xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Value.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Value, ValueHandle, and User classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DerivedUser.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/ManagedStatic.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 
38 using namespace llvm;
39 
40 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
41     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
42     cl::desc("Maximum size for the name of non-global values."));
43 
44 //===----------------------------------------------------------------------===//
45 //                                Value Class
46 //===----------------------------------------------------------------------===//
47 static inline Type *checkType(Type *Ty) {
48   assert(Ty && "Value defined with a null type: Error!");
49   return Ty;
50 }
51 
52 Value::Value(Type *ty, unsigned scid)
53     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
54       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
55       NumUserOperands(0), IsUsedByMD(false), HasName(false) {
56   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
57   // FIXME: Why isn't this in the subclass gunk??
58   // Note, we cannot call isa<CallInst> before the CallInst has been
59   // constructed.
60   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
61       SubclassID == Instruction::CallBr)
62     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
63            "invalid CallInst type!");
64   else if (SubclassID != BasicBlockVal &&
65            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
66     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
67            "Cannot create non-first-class values except for constants!");
68   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
69                 "Value too big");
70 }
71 
72 Value::~Value() {
73   // Notify all ValueHandles (if present) that this value is going away.
74   if (HasValueHandle)
75     ValueHandleBase::ValueIsDeleted(this);
76   if (isUsedByMetadata())
77     ValueAsMetadata::handleDeletion(this);
78 
79 #ifndef NDEBUG      // Only in -g mode...
80   // Check to make sure that there are no uses of this value that are still
81   // around when the value is destroyed.  If there are, then we have a dangling
82   // reference and something is wrong.  This code is here to print out where
83   // the value is still being referenced.
84   //
85   if (!use_empty()) {
86     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
87     for (auto *U : users())
88       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
89   }
90 #endif
91   assert(use_empty() && "Uses remain when a value is destroyed!");
92 
93   // If this value is named, destroy the name.  This should not be in a symtab
94   // at this point.
95   destroyValueName();
96 }
97 
98 void Value::deleteValue() {
99   switch (getValueID()) {
100 #define HANDLE_VALUE(Name)                                                     \
101   case Value::Name##Val:                                                       \
102     delete static_cast<Name *>(this);                                          \
103     break;
104 #define HANDLE_MEMORY_VALUE(Name)                                              \
105   case Value::Name##Val:                                                       \
106     static_cast<DerivedUser *>(this)->DeleteValue(                             \
107         static_cast<DerivedUser *>(this));                                     \
108     break;
109 #define HANDLE_INSTRUCTION(Name)  /* nothing */
110 #include "llvm/IR/Value.def"
111 
112 #define HANDLE_INST(N, OPC, CLASS)                                             \
113   case Value::InstructionVal + Instruction::OPC:                               \
114     delete static_cast<CLASS *>(this);                                         \
115     break;
116 #define HANDLE_USER_INST(N, OPC, CLASS)
117 #include "llvm/IR/Instruction.def"
118 
119   default:
120     llvm_unreachable("attempting to delete unknown value kind");
121   }
122 }
123 
124 void Value::destroyValueName() {
125   ValueName *Name = getValueName();
126   if (Name)
127     Name->Destroy();
128   setValueName(nullptr);
129 }
130 
131 bool Value::hasNUses(unsigned N) const {
132   return hasNItems(use_begin(), use_end(), N);
133 }
134 
135 bool Value::hasNUsesOrMore(unsigned N) const {
136   return hasNItemsOrMore(use_begin(), use_end(), N);
137 }
138 
139 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
140   // This can be computed either by scanning the instructions in BB, or by
141   // scanning the use list of this Value. Both lists can be very long, but
142   // usually one is quite short.
143   //
144   // Scan both lists simultaneously until one is exhausted. This limits the
145   // search to the shorter list.
146   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
147   const_user_iterator UI = user_begin(), UE = user_end();
148   for (; BI != BE && UI != UE; ++BI, ++UI) {
149     // Scan basic block: Check if this Value is used by the instruction at BI.
150     if (is_contained(BI->operands(), this))
151       return true;
152     // Scan use list: Check if the use at UI is in BB.
153     const auto *User = dyn_cast<Instruction>(*UI);
154     if (User && User->getParent() == BB)
155       return true;
156   }
157   return false;
158 }
159 
160 unsigned Value::getNumUses() const {
161   return (unsigned)std::distance(use_begin(), use_end());
162 }
163 
164 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
165   ST = nullptr;
166   if (Instruction *I = dyn_cast<Instruction>(V)) {
167     if (BasicBlock *P = I->getParent())
168       if (Function *PP = P->getParent())
169         ST = PP->getValueSymbolTable();
170   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
171     if (Function *P = BB->getParent())
172       ST = P->getValueSymbolTable();
173   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
174     if (Module *P = GV->getParent())
175       ST = &P->getValueSymbolTable();
176   } else if (Argument *A = dyn_cast<Argument>(V)) {
177     if (Function *P = A->getParent())
178       ST = P->getValueSymbolTable();
179   } else {
180     assert(isa<Constant>(V) && "Unknown value type!");
181     return true;  // no name is setable for this.
182   }
183   return false;
184 }
185 
186 ValueName *Value::getValueName() const {
187   if (!HasName) return nullptr;
188 
189   LLVMContext &Ctx = getContext();
190   auto I = Ctx.pImpl->ValueNames.find(this);
191   assert(I != Ctx.pImpl->ValueNames.end() &&
192          "No name entry found!");
193 
194   return I->second;
195 }
196 
197 void Value::setValueName(ValueName *VN) {
198   LLVMContext &Ctx = getContext();
199 
200   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
201          "HasName bit out of sync!");
202 
203   if (!VN) {
204     if (HasName)
205       Ctx.pImpl->ValueNames.erase(this);
206     HasName = false;
207     return;
208   }
209 
210   HasName = true;
211   Ctx.pImpl->ValueNames[this] = VN;
212 }
213 
214 StringRef Value::getName() const {
215   // Make sure the empty string is still a C string. For historical reasons,
216   // some clients want to call .data() on the result and expect it to be null
217   // terminated.
218   if (!hasName())
219     return StringRef("", 0);
220   return getValueName()->getKey();
221 }
222 
223 void Value::setNameImpl(const Twine &NewName) {
224   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
225   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
226     return;
227 
228   // Fast path for common IRBuilder case of setName("") when there is no name.
229   if (NewName.isTriviallyEmpty() && !hasName())
230     return;
231 
232   SmallString<256> NameData;
233   StringRef NameRef = NewName.toStringRef(NameData);
234   assert(NameRef.find_first_of(0) == StringRef::npos &&
235          "Null bytes are not allowed in names");
236 
237   // Name isn't changing?
238   if (getName() == NameRef)
239     return;
240 
241   // Cap the size of non-GlobalValue names.
242   if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
243     NameRef =
244         NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
245 
246   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
247 
248   // Get the symbol table to update for this object.
249   ValueSymbolTable *ST;
250   if (getSymTab(this, ST))
251     return;  // Cannot set a name on this value (e.g. constant).
252 
253   if (!ST) { // No symbol table to update?  Just do the change.
254     if (NameRef.empty()) {
255       // Free the name for this value.
256       destroyValueName();
257       return;
258     }
259 
260     // NOTE: Could optimize for the case the name is shrinking to not deallocate
261     // then reallocated.
262     destroyValueName();
263 
264     // Create the new name.
265     setValueName(ValueName::Create(NameRef));
266     getValueName()->setValue(this);
267     return;
268   }
269 
270   // NOTE: Could optimize for the case the name is shrinking to not deallocate
271   // then reallocated.
272   if (hasName()) {
273     // Remove old name.
274     ST->removeValueName(getValueName());
275     destroyValueName();
276 
277     if (NameRef.empty())
278       return;
279   }
280 
281   // Name is changing to something new.
282   setValueName(ST->createValueName(NameRef, this));
283 }
284 
285 void Value::setName(const Twine &NewName) {
286   setNameImpl(NewName);
287   if (Function *F = dyn_cast<Function>(this))
288     F->recalculateIntrinsicID();
289 }
290 
291 void Value::takeName(Value *V) {
292   ValueSymbolTable *ST = nullptr;
293   // If this value has a name, drop it.
294   if (hasName()) {
295     // Get the symtab this is in.
296     if (getSymTab(this, ST)) {
297       // We can't set a name on this value, but we need to clear V's name if
298       // it has one.
299       if (V->hasName()) V->setName("");
300       return;  // Cannot set a name on this value (e.g. constant).
301     }
302 
303     // Remove old name.
304     if (ST)
305       ST->removeValueName(getValueName());
306     destroyValueName();
307   }
308 
309   // Now we know that this has no name.
310 
311   // If V has no name either, we're done.
312   if (!V->hasName()) return;
313 
314   // Get this's symtab if we didn't before.
315   if (!ST) {
316     if (getSymTab(this, ST)) {
317       // Clear V's name.
318       V->setName("");
319       return;  // Cannot set a name on this value (e.g. constant).
320     }
321   }
322 
323   // Get V's ST, this should always succed, because V has a name.
324   ValueSymbolTable *VST;
325   bool Failure = getSymTab(V, VST);
326   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
327 
328   // If these values are both in the same symtab, we can do this very fast.
329   // This works even if both values have no symtab yet.
330   if (ST == VST) {
331     // Take the name!
332     setValueName(V->getValueName());
333     V->setValueName(nullptr);
334     getValueName()->setValue(this);
335     return;
336   }
337 
338   // Otherwise, things are slightly more complex.  Remove V's name from VST and
339   // then reinsert it into ST.
340 
341   if (VST)
342     VST->removeValueName(V->getValueName());
343   setValueName(V->getValueName());
344   V->setValueName(nullptr);
345   getValueName()->setValue(this);
346 
347   if (ST)
348     ST->reinsertValue(this);
349 }
350 
351 void Value::assertModuleIsMaterializedImpl() const {
352 #ifndef NDEBUG
353   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
354   if (!GV)
355     return;
356   const Module *M = GV->getParent();
357   if (!M)
358     return;
359   assert(M->isMaterialized());
360 #endif
361 }
362 
363 #ifndef NDEBUG
364 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
365                      Constant *C) {
366   if (!Cache.insert(Expr).second)
367     return false;
368 
369   for (auto &O : Expr->operands()) {
370     if (O == C)
371       return true;
372     auto *CE = dyn_cast<ConstantExpr>(O);
373     if (!CE)
374       continue;
375     if (contains(Cache, CE, C))
376       return true;
377   }
378   return false;
379 }
380 
381 static bool contains(Value *Expr, Value *V) {
382   if (Expr == V)
383     return true;
384 
385   auto *C = dyn_cast<Constant>(V);
386   if (!C)
387     return false;
388 
389   auto *CE = dyn_cast<ConstantExpr>(Expr);
390   if (!CE)
391     return false;
392 
393   SmallPtrSet<ConstantExpr *, 4> Cache;
394   return contains(Cache, CE, C);
395 }
396 #endif // NDEBUG
397 
398 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
399   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
400   assert(!contains(New, this) &&
401          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
402   assert(New->getType() == getType() &&
403          "replaceAllUses of value with new value of different type!");
404 
405   // Notify all ValueHandles (if present) that this value is going away.
406   if (HasValueHandle)
407     ValueHandleBase::ValueIsRAUWd(this, New);
408   if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
409     ValueAsMetadata::handleRAUW(this, New);
410 
411   while (!materialized_use_empty()) {
412     Use &U = *UseList;
413     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
414     // constant because they are uniqued.
415     if (auto *C = dyn_cast<Constant>(U.getUser())) {
416       if (!isa<GlobalValue>(C)) {
417         C->handleOperandChange(this, New);
418         continue;
419       }
420     }
421 
422     U.set(New);
423   }
424 
425   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
426     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
427 }
428 
429 void Value::replaceAllUsesWith(Value *New) {
430   doRAUW(New, ReplaceMetadataUses::Yes);
431 }
432 
433 void Value::replaceNonMetadataUsesWith(Value *New) {
434   doRAUW(New, ReplaceMetadataUses::No);
435 }
436 
437 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
438 // This routine leaves uses within BB.
439 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
440   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
441   assert(!contains(New, this) &&
442          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
443   assert(New->getType() == getType() &&
444          "replaceUses of value with new value of different type!");
445   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
446 
447   replaceUsesWithIf(New, [BB](Use &U) {
448     auto *I = dyn_cast<Instruction>(U.getUser());
449     // Don't replace if it's an instruction in the BB basic block.
450     return !I || I->getParent() != BB;
451   });
452 }
453 
454 namespace {
455 // Various metrics for how much to strip off of pointers.
456 enum PointerStripKind {
457   PSK_ZeroIndices,
458   PSK_ZeroIndicesAndAliases,
459   PSK_ZeroIndicesSameRepresentation,
460   PSK_ZeroIndicesAndInvariantGroups,
461   PSK_InBoundsConstantIndices,
462   PSK_InBounds
463 };
464 
465 template <PointerStripKind StripKind>
466 static const Value *stripPointerCastsAndOffsets(const Value *V) {
467   if (!V->getType()->isPointerTy())
468     return V;
469 
470   // Even though we don't look through PHI nodes, we could be called on an
471   // instruction in an unreachable block, which may be on a cycle.
472   SmallPtrSet<const Value *, 4> Visited;
473 
474   Visited.insert(V);
475   do {
476     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
477       switch (StripKind) {
478       case PSK_ZeroIndices:
479       case PSK_ZeroIndicesAndAliases:
480       case PSK_ZeroIndicesSameRepresentation:
481       case PSK_ZeroIndicesAndInvariantGroups:
482         if (!GEP->hasAllZeroIndices())
483           return V;
484         break;
485       case PSK_InBoundsConstantIndices:
486         if (!GEP->hasAllConstantIndices())
487           return V;
488         LLVM_FALLTHROUGH;
489       case PSK_InBounds:
490         if (!GEP->isInBounds())
491           return V;
492         break;
493       }
494       V = GEP->getPointerOperand();
495     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
496       V = cast<Operator>(V)->getOperand(0);
497     } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
498                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
499       // TODO: If we know an address space cast will not change the
500       //       representation we could look through it here as well.
501       V = cast<Operator>(V)->getOperand(0);
502     } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
503       V = cast<GlobalAlias>(V)->getAliasee();
504     } else {
505       if (const auto *Call = dyn_cast<CallBase>(V)) {
506         if (const Value *RV = Call->getReturnedArgOperand()) {
507           V = RV;
508           continue;
509         }
510         // The result of launder.invariant.group must alias it's argument,
511         // but it can't be marked with returned attribute, that's why it needs
512         // special case.
513         if (StripKind == PSK_ZeroIndicesAndInvariantGroups &&
514             (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
515              Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
516           V = Call->getArgOperand(0);
517           continue;
518         }
519       }
520       return V;
521     }
522     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
523   } while (Visited.insert(V).second);
524 
525   return V;
526 }
527 } // end anonymous namespace
528 
529 const Value *Value::stripPointerCasts() const {
530   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
531 }
532 
533 const Value *Value::stripPointerCastsAndAliases() const {
534   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
535 }
536 
537 const Value *Value::stripPointerCastsSameRepresentation() const {
538   return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
539 }
540 
541 const Value *Value::stripInBoundsConstantOffsets() const {
542   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
543 }
544 
545 const Value *Value::stripPointerCastsAndInvariantGroups() const {
546   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this);
547 }
548 
549 const Value *
550 Value::stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
551                                          bool AllowNonInbounds) const {
552   if (!getType()->isPtrOrPtrVectorTy())
553     return this;
554 
555   unsigned BitWidth = Offset.getBitWidth();
556   assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
557          "The offset bit width does not match the DL specification.");
558 
559   // Even though we don't look through PHI nodes, we could be called on an
560   // instruction in an unreachable block, which may be on a cycle.
561   SmallPtrSet<const Value *, 4> Visited;
562   Visited.insert(this);
563   const Value *V = this;
564   do {
565     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
566       // If in-bounds was requested, we do not strip non-in-bounds GEPs.
567       if (!AllowNonInbounds && !GEP->isInBounds())
568         return V;
569 
570       // If one of the values we have visited is an addrspacecast, then
571       // the pointer type of this GEP may be different from the type
572       // of the Ptr parameter which was passed to this function.  This
573       // means when we construct GEPOffset, we need to use the size
574       // of GEP's pointer type rather than the size of the original
575       // pointer type.
576       APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
577       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
578         return V;
579 
580       // Stop traversal if the pointer offset wouldn't fit in the bit-width
581       // provided by the Offset argument. This can happen due to AddrSpaceCast
582       // stripping.
583       if (GEPOffset.getMinSignedBits() > BitWidth)
584         return V;
585 
586       Offset += GEPOffset.sextOrTrunc(BitWidth);
587       V = GEP->getPointerOperand();
588     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
589                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
590       V = cast<Operator>(V)->getOperand(0);
591     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
592       if (!GA->isInterposable())
593         V = GA->getAliasee();
594     } else if (const auto *Call = dyn_cast<CallBase>(V)) {
595         if (const Value *RV = Call->getReturnedArgOperand())
596           V = RV;
597     }
598     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
599   } while (Visited.insert(V).second);
600 
601   return V;
602 }
603 
604 const Value *Value::stripInBoundsOffsets() const {
605   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
606 }
607 
608 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
609                                                bool &CanBeNull) const {
610   assert(getType()->isPointerTy() && "must be pointer");
611 
612   uint64_t DerefBytes = 0;
613   CanBeNull = false;
614   if (const Argument *A = dyn_cast<Argument>(this)) {
615     DerefBytes = A->getDereferenceableBytes();
616     if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
617       Type *PT = cast<PointerType>(A->getType())->getElementType();
618       if (PT->isSized())
619         DerefBytes = DL.getTypeStoreSize(PT);
620     }
621     if (DerefBytes == 0) {
622       DerefBytes = A->getDereferenceableOrNullBytes();
623       CanBeNull = true;
624     }
625   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
626     DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
627     if (DerefBytes == 0) {
628       DerefBytes =
629           Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
630       CanBeNull = true;
631     }
632   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
633     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
634       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
635       DerefBytes = CI->getLimitedValue();
636     }
637     if (DerefBytes == 0) {
638       if (MDNode *MD =
639               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
640         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
641         DerefBytes = CI->getLimitedValue();
642       }
643       CanBeNull = true;
644     }
645   } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
646     if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
647       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
648       DerefBytes = CI->getLimitedValue();
649     }
650     if (DerefBytes == 0) {
651       if (MDNode *MD =
652               IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
653         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
654         DerefBytes = CI->getLimitedValue();
655       }
656       CanBeNull = true;
657     }
658   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
659     if (!AI->isArrayAllocation()) {
660       DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
661       CanBeNull = false;
662     }
663   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
664     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
665       // TODO: Don't outright reject hasExternalWeakLinkage but set the
666       // CanBeNull flag.
667       DerefBytes = DL.getTypeStoreSize(GV->getValueType());
668       CanBeNull = false;
669     }
670   }
671   return DerefBytes;
672 }
673 
674 MaybeAlign Value::getPointerAlignment(const DataLayout &DL) const {
675   assert(getType()->isPointerTy() && "must be pointer");
676   if (auto *GO = dyn_cast<GlobalObject>(this)) {
677     if (isa<Function>(GO)) {
678       const MaybeAlign FunctionPtrAlign = DL.getFunctionPtrAlign();
679       switch (DL.getFunctionPtrAlignType()) {
680       case DataLayout::FunctionPtrAlignType::Independent:
681         return FunctionPtrAlign;
682       case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
683         return std::max(FunctionPtrAlign, MaybeAlign(GO->getAlignment()));
684       }
685       llvm_unreachable("Unhandled FunctionPtrAlignType");
686     }
687     const MaybeAlign Alignment(GO->getAlignment());
688     if (!Alignment) {
689       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
690         Type *ObjectType = GVar->getValueType();
691         if (ObjectType->isSized()) {
692           // If the object is defined in the current Module, we'll be giving
693           // it the preferred alignment. Otherwise, we have to assume that it
694           // may only have the minimum ABI alignment.
695           if (GVar->isStrongDefinitionForLinker())
696             return MaybeAlign(DL.getPreferredAlignment(GVar));
697           else
698             return Align(DL.getABITypeAlignment(ObjectType));
699         }
700       }
701     }
702     return Alignment;
703   } else if (const Argument *A = dyn_cast<Argument>(this)) {
704     const MaybeAlign Alignment(A->getParamAlignment());
705     if (!Alignment && A->hasStructRetAttr()) {
706       // An sret parameter has at least the ABI alignment of the return type.
707       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
708       if (EltTy->isSized())
709         return Align(DL.getABITypeAlignment(EltTy));
710     }
711     return Alignment;
712   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
713     const MaybeAlign Alignment(AI->getAlignment());
714     if (!Alignment) {
715       Type *AllocatedType = AI->getAllocatedType();
716       if (AllocatedType->isSized())
717         return MaybeAlign(DL.getPrefTypeAlignment(AllocatedType));
718     }
719     return Alignment;
720   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
721     const MaybeAlign Alignment(Call->getRetAlignment());
722     if (!Alignment && Call->getCalledFunction())
723       return MaybeAlign(
724           Call->getCalledFunction()->getAttributes().getRetAlignment());
725     return Alignment;
726   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
727     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
728       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
729       return MaybeAlign(CI->getLimitedValue());
730     }
731   }
732   return llvm::None;
733 }
734 
735 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
736                                      const BasicBlock *PredBB) const {
737   auto *PN = dyn_cast<PHINode>(this);
738   if (PN && PN->getParent() == CurBB)
739     return PN->getIncomingValueForBlock(PredBB);
740   return this;
741 }
742 
743 LLVMContext &Value::getContext() const { return VTy->getContext(); }
744 
745 void Value::reverseUseList() {
746   if (!UseList || !UseList->Next)
747     // No need to reverse 0 or 1 uses.
748     return;
749 
750   Use *Head = UseList;
751   Use *Current = UseList->Next;
752   Head->Next = nullptr;
753   while (Current) {
754     Use *Next = Current->Next;
755     Current->Next = Head;
756     Head->setPrev(&Current->Next);
757     Head = Current;
758     Current = Next;
759   }
760   UseList = Head;
761   Head->setPrev(&UseList);
762 }
763 
764 bool Value::isSwiftError() const {
765   auto *Arg = dyn_cast<Argument>(this);
766   if (Arg)
767     return Arg->hasSwiftErrorAttr();
768   auto *Alloca = dyn_cast<AllocaInst>(this);
769   if (!Alloca)
770     return false;
771   return Alloca->isSwiftError();
772 }
773 
774 //===----------------------------------------------------------------------===//
775 //                             ValueHandleBase Class
776 //===----------------------------------------------------------------------===//
777 
778 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
779   assert(List && "Handle list is null?");
780 
781   // Splice ourselves into the list.
782   Next = *List;
783   *List = this;
784   setPrevPtr(List);
785   if (Next) {
786     Next->setPrevPtr(&Next);
787     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
788   }
789 }
790 
791 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
792   assert(List && "Must insert after existing node");
793 
794   Next = List->Next;
795   setPrevPtr(&List->Next);
796   List->Next = this;
797   if (Next)
798     Next->setPrevPtr(&Next);
799 }
800 
801 void ValueHandleBase::AddToUseList() {
802   assert(getValPtr() && "Null pointer doesn't have a use list!");
803 
804   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
805 
806   if (getValPtr()->HasValueHandle) {
807     // If this value already has a ValueHandle, then it must be in the
808     // ValueHandles map already.
809     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
810     assert(Entry && "Value doesn't have any handles?");
811     AddToExistingUseList(&Entry);
812     return;
813   }
814 
815   // Ok, it doesn't have any handles yet, so we must insert it into the
816   // DenseMap.  However, doing this insertion could cause the DenseMap to
817   // reallocate itself, which would invalidate all of the PrevP pointers that
818   // point into the old table.  Handle this by checking for reallocation and
819   // updating the stale pointers only if needed.
820   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
821   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
822 
823   ValueHandleBase *&Entry = Handles[getValPtr()];
824   assert(!Entry && "Value really did already have handles?");
825   AddToExistingUseList(&Entry);
826   getValPtr()->HasValueHandle = true;
827 
828   // If reallocation didn't happen or if this was the first insertion, don't
829   // walk the table.
830   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
831       Handles.size() == 1) {
832     return;
833   }
834 
835   // Okay, reallocation did happen.  Fix the Prev Pointers.
836   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
837        E = Handles.end(); I != E; ++I) {
838     assert(I->second && I->first == I->second->getValPtr() &&
839            "List invariant broken!");
840     I->second->setPrevPtr(&I->second);
841   }
842 }
843 
844 void ValueHandleBase::RemoveFromUseList() {
845   assert(getValPtr() && getValPtr()->HasValueHandle &&
846          "Pointer doesn't have a use list!");
847 
848   // Unlink this from its use list.
849   ValueHandleBase **PrevPtr = getPrevPtr();
850   assert(*PrevPtr == this && "List invariant broken");
851 
852   *PrevPtr = Next;
853   if (Next) {
854     assert(Next->getPrevPtr() == &Next && "List invariant broken");
855     Next->setPrevPtr(PrevPtr);
856     return;
857   }
858 
859   // If the Next pointer was null, then it is possible that this was the last
860   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
861   // map.
862   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
863   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
864   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
865     Handles.erase(getValPtr());
866     getValPtr()->HasValueHandle = false;
867   }
868 }
869 
870 void ValueHandleBase::ValueIsDeleted(Value *V) {
871   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
872 
873   // Get the linked list base, which is guaranteed to exist since the
874   // HasValueHandle flag is set.
875   LLVMContextImpl *pImpl = V->getContext().pImpl;
876   ValueHandleBase *Entry = pImpl->ValueHandles[V];
877   assert(Entry && "Value bit set but no entries exist");
878 
879   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
880   // and remove themselves from the list without breaking our iteration.  This
881   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
882   // Note that we deliberately do not the support the case when dropping a value
883   // handle results in a new value handle being permanently added to the list
884   // (as might occur in theory for CallbackVH's): the new value handle will not
885   // be processed and the checking code will mete out righteous punishment if
886   // the handle is still present once we have finished processing all the other
887   // value handles (it is fine to momentarily add then remove a value handle).
888   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
889     Iterator.RemoveFromUseList();
890     Iterator.AddToExistingUseListAfter(Entry);
891     assert(Entry->Next == &Iterator && "Loop invariant broken.");
892 
893     switch (Entry->getKind()) {
894     case Assert:
895       break;
896     case Weak:
897     case WeakTracking:
898       // WeakTracking and Weak just go to null, which unlinks them
899       // from the list.
900       Entry->operator=(nullptr);
901       break;
902     case Callback:
903       // Forward to the subclass's implementation.
904       static_cast<CallbackVH*>(Entry)->deleted();
905       break;
906     }
907   }
908 
909   // All callbacks, weak references, and assertingVHs should be dropped by now.
910   if (V->HasValueHandle) {
911 #ifndef NDEBUG      // Only in +Asserts mode...
912     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
913            << "\n";
914     if (pImpl->ValueHandles[V]->getKind() == Assert)
915       llvm_unreachable("An asserting value handle still pointed to this"
916                        " value!");
917 
918 #endif
919     llvm_unreachable("All references to V were not removed?");
920   }
921 }
922 
923 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
924   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
925   assert(Old != New && "Changing value into itself!");
926   assert(Old->getType() == New->getType() &&
927          "replaceAllUses of value with new value of different type!");
928 
929   // Get the linked list base, which is guaranteed to exist since the
930   // HasValueHandle flag is set.
931   LLVMContextImpl *pImpl = Old->getContext().pImpl;
932   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
933 
934   assert(Entry && "Value bit set but no entries exist");
935 
936   // We use a local ValueHandleBase as an iterator so that
937   // ValueHandles can add and remove themselves from the list without
938   // breaking our iteration.  This is not really an AssertingVH; we
939   // just have to give ValueHandleBase some kind.
940   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
941     Iterator.RemoveFromUseList();
942     Iterator.AddToExistingUseListAfter(Entry);
943     assert(Entry->Next == &Iterator && "Loop invariant broken.");
944 
945     switch (Entry->getKind()) {
946     case Assert:
947     case Weak:
948       // Asserting and Weak handles do not follow RAUW implicitly.
949       break;
950     case WeakTracking:
951       // Weak goes to the new value, which will unlink it from Old's list.
952       Entry->operator=(New);
953       break;
954     case Callback:
955       // Forward to the subclass's implementation.
956       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
957       break;
958     }
959   }
960 
961 #ifndef NDEBUG
962   // If any new weak value handles were added while processing the
963   // list, then complain about it now.
964   if (Old->HasValueHandle)
965     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
966       switch (Entry->getKind()) {
967       case WeakTracking:
968         dbgs() << "After RAUW from " << *Old->getType() << " %"
969                << Old->getName() << " to " << *New->getType() << " %"
970                << New->getName() << "\n";
971         llvm_unreachable(
972             "A weak tracking value handle still pointed to the old value!\n");
973       default:
974         break;
975       }
976 #endif
977 }
978 
979 // Pin the vtable to this file.
980 void CallbackVH::anchor() {}
981