << F.getName() << '\n'; 59200b57cec5SDimitry Andric report_fatal_error("Broken function found, compilation aborted!"); 59210b57cec5SDimitry Andric } 59220b57cec5SDimitry Andric return false; 59230b57cec5SDimitry Andric } 59240b57cec5SDimitry Andric 59250b57cec5SDimitry Andric bool doFinalization(Module &M) override { 59260b57cec5SDimitry Andric bool HasErrors = false; 59270b57cec5SDimitry Andric for (Function &F : M) 59280b57cec5SDimitry Andric if (F.isDeclaration()) 59290b57cec5SDimitry Andric HasErrors |= !V->verify(F); 59300b57cec5SDimitry Andric 59310b57cec5SDimitry Andric HasErrors |= !V->verify(); 59320b57cec5SDimitry Andric if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 59330b57cec5SDimitry Andric report_fatal_error("Broken module found, compilation aborted!"); 59340b57cec5SDimitry Andric return false; 59350b57cec5SDimitry Andric } 59360b57cec5SDimitry Andric 59370b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 59380b57cec5SDimitry Andric AU.setPreservesAll(); 59390b57cec5SDimitry Andric } 59400b57cec5SDimitry Andric }; 59410b57cec5SDimitry Andric 59420b57cec5SDimitry Andric } // end anonymous namespace 59430b57cec5SDimitry Andric 59440b57cec5SDimitry Andric /// Helper to issue failure from the TBAA verification 59450b57cec5SDimitry Andric template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 59460b57cec5SDimitry Andric if (Diagnostic) 59470b57cec5SDimitry Andric return Diagnostic->CheckFailed(Args...); 59480b57cec5SDimitry Andric } 59490b57cec5SDimitry Andric 59500b57cec5SDimitry Andric #define AssertTBAA(C, ...) \ 59510b57cec5SDimitry Andric do { \ 59520b57cec5SDimitry Andric if (!(C)) { \ 59530b57cec5SDimitry Andric CheckFailed(__VA_ARGS__); \ 59540b57cec5SDimitry Andric return false; \ 59550b57cec5SDimitry Andric } \ 59560b57cec5SDimitry Andric } while (false) 59570b57cec5SDimitry Andric 59580b57cec5SDimitry Andric /// Verify that \p BaseNode can be used as the "base type" in the struct-path 59590b57cec5SDimitry Andric /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 59600b57cec5SDimitry Andric /// struct-type node describing an aggregate data structure (like a struct). 59610b57cec5SDimitry Andric TBAAVerifier::TBAABaseNodeSummary 59620b57cec5SDimitry Andric TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 59630b57cec5SDimitry Andric bool IsNewFormat) { 59640b57cec5SDimitry Andric if (BaseNode->getNumOperands() < 2) { 59650b57cec5SDimitry Andric CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 59660b57cec5SDimitry Andric return {true, ~0u}; 59670b57cec5SDimitry Andric } 59680b57cec5SDimitry Andric 59690b57cec5SDimitry Andric auto Itr = TBAABaseNodes.find(BaseNode); 59700b57cec5SDimitry Andric if (Itr != TBAABaseNodes.end()) 59710b57cec5SDimitry Andric return Itr->second; 59720b57cec5SDimitry Andric 59730b57cec5SDimitry Andric auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 59740b57cec5SDimitry Andric auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 59750b57cec5SDimitry Andric (void)InsertResult; 59760b57cec5SDimitry Andric assert(InsertResult.second && "We just checked!"); 59770b57cec5SDimitry Andric return Result; 59780b57cec5SDimitry Andric } 59790b57cec5SDimitry Andric 59800b57cec5SDimitry Andric TBAAVerifier::TBAABaseNodeSummary 59810b57cec5SDimitry Andric TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 59820b57cec5SDimitry Andric bool IsNewFormat) { 59830b57cec5SDimitry Andric const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 59840b57cec5SDimitry Andric 59850b57cec5SDimitry Andric if (BaseNode->getNumOperands() == 2) { 59860b57cec5SDimitry Andric // Scalar nodes can only be accessed at offset 0. 59870b57cec5SDimitry Andric return isValidScalarTBAANode(BaseNode) 59880b57cec5SDimitry Andric ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 59890b57cec5SDimitry Andric : InvalidNode; 59900b57cec5SDimitry Andric } 59910b57cec5SDimitry Andric 59920b57cec5SDimitry Andric if (IsNewFormat) { 59930b57cec5SDimitry Andric if (BaseNode->getNumOperands() % 3 != 0) { 59940b57cec5SDimitry Andric CheckFailed("Access tag nodes must have the number of operands that is a " 59950b57cec5SDimitry Andric "multiple of 3!", BaseNode); 59960b57cec5SDimitry Andric return InvalidNode; 59970b57cec5SDimitry Andric } 59980b57cec5SDimitry Andric } else { 59990b57cec5SDimitry Andric if (BaseNode->getNumOperands() % 2 != 1) { 60000b57cec5SDimitry Andric CheckFailed("Struct tag nodes must have an odd number of operands!", 60010b57cec5SDimitry Andric BaseNode); 60020b57cec5SDimitry Andric return InvalidNode; 60030b57cec5SDimitry Andric } 60040b57cec5SDimitry Andric } 60050b57cec5SDimitry Andric 60060b57cec5SDimitry Andric // Check the type size field. 60070b57cec5SDimitry Andric if (IsNewFormat) { 60080b57cec5SDimitry Andric auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 60090b57cec5SDimitry Andric BaseNode->getOperand(1)); 60100b57cec5SDimitry Andric if (!TypeSizeNode) { 60110b57cec5SDimitry Andric CheckFailed("Type size nodes must be constants!", &I, BaseNode); 60120b57cec5SDimitry Andric return InvalidNode; 60130b57cec5SDimitry Andric } 60140b57cec5SDimitry Andric } 60150b57cec5SDimitry Andric 60160b57cec5SDimitry Andric // Check the type name field. In the new format it can be anything. 60170b57cec5SDimitry Andric if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 60180b57cec5SDimitry Andric CheckFailed("Struct tag nodes have a string as their first operand", 60190b57cec5SDimitry Andric BaseNode); 60200b57cec5SDimitry Andric return InvalidNode; 60210b57cec5SDimitry Andric } 60220b57cec5SDimitry Andric 60230b57cec5SDimitry Andric bool Failed = false; 60240b57cec5SDimitry Andric 60250b57cec5SDimitry Andric Optional<APInt> PrevOffset; 60260b57cec5SDimitry Andric unsigned BitWidth = ~0u; 60270b57cec5SDimitry Andric 60280b57cec5SDimitry Andric // We've already checked that BaseNode is not a degenerate root node with one 60290b57cec5SDimitry Andric // operand in \c verifyTBAABaseNode, so this loop should run at least once. 60300b57cec5SDimitry Andric unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 60310b57cec5SDimitry Andric unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 60320b57cec5SDimitry Andric for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 60330b57cec5SDimitry Andric Idx += NumOpsPerField) { 60340b57cec5SDimitry Andric const MDOperand &FieldTy = BaseNode->getOperand(Idx); 60350b57cec5SDimitry Andric const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 60360b57cec5SDimitry Andric if (!isa<MDNode>(FieldTy)) { 60370b57cec5SDimitry Andric CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 60380b57cec5SDimitry Andric Failed = true; 60390b57cec5SDimitry Andric continue; 60400b57cec5SDimitry Andric } 60410b57cec5SDimitry Andric 60420b57cec5SDimitry Andric auto *OffsetEntryCI = 60430b57cec5SDimitry Andric mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 60440b57cec5SDimitry Andric if (!OffsetEntryCI) { 60450b57cec5SDimitry Andric CheckFailed("Offset entries must be constants!", &I, BaseNode); 60460b57cec5SDimitry Andric Failed = true; 60470b57cec5SDimitry Andric continue; 60480b57cec5SDimitry Andric } 60490b57cec5SDimitry Andric 60500b57cec5SDimitry Andric if (BitWidth == ~0u) 60510b57cec5SDimitry Andric BitWidth = OffsetEntryCI->getBitWidth(); 60520b57cec5SDimitry Andric 60530b57cec5SDimitry Andric if (OffsetEntryCI->getBitWidth() != BitWidth) { 60540b57cec5SDimitry Andric CheckFailed( 60550b57cec5SDimitry Andric "Bitwidth between the offsets and struct type entries must match", &I, 60560b57cec5SDimitry Andric BaseNode); 60570b57cec5SDimitry Andric Failed = true; 60580b57cec5SDimitry Andric continue; 60590b57cec5SDimitry Andric } 60600b57cec5SDimitry Andric 60610b57cec5SDimitry Andric // NB! As far as I can tell, we generate a non-strictly increasing offset 60620b57cec5SDimitry Andric // sequence only from structs that have zero size bit fields. When 60630b57cec5SDimitry Andric // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 60640b57cec5SDimitry Andric // pick the field lexically the latest in struct type metadata node. This 60650b57cec5SDimitry Andric // mirrors the actual behavior of the alias analysis implementation. 60660b57cec5SDimitry Andric bool IsAscending = 60670b57cec5SDimitry Andric !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 60680b57cec5SDimitry Andric 60690b57cec5SDimitry Andric if (!IsAscending) { 60700b57cec5SDimitry Andric CheckFailed("Offsets must be increasing!", &I, BaseNode); 60710b57cec5SDimitry Andric Failed = true; 60720b57cec5SDimitry Andric } 60730b57cec5SDimitry Andric 60740b57cec5SDimitry Andric PrevOffset = OffsetEntryCI->getValue(); 60750b57cec5SDimitry Andric 60760b57cec5SDimitry Andric if (IsNewFormat) { 60770b57cec5SDimitry Andric auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 60780b57cec5SDimitry Andric BaseNode->getOperand(Idx + 2)); 60790b57cec5SDimitry Andric if (!MemberSizeNode) { 60800b57cec5SDimitry Andric CheckFailed("Member size entries must be constants!", &I, BaseNode); 60810b57cec5SDimitry Andric Failed = true; 60820b57cec5SDimitry Andric continue; 60830b57cec5SDimitry Andric } 60840b57cec5SDimitry Andric } 60850b57cec5SDimitry Andric } 60860b57cec5SDimitry Andric 60870b57cec5SDimitry Andric return Failed ? InvalidNode 60880b57cec5SDimitry Andric : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 60890b57cec5SDimitry Andric } 60900b57cec5SDimitry Andric 60910b57cec5SDimitry Andric static bool IsRootTBAANode(const MDNode *MD) { 60920b57cec5SDimitry Andric return MD->getNumOperands() < 2; 60930b57cec5SDimitry Andric } 60940b57cec5SDimitry Andric 60950b57cec5SDimitry Andric static bool IsScalarTBAANodeImpl(const MDNode *MD, 60960b57cec5SDimitry Andric SmallPtrSetImpl<const MDNode *> &Visited) { 60970b57cec5SDimitry Andric if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 60980b57cec5SDimitry Andric return false; 60990b57cec5SDimitry Andric 61000b57cec5SDimitry Andric if (!isa<MDString>(MD->getOperand(0))) 61010b57cec5SDimitry Andric return false; 61020b57cec5SDimitry Andric 61030b57cec5SDimitry Andric if (MD->getNumOperands() == 3) { 61040b57cec5SDimitry Andric auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 61050b57cec5SDimitry Andric if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 61060b57cec5SDimitry Andric return false; 61070b57cec5SDimitry Andric } 61080b57cec5SDimitry Andric 61090b57cec5SDimitry Andric auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 61100b57cec5SDimitry Andric return Parent && Visited.insert(Parent).second && 61110b57cec5SDimitry Andric (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 61120b57cec5SDimitry Andric } 61130b57cec5SDimitry Andric 61140b57cec5SDimitry Andric bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 61150b57cec5SDimitry Andric auto ResultIt = TBAAScalarNodes.find(MD); 61160b57cec5SDimitry Andric if (ResultIt != TBAAScalarNodes.end()) 61170b57cec5SDimitry Andric return ResultIt->second; 61180b57cec5SDimitry Andric 61190b57cec5SDimitry Andric SmallPtrSet<const MDNode *, 4> Visited; 61200b57cec5SDimitry Andric bool Result = IsScalarTBAANodeImpl(MD, Visited); 61210b57cec5SDimitry Andric auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 61220b57cec5SDimitry Andric (void)InsertResult; 61230b57cec5SDimitry Andric assert(InsertResult.second && "Just checked!"); 61240b57cec5SDimitry Andric 61250b57cec5SDimitry Andric return Result; 61260b57cec5SDimitry Andric } 61270b57cec5SDimitry Andric 61280b57cec5SDimitry Andric /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 61290b57cec5SDimitry Andric /// Offset in place to be the offset within the field node returned. 61300b57cec5SDimitry Andric /// 61310b57cec5SDimitry Andric /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 61320b57cec5SDimitry Andric MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 61330b57cec5SDimitry Andric const MDNode *BaseNode, 61340b57cec5SDimitry Andric APInt &Offset, 61350b57cec5SDimitry Andric bool IsNewFormat) { 61360b57cec5SDimitry Andric assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 61370b57cec5SDimitry Andric 61380b57cec5SDimitry Andric // Scalar nodes have only one possible "field" -- their parent in the access 61390b57cec5SDimitry Andric // hierarchy. Offset must be zero at this point, but our caller is supposed 61400b57cec5SDimitry Andric // to Assert that. 61410b57cec5SDimitry Andric if (BaseNode->getNumOperands() == 2) 61420b57cec5SDimitry Andric return cast<MDNode>(BaseNode->getOperand(1)); 61430b57cec5SDimitry Andric 61440b57cec5SDimitry Andric unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 61450b57cec5SDimitry Andric unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 61460b57cec5SDimitry Andric for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 61470b57cec5SDimitry Andric Idx += NumOpsPerField) { 61480b57cec5SDimitry Andric auto *OffsetEntryCI = 61490b57cec5SDimitry Andric mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 61500b57cec5SDimitry Andric if (OffsetEntryCI->getValue().ugt(Offset)) { 61510b57cec5SDimitry Andric if (Idx == FirstFieldOpNo) { 61520b57cec5SDimitry Andric CheckFailed("Could not find TBAA parent in struct type node", &I, 61530b57cec5SDimitry Andric BaseNode, &Offset); 61540b57cec5SDimitry Andric return nullptr; 61550b57cec5SDimitry Andric } 61560b57cec5SDimitry Andric 61570b57cec5SDimitry Andric unsigned PrevIdx = Idx - NumOpsPerField; 61580b57cec5SDimitry Andric auto *PrevOffsetEntryCI = 61590b57cec5SDimitry Andric mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 61600b57cec5SDimitry Andric Offset -= PrevOffsetEntryCI->getValue(); 61610b57cec5SDimitry Andric return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 61620b57cec5SDimitry Andric } 61630b57cec5SDimitry Andric } 61640b57cec5SDimitry Andric 61650b57cec5SDimitry Andric unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 61660b57cec5SDimitry Andric auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 61670b57cec5SDimitry Andric BaseNode->getOperand(LastIdx + 1)); 61680b57cec5SDimitry Andric Offset -= LastOffsetEntryCI->getValue(); 61690b57cec5SDimitry Andric return cast<MDNode>(BaseNode->getOperand(LastIdx)); 61700b57cec5SDimitry Andric } 61710b57cec5SDimitry Andric 61720b57cec5SDimitry Andric static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 61730b57cec5SDimitry Andric if (!Type || Type->getNumOperands() < 3) 61740b57cec5SDimitry Andric return false; 61750b57cec5SDimitry Andric 61760b57cec5SDimitry Andric // In the new format type nodes shall have a reference to the parent type as 61770b57cec5SDimitry Andric // its first operand. 6178349cc55cSDimitry Andric return isa_and_nonnull<MDNode>(Type->getOperand(0)); 61790b57cec5SDimitry Andric } 61800b57cec5SDimitry Andric 61810b57cec5SDimitry Andric bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 61820b57cec5SDimitry Andric AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 61830b57cec5SDimitry Andric isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 61840b57cec5SDimitry Andric isa<AtomicCmpXchgInst>(I), 61850b57cec5SDimitry Andric "This instruction shall not have a TBAA access tag!", &I); 61860b57cec5SDimitry Andric 61870b57cec5SDimitry Andric bool IsStructPathTBAA = 61880b57cec5SDimitry Andric isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 61890b57cec5SDimitry Andric 61900b57cec5SDimitry Andric AssertTBAA( 61910b57cec5SDimitry Andric IsStructPathTBAA, 61920b57cec5SDimitry Andric "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 61930b57cec5SDimitry Andric 61940b57cec5SDimitry Andric MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 61950b57cec5SDimitry Andric MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 61960b57cec5SDimitry Andric 61970b57cec5SDimitry Andric bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 61980b57cec5SDimitry Andric 61990b57cec5SDimitry Andric if (IsNewFormat) { 62000b57cec5SDimitry Andric AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 62010b57cec5SDimitry Andric "Access tag metadata must have either 4 or 5 operands", &I, MD); 62020b57cec5SDimitry Andric } else { 62030b57cec5SDimitry Andric AssertTBAA(MD->getNumOperands() < 5, 62040b57cec5SDimitry Andric "Struct tag metadata must have either 3 or 4 operands", &I, MD); 62050b57cec5SDimitry Andric } 62060b57cec5SDimitry Andric 62070b57cec5SDimitry Andric // Check the access size field. 62080b57cec5SDimitry Andric if (IsNewFormat) { 62090b57cec5SDimitry Andric auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 62100b57cec5SDimitry Andric MD->getOperand(3)); 62110b57cec5SDimitry Andric AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 62120b57cec5SDimitry Andric } 62130b57cec5SDimitry Andric 62140b57cec5SDimitry Andric // Check the immutability flag. 62150b57cec5SDimitry Andric unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 62160b57cec5SDimitry Andric if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 62170b57cec5SDimitry Andric auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 62180b57cec5SDimitry Andric MD->getOperand(ImmutabilityFlagOpNo)); 62190b57cec5SDimitry Andric AssertTBAA(IsImmutableCI, 62200b57cec5SDimitry Andric "Immutability tag on struct tag metadata must be a constant", 62210b57cec5SDimitry Andric &I, MD); 62220b57cec5SDimitry Andric AssertTBAA( 62230b57cec5SDimitry Andric IsImmutableCI->isZero() || IsImmutableCI->isOne(), 62240b57cec5SDimitry Andric "Immutability part of the struct tag metadata must be either 0 or 1", 62250b57cec5SDimitry Andric &I, MD); 62260b57cec5SDimitry Andric } 62270b57cec5SDimitry Andric 62280b57cec5SDimitry Andric AssertTBAA(BaseNode && AccessType, 62290b57cec5SDimitry Andric "Malformed struct tag metadata: base and access-type " 62300b57cec5SDimitry Andric "should be non-null and point to Metadata nodes", 62310b57cec5SDimitry Andric &I, MD, BaseNode, AccessType); 62320b57cec5SDimitry Andric 62330b57cec5SDimitry Andric if (!IsNewFormat) { 62340b57cec5SDimitry Andric AssertTBAA(isValidScalarTBAANode(AccessType), 62350b57cec5SDimitry Andric "Access type node must be a valid scalar type", &I, MD, 62360b57cec5SDimitry Andric AccessType); 62370b57cec5SDimitry Andric } 62380b57cec5SDimitry Andric 62390b57cec5SDimitry Andric auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 62400b57cec5SDimitry Andric AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 62410b57cec5SDimitry Andric 62420b57cec5SDimitry Andric APInt Offset = OffsetCI->getValue(); 62430b57cec5SDimitry Andric bool SeenAccessTypeInPath = false; 62440b57cec5SDimitry Andric 62450b57cec5SDimitry Andric SmallPtrSet<MDNode *, 4> StructPath; 62460b57cec5SDimitry Andric 62470b57cec5SDimitry Andric for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 62480b57cec5SDimitry Andric BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 62490b57cec5SDimitry Andric IsNewFormat)) { 62500b57cec5SDimitry Andric if (!StructPath.insert(BaseNode).second) { 62510b57cec5SDimitry Andric CheckFailed("Cycle detected in struct path", &I, MD); 62520b57cec5SDimitry Andric return false; 62530b57cec5SDimitry Andric } 62540b57cec5SDimitry Andric 62550b57cec5SDimitry Andric bool Invalid; 62560b57cec5SDimitry Andric unsigned BaseNodeBitWidth; 62570b57cec5SDimitry Andric std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 62580b57cec5SDimitry Andric IsNewFormat); 62590b57cec5SDimitry Andric 62600b57cec5SDimitry Andric // If the base node is invalid in itself, then we've already printed all the 62610b57cec5SDimitry Andric // errors we wanted to print. 62620b57cec5SDimitry Andric if (Invalid) 62630b57cec5SDimitry Andric return false; 62640b57cec5SDimitry Andric 62650b57cec5SDimitry Andric SeenAccessTypeInPath |= BaseNode == AccessType; 62660b57cec5SDimitry Andric 62670b57cec5SDimitry Andric if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 62680b57cec5SDimitry Andric AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 62690b57cec5SDimitry Andric &I, MD, &Offset); 62700b57cec5SDimitry Andric 62710b57cec5SDimitry Andric AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 62720b57cec5SDimitry Andric (BaseNodeBitWidth == 0 && Offset == 0) || 62730b57cec5SDimitry Andric (IsNewFormat && BaseNodeBitWidth == ~0u), 62740b57cec5SDimitry Andric "Access bit-width not the same as description bit-width", &I, MD, 62750b57cec5SDimitry Andric BaseNodeBitWidth, Offset.getBitWidth()); 62760b57cec5SDimitry Andric 62770b57cec5SDimitry Andric if (IsNewFormat && SeenAccessTypeInPath) 62780b57cec5SDimitry Andric break; 62790b57cec5SDimitry Andric } 62800b57cec5SDimitry Andric 62810b57cec5SDimitry Andric AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 62820b57cec5SDimitry Andric &I, MD); 62830b57cec5SDimitry Andric return true; 62840b57cec5SDimitry Andric } 62850b57cec5SDimitry Andric 62860b57cec5SDimitry Andric char VerifierLegacyPass::ID = 0; 62870b57cec5SDimitry Andric INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 62880b57cec5SDimitry Andric 62890b57cec5SDimitry Andric FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 62900b57cec5SDimitry Andric return new VerifierLegacyPass(FatalErrors); 62910b57cec5SDimitry Andric } 62920b57cec5SDimitry Andric 62930b57cec5SDimitry Andric AnalysisKey VerifierAnalysis::Key; 62940b57cec5SDimitry Andric VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 62950b57cec5SDimitry Andric ModuleAnalysisManager &) { 62960b57cec5SDimitry Andric Result Res; 62970b57cec5SDimitry Andric Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 62980b57cec5SDimitry Andric return Res; 62990b57cec5SDimitry Andric } 63000b57cec5SDimitry Andric 63010b57cec5SDimitry Andric VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 63020b57cec5SDimitry Andric FunctionAnalysisManager &) { 63030b57cec5SDimitry Andric return { llvm::verifyFunction(F, &dbgs()), false }; 63040b57cec5SDimitry Andric } 63050b57cec5SDimitry Andric 63060b57cec5SDimitry Andric PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 63070b57cec5SDimitry Andric auto Res = AM.getResult<VerifierAnalysis>(M); 63080b57cec5SDimitry Andric if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 63090b57cec5SDimitry Andric report_fatal_error("Broken module found, compilation aborted!"); 63100b57cec5SDimitry Andric 63110b57cec5SDimitry Andric return PreservedAnalyses::all(); 63120b57cec5SDimitry Andric } 63130b57cec5SDimitry Andric 63140b57cec5SDimitry Andric PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 63150b57cec5SDimitry Andric auto res = AM.getResult<VerifierAnalysis>(F); 63160b57cec5SDimitry Andric if (res.IRBroken && FatalErrors) 63170b57cec5SDimitry Andric report_fatal_error("Broken function found, compilation aborted!"); 63180b57cec5SDimitry Andric 63190b57cec5SDimitry Andric return PreservedAnalyses::all(); 63200b57cec5SDimitry Andric } 6321