1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/IR/Constant.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/InstrTypes.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/TypedPointerType.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 37 using namespace llvm; 38 39 static cl::opt<unsigned> UseDerefAtPointSemantics( 40 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 41 cl::desc("Deref attributes and metadata infer facts at definition only")); 42 43 //===----------------------------------------------------------------------===// 44 // Value Class 45 //===----------------------------------------------------------------------===// 46 static inline Type *checkType(Type *Ty) { 47 assert(Ty && "Value defined with a null type: Error!"); 48 assert(!isa<TypedPointerType>(Ty->getScalarType()) && 49 "Cannot have values with typed pointer types"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : SubclassID(scid), HasValueHandle(0), SubclassOptionalData(0), 55 SubclassData(0), NumUserOperands(0), IsUsedByMD(false), HasName(false), 56 HasMetadata(false), VTy(checkType(ty)), UseList(nullptr) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 unsigned OpCode = 0; 62 if (SubclassID >= InstructionVal) 63 OpCode = SubclassID - InstructionVal; 64 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || 65 OpCode == Instruction::CallBr) 66 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 67 "invalid CallBase type!"); 68 else if (SubclassID != BasicBlockVal && 69 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 70 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 71 "Cannot create non-first-class values except for constants!"); 72 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 73 "Value too big"); 74 } 75 76 Value::~Value() { 77 // Notify all ValueHandles (if present) that this value is going away. 78 if (HasValueHandle) 79 ValueHandleBase::ValueIsDeleted(this); 80 if (isUsedByMetadata()) 81 ValueAsMetadata::handleDeletion(this); 82 83 // Remove associated metadata from context. 84 if (HasMetadata) 85 clearMetadata(); 86 87 #ifndef NDEBUG // Only in -g mode... 88 // Check to make sure that there are no uses of this value that are still 89 // around when the value is destroyed. If there are, then we have a dangling 90 // reference and something is wrong. This code is here to print out where 91 // the value is still being referenced. 92 // 93 // Note that use_empty() cannot be called here, as it eventually downcasts 94 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 95 // been destructed, so accessing it is UB. 96 // 97 if (!materialized_use_empty()) { 98 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 99 for (auto *U : users()) 100 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 101 } 102 #endif 103 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 104 105 // If this value is named, destroy the name. This should not be in a symtab 106 // at this point. 107 destroyValueName(); 108 } 109 110 void Value::deleteValue() { 111 switch (getValueID()) { 112 #define HANDLE_VALUE(Name) \ 113 case Value::Name##Val: \ 114 delete static_cast<Name *>(this); \ 115 break; 116 #define HANDLE_MEMORY_VALUE(Name) \ 117 case Value::Name##Val: \ 118 static_cast<DerivedUser *>(this)->DeleteValue( \ 119 static_cast<DerivedUser *>(this)); \ 120 break; 121 #define HANDLE_CONSTANT(Name) \ 122 case Value::Name##Val: \ 123 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 124 break; 125 #define HANDLE_INSTRUCTION(Name) /* nothing */ 126 #include "llvm/IR/Value.def" 127 128 #define HANDLE_INST(N, OPC, CLASS) \ 129 case Value::InstructionVal + Instruction::OPC: \ 130 delete static_cast<CLASS *>(this); \ 131 break; 132 #define HANDLE_USER_INST(N, OPC, CLASS) 133 #include "llvm/IR/Instruction.def" 134 135 default: 136 llvm_unreachable("attempting to delete unknown value kind"); 137 } 138 } 139 140 void Value::destroyValueName() { 141 ValueName *Name = getValueName(); 142 if (Name) { 143 MallocAllocator Allocator; 144 Name->Destroy(Allocator); 145 } 146 setValueName(nullptr); 147 } 148 149 bool Value::hasNUses(unsigned N) const { 150 return hasNItems(use_begin(), use_end(), N); 151 } 152 153 bool Value::hasNUsesOrMore(unsigned N) const { 154 return hasNItemsOrMore(use_begin(), use_end(), N); 155 } 156 157 bool Value::hasOneUser() const { 158 if (use_empty()) 159 return false; 160 if (hasOneUse()) 161 return true; 162 return std::equal(++user_begin(), user_end(), user_begin()); 163 } 164 165 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 166 167 Use *Value::getSingleUndroppableUse() { 168 Use *Result = nullptr; 169 for (Use &U : uses()) { 170 if (!U.getUser()->isDroppable()) { 171 if (Result) 172 return nullptr; 173 Result = &U; 174 } 175 } 176 return Result; 177 } 178 179 User *Value::getUniqueUndroppableUser() { 180 User *Result = nullptr; 181 for (auto *U : users()) { 182 if (!U->isDroppable()) { 183 if (Result && Result != U) 184 return nullptr; 185 Result = U; 186 } 187 } 188 return Result; 189 } 190 191 bool Value::hasNUndroppableUses(unsigned int N) const { 192 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 193 } 194 195 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 196 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 197 } 198 199 void Value::dropDroppableUses( 200 llvm::function_ref<bool(const Use *)> ShouldDrop) { 201 SmallVector<Use *, 8> ToBeEdited; 202 for (Use &U : uses()) 203 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 204 ToBeEdited.push_back(&U); 205 for (Use *U : ToBeEdited) 206 dropDroppableUse(*U); 207 } 208 209 void Value::dropDroppableUsesIn(User &Usr) { 210 assert(Usr.isDroppable() && "Expected a droppable user!"); 211 for (Use &UsrOp : Usr.operands()) { 212 if (UsrOp.get() == this) 213 dropDroppableUse(UsrOp); 214 } 215 } 216 217 void Value::dropDroppableUse(Use &U) { 218 U.removeFromList(); 219 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 220 unsigned OpNo = U.getOperandNo(); 221 if (OpNo == 0) 222 U.set(ConstantInt::getTrue(Assume->getContext())); 223 else { 224 U.set(UndefValue::get(U.get()->getType())); 225 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 226 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 227 } 228 return; 229 } 230 231 llvm_unreachable("unkown droppable use"); 232 } 233 234 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 235 // This can be computed either by scanning the instructions in BB, or by 236 // scanning the use list of this Value. Both lists can be very long, but 237 // usually one is quite short. 238 // 239 // Scan both lists simultaneously until one is exhausted. This limits the 240 // search to the shorter list. 241 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 242 const_user_iterator UI = user_begin(), UE = user_end(); 243 for (; BI != BE && UI != UE; ++BI, ++UI) { 244 // Scan basic block: Check if this Value is used by the instruction at BI. 245 if (is_contained(BI->operands(), this)) 246 return true; 247 // Scan use list: Check if the use at UI is in BB. 248 const auto *User = dyn_cast<Instruction>(*UI); 249 if (User && User->getParent() == BB) 250 return true; 251 } 252 return false; 253 } 254 255 unsigned Value::getNumUses() const { 256 return (unsigned)std::distance(use_begin(), use_end()); 257 } 258 259 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 260 ST = nullptr; 261 if (Instruction *I = dyn_cast<Instruction>(V)) { 262 if (BasicBlock *P = I->getParent()) 263 if (Function *PP = P->getParent()) 264 ST = PP->getValueSymbolTable(); 265 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 266 if (Function *P = BB->getParent()) 267 ST = P->getValueSymbolTable(); 268 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 269 if (Module *P = GV->getParent()) 270 ST = &P->getValueSymbolTable(); 271 } else if (Argument *A = dyn_cast<Argument>(V)) { 272 if (Function *P = A->getParent()) 273 ST = P->getValueSymbolTable(); 274 } else { 275 assert(isa<Constant>(V) && "Unknown value type!"); 276 return true; // no name is setable for this. 277 } 278 return false; 279 } 280 281 ValueName *Value::getValueName() const { 282 if (!HasName) return nullptr; 283 284 LLVMContext &Ctx = getContext(); 285 auto I = Ctx.pImpl->ValueNames.find(this); 286 assert(I != Ctx.pImpl->ValueNames.end() && 287 "No name entry found!"); 288 289 return I->second; 290 } 291 292 void Value::setValueName(ValueName *VN) { 293 LLVMContext &Ctx = getContext(); 294 295 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 296 "HasName bit out of sync!"); 297 298 if (!VN) { 299 if (HasName) 300 Ctx.pImpl->ValueNames.erase(this); 301 HasName = false; 302 return; 303 } 304 305 HasName = true; 306 Ctx.pImpl->ValueNames[this] = VN; 307 } 308 309 StringRef Value::getName() const { 310 // Make sure the empty string is still a C string. For historical reasons, 311 // some clients want to call .data() on the result and expect it to be null 312 // terminated. 313 if (!hasName()) 314 return StringRef("", 0); 315 return getValueName()->getKey(); 316 } 317 318 void Value::setNameImpl(const Twine &NewName) { 319 bool NeedNewName = 320 !getContext().shouldDiscardValueNames() || isa<GlobalValue>(this); 321 322 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 323 // and there is no need to delete the old name. 324 if (!NeedNewName && !hasName()) 325 return; 326 327 // Fast path for common IRBuilder case of setName("") when there is no name. 328 if (NewName.isTriviallyEmpty() && !hasName()) 329 return; 330 331 SmallString<256> NameData; 332 StringRef NameRef = NeedNewName ? NewName.toStringRef(NameData) : ""; 333 assert(!NameRef.contains(0) && "Null bytes are not allowed in names"); 334 335 // Name isn't changing? 336 if (getName() == NameRef) 337 return; 338 339 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 340 341 // Get the symbol table to update for this object. 342 ValueSymbolTable *ST; 343 if (getSymTab(this, ST)) 344 return; // Cannot set a name on this value (e.g. constant). 345 346 if (!ST) { // No symbol table to update? Just do the change. 347 // NOTE: Could optimize for the case the name is shrinking to not deallocate 348 // then reallocated. 349 destroyValueName(); 350 351 if (!NameRef.empty()) { 352 // Create the new name. 353 assert(NeedNewName); 354 MallocAllocator Allocator; 355 setValueName(ValueName::create(NameRef, Allocator)); 356 getValueName()->setValue(this); 357 } 358 return; 359 } 360 361 // NOTE: Could optimize for the case the name is shrinking to not deallocate 362 // then reallocated. 363 if (hasName()) { 364 // Remove old name. 365 ST->removeValueName(getValueName()); 366 destroyValueName(); 367 368 if (NameRef.empty()) 369 return; 370 } 371 372 // Name is changing to something new. 373 assert(NeedNewName); 374 setValueName(ST->createValueName(NameRef, this)); 375 } 376 377 void Value::setName(const Twine &NewName) { 378 setNameImpl(NewName); 379 if (Function *F = dyn_cast<Function>(this)) 380 F->updateAfterNameChange(); 381 } 382 383 void Value::takeName(Value *V) { 384 assert(V != this && "Illegal call to this->takeName(this)!"); 385 ValueSymbolTable *ST = nullptr; 386 // If this value has a name, drop it. 387 if (hasName()) { 388 // Get the symtab this is in. 389 if (getSymTab(this, ST)) { 390 // We can't set a name on this value, but we need to clear V's name if 391 // it has one. 392 if (V->hasName()) V->setName(""); 393 return; // Cannot set a name on this value (e.g. constant). 394 } 395 396 // Remove old name. 397 if (ST) 398 ST->removeValueName(getValueName()); 399 destroyValueName(); 400 } 401 402 // Now we know that this has no name. 403 404 // If V has no name either, we're done. 405 if (!V->hasName()) return; 406 407 // Get this's symtab if we didn't before. 408 if (!ST) { 409 if (getSymTab(this, ST)) { 410 // Clear V's name. 411 V->setName(""); 412 return; // Cannot set a name on this value (e.g. constant). 413 } 414 } 415 416 // Get V's ST, this should always succeed, because V has a name. 417 ValueSymbolTable *VST; 418 bool Failure = getSymTab(V, VST); 419 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 420 421 // If these values are both in the same symtab, we can do this very fast. 422 // This works even if both values have no symtab yet. 423 if (ST == VST) { 424 // Take the name! 425 setValueName(V->getValueName()); 426 V->setValueName(nullptr); 427 getValueName()->setValue(this); 428 return; 429 } 430 431 // Otherwise, things are slightly more complex. Remove V's name from VST and 432 // then reinsert it into ST. 433 434 if (VST) 435 VST->removeValueName(V->getValueName()); 436 setValueName(V->getValueName()); 437 V->setValueName(nullptr); 438 getValueName()->setValue(this); 439 440 if (ST) 441 ST->reinsertValue(this); 442 } 443 444 #ifndef NDEBUG 445 std::string Value::getNameOrAsOperand() const { 446 if (!getName().empty()) 447 return std::string(getName()); 448 449 std::string BBName; 450 raw_string_ostream OS(BBName); 451 printAsOperand(OS, false); 452 return OS.str(); 453 } 454 #endif 455 456 void Value::assertModuleIsMaterializedImpl() const { 457 #ifndef NDEBUG 458 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 459 if (!GV) 460 return; 461 const Module *M = GV->getParent(); 462 if (!M) 463 return; 464 assert(M->isMaterialized()); 465 #endif 466 } 467 468 #ifndef NDEBUG 469 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 470 Constant *C) { 471 if (!Cache.insert(Expr).second) 472 return false; 473 474 for (auto &O : Expr->operands()) { 475 if (O == C) 476 return true; 477 auto *CE = dyn_cast<ConstantExpr>(O); 478 if (!CE) 479 continue; 480 if (contains(Cache, CE, C)) 481 return true; 482 } 483 return false; 484 } 485 486 static bool contains(Value *Expr, Value *V) { 487 if (Expr == V) 488 return true; 489 490 auto *C = dyn_cast<Constant>(V); 491 if (!C) 492 return false; 493 494 auto *CE = dyn_cast<ConstantExpr>(Expr); 495 if (!CE) 496 return false; 497 498 SmallPtrSet<ConstantExpr *, 4> Cache; 499 return contains(Cache, CE, C); 500 } 501 #endif // NDEBUG 502 503 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 504 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 505 assert(!contains(New, this) && 506 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 507 assert(New->getType() == getType() && 508 "replaceAllUses of value with new value of different type!"); 509 510 // Notify all ValueHandles (if present) that this value is going away. 511 if (HasValueHandle) 512 ValueHandleBase::ValueIsRAUWd(this, New); 513 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 514 ValueAsMetadata::handleRAUW(this, New); 515 516 while (!materialized_use_empty()) { 517 Use &U = *UseList; 518 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 519 // constant because they are uniqued. 520 if (auto *C = dyn_cast<Constant>(U.getUser())) { 521 if (!isa<GlobalValue>(C)) { 522 C->handleOperandChange(this, New); 523 continue; 524 } 525 } 526 527 U.set(New); 528 } 529 530 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 531 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 532 } 533 534 void Value::replaceAllUsesWith(Value *New) { 535 doRAUW(New, ReplaceMetadataUses::Yes); 536 } 537 538 void Value::replaceNonMetadataUsesWith(Value *New) { 539 doRAUW(New, ReplaceMetadataUses::No); 540 } 541 542 void Value::replaceUsesWithIf(Value *New, 543 llvm::function_ref<bool(Use &U)> ShouldReplace) { 544 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 545 assert(New->getType() == getType() && 546 "replaceUses of value with new value of different type!"); 547 548 SmallVector<TrackingVH<Constant>, 8> Consts; 549 SmallPtrSet<Constant *, 8> Visited; 550 551 for (Use &U : llvm::make_early_inc_range(uses())) { 552 if (!ShouldReplace(U)) 553 continue; 554 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 555 // constant because they are uniqued. 556 if (auto *C = dyn_cast<Constant>(U.getUser())) { 557 if (!isa<GlobalValue>(C)) { 558 if (Visited.insert(C).second) 559 Consts.push_back(TrackingVH<Constant>(C)); 560 continue; 561 } 562 } 563 U.set(New); 564 } 565 566 while (!Consts.empty()) { 567 // FIXME: handleOperandChange() updates all the uses in a given Constant, 568 // not just the one passed to ShouldReplace 569 Consts.pop_back_val()->handleOperandChange(this, New); 570 } 571 } 572 573 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 574 /// with New. 575 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 576 SmallVector<DbgVariableIntrinsic *> DbgUsers; 577 SmallVector<DPValue *> DPUsers; 578 findDbgUsers(DbgUsers, V, &DPUsers); 579 for (auto *DVI : DbgUsers) { 580 if (DVI->getParent() != BB) 581 DVI->replaceVariableLocationOp(V, New); 582 } 583 for (auto *DPV : DPUsers) { 584 DPMarker *Marker = DPV->getMarker(); 585 if (Marker->getParent() != BB) 586 DPV->replaceVariableLocationOp(V, New); 587 } 588 } 589 590 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 591 // This routine leaves uses within BB. 592 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 593 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 594 assert(!contains(New, this) && 595 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 596 assert(New->getType() == getType() && 597 "replaceUses of value with new value of different type!"); 598 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 599 600 replaceDbgUsesOutsideBlock(this, New, BB); 601 replaceUsesWithIf(New, [BB](Use &U) { 602 auto *I = dyn_cast<Instruction>(U.getUser()); 603 // Don't replace if it's an instruction in the BB basic block. 604 return !I || I->getParent() != BB; 605 }); 606 } 607 608 namespace { 609 // Various metrics for how much to strip off of pointers. 610 enum PointerStripKind { 611 PSK_ZeroIndices, 612 PSK_ZeroIndicesAndAliases, 613 PSK_ZeroIndicesSameRepresentation, 614 PSK_ForAliasAnalysis, 615 PSK_InBoundsConstantIndices, 616 PSK_InBounds 617 }; 618 619 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 620 621 template <PointerStripKind StripKind> 622 static const Value *stripPointerCastsAndOffsets( 623 const Value *V, 624 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 625 if (!V->getType()->isPointerTy()) 626 return V; 627 628 // Even though we don't look through PHI nodes, we could be called on an 629 // instruction in an unreachable block, which may be on a cycle. 630 SmallPtrSet<const Value *, 4> Visited; 631 632 Visited.insert(V); 633 do { 634 Func(V); 635 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 636 switch (StripKind) { 637 case PSK_ZeroIndices: 638 case PSK_ZeroIndicesAndAliases: 639 case PSK_ZeroIndicesSameRepresentation: 640 case PSK_ForAliasAnalysis: 641 if (!GEP->hasAllZeroIndices()) 642 return V; 643 break; 644 case PSK_InBoundsConstantIndices: 645 if (!GEP->hasAllConstantIndices()) 646 return V; 647 [[fallthrough]]; 648 case PSK_InBounds: 649 if (!GEP->isInBounds()) 650 return V; 651 break; 652 } 653 V = GEP->getPointerOperand(); 654 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 655 V = cast<Operator>(V)->getOperand(0); 656 if (!V->getType()->isPointerTy()) 657 return V; 658 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 659 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 660 // TODO: If we know an address space cast will not change the 661 // representation we could look through it here as well. 662 V = cast<Operator>(V)->getOperand(0); 663 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 664 V = cast<GlobalAlias>(V)->getAliasee(); 665 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 666 cast<PHINode>(V)->getNumIncomingValues() == 1) { 667 V = cast<PHINode>(V)->getIncomingValue(0); 668 } else { 669 if (const auto *Call = dyn_cast<CallBase>(V)) { 670 if (const Value *RV = Call->getReturnedArgOperand()) { 671 V = RV; 672 continue; 673 } 674 // The result of launder.invariant.group must alias it's argument, 675 // but it can't be marked with returned attribute, that's why it needs 676 // special case. 677 if (StripKind == PSK_ForAliasAnalysis && 678 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 679 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 680 V = Call->getArgOperand(0); 681 continue; 682 } 683 } 684 return V; 685 } 686 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 687 } while (Visited.insert(V).second); 688 689 return V; 690 } 691 } // end anonymous namespace 692 693 const Value *Value::stripPointerCasts() const { 694 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 695 } 696 697 const Value *Value::stripPointerCastsAndAliases() const { 698 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 699 } 700 701 const Value *Value::stripPointerCastsSameRepresentation() const { 702 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 703 } 704 705 const Value *Value::stripInBoundsConstantOffsets() const { 706 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 707 } 708 709 const Value *Value::stripPointerCastsForAliasAnalysis() const { 710 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 711 } 712 713 const Value *Value::stripAndAccumulateConstantOffsets( 714 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 715 bool AllowInvariantGroup, 716 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 717 if (!getType()->isPtrOrPtrVectorTy()) 718 return this; 719 720 unsigned BitWidth = Offset.getBitWidth(); 721 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 722 "The offset bit width does not match the DL specification."); 723 724 // Even though we don't look through PHI nodes, we could be called on an 725 // instruction in an unreachable block, which may be on a cycle. 726 SmallPtrSet<const Value *, 4> Visited; 727 Visited.insert(this); 728 const Value *V = this; 729 do { 730 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 731 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 732 if (!AllowNonInbounds && !GEP->isInBounds()) 733 return V; 734 735 // If one of the values we have visited is an addrspacecast, then 736 // the pointer type of this GEP may be different from the type 737 // of the Ptr parameter which was passed to this function. This 738 // means when we construct GEPOffset, we need to use the size 739 // of GEP's pointer type rather than the size of the original 740 // pointer type. 741 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 742 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 743 return V; 744 745 // Stop traversal if the pointer offset wouldn't fit in the bit-width 746 // provided by the Offset argument. This can happen due to AddrSpaceCast 747 // stripping. 748 if (GEPOffset.getSignificantBits() > BitWidth) 749 return V; 750 751 // External Analysis can return a result higher/lower than the value 752 // represents. We need to detect overflow/underflow. 753 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 754 if (!ExternalAnalysis) { 755 Offset += GEPOffsetST; 756 } else { 757 bool Overflow = false; 758 APInt OldOffset = Offset; 759 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 760 if (Overflow) { 761 Offset = OldOffset; 762 return V; 763 } 764 } 765 V = GEP->getPointerOperand(); 766 } else if (Operator::getOpcode(V) == Instruction::BitCast || 767 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 768 V = cast<Operator>(V)->getOperand(0); 769 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 770 if (!GA->isInterposable()) 771 V = GA->getAliasee(); 772 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 773 if (const Value *RV = Call->getReturnedArgOperand()) 774 V = RV; 775 if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) 776 V = Call->getArgOperand(0); 777 } 778 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 779 } while (Visited.insert(V).second); 780 781 return V; 782 } 783 784 const Value * 785 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 786 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 787 } 788 789 bool Value::canBeFreed() const { 790 assert(getType()->isPointerTy()); 791 792 // Cases that can simply never be deallocated 793 // *) Constants aren't allocated per se, thus not deallocated either. 794 if (isa<Constant>(this)) 795 return false; 796 797 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 798 // lifetime is guaranteed to be longer than the callee's lifetime. 799 if (auto *A = dyn_cast<Argument>(this)) { 800 if (A->hasPointeeInMemoryValueAttr()) 801 return false; 802 // A pointer to an object in a function which neither frees, nor can arrange 803 // for another thread to free on its behalf, can not be freed in the scope 804 // of the function. Note that this logic is restricted to memory 805 // allocations in existance before the call; a nofree function *is* allowed 806 // to free memory it allocated. 807 const Function *F = A->getParent(); 808 if (F->doesNotFreeMemory() && F->hasNoSync()) 809 return false; 810 } 811 812 const Function *F = nullptr; 813 if (auto *I = dyn_cast<Instruction>(this)) 814 F = I->getFunction(); 815 if (auto *A = dyn_cast<Argument>(this)) 816 F = A->getParent(); 817 818 if (!F) 819 return true; 820 821 // With garbage collection, deallocation typically occurs solely at or after 822 // safepoints. If we're compiling for a collector which uses the 823 // gc.statepoint infrastructure, safepoints aren't explicitly present 824 // in the IR until after lowering from abstract to physical machine model. 825 // The collector could chose to mix explicit deallocation and gc'd objects 826 // which is why we need the explicit opt in on a per collector basis. 827 if (!F->hasGC()) 828 return true; 829 830 const auto &GCName = F->getGC(); 831 if (GCName == "statepoint-example") { 832 auto *PT = cast<PointerType>(this->getType()); 833 if (PT->getAddressSpace() != 1) 834 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 835 // our GC managed heap. This must match the same check in 836 // RewriteStatepointsForGC (and probably needs better factored.) 837 return true; 838 839 // It is cheaper to scan for a declaration than to scan for a use in this 840 // function. Note that gc.statepoint is a type overloaded function so the 841 // usual trick of requesting declaration of the intrinsic from the module 842 // doesn't work. 843 for (auto &Fn : *F->getParent()) 844 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 845 return true; 846 return false; 847 } 848 return true; 849 } 850 851 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 852 bool &CanBeNull, 853 bool &CanBeFreed) const { 854 assert(getType()->isPointerTy() && "must be pointer"); 855 856 uint64_t DerefBytes = 0; 857 CanBeNull = false; 858 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 859 if (const Argument *A = dyn_cast<Argument>(this)) { 860 DerefBytes = A->getDereferenceableBytes(); 861 if (DerefBytes == 0) { 862 // Handle byval/byref/inalloca/preallocated arguments 863 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 864 if (ArgMemTy->isSized()) { 865 // FIXME: Why isn't this the type alloc size? 866 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinValue(); 867 } 868 } 869 } 870 871 if (DerefBytes == 0) { 872 DerefBytes = A->getDereferenceableOrNullBytes(); 873 CanBeNull = true; 874 } 875 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 876 DerefBytes = Call->getRetDereferenceableBytes(); 877 if (DerefBytes == 0) { 878 DerefBytes = Call->getRetDereferenceableOrNullBytes(); 879 CanBeNull = true; 880 } 881 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 882 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 883 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 884 DerefBytes = CI->getLimitedValue(); 885 } 886 if (DerefBytes == 0) { 887 if (MDNode *MD = 888 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 889 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 890 DerefBytes = CI->getLimitedValue(); 891 } 892 CanBeNull = true; 893 } 894 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 895 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 896 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 897 DerefBytes = CI->getLimitedValue(); 898 } 899 if (DerefBytes == 0) { 900 if (MDNode *MD = 901 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 902 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 903 DerefBytes = CI->getLimitedValue(); 904 } 905 CanBeNull = true; 906 } 907 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 908 if (!AI->isArrayAllocation()) { 909 DerefBytes = 910 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinValue(); 911 CanBeNull = false; 912 CanBeFreed = false; 913 } 914 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 915 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 916 // TODO: Don't outright reject hasExternalWeakLinkage but set the 917 // CanBeNull flag. 918 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedValue(); 919 CanBeNull = false; 920 CanBeFreed = false; 921 } 922 } 923 return DerefBytes; 924 } 925 926 Align Value::getPointerAlignment(const DataLayout &DL) const { 927 assert(getType()->isPointerTy() && "must be pointer"); 928 if (auto *GO = dyn_cast<GlobalObject>(this)) { 929 if (isa<Function>(GO)) { 930 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 931 switch (DL.getFunctionPtrAlignType()) { 932 case DataLayout::FunctionPtrAlignType::Independent: 933 return FunctionPtrAlign; 934 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 935 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 936 } 937 llvm_unreachable("Unhandled FunctionPtrAlignType"); 938 } 939 const MaybeAlign Alignment(GO->getAlign()); 940 if (!Alignment) { 941 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 942 Type *ObjectType = GVar->getValueType(); 943 if (ObjectType->isSized()) { 944 // If the object is defined in the current Module, we'll be giving 945 // it the preferred alignment. Otherwise, we have to assume that it 946 // may only have the minimum ABI alignment. 947 if (GVar->isStrongDefinitionForLinker()) 948 return DL.getPreferredAlign(GVar); 949 else 950 return DL.getABITypeAlign(ObjectType); 951 } 952 } 953 } 954 return Alignment.valueOrOne(); 955 } else if (const Argument *A = dyn_cast<Argument>(this)) { 956 const MaybeAlign Alignment = A->getParamAlign(); 957 if (!Alignment && A->hasStructRetAttr()) { 958 // An sret parameter has at least the ABI alignment of the return type. 959 Type *EltTy = A->getParamStructRetType(); 960 if (EltTy->isSized()) 961 return DL.getABITypeAlign(EltTy); 962 } 963 return Alignment.valueOrOne(); 964 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 965 return AI->getAlign(); 966 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 967 MaybeAlign Alignment = Call->getRetAlign(); 968 if (!Alignment && Call->getCalledFunction()) 969 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 970 return Alignment.valueOrOne(); 971 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 972 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 973 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 974 return Align(CI->getLimitedValue()); 975 } 976 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 977 // Strip pointer casts to avoid creating unnecessary ptrtoint expression 978 // if the only "reduction" is combining a bitcast + ptrtoint. 979 CstPtr = CstPtr->stripPointerCasts(); 980 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 981 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 982 /*OnlyIfReduced=*/true))) { 983 size_t TrailingZeros = CstInt->getValue().countr_zero(); 984 // While the actual alignment may be large, elsewhere we have 985 // an arbitrary upper alignmet limit, so let's clamp to it. 986 return Align(TrailingZeros < Value::MaxAlignmentExponent 987 ? uint64_t(1) << TrailingZeros 988 : Value::MaximumAlignment); 989 } 990 } 991 return Align(1); 992 } 993 994 static std::optional<int64_t> 995 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 996 // Skip over the first indices. 997 gep_type_iterator GTI = gep_type_begin(GEP); 998 for (unsigned i = 1; i != Idx; ++i, ++GTI) 999 /*skip along*/; 1000 1001 // Compute the offset implied by the rest of the indices. 1002 int64_t Offset = 0; 1003 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 1004 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1005 if (!OpC) 1006 return std::nullopt; 1007 if (OpC->isZero()) 1008 continue; // No offset. 1009 1010 // Handle struct indices, which add their field offset to the pointer. 1011 if (StructType *STy = GTI.getStructTypeOrNull()) { 1012 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1013 continue; 1014 } 1015 1016 // Otherwise, we have a sequential type like an array or fixed-length 1017 // vector. Multiply the index by the ElementSize. 1018 TypeSize Size = GTI.getSequentialElementStride(DL); 1019 if (Size.isScalable()) 1020 return std::nullopt; 1021 Offset += Size.getFixedValue() * OpC->getSExtValue(); 1022 } 1023 1024 return Offset; 1025 } 1026 1027 std::optional<int64_t> Value::getPointerOffsetFrom(const Value *Other, 1028 const DataLayout &DL) const { 1029 const Value *Ptr1 = Other; 1030 const Value *Ptr2 = this; 1031 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); 1032 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); 1033 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); 1034 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); 1035 1036 // Handle the trivial case first. 1037 if (Ptr1 == Ptr2) 1038 return Offset2.getSExtValue() - Offset1.getSExtValue(); 1039 1040 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 1041 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 1042 1043 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 1044 // base. After that base, they may have some number of common (and 1045 // potentially variable) indices. After that they handle some constant 1046 // offset, which determines their offset from each other. At this point, we 1047 // handle no other case. 1048 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 1049 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 1050 return std::nullopt; 1051 1052 // Skip any common indices and track the GEP types. 1053 unsigned Idx = 1; 1054 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 1055 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 1056 break; 1057 1058 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); 1059 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); 1060 if (!IOffset1 || !IOffset2) 1061 return std::nullopt; 1062 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - 1063 Offset1.getSExtValue(); 1064 } 1065 1066 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 1067 const BasicBlock *PredBB) const { 1068 auto *PN = dyn_cast<PHINode>(this); 1069 if (PN && PN->getParent() == CurBB) 1070 return PN->getIncomingValueForBlock(PredBB); 1071 return this; 1072 } 1073 1074 LLVMContext &Value::getContext() const { return VTy->getContext(); } 1075 1076 void Value::reverseUseList() { 1077 if (!UseList || !UseList->Next) 1078 // No need to reverse 0 or 1 uses. 1079 return; 1080 1081 Use *Head = UseList; 1082 Use *Current = UseList->Next; 1083 Head->Next = nullptr; 1084 while (Current) { 1085 Use *Next = Current->Next; 1086 Current->Next = Head; 1087 Head->Prev = &Current->Next; 1088 Head = Current; 1089 Current = Next; 1090 } 1091 UseList = Head; 1092 Head->Prev = &UseList; 1093 } 1094 1095 bool Value::isSwiftError() const { 1096 auto *Arg = dyn_cast<Argument>(this); 1097 if (Arg) 1098 return Arg->hasSwiftErrorAttr(); 1099 auto *Alloca = dyn_cast<AllocaInst>(this); 1100 if (!Alloca) 1101 return false; 1102 return Alloca->isSwiftError(); 1103 } 1104 1105 //===----------------------------------------------------------------------===// 1106 // ValueHandleBase Class 1107 //===----------------------------------------------------------------------===// 1108 1109 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1110 assert(List && "Handle list is null?"); 1111 1112 // Splice ourselves into the list. 1113 Next = *List; 1114 *List = this; 1115 setPrevPtr(List); 1116 if (Next) { 1117 Next->setPrevPtr(&Next); 1118 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1119 } 1120 } 1121 1122 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1123 assert(List && "Must insert after existing node"); 1124 1125 Next = List->Next; 1126 setPrevPtr(&List->Next); 1127 List->Next = this; 1128 if (Next) 1129 Next->setPrevPtr(&Next); 1130 } 1131 1132 void ValueHandleBase::AddToUseList() { 1133 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1134 1135 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1136 1137 if (getValPtr()->HasValueHandle) { 1138 // If this value already has a ValueHandle, then it must be in the 1139 // ValueHandles map already. 1140 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1141 assert(Entry && "Value doesn't have any handles?"); 1142 AddToExistingUseList(&Entry); 1143 return; 1144 } 1145 1146 // Ok, it doesn't have any handles yet, so we must insert it into the 1147 // DenseMap. However, doing this insertion could cause the DenseMap to 1148 // reallocate itself, which would invalidate all of the PrevP pointers that 1149 // point into the old table. Handle this by checking for reallocation and 1150 // updating the stale pointers only if needed. 1151 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1152 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1153 1154 ValueHandleBase *&Entry = Handles[getValPtr()]; 1155 assert(!Entry && "Value really did already have handles?"); 1156 AddToExistingUseList(&Entry); 1157 getValPtr()->HasValueHandle = true; 1158 1159 // If reallocation didn't happen or if this was the first insertion, don't 1160 // walk the table. 1161 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1162 Handles.size() == 1) { 1163 return; 1164 } 1165 1166 // Okay, reallocation did happen. Fix the Prev Pointers. 1167 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1168 E = Handles.end(); I != E; ++I) { 1169 assert(I->second && I->first == I->second->getValPtr() && 1170 "List invariant broken!"); 1171 I->second->setPrevPtr(&I->second); 1172 } 1173 } 1174 1175 void ValueHandleBase::RemoveFromUseList() { 1176 assert(getValPtr() && getValPtr()->HasValueHandle && 1177 "Pointer doesn't have a use list!"); 1178 1179 // Unlink this from its use list. 1180 ValueHandleBase **PrevPtr = getPrevPtr(); 1181 assert(*PrevPtr == this && "List invariant broken"); 1182 1183 *PrevPtr = Next; 1184 if (Next) { 1185 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1186 Next->setPrevPtr(PrevPtr); 1187 return; 1188 } 1189 1190 // If the Next pointer was null, then it is possible that this was the last 1191 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1192 // map. 1193 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1194 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1195 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1196 Handles.erase(getValPtr()); 1197 getValPtr()->HasValueHandle = false; 1198 } 1199 } 1200 1201 void ValueHandleBase::ValueIsDeleted(Value *V) { 1202 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1203 1204 // Get the linked list base, which is guaranteed to exist since the 1205 // HasValueHandle flag is set. 1206 LLVMContextImpl *pImpl = V->getContext().pImpl; 1207 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1208 assert(Entry && "Value bit set but no entries exist"); 1209 1210 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1211 // and remove themselves from the list without breaking our iteration. This 1212 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1213 // Note that we deliberately do not the support the case when dropping a value 1214 // handle results in a new value handle being permanently added to the list 1215 // (as might occur in theory for CallbackVH's): the new value handle will not 1216 // be processed and the checking code will mete out righteous punishment if 1217 // the handle is still present once we have finished processing all the other 1218 // value handles (it is fine to momentarily add then remove a value handle). 1219 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1220 Iterator.RemoveFromUseList(); 1221 Iterator.AddToExistingUseListAfter(Entry); 1222 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1223 1224 switch (Entry->getKind()) { 1225 case Assert: 1226 break; 1227 case Weak: 1228 case WeakTracking: 1229 // WeakTracking and Weak just go to null, which unlinks them 1230 // from the list. 1231 Entry->operator=(nullptr); 1232 break; 1233 case Callback: 1234 // Forward to the subclass's implementation. 1235 static_cast<CallbackVH*>(Entry)->deleted(); 1236 break; 1237 } 1238 } 1239 1240 // All callbacks, weak references, and assertingVHs should be dropped by now. 1241 if (V->HasValueHandle) { 1242 #ifndef NDEBUG // Only in +Asserts mode... 1243 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1244 << "\n"; 1245 if (pImpl->ValueHandles[V]->getKind() == Assert) 1246 llvm_unreachable("An asserting value handle still pointed to this" 1247 " value!"); 1248 1249 #endif 1250 llvm_unreachable("All references to V were not removed?"); 1251 } 1252 } 1253 1254 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1255 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1256 assert(Old != New && "Changing value into itself!"); 1257 assert(Old->getType() == New->getType() && 1258 "replaceAllUses of value with new value of different type!"); 1259 1260 // Get the linked list base, which is guaranteed to exist since the 1261 // HasValueHandle flag is set. 1262 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1263 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1264 1265 assert(Entry && "Value bit set but no entries exist"); 1266 1267 // We use a local ValueHandleBase as an iterator so that 1268 // ValueHandles can add and remove themselves from the list without 1269 // breaking our iteration. This is not really an AssertingVH; we 1270 // just have to give ValueHandleBase some kind. 1271 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1272 Iterator.RemoveFromUseList(); 1273 Iterator.AddToExistingUseListAfter(Entry); 1274 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1275 1276 switch (Entry->getKind()) { 1277 case Assert: 1278 case Weak: 1279 // Asserting and Weak handles do not follow RAUW implicitly. 1280 break; 1281 case WeakTracking: 1282 // Weak goes to the new value, which will unlink it from Old's list. 1283 Entry->operator=(New); 1284 break; 1285 case Callback: 1286 // Forward to the subclass's implementation. 1287 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1288 break; 1289 } 1290 } 1291 1292 #ifndef NDEBUG 1293 // If any new weak value handles were added while processing the 1294 // list, then complain about it now. 1295 if (Old->HasValueHandle) 1296 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1297 switch (Entry->getKind()) { 1298 case WeakTracking: 1299 dbgs() << "After RAUW from " << *Old->getType() << " %" 1300 << Old->getName() << " to " << *New->getType() << " %" 1301 << New->getName() << "\n"; 1302 llvm_unreachable( 1303 "A weak tracking value handle still pointed to the old value!\n"); 1304 default: 1305 break; 1306 } 1307 #endif 1308 } 1309 1310 // Pin the vtable to this file. 1311 void CallbackVH::anchor() {} 1312