1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/IR/Constant.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/InstrTypes.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 35 using namespace llvm; 36 37 static cl::opt<unsigned> UseDerefAtPointSemantics( 38 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 39 cl::desc("Deref attributes and metadata infer facts at definition only")); 40 41 //===----------------------------------------------------------------------===// 42 // Value Class 43 //===----------------------------------------------------------------------===// 44 static inline Type *checkType(Type *Ty) { 45 assert(Ty && "Value defined with a null type: Error!"); 46 return Ty; 47 } 48 49 Value::Value(Type *ty, unsigned scid) 50 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 51 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 52 IsUsedByMD(false), HasName(false), HasMetadata(false) { 53 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 54 // FIXME: Why isn't this in the subclass gunk?? 55 // Note, we cannot call isa<CallInst> before the CallInst has been 56 // constructed. 57 unsigned OpCode = 0; 58 if (SubclassID >= InstructionVal) 59 OpCode = SubclassID - InstructionVal; 60 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || 61 OpCode == Instruction::CallBr) 62 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 63 "invalid CallBase type!"); 64 else if (SubclassID != BasicBlockVal && 65 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 66 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 67 "Cannot create non-first-class values except for constants!"); 68 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 69 "Value too big"); 70 } 71 72 Value::~Value() { 73 // Notify all ValueHandles (if present) that this value is going away. 74 if (HasValueHandle) 75 ValueHandleBase::ValueIsDeleted(this); 76 if (isUsedByMetadata()) 77 ValueAsMetadata::handleDeletion(this); 78 79 // Remove associated metadata from context. 80 if (HasMetadata) 81 clearMetadata(); 82 83 #ifndef NDEBUG // Only in -g mode... 84 // Check to make sure that there are no uses of this value that are still 85 // around when the value is destroyed. If there are, then we have a dangling 86 // reference and something is wrong. This code is here to print out where 87 // the value is still being referenced. 88 // 89 // Note that use_empty() cannot be called here, as it eventually downcasts 90 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 91 // been destructed, so accessing it is UB. 92 // 93 if (!materialized_use_empty()) { 94 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 95 for (auto *U : users()) 96 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 97 } 98 #endif 99 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 100 101 // If this value is named, destroy the name. This should not be in a symtab 102 // at this point. 103 destroyValueName(); 104 } 105 106 void Value::deleteValue() { 107 switch (getValueID()) { 108 #define HANDLE_VALUE(Name) \ 109 case Value::Name##Val: \ 110 delete static_cast<Name *>(this); \ 111 break; 112 #define HANDLE_MEMORY_VALUE(Name) \ 113 case Value::Name##Val: \ 114 static_cast<DerivedUser *>(this)->DeleteValue( \ 115 static_cast<DerivedUser *>(this)); \ 116 break; 117 #define HANDLE_CONSTANT(Name) \ 118 case Value::Name##Val: \ 119 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 120 break; 121 #define HANDLE_INSTRUCTION(Name) /* nothing */ 122 #include "llvm/IR/Value.def" 123 124 #define HANDLE_INST(N, OPC, CLASS) \ 125 case Value::InstructionVal + Instruction::OPC: \ 126 delete static_cast<CLASS *>(this); \ 127 break; 128 #define HANDLE_USER_INST(N, OPC, CLASS) 129 #include "llvm/IR/Instruction.def" 130 131 default: 132 llvm_unreachable("attempting to delete unknown value kind"); 133 } 134 } 135 136 void Value::destroyValueName() { 137 ValueName *Name = getValueName(); 138 if (Name) { 139 MallocAllocator Allocator; 140 Name->Destroy(Allocator); 141 } 142 setValueName(nullptr); 143 } 144 145 bool Value::hasNUses(unsigned N) const { 146 return hasNItems(use_begin(), use_end(), N); 147 } 148 149 bool Value::hasNUsesOrMore(unsigned N) const { 150 return hasNItemsOrMore(use_begin(), use_end(), N); 151 } 152 153 bool Value::hasOneUser() const { 154 if (use_empty()) 155 return false; 156 if (hasOneUse()) 157 return true; 158 return std::equal(++user_begin(), user_end(), user_begin()); 159 } 160 161 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 162 163 Use *Value::getSingleUndroppableUse() { 164 Use *Result = nullptr; 165 for (Use &U : uses()) { 166 if (!U.getUser()->isDroppable()) { 167 if (Result) 168 return nullptr; 169 Result = &U; 170 } 171 } 172 return Result; 173 } 174 175 User *Value::getUniqueUndroppableUser() { 176 User *Result = nullptr; 177 for (auto *U : users()) { 178 if (!U->isDroppable()) { 179 if (Result && Result != U) 180 return nullptr; 181 Result = U; 182 } 183 } 184 return Result; 185 } 186 187 bool Value::hasNUndroppableUses(unsigned int N) const { 188 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 189 } 190 191 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 192 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 193 } 194 195 void Value::dropDroppableUses( 196 llvm::function_ref<bool(const Use *)> ShouldDrop) { 197 SmallVector<Use *, 8> ToBeEdited; 198 for (Use &U : uses()) 199 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 200 ToBeEdited.push_back(&U); 201 for (Use *U : ToBeEdited) 202 dropDroppableUse(*U); 203 } 204 205 void Value::dropDroppableUsesIn(User &Usr) { 206 assert(Usr.isDroppable() && "Expected a droppable user!"); 207 for (Use &UsrOp : Usr.operands()) { 208 if (UsrOp.get() == this) 209 dropDroppableUse(UsrOp); 210 } 211 } 212 213 void Value::dropDroppableUse(Use &U) { 214 U.removeFromList(); 215 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 216 unsigned OpNo = U.getOperandNo(); 217 if (OpNo == 0) 218 U.set(ConstantInt::getTrue(Assume->getContext())); 219 else { 220 U.set(UndefValue::get(U.get()->getType())); 221 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 222 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 223 } 224 return; 225 } 226 227 llvm_unreachable("unkown droppable use"); 228 } 229 230 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 231 // This can be computed either by scanning the instructions in BB, or by 232 // scanning the use list of this Value. Both lists can be very long, but 233 // usually one is quite short. 234 // 235 // Scan both lists simultaneously until one is exhausted. This limits the 236 // search to the shorter list. 237 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 238 const_user_iterator UI = user_begin(), UE = user_end(); 239 for (; BI != BE && UI != UE; ++BI, ++UI) { 240 // Scan basic block: Check if this Value is used by the instruction at BI. 241 if (is_contained(BI->operands(), this)) 242 return true; 243 // Scan use list: Check if the use at UI is in BB. 244 const auto *User = dyn_cast<Instruction>(*UI); 245 if (User && User->getParent() == BB) 246 return true; 247 } 248 return false; 249 } 250 251 unsigned Value::getNumUses() const { 252 return (unsigned)std::distance(use_begin(), use_end()); 253 } 254 255 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 256 ST = nullptr; 257 if (Instruction *I = dyn_cast<Instruction>(V)) { 258 if (BasicBlock *P = I->getParent()) 259 if (Function *PP = P->getParent()) 260 ST = PP->getValueSymbolTable(); 261 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 262 if (Function *P = BB->getParent()) 263 ST = P->getValueSymbolTable(); 264 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 265 if (Module *P = GV->getParent()) 266 ST = &P->getValueSymbolTable(); 267 } else if (Argument *A = dyn_cast<Argument>(V)) { 268 if (Function *P = A->getParent()) 269 ST = P->getValueSymbolTable(); 270 } else { 271 assert(isa<Constant>(V) && "Unknown value type!"); 272 return true; // no name is setable for this. 273 } 274 return false; 275 } 276 277 ValueName *Value::getValueName() const { 278 if (!HasName) return nullptr; 279 280 LLVMContext &Ctx = getContext(); 281 auto I = Ctx.pImpl->ValueNames.find(this); 282 assert(I != Ctx.pImpl->ValueNames.end() && 283 "No name entry found!"); 284 285 return I->second; 286 } 287 288 void Value::setValueName(ValueName *VN) { 289 LLVMContext &Ctx = getContext(); 290 291 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 292 "HasName bit out of sync!"); 293 294 if (!VN) { 295 if (HasName) 296 Ctx.pImpl->ValueNames.erase(this); 297 HasName = false; 298 return; 299 } 300 301 HasName = true; 302 Ctx.pImpl->ValueNames[this] = VN; 303 } 304 305 StringRef Value::getName() const { 306 // Make sure the empty string is still a C string. For historical reasons, 307 // some clients want to call .data() on the result and expect it to be null 308 // terminated. 309 if (!hasName()) 310 return StringRef("", 0); 311 return getValueName()->getKey(); 312 } 313 314 void Value::setNameImpl(const Twine &NewName) { 315 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 316 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 317 return; 318 319 // Fast path for common IRBuilder case of setName("") when there is no name. 320 if (NewName.isTriviallyEmpty() && !hasName()) 321 return; 322 323 SmallString<256> NameData; 324 StringRef NameRef = NewName.toStringRef(NameData); 325 assert(NameRef.find_first_of(0) == StringRef::npos && 326 "Null bytes are not allowed in names"); 327 328 // Name isn't changing? 329 if (getName() == NameRef) 330 return; 331 332 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 333 334 // Get the symbol table to update for this object. 335 ValueSymbolTable *ST; 336 if (getSymTab(this, ST)) 337 return; // Cannot set a name on this value (e.g. constant). 338 339 if (!ST) { // No symbol table to update? Just do the change. 340 if (NameRef.empty()) { 341 // Free the name for this value. 342 destroyValueName(); 343 return; 344 } 345 346 // NOTE: Could optimize for the case the name is shrinking to not deallocate 347 // then reallocated. 348 destroyValueName(); 349 350 // Create the new name. 351 MallocAllocator Allocator; 352 setValueName(ValueName::Create(NameRef, Allocator)); 353 getValueName()->setValue(this); 354 return; 355 } 356 357 // NOTE: Could optimize for the case the name is shrinking to not deallocate 358 // then reallocated. 359 if (hasName()) { 360 // Remove old name. 361 ST->removeValueName(getValueName()); 362 destroyValueName(); 363 364 if (NameRef.empty()) 365 return; 366 } 367 368 // Name is changing to something new. 369 setValueName(ST->createValueName(NameRef, this)); 370 } 371 372 void Value::setName(const Twine &NewName) { 373 setNameImpl(NewName); 374 if (Function *F = dyn_cast<Function>(this)) 375 F->recalculateIntrinsicID(); 376 } 377 378 void Value::takeName(Value *V) { 379 assert(V != this && "Illegal call to this->takeName(this)!"); 380 ValueSymbolTable *ST = nullptr; 381 // If this value has a name, drop it. 382 if (hasName()) { 383 // Get the symtab this is in. 384 if (getSymTab(this, ST)) { 385 // We can't set a name on this value, but we need to clear V's name if 386 // it has one. 387 if (V->hasName()) V->setName(""); 388 return; // Cannot set a name on this value (e.g. constant). 389 } 390 391 // Remove old name. 392 if (ST) 393 ST->removeValueName(getValueName()); 394 destroyValueName(); 395 } 396 397 // Now we know that this has no name. 398 399 // If V has no name either, we're done. 400 if (!V->hasName()) return; 401 402 // Get this's symtab if we didn't before. 403 if (!ST) { 404 if (getSymTab(this, ST)) { 405 // Clear V's name. 406 V->setName(""); 407 return; // Cannot set a name on this value (e.g. constant). 408 } 409 } 410 411 // Get V's ST, this should always succeed, because V has a name. 412 ValueSymbolTable *VST; 413 bool Failure = getSymTab(V, VST); 414 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 415 416 // If these values are both in the same symtab, we can do this very fast. 417 // This works even if both values have no symtab yet. 418 if (ST == VST) { 419 // Take the name! 420 setValueName(V->getValueName()); 421 V->setValueName(nullptr); 422 getValueName()->setValue(this); 423 return; 424 } 425 426 // Otherwise, things are slightly more complex. Remove V's name from VST and 427 // then reinsert it into ST. 428 429 if (VST) 430 VST->removeValueName(V->getValueName()); 431 setValueName(V->getValueName()); 432 V->setValueName(nullptr); 433 getValueName()->setValue(this); 434 435 if (ST) 436 ST->reinsertValue(this); 437 } 438 439 #ifndef NDEBUG 440 std::string Value::getNameOrAsOperand() const { 441 if (!getName().empty()) 442 return std::string(getName()); 443 444 std::string BBName; 445 raw_string_ostream OS(BBName); 446 printAsOperand(OS, false); 447 return OS.str(); 448 } 449 #endif 450 451 void Value::assertModuleIsMaterializedImpl() const { 452 #ifndef NDEBUG 453 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 454 if (!GV) 455 return; 456 const Module *M = GV->getParent(); 457 if (!M) 458 return; 459 assert(M->isMaterialized()); 460 #endif 461 } 462 463 #ifndef NDEBUG 464 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 465 Constant *C) { 466 if (!Cache.insert(Expr).second) 467 return false; 468 469 for (auto &O : Expr->operands()) { 470 if (O == C) 471 return true; 472 auto *CE = dyn_cast<ConstantExpr>(O); 473 if (!CE) 474 continue; 475 if (contains(Cache, CE, C)) 476 return true; 477 } 478 return false; 479 } 480 481 static bool contains(Value *Expr, Value *V) { 482 if (Expr == V) 483 return true; 484 485 auto *C = dyn_cast<Constant>(V); 486 if (!C) 487 return false; 488 489 auto *CE = dyn_cast<ConstantExpr>(Expr); 490 if (!CE) 491 return false; 492 493 SmallPtrSet<ConstantExpr *, 4> Cache; 494 return contains(Cache, CE, C); 495 } 496 #endif // NDEBUG 497 498 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 499 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 500 assert(!contains(New, this) && 501 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 502 assert(New->getType() == getType() && 503 "replaceAllUses of value with new value of different type!"); 504 505 // Notify all ValueHandles (if present) that this value is going away. 506 if (HasValueHandle) 507 ValueHandleBase::ValueIsRAUWd(this, New); 508 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 509 ValueAsMetadata::handleRAUW(this, New); 510 511 while (!materialized_use_empty()) { 512 Use &U = *UseList; 513 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 514 // constant because they are uniqued. 515 if (auto *C = dyn_cast<Constant>(U.getUser())) { 516 if (!isa<GlobalValue>(C)) { 517 C->handleOperandChange(this, New); 518 continue; 519 } 520 } 521 522 U.set(New); 523 } 524 525 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 526 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 527 } 528 529 void Value::replaceAllUsesWith(Value *New) { 530 doRAUW(New, ReplaceMetadataUses::Yes); 531 } 532 533 void Value::replaceNonMetadataUsesWith(Value *New) { 534 doRAUW(New, ReplaceMetadataUses::No); 535 } 536 537 void Value::replaceUsesWithIf(Value *New, 538 llvm::function_ref<bool(Use &U)> ShouldReplace) { 539 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 540 assert(New->getType() == getType() && 541 "replaceUses of value with new value of different type!"); 542 543 SmallVector<TrackingVH<Constant>, 8> Consts; 544 SmallPtrSet<Constant *, 8> Visited; 545 546 for (Use &U : llvm::make_early_inc_range(uses())) { 547 if (!ShouldReplace(U)) 548 continue; 549 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 550 // constant because they are uniqued. 551 if (auto *C = dyn_cast<Constant>(U.getUser())) { 552 if (!isa<GlobalValue>(C)) { 553 if (Visited.insert(C).second) 554 Consts.push_back(TrackingVH<Constant>(C)); 555 continue; 556 } 557 } 558 U.set(New); 559 } 560 561 while (!Consts.empty()) { 562 // FIXME: handleOperandChange() updates all the uses in a given Constant, 563 // not just the one passed to ShouldReplace 564 Consts.pop_back_val()->handleOperandChange(this, New); 565 } 566 } 567 568 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 569 /// with New. 570 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 571 SmallVector<DbgVariableIntrinsic *> DbgUsers; 572 findDbgUsers(DbgUsers, V); 573 for (auto *DVI : DbgUsers) { 574 if (DVI->getParent() != BB) 575 DVI->replaceVariableLocationOp(V, New); 576 } 577 } 578 579 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 580 // This routine leaves uses within BB. 581 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 582 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 583 assert(!contains(New, this) && 584 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 585 assert(New->getType() == getType() && 586 "replaceUses of value with new value of different type!"); 587 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 588 589 replaceDbgUsesOutsideBlock(this, New, BB); 590 replaceUsesWithIf(New, [BB](Use &U) { 591 auto *I = dyn_cast<Instruction>(U.getUser()); 592 // Don't replace if it's an instruction in the BB basic block. 593 return !I || I->getParent() != BB; 594 }); 595 } 596 597 namespace { 598 // Various metrics for how much to strip off of pointers. 599 enum PointerStripKind { 600 PSK_ZeroIndices, 601 PSK_ZeroIndicesAndAliases, 602 PSK_ZeroIndicesSameRepresentation, 603 PSK_ForAliasAnalysis, 604 PSK_InBoundsConstantIndices, 605 PSK_InBounds 606 }; 607 608 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 609 610 template <PointerStripKind StripKind> 611 static const Value *stripPointerCastsAndOffsets( 612 const Value *V, 613 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 614 if (!V->getType()->isPointerTy()) 615 return V; 616 617 // Even though we don't look through PHI nodes, we could be called on an 618 // instruction in an unreachable block, which may be on a cycle. 619 SmallPtrSet<const Value *, 4> Visited; 620 621 Visited.insert(V); 622 do { 623 Func(V); 624 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 625 switch (StripKind) { 626 case PSK_ZeroIndices: 627 case PSK_ZeroIndicesAndAliases: 628 case PSK_ZeroIndicesSameRepresentation: 629 case PSK_ForAliasAnalysis: 630 if (!GEP->hasAllZeroIndices()) 631 return V; 632 break; 633 case PSK_InBoundsConstantIndices: 634 if (!GEP->hasAllConstantIndices()) 635 return V; 636 LLVM_FALLTHROUGH; 637 case PSK_InBounds: 638 if (!GEP->isInBounds()) 639 return V; 640 break; 641 } 642 V = GEP->getPointerOperand(); 643 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 644 V = cast<Operator>(V)->getOperand(0); 645 if (!V->getType()->isPointerTy()) 646 return V; 647 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 648 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 649 // TODO: If we know an address space cast will not change the 650 // representation we could look through it here as well. 651 V = cast<Operator>(V)->getOperand(0); 652 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 653 V = cast<GlobalAlias>(V)->getAliasee(); 654 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 655 cast<PHINode>(V)->getNumIncomingValues() == 1) { 656 V = cast<PHINode>(V)->getIncomingValue(0); 657 } else { 658 if (const auto *Call = dyn_cast<CallBase>(V)) { 659 if (const Value *RV = Call->getReturnedArgOperand()) { 660 V = RV; 661 continue; 662 } 663 // The result of launder.invariant.group must alias it's argument, 664 // but it can't be marked with returned attribute, that's why it needs 665 // special case. 666 if (StripKind == PSK_ForAliasAnalysis && 667 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 668 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 669 V = Call->getArgOperand(0); 670 continue; 671 } 672 } 673 return V; 674 } 675 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 676 } while (Visited.insert(V).second); 677 678 return V; 679 } 680 } // end anonymous namespace 681 682 const Value *Value::stripPointerCasts() const { 683 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 684 } 685 686 const Value *Value::stripPointerCastsAndAliases() const { 687 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 688 } 689 690 const Value *Value::stripPointerCastsSameRepresentation() const { 691 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 692 } 693 694 const Value *Value::stripInBoundsConstantOffsets() const { 695 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 696 } 697 698 const Value *Value::stripPointerCastsForAliasAnalysis() const { 699 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 700 } 701 702 const Value *Value::stripAndAccumulateConstantOffsets( 703 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 704 bool AllowInvariantGroup, 705 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 706 if (!getType()->isPtrOrPtrVectorTy()) 707 return this; 708 709 unsigned BitWidth = Offset.getBitWidth(); 710 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 711 "The offset bit width does not match the DL specification."); 712 713 // Even though we don't look through PHI nodes, we could be called on an 714 // instruction in an unreachable block, which may be on a cycle. 715 SmallPtrSet<const Value *, 4> Visited; 716 Visited.insert(this); 717 const Value *V = this; 718 do { 719 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 720 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 721 if (!AllowNonInbounds && !GEP->isInBounds()) 722 return V; 723 724 // If one of the values we have visited is an addrspacecast, then 725 // the pointer type of this GEP may be different from the type 726 // of the Ptr parameter which was passed to this function. This 727 // means when we construct GEPOffset, we need to use the size 728 // of GEP's pointer type rather than the size of the original 729 // pointer type. 730 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 731 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 732 return V; 733 734 // Stop traversal if the pointer offset wouldn't fit in the bit-width 735 // provided by the Offset argument. This can happen due to AddrSpaceCast 736 // stripping. 737 if (GEPOffset.getMinSignedBits() > BitWidth) 738 return V; 739 740 // External Analysis can return a result higher/lower than the value 741 // represents. We need to detect overflow/underflow. 742 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 743 if (!ExternalAnalysis) { 744 Offset += GEPOffsetST; 745 } else { 746 bool Overflow = false; 747 APInt OldOffset = Offset; 748 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 749 if (Overflow) { 750 Offset = OldOffset; 751 return V; 752 } 753 } 754 V = GEP->getPointerOperand(); 755 } else if (Operator::getOpcode(V) == Instruction::BitCast || 756 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 757 V = cast<Operator>(V)->getOperand(0); 758 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 759 if (!GA->isInterposable()) 760 V = GA->getAliasee(); 761 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 762 if (const Value *RV = Call->getReturnedArgOperand()) 763 V = RV; 764 if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) 765 V = Call->getArgOperand(0); 766 } 767 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 768 } while (Visited.insert(V).second); 769 770 return V; 771 } 772 773 const Value * 774 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 775 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 776 } 777 778 bool Value::canBeFreed() const { 779 assert(getType()->isPointerTy()); 780 781 // Cases that can simply never be deallocated 782 // *) Constants aren't allocated per se, thus not deallocated either. 783 if (isa<Constant>(this)) 784 return false; 785 786 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 787 // lifetime is guaranteed to be longer than the callee's lifetime. 788 if (auto *A = dyn_cast<Argument>(this)) { 789 if (A->hasPointeeInMemoryValueAttr()) 790 return false; 791 // A pointer to an object in a function which neither frees, nor can arrange 792 // for another thread to free on its behalf, can not be freed in the scope 793 // of the function. Note that this logic is restricted to memory 794 // allocations in existance before the call; a nofree function *is* allowed 795 // to free memory it allocated. 796 const Function *F = A->getParent(); 797 if (F->doesNotFreeMemory() && F->hasNoSync()) 798 return false; 799 } 800 801 const Function *F = nullptr; 802 if (auto *I = dyn_cast<Instruction>(this)) 803 F = I->getFunction(); 804 if (auto *A = dyn_cast<Argument>(this)) 805 F = A->getParent(); 806 807 if (!F) 808 return true; 809 810 // With garbage collection, deallocation typically occurs solely at or after 811 // safepoints. If we're compiling for a collector which uses the 812 // gc.statepoint infrastructure, safepoints aren't explicitly present 813 // in the IR until after lowering from abstract to physical machine model. 814 // The collector could chose to mix explicit deallocation and gc'd objects 815 // which is why we need the explicit opt in on a per collector basis. 816 if (!F->hasGC()) 817 return true; 818 819 const auto &GCName = F->getGC(); 820 if (GCName == "statepoint-example") { 821 auto *PT = cast<PointerType>(this->getType()); 822 if (PT->getAddressSpace() != 1) 823 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 824 // our GC managed heap. This must match the same check in 825 // RewriteStatepointsForGC (and probably needs better factored.) 826 return true; 827 828 // It is cheaper to scan for a declaration than to scan for a use in this 829 // function. Note that gc.statepoint is a type overloaded function so the 830 // usual trick of requesting declaration of the intrinsic from the module 831 // doesn't work. 832 for (auto &Fn : *F->getParent()) 833 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 834 return true; 835 return false; 836 } 837 return true; 838 } 839 840 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 841 bool &CanBeNull, 842 bool &CanBeFreed) const { 843 assert(getType()->isPointerTy() && "must be pointer"); 844 845 uint64_t DerefBytes = 0; 846 CanBeNull = false; 847 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 848 if (const Argument *A = dyn_cast<Argument>(this)) { 849 DerefBytes = A->getDereferenceableBytes(); 850 if (DerefBytes == 0) { 851 // Handle byval/byref/inalloca/preallocated arguments 852 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 853 if (ArgMemTy->isSized()) { 854 // FIXME: Why isn't this the type alloc size? 855 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 856 } 857 } 858 } 859 860 if (DerefBytes == 0) { 861 DerefBytes = A->getDereferenceableOrNullBytes(); 862 CanBeNull = true; 863 } 864 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 865 DerefBytes = Call->getRetDereferenceableBytes(); 866 if (DerefBytes == 0) { 867 DerefBytes = Call->getRetDereferenceableOrNullBytes(); 868 CanBeNull = true; 869 } 870 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 871 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 872 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 873 DerefBytes = CI->getLimitedValue(); 874 } 875 if (DerefBytes == 0) { 876 if (MDNode *MD = 877 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 878 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 879 DerefBytes = CI->getLimitedValue(); 880 } 881 CanBeNull = true; 882 } 883 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 884 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 885 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 886 DerefBytes = CI->getLimitedValue(); 887 } 888 if (DerefBytes == 0) { 889 if (MDNode *MD = 890 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 891 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 892 DerefBytes = CI->getLimitedValue(); 893 } 894 CanBeNull = true; 895 } 896 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 897 if (!AI->isArrayAllocation()) { 898 DerefBytes = 899 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 900 CanBeNull = false; 901 CanBeFreed = false; 902 } 903 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 904 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 905 // TODO: Don't outright reject hasExternalWeakLinkage but set the 906 // CanBeNull flag. 907 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 908 CanBeNull = false; 909 CanBeFreed = false; 910 } 911 } 912 return DerefBytes; 913 } 914 915 Align Value::getPointerAlignment(const DataLayout &DL) const { 916 assert(getType()->isPointerTy() && "must be pointer"); 917 if (auto *GO = dyn_cast<GlobalObject>(this)) { 918 if (isa<Function>(GO)) { 919 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 920 switch (DL.getFunctionPtrAlignType()) { 921 case DataLayout::FunctionPtrAlignType::Independent: 922 return FunctionPtrAlign; 923 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 924 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 925 } 926 llvm_unreachable("Unhandled FunctionPtrAlignType"); 927 } 928 const MaybeAlign Alignment(GO->getAlign()); 929 if (!Alignment) { 930 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 931 Type *ObjectType = GVar->getValueType(); 932 if (ObjectType->isSized()) { 933 // If the object is defined in the current Module, we'll be giving 934 // it the preferred alignment. Otherwise, we have to assume that it 935 // may only have the minimum ABI alignment. 936 if (GVar->isStrongDefinitionForLinker()) 937 return DL.getPreferredAlign(GVar); 938 else 939 return DL.getABITypeAlign(ObjectType); 940 } 941 } 942 } 943 return Alignment.valueOrOne(); 944 } else if (const Argument *A = dyn_cast<Argument>(this)) { 945 const MaybeAlign Alignment = A->getParamAlign(); 946 if (!Alignment && A->hasStructRetAttr()) { 947 // An sret parameter has at least the ABI alignment of the return type. 948 Type *EltTy = A->getParamStructRetType(); 949 if (EltTy->isSized()) 950 return DL.getABITypeAlign(EltTy); 951 } 952 return Alignment.valueOrOne(); 953 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 954 return AI->getAlign(); 955 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 956 MaybeAlign Alignment = Call->getRetAlign(); 957 if (!Alignment && Call->getCalledFunction()) 958 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 959 return Alignment.valueOrOne(); 960 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 961 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 962 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 963 return Align(CI->getLimitedValue()); 964 } 965 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 966 // Strip pointer casts to avoid creating unnecessary ptrtoint expression 967 // if the only "reduction" is combining a bitcast + ptrtoint. 968 CstPtr = CstPtr->stripPointerCasts(); 969 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 970 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 971 /*OnlyIfReduced=*/true))) { 972 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 973 // While the actual alignment may be large, elsewhere we have 974 // an arbitrary upper alignmet limit, so let's clamp to it. 975 return Align(TrailingZeros < Value::MaxAlignmentExponent 976 ? uint64_t(1) << TrailingZeros 977 : Value::MaximumAlignment); 978 } 979 } 980 return Align(1); 981 } 982 983 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 984 const BasicBlock *PredBB) const { 985 auto *PN = dyn_cast<PHINode>(this); 986 if (PN && PN->getParent() == CurBB) 987 return PN->getIncomingValueForBlock(PredBB); 988 return this; 989 } 990 991 LLVMContext &Value::getContext() const { return VTy->getContext(); } 992 993 void Value::reverseUseList() { 994 if (!UseList || !UseList->Next) 995 // No need to reverse 0 or 1 uses. 996 return; 997 998 Use *Head = UseList; 999 Use *Current = UseList->Next; 1000 Head->Next = nullptr; 1001 while (Current) { 1002 Use *Next = Current->Next; 1003 Current->Next = Head; 1004 Head->Prev = &Current->Next; 1005 Head = Current; 1006 Current = Next; 1007 } 1008 UseList = Head; 1009 Head->Prev = &UseList; 1010 } 1011 1012 bool Value::isSwiftError() const { 1013 auto *Arg = dyn_cast<Argument>(this); 1014 if (Arg) 1015 return Arg->hasSwiftErrorAttr(); 1016 auto *Alloca = dyn_cast<AllocaInst>(this); 1017 if (!Alloca) 1018 return false; 1019 return Alloca->isSwiftError(); 1020 } 1021 1022 bool Value::isTransitiveUsedByMetadataOnly() const { 1023 SmallVector<const User *, 32> WorkList(user_begin(), user_end()); 1024 SmallPtrSet<const User *, 32> Visited(user_begin(), user_end()); 1025 while (!WorkList.empty()) { 1026 const User *U = WorkList.pop_back_val(); 1027 // If it is transitively used by a global value or a non-constant value, 1028 // it's obviously not only used by metadata. 1029 if (!isa<Constant>(U) || isa<GlobalValue>(U)) 1030 return false; 1031 for (const User *UU : U->users()) 1032 if (Visited.insert(UU).second) 1033 WorkList.push_back(UU); 1034 } 1035 return true; 1036 } 1037 1038 //===----------------------------------------------------------------------===// 1039 // ValueHandleBase Class 1040 //===----------------------------------------------------------------------===// 1041 1042 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1043 assert(List && "Handle list is null?"); 1044 1045 // Splice ourselves into the list. 1046 Next = *List; 1047 *List = this; 1048 setPrevPtr(List); 1049 if (Next) { 1050 Next->setPrevPtr(&Next); 1051 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1052 } 1053 } 1054 1055 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1056 assert(List && "Must insert after existing node"); 1057 1058 Next = List->Next; 1059 setPrevPtr(&List->Next); 1060 List->Next = this; 1061 if (Next) 1062 Next->setPrevPtr(&Next); 1063 } 1064 1065 void ValueHandleBase::AddToUseList() { 1066 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1067 1068 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1069 1070 if (getValPtr()->HasValueHandle) { 1071 // If this value already has a ValueHandle, then it must be in the 1072 // ValueHandles map already. 1073 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1074 assert(Entry && "Value doesn't have any handles?"); 1075 AddToExistingUseList(&Entry); 1076 return; 1077 } 1078 1079 // Ok, it doesn't have any handles yet, so we must insert it into the 1080 // DenseMap. However, doing this insertion could cause the DenseMap to 1081 // reallocate itself, which would invalidate all of the PrevP pointers that 1082 // point into the old table. Handle this by checking for reallocation and 1083 // updating the stale pointers only if needed. 1084 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1085 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1086 1087 ValueHandleBase *&Entry = Handles[getValPtr()]; 1088 assert(!Entry && "Value really did already have handles?"); 1089 AddToExistingUseList(&Entry); 1090 getValPtr()->HasValueHandle = true; 1091 1092 // If reallocation didn't happen or if this was the first insertion, don't 1093 // walk the table. 1094 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1095 Handles.size() == 1) { 1096 return; 1097 } 1098 1099 // Okay, reallocation did happen. Fix the Prev Pointers. 1100 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1101 E = Handles.end(); I != E; ++I) { 1102 assert(I->second && I->first == I->second->getValPtr() && 1103 "List invariant broken!"); 1104 I->second->setPrevPtr(&I->second); 1105 } 1106 } 1107 1108 void ValueHandleBase::RemoveFromUseList() { 1109 assert(getValPtr() && getValPtr()->HasValueHandle && 1110 "Pointer doesn't have a use list!"); 1111 1112 // Unlink this from its use list. 1113 ValueHandleBase **PrevPtr = getPrevPtr(); 1114 assert(*PrevPtr == this && "List invariant broken"); 1115 1116 *PrevPtr = Next; 1117 if (Next) { 1118 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1119 Next->setPrevPtr(PrevPtr); 1120 return; 1121 } 1122 1123 // If the Next pointer was null, then it is possible that this was the last 1124 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1125 // map. 1126 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1127 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1128 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1129 Handles.erase(getValPtr()); 1130 getValPtr()->HasValueHandle = false; 1131 } 1132 } 1133 1134 void ValueHandleBase::ValueIsDeleted(Value *V) { 1135 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1136 1137 // Get the linked list base, which is guaranteed to exist since the 1138 // HasValueHandle flag is set. 1139 LLVMContextImpl *pImpl = V->getContext().pImpl; 1140 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1141 assert(Entry && "Value bit set but no entries exist"); 1142 1143 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1144 // and remove themselves from the list without breaking our iteration. This 1145 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1146 // Note that we deliberately do not the support the case when dropping a value 1147 // handle results in a new value handle being permanently added to the list 1148 // (as might occur in theory for CallbackVH's): the new value handle will not 1149 // be processed and the checking code will mete out righteous punishment if 1150 // the handle is still present once we have finished processing all the other 1151 // value handles (it is fine to momentarily add then remove a value handle). 1152 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1153 Iterator.RemoveFromUseList(); 1154 Iterator.AddToExistingUseListAfter(Entry); 1155 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1156 1157 switch (Entry->getKind()) { 1158 case Assert: 1159 break; 1160 case Weak: 1161 case WeakTracking: 1162 // WeakTracking and Weak just go to null, which unlinks them 1163 // from the list. 1164 Entry->operator=(nullptr); 1165 break; 1166 case Callback: 1167 // Forward to the subclass's implementation. 1168 static_cast<CallbackVH*>(Entry)->deleted(); 1169 break; 1170 } 1171 } 1172 1173 // All callbacks, weak references, and assertingVHs should be dropped by now. 1174 if (V->HasValueHandle) { 1175 #ifndef NDEBUG // Only in +Asserts mode... 1176 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1177 << "\n"; 1178 if (pImpl->ValueHandles[V]->getKind() == Assert) 1179 llvm_unreachable("An asserting value handle still pointed to this" 1180 " value!"); 1181 1182 #endif 1183 llvm_unreachable("All references to V were not removed?"); 1184 } 1185 } 1186 1187 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1188 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1189 assert(Old != New && "Changing value into itself!"); 1190 assert(Old->getType() == New->getType() && 1191 "replaceAllUses of value with new value of different type!"); 1192 1193 // Get the linked list base, which is guaranteed to exist since the 1194 // HasValueHandle flag is set. 1195 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1196 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1197 1198 assert(Entry && "Value bit set but no entries exist"); 1199 1200 // We use a local ValueHandleBase as an iterator so that 1201 // ValueHandles can add and remove themselves from the list without 1202 // breaking our iteration. This is not really an AssertingVH; we 1203 // just have to give ValueHandleBase some kind. 1204 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1205 Iterator.RemoveFromUseList(); 1206 Iterator.AddToExistingUseListAfter(Entry); 1207 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1208 1209 switch (Entry->getKind()) { 1210 case Assert: 1211 case Weak: 1212 // Asserting and Weak handles do not follow RAUW implicitly. 1213 break; 1214 case WeakTracking: 1215 // Weak goes to the new value, which will unlink it from Old's list. 1216 Entry->operator=(New); 1217 break; 1218 case Callback: 1219 // Forward to the subclass's implementation. 1220 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1221 break; 1222 } 1223 } 1224 1225 #ifndef NDEBUG 1226 // If any new weak value handles were added while processing the 1227 // list, then complain about it now. 1228 if (Old->HasValueHandle) 1229 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1230 switch (Entry->getKind()) { 1231 case WeakTracking: 1232 dbgs() << "After RAUW from " << *Old->getType() << " %" 1233 << Old->getName() << " to " << *New->getType() << " %" 1234 << New->getName() << "\n"; 1235 llvm_unreachable( 1236 "A weak tracking value handle still pointed to the old value!\n"); 1237 default: 1238 break; 1239 } 1240 #endif 1241 } 1242 1243 // Pin the vtable to this file. 1244 void CallbackVH::anchor() {} 1245