1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/DerivedUser.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 static cl::opt<unsigned> UseDerefAtPointSemantics( 42 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 43 cl::desc("Deref attributes and metadata infer facts at definition only")); 44 45 //===----------------------------------------------------------------------===// 46 // Value Class 47 //===----------------------------------------------------------------------===// 48 static inline Type *checkType(Type *Ty) { 49 assert(Ty && "Value defined with a null type: Error!"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 55 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 56 IsUsedByMD(false), HasName(false), HasMetadata(false) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 unsigned OpCode = 0; 62 if (SubclassID >= InstructionVal) 63 OpCode = SubclassID - InstructionVal; 64 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || 65 OpCode == Instruction::CallBr) 66 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 67 "invalid CallBase type!"); 68 else if (SubclassID != BasicBlockVal && 69 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 70 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 71 "Cannot create non-first-class values except for constants!"); 72 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 73 "Value too big"); 74 } 75 76 Value::~Value() { 77 // Notify all ValueHandles (if present) that this value is going away. 78 if (HasValueHandle) 79 ValueHandleBase::ValueIsDeleted(this); 80 if (isUsedByMetadata()) 81 ValueAsMetadata::handleDeletion(this); 82 83 // Remove associated metadata from context. 84 if (HasMetadata) 85 clearMetadata(); 86 87 #ifndef NDEBUG // Only in -g mode... 88 // Check to make sure that there are no uses of this value that are still 89 // around when the value is destroyed. If there are, then we have a dangling 90 // reference and something is wrong. This code is here to print out where 91 // the value is still being referenced. 92 // 93 // Note that use_empty() cannot be called here, as it eventually downcasts 94 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 95 // been destructed, so accessing it is UB. 96 // 97 if (!materialized_use_empty()) { 98 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 99 for (auto *U : users()) 100 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 101 } 102 #endif 103 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 104 105 // If this value is named, destroy the name. This should not be in a symtab 106 // at this point. 107 destroyValueName(); 108 } 109 110 void Value::deleteValue() { 111 switch (getValueID()) { 112 #define HANDLE_VALUE(Name) \ 113 case Value::Name##Val: \ 114 delete static_cast<Name *>(this); \ 115 break; 116 #define HANDLE_MEMORY_VALUE(Name) \ 117 case Value::Name##Val: \ 118 static_cast<DerivedUser *>(this)->DeleteValue( \ 119 static_cast<DerivedUser *>(this)); \ 120 break; 121 #define HANDLE_CONSTANT(Name) \ 122 case Value::Name##Val: \ 123 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 124 break; 125 #define HANDLE_INSTRUCTION(Name) /* nothing */ 126 #include "llvm/IR/Value.def" 127 128 #define HANDLE_INST(N, OPC, CLASS) \ 129 case Value::InstructionVal + Instruction::OPC: \ 130 delete static_cast<CLASS *>(this); \ 131 break; 132 #define HANDLE_USER_INST(N, OPC, CLASS) 133 #include "llvm/IR/Instruction.def" 134 135 default: 136 llvm_unreachable("attempting to delete unknown value kind"); 137 } 138 } 139 140 void Value::destroyValueName() { 141 ValueName *Name = getValueName(); 142 if (Name) { 143 MallocAllocator Allocator; 144 Name->Destroy(Allocator); 145 } 146 setValueName(nullptr); 147 } 148 149 bool Value::hasNUses(unsigned N) const { 150 return hasNItems(use_begin(), use_end(), N); 151 } 152 153 bool Value::hasNUsesOrMore(unsigned N) const { 154 return hasNItemsOrMore(use_begin(), use_end(), N); 155 } 156 157 bool Value::hasOneUser() const { 158 if (use_empty()) 159 return false; 160 if (hasOneUse()) 161 return true; 162 return std::equal(++user_begin(), user_end(), user_begin()); 163 } 164 165 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 166 167 Use *Value::getSingleUndroppableUse() { 168 Use *Result = nullptr; 169 for (Use &U : uses()) { 170 if (!U.getUser()->isDroppable()) { 171 if (Result) 172 return nullptr; 173 Result = &U; 174 } 175 } 176 return Result; 177 } 178 179 User *Value::getUniqueUndroppableUser() { 180 User *Result = nullptr; 181 for (auto *U : users()) { 182 if (!U->isDroppable()) { 183 if (Result && Result != U) 184 return nullptr; 185 Result = U; 186 } 187 } 188 return Result; 189 } 190 191 bool Value::hasNUndroppableUses(unsigned int N) const { 192 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 193 } 194 195 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 196 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 197 } 198 199 void Value::dropDroppableUses( 200 llvm::function_ref<bool(const Use *)> ShouldDrop) { 201 SmallVector<Use *, 8> ToBeEdited; 202 for (Use &U : uses()) 203 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 204 ToBeEdited.push_back(&U); 205 for (Use *U : ToBeEdited) 206 dropDroppableUse(*U); 207 } 208 209 void Value::dropDroppableUsesIn(User &Usr) { 210 assert(Usr.isDroppable() && "Expected a droppable user!"); 211 for (Use &UsrOp : Usr.operands()) { 212 if (UsrOp.get() == this) 213 dropDroppableUse(UsrOp); 214 } 215 } 216 217 void Value::dropDroppableUse(Use &U) { 218 U.removeFromList(); 219 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 220 unsigned OpNo = U.getOperandNo(); 221 if (OpNo == 0) 222 U.set(ConstantInt::getTrue(Assume->getContext())); 223 else { 224 U.set(UndefValue::get(U.get()->getType())); 225 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 226 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 227 } 228 return; 229 } 230 231 llvm_unreachable("unkown droppable use"); 232 } 233 234 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 235 // This can be computed either by scanning the instructions in BB, or by 236 // scanning the use list of this Value. Both lists can be very long, but 237 // usually one is quite short. 238 // 239 // Scan both lists simultaneously until one is exhausted. This limits the 240 // search to the shorter list. 241 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 242 const_user_iterator UI = user_begin(), UE = user_end(); 243 for (; BI != BE && UI != UE; ++BI, ++UI) { 244 // Scan basic block: Check if this Value is used by the instruction at BI. 245 if (is_contained(BI->operands(), this)) 246 return true; 247 // Scan use list: Check if the use at UI is in BB. 248 const auto *User = dyn_cast<Instruction>(*UI); 249 if (User && User->getParent() == BB) 250 return true; 251 } 252 return false; 253 } 254 255 unsigned Value::getNumUses() const { 256 return (unsigned)std::distance(use_begin(), use_end()); 257 } 258 259 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 260 ST = nullptr; 261 if (Instruction *I = dyn_cast<Instruction>(V)) { 262 if (BasicBlock *P = I->getParent()) 263 if (Function *PP = P->getParent()) 264 ST = PP->getValueSymbolTable(); 265 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 266 if (Function *P = BB->getParent()) 267 ST = P->getValueSymbolTable(); 268 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 269 if (Module *P = GV->getParent()) 270 ST = &P->getValueSymbolTable(); 271 } else if (Argument *A = dyn_cast<Argument>(V)) { 272 if (Function *P = A->getParent()) 273 ST = P->getValueSymbolTable(); 274 } else { 275 assert(isa<Constant>(V) && "Unknown value type!"); 276 return true; // no name is setable for this. 277 } 278 return false; 279 } 280 281 ValueName *Value::getValueName() const { 282 if (!HasName) return nullptr; 283 284 LLVMContext &Ctx = getContext(); 285 auto I = Ctx.pImpl->ValueNames.find(this); 286 assert(I != Ctx.pImpl->ValueNames.end() && 287 "No name entry found!"); 288 289 return I->second; 290 } 291 292 void Value::setValueName(ValueName *VN) { 293 LLVMContext &Ctx = getContext(); 294 295 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 296 "HasName bit out of sync!"); 297 298 if (!VN) { 299 if (HasName) 300 Ctx.pImpl->ValueNames.erase(this); 301 HasName = false; 302 return; 303 } 304 305 HasName = true; 306 Ctx.pImpl->ValueNames[this] = VN; 307 } 308 309 StringRef Value::getName() const { 310 // Make sure the empty string is still a C string. For historical reasons, 311 // some clients want to call .data() on the result and expect it to be null 312 // terminated. 313 if (!hasName()) 314 return StringRef("", 0); 315 return getValueName()->getKey(); 316 } 317 318 void Value::setNameImpl(const Twine &NewName) { 319 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 320 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 321 return; 322 323 // Fast path for common IRBuilder case of setName("") when there is no name. 324 if (NewName.isTriviallyEmpty() && !hasName()) 325 return; 326 327 SmallString<256> NameData; 328 StringRef NameRef = NewName.toStringRef(NameData); 329 assert(NameRef.find_first_of(0) == StringRef::npos && 330 "Null bytes are not allowed in names"); 331 332 // Name isn't changing? 333 if (getName() == NameRef) 334 return; 335 336 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 337 338 // Get the symbol table to update for this object. 339 ValueSymbolTable *ST; 340 if (getSymTab(this, ST)) 341 return; // Cannot set a name on this value (e.g. constant). 342 343 if (!ST) { // No symbol table to update? Just do the change. 344 if (NameRef.empty()) { 345 // Free the name for this value. 346 destroyValueName(); 347 return; 348 } 349 350 // NOTE: Could optimize for the case the name is shrinking to not deallocate 351 // then reallocated. 352 destroyValueName(); 353 354 // Create the new name. 355 MallocAllocator Allocator; 356 setValueName(ValueName::Create(NameRef, Allocator)); 357 getValueName()->setValue(this); 358 return; 359 } 360 361 // NOTE: Could optimize for the case the name is shrinking to not deallocate 362 // then reallocated. 363 if (hasName()) { 364 // Remove old name. 365 ST->removeValueName(getValueName()); 366 destroyValueName(); 367 368 if (NameRef.empty()) 369 return; 370 } 371 372 // Name is changing to something new. 373 setValueName(ST->createValueName(NameRef, this)); 374 } 375 376 void Value::setName(const Twine &NewName) { 377 setNameImpl(NewName); 378 if (Function *F = dyn_cast<Function>(this)) 379 F->recalculateIntrinsicID(); 380 } 381 382 void Value::takeName(Value *V) { 383 ValueSymbolTable *ST = nullptr; 384 // If this value has a name, drop it. 385 if (hasName()) { 386 // Get the symtab this is in. 387 if (getSymTab(this, ST)) { 388 // We can't set a name on this value, but we need to clear V's name if 389 // it has one. 390 if (V->hasName()) V->setName(""); 391 return; // Cannot set a name on this value (e.g. constant). 392 } 393 394 // Remove old name. 395 if (ST) 396 ST->removeValueName(getValueName()); 397 destroyValueName(); 398 } 399 400 // Now we know that this has no name. 401 402 // If V has no name either, we're done. 403 if (!V->hasName()) return; 404 405 // Get this's symtab if we didn't before. 406 if (!ST) { 407 if (getSymTab(this, ST)) { 408 // Clear V's name. 409 V->setName(""); 410 return; // Cannot set a name on this value (e.g. constant). 411 } 412 } 413 414 // Get V's ST, this should always succed, because V has a name. 415 ValueSymbolTable *VST; 416 bool Failure = getSymTab(V, VST); 417 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 418 419 // If these values are both in the same symtab, we can do this very fast. 420 // This works even if both values have no symtab yet. 421 if (ST == VST) { 422 // Take the name! 423 setValueName(V->getValueName()); 424 V->setValueName(nullptr); 425 getValueName()->setValue(this); 426 return; 427 } 428 429 // Otherwise, things are slightly more complex. Remove V's name from VST and 430 // then reinsert it into ST. 431 432 if (VST) 433 VST->removeValueName(V->getValueName()); 434 setValueName(V->getValueName()); 435 V->setValueName(nullptr); 436 getValueName()->setValue(this); 437 438 if (ST) 439 ST->reinsertValue(this); 440 } 441 442 #ifndef NDEBUG 443 std::string Value::getNameOrAsOperand() const { 444 if (!getName().empty()) 445 return std::string(getName()); 446 447 std::string BBName; 448 raw_string_ostream OS(BBName); 449 printAsOperand(OS, false); 450 return OS.str(); 451 } 452 #endif 453 454 void Value::assertModuleIsMaterializedImpl() const { 455 #ifndef NDEBUG 456 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 457 if (!GV) 458 return; 459 const Module *M = GV->getParent(); 460 if (!M) 461 return; 462 assert(M->isMaterialized()); 463 #endif 464 } 465 466 #ifndef NDEBUG 467 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 468 Constant *C) { 469 if (!Cache.insert(Expr).second) 470 return false; 471 472 for (auto &O : Expr->operands()) { 473 if (O == C) 474 return true; 475 auto *CE = dyn_cast<ConstantExpr>(O); 476 if (!CE) 477 continue; 478 if (contains(Cache, CE, C)) 479 return true; 480 } 481 return false; 482 } 483 484 static bool contains(Value *Expr, Value *V) { 485 if (Expr == V) 486 return true; 487 488 auto *C = dyn_cast<Constant>(V); 489 if (!C) 490 return false; 491 492 auto *CE = dyn_cast<ConstantExpr>(Expr); 493 if (!CE) 494 return false; 495 496 SmallPtrSet<ConstantExpr *, 4> Cache; 497 return contains(Cache, CE, C); 498 } 499 #endif // NDEBUG 500 501 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 502 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 503 assert(!contains(New, this) && 504 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 505 assert(New->getType() == getType() && 506 "replaceAllUses of value with new value of different type!"); 507 508 // Notify all ValueHandles (if present) that this value is going away. 509 if (HasValueHandle) 510 ValueHandleBase::ValueIsRAUWd(this, New); 511 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 512 ValueAsMetadata::handleRAUW(this, New); 513 514 while (!materialized_use_empty()) { 515 Use &U = *UseList; 516 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 517 // constant because they are uniqued. 518 if (auto *C = dyn_cast<Constant>(U.getUser())) { 519 if (!isa<GlobalValue>(C)) { 520 C->handleOperandChange(this, New); 521 continue; 522 } 523 } 524 525 U.set(New); 526 } 527 528 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 529 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 530 } 531 532 void Value::replaceAllUsesWith(Value *New) { 533 doRAUW(New, ReplaceMetadataUses::Yes); 534 } 535 536 void Value::replaceNonMetadataUsesWith(Value *New) { 537 doRAUW(New, ReplaceMetadataUses::No); 538 } 539 540 void Value::replaceUsesWithIf(Value *New, 541 llvm::function_ref<bool(Use &U)> ShouldReplace) { 542 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 543 assert(New->getType() == getType() && 544 "replaceUses of value with new value of different type!"); 545 546 SmallVector<TrackingVH<Constant>, 8> Consts; 547 SmallPtrSet<Constant *, 8> Visited; 548 549 for (Use &U : llvm::make_early_inc_range(uses())) { 550 if (!ShouldReplace(U)) 551 continue; 552 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 553 // constant because they are uniqued. 554 if (auto *C = dyn_cast<Constant>(U.getUser())) { 555 if (!isa<GlobalValue>(C)) { 556 if (Visited.insert(C).second) 557 Consts.push_back(TrackingVH<Constant>(C)); 558 continue; 559 } 560 } 561 U.set(New); 562 } 563 564 while (!Consts.empty()) { 565 // FIXME: handleOperandChange() updates all the uses in a given Constant, 566 // not just the one passed to ShouldReplace 567 Consts.pop_back_val()->handleOperandChange(this, New); 568 } 569 } 570 571 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 572 /// with New. 573 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 574 SmallVector<DbgVariableIntrinsic *> DbgUsers; 575 findDbgUsers(DbgUsers, V); 576 for (auto *DVI : DbgUsers) { 577 if (DVI->getParent() != BB) 578 DVI->replaceVariableLocationOp(V, New); 579 } 580 } 581 582 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 583 // This routine leaves uses within BB. 584 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 585 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 586 assert(!contains(New, this) && 587 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 588 assert(New->getType() == getType() && 589 "replaceUses of value with new value of different type!"); 590 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 591 592 replaceDbgUsesOutsideBlock(this, New, BB); 593 replaceUsesWithIf(New, [BB](Use &U) { 594 auto *I = dyn_cast<Instruction>(U.getUser()); 595 // Don't replace if it's an instruction in the BB basic block. 596 return !I || I->getParent() != BB; 597 }); 598 } 599 600 namespace { 601 // Various metrics for how much to strip off of pointers. 602 enum PointerStripKind { 603 PSK_ZeroIndices, 604 PSK_ZeroIndicesAndAliases, 605 PSK_ZeroIndicesSameRepresentation, 606 PSK_ForAliasAnalysis, 607 PSK_InBoundsConstantIndices, 608 PSK_InBounds 609 }; 610 611 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 612 613 template <PointerStripKind StripKind> 614 static const Value *stripPointerCastsAndOffsets( 615 const Value *V, 616 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 617 if (!V->getType()->isPointerTy()) 618 return V; 619 620 // Even though we don't look through PHI nodes, we could be called on an 621 // instruction in an unreachable block, which may be on a cycle. 622 SmallPtrSet<const Value *, 4> Visited; 623 624 Visited.insert(V); 625 do { 626 Func(V); 627 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 628 switch (StripKind) { 629 case PSK_ZeroIndices: 630 case PSK_ZeroIndicesAndAliases: 631 case PSK_ZeroIndicesSameRepresentation: 632 case PSK_ForAliasAnalysis: 633 if (!GEP->hasAllZeroIndices()) 634 return V; 635 break; 636 case PSK_InBoundsConstantIndices: 637 if (!GEP->hasAllConstantIndices()) 638 return V; 639 LLVM_FALLTHROUGH; 640 case PSK_InBounds: 641 if (!GEP->isInBounds()) 642 return V; 643 break; 644 } 645 V = GEP->getPointerOperand(); 646 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 647 V = cast<Operator>(V)->getOperand(0); 648 if (!V->getType()->isPointerTy()) 649 return V; 650 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 651 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 652 // TODO: If we know an address space cast will not change the 653 // representation we could look through it here as well. 654 V = cast<Operator>(V)->getOperand(0); 655 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 656 V = cast<GlobalAlias>(V)->getAliasee(); 657 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 658 cast<PHINode>(V)->getNumIncomingValues() == 1) { 659 V = cast<PHINode>(V)->getIncomingValue(0); 660 } else { 661 if (const auto *Call = dyn_cast<CallBase>(V)) { 662 if (const Value *RV = Call->getReturnedArgOperand()) { 663 V = RV; 664 continue; 665 } 666 // The result of launder.invariant.group must alias it's argument, 667 // but it can't be marked with returned attribute, that's why it needs 668 // special case. 669 if (StripKind == PSK_ForAliasAnalysis && 670 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 671 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 672 V = Call->getArgOperand(0); 673 continue; 674 } 675 } 676 return V; 677 } 678 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 679 } while (Visited.insert(V).second); 680 681 return V; 682 } 683 } // end anonymous namespace 684 685 const Value *Value::stripPointerCasts() const { 686 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 687 } 688 689 const Value *Value::stripPointerCastsAndAliases() const { 690 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 691 } 692 693 const Value *Value::stripPointerCastsSameRepresentation() const { 694 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 695 } 696 697 const Value *Value::stripInBoundsConstantOffsets() const { 698 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 699 } 700 701 const Value *Value::stripPointerCastsForAliasAnalysis() const { 702 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 703 } 704 705 const Value *Value::stripAndAccumulateConstantOffsets( 706 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 707 bool AllowInvariantGroup, 708 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 709 if (!getType()->isPtrOrPtrVectorTy()) 710 return this; 711 712 unsigned BitWidth = Offset.getBitWidth(); 713 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 714 "The offset bit width does not match the DL specification."); 715 716 // Even though we don't look through PHI nodes, we could be called on an 717 // instruction in an unreachable block, which may be on a cycle. 718 SmallPtrSet<const Value *, 4> Visited; 719 Visited.insert(this); 720 const Value *V = this; 721 do { 722 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 723 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 724 if (!AllowNonInbounds && !GEP->isInBounds()) 725 return V; 726 727 // If one of the values we have visited is an addrspacecast, then 728 // the pointer type of this GEP may be different from the type 729 // of the Ptr parameter which was passed to this function. This 730 // means when we construct GEPOffset, we need to use the size 731 // of GEP's pointer type rather than the size of the original 732 // pointer type. 733 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 734 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 735 return V; 736 737 // Stop traversal if the pointer offset wouldn't fit in the bit-width 738 // provided by the Offset argument. This can happen due to AddrSpaceCast 739 // stripping. 740 if (GEPOffset.getMinSignedBits() > BitWidth) 741 return V; 742 743 // External Analysis can return a result higher/lower than the value 744 // represents. We need to detect overflow/underflow. 745 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 746 if (!ExternalAnalysis) { 747 Offset += GEPOffsetST; 748 } else { 749 bool Overflow = false; 750 APInt OldOffset = Offset; 751 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 752 if (Overflow) { 753 Offset = OldOffset; 754 return V; 755 } 756 } 757 V = GEP->getPointerOperand(); 758 } else if (Operator::getOpcode(V) == Instruction::BitCast || 759 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 760 V = cast<Operator>(V)->getOperand(0); 761 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 762 if (!GA->isInterposable()) 763 V = GA->getAliasee(); 764 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 765 if (const Value *RV = Call->getReturnedArgOperand()) 766 V = RV; 767 if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) 768 V = Call->getArgOperand(0); 769 } 770 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 771 } while (Visited.insert(V).second); 772 773 return V; 774 } 775 776 const Value * 777 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 778 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 779 } 780 781 bool Value::canBeFreed() const { 782 assert(getType()->isPointerTy()); 783 784 // Cases that can simply never be deallocated 785 // *) Constants aren't allocated per se, thus not deallocated either. 786 if (isa<Constant>(this)) 787 return false; 788 789 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 790 // lifetime is guaranteed to be longer than the callee's lifetime. 791 if (auto *A = dyn_cast<Argument>(this)) { 792 if (A->hasPointeeInMemoryValueAttr()) 793 return false; 794 // A pointer to an object in a function which neither frees, nor can arrange 795 // for another thread to free on its behalf, can not be freed in the scope 796 // of the function. Note that this logic is restricted to memory 797 // allocations in existance before the call; a nofree function *is* allowed 798 // to free memory it allocated. 799 const Function *F = A->getParent(); 800 if (F->doesNotFreeMemory() && F->hasNoSync()) 801 return false; 802 } 803 804 const Function *F = nullptr; 805 if (auto *I = dyn_cast<Instruction>(this)) 806 F = I->getFunction(); 807 if (auto *A = dyn_cast<Argument>(this)) 808 F = A->getParent(); 809 810 if (!F) 811 return true; 812 813 // With garbage collection, deallocation typically occurs solely at or after 814 // safepoints. If we're compiling for a collector which uses the 815 // gc.statepoint infrastructure, safepoints aren't explicitly present 816 // in the IR until after lowering from abstract to physical machine model. 817 // The collector could chose to mix explicit deallocation and gc'd objects 818 // which is why we need the explicit opt in on a per collector basis. 819 if (!F->hasGC()) 820 return true; 821 822 const auto &GCName = F->getGC(); 823 if (GCName == "statepoint-example") { 824 auto *PT = cast<PointerType>(this->getType()); 825 if (PT->getAddressSpace() != 1) 826 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 827 // our GC managed heap. This must match the same check in 828 // RewriteStatepointsForGC (and probably needs better factored.) 829 return true; 830 831 // It is cheaper to scan for a declaration than to scan for a use in this 832 // function. Note that gc.statepoint is a type overloaded function so the 833 // usual trick of requesting declaration of the intrinsic from the module 834 // doesn't work. 835 for (auto &Fn : *F->getParent()) 836 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 837 return true; 838 return false; 839 } 840 return true; 841 } 842 843 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 844 bool &CanBeNull, 845 bool &CanBeFreed) const { 846 assert(getType()->isPointerTy() && "must be pointer"); 847 848 uint64_t DerefBytes = 0; 849 CanBeNull = false; 850 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 851 if (const Argument *A = dyn_cast<Argument>(this)) { 852 DerefBytes = A->getDereferenceableBytes(); 853 if (DerefBytes == 0) { 854 // Handle byval/byref/inalloca/preallocated arguments 855 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 856 if (ArgMemTy->isSized()) { 857 // FIXME: Why isn't this the type alloc size? 858 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 859 } 860 } 861 } 862 863 if (DerefBytes == 0) { 864 DerefBytes = A->getDereferenceableOrNullBytes(); 865 CanBeNull = true; 866 } 867 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 868 DerefBytes = Call->getRetDereferenceableBytes(); 869 if (DerefBytes == 0) { 870 DerefBytes = Call->getRetDereferenceableOrNullBytes(); 871 CanBeNull = true; 872 } 873 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 874 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 875 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 876 DerefBytes = CI->getLimitedValue(); 877 } 878 if (DerefBytes == 0) { 879 if (MDNode *MD = 880 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 881 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 882 DerefBytes = CI->getLimitedValue(); 883 } 884 CanBeNull = true; 885 } 886 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 887 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 888 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 889 DerefBytes = CI->getLimitedValue(); 890 } 891 if (DerefBytes == 0) { 892 if (MDNode *MD = 893 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 894 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 895 DerefBytes = CI->getLimitedValue(); 896 } 897 CanBeNull = true; 898 } 899 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 900 if (!AI->isArrayAllocation()) { 901 DerefBytes = 902 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 903 CanBeNull = false; 904 CanBeFreed = false; 905 } 906 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 907 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 908 // TODO: Don't outright reject hasExternalWeakLinkage but set the 909 // CanBeNull flag. 910 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 911 CanBeNull = false; 912 CanBeFreed = false; 913 } 914 } 915 return DerefBytes; 916 } 917 918 Align Value::getPointerAlignment(const DataLayout &DL) const { 919 assert(getType()->isPointerTy() && "must be pointer"); 920 if (auto *GO = dyn_cast<GlobalObject>(this)) { 921 if (isa<Function>(GO)) { 922 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 923 switch (DL.getFunctionPtrAlignType()) { 924 case DataLayout::FunctionPtrAlignType::Independent: 925 return FunctionPtrAlign; 926 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 927 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 928 } 929 llvm_unreachable("Unhandled FunctionPtrAlignType"); 930 } 931 const MaybeAlign Alignment(GO->getAlignment()); 932 if (!Alignment) { 933 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 934 Type *ObjectType = GVar->getValueType(); 935 if (ObjectType->isSized()) { 936 // If the object is defined in the current Module, we'll be giving 937 // it the preferred alignment. Otherwise, we have to assume that it 938 // may only have the minimum ABI alignment. 939 if (GVar->isStrongDefinitionForLinker()) 940 return DL.getPreferredAlign(GVar); 941 else 942 return DL.getABITypeAlign(ObjectType); 943 } 944 } 945 } 946 return Alignment.valueOrOne(); 947 } else if (const Argument *A = dyn_cast<Argument>(this)) { 948 const MaybeAlign Alignment = A->getParamAlign(); 949 if (!Alignment && A->hasStructRetAttr()) { 950 // An sret parameter has at least the ABI alignment of the return type. 951 Type *EltTy = A->getParamStructRetType(); 952 if (EltTy->isSized()) 953 return DL.getABITypeAlign(EltTy); 954 } 955 return Alignment.valueOrOne(); 956 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 957 return AI->getAlign(); 958 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 959 MaybeAlign Alignment = Call->getRetAlign(); 960 if (!Alignment && Call->getCalledFunction()) 961 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 962 return Alignment.valueOrOne(); 963 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 964 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 965 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 966 return Align(CI->getLimitedValue()); 967 } 968 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 969 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 970 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 971 /*OnlyIfReduced=*/true))) { 972 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 973 // While the actual alignment may be large, elsewhere we have 974 // an arbitrary upper alignmet limit, so let's clamp to it. 975 return Align(TrailingZeros < Value::MaxAlignmentExponent 976 ? uint64_t(1) << TrailingZeros 977 : Value::MaximumAlignment); 978 } 979 } 980 return Align(1); 981 } 982 983 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 984 const BasicBlock *PredBB) const { 985 auto *PN = dyn_cast<PHINode>(this); 986 if (PN && PN->getParent() == CurBB) 987 return PN->getIncomingValueForBlock(PredBB); 988 return this; 989 } 990 991 LLVMContext &Value::getContext() const { return VTy->getContext(); } 992 993 void Value::reverseUseList() { 994 if (!UseList || !UseList->Next) 995 // No need to reverse 0 or 1 uses. 996 return; 997 998 Use *Head = UseList; 999 Use *Current = UseList->Next; 1000 Head->Next = nullptr; 1001 while (Current) { 1002 Use *Next = Current->Next; 1003 Current->Next = Head; 1004 Head->Prev = &Current->Next; 1005 Head = Current; 1006 Current = Next; 1007 } 1008 UseList = Head; 1009 Head->Prev = &UseList; 1010 } 1011 1012 bool Value::isSwiftError() const { 1013 auto *Arg = dyn_cast<Argument>(this); 1014 if (Arg) 1015 return Arg->hasSwiftErrorAttr(); 1016 auto *Alloca = dyn_cast<AllocaInst>(this); 1017 if (!Alloca) 1018 return false; 1019 return Alloca->isSwiftError(); 1020 } 1021 1022 bool Value::isTransitiveUsedByMetadataOnly() const { 1023 if (use_empty()) 1024 return false; 1025 llvm::SmallVector<const User *, 32> WorkList; 1026 llvm::SmallPtrSet<const User *, 32> Visited; 1027 WorkList.insert(WorkList.begin(), user_begin(), user_end()); 1028 while (!WorkList.empty()) { 1029 const User *U = WorkList.pop_back_val(); 1030 Visited.insert(U); 1031 // If it is transitively used by a global value or a non-constant value, 1032 // it's obviously not only used by metadata. 1033 if (!isa<Constant>(U) || isa<GlobalValue>(U)) 1034 return false; 1035 for (const User *UU : U->users()) 1036 if (!Visited.count(UU)) 1037 WorkList.push_back(UU); 1038 } 1039 return true; 1040 } 1041 1042 //===----------------------------------------------------------------------===// 1043 // ValueHandleBase Class 1044 //===----------------------------------------------------------------------===// 1045 1046 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1047 assert(List && "Handle list is null?"); 1048 1049 // Splice ourselves into the list. 1050 Next = *List; 1051 *List = this; 1052 setPrevPtr(List); 1053 if (Next) { 1054 Next->setPrevPtr(&Next); 1055 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1056 } 1057 } 1058 1059 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1060 assert(List && "Must insert after existing node"); 1061 1062 Next = List->Next; 1063 setPrevPtr(&List->Next); 1064 List->Next = this; 1065 if (Next) 1066 Next->setPrevPtr(&Next); 1067 } 1068 1069 void ValueHandleBase::AddToUseList() { 1070 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1071 1072 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1073 1074 if (getValPtr()->HasValueHandle) { 1075 // If this value already has a ValueHandle, then it must be in the 1076 // ValueHandles map already. 1077 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1078 assert(Entry && "Value doesn't have any handles?"); 1079 AddToExistingUseList(&Entry); 1080 return; 1081 } 1082 1083 // Ok, it doesn't have any handles yet, so we must insert it into the 1084 // DenseMap. However, doing this insertion could cause the DenseMap to 1085 // reallocate itself, which would invalidate all of the PrevP pointers that 1086 // point into the old table. Handle this by checking for reallocation and 1087 // updating the stale pointers only if needed. 1088 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1089 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1090 1091 ValueHandleBase *&Entry = Handles[getValPtr()]; 1092 assert(!Entry && "Value really did already have handles?"); 1093 AddToExistingUseList(&Entry); 1094 getValPtr()->HasValueHandle = true; 1095 1096 // If reallocation didn't happen or if this was the first insertion, don't 1097 // walk the table. 1098 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1099 Handles.size() == 1) { 1100 return; 1101 } 1102 1103 // Okay, reallocation did happen. Fix the Prev Pointers. 1104 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1105 E = Handles.end(); I != E; ++I) { 1106 assert(I->second && I->first == I->second->getValPtr() && 1107 "List invariant broken!"); 1108 I->second->setPrevPtr(&I->second); 1109 } 1110 } 1111 1112 void ValueHandleBase::RemoveFromUseList() { 1113 assert(getValPtr() && getValPtr()->HasValueHandle && 1114 "Pointer doesn't have a use list!"); 1115 1116 // Unlink this from its use list. 1117 ValueHandleBase **PrevPtr = getPrevPtr(); 1118 assert(*PrevPtr == this && "List invariant broken"); 1119 1120 *PrevPtr = Next; 1121 if (Next) { 1122 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1123 Next->setPrevPtr(PrevPtr); 1124 return; 1125 } 1126 1127 // If the Next pointer was null, then it is possible that this was the last 1128 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1129 // map. 1130 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1131 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1132 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1133 Handles.erase(getValPtr()); 1134 getValPtr()->HasValueHandle = false; 1135 } 1136 } 1137 1138 void ValueHandleBase::ValueIsDeleted(Value *V) { 1139 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1140 1141 // Get the linked list base, which is guaranteed to exist since the 1142 // HasValueHandle flag is set. 1143 LLVMContextImpl *pImpl = V->getContext().pImpl; 1144 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1145 assert(Entry && "Value bit set but no entries exist"); 1146 1147 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1148 // and remove themselves from the list without breaking our iteration. This 1149 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1150 // Note that we deliberately do not the support the case when dropping a value 1151 // handle results in a new value handle being permanently added to the list 1152 // (as might occur in theory for CallbackVH's): the new value handle will not 1153 // be processed and the checking code will mete out righteous punishment if 1154 // the handle is still present once we have finished processing all the other 1155 // value handles (it is fine to momentarily add then remove a value handle). 1156 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1157 Iterator.RemoveFromUseList(); 1158 Iterator.AddToExistingUseListAfter(Entry); 1159 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1160 1161 switch (Entry->getKind()) { 1162 case Assert: 1163 break; 1164 case Weak: 1165 case WeakTracking: 1166 // WeakTracking and Weak just go to null, which unlinks them 1167 // from the list. 1168 Entry->operator=(nullptr); 1169 break; 1170 case Callback: 1171 // Forward to the subclass's implementation. 1172 static_cast<CallbackVH*>(Entry)->deleted(); 1173 break; 1174 } 1175 } 1176 1177 // All callbacks, weak references, and assertingVHs should be dropped by now. 1178 if (V->HasValueHandle) { 1179 #ifndef NDEBUG // Only in +Asserts mode... 1180 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1181 << "\n"; 1182 if (pImpl->ValueHandles[V]->getKind() == Assert) 1183 llvm_unreachable("An asserting value handle still pointed to this" 1184 " value!"); 1185 1186 #endif 1187 llvm_unreachable("All references to V were not removed?"); 1188 } 1189 } 1190 1191 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1192 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1193 assert(Old != New && "Changing value into itself!"); 1194 assert(Old->getType() == New->getType() && 1195 "replaceAllUses of value with new value of different type!"); 1196 1197 // Get the linked list base, which is guaranteed to exist since the 1198 // HasValueHandle flag is set. 1199 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1200 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1201 1202 assert(Entry && "Value bit set but no entries exist"); 1203 1204 // We use a local ValueHandleBase as an iterator so that 1205 // ValueHandles can add and remove themselves from the list without 1206 // breaking our iteration. This is not really an AssertingVH; we 1207 // just have to give ValueHandleBase some kind. 1208 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1209 Iterator.RemoveFromUseList(); 1210 Iterator.AddToExistingUseListAfter(Entry); 1211 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1212 1213 switch (Entry->getKind()) { 1214 case Assert: 1215 case Weak: 1216 // Asserting and Weak handles do not follow RAUW implicitly. 1217 break; 1218 case WeakTracking: 1219 // Weak goes to the new value, which will unlink it from Old's list. 1220 Entry->operator=(New); 1221 break; 1222 case Callback: 1223 // Forward to the subclass's implementation. 1224 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1225 break; 1226 } 1227 } 1228 1229 #ifndef NDEBUG 1230 // If any new weak value handles were added while processing the 1231 // list, then complain about it now. 1232 if (Old->HasValueHandle) 1233 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1234 switch (Entry->getKind()) { 1235 case WeakTracking: 1236 dbgs() << "After RAUW from " << *Old->getType() << " %" 1237 << Old->getName() << " to " << *New->getType() << " %" 1238 << New->getName() << "\n"; 1239 llvm_unreachable( 1240 "A weak tracking value handle still pointed to the old value!\n"); 1241 default: 1242 break; 1243 } 1244 #endif 1245 } 1246 1247 // Pin the vtable to this file. 1248 void CallbackVH::anchor() {} 1249