1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/InstrTypes.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 42 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 43 cl::desc("Maximum size for the name of non-global values.")); 44 45 //===----------------------------------------------------------------------===// 46 // Value Class 47 //===----------------------------------------------------------------------===// 48 static inline Type *checkType(Type *Ty) { 49 assert(Ty && "Value defined with a null type: Error!"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), 55 HasValueHandle(0), SubclassOptionalData(0), SubclassData(0), 56 NumUserOperands(0), IsUsedByMD(false), HasName(false) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke || 62 SubclassID == Instruction::CallBr) 63 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 64 "invalid CallInst type!"); 65 else if (SubclassID != BasicBlockVal && 66 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 67 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 68 "Cannot create non-first-class values except for constants!"); 69 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 70 "Value too big"); 71 } 72 73 Value::~Value() { 74 // Notify all ValueHandles (if present) that this value is going away. 75 if (HasValueHandle) 76 ValueHandleBase::ValueIsDeleted(this); 77 if (isUsedByMetadata()) 78 ValueAsMetadata::handleDeletion(this); 79 80 #ifndef NDEBUG // Only in -g mode... 81 // Check to make sure that there are no uses of this value that are still 82 // around when the value is destroyed. If there are, then we have a dangling 83 // reference and something is wrong. This code is here to print out where 84 // the value is still being referenced. 85 // 86 // Note that use_empty() cannot be called here, as it eventually downcasts 87 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 88 // been destructed, so accessing it is UB. 89 // 90 if (!materialized_use_empty()) { 91 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 92 for (auto *U : users()) 93 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 94 } 95 #endif 96 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 97 98 // If this value is named, destroy the name. This should not be in a symtab 99 // at this point. 100 destroyValueName(); 101 } 102 103 void Value::deleteValue() { 104 switch (getValueID()) { 105 #define HANDLE_VALUE(Name) \ 106 case Value::Name##Val: \ 107 delete static_cast<Name *>(this); \ 108 break; 109 #define HANDLE_MEMORY_VALUE(Name) \ 110 case Value::Name##Val: \ 111 static_cast<DerivedUser *>(this)->DeleteValue( \ 112 static_cast<DerivedUser *>(this)); \ 113 break; 114 #define HANDLE_CONSTANT(Name) \ 115 case Value::Name##Val: \ 116 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 117 break; 118 #define HANDLE_INSTRUCTION(Name) /* nothing */ 119 #include "llvm/IR/Value.def" 120 121 #define HANDLE_INST(N, OPC, CLASS) \ 122 case Value::InstructionVal + Instruction::OPC: \ 123 delete static_cast<CLASS *>(this); \ 124 break; 125 #define HANDLE_USER_INST(N, OPC, CLASS) 126 #include "llvm/IR/Instruction.def" 127 128 default: 129 llvm_unreachable("attempting to delete unknown value kind"); 130 } 131 } 132 133 void Value::destroyValueName() { 134 ValueName *Name = getValueName(); 135 if (Name) { 136 MallocAllocator Allocator; 137 Name->Destroy(Allocator); 138 } 139 setValueName(nullptr); 140 } 141 142 bool Value::hasNUses(unsigned N) const { 143 return hasNItems(use_begin(), use_end(), N); 144 } 145 146 bool Value::hasNUsesOrMore(unsigned N) const { 147 return hasNItemsOrMore(use_begin(), use_end(), N); 148 } 149 150 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 151 152 Use *Value::getSingleUndroppableUse() { 153 Use *Result = nullptr; 154 for (Use &U : uses()) { 155 if (!U.getUser()->isDroppable()) { 156 if (Result) 157 return nullptr; 158 Result = &U; 159 } 160 } 161 return Result; 162 } 163 164 bool Value::hasNUndroppableUses(unsigned int N) const { 165 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 166 } 167 168 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 169 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 170 } 171 172 void Value::dropDroppableUses( 173 llvm::function_ref<bool(const Use *)> ShouldDrop) { 174 SmallVector<Use *, 8> ToBeEdited; 175 for (Use &U : uses()) 176 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 177 ToBeEdited.push_back(&U); 178 for (Use *U : ToBeEdited) { 179 U->removeFromList(); 180 if (auto *Assume = dyn_cast<IntrinsicInst>(U->getUser())) { 181 assert(Assume->getIntrinsicID() == Intrinsic::assume); 182 unsigned OpNo = U->getOperandNo(); 183 if (OpNo == 0) 184 Assume->setOperand(0, ConstantInt::getTrue(Assume->getContext())); 185 else { 186 Assume->setOperand(OpNo, UndefValue::get(U->get()->getType())); 187 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 188 BOI.Tag = getContext().pImpl->getOrInsertBundleTag("ignore"); 189 } 190 } else 191 llvm_unreachable("unkown droppable use"); 192 } 193 } 194 195 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 196 // This can be computed either by scanning the instructions in BB, or by 197 // scanning the use list of this Value. Both lists can be very long, but 198 // usually one is quite short. 199 // 200 // Scan both lists simultaneously until one is exhausted. This limits the 201 // search to the shorter list. 202 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 203 const_user_iterator UI = user_begin(), UE = user_end(); 204 for (; BI != BE && UI != UE; ++BI, ++UI) { 205 // Scan basic block: Check if this Value is used by the instruction at BI. 206 if (is_contained(BI->operands(), this)) 207 return true; 208 // Scan use list: Check if the use at UI is in BB. 209 const auto *User = dyn_cast<Instruction>(*UI); 210 if (User && User->getParent() == BB) 211 return true; 212 } 213 return false; 214 } 215 216 unsigned Value::getNumUses() const { 217 return (unsigned)std::distance(use_begin(), use_end()); 218 } 219 220 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 221 ST = nullptr; 222 if (Instruction *I = dyn_cast<Instruction>(V)) { 223 if (BasicBlock *P = I->getParent()) 224 if (Function *PP = P->getParent()) 225 ST = PP->getValueSymbolTable(); 226 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 227 if (Function *P = BB->getParent()) 228 ST = P->getValueSymbolTable(); 229 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 230 if (Module *P = GV->getParent()) 231 ST = &P->getValueSymbolTable(); 232 } else if (Argument *A = dyn_cast<Argument>(V)) { 233 if (Function *P = A->getParent()) 234 ST = P->getValueSymbolTable(); 235 } else { 236 assert(isa<Constant>(V) && "Unknown value type!"); 237 return true; // no name is setable for this. 238 } 239 return false; 240 } 241 242 ValueName *Value::getValueName() const { 243 if (!HasName) return nullptr; 244 245 LLVMContext &Ctx = getContext(); 246 auto I = Ctx.pImpl->ValueNames.find(this); 247 assert(I != Ctx.pImpl->ValueNames.end() && 248 "No name entry found!"); 249 250 return I->second; 251 } 252 253 void Value::setValueName(ValueName *VN) { 254 LLVMContext &Ctx = getContext(); 255 256 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 257 "HasName bit out of sync!"); 258 259 if (!VN) { 260 if (HasName) 261 Ctx.pImpl->ValueNames.erase(this); 262 HasName = false; 263 return; 264 } 265 266 HasName = true; 267 Ctx.pImpl->ValueNames[this] = VN; 268 } 269 270 StringRef Value::getName() const { 271 // Make sure the empty string is still a C string. For historical reasons, 272 // some clients want to call .data() on the result and expect it to be null 273 // terminated. 274 if (!hasName()) 275 return StringRef("", 0); 276 return getValueName()->getKey(); 277 } 278 279 void Value::setNameImpl(const Twine &NewName) { 280 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 281 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 282 return; 283 284 // Fast path for common IRBuilder case of setName("") when there is no name. 285 if (NewName.isTriviallyEmpty() && !hasName()) 286 return; 287 288 SmallString<256> NameData; 289 StringRef NameRef = NewName.toStringRef(NameData); 290 assert(NameRef.find_first_of(0) == StringRef::npos && 291 "Null bytes are not allowed in names"); 292 293 // Name isn't changing? 294 if (getName() == NameRef) 295 return; 296 297 // Cap the size of non-GlobalValue names. 298 if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this)) 299 NameRef = 300 NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize)); 301 302 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 303 304 // Get the symbol table to update for this object. 305 ValueSymbolTable *ST; 306 if (getSymTab(this, ST)) 307 return; // Cannot set a name on this value (e.g. constant). 308 309 if (!ST) { // No symbol table to update? Just do the change. 310 if (NameRef.empty()) { 311 // Free the name for this value. 312 destroyValueName(); 313 return; 314 } 315 316 // NOTE: Could optimize for the case the name is shrinking to not deallocate 317 // then reallocated. 318 destroyValueName(); 319 320 // Create the new name. 321 MallocAllocator Allocator; 322 setValueName(ValueName::Create(NameRef, Allocator)); 323 getValueName()->setValue(this); 324 return; 325 } 326 327 // NOTE: Could optimize for the case the name is shrinking to not deallocate 328 // then reallocated. 329 if (hasName()) { 330 // Remove old name. 331 ST->removeValueName(getValueName()); 332 destroyValueName(); 333 334 if (NameRef.empty()) 335 return; 336 } 337 338 // Name is changing to something new. 339 setValueName(ST->createValueName(NameRef, this)); 340 } 341 342 void Value::setName(const Twine &NewName) { 343 setNameImpl(NewName); 344 if (Function *F = dyn_cast<Function>(this)) 345 F->recalculateIntrinsicID(); 346 } 347 348 void Value::takeName(Value *V) { 349 ValueSymbolTable *ST = nullptr; 350 // If this value has a name, drop it. 351 if (hasName()) { 352 // Get the symtab this is in. 353 if (getSymTab(this, ST)) { 354 // We can't set a name on this value, but we need to clear V's name if 355 // it has one. 356 if (V->hasName()) V->setName(""); 357 return; // Cannot set a name on this value (e.g. constant). 358 } 359 360 // Remove old name. 361 if (ST) 362 ST->removeValueName(getValueName()); 363 destroyValueName(); 364 } 365 366 // Now we know that this has no name. 367 368 // If V has no name either, we're done. 369 if (!V->hasName()) return; 370 371 // Get this's symtab if we didn't before. 372 if (!ST) { 373 if (getSymTab(this, ST)) { 374 // Clear V's name. 375 V->setName(""); 376 return; // Cannot set a name on this value (e.g. constant). 377 } 378 } 379 380 // Get V's ST, this should always succed, because V has a name. 381 ValueSymbolTable *VST; 382 bool Failure = getSymTab(V, VST); 383 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 384 385 // If these values are both in the same symtab, we can do this very fast. 386 // This works even if both values have no symtab yet. 387 if (ST == VST) { 388 // Take the name! 389 setValueName(V->getValueName()); 390 V->setValueName(nullptr); 391 getValueName()->setValue(this); 392 return; 393 } 394 395 // Otherwise, things are slightly more complex. Remove V's name from VST and 396 // then reinsert it into ST. 397 398 if (VST) 399 VST->removeValueName(V->getValueName()); 400 setValueName(V->getValueName()); 401 V->setValueName(nullptr); 402 getValueName()->setValue(this); 403 404 if (ST) 405 ST->reinsertValue(this); 406 } 407 408 void Value::assertModuleIsMaterializedImpl() const { 409 #ifndef NDEBUG 410 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 411 if (!GV) 412 return; 413 const Module *M = GV->getParent(); 414 if (!M) 415 return; 416 assert(M->isMaterialized()); 417 #endif 418 } 419 420 #ifndef NDEBUG 421 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 422 Constant *C) { 423 if (!Cache.insert(Expr).second) 424 return false; 425 426 for (auto &O : Expr->operands()) { 427 if (O == C) 428 return true; 429 auto *CE = dyn_cast<ConstantExpr>(O); 430 if (!CE) 431 continue; 432 if (contains(Cache, CE, C)) 433 return true; 434 } 435 return false; 436 } 437 438 static bool contains(Value *Expr, Value *V) { 439 if (Expr == V) 440 return true; 441 442 auto *C = dyn_cast<Constant>(V); 443 if (!C) 444 return false; 445 446 auto *CE = dyn_cast<ConstantExpr>(Expr); 447 if (!CE) 448 return false; 449 450 SmallPtrSet<ConstantExpr *, 4> Cache; 451 return contains(Cache, CE, C); 452 } 453 #endif // NDEBUG 454 455 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 456 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 457 assert(!contains(New, this) && 458 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 459 assert(New->getType() == getType() && 460 "replaceAllUses of value with new value of different type!"); 461 462 // Notify all ValueHandles (if present) that this value is going away. 463 if (HasValueHandle) 464 ValueHandleBase::ValueIsRAUWd(this, New); 465 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 466 ValueAsMetadata::handleRAUW(this, New); 467 468 while (!materialized_use_empty()) { 469 Use &U = *UseList; 470 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 471 // constant because they are uniqued. 472 if (auto *C = dyn_cast<Constant>(U.getUser())) { 473 if (!isa<GlobalValue>(C)) { 474 C->handleOperandChange(this, New); 475 continue; 476 } 477 } 478 479 U.set(New); 480 } 481 482 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 483 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 484 } 485 486 void Value::replaceAllUsesWith(Value *New) { 487 doRAUW(New, ReplaceMetadataUses::Yes); 488 } 489 490 void Value::replaceNonMetadataUsesWith(Value *New) { 491 doRAUW(New, ReplaceMetadataUses::No); 492 } 493 494 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 495 // This routine leaves uses within BB. 496 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 497 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 498 assert(!contains(New, this) && 499 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 500 assert(New->getType() == getType() && 501 "replaceUses of value with new value of different type!"); 502 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 503 504 replaceUsesWithIf(New, [BB](Use &U) { 505 auto *I = dyn_cast<Instruction>(U.getUser()); 506 // Don't replace if it's an instruction in the BB basic block. 507 return !I || I->getParent() != BB; 508 }); 509 } 510 511 namespace { 512 // Various metrics for how much to strip off of pointers. 513 enum PointerStripKind { 514 PSK_ZeroIndices, 515 PSK_ZeroIndicesAndAliases, 516 PSK_ZeroIndicesSameRepresentation, 517 PSK_ZeroIndicesAndInvariantGroups, 518 PSK_InBoundsConstantIndices, 519 PSK_InBounds 520 }; 521 522 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 523 524 template <PointerStripKind StripKind> 525 static const Value *stripPointerCastsAndOffsets( 526 const Value *V, 527 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 528 if (!V->getType()->isPointerTy()) 529 return V; 530 531 // Even though we don't look through PHI nodes, we could be called on an 532 // instruction in an unreachable block, which may be on a cycle. 533 SmallPtrSet<const Value *, 4> Visited; 534 535 Visited.insert(V); 536 do { 537 Func(V); 538 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 539 switch (StripKind) { 540 case PSK_ZeroIndices: 541 case PSK_ZeroIndicesAndAliases: 542 case PSK_ZeroIndicesSameRepresentation: 543 case PSK_ZeroIndicesAndInvariantGroups: 544 if (!GEP->hasAllZeroIndices()) 545 return V; 546 break; 547 case PSK_InBoundsConstantIndices: 548 if (!GEP->hasAllConstantIndices()) 549 return V; 550 LLVM_FALLTHROUGH; 551 case PSK_InBounds: 552 if (!GEP->isInBounds()) 553 return V; 554 break; 555 } 556 V = GEP->getPointerOperand(); 557 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 558 V = cast<Operator>(V)->getOperand(0); 559 if (!V->getType()->isPointerTy()) 560 return V; 561 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 562 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 563 // TODO: If we know an address space cast will not change the 564 // representation we could look through it here as well. 565 V = cast<Operator>(V)->getOperand(0); 566 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 567 V = cast<GlobalAlias>(V)->getAliasee(); 568 } else { 569 if (const auto *Call = dyn_cast<CallBase>(V)) { 570 if (const Value *RV = Call->getReturnedArgOperand()) { 571 V = RV; 572 continue; 573 } 574 // The result of launder.invariant.group must alias it's argument, 575 // but it can't be marked with returned attribute, that's why it needs 576 // special case. 577 if (StripKind == PSK_ZeroIndicesAndInvariantGroups && 578 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 579 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 580 V = Call->getArgOperand(0); 581 continue; 582 } 583 } 584 return V; 585 } 586 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 587 } while (Visited.insert(V).second); 588 589 return V; 590 } 591 } // end anonymous namespace 592 593 const Value *Value::stripPointerCasts() const { 594 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 595 } 596 597 const Value *Value::stripPointerCastsAndAliases() const { 598 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 599 } 600 601 const Value *Value::stripPointerCastsSameRepresentation() const { 602 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 603 } 604 605 const Value *Value::stripInBoundsConstantOffsets() const { 606 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 607 } 608 609 const Value *Value::stripPointerCastsAndInvariantGroups() const { 610 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this); 611 } 612 613 const Value *Value::stripAndAccumulateConstantOffsets( 614 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 615 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 616 if (!getType()->isPtrOrPtrVectorTy()) 617 return this; 618 619 unsigned BitWidth = Offset.getBitWidth(); 620 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 621 "The offset bit width does not match the DL specification."); 622 623 // Even though we don't look through PHI nodes, we could be called on an 624 // instruction in an unreachable block, which may be on a cycle. 625 SmallPtrSet<const Value *, 4> Visited; 626 Visited.insert(this); 627 const Value *V = this; 628 do { 629 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 630 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 631 if (!AllowNonInbounds && !GEP->isInBounds()) 632 return V; 633 634 // If one of the values we have visited is an addrspacecast, then 635 // the pointer type of this GEP may be different from the type 636 // of the Ptr parameter which was passed to this function. This 637 // means when we construct GEPOffset, we need to use the size 638 // of GEP's pointer type rather than the size of the original 639 // pointer type. 640 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 641 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 642 return V; 643 644 // Stop traversal if the pointer offset wouldn't fit in the bit-width 645 // provided by the Offset argument. This can happen due to AddrSpaceCast 646 // stripping. 647 if (GEPOffset.getMinSignedBits() > BitWidth) 648 return V; 649 650 // External Analysis can return a result higher/lower than the value 651 // represents. We need to detect overflow/underflow. 652 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 653 if (!ExternalAnalysis) { 654 Offset += GEPOffsetST; 655 } else { 656 bool Overflow = false; 657 APInt OldOffset = Offset; 658 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 659 if (Overflow) { 660 Offset = OldOffset; 661 return V; 662 } 663 } 664 V = GEP->getPointerOperand(); 665 } else if (Operator::getOpcode(V) == Instruction::BitCast || 666 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 667 V = cast<Operator>(V)->getOperand(0); 668 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 669 if (!GA->isInterposable()) 670 V = GA->getAliasee(); 671 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 672 if (const Value *RV = Call->getReturnedArgOperand()) 673 V = RV; 674 } 675 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 676 } while (Visited.insert(V).second); 677 678 return V; 679 } 680 681 const Value * 682 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 683 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 684 } 685 686 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 687 bool &CanBeNull) const { 688 assert(getType()->isPointerTy() && "must be pointer"); 689 690 uint64_t DerefBytes = 0; 691 CanBeNull = false; 692 if (const Argument *A = dyn_cast<Argument>(this)) { 693 DerefBytes = A->getDereferenceableBytes(); 694 if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) { 695 Type *PT = cast<PointerType>(A->getType())->getElementType(); 696 if (PT->isSized()) 697 DerefBytes = DL.getTypeStoreSize(PT).getKnownMinSize(); 698 } 699 if (DerefBytes == 0) { 700 DerefBytes = A->getDereferenceableOrNullBytes(); 701 CanBeNull = true; 702 } 703 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 704 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex); 705 if (DerefBytes == 0) { 706 DerefBytes = 707 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex); 708 CanBeNull = true; 709 } 710 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 711 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 712 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 713 DerefBytes = CI->getLimitedValue(); 714 } 715 if (DerefBytes == 0) { 716 if (MDNode *MD = 717 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 718 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 719 DerefBytes = CI->getLimitedValue(); 720 } 721 CanBeNull = true; 722 } 723 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 724 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 725 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 726 DerefBytes = CI->getLimitedValue(); 727 } 728 if (DerefBytes == 0) { 729 if (MDNode *MD = 730 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 731 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 732 DerefBytes = CI->getLimitedValue(); 733 } 734 CanBeNull = true; 735 } 736 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 737 if (!AI->isArrayAllocation()) { 738 DerefBytes = 739 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 740 CanBeNull = false; 741 } 742 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 743 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 744 // TODO: Don't outright reject hasExternalWeakLinkage but set the 745 // CanBeNull flag. 746 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 747 CanBeNull = false; 748 } 749 } 750 return DerefBytes; 751 } 752 753 Align Value::getPointerAlignment(const DataLayout &DL) const { 754 assert(getType()->isPointerTy() && "must be pointer"); 755 if (auto *GO = dyn_cast<GlobalObject>(this)) { 756 if (isa<Function>(GO)) { 757 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 758 switch (DL.getFunctionPtrAlignType()) { 759 case DataLayout::FunctionPtrAlignType::Independent: 760 return FunctionPtrAlign; 761 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 762 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 763 } 764 llvm_unreachable("Unhandled FunctionPtrAlignType"); 765 } 766 const MaybeAlign Alignment(GO->getAlignment()); 767 if (!Alignment) { 768 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 769 Type *ObjectType = GVar->getValueType(); 770 if (ObjectType->isSized()) { 771 // If the object is defined in the current Module, we'll be giving 772 // it the preferred alignment. Otherwise, we have to assume that it 773 // may only have the minimum ABI alignment. 774 if (GVar->isStrongDefinitionForLinker()) 775 return DL.getPreferredAlign(GVar); 776 else 777 return DL.getABITypeAlign(ObjectType); 778 } 779 } 780 } 781 return Alignment.valueOrOne(); 782 } else if (const Argument *A = dyn_cast<Argument>(this)) { 783 const MaybeAlign Alignment = A->getParamAlign(); 784 if (!Alignment && A->hasStructRetAttr()) { 785 // An sret parameter has at least the ABI alignment of the return type. 786 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 787 if (EltTy->isSized()) 788 return DL.getABITypeAlign(EltTy); 789 } 790 return Alignment.valueOrOne(); 791 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 792 return AI->getAlign(); 793 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 794 MaybeAlign Alignment = Call->getRetAlign(); 795 if (!Alignment && Call->getCalledFunction()) 796 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 797 return Alignment.valueOrOne(); 798 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 799 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 800 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 801 return Align(CI->getLimitedValue()); 802 } 803 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 804 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 805 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 806 /*OnlyIfReduced=*/true))) { 807 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 808 // While the actual alignment may be large, elsewhere we have 809 // an arbitrary upper alignmet limit, so let's clamp to it. 810 return Align(TrailingZeros < Value::MaxAlignmentExponent 811 ? uint64_t(1) << TrailingZeros 812 : Value::MaximumAlignment); 813 } 814 } 815 return Align(1); 816 } 817 818 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 819 const BasicBlock *PredBB) const { 820 auto *PN = dyn_cast<PHINode>(this); 821 if (PN && PN->getParent() == CurBB) 822 return PN->getIncomingValueForBlock(PredBB); 823 return this; 824 } 825 826 LLVMContext &Value::getContext() const { return VTy->getContext(); } 827 828 void Value::reverseUseList() { 829 if (!UseList || !UseList->Next) 830 // No need to reverse 0 or 1 uses. 831 return; 832 833 Use *Head = UseList; 834 Use *Current = UseList->Next; 835 Head->Next = nullptr; 836 while (Current) { 837 Use *Next = Current->Next; 838 Current->Next = Head; 839 Head->Prev = &Current->Next; 840 Head = Current; 841 Current = Next; 842 } 843 UseList = Head; 844 Head->Prev = &UseList; 845 } 846 847 bool Value::isSwiftError() const { 848 auto *Arg = dyn_cast<Argument>(this); 849 if (Arg) 850 return Arg->hasSwiftErrorAttr(); 851 auto *Alloca = dyn_cast<AllocaInst>(this); 852 if (!Alloca) 853 return false; 854 return Alloca->isSwiftError(); 855 } 856 857 //===----------------------------------------------------------------------===// 858 // ValueHandleBase Class 859 //===----------------------------------------------------------------------===// 860 861 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 862 assert(List && "Handle list is null?"); 863 864 // Splice ourselves into the list. 865 Next = *List; 866 *List = this; 867 setPrevPtr(List); 868 if (Next) { 869 Next->setPrevPtr(&Next); 870 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 871 } 872 } 873 874 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 875 assert(List && "Must insert after existing node"); 876 877 Next = List->Next; 878 setPrevPtr(&List->Next); 879 List->Next = this; 880 if (Next) 881 Next->setPrevPtr(&Next); 882 } 883 884 void ValueHandleBase::AddToUseList() { 885 assert(getValPtr() && "Null pointer doesn't have a use list!"); 886 887 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 888 889 if (getValPtr()->HasValueHandle) { 890 // If this value already has a ValueHandle, then it must be in the 891 // ValueHandles map already. 892 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 893 assert(Entry && "Value doesn't have any handles?"); 894 AddToExistingUseList(&Entry); 895 return; 896 } 897 898 // Ok, it doesn't have any handles yet, so we must insert it into the 899 // DenseMap. However, doing this insertion could cause the DenseMap to 900 // reallocate itself, which would invalidate all of the PrevP pointers that 901 // point into the old table. Handle this by checking for reallocation and 902 // updating the stale pointers only if needed. 903 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 904 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 905 906 ValueHandleBase *&Entry = Handles[getValPtr()]; 907 assert(!Entry && "Value really did already have handles?"); 908 AddToExistingUseList(&Entry); 909 getValPtr()->HasValueHandle = true; 910 911 // If reallocation didn't happen or if this was the first insertion, don't 912 // walk the table. 913 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 914 Handles.size() == 1) { 915 return; 916 } 917 918 // Okay, reallocation did happen. Fix the Prev Pointers. 919 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 920 E = Handles.end(); I != E; ++I) { 921 assert(I->second && I->first == I->second->getValPtr() && 922 "List invariant broken!"); 923 I->second->setPrevPtr(&I->second); 924 } 925 } 926 927 void ValueHandleBase::RemoveFromUseList() { 928 assert(getValPtr() && getValPtr()->HasValueHandle && 929 "Pointer doesn't have a use list!"); 930 931 // Unlink this from its use list. 932 ValueHandleBase **PrevPtr = getPrevPtr(); 933 assert(*PrevPtr == this && "List invariant broken"); 934 935 *PrevPtr = Next; 936 if (Next) { 937 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 938 Next->setPrevPtr(PrevPtr); 939 return; 940 } 941 942 // If the Next pointer was null, then it is possible that this was the last 943 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 944 // map. 945 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 946 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 947 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 948 Handles.erase(getValPtr()); 949 getValPtr()->HasValueHandle = false; 950 } 951 } 952 953 void ValueHandleBase::ValueIsDeleted(Value *V) { 954 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 955 956 // Get the linked list base, which is guaranteed to exist since the 957 // HasValueHandle flag is set. 958 LLVMContextImpl *pImpl = V->getContext().pImpl; 959 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 960 assert(Entry && "Value bit set but no entries exist"); 961 962 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 963 // and remove themselves from the list without breaking our iteration. This 964 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 965 // Note that we deliberately do not the support the case when dropping a value 966 // handle results in a new value handle being permanently added to the list 967 // (as might occur in theory for CallbackVH's): the new value handle will not 968 // be processed and the checking code will mete out righteous punishment if 969 // the handle is still present once we have finished processing all the other 970 // value handles (it is fine to momentarily add then remove a value handle). 971 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 972 Iterator.RemoveFromUseList(); 973 Iterator.AddToExistingUseListAfter(Entry); 974 assert(Entry->Next == &Iterator && "Loop invariant broken."); 975 976 switch (Entry->getKind()) { 977 case Assert: 978 break; 979 case Weak: 980 case WeakTracking: 981 // WeakTracking and Weak just go to null, which unlinks them 982 // from the list. 983 Entry->operator=(nullptr); 984 break; 985 case Callback: 986 // Forward to the subclass's implementation. 987 static_cast<CallbackVH*>(Entry)->deleted(); 988 break; 989 } 990 } 991 992 // All callbacks, weak references, and assertingVHs should be dropped by now. 993 if (V->HasValueHandle) { 994 #ifndef NDEBUG // Only in +Asserts mode... 995 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 996 << "\n"; 997 if (pImpl->ValueHandles[V]->getKind() == Assert) 998 llvm_unreachable("An asserting value handle still pointed to this" 999 " value!"); 1000 1001 #endif 1002 llvm_unreachable("All references to V were not removed?"); 1003 } 1004 } 1005 1006 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1007 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1008 assert(Old != New && "Changing value into itself!"); 1009 assert(Old->getType() == New->getType() && 1010 "replaceAllUses of value with new value of different type!"); 1011 1012 // Get the linked list base, which is guaranteed to exist since the 1013 // HasValueHandle flag is set. 1014 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1015 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1016 1017 assert(Entry && "Value bit set but no entries exist"); 1018 1019 // We use a local ValueHandleBase as an iterator so that 1020 // ValueHandles can add and remove themselves from the list without 1021 // breaking our iteration. This is not really an AssertingVH; we 1022 // just have to give ValueHandleBase some kind. 1023 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1024 Iterator.RemoveFromUseList(); 1025 Iterator.AddToExistingUseListAfter(Entry); 1026 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1027 1028 switch (Entry->getKind()) { 1029 case Assert: 1030 case Weak: 1031 // Asserting and Weak handles do not follow RAUW implicitly. 1032 break; 1033 case WeakTracking: 1034 // Weak goes to the new value, which will unlink it from Old's list. 1035 Entry->operator=(New); 1036 break; 1037 case Callback: 1038 // Forward to the subclass's implementation. 1039 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1040 break; 1041 } 1042 } 1043 1044 #ifndef NDEBUG 1045 // If any new weak value handles were added while processing the 1046 // list, then complain about it now. 1047 if (Old->HasValueHandle) 1048 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1049 switch (Entry->getKind()) { 1050 case WeakTracking: 1051 dbgs() << "After RAUW from " << *Old->getType() << " %" 1052 << Old->getName() << " to " << *New->getType() << " %" 1053 << New->getName() << "\n"; 1054 llvm_unreachable( 1055 "A weak tracking value handle still pointed to the old value!\n"); 1056 default: 1057 break; 1058 } 1059 #endif 1060 } 1061 1062 // Pin the vtable to this file. 1063 void CallbackVH::anchor() {} 1064