1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/IR/Constant.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/InstrTypes.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/TypedPointerType.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 37 using namespace llvm; 38 39 static cl::opt<unsigned> UseDerefAtPointSemantics( 40 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 41 cl::desc("Deref attributes and metadata infer facts at definition only")); 42 43 //===----------------------------------------------------------------------===// 44 // Value Class 45 //===----------------------------------------------------------------------===// 46 static inline Type *checkType(Type *Ty) { 47 assert(Ty && "Value defined with a null type: Error!"); 48 assert(!isa<TypedPointerType>(Ty->getScalarType()) && 49 "Cannot have values with typed pointer types"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : SubclassID(scid), HasValueHandle(0), SubclassOptionalData(0), 55 SubclassData(0), NumUserOperands(0), IsUsedByMD(false), HasName(false), 56 HasMetadata(false), VTy(checkType(ty)), UseList(nullptr) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 unsigned OpCode = 0; 62 if (SubclassID >= InstructionVal) 63 OpCode = SubclassID - InstructionVal; 64 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || 65 OpCode == Instruction::CallBr) 66 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 67 "invalid CallBase type!"); 68 else if (SubclassID != BasicBlockVal && 69 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 70 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 71 "Cannot create non-first-class values except for constants!"); 72 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 73 "Value too big"); 74 } 75 76 Value::~Value() { 77 // Notify all ValueHandles (if present) that this value is going away. 78 if (HasValueHandle) 79 ValueHandleBase::ValueIsDeleted(this); 80 if (isUsedByMetadata()) 81 ValueAsMetadata::handleDeletion(this); 82 83 // Remove associated metadata from context. 84 if (HasMetadata) 85 clearMetadata(); 86 87 #ifndef NDEBUG // Only in -g mode... 88 // Check to make sure that there are no uses of this value that are still 89 // around when the value is destroyed. If there are, then we have a dangling 90 // reference and something is wrong. This code is here to print out where 91 // the value is still being referenced. 92 // 93 // Note that use_empty() cannot be called here, as it eventually downcasts 94 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 95 // been destructed, so accessing it is UB. 96 // 97 if (!materialized_use_empty()) { 98 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 99 for (auto *U : users()) 100 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 101 } 102 #endif 103 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 104 105 // If this value is named, destroy the name. This should not be in a symtab 106 // at this point. 107 destroyValueName(); 108 } 109 110 void Value::deleteValue() { 111 switch (getValueID()) { 112 #define HANDLE_VALUE(Name) \ 113 case Value::Name##Val: \ 114 delete static_cast<Name *>(this); \ 115 break; 116 #define HANDLE_MEMORY_VALUE(Name) \ 117 case Value::Name##Val: \ 118 static_cast<DerivedUser *>(this)->DeleteValue( \ 119 static_cast<DerivedUser *>(this)); \ 120 break; 121 #define HANDLE_CONSTANT(Name) \ 122 case Value::Name##Val: \ 123 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 124 break; 125 #define HANDLE_INSTRUCTION(Name) /* nothing */ 126 #include "llvm/IR/Value.def" 127 128 #define HANDLE_INST(N, OPC, CLASS) \ 129 case Value::InstructionVal + Instruction::OPC: \ 130 delete static_cast<CLASS *>(this); \ 131 break; 132 #define HANDLE_USER_INST(N, OPC, CLASS) 133 #include "llvm/IR/Instruction.def" 134 135 default: 136 llvm_unreachable("attempting to delete unknown value kind"); 137 } 138 } 139 140 void Value::destroyValueName() { 141 ValueName *Name = getValueName(); 142 if (Name) { 143 MallocAllocator Allocator; 144 Name->Destroy(Allocator); 145 } 146 setValueName(nullptr); 147 } 148 149 bool Value::hasNUses(unsigned N) const { 150 return hasNItems(use_begin(), use_end(), N); 151 } 152 153 bool Value::hasNUsesOrMore(unsigned N) const { 154 return hasNItemsOrMore(use_begin(), use_end(), N); 155 } 156 157 bool Value::hasOneUser() const { 158 if (use_empty()) 159 return false; 160 if (hasOneUse()) 161 return true; 162 return std::equal(++user_begin(), user_end(), user_begin()); 163 } 164 165 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 166 167 Use *Value::getSingleUndroppableUse() { 168 Use *Result = nullptr; 169 for (Use &U : uses()) { 170 if (!U.getUser()->isDroppable()) { 171 if (Result) 172 return nullptr; 173 Result = &U; 174 } 175 } 176 return Result; 177 } 178 179 User *Value::getUniqueUndroppableUser() { 180 User *Result = nullptr; 181 for (auto *U : users()) { 182 if (!U->isDroppable()) { 183 if (Result && Result != U) 184 return nullptr; 185 Result = U; 186 } 187 } 188 return Result; 189 } 190 191 bool Value::hasNUndroppableUses(unsigned int N) const { 192 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 193 } 194 195 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 196 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 197 } 198 199 void Value::dropDroppableUses( 200 llvm::function_ref<bool(const Use *)> ShouldDrop) { 201 SmallVector<Use *, 8> ToBeEdited; 202 for (Use &U : uses()) 203 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 204 ToBeEdited.push_back(&U); 205 for (Use *U : ToBeEdited) 206 dropDroppableUse(*U); 207 } 208 209 void Value::dropDroppableUsesIn(User &Usr) { 210 assert(Usr.isDroppable() && "Expected a droppable user!"); 211 for (Use &UsrOp : Usr.operands()) { 212 if (UsrOp.get() == this) 213 dropDroppableUse(UsrOp); 214 } 215 } 216 217 void Value::dropDroppableUse(Use &U) { 218 U.removeFromList(); 219 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 220 unsigned OpNo = U.getOperandNo(); 221 if (OpNo == 0) 222 U.set(ConstantInt::getTrue(Assume->getContext())); 223 else { 224 U.set(UndefValue::get(U.get()->getType())); 225 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 226 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 227 } 228 return; 229 } 230 231 llvm_unreachable("unkown droppable use"); 232 } 233 234 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 235 // This can be computed either by scanning the instructions in BB, or by 236 // scanning the use list of this Value. Both lists can be very long, but 237 // usually one is quite short. 238 // 239 // Scan both lists simultaneously until one is exhausted. This limits the 240 // search to the shorter list. 241 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 242 const_user_iterator UI = user_begin(), UE = user_end(); 243 for (; BI != BE && UI != UE; ++BI, ++UI) { 244 // Scan basic block: Check if this Value is used by the instruction at BI. 245 if (is_contained(BI->operands(), this)) 246 return true; 247 // Scan use list: Check if the use at UI is in BB. 248 const auto *User = dyn_cast<Instruction>(*UI); 249 if (User && User->getParent() == BB) 250 return true; 251 } 252 return false; 253 } 254 255 unsigned Value::getNumUses() const { 256 return (unsigned)std::distance(use_begin(), use_end()); 257 } 258 259 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 260 ST = nullptr; 261 if (Instruction *I = dyn_cast<Instruction>(V)) { 262 if (BasicBlock *P = I->getParent()) 263 if (Function *PP = P->getParent()) 264 ST = PP->getValueSymbolTable(); 265 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 266 if (Function *P = BB->getParent()) 267 ST = P->getValueSymbolTable(); 268 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 269 if (Module *P = GV->getParent()) 270 ST = &P->getValueSymbolTable(); 271 } else if (Argument *A = dyn_cast<Argument>(V)) { 272 if (Function *P = A->getParent()) 273 ST = P->getValueSymbolTable(); 274 } else { 275 assert(isa<Constant>(V) && "Unknown value type!"); 276 return true; // no name is setable for this. 277 } 278 return false; 279 } 280 281 ValueName *Value::getValueName() const { 282 if (!HasName) return nullptr; 283 284 LLVMContext &Ctx = getContext(); 285 auto I = Ctx.pImpl->ValueNames.find(this); 286 assert(I != Ctx.pImpl->ValueNames.end() && 287 "No name entry found!"); 288 289 return I->second; 290 } 291 292 void Value::setValueName(ValueName *VN) { 293 LLVMContext &Ctx = getContext(); 294 295 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 296 "HasName bit out of sync!"); 297 298 if (!VN) { 299 if (HasName) 300 Ctx.pImpl->ValueNames.erase(this); 301 HasName = false; 302 return; 303 } 304 305 HasName = true; 306 Ctx.pImpl->ValueNames[this] = VN; 307 } 308 309 StringRef Value::getName() const { 310 // Make sure the empty string is still a C string. For historical reasons, 311 // some clients want to call .data() on the result and expect it to be null 312 // terminated. 313 if (!hasName()) 314 return StringRef("", 0); 315 return getValueName()->getKey(); 316 } 317 318 void Value::setNameImpl(const Twine &NewName) { 319 bool NeedNewName = 320 !getContext().shouldDiscardValueNames() || isa<GlobalValue>(this); 321 322 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 323 // and there is no need to delete the old name. 324 if (!NeedNewName && !hasName()) 325 return; 326 327 // Fast path for common IRBuilder case of setName("") when there is no name. 328 if (NewName.isTriviallyEmpty() && !hasName()) 329 return; 330 331 SmallString<256> NameData; 332 StringRef NameRef = NeedNewName ? NewName.toStringRef(NameData) : ""; 333 assert(!NameRef.contains(0) && "Null bytes are not allowed in names"); 334 335 // Name isn't changing? 336 if (getName() == NameRef) 337 return; 338 339 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 340 341 // Get the symbol table to update for this object. 342 ValueSymbolTable *ST; 343 if (getSymTab(this, ST)) 344 return; // Cannot set a name on this value (e.g. constant). 345 346 if (!ST) { // No symbol table to update? Just do the change. 347 // NOTE: Could optimize for the case the name is shrinking to not deallocate 348 // then reallocated. 349 destroyValueName(); 350 351 if (!NameRef.empty()) { 352 // Create the new name. 353 assert(NeedNewName); 354 MallocAllocator Allocator; 355 setValueName(ValueName::create(NameRef, Allocator)); 356 getValueName()->setValue(this); 357 } 358 return; 359 } 360 361 // NOTE: Could optimize for the case the name is shrinking to not deallocate 362 // then reallocated. 363 if (hasName()) { 364 // Remove old name. 365 ST->removeValueName(getValueName()); 366 destroyValueName(); 367 368 if (NameRef.empty()) 369 return; 370 } 371 372 // Name is changing to something new. 373 assert(NeedNewName); 374 setValueName(ST->createValueName(NameRef, this)); 375 } 376 377 void Value::setName(const Twine &NewName) { 378 setNameImpl(NewName); 379 if (Function *F = dyn_cast<Function>(this)) 380 F->updateAfterNameChange(); 381 } 382 383 void Value::takeName(Value *V) { 384 assert(V != this && "Illegal call to this->takeName(this)!"); 385 ValueSymbolTable *ST = nullptr; 386 // If this value has a name, drop it. 387 if (hasName()) { 388 // Get the symtab this is in. 389 if (getSymTab(this, ST)) { 390 // We can't set a name on this value, but we need to clear V's name if 391 // it has one. 392 if (V->hasName()) V->setName(""); 393 return; // Cannot set a name on this value (e.g. constant). 394 } 395 396 // Remove old name. 397 if (ST) 398 ST->removeValueName(getValueName()); 399 destroyValueName(); 400 } 401 402 // Now we know that this has no name. 403 404 // If V has no name either, we're done. 405 if (!V->hasName()) return; 406 407 // Get this's symtab if we didn't before. 408 if (!ST) { 409 if (getSymTab(this, ST)) { 410 // Clear V's name. 411 V->setName(""); 412 return; // Cannot set a name on this value (e.g. constant). 413 } 414 } 415 416 // Get V's ST, this should always succeed, because V has a name. 417 ValueSymbolTable *VST; 418 bool Failure = getSymTab(V, VST); 419 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 420 421 // If these values are both in the same symtab, we can do this very fast. 422 // This works even if both values have no symtab yet. 423 if (ST == VST) { 424 // Take the name! 425 setValueName(V->getValueName()); 426 V->setValueName(nullptr); 427 getValueName()->setValue(this); 428 return; 429 } 430 431 // Otherwise, things are slightly more complex. Remove V's name from VST and 432 // then reinsert it into ST. 433 434 if (VST) 435 VST->removeValueName(V->getValueName()); 436 setValueName(V->getValueName()); 437 V->setValueName(nullptr); 438 getValueName()->setValue(this); 439 440 if (ST) 441 ST->reinsertValue(this); 442 } 443 444 #ifndef NDEBUG 445 std::string Value::getNameOrAsOperand() const { 446 if (!getName().empty()) 447 return std::string(getName()); 448 449 std::string BBName; 450 raw_string_ostream OS(BBName); 451 printAsOperand(OS, false); 452 return OS.str(); 453 } 454 #endif 455 456 void Value::assertModuleIsMaterializedImpl() const { 457 #ifndef NDEBUG 458 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 459 if (!GV) 460 return; 461 const Module *M = GV->getParent(); 462 if (!M) 463 return; 464 assert(M->isMaterialized()); 465 #endif 466 } 467 468 #ifndef NDEBUG 469 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 470 Constant *C) { 471 if (!Cache.insert(Expr).second) 472 return false; 473 474 for (auto &O : Expr->operands()) { 475 if (O == C) 476 return true; 477 auto *CE = dyn_cast<ConstantExpr>(O); 478 if (!CE) 479 continue; 480 if (contains(Cache, CE, C)) 481 return true; 482 } 483 return false; 484 } 485 486 static bool contains(Value *Expr, Value *V) { 487 if (Expr == V) 488 return true; 489 490 auto *C = dyn_cast<Constant>(V); 491 if (!C) 492 return false; 493 494 auto *CE = dyn_cast<ConstantExpr>(Expr); 495 if (!CE) 496 return false; 497 498 SmallPtrSet<ConstantExpr *, 4> Cache; 499 return contains(Cache, CE, C); 500 } 501 #endif // NDEBUG 502 503 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 504 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 505 assert(!contains(New, this) && 506 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 507 assert(New->getType() == getType() && 508 "replaceAllUses of value with new value of different type!"); 509 510 // Notify all ValueHandles (if present) that this value is going away. 511 if (HasValueHandle) 512 ValueHandleBase::ValueIsRAUWd(this, New); 513 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 514 ValueAsMetadata::handleRAUW(this, New); 515 516 while (!materialized_use_empty()) { 517 Use &U = *UseList; 518 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 519 // constant because they are uniqued. 520 if (auto *C = dyn_cast<Constant>(U.getUser())) { 521 if (!isa<GlobalValue>(C)) { 522 C->handleOperandChange(this, New); 523 continue; 524 } 525 } 526 527 U.set(New); 528 } 529 530 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 531 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 532 } 533 534 void Value::replaceAllUsesWith(Value *New) { 535 doRAUW(New, ReplaceMetadataUses::Yes); 536 } 537 538 void Value::replaceNonMetadataUsesWith(Value *New) { 539 doRAUW(New, ReplaceMetadataUses::No); 540 } 541 542 void Value::replaceUsesWithIf(Value *New, 543 llvm::function_ref<bool(Use &U)> ShouldReplace) { 544 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 545 assert(New->getType() == getType() && 546 "replaceUses of value with new value of different type!"); 547 548 SmallVector<TrackingVH<Constant>, 8> Consts; 549 SmallPtrSet<Constant *, 8> Visited; 550 551 for (Use &U : llvm::make_early_inc_range(uses())) { 552 if (!ShouldReplace(U)) 553 continue; 554 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 555 // constant because they are uniqued. 556 if (auto *C = dyn_cast<Constant>(U.getUser())) { 557 if (!isa<GlobalValue>(C)) { 558 if (Visited.insert(C).second) 559 Consts.push_back(TrackingVH<Constant>(C)); 560 continue; 561 } 562 } 563 U.set(New); 564 } 565 566 while (!Consts.empty()) { 567 // FIXME: handleOperandChange() updates all the uses in a given Constant, 568 // not just the one passed to ShouldReplace 569 Consts.pop_back_val()->handleOperandChange(this, New); 570 } 571 } 572 573 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 574 /// with New. 575 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 576 SmallVector<DbgVariableIntrinsic *> DbgUsers; 577 SmallVector<DbgVariableRecord *> DPUsers; 578 findDbgUsers(DbgUsers, V, &DPUsers); 579 for (auto *DVI : DbgUsers) { 580 if (DVI->getParent() != BB) 581 DVI->replaceVariableLocationOp(V, New); 582 } 583 for (auto *DVR : DPUsers) { 584 DbgMarker *Marker = DVR->getMarker(); 585 if (Marker->getParent() != BB) 586 DVR->replaceVariableLocationOp(V, New); 587 } 588 } 589 590 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 591 // This routine leaves uses within BB. 592 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 593 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 594 assert(!contains(New, this) && 595 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 596 assert(New->getType() == getType() && 597 "replaceUses of value with new value of different type!"); 598 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 599 600 replaceDbgUsesOutsideBlock(this, New, BB); 601 replaceUsesWithIf(New, [BB](Use &U) { 602 auto *I = dyn_cast<Instruction>(U.getUser()); 603 // Don't replace if it's an instruction in the BB basic block. 604 return !I || I->getParent() != BB; 605 }); 606 } 607 608 namespace { 609 // Various metrics for how much to strip off of pointers. 610 enum PointerStripKind { 611 PSK_ZeroIndices, 612 PSK_ZeroIndicesAndAliases, 613 PSK_ZeroIndicesSameRepresentation, 614 PSK_ForAliasAnalysis, 615 PSK_InBoundsConstantIndices, 616 PSK_InBounds 617 }; 618 619 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 620 621 template <PointerStripKind StripKind> 622 static const Value *stripPointerCastsAndOffsets( 623 const Value *V, 624 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 625 if (!V->getType()->isPointerTy()) 626 return V; 627 628 // Even though we don't look through PHI nodes, we could be called on an 629 // instruction in an unreachable block, which may be on a cycle. 630 SmallPtrSet<const Value *, 4> Visited; 631 632 Visited.insert(V); 633 do { 634 Func(V); 635 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 636 switch (StripKind) { 637 case PSK_ZeroIndices: 638 case PSK_ZeroIndicesAndAliases: 639 case PSK_ZeroIndicesSameRepresentation: 640 case PSK_ForAliasAnalysis: 641 if (!GEP->hasAllZeroIndices()) 642 return V; 643 break; 644 case PSK_InBoundsConstantIndices: 645 if (!GEP->hasAllConstantIndices()) 646 return V; 647 [[fallthrough]]; 648 case PSK_InBounds: 649 if (!GEP->isInBounds()) 650 return V; 651 break; 652 } 653 V = GEP->getPointerOperand(); 654 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 655 Value *NewV = cast<Operator>(V)->getOperand(0); 656 if (!NewV->getType()->isPointerTy()) 657 return V; 658 V = NewV; 659 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 660 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 661 // TODO: If we know an address space cast will not change the 662 // representation we could look through it here as well. 663 V = cast<Operator>(V)->getOperand(0); 664 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 665 V = cast<GlobalAlias>(V)->getAliasee(); 666 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 667 cast<PHINode>(V)->getNumIncomingValues() == 1) { 668 V = cast<PHINode>(V)->getIncomingValue(0); 669 } else { 670 if (const auto *Call = dyn_cast<CallBase>(V)) { 671 if (const Value *RV = Call->getReturnedArgOperand()) { 672 V = RV; 673 continue; 674 } 675 // The result of launder.invariant.group must alias it's argument, 676 // but it can't be marked with returned attribute, that's why it needs 677 // special case. 678 if (StripKind == PSK_ForAliasAnalysis && 679 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 680 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 681 V = Call->getArgOperand(0); 682 continue; 683 } 684 } 685 return V; 686 } 687 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 688 } while (Visited.insert(V).second); 689 690 return V; 691 } 692 } // end anonymous namespace 693 694 const Value *Value::stripPointerCasts() const { 695 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 696 } 697 698 const Value *Value::stripPointerCastsAndAliases() const { 699 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 700 } 701 702 const Value *Value::stripPointerCastsSameRepresentation() const { 703 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 704 } 705 706 const Value *Value::stripInBoundsConstantOffsets() const { 707 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 708 } 709 710 const Value *Value::stripPointerCastsForAliasAnalysis() const { 711 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 712 } 713 714 const Value *Value::stripAndAccumulateConstantOffsets( 715 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 716 bool AllowInvariantGroup, 717 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 718 if (!getType()->isPtrOrPtrVectorTy()) 719 return this; 720 721 unsigned BitWidth = Offset.getBitWidth(); 722 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 723 "The offset bit width does not match the DL specification."); 724 725 // Even though we don't look through PHI nodes, we could be called on an 726 // instruction in an unreachable block, which may be on a cycle. 727 SmallPtrSet<const Value *, 4> Visited; 728 Visited.insert(this); 729 const Value *V = this; 730 do { 731 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 732 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 733 if (!AllowNonInbounds && !GEP->isInBounds()) 734 return V; 735 736 // If one of the values we have visited is an addrspacecast, then 737 // the pointer type of this GEP may be different from the type 738 // of the Ptr parameter which was passed to this function. This 739 // means when we construct GEPOffset, we need to use the size 740 // of GEP's pointer type rather than the size of the original 741 // pointer type. 742 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 743 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 744 return V; 745 746 // Stop traversal if the pointer offset wouldn't fit in the bit-width 747 // provided by the Offset argument. This can happen due to AddrSpaceCast 748 // stripping. 749 if (GEPOffset.getSignificantBits() > BitWidth) 750 return V; 751 752 // External Analysis can return a result higher/lower than the value 753 // represents. We need to detect overflow/underflow. 754 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 755 if (!ExternalAnalysis) { 756 Offset += GEPOffsetST; 757 } else { 758 bool Overflow = false; 759 APInt OldOffset = Offset; 760 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 761 if (Overflow) { 762 Offset = OldOffset; 763 return V; 764 } 765 } 766 V = GEP->getPointerOperand(); 767 } else if (Operator::getOpcode(V) == Instruction::BitCast || 768 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 769 V = cast<Operator>(V)->getOperand(0); 770 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 771 if (!GA->isInterposable()) 772 V = GA->getAliasee(); 773 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 774 if (const Value *RV = Call->getReturnedArgOperand()) 775 V = RV; 776 if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) 777 V = Call->getArgOperand(0); 778 } 779 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 780 } while (Visited.insert(V).second); 781 782 return V; 783 } 784 785 const Value * 786 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 787 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 788 } 789 790 bool Value::canBeFreed() const { 791 assert(getType()->isPointerTy()); 792 793 // Cases that can simply never be deallocated 794 // *) Constants aren't allocated per se, thus not deallocated either. 795 if (isa<Constant>(this)) 796 return false; 797 798 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 799 // lifetime is guaranteed to be longer than the callee's lifetime. 800 if (auto *A = dyn_cast<Argument>(this)) { 801 if (A->hasPointeeInMemoryValueAttr()) 802 return false; 803 // A pointer to an object in a function which neither frees, nor can arrange 804 // for another thread to free on its behalf, can not be freed in the scope 805 // of the function. Note that this logic is restricted to memory 806 // allocations in existance before the call; a nofree function *is* allowed 807 // to free memory it allocated. 808 const Function *F = A->getParent(); 809 if (F->doesNotFreeMemory() && F->hasNoSync()) 810 return false; 811 } 812 813 const Function *F = nullptr; 814 if (auto *I = dyn_cast<Instruction>(this)) 815 F = I->getFunction(); 816 if (auto *A = dyn_cast<Argument>(this)) 817 F = A->getParent(); 818 819 if (!F) 820 return true; 821 822 // With garbage collection, deallocation typically occurs solely at or after 823 // safepoints. If we're compiling for a collector which uses the 824 // gc.statepoint infrastructure, safepoints aren't explicitly present 825 // in the IR until after lowering from abstract to physical machine model. 826 // The collector could chose to mix explicit deallocation and gc'd objects 827 // which is why we need the explicit opt in on a per collector basis. 828 if (!F->hasGC()) 829 return true; 830 831 const auto &GCName = F->getGC(); 832 if (GCName == "statepoint-example") { 833 auto *PT = cast<PointerType>(this->getType()); 834 if (PT->getAddressSpace() != 1) 835 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 836 // our GC managed heap. This must match the same check in 837 // RewriteStatepointsForGC (and probably needs better factored.) 838 return true; 839 840 // It is cheaper to scan for a declaration than to scan for a use in this 841 // function. Note that gc.statepoint is a type overloaded function so the 842 // usual trick of requesting declaration of the intrinsic from the module 843 // doesn't work. 844 for (auto &Fn : *F->getParent()) 845 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 846 return true; 847 return false; 848 } 849 return true; 850 } 851 852 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 853 bool &CanBeNull, 854 bool &CanBeFreed) const { 855 assert(getType()->isPointerTy() && "must be pointer"); 856 857 uint64_t DerefBytes = 0; 858 CanBeNull = false; 859 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 860 if (const Argument *A = dyn_cast<Argument>(this)) { 861 DerefBytes = A->getDereferenceableBytes(); 862 if (DerefBytes == 0) { 863 // Handle byval/byref/inalloca/preallocated arguments 864 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 865 if (ArgMemTy->isSized()) { 866 // FIXME: Why isn't this the type alloc size? 867 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinValue(); 868 } 869 } 870 } 871 872 if (DerefBytes == 0) { 873 DerefBytes = A->getDereferenceableOrNullBytes(); 874 CanBeNull = true; 875 } 876 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 877 DerefBytes = Call->getRetDereferenceableBytes(); 878 if (DerefBytes == 0) { 879 DerefBytes = Call->getRetDereferenceableOrNullBytes(); 880 CanBeNull = true; 881 } 882 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 883 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 884 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 885 DerefBytes = CI->getLimitedValue(); 886 } 887 if (DerefBytes == 0) { 888 if (MDNode *MD = 889 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 890 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 891 DerefBytes = CI->getLimitedValue(); 892 } 893 CanBeNull = true; 894 } 895 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 896 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 897 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 898 DerefBytes = CI->getLimitedValue(); 899 } 900 if (DerefBytes == 0) { 901 if (MDNode *MD = 902 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 903 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 904 DerefBytes = CI->getLimitedValue(); 905 } 906 CanBeNull = true; 907 } 908 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 909 if (!AI->isArrayAllocation()) { 910 DerefBytes = 911 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinValue(); 912 CanBeNull = false; 913 CanBeFreed = false; 914 } 915 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 916 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 917 // TODO: Don't outright reject hasExternalWeakLinkage but set the 918 // CanBeNull flag. 919 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedValue(); 920 CanBeNull = false; 921 CanBeFreed = false; 922 } 923 } 924 return DerefBytes; 925 } 926 927 Align Value::getPointerAlignment(const DataLayout &DL) const { 928 assert(getType()->isPointerTy() && "must be pointer"); 929 if (auto *GO = dyn_cast<GlobalObject>(this)) { 930 if (isa<Function>(GO)) { 931 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 932 switch (DL.getFunctionPtrAlignType()) { 933 case DataLayout::FunctionPtrAlignType::Independent: 934 return FunctionPtrAlign; 935 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 936 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 937 } 938 llvm_unreachable("Unhandled FunctionPtrAlignType"); 939 } 940 const MaybeAlign Alignment(GO->getAlign()); 941 if (!Alignment) { 942 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 943 Type *ObjectType = GVar->getValueType(); 944 if (ObjectType->isSized()) { 945 // If the object is defined in the current Module, we'll be giving 946 // it the preferred alignment. Otherwise, we have to assume that it 947 // may only have the minimum ABI alignment. 948 if (GVar->isStrongDefinitionForLinker()) 949 return DL.getPreferredAlign(GVar); 950 else 951 return DL.getABITypeAlign(ObjectType); 952 } 953 } 954 } 955 return Alignment.valueOrOne(); 956 } else if (const Argument *A = dyn_cast<Argument>(this)) { 957 const MaybeAlign Alignment = A->getParamAlign(); 958 if (!Alignment && A->hasStructRetAttr()) { 959 // An sret parameter has at least the ABI alignment of the return type. 960 Type *EltTy = A->getParamStructRetType(); 961 if (EltTy->isSized()) 962 return DL.getABITypeAlign(EltTy); 963 } 964 return Alignment.valueOrOne(); 965 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 966 return AI->getAlign(); 967 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 968 MaybeAlign Alignment = Call->getRetAlign(); 969 if (!Alignment && Call->getCalledFunction()) 970 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 971 return Alignment.valueOrOne(); 972 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 973 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 974 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 975 return Align(CI->getLimitedValue()); 976 } 977 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 978 // Strip pointer casts to avoid creating unnecessary ptrtoint expression 979 // if the only "reduction" is combining a bitcast + ptrtoint. 980 CstPtr = CstPtr->stripPointerCasts(); 981 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 982 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 983 /*OnlyIfReduced=*/true))) { 984 size_t TrailingZeros = CstInt->getValue().countr_zero(); 985 // While the actual alignment may be large, elsewhere we have 986 // an arbitrary upper alignmet limit, so let's clamp to it. 987 return Align(TrailingZeros < Value::MaxAlignmentExponent 988 ? uint64_t(1) << TrailingZeros 989 : Value::MaximumAlignment); 990 } 991 } 992 return Align(1); 993 } 994 995 static std::optional<int64_t> 996 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 997 // Skip over the first indices. 998 gep_type_iterator GTI = gep_type_begin(GEP); 999 for (unsigned i = 1; i != Idx; ++i, ++GTI) 1000 /*skip along*/; 1001 1002 // Compute the offset implied by the rest of the indices. 1003 int64_t Offset = 0; 1004 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 1005 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1006 if (!OpC) 1007 return std::nullopt; 1008 if (OpC->isZero()) 1009 continue; // No offset. 1010 1011 // Handle struct indices, which add their field offset to the pointer. 1012 if (StructType *STy = GTI.getStructTypeOrNull()) { 1013 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1014 continue; 1015 } 1016 1017 // Otherwise, we have a sequential type like an array or fixed-length 1018 // vector. Multiply the index by the ElementSize. 1019 TypeSize Size = GTI.getSequentialElementStride(DL); 1020 if (Size.isScalable()) 1021 return std::nullopt; 1022 Offset += Size.getFixedValue() * OpC->getSExtValue(); 1023 } 1024 1025 return Offset; 1026 } 1027 1028 std::optional<int64_t> Value::getPointerOffsetFrom(const Value *Other, 1029 const DataLayout &DL) const { 1030 const Value *Ptr1 = Other; 1031 const Value *Ptr2 = this; 1032 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); 1033 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); 1034 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); 1035 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); 1036 1037 // Handle the trivial case first. 1038 if (Ptr1 == Ptr2) 1039 return Offset2.getSExtValue() - Offset1.getSExtValue(); 1040 1041 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 1042 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 1043 1044 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 1045 // base. After that base, they may have some number of common (and 1046 // potentially variable) indices. After that they handle some constant 1047 // offset, which determines their offset from each other. At this point, we 1048 // handle no other case. 1049 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 1050 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 1051 return std::nullopt; 1052 1053 // Skip any common indices and track the GEP types. 1054 unsigned Idx = 1; 1055 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 1056 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 1057 break; 1058 1059 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); 1060 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); 1061 if (!IOffset1 || !IOffset2) 1062 return std::nullopt; 1063 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - 1064 Offset1.getSExtValue(); 1065 } 1066 1067 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 1068 const BasicBlock *PredBB) const { 1069 auto *PN = dyn_cast<PHINode>(this); 1070 if (PN && PN->getParent() == CurBB) 1071 return PN->getIncomingValueForBlock(PredBB); 1072 return this; 1073 } 1074 1075 LLVMContext &Value::getContext() const { return VTy->getContext(); } 1076 1077 void Value::reverseUseList() { 1078 if (!UseList || !UseList->Next) 1079 // No need to reverse 0 or 1 uses. 1080 return; 1081 1082 Use *Head = UseList; 1083 Use *Current = UseList->Next; 1084 Head->Next = nullptr; 1085 while (Current) { 1086 Use *Next = Current->Next; 1087 Current->Next = Head; 1088 Head->Prev = &Current->Next; 1089 Head = Current; 1090 Current = Next; 1091 } 1092 UseList = Head; 1093 Head->Prev = &UseList; 1094 } 1095 1096 bool Value::isSwiftError() const { 1097 auto *Arg = dyn_cast<Argument>(this); 1098 if (Arg) 1099 return Arg->hasSwiftErrorAttr(); 1100 auto *Alloca = dyn_cast<AllocaInst>(this); 1101 if (!Alloca) 1102 return false; 1103 return Alloca->isSwiftError(); 1104 } 1105 1106 //===----------------------------------------------------------------------===// 1107 // ValueHandleBase Class 1108 //===----------------------------------------------------------------------===// 1109 1110 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1111 assert(List && "Handle list is null?"); 1112 1113 // Splice ourselves into the list. 1114 Next = *List; 1115 *List = this; 1116 setPrevPtr(List); 1117 if (Next) { 1118 Next->setPrevPtr(&Next); 1119 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1120 } 1121 } 1122 1123 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1124 assert(List && "Must insert after existing node"); 1125 1126 Next = List->Next; 1127 setPrevPtr(&List->Next); 1128 List->Next = this; 1129 if (Next) 1130 Next->setPrevPtr(&Next); 1131 } 1132 1133 void ValueHandleBase::AddToUseList() { 1134 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1135 1136 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1137 1138 if (getValPtr()->HasValueHandle) { 1139 // If this value already has a ValueHandle, then it must be in the 1140 // ValueHandles map already. 1141 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1142 assert(Entry && "Value doesn't have any handles?"); 1143 AddToExistingUseList(&Entry); 1144 return; 1145 } 1146 1147 // Ok, it doesn't have any handles yet, so we must insert it into the 1148 // DenseMap. However, doing this insertion could cause the DenseMap to 1149 // reallocate itself, which would invalidate all of the PrevP pointers that 1150 // point into the old table. Handle this by checking for reallocation and 1151 // updating the stale pointers only if needed. 1152 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1153 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1154 1155 ValueHandleBase *&Entry = Handles[getValPtr()]; 1156 assert(!Entry && "Value really did already have handles?"); 1157 AddToExistingUseList(&Entry); 1158 getValPtr()->HasValueHandle = true; 1159 1160 // If reallocation didn't happen or if this was the first insertion, don't 1161 // walk the table. 1162 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1163 Handles.size() == 1) { 1164 return; 1165 } 1166 1167 // Okay, reallocation did happen. Fix the Prev Pointers. 1168 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1169 E = Handles.end(); I != E; ++I) { 1170 assert(I->second && I->first == I->second->getValPtr() && 1171 "List invariant broken!"); 1172 I->second->setPrevPtr(&I->second); 1173 } 1174 } 1175 1176 void ValueHandleBase::RemoveFromUseList() { 1177 assert(getValPtr() && getValPtr()->HasValueHandle && 1178 "Pointer doesn't have a use list!"); 1179 1180 // Unlink this from its use list. 1181 ValueHandleBase **PrevPtr = getPrevPtr(); 1182 assert(*PrevPtr == this && "List invariant broken"); 1183 1184 *PrevPtr = Next; 1185 if (Next) { 1186 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1187 Next->setPrevPtr(PrevPtr); 1188 return; 1189 } 1190 1191 // If the Next pointer was null, then it is possible that this was the last 1192 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1193 // map. 1194 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1195 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1196 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1197 Handles.erase(getValPtr()); 1198 getValPtr()->HasValueHandle = false; 1199 } 1200 } 1201 1202 void ValueHandleBase::ValueIsDeleted(Value *V) { 1203 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1204 1205 // Get the linked list base, which is guaranteed to exist since the 1206 // HasValueHandle flag is set. 1207 LLVMContextImpl *pImpl = V->getContext().pImpl; 1208 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1209 assert(Entry && "Value bit set but no entries exist"); 1210 1211 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1212 // and remove themselves from the list without breaking our iteration. This 1213 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1214 // Note that we deliberately do not the support the case when dropping a value 1215 // handle results in a new value handle being permanently added to the list 1216 // (as might occur in theory for CallbackVH's): the new value handle will not 1217 // be processed and the checking code will mete out righteous punishment if 1218 // the handle is still present once we have finished processing all the other 1219 // value handles (it is fine to momentarily add then remove a value handle). 1220 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1221 Iterator.RemoveFromUseList(); 1222 Iterator.AddToExistingUseListAfter(Entry); 1223 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1224 1225 switch (Entry->getKind()) { 1226 case Assert: 1227 break; 1228 case Weak: 1229 case WeakTracking: 1230 // WeakTracking and Weak just go to null, which unlinks them 1231 // from the list. 1232 Entry->operator=(nullptr); 1233 break; 1234 case Callback: 1235 // Forward to the subclass's implementation. 1236 static_cast<CallbackVH*>(Entry)->deleted(); 1237 break; 1238 } 1239 } 1240 1241 // All callbacks, weak references, and assertingVHs should be dropped by now. 1242 if (V->HasValueHandle) { 1243 #ifndef NDEBUG // Only in +Asserts mode... 1244 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1245 << "\n"; 1246 if (pImpl->ValueHandles[V]->getKind() == Assert) 1247 llvm_unreachable("An asserting value handle still pointed to this" 1248 " value!"); 1249 1250 #endif 1251 llvm_unreachable("All references to V were not removed?"); 1252 } 1253 } 1254 1255 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1256 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1257 assert(Old != New && "Changing value into itself!"); 1258 assert(Old->getType() == New->getType() && 1259 "replaceAllUses of value with new value of different type!"); 1260 1261 // Get the linked list base, which is guaranteed to exist since the 1262 // HasValueHandle flag is set. 1263 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1264 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1265 1266 assert(Entry && "Value bit set but no entries exist"); 1267 1268 // We use a local ValueHandleBase as an iterator so that 1269 // ValueHandles can add and remove themselves from the list without 1270 // breaking our iteration. This is not really an AssertingVH; we 1271 // just have to give ValueHandleBase some kind. 1272 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1273 Iterator.RemoveFromUseList(); 1274 Iterator.AddToExistingUseListAfter(Entry); 1275 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1276 1277 switch (Entry->getKind()) { 1278 case Assert: 1279 case Weak: 1280 // Asserting and Weak handles do not follow RAUW implicitly. 1281 break; 1282 case WeakTracking: 1283 // Weak goes to the new value, which will unlink it from Old's list. 1284 Entry->operator=(New); 1285 break; 1286 case Callback: 1287 // Forward to the subclass's implementation. 1288 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1289 break; 1290 } 1291 } 1292 1293 #ifndef NDEBUG 1294 // If any new weak value handles were added while processing the 1295 // list, then complain about it now. 1296 if (Old->HasValueHandle) 1297 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1298 switch (Entry->getKind()) { 1299 case WeakTracking: 1300 dbgs() << "After RAUW from " << *Old->getType() << " %" 1301 << Old->getName() << " to " << *New->getType() << " %" 1302 << New->getName() << "\n"; 1303 llvm_unreachable( 1304 "A weak tracking value handle still pointed to the old value!\n"); 1305 default: 1306 break; 1307 } 1308 #endif 1309 } 1310 1311 // Pin the vtable to this file. 1312 void CallbackVH::anchor() {} 1313