xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Value.cpp (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Value, ValueHandle, and User classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DerivedUser.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 
39 using namespace llvm;
40 
41 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
42     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
43     cl::desc("Maximum size for the name of non-global values."));
44 
45 //===----------------------------------------------------------------------===//
46 //                                Value Class
47 //===----------------------------------------------------------------------===//
48 static inline Type *checkType(Type *Ty) {
49   assert(Ty && "Value defined with a null type: Error!");
50   return Ty;
51 }
52 
53 Value::Value(Type *ty, unsigned scid)
54     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
55       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
56       NumUserOperands(0), IsUsedByMD(false), HasName(false) {
57   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
58   // FIXME: Why isn't this in the subclass gunk??
59   // Note, we cannot call isa<CallInst> before the CallInst has been
60   // constructed.
61   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
62       SubclassID == Instruction::CallBr)
63     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
64            "invalid CallInst type!");
65   else if (SubclassID != BasicBlockVal &&
66            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
67     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
68            "Cannot create non-first-class values except for constants!");
69   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
70                 "Value too big");
71 }
72 
73 Value::~Value() {
74   // Notify all ValueHandles (if present) that this value is going away.
75   if (HasValueHandle)
76     ValueHandleBase::ValueIsDeleted(this);
77   if (isUsedByMetadata())
78     ValueAsMetadata::handleDeletion(this);
79 
80 #ifndef NDEBUG      // Only in -g mode...
81   // Check to make sure that there are no uses of this value that are still
82   // around when the value is destroyed.  If there are, then we have a dangling
83   // reference and something is wrong.  This code is here to print out where
84   // the value is still being referenced.
85   //
86   if (!use_empty()) {
87     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
88     for (auto *U : users())
89       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
90   }
91 #endif
92   assert(use_empty() && "Uses remain when a value is destroyed!");
93 
94   // If this value is named, destroy the name.  This should not be in a symtab
95   // at this point.
96   destroyValueName();
97 }
98 
99 void Value::deleteValue() {
100   switch (getValueID()) {
101 #define HANDLE_VALUE(Name)                                                     \
102   case Value::Name##Val:                                                       \
103     delete static_cast<Name *>(this);                                          \
104     break;
105 #define HANDLE_MEMORY_VALUE(Name)                                              \
106   case Value::Name##Val:                                                       \
107     static_cast<DerivedUser *>(this)->DeleteValue(                             \
108         static_cast<DerivedUser *>(this));                                     \
109     break;
110 #define HANDLE_INSTRUCTION(Name)  /* nothing */
111 #include "llvm/IR/Value.def"
112 
113 #define HANDLE_INST(N, OPC, CLASS)                                             \
114   case Value::InstructionVal + Instruction::OPC:                               \
115     delete static_cast<CLASS *>(this);                                         \
116     break;
117 #define HANDLE_USER_INST(N, OPC, CLASS)
118 #include "llvm/IR/Instruction.def"
119 
120   default:
121     llvm_unreachable("attempting to delete unknown value kind");
122   }
123 }
124 
125 void Value::destroyValueName() {
126   ValueName *Name = getValueName();
127   if (Name)
128     Name->Destroy();
129   setValueName(nullptr);
130 }
131 
132 bool Value::hasNUses(unsigned N) const {
133   return hasNItems(use_begin(), use_end(), N);
134 }
135 
136 bool Value::hasNUsesOrMore(unsigned N) const {
137   return hasNItemsOrMore(use_begin(), use_end(), N);
138 }
139 
140 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
141   // This can be computed either by scanning the instructions in BB, or by
142   // scanning the use list of this Value. Both lists can be very long, but
143   // usually one is quite short.
144   //
145   // Scan both lists simultaneously until one is exhausted. This limits the
146   // search to the shorter list.
147   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
148   const_user_iterator UI = user_begin(), UE = user_end();
149   for (; BI != BE && UI != UE; ++BI, ++UI) {
150     // Scan basic block: Check if this Value is used by the instruction at BI.
151     if (is_contained(BI->operands(), this))
152       return true;
153     // Scan use list: Check if the use at UI is in BB.
154     const auto *User = dyn_cast<Instruction>(*UI);
155     if (User && User->getParent() == BB)
156       return true;
157   }
158   return false;
159 }
160 
161 unsigned Value::getNumUses() const {
162   return (unsigned)std::distance(use_begin(), use_end());
163 }
164 
165 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
166   ST = nullptr;
167   if (Instruction *I = dyn_cast<Instruction>(V)) {
168     if (BasicBlock *P = I->getParent())
169       if (Function *PP = P->getParent())
170         ST = PP->getValueSymbolTable();
171   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
172     if (Function *P = BB->getParent())
173       ST = P->getValueSymbolTable();
174   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
175     if (Module *P = GV->getParent())
176       ST = &P->getValueSymbolTable();
177   } else if (Argument *A = dyn_cast<Argument>(V)) {
178     if (Function *P = A->getParent())
179       ST = P->getValueSymbolTable();
180   } else {
181     assert(isa<Constant>(V) && "Unknown value type!");
182     return true;  // no name is setable for this.
183   }
184   return false;
185 }
186 
187 ValueName *Value::getValueName() const {
188   if (!HasName) return nullptr;
189 
190   LLVMContext &Ctx = getContext();
191   auto I = Ctx.pImpl->ValueNames.find(this);
192   assert(I != Ctx.pImpl->ValueNames.end() &&
193          "No name entry found!");
194 
195   return I->second;
196 }
197 
198 void Value::setValueName(ValueName *VN) {
199   LLVMContext &Ctx = getContext();
200 
201   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
202          "HasName bit out of sync!");
203 
204   if (!VN) {
205     if (HasName)
206       Ctx.pImpl->ValueNames.erase(this);
207     HasName = false;
208     return;
209   }
210 
211   HasName = true;
212   Ctx.pImpl->ValueNames[this] = VN;
213 }
214 
215 StringRef Value::getName() const {
216   // Make sure the empty string is still a C string. For historical reasons,
217   // some clients want to call .data() on the result and expect it to be null
218   // terminated.
219   if (!hasName())
220     return StringRef("", 0);
221   return getValueName()->getKey();
222 }
223 
224 void Value::setNameImpl(const Twine &NewName) {
225   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
226   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
227     return;
228 
229   // Fast path for common IRBuilder case of setName("") when there is no name.
230   if (NewName.isTriviallyEmpty() && !hasName())
231     return;
232 
233   SmallString<256> NameData;
234   StringRef NameRef = NewName.toStringRef(NameData);
235   assert(NameRef.find_first_of(0) == StringRef::npos &&
236          "Null bytes are not allowed in names");
237 
238   // Name isn't changing?
239   if (getName() == NameRef)
240     return;
241 
242   // Cap the size of non-GlobalValue names.
243   if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
244     NameRef =
245         NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
246 
247   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
248 
249   // Get the symbol table to update for this object.
250   ValueSymbolTable *ST;
251   if (getSymTab(this, ST))
252     return;  // Cannot set a name on this value (e.g. constant).
253 
254   if (!ST) { // No symbol table to update?  Just do the change.
255     if (NameRef.empty()) {
256       // Free the name for this value.
257       destroyValueName();
258       return;
259     }
260 
261     // NOTE: Could optimize for the case the name is shrinking to not deallocate
262     // then reallocated.
263     destroyValueName();
264 
265     // Create the new name.
266     setValueName(ValueName::Create(NameRef));
267     getValueName()->setValue(this);
268     return;
269   }
270 
271   // NOTE: Could optimize for the case the name is shrinking to not deallocate
272   // then reallocated.
273   if (hasName()) {
274     // Remove old name.
275     ST->removeValueName(getValueName());
276     destroyValueName();
277 
278     if (NameRef.empty())
279       return;
280   }
281 
282   // Name is changing to something new.
283   setValueName(ST->createValueName(NameRef, this));
284 }
285 
286 void Value::setName(const Twine &NewName) {
287   setNameImpl(NewName);
288   if (Function *F = dyn_cast<Function>(this))
289     F->recalculateIntrinsicID();
290 }
291 
292 void Value::takeName(Value *V) {
293   ValueSymbolTable *ST = nullptr;
294   // If this value has a name, drop it.
295   if (hasName()) {
296     // Get the symtab this is in.
297     if (getSymTab(this, ST)) {
298       // We can't set a name on this value, but we need to clear V's name if
299       // it has one.
300       if (V->hasName()) V->setName("");
301       return;  // Cannot set a name on this value (e.g. constant).
302     }
303 
304     // Remove old name.
305     if (ST)
306       ST->removeValueName(getValueName());
307     destroyValueName();
308   }
309 
310   // Now we know that this has no name.
311 
312   // If V has no name either, we're done.
313   if (!V->hasName()) return;
314 
315   // Get this's symtab if we didn't before.
316   if (!ST) {
317     if (getSymTab(this, ST)) {
318       // Clear V's name.
319       V->setName("");
320       return;  // Cannot set a name on this value (e.g. constant).
321     }
322   }
323 
324   // Get V's ST, this should always succed, because V has a name.
325   ValueSymbolTable *VST;
326   bool Failure = getSymTab(V, VST);
327   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
328 
329   // If these values are both in the same symtab, we can do this very fast.
330   // This works even if both values have no symtab yet.
331   if (ST == VST) {
332     // Take the name!
333     setValueName(V->getValueName());
334     V->setValueName(nullptr);
335     getValueName()->setValue(this);
336     return;
337   }
338 
339   // Otherwise, things are slightly more complex.  Remove V's name from VST and
340   // then reinsert it into ST.
341 
342   if (VST)
343     VST->removeValueName(V->getValueName());
344   setValueName(V->getValueName());
345   V->setValueName(nullptr);
346   getValueName()->setValue(this);
347 
348   if (ST)
349     ST->reinsertValue(this);
350 }
351 
352 void Value::assertModuleIsMaterializedImpl() const {
353 #ifndef NDEBUG
354   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
355   if (!GV)
356     return;
357   const Module *M = GV->getParent();
358   if (!M)
359     return;
360   assert(M->isMaterialized());
361 #endif
362 }
363 
364 #ifndef NDEBUG
365 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
366                      Constant *C) {
367   if (!Cache.insert(Expr).second)
368     return false;
369 
370   for (auto &O : Expr->operands()) {
371     if (O == C)
372       return true;
373     auto *CE = dyn_cast<ConstantExpr>(O);
374     if (!CE)
375       continue;
376     if (contains(Cache, CE, C))
377       return true;
378   }
379   return false;
380 }
381 
382 static bool contains(Value *Expr, Value *V) {
383   if (Expr == V)
384     return true;
385 
386   auto *C = dyn_cast<Constant>(V);
387   if (!C)
388     return false;
389 
390   auto *CE = dyn_cast<ConstantExpr>(Expr);
391   if (!CE)
392     return false;
393 
394   SmallPtrSet<ConstantExpr *, 4> Cache;
395   return contains(Cache, CE, C);
396 }
397 #endif // NDEBUG
398 
399 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
400   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
401   assert(!contains(New, this) &&
402          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
403   assert(New->getType() == getType() &&
404          "replaceAllUses of value with new value of different type!");
405 
406   // Notify all ValueHandles (if present) that this value is going away.
407   if (HasValueHandle)
408     ValueHandleBase::ValueIsRAUWd(this, New);
409   if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
410     ValueAsMetadata::handleRAUW(this, New);
411 
412   while (!materialized_use_empty()) {
413     Use &U = *UseList;
414     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
415     // constant because they are uniqued.
416     if (auto *C = dyn_cast<Constant>(U.getUser())) {
417       if (!isa<GlobalValue>(C)) {
418         C->handleOperandChange(this, New);
419         continue;
420       }
421     }
422 
423     U.set(New);
424   }
425 
426   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
427     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
428 }
429 
430 void Value::replaceAllUsesWith(Value *New) {
431   doRAUW(New, ReplaceMetadataUses::Yes);
432 }
433 
434 void Value::replaceNonMetadataUsesWith(Value *New) {
435   doRAUW(New, ReplaceMetadataUses::No);
436 }
437 
438 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
439 // This routine leaves uses within BB.
440 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
441   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
442   assert(!contains(New, this) &&
443          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
444   assert(New->getType() == getType() &&
445          "replaceUses of value with new value of different type!");
446   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
447 
448   replaceUsesWithIf(New, [BB](Use &U) {
449     auto *I = dyn_cast<Instruction>(U.getUser());
450     // Don't replace if it's an instruction in the BB basic block.
451     return !I || I->getParent() != BB;
452   });
453 }
454 
455 namespace {
456 // Various metrics for how much to strip off of pointers.
457 enum PointerStripKind {
458   PSK_ZeroIndices,
459   PSK_ZeroIndicesAndAliases,
460   PSK_ZeroIndicesSameRepresentation,
461   PSK_ZeroIndicesAndInvariantGroups,
462   PSK_InBoundsConstantIndices,
463   PSK_InBounds
464 };
465 
466 template <PointerStripKind StripKind>
467 static const Value *stripPointerCastsAndOffsets(const Value *V) {
468   if (!V->getType()->isPointerTy())
469     return V;
470 
471   // Even though we don't look through PHI nodes, we could be called on an
472   // instruction in an unreachable block, which may be on a cycle.
473   SmallPtrSet<const Value *, 4> Visited;
474 
475   Visited.insert(V);
476   do {
477     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
478       switch (StripKind) {
479       case PSK_ZeroIndices:
480       case PSK_ZeroIndicesAndAliases:
481       case PSK_ZeroIndicesSameRepresentation:
482       case PSK_ZeroIndicesAndInvariantGroups:
483         if (!GEP->hasAllZeroIndices())
484           return V;
485         break;
486       case PSK_InBoundsConstantIndices:
487         if (!GEP->hasAllConstantIndices())
488           return V;
489         LLVM_FALLTHROUGH;
490       case PSK_InBounds:
491         if (!GEP->isInBounds())
492           return V;
493         break;
494       }
495       V = GEP->getPointerOperand();
496     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
497       V = cast<Operator>(V)->getOperand(0);
498     } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
499                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
500       // TODO: If we know an address space cast will not change the
501       //       representation we could look through it here as well.
502       V = cast<Operator>(V)->getOperand(0);
503     } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
504       V = cast<GlobalAlias>(V)->getAliasee();
505     } else {
506       if (const auto *Call = dyn_cast<CallBase>(V)) {
507         if (const Value *RV = Call->getReturnedArgOperand()) {
508           V = RV;
509           continue;
510         }
511         // The result of launder.invariant.group must alias it's argument,
512         // but it can't be marked with returned attribute, that's why it needs
513         // special case.
514         if (StripKind == PSK_ZeroIndicesAndInvariantGroups &&
515             (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
516              Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
517           V = Call->getArgOperand(0);
518           continue;
519         }
520       }
521       return V;
522     }
523     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
524   } while (Visited.insert(V).second);
525 
526   return V;
527 }
528 } // end anonymous namespace
529 
530 const Value *Value::stripPointerCasts() const {
531   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
532 }
533 
534 const Value *Value::stripPointerCastsAndAliases() const {
535   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
536 }
537 
538 const Value *Value::stripPointerCastsSameRepresentation() const {
539   return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
540 }
541 
542 const Value *Value::stripInBoundsConstantOffsets() const {
543   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
544 }
545 
546 const Value *Value::stripPointerCastsAndInvariantGroups() const {
547   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this);
548 }
549 
550 const Value *
551 Value::stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
552                                          bool AllowNonInbounds) const {
553   if (!getType()->isPtrOrPtrVectorTy())
554     return this;
555 
556   unsigned BitWidth = Offset.getBitWidth();
557   assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
558          "The offset bit width does not match the DL specification.");
559 
560   // Even though we don't look through PHI nodes, we could be called on an
561   // instruction in an unreachable block, which may be on a cycle.
562   SmallPtrSet<const Value *, 4> Visited;
563   Visited.insert(this);
564   const Value *V = this;
565   do {
566     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
567       // If in-bounds was requested, we do not strip non-in-bounds GEPs.
568       if (!AllowNonInbounds && !GEP->isInBounds())
569         return V;
570 
571       // If one of the values we have visited is an addrspacecast, then
572       // the pointer type of this GEP may be different from the type
573       // of the Ptr parameter which was passed to this function.  This
574       // means when we construct GEPOffset, we need to use the size
575       // of GEP's pointer type rather than the size of the original
576       // pointer type.
577       APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
578       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
579         return V;
580 
581       // Stop traversal if the pointer offset wouldn't fit in the bit-width
582       // provided by the Offset argument. This can happen due to AddrSpaceCast
583       // stripping.
584       if (GEPOffset.getMinSignedBits() > BitWidth)
585         return V;
586 
587       Offset += GEPOffset.sextOrTrunc(BitWidth);
588       V = GEP->getPointerOperand();
589     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
590                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
591       V = cast<Operator>(V)->getOperand(0);
592     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
593       if (!GA->isInterposable())
594         V = GA->getAliasee();
595     } else if (const auto *Call = dyn_cast<CallBase>(V)) {
596         if (const Value *RV = Call->getReturnedArgOperand())
597           V = RV;
598     }
599     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
600   } while (Visited.insert(V).second);
601 
602   return V;
603 }
604 
605 const Value *Value::stripInBoundsOffsets() const {
606   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
607 }
608 
609 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
610                                                bool &CanBeNull) const {
611   assert(getType()->isPointerTy() && "must be pointer");
612 
613   uint64_t DerefBytes = 0;
614   CanBeNull = false;
615   if (const Argument *A = dyn_cast<Argument>(this)) {
616     DerefBytes = A->getDereferenceableBytes();
617     if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
618       Type *PT = cast<PointerType>(A->getType())->getElementType();
619       if (PT->isSized())
620         DerefBytes = DL.getTypeStoreSize(PT);
621     }
622     if (DerefBytes == 0) {
623       DerefBytes = A->getDereferenceableOrNullBytes();
624       CanBeNull = true;
625     }
626   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
627     DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
628     if (DerefBytes == 0) {
629       DerefBytes =
630           Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
631       CanBeNull = true;
632     }
633   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
634     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
635       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
636       DerefBytes = CI->getLimitedValue();
637     }
638     if (DerefBytes == 0) {
639       if (MDNode *MD =
640               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
641         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
642         DerefBytes = CI->getLimitedValue();
643       }
644       CanBeNull = true;
645     }
646   } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
647     if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
648       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
649       DerefBytes = CI->getLimitedValue();
650     }
651     if (DerefBytes == 0) {
652       if (MDNode *MD =
653               IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
654         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
655         DerefBytes = CI->getLimitedValue();
656       }
657       CanBeNull = true;
658     }
659   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
660     if (!AI->isArrayAllocation()) {
661       DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
662       CanBeNull = false;
663     }
664   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
665     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
666       // TODO: Don't outright reject hasExternalWeakLinkage but set the
667       // CanBeNull flag.
668       DerefBytes = DL.getTypeStoreSize(GV->getValueType());
669       CanBeNull = false;
670     }
671   }
672   return DerefBytes;
673 }
674 
675 MaybeAlign Value::getPointerAlignment(const DataLayout &DL) const {
676   assert(getType()->isPointerTy() && "must be pointer");
677   if (auto *GO = dyn_cast<GlobalObject>(this)) {
678     if (isa<Function>(GO)) {
679       const MaybeAlign FunctionPtrAlign = DL.getFunctionPtrAlign();
680       switch (DL.getFunctionPtrAlignType()) {
681       case DataLayout::FunctionPtrAlignType::Independent:
682         return FunctionPtrAlign;
683       case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
684         return std::max(FunctionPtrAlign, MaybeAlign(GO->getAlignment()));
685       }
686       llvm_unreachable("Unhandled FunctionPtrAlignType");
687     }
688     const MaybeAlign Alignment(GO->getAlignment());
689     if (!Alignment) {
690       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
691         Type *ObjectType = GVar->getValueType();
692         if (ObjectType->isSized()) {
693           // If the object is defined in the current Module, we'll be giving
694           // it the preferred alignment. Otherwise, we have to assume that it
695           // may only have the minimum ABI alignment.
696           if (GVar->isStrongDefinitionForLinker())
697             return MaybeAlign(DL.getPreferredAlignment(GVar));
698           else
699             return Align(DL.getABITypeAlignment(ObjectType));
700         }
701       }
702     }
703     return Alignment;
704   } else if (const Argument *A = dyn_cast<Argument>(this)) {
705     const MaybeAlign Alignment(A->getParamAlignment());
706     if (!Alignment && A->hasStructRetAttr()) {
707       // An sret parameter has at least the ABI alignment of the return type.
708       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
709       if (EltTy->isSized())
710         return Align(DL.getABITypeAlignment(EltTy));
711     }
712     return Alignment;
713   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
714     const MaybeAlign Alignment(AI->getAlignment());
715     if (!Alignment) {
716       Type *AllocatedType = AI->getAllocatedType();
717       if (AllocatedType->isSized())
718         return MaybeAlign(DL.getPrefTypeAlignment(AllocatedType));
719     }
720     return Alignment;
721   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
722     const MaybeAlign Alignment(Call->getRetAlignment());
723     if (!Alignment && Call->getCalledFunction())
724       return MaybeAlign(
725           Call->getCalledFunction()->getAttributes().getRetAlignment());
726     return Alignment;
727   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
728     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
729       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
730       return MaybeAlign(CI->getLimitedValue());
731     }
732   }
733   return llvm::None;
734 }
735 
736 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
737                                      const BasicBlock *PredBB) const {
738   auto *PN = dyn_cast<PHINode>(this);
739   if (PN && PN->getParent() == CurBB)
740     return PN->getIncomingValueForBlock(PredBB);
741   return this;
742 }
743 
744 LLVMContext &Value::getContext() const { return VTy->getContext(); }
745 
746 void Value::reverseUseList() {
747   if (!UseList || !UseList->Next)
748     // No need to reverse 0 or 1 uses.
749     return;
750 
751   Use *Head = UseList;
752   Use *Current = UseList->Next;
753   Head->Next = nullptr;
754   while (Current) {
755     Use *Next = Current->Next;
756     Current->Next = Head;
757     Head->setPrev(&Current->Next);
758     Head = Current;
759     Current = Next;
760   }
761   UseList = Head;
762   Head->setPrev(&UseList);
763 }
764 
765 bool Value::isSwiftError() const {
766   auto *Arg = dyn_cast<Argument>(this);
767   if (Arg)
768     return Arg->hasSwiftErrorAttr();
769   auto *Alloca = dyn_cast<AllocaInst>(this);
770   if (!Alloca)
771     return false;
772   return Alloca->isSwiftError();
773 }
774 
775 //===----------------------------------------------------------------------===//
776 //                             ValueHandleBase Class
777 //===----------------------------------------------------------------------===//
778 
779 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
780   assert(List && "Handle list is null?");
781 
782   // Splice ourselves into the list.
783   Next = *List;
784   *List = this;
785   setPrevPtr(List);
786   if (Next) {
787     Next->setPrevPtr(&Next);
788     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
789   }
790 }
791 
792 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
793   assert(List && "Must insert after existing node");
794 
795   Next = List->Next;
796   setPrevPtr(&List->Next);
797   List->Next = this;
798   if (Next)
799     Next->setPrevPtr(&Next);
800 }
801 
802 void ValueHandleBase::AddToUseList() {
803   assert(getValPtr() && "Null pointer doesn't have a use list!");
804 
805   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
806 
807   if (getValPtr()->HasValueHandle) {
808     // If this value already has a ValueHandle, then it must be in the
809     // ValueHandles map already.
810     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
811     assert(Entry && "Value doesn't have any handles?");
812     AddToExistingUseList(&Entry);
813     return;
814   }
815 
816   // Ok, it doesn't have any handles yet, so we must insert it into the
817   // DenseMap.  However, doing this insertion could cause the DenseMap to
818   // reallocate itself, which would invalidate all of the PrevP pointers that
819   // point into the old table.  Handle this by checking for reallocation and
820   // updating the stale pointers only if needed.
821   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
822   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
823 
824   ValueHandleBase *&Entry = Handles[getValPtr()];
825   assert(!Entry && "Value really did already have handles?");
826   AddToExistingUseList(&Entry);
827   getValPtr()->HasValueHandle = true;
828 
829   // If reallocation didn't happen or if this was the first insertion, don't
830   // walk the table.
831   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
832       Handles.size() == 1) {
833     return;
834   }
835 
836   // Okay, reallocation did happen.  Fix the Prev Pointers.
837   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
838        E = Handles.end(); I != E; ++I) {
839     assert(I->second && I->first == I->second->getValPtr() &&
840            "List invariant broken!");
841     I->second->setPrevPtr(&I->second);
842   }
843 }
844 
845 void ValueHandleBase::RemoveFromUseList() {
846   assert(getValPtr() && getValPtr()->HasValueHandle &&
847          "Pointer doesn't have a use list!");
848 
849   // Unlink this from its use list.
850   ValueHandleBase **PrevPtr = getPrevPtr();
851   assert(*PrevPtr == this && "List invariant broken");
852 
853   *PrevPtr = Next;
854   if (Next) {
855     assert(Next->getPrevPtr() == &Next && "List invariant broken");
856     Next->setPrevPtr(PrevPtr);
857     return;
858   }
859 
860   // If the Next pointer was null, then it is possible that this was the last
861   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
862   // map.
863   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
864   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
865   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
866     Handles.erase(getValPtr());
867     getValPtr()->HasValueHandle = false;
868   }
869 }
870 
871 void ValueHandleBase::ValueIsDeleted(Value *V) {
872   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
873 
874   // Get the linked list base, which is guaranteed to exist since the
875   // HasValueHandle flag is set.
876   LLVMContextImpl *pImpl = V->getContext().pImpl;
877   ValueHandleBase *Entry = pImpl->ValueHandles[V];
878   assert(Entry && "Value bit set but no entries exist");
879 
880   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
881   // and remove themselves from the list without breaking our iteration.  This
882   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
883   // Note that we deliberately do not the support the case when dropping a value
884   // handle results in a new value handle being permanently added to the list
885   // (as might occur in theory for CallbackVH's): the new value handle will not
886   // be processed and the checking code will mete out righteous punishment if
887   // the handle is still present once we have finished processing all the other
888   // value handles (it is fine to momentarily add then remove a value handle).
889   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
890     Iterator.RemoveFromUseList();
891     Iterator.AddToExistingUseListAfter(Entry);
892     assert(Entry->Next == &Iterator && "Loop invariant broken.");
893 
894     switch (Entry->getKind()) {
895     case Assert:
896       break;
897     case Weak:
898     case WeakTracking:
899       // WeakTracking and Weak just go to null, which unlinks them
900       // from the list.
901       Entry->operator=(nullptr);
902       break;
903     case Callback:
904       // Forward to the subclass's implementation.
905       static_cast<CallbackVH*>(Entry)->deleted();
906       break;
907     }
908   }
909 
910   // All callbacks, weak references, and assertingVHs should be dropped by now.
911   if (V->HasValueHandle) {
912 #ifndef NDEBUG      // Only in +Asserts mode...
913     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
914            << "\n";
915     if (pImpl->ValueHandles[V]->getKind() == Assert)
916       llvm_unreachable("An asserting value handle still pointed to this"
917                        " value!");
918 
919 #endif
920     llvm_unreachable("All references to V were not removed?");
921   }
922 }
923 
924 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
925   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
926   assert(Old != New && "Changing value into itself!");
927   assert(Old->getType() == New->getType() &&
928          "replaceAllUses of value with new value of different type!");
929 
930   // Get the linked list base, which is guaranteed to exist since the
931   // HasValueHandle flag is set.
932   LLVMContextImpl *pImpl = Old->getContext().pImpl;
933   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
934 
935   assert(Entry && "Value bit set but no entries exist");
936 
937   // We use a local ValueHandleBase as an iterator so that
938   // ValueHandles can add and remove themselves from the list without
939   // breaking our iteration.  This is not really an AssertingVH; we
940   // just have to give ValueHandleBase some kind.
941   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
942     Iterator.RemoveFromUseList();
943     Iterator.AddToExistingUseListAfter(Entry);
944     assert(Entry->Next == &Iterator && "Loop invariant broken.");
945 
946     switch (Entry->getKind()) {
947     case Assert:
948     case Weak:
949       // Asserting and Weak handles do not follow RAUW implicitly.
950       break;
951     case WeakTracking:
952       // Weak goes to the new value, which will unlink it from Old's list.
953       Entry->operator=(New);
954       break;
955     case Callback:
956       // Forward to the subclass's implementation.
957       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
958       break;
959     }
960   }
961 
962 #ifndef NDEBUG
963   // If any new weak value handles were added while processing the
964   // list, then complain about it now.
965   if (Old->HasValueHandle)
966     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
967       switch (Entry->getKind()) {
968       case WeakTracking:
969         dbgs() << "After RAUW from " << *Old->getType() << " %"
970                << Old->getName() << " to " << *New->getType() << " %"
971                << New->getName() << "\n";
972         llvm_unreachable(
973             "A weak tracking value handle still pointed to the old value!\n");
974       default:
975         break;
976       }
977 #endif
978 }
979 
980 // Pin the vtable to this file.
981 void CallbackVH::anchor() {}
982