1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/InstrTypes.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 42 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 43 cl::desc("Maximum size for the name of non-global values.")); 44 45 //===----------------------------------------------------------------------===// 46 // Value Class 47 //===----------------------------------------------------------------------===// 48 static inline Type *checkType(Type *Ty) { 49 assert(Ty && "Value defined with a null type: Error!"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 55 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 56 IsUsedByMD(false), HasName(false), HasMetadata(false) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke || 62 SubclassID == Instruction::CallBr) 63 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 64 "invalid CallInst type!"); 65 else if (SubclassID != BasicBlockVal && 66 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 67 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 68 "Cannot create non-first-class values except for constants!"); 69 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 70 "Value too big"); 71 } 72 73 Value::~Value() { 74 // Notify all ValueHandles (if present) that this value is going away. 75 if (HasValueHandle) 76 ValueHandleBase::ValueIsDeleted(this); 77 if (isUsedByMetadata()) 78 ValueAsMetadata::handleDeletion(this); 79 80 // Remove associated metadata from context. 81 if (HasMetadata) 82 clearMetadata(); 83 84 #ifndef NDEBUG // Only in -g mode... 85 // Check to make sure that there are no uses of this value that are still 86 // around when the value is destroyed. If there are, then we have a dangling 87 // reference and something is wrong. This code is here to print out where 88 // the value is still being referenced. 89 // 90 // Note that use_empty() cannot be called here, as it eventually downcasts 91 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 92 // been destructed, so accessing it is UB. 93 // 94 if (!materialized_use_empty()) { 95 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 96 for (auto *U : users()) 97 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 98 } 99 #endif 100 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 101 102 // If this value is named, destroy the name. This should not be in a symtab 103 // at this point. 104 destroyValueName(); 105 } 106 107 void Value::deleteValue() { 108 switch (getValueID()) { 109 #define HANDLE_VALUE(Name) \ 110 case Value::Name##Val: \ 111 delete static_cast<Name *>(this); \ 112 break; 113 #define HANDLE_MEMORY_VALUE(Name) \ 114 case Value::Name##Val: \ 115 static_cast<DerivedUser *>(this)->DeleteValue( \ 116 static_cast<DerivedUser *>(this)); \ 117 break; 118 #define HANDLE_CONSTANT(Name) \ 119 case Value::Name##Val: \ 120 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 121 break; 122 #define HANDLE_INSTRUCTION(Name) /* nothing */ 123 #include "llvm/IR/Value.def" 124 125 #define HANDLE_INST(N, OPC, CLASS) \ 126 case Value::InstructionVal + Instruction::OPC: \ 127 delete static_cast<CLASS *>(this); \ 128 break; 129 #define HANDLE_USER_INST(N, OPC, CLASS) 130 #include "llvm/IR/Instruction.def" 131 132 default: 133 llvm_unreachable("attempting to delete unknown value kind"); 134 } 135 } 136 137 void Value::destroyValueName() { 138 ValueName *Name = getValueName(); 139 if (Name) { 140 MallocAllocator Allocator; 141 Name->Destroy(Allocator); 142 } 143 setValueName(nullptr); 144 } 145 146 bool Value::hasNUses(unsigned N) const { 147 return hasNItems(use_begin(), use_end(), N); 148 } 149 150 bool Value::hasNUsesOrMore(unsigned N) const { 151 return hasNItemsOrMore(use_begin(), use_end(), N); 152 } 153 154 bool Value::hasOneUser() const { 155 if (use_empty()) 156 return false; 157 if (hasOneUse()) 158 return true; 159 return std::equal(++user_begin(), user_end(), user_begin()); 160 } 161 162 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 163 164 Use *Value::getSingleUndroppableUse() { 165 Use *Result = nullptr; 166 for (Use &U : uses()) { 167 if (!U.getUser()->isDroppable()) { 168 if (Result) 169 return nullptr; 170 Result = &U; 171 } 172 } 173 return Result; 174 } 175 176 bool Value::hasNUndroppableUses(unsigned int N) const { 177 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 178 } 179 180 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 181 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 182 } 183 184 void Value::dropDroppableUses( 185 llvm::function_ref<bool(const Use *)> ShouldDrop) { 186 SmallVector<Use *, 8> ToBeEdited; 187 for (Use &U : uses()) 188 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 189 ToBeEdited.push_back(&U); 190 for (Use *U : ToBeEdited) 191 dropDroppableUse(*U); 192 } 193 194 void Value::dropDroppableUsesIn(User &Usr) { 195 assert(Usr.isDroppable() && "Expected a droppable user!"); 196 for (Use &UsrOp : Usr.operands()) { 197 if (UsrOp.get() == this) 198 dropDroppableUse(UsrOp); 199 } 200 } 201 202 void Value::dropDroppableUse(Use &U) { 203 U.removeFromList(); 204 if (auto *Assume = dyn_cast<IntrinsicInst>(U.getUser())) { 205 assert(Assume->getIntrinsicID() == Intrinsic::assume); 206 unsigned OpNo = U.getOperandNo(); 207 if (OpNo == 0) 208 U.set(ConstantInt::getTrue(Assume->getContext())); 209 else { 210 U.set(UndefValue::get(U.get()->getType())); 211 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 212 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 213 } 214 return; 215 } 216 217 llvm_unreachable("unkown droppable use"); 218 } 219 220 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 221 // This can be computed either by scanning the instructions in BB, or by 222 // scanning the use list of this Value. Both lists can be very long, but 223 // usually one is quite short. 224 // 225 // Scan both lists simultaneously until one is exhausted. This limits the 226 // search to the shorter list. 227 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 228 const_user_iterator UI = user_begin(), UE = user_end(); 229 for (; BI != BE && UI != UE; ++BI, ++UI) { 230 // Scan basic block: Check if this Value is used by the instruction at BI. 231 if (is_contained(BI->operands(), this)) 232 return true; 233 // Scan use list: Check if the use at UI is in BB. 234 const auto *User = dyn_cast<Instruction>(*UI); 235 if (User && User->getParent() == BB) 236 return true; 237 } 238 return false; 239 } 240 241 unsigned Value::getNumUses() const { 242 return (unsigned)std::distance(use_begin(), use_end()); 243 } 244 245 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 246 ST = nullptr; 247 if (Instruction *I = dyn_cast<Instruction>(V)) { 248 if (BasicBlock *P = I->getParent()) 249 if (Function *PP = P->getParent()) 250 ST = PP->getValueSymbolTable(); 251 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 252 if (Function *P = BB->getParent()) 253 ST = P->getValueSymbolTable(); 254 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 255 if (Module *P = GV->getParent()) 256 ST = &P->getValueSymbolTable(); 257 } else if (Argument *A = dyn_cast<Argument>(V)) { 258 if (Function *P = A->getParent()) 259 ST = P->getValueSymbolTable(); 260 } else { 261 assert(isa<Constant>(V) && "Unknown value type!"); 262 return true; // no name is setable for this. 263 } 264 return false; 265 } 266 267 ValueName *Value::getValueName() const { 268 if (!HasName) return nullptr; 269 270 LLVMContext &Ctx = getContext(); 271 auto I = Ctx.pImpl->ValueNames.find(this); 272 assert(I != Ctx.pImpl->ValueNames.end() && 273 "No name entry found!"); 274 275 return I->second; 276 } 277 278 void Value::setValueName(ValueName *VN) { 279 LLVMContext &Ctx = getContext(); 280 281 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 282 "HasName bit out of sync!"); 283 284 if (!VN) { 285 if (HasName) 286 Ctx.pImpl->ValueNames.erase(this); 287 HasName = false; 288 return; 289 } 290 291 HasName = true; 292 Ctx.pImpl->ValueNames[this] = VN; 293 } 294 295 StringRef Value::getName() const { 296 // Make sure the empty string is still a C string. For historical reasons, 297 // some clients want to call .data() on the result and expect it to be null 298 // terminated. 299 if (!hasName()) 300 return StringRef("", 0); 301 return getValueName()->getKey(); 302 } 303 304 void Value::setNameImpl(const Twine &NewName) { 305 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 306 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 307 return; 308 309 // Fast path for common IRBuilder case of setName("") when there is no name. 310 if (NewName.isTriviallyEmpty() && !hasName()) 311 return; 312 313 SmallString<256> NameData; 314 StringRef NameRef = NewName.toStringRef(NameData); 315 assert(NameRef.find_first_of(0) == StringRef::npos && 316 "Null bytes are not allowed in names"); 317 318 // Name isn't changing? 319 if (getName() == NameRef) 320 return; 321 322 // Cap the size of non-GlobalValue names. 323 if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this)) 324 NameRef = 325 NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize)); 326 327 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 328 329 // Get the symbol table to update for this object. 330 ValueSymbolTable *ST; 331 if (getSymTab(this, ST)) 332 return; // Cannot set a name on this value (e.g. constant). 333 334 if (!ST) { // No symbol table to update? Just do the change. 335 if (NameRef.empty()) { 336 // Free the name for this value. 337 destroyValueName(); 338 return; 339 } 340 341 // NOTE: Could optimize for the case the name is shrinking to not deallocate 342 // then reallocated. 343 destroyValueName(); 344 345 // Create the new name. 346 MallocAllocator Allocator; 347 setValueName(ValueName::Create(NameRef, Allocator)); 348 getValueName()->setValue(this); 349 return; 350 } 351 352 // NOTE: Could optimize for the case the name is shrinking to not deallocate 353 // then reallocated. 354 if (hasName()) { 355 // Remove old name. 356 ST->removeValueName(getValueName()); 357 destroyValueName(); 358 359 if (NameRef.empty()) 360 return; 361 } 362 363 // Name is changing to something new. 364 setValueName(ST->createValueName(NameRef, this)); 365 } 366 367 void Value::setName(const Twine &NewName) { 368 setNameImpl(NewName); 369 if (Function *F = dyn_cast<Function>(this)) 370 F->recalculateIntrinsicID(); 371 } 372 373 void Value::takeName(Value *V) { 374 ValueSymbolTable *ST = nullptr; 375 // If this value has a name, drop it. 376 if (hasName()) { 377 // Get the symtab this is in. 378 if (getSymTab(this, ST)) { 379 // We can't set a name on this value, but we need to clear V's name if 380 // it has one. 381 if (V->hasName()) V->setName(""); 382 return; // Cannot set a name on this value (e.g. constant). 383 } 384 385 // Remove old name. 386 if (ST) 387 ST->removeValueName(getValueName()); 388 destroyValueName(); 389 } 390 391 // Now we know that this has no name. 392 393 // If V has no name either, we're done. 394 if (!V->hasName()) return; 395 396 // Get this's symtab if we didn't before. 397 if (!ST) { 398 if (getSymTab(this, ST)) { 399 // Clear V's name. 400 V->setName(""); 401 return; // Cannot set a name on this value (e.g. constant). 402 } 403 } 404 405 // Get V's ST, this should always succed, because V has a name. 406 ValueSymbolTable *VST; 407 bool Failure = getSymTab(V, VST); 408 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 409 410 // If these values are both in the same symtab, we can do this very fast. 411 // This works even if both values have no symtab yet. 412 if (ST == VST) { 413 // Take the name! 414 setValueName(V->getValueName()); 415 V->setValueName(nullptr); 416 getValueName()->setValue(this); 417 return; 418 } 419 420 // Otherwise, things are slightly more complex. Remove V's name from VST and 421 // then reinsert it into ST. 422 423 if (VST) 424 VST->removeValueName(V->getValueName()); 425 setValueName(V->getValueName()); 426 V->setValueName(nullptr); 427 getValueName()->setValue(this); 428 429 if (ST) 430 ST->reinsertValue(this); 431 } 432 433 #ifndef NDEBUG 434 std::string Value::getNameOrAsOperand() const { 435 if (!getName().empty()) 436 return std::string(getName()); 437 438 std::string BBName; 439 raw_string_ostream OS(BBName); 440 printAsOperand(OS, false); 441 return OS.str(); 442 } 443 #endif 444 445 void Value::assertModuleIsMaterializedImpl() const { 446 #ifndef NDEBUG 447 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 448 if (!GV) 449 return; 450 const Module *M = GV->getParent(); 451 if (!M) 452 return; 453 assert(M->isMaterialized()); 454 #endif 455 } 456 457 #ifndef NDEBUG 458 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 459 Constant *C) { 460 if (!Cache.insert(Expr).second) 461 return false; 462 463 for (auto &O : Expr->operands()) { 464 if (O == C) 465 return true; 466 auto *CE = dyn_cast<ConstantExpr>(O); 467 if (!CE) 468 continue; 469 if (contains(Cache, CE, C)) 470 return true; 471 } 472 return false; 473 } 474 475 static bool contains(Value *Expr, Value *V) { 476 if (Expr == V) 477 return true; 478 479 auto *C = dyn_cast<Constant>(V); 480 if (!C) 481 return false; 482 483 auto *CE = dyn_cast<ConstantExpr>(Expr); 484 if (!CE) 485 return false; 486 487 SmallPtrSet<ConstantExpr *, 4> Cache; 488 return contains(Cache, CE, C); 489 } 490 #endif // NDEBUG 491 492 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 493 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 494 assert(!contains(New, this) && 495 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 496 assert(New->getType() == getType() && 497 "replaceAllUses of value with new value of different type!"); 498 499 // Notify all ValueHandles (if present) that this value is going away. 500 if (HasValueHandle) 501 ValueHandleBase::ValueIsRAUWd(this, New); 502 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 503 ValueAsMetadata::handleRAUW(this, New); 504 505 while (!materialized_use_empty()) { 506 Use &U = *UseList; 507 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 508 // constant because they are uniqued. 509 if (auto *C = dyn_cast<Constant>(U.getUser())) { 510 if (!isa<GlobalValue>(C)) { 511 C->handleOperandChange(this, New); 512 continue; 513 } 514 } 515 516 U.set(New); 517 } 518 519 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 520 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 521 } 522 523 void Value::replaceAllUsesWith(Value *New) { 524 doRAUW(New, ReplaceMetadataUses::Yes); 525 } 526 527 void Value::replaceNonMetadataUsesWith(Value *New) { 528 doRAUW(New, ReplaceMetadataUses::No); 529 } 530 531 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 532 // This routine leaves uses within BB. 533 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 534 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 535 assert(!contains(New, this) && 536 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 537 assert(New->getType() == getType() && 538 "replaceUses of value with new value of different type!"); 539 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 540 541 replaceUsesWithIf(New, [BB](Use &U) { 542 auto *I = dyn_cast<Instruction>(U.getUser()); 543 // Don't replace if it's an instruction in the BB basic block. 544 return !I || I->getParent() != BB; 545 }); 546 } 547 548 namespace { 549 // Various metrics for how much to strip off of pointers. 550 enum PointerStripKind { 551 PSK_ZeroIndices, 552 PSK_ZeroIndicesAndAliases, 553 PSK_ZeroIndicesSameRepresentation, 554 PSK_ZeroIndicesAndInvariantGroups, 555 PSK_InBoundsConstantIndices, 556 PSK_InBounds 557 }; 558 559 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 560 561 template <PointerStripKind StripKind> 562 static const Value *stripPointerCastsAndOffsets( 563 const Value *V, 564 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 565 if (!V->getType()->isPointerTy()) 566 return V; 567 568 // Even though we don't look through PHI nodes, we could be called on an 569 // instruction in an unreachable block, which may be on a cycle. 570 SmallPtrSet<const Value *, 4> Visited; 571 572 Visited.insert(V); 573 do { 574 Func(V); 575 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 576 switch (StripKind) { 577 case PSK_ZeroIndices: 578 case PSK_ZeroIndicesAndAliases: 579 case PSK_ZeroIndicesSameRepresentation: 580 case PSK_ZeroIndicesAndInvariantGroups: 581 if (!GEP->hasAllZeroIndices()) 582 return V; 583 break; 584 case PSK_InBoundsConstantIndices: 585 if (!GEP->hasAllConstantIndices()) 586 return V; 587 LLVM_FALLTHROUGH; 588 case PSK_InBounds: 589 if (!GEP->isInBounds()) 590 return V; 591 break; 592 } 593 V = GEP->getPointerOperand(); 594 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 595 V = cast<Operator>(V)->getOperand(0); 596 if (!V->getType()->isPointerTy()) 597 return V; 598 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 599 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 600 // TODO: If we know an address space cast will not change the 601 // representation we could look through it here as well. 602 V = cast<Operator>(V)->getOperand(0); 603 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 604 V = cast<GlobalAlias>(V)->getAliasee(); 605 } else { 606 if (const auto *Call = dyn_cast<CallBase>(V)) { 607 if (const Value *RV = Call->getReturnedArgOperand()) { 608 V = RV; 609 continue; 610 } 611 // The result of launder.invariant.group must alias it's argument, 612 // but it can't be marked with returned attribute, that's why it needs 613 // special case. 614 if (StripKind == PSK_ZeroIndicesAndInvariantGroups && 615 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 616 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 617 V = Call->getArgOperand(0); 618 continue; 619 } 620 } 621 return V; 622 } 623 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 624 } while (Visited.insert(V).second); 625 626 return V; 627 } 628 } // end anonymous namespace 629 630 const Value *Value::stripPointerCasts() const { 631 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 632 } 633 634 const Value *Value::stripPointerCastsAndAliases() const { 635 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 636 } 637 638 const Value *Value::stripPointerCastsSameRepresentation() const { 639 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 640 } 641 642 const Value *Value::stripInBoundsConstantOffsets() const { 643 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 644 } 645 646 const Value *Value::stripPointerCastsAndInvariantGroups() const { 647 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this); 648 } 649 650 const Value *Value::stripAndAccumulateConstantOffsets( 651 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 652 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 653 if (!getType()->isPtrOrPtrVectorTy()) 654 return this; 655 656 unsigned BitWidth = Offset.getBitWidth(); 657 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 658 "The offset bit width does not match the DL specification."); 659 660 // Even though we don't look through PHI nodes, we could be called on an 661 // instruction in an unreachable block, which may be on a cycle. 662 SmallPtrSet<const Value *, 4> Visited; 663 Visited.insert(this); 664 const Value *V = this; 665 do { 666 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 667 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 668 if (!AllowNonInbounds && !GEP->isInBounds()) 669 return V; 670 671 // If one of the values we have visited is an addrspacecast, then 672 // the pointer type of this GEP may be different from the type 673 // of the Ptr parameter which was passed to this function. This 674 // means when we construct GEPOffset, we need to use the size 675 // of GEP's pointer type rather than the size of the original 676 // pointer type. 677 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 678 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 679 return V; 680 681 // Stop traversal if the pointer offset wouldn't fit in the bit-width 682 // provided by the Offset argument. This can happen due to AddrSpaceCast 683 // stripping. 684 if (GEPOffset.getMinSignedBits() > BitWidth) 685 return V; 686 687 // External Analysis can return a result higher/lower than the value 688 // represents. We need to detect overflow/underflow. 689 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 690 if (!ExternalAnalysis) { 691 Offset += GEPOffsetST; 692 } else { 693 bool Overflow = false; 694 APInt OldOffset = Offset; 695 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 696 if (Overflow) { 697 Offset = OldOffset; 698 return V; 699 } 700 } 701 V = GEP->getPointerOperand(); 702 } else if (Operator::getOpcode(V) == Instruction::BitCast || 703 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 704 V = cast<Operator>(V)->getOperand(0); 705 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 706 if (!GA->isInterposable()) 707 V = GA->getAliasee(); 708 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 709 if (const Value *RV = Call->getReturnedArgOperand()) 710 V = RV; 711 } 712 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 713 } while (Visited.insert(V).second); 714 715 return V; 716 } 717 718 const Value * 719 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 720 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 721 } 722 723 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 724 bool &CanBeNull) const { 725 assert(getType()->isPointerTy() && "must be pointer"); 726 727 uint64_t DerefBytes = 0; 728 CanBeNull = false; 729 if (const Argument *A = dyn_cast<Argument>(this)) { 730 DerefBytes = A->getDereferenceableBytes(); 731 if (DerefBytes == 0) { 732 // Handle byval/byref/inalloca/preallocated arguments 733 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 734 if (ArgMemTy->isSized()) { 735 // FIXME: Why isn't this the type alloc size? 736 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 737 } 738 } 739 } 740 741 if (DerefBytes == 0) { 742 DerefBytes = A->getDereferenceableOrNullBytes(); 743 CanBeNull = true; 744 } 745 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 746 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex); 747 if (DerefBytes == 0) { 748 DerefBytes = 749 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex); 750 CanBeNull = true; 751 } 752 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 753 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 754 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 755 DerefBytes = CI->getLimitedValue(); 756 } 757 if (DerefBytes == 0) { 758 if (MDNode *MD = 759 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 760 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 761 DerefBytes = CI->getLimitedValue(); 762 } 763 CanBeNull = true; 764 } 765 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 766 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 767 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 768 DerefBytes = CI->getLimitedValue(); 769 } 770 if (DerefBytes == 0) { 771 if (MDNode *MD = 772 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 773 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 774 DerefBytes = CI->getLimitedValue(); 775 } 776 CanBeNull = true; 777 } 778 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 779 if (!AI->isArrayAllocation()) { 780 DerefBytes = 781 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 782 CanBeNull = false; 783 } 784 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 785 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 786 // TODO: Don't outright reject hasExternalWeakLinkage but set the 787 // CanBeNull flag. 788 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 789 CanBeNull = false; 790 } 791 } 792 return DerefBytes; 793 } 794 795 Align Value::getPointerAlignment(const DataLayout &DL) const { 796 assert(getType()->isPointerTy() && "must be pointer"); 797 if (auto *GO = dyn_cast<GlobalObject>(this)) { 798 if (isa<Function>(GO)) { 799 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 800 switch (DL.getFunctionPtrAlignType()) { 801 case DataLayout::FunctionPtrAlignType::Independent: 802 return FunctionPtrAlign; 803 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 804 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 805 } 806 llvm_unreachable("Unhandled FunctionPtrAlignType"); 807 } 808 const MaybeAlign Alignment(GO->getAlignment()); 809 if (!Alignment) { 810 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 811 Type *ObjectType = GVar->getValueType(); 812 if (ObjectType->isSized()) { 813 // If the object is defined in the current Module, we'll be giving 814 // it the preferred alignment. Otherwise, we have to assume that it 815 // may only have the minimum ABI alignment. 816 if (GVar->isStrongDefinitionForLinker()) 817 return DL.getPreferredAlign(GVar); 818 else 819 return DL.getABITypeAlign(ObjectType); 820 } 821 } 822 } 823 return Alignment.valueOrOne(); 824 } else if (const Argument *A = dyn_cast<Argument>(this)) { 825 const MaybeAlign Alignment = A->getParamAlign(); 826 if (!Alignment && A->hasStructRetAttr()) { 827 // An sret parameter has at least the ABI alignment of the return type. 828 Type *EltTy = A->getParamStructRetType(); 829 if (EltTy->isSized()) 830 return DL.getABITypeAlign(EltTy); 831 } 832 return Alignment.valueOrOne(); 833 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 834 return AI->getAlign(); 835 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 836 MaybeAlign Alignment = Call->getRetAlign(); 837 if (!Alignment && Call->getCalledFunction()) 838 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 839 return Alignment.valueOrOne(); 840 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 841 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 842 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 843 return Align(CI->getLimitedValue()); 844 } 845 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 846 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 847 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 848 /*OnlyIfReduced=*/true))) { 849 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 850 // While the actual alignment may be large, elsewhere we have 851 // an arbitrary upper alignmet limit, so let's clamp to it. 852 return Align(TrailingZeros < Value::MaxAlignmentExponent 853 ? uint64_t(1) << TrailingZeros 854 : Value::MaximumAlignment); 855 } 856 } 857 return Align(1); 858 } 859 860 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 861 const BasicBlock *PredBB) const { 862 auto *PN = dyn_cast<PHINode>(this); 863 if (PN && PN->getParent() == CurBB) 864 return PN->getIncomingValueForBlock(PredBB); 865 return this; 866 } 867 868 LLVMContext &Value::getContext() const { return VTy->getContext(); } 869 870 void Value::reverseUseList() { 871 if (!UseList || !UseList->Next) 872 // No need to reverse 0 or 1 uses. 873 return; 874 875 Use *Head = UseList; 876 Use *Current = UseList->Next; 877 Head->Next = nullptr; 878 while (Current) { 879 Use *Next = Current->Next; 880 Current->Next = Head; 881 Head->Prev = &Current->Next; 882 Head = Current; 883 Current = Next; 884 } 885 UseList = Head; 886 Head->Prev = &UseList; 887 } 888 889 bool Value::isSwiftError() const { 890 auto *Arg = dyn_cast<Argument>(this); 891 if (Arg) 892 return Arg->hasSwiftErrorAttr(); 893 auto *Alloca = dyn_cast<AllocaInst>(this); 894 if (!Alloca) 895 return false; 896 return Alloca->isSwiftError(); 897 } 898 899 //===----------------------------------------------------------------------===// 900 // ValueHandleBase Class 901 //===----------------------------------------------------------------------===// 902 903 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 904 assert(List && "Handle list is null?"); 905 906 // Splice ourselves into the list. 907 Next = *List; 908 *List = this; 909 setPrevPtr(List); 910 if (Next) { 911 Next->setPrevPtr(&Next); 912 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 913 } 914 } 915 916 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 917 assert(List && "Must insert after existing node"); 918 919 Next = List->Next; 920 setPrevPtr(&List->Next); 921 List->Next = this; 922 if (Next) 923 Next->setPrevPtr(&Next); 924 } 925 926 void ValueHandleBase::AddToUseList() { 927 assert(getValPtr() && "Null pointer doesn't have a use list!"); 928 929 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 930 931 if (getValPtr()->HasValueHandle) { 932 // If this value already has a ValueHandle, then it must be in the 933 // ValueHandles map already. 934 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 935 assert(Entry && "Value doesn't have any handles?"); 936 AddToExistingUseList(&Entry); 937 return; 938 } 939 940 // Ok, it doesn't have any handles yet, so we must insert it into the 941 // DenseMap. However, doing this insertion could cause the DenseMap to 942 // reallocate itself, which would invalidate all of the PrevP pointers that 943 // point into the old table. Handle this by checking for reallocation and 944 // updating the stale pointers only if needed. 945 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 946 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 947 948 ValueHandleBase *&Entry = Handles[getValPtr()]; 949 assert(!Entry && "Value really did already have handles?"); 950 AddToExistingUseList(&Entry); 951 getValPtr()->HasValueHandle = true; 952 953 // If reallocation didn't happen or if this was the first insertion, don't 954 // walk the table. 955 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 956 Handles.size() == 1) { 957 return; 958 } 959 960 // Okay, reallocation did happen. Fix the Prev Pointers. 961 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 962 E = Handles.end(); I != E; ++I) { 963 assert(I->second && I->first == I->second->getValPtr() && 964 "List invariant broken!"); 965 I->second->setPrevPtr(&I->second); 966 } 967 } 968 969 void ValueHandleBase::RemoveFromUseList() { 970 assert(getValPtr() && getValPtr()->HasValueHandle && 971 "Pointer doesn't have a use list!"); 972 973 // Unlink this from its use list. 974 ValueHandleBase **PrevPtr = getPrevPtr(); 975 assert(*PrevPtr == this && "List invariant broken"); 976 977 *PrevPtr = Next; 978 if (Next) { 979 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 980 Next->setPrevPtr(PrevPtr); 981 return; 982 } 983 984 // If the Next pointer was null, then it is possible that this was the last 985 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 986 // map. 987 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 988 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 989 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 990 Handles.erase(getValPtr()); 991 getValPtr()->HasValueHandle = false; 992 } 993 } 994 995 void ValueHandleBase::ValueIsDeleted(Value *V) { 996 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 997 998 // Get the linked list base, which is guaranteed to exist since the 999 // HasValueHandle flag is set. 1000 LLVMContextImpl *pImpl = V->getContext().pImpl; 1001 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1002 assert(Entry && "Value bit set but no entries exist"); 1003 1004 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1005 // and remove themselves from the list without breaking our iteration. This 1006 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1007 // Note that we deliberately do not the support the case when dropping a value 1008 // handle results in a new value handle being permanently added to the list 1009 // (as might occur in theory for CallbackVH's): the new value handle will not 1010 // be processed and the checking code will mete out righteous punishment if 1011 // the handle is still present once we have finished processing all the other 1012 // value handles (it is fine to momentarily add then remove a value handle). 1013 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1014 Iterator.RemoveFromUseList(); 1015 Iterator.AddToExistingUseListAfter(Entry); 1016 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1017 1018 switch (Entry->getKind()) { 1019 case Assert: 1020 break; 1021 case Weak: 1022 case WeakTracking: 1023 // WeakTracking and Weak just go to null, which unlinks them 1024 // from the list. 1025 Entry->operator=(nullptr); 1026 break; 1027 case Callback: 1028 // Forward to the subclass's implementation. 1029 static_cast<CallbackVH*>(Entry)->deleted(); 1030 break; 1031 } 1032 } 1033 1034 // All callbacks, weak references, and assertingVHs should be dropped by now. 1035 if (V->HasValueHandle) { 1036 #ifndef NDEBUG // Only in +Asserts mode... 1037 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1038 << "\n"; 1039 if (pImpl->ValueHandles[V]->getKind() == Assert) 1040 llvm_unreachable("An asserting value handle still pointed to this" 1041 " value!"); 1042 1043 #endif 1044 llvm_unreachable("All references to V were not removed?"); 1045 } 1046 } 1047 1048 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1049 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1050 assert(Old != New && "Changing value into itself!"); 1051 assert(Old->getType() == New->getType() && 1052 "replaceAllUses of value with new value of different type!"); 1053 1054 // Get the linked list base, which is guaranteed to exist since the 1055 // HasValueHandle flag is set. 1056 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1057 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1058 1059 assert(Entry && "Value bit set but no entries exist"); 1060 1061 // We use a local ValueHandleBase as an iterator so that 1062 // ValueHandles can add and remove themselves from the list without 1063 // breaking our iteration. This is not really an AssertingVH; we 1064 // just have to give ValueHandleBase some kind. 1065 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1066 Iterator.RemoveFromUseList(); 1067 Iterator.AddToExistingUseListAfter(Entry); 1068 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1069 1070 switch (Entry->getKind()) { 1071 case Assert: 1072 case Weak: 1073 // Asserting and Weak handles do not follow RAUW implicitly. 1074 break; 1075 case WeakTracking: 1076 // Weak goes to the new value, which will unlink it from Old's list. 1077 Entry->operator=(New); 1078 break; 1079 case Callback: 1080 // Forward to the subclass's implementation. 1081 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1082 break; 1083 } 1084 } 1085 1086 #ifndef NDEBUG 1087 // If any new weak value handles were added while processing the 1088 // list, then complain about it now. 1089 if (Old->HasValueHandle) 1090 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1091 switch (Entry->getKind()) { 1092 case WeakTracking: 1093 dbgs() << "After RAUW from " << *Old->getType() << " %" 1094 << Old->getName() << " to " << *New->getType() << " %" 1095 << New->getName() << "\n"; 1096 llvm_unreachable( 1097 "A weak tracking value handle still pointed to the old value!\n"); 1098 default: 1099 break; 1100 } 1101 #endif 1102 } 1103 1104 // Pin the vtable to this file. 1105 void CallbackVH::anchor() {} 1106