1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/IR/Constant.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/InstrTypes.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/TypedPointerType.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 37 using namespace llvm; 38 39 static cl::opt<unsigned> UseDerefAtPointSemantics( 40 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 41 cl::desc("Deref attributes and metadata infer facts at definition only")); 42 43 //===----------------------------------------------------------------------===// 44 // Value Class 45 //===----------------------------------------------------------------------===// 46 static inline Type *checkType(Type *Ty) { 47 assert(Ty && "Value defined with a null type: Error!"); 48 assert(!isa<TypedPointerType>(Ty->getScalarType()) && 49 "Cannot have values with typed pointer types"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 55 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 56 IsUsedByMD(false), HasName(false), HasMetadata(false) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 unsigned OpCode = 0; 62 if (SubclassID >= InstructionVal) 63 OpCode = SubclassID - InstructionVal; 64 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || 65 OpCode == Instruction::CallBr) 66 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 67 "invalid CallBase type!"); 68 else if (SubclassID != BasicBlockVal && 69 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 70 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 71 "Cannot create non-first-class values except for constants!"); 72 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 73 "Value too big"); 74 } 75 76 Value::~Value() { 77 // Notify all ValueHandles (if present) that this value is going away. 78 if (HasValueHandle) 79 ValueHandleBase::ValueIsDeleted(this); 80 if (isUsedByMetadata()) 81 ValueAsMetadata::handleDeletion(this); 82 83 // Remove associated metadata from context. 84 if (HasMetadata) 85 clearMetadata(); 86 87 #ifndef NDEBUG // Only in -g mode... 88 // Check to make sure that there are no uses of this value that are still 89 // around when the value is destroyed. If there are, then we have a dangling 90 // reference and something is wrong. This code is here to print out where 91 // the value is still being referenced. 92 // 93 // Note that use_empty() cannot be called here, as it eventually downcasts 94 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 95 // been destructed, so accessing it is UB. 96 // 97 if (!materialized_use_empty()) { 98 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 99 for (auto *U : users()) 100 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 101 } 102 #endif 103 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 104 105 // If this value is named, destroy the name. This should not be in a symtab 106 // at this point. 107 destroyValueName(); 108 } 109 110 void Value::deleteValue() { 111 switch (getValueID()) { 112 #define HANDLE_VALUE(Name) \ 113 case Value::Name##Val: \ 114 delete static_cast<Name *>(this); \ 115 break; 116 #define HANDLE_MEMORY_VALUE(Name) \ 117 case Value::Name##Val: \ 118 static_cast<DerivedUser *>(this)->DeleteValue( \ 119 static_cast<DerivedUser *>(this)); \ 120 break; 121 #define HANDLE_CONSTANT(Name) \ 122 case Value::Name##Val: \ 123 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 124 break; 125 #define HANDLE_INSTRUCTION(Name) /* nothing */ 126 #include "llvm/IR/Value.def" 127 128 #define HANDLE_INST(N, OPC, CLASS) \ 129 case Value::InstructionVal + Instruction::OPC: \ 130 delete static_cast<CLASS *>(this); \ 131 break; 132 #define HANDLE_USER_INST(N, OPC, CLASS) 133 #include "llvm/IR/Instruction.def" 134 135 default: 136 llvm_unreachable("attempting to delete unknown value kind"); 137 } 138 } 139 140 void Value::destroyValueName() { 141 ValueName *Name = getValueName(); 142 if (Name) { 143 MallocAllocator Allocator; 144 Name->Destroy(Allocator); 145 } 146 setValueName(nullptr); 147 } 148 149 bool Value::hasNUses(unsigned N) const { 150 return hasNItems(use_begin(), use_end(), N); 151 } 152 153 bool Value::hasNUsesOrMore(unsigned N) const { 154 return hasNItemsOrMore(use_begin(), use_end(), N); 155 } 156 157 bool Value::hasOneUser() const { 158 if (use_empty()) 159 return false; 160 if (hasOneUse()) 161 return true; 162 return std::equal(++user_begin(), user_end(), user_begin()); 163 } 164 165 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 166 167 Use *Value::getSingleUndroppableUse() { 168 Use *Result = nullptr; 169 for (Use &U : uses()) { 170 if (!U.getUser()->isDroppable()) { 171 if (Result) 172 return nullptr; 173 Result = &U; 174 } 175 } 176 return Result; 177 } 178 179 User *Value::getUniqueUndroppableUser() { 180 User *Result = nullptr; 181 for (auto *U : users()) { 182 if (!U->isDroppable()) { 183 if (Result && Result != U) 184 return nullptr; 185 Result = U; 186 } 187 } 188 return Result; 189 } 190 191 bool Value::hasNUndroppableUses(unsigned int N) const { 192 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 193 } 194 195 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 196 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 197 } 198 199 void Value::dropDroppableUses( 200 llvm::function_ref<bool(const Use *)> ShouldDrop) { 201 SmallVector<Use *, 8> ToBeEdited; 202 for (Use &U : uses()) 203 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 204 ToBeEdited.push_back(&U); 205 for (Use *U : ToBeEdited) 206 dropDroppableUse(*U); 207 } 208 209 void Value::dropDroppableUsesIn(User &Usr) { 210 assert(Usr.isDroppable() && "Expected a droppable user!"); 211 for (Use &UsrOp : Usr.operands()) { 212 if (UsrOp.get() == this) 213 dropDroppableUse(UsrOp); 214 } 215 } 216 217 void Value::dropDroppableUse(Use &U) { 218 U.removeFromList(); 219 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 220 unsigned OpNo = U.getOperandNo(); 221 if (OpNo == 0) 222 U.set(ConstantInt::getTrue(Assume->getContext())); 223 else { 224 U.set(UndefValue::get(U.get()->getType())); 225 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 226 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 227 } 228 return; 229 } 230 231 llvm_unreachable("unkown droppable use"); 232 } 233 234 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 235 // This can be computed either by scanning the instructions in BB, or by 236 // scanning the use list of this Value. Both lists can be very long, but 237 // usually one is quite short. 238 // 239 // Scan both lists simultaneously until one is exhausted. This limits the 240 // search to the shorter list. 241 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 242 const_user_iterator UI = user_begin(), UE = user_end(); 243 for (; BI != BE && UI != UE; ++BI, ++UI) { 244 // Scan basic block: Check if this Value is used by the instruction at BI. 245 if (is_contained(BI->operands(), this)) 246 return true; 247 // Scan use list: Check if the use at UI is in BB. 248 const auto *User = dyn_cast<Instruction>(*UI); 249 if (User && User->getParent() == BB) 250 return true; 251 } 252 return false; 253 } 254 255 unsigned Value::getNumUses() const { 256 return (unsigned)std::distance(use_begin(), use_end()); 257 } 258 259 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 260 ST = nullptr; 261 if (Instruction *I = dyn_cast<Instruction>(V)) { 262 if (BasicBlock *P = I->getParent()) 263 if (Function *PP = P->getParent()) 264 ST = PP->getValueSymbolTable(); 265 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 266 if (Function *P = BB->getParent()) 267 ST = P->getValueSymbolTable(); 268 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 269 if (Module *P = GV->getParent()) 270 ST = &P->getValueSymbolTable(); 271 } else if (Argument *A = dyn_cast<Argument>(V)) { 272 if (Function *P = A->getParent()) 273 ST = P->getValueSymbolTable(); 274 } else { 275 assert(isa<Constant>(V) && "Unknown value type!"); 276 return true; // no name is setable for this. 277 } 278 return false; 279 } 280 281 ValueName *Value::getValueName() const { 282 if (!HasName) return nullptr; 283 284 LLVMContext &Ctx = getContext(); 285 auto I = Ctx.pImpl->ValueNames.find(this); 286 assert(I != Ctx.pImpl->ValueNames.end() && 287 "No name entry found!"); 288 289 return I->second; 290 } 291 292 void Value::setValueName(ValueName *VN) { 293 LLVMContext &Ctx = getContext(); 294 295 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 296 "HasName bit out of sync!"); 297 298 if (!VN) { 299 if (HasName) 300 Ctx.pImpl->ValueNames.erase(this); 301 HasName = false; 302 return; 303 } 304 305 HasName = true; 306 Ctx.pImpl->ValueNames[this] = VN; 307 } 308 309 StringRef Value::getName() const { 310 // Make sure the empty string is still a C string. For historical reasons, 311 // some clients want to call .data() on the result and expect it to be null 312 // terminated. 313 if (!hasName()) 314 return StringRef("", 0); 315 return getValueName()->getKey(); 316 } 317 318 void Value::setNameImpl(const Twine &NewName) { 319 bool NeedNewName = 320 !getContext().shouldDiscardValueNames() || isa<GlobalValue>(this); 321 322 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 323 // and there is no need to delete the old name. 324 if (!NeedNewName && !hasName()) 325 return; 326 327 // Fast path for common IRBuilder case of setName("") when there is no name. 328 if (NewName.isTriviallyEmpty() && !hasName()) 329 return; 330 331 SmallString<256> NameData; 332 StringRef NameRef = NeedNewName ? NewName.toStringRef(NameData) : ""; 333 assert(NameRef.find_first_of(0) == StringRef::npos && 334 "Null bytes are not allowed in names"); 335 336 // Name isn't changing? 337 if (getName() == NameRef) 338 return; 339 340 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 341 342 // Get the symbol table to update for this object. 343 ValueSymbolTable *ST; 344 if (getSymTab(this, ST)) 345 return; // Cannot set a name on this value (e.g. constant). 346 347 if (!ST) { // No symbol table to update? Just do the change. 348 // NOTE: Could optimize for the case the name is shrinking to not deallocate 349 // then reallocated. 350 destroyValueName(); 351 352 if (!NameRef.empty()) { 353 // Create the new name. 354 assert(NeedNewName); 355 MallocAllocator Allocator; 356 setValueName(ValueName::create(NameRef, Allocator)); 357 getValueName()->setValue(this); 358 } 359 return; 360 } 361 362 // NOTE: Could optimize for the case the name is shrinking to not deallocate 363 // then reallocated. 364 if (hasName()) { 365 // Remove old name. 366 ST->removeValueName(getValueName()); 367 destroyValueName(); 368 369 if (NameRef.empty()) 370 return; 371 } 372 373 // Name is changing to something new. 374 assert(NeedNewName); 375 setValueName(ST->createValueName(NameRef, this)); 376 } 377 378 void Value::setName(const Twine &NewName) { 379 setNameImpl(NewName); 380 if (Function *F = dyn_cast<Function>(this)) 381 F->recalculateIntrinsicID(); 382 } 383 384 void Value::takeName(Value *V) { 385 assert(V != this && "Illegal call to this->takeName(this)!"); 386 ValueSymbolTable *ST = nullptr; 387 // If this value has a name, drop it. 388 if (hasName()) { 389 // Get the symtab this is in. 390 if (getSymTab(this, ST)) { 391 // We can't set a name on this value, but we need to clear V's name if 392 // it has one. 393 if (V->hasName()) V->setName(""); 394 return; // Cannot set a name on this value (e.g. constant). 395 } 396 397 // Remove old name. 398 if (ST) 399 ST->removeValueName(getValueName()); 400 destroyValueName(); 401 } 402 403 // Now we know that this has no name. 404 405 // If V has no name either, we're done. 406 if (!V->hasName()) return; 407 408 // Get this's symtab if we didn't before. 409 if (!ST) { 410 if (getSymTab(this, ST)) { 411 // Clear V's name. 412 V->setName(""); 413 return; // Cannot set a name on this value (e.g. constant). 414 } 415 } 416 417 // Get V's ST, this should always succeed, because V has a name. 418 ValueSymbolTable *VST; 419 bool Failure = getSymTab(V, VST); 420 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 421 422 // If these values are both in the same symtab, we can do this very fast. 423 // This works even if both values have no symtab yet. 424 if (ST == VST) { 425 // Take the name! 426 setValueName(V->getValueName()); 427 V->setValueName(nullptr); 428 getValueName()->setValue(this); 429 return; 430 } 431 432 // Otherwise, things are slightly more complex. Remove V's name from VST and 433 // then reinsert it into ST. 434 435 if (VST) 436 VST->removeValueName(V->getValueName()); 437 setValueName(V->getValueName()); 438 V->setValueName(nullptr); 439 getValueName()->setValue(this); 440 441 if (ST) 442 ST->reinsertValue(this); 443 } 444 445 #ifndef NDEBUG 446 std::string Value::getNameOrAsOperand() const { 447 if (!getName().empty()) 448 return std::string(getName()); 449 450 std::string BBName; 451 raw_string_ostream OS(BBName); 452 printAsOperand(OS, false); 453 return OS.str(); 454 } 455 #endif 456 457 void Value::assertModuleIsMaterializedImpl() const { 458 #ifndef NDEBUG 459 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 460 if (!GV) 461 return; 462 const Module *M = GV->getParent(); 463 if (!M) 464 return; 465 assert(M->isMaterialized()); 466 #endif 467 } 468 469 #ifndef NDEBUG 470 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 471 Constant *C) { 472 if (!Cache.insert(Expr).second) 473 return false; 474 475 for (auto &O : Expr->operands()) { 476 if (O == C) 477 return true; 478 auto *CE = dyn_cast<ConstantExpr>(O); 479 if (!CE) 480 continue; 481 if (contains(Cache, CE, C)) 482 return true; 483 } 484 return false; 485 } 486 487 static bool contains(Value *Expr, Value *V) { 488 if (Expr == V) 489 return true; 490 491 auto *C = dyn_cast<Constant>(V); 492 if (!C) 493 return false; 494 495 auto *CE = dyn_cast<ConstantExpr>(Expr); 496 if (!CE) 497 return false; 498 499 SmallPtrSet<ConstantExpr *, 4> Cache; 500 return contains(Cache, CE, C); 501 } 502 #endif // NDEBUG 503 504 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 505 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 506 assert(!contains(New, this) && 507 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 508 assert(New->getType() == getType() && 509 "replaceAllUses of value with new value of different type!"); 510 511 // Notify all ValueHandles (if present) that this value is going away. 512 if (HasValueHandle) 513 ValueHandleBase::ValueIsRAUWd(this, New); 514 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 515 ValueAsMetadata::handleRAUW(this, New); 516 517 while (!materialized_use_empty()) { 518 Use &U = *UseList; 519 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 520 // constant because they are uniqued. 521 if (auto *C = dyn_cast<Constant>(U.getUser())) { 522 if (!isa<GlobalValue>(C)) { 523 C->handleOperandChange(this, New); 524 continue; 525 } 526 } 527 528 U.set(New); 529 } 530 531 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 532 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 533 } 534 535 void Value::replaceAllUsesWith(Value *New) { 536 doRAUW(New, ReplaceMetadataUses::Yes); 537 } 538 539 void Value::replaceNonMetadataUsesWith(Value *New) { 540 doRAUW(New, ReplaceMetadataUses::No); 541 } 542 543 void Value::replaceUsesWithIf(Value *New, 544 llvm::function_ref<bool(Use &U)> ShouldReplace) { 545 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 546 assert(New->getType() == getType() && 547 "replaceUses of value with new value of different type!"); 548 549 SmallVector<TrackingVH<Constant>, 8> Consts; 550 SmallPtrSet<Constant *, 8> Visited; 551 552 for (Use &U : llvm::make_early_inc_range(uses())) { 553 if (!ShouldReplace(U)) 554 continue; 555 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 556 // constant because they are uniqued. 557 if (auto *C = dyn_cast<Constant>(U.getUser())) { 558 if (!isa<GlobalValue>(C)) { 559 if (Visited.insert(C).second) 560 Consts.push_back(TrackingVH<Constant>(C)); 561 continue; 562 } 563 } 564 U.set(New); 565 } 566 567 while (!Consts.empty()) { 568 // FIXME: handleOperandChange() updates all the uses in a given Constant, 569 // not just the one passed to ShouldReplace 570 Consts.pop_back_val()->handleOperandChange(this, New); 571 } 572 } 573 574 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 575 /// with New. 576 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 577 SmallVector<DbgVariableIntrinsic *> DbgUsers; 578 findDbgUsers(DbgUsers, V); 579 for (auto *DVI : DbgUsers) { 580 if (DVI->getParent() != BB) 581 DVI->replaceVariableLocationOp(V, New); 582 } 583 } 584 585 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 586 // This routine leaves uses within BB. 587 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 588 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 589 assert(!contains(New, this) && 590 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 591 assert(New->getType() == getType() && 592 "replaceUses of value with new value of different type!"); 593 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 594 595 replaceDbgUsesOutsideBlock(this, New, BB); 596 replaceUsesWithIf(New, [BB](Use &U) { 597 auto *I = dyn_cast<Instruction>(U.getUser()); 598 // Don't replace if it's an instruction in the BB basic block. 599 return !I || I->getParent() != BB; 600 }); 601 } 602 603 namespace { 604 // Various metrics for how much to strip off of pointers. 605 enum PointerStripKind { 606 PSK_ZeroIndices, 607 PSK_ZeroIndicesAndAliases, 608 PSK_ZeroIndicesSameRepresentation, 609 PSK_ForAliasAnalysis, 610 PSK_InBoundsConstantIndices, 611 PSK_InBounds 612 }; 613 614 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 615 616 template <PointerStripKind StripKind> 617 static const Value *stripPointerCastsAndOffsets( 618 const Value *V, 619 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 620 if (!V->getType()->isPointerTy()) 621 return V; 622 623 // Even though we don't look through PHI nodes, we could be called on an 624 // instruction in an unreachable block, which may be on a cycle. 625 SmallPtrSet<const Value *, 4> Visited; 626 627 Visited.insert(V); 628 do { 629 Func(V); 630 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 631 switch (StripKind) { 632 case PSK_ZeroIndices: 633 case PSK_ZeroIndicesAndAliases: 634 case PSK_ZeroIndicesSameRepresentation: 635 case PSK_ForAliasAnalysis: 636 if (!GEP->hasAllZeroIndices()) 637 return V; 638 break; 639 case PSK_InBoundsConstantIndices: 640 if (!GEP->hasAllConstantIndices()) 641 return V; 642 [[fallthrough]]; 643 case PSK_InBounds: 644 if (!GEP->isInBounds()) 645 return V; 646 break; 647 } 648 V = GEP->getPointerOperand(); 649 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 650 V = cast<Operator>(V)->getOperand(0); 651 if (!V->getType()->isPointerTy()) 652 return V; 653 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 654 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 655 // TODO: If we know an address space cast will not change the 656 // representation we could look through it here as well. 657 V = cast<Operator>(V)->getOperand(0); 658 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 659 V = cast<GlobalAlias>(V)->getAliasee(); 660 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 661 cast<PHINode>(V)->getNumIncomingValues() == 1) { 662 V = cast<PHINode>(V)->getIncomingValue(0); 663 } else { 664 if (const auto *Call = dyn_cast<CallBase>(V)) { 665 if (const Value *RV = Call->getReturnedArgOperand()) { 666 V = RV; 667 continue; 668 } 669 // The result of launder.invariant.group must alias it's argument, 670 // but it can't be marked with returned attribute, that's why it needs 671 // special case. 672 if (StripKind == PSK_ForAliasAnalysis && 673 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 674 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 675 V = Call->getArgOperand(0); 676 continue; 677 } 678 } 679 return V; 680 } 681 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 682 } while (Visited.insert(V).second); 683 684 return V; 685 } 686 } // end anonymous namespace 687 688 const Value *Value::stripPointerCasts() const { 689 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 690 } 691 692 const Value *Value::stripPointerCastsAndAliases() const { 693 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 694 } 695 696 const Value *Value::stripPointerCastsSameRepresentation() const { 697 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 698 } 699 700 const Value *Value::stripInBoundsConstantOffsets() const { 701 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 702 } 703 704 const Value *Value::stripPointerCastsForAliasAnalysis() const { 705 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 706 } 707 708 const Value *Value::stripAndAccumulateConstantOffsets( 709 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 710 bool AllowInvariantGroup, 711 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 712 if (!getType()->isPtrOrPtrVectorTy()) 713 return this; 714 715 unsigned BitWidth = Offset.getBitWidth(); 716 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 717 "The offset bit width does not match the DL specification."); 718 719 // Even though we don't look through PHI nodes, we could be called on an 720 // instruction in an unreachable block, which may be on a cycle. 721 SmallPtrSet<const Value *, 4> Visited; 722 Visited.insert(this); 723 const Value *V = this; 724 do { 725 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 726 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 727 if (!AllowNonInbounds && !GEP->isInBounds()) 728 return V; 729 730 // If one of the values we have visited is an addrspacecast, then 731 // the pointer type of this GEP may be different from the type 732 // of the Ptr parameter which was passed to this function. This 733 // means when we construct GEPOffset, we need to use the size 734 // of GEP's pointer type rather than the size of the original 735 // pointer type. 736 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 737 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 738 return V; 739 740 // Stop traversal if the pointer offset wouldn't fit in the bit-width 741 // provided by the Offset argument. This can happen due to AddrSpaceCast 742 // stripping. 743 if (GEPOffset.getSignificantBits() > BitWidth) 744 return V; 745 746 // External Analysis can return a result higher/lower than the value 747 // represents. We need to detect overflow/underflow. 748 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 749 if (!ExternalAnalysis) { 750 Offset += GEPOffsetST; 751 } else { 752 bool Overflow = false; 753 APInt OldOffset = Offset; 754 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 755 if (Overflow) { 756 Offset = OldOffset; 757 return V; 758 } 759 } 760 V = GEP->getPointerOperand(); 761 } else if (Operator::getOpcode(V) == Instruction::BitCast || 762 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 763 V = cast<Operator>(V)->getOperand(0); 764 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 765 if (!GA->isInterposable()) 766 V = GA->getAliasee(); 767 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 768 if (const Value *RV = Call->getReturnedArgOperand()) 769 V = RV; 770 if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) 771 V = Call->getArgOperand(0); 772 } 773 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 774 } while (Visited.insert(V).second); 775 776 return V; 777 } 778 779 const Value * 780 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 781 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 782 } 783 784 bool Value::canBeFreed() const { 785 assert(getType()->isPointerTy()); 786 787 // Cases that can simply never be deallocated 788 // *) Constants aren't allocated per se, thus not deallocated either. 789 if (isa<Constant>(this)) 790 return false; 791 792 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 793 // lifetime is guaranteed to be longer than the callee's lifetime. 794 if (auto *A = dyn_cast<Argument>(this)) { 795 if (A->hasPointeeInMemoryValueAttr()) 796 return false; 797 // A pointer to an object in a function which neither frees, nor can arrange 798 // for another thread to free on its behalf, can not be freed in the scope 799 // of the function. Note that this logic is restricted to memory 800 // allocations in existance before the call; a nofree function *is* allowed 801 // to free memory it allocated. 802 const Function *F = A->getParent(); 803 if (F->doesNotFreeMemory() && F->hasNoSync()) 804 return false; 805 } 806 807 const Function *F = nullptr; 808 if (auto *I = dyn_cast<Instruction>(this)) 809 F = I->getFunction(); 810 if (auto *A = dyn_cast<Argument>(this)) 811 F = A->getParent(); 812 813 if (!F) 814 return true; 815 816 // With garbage collection, deallocation typically occurs solely at or after 817 // safepoints. If we're compiling for a collector which uses the 818 // gc.statepoint infrastructure, safepoints aren't explicitly present 819 // in the IR until after lowering from abstract to physical machine model. 820 // The collector could chose to mix explicit deallocation and gc'd objects 821 // which is why we need the explicit opt in on a per collector basis. 822 if (!F->hasGC()) 823 return true; 824 825 const auto &GCName = F->getGC(); 826 if (GCName == "statepoint-example") { 827 auto *PT = cast<PointerType>(this->getType()); 828 if (PT->getAddressSpace() != 1) 829 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 830 // our GC managed heap. This must match the same check in 831 // RewriteStatepointsForGC (and probably needs better factored.) 832 return true; 833 834 // It is cheaper to scan for a declaration than to scan for a use in this 835 // function. Note that gc.statepoint is a type overloaded function so the 836 // usual trick of requesting declaration of the intrinsic from the module 837 // doesn't work. 838 for (auto &Fn : *F->getParent()) 839 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 840 return true; 841 return false; 842 } 843 return true; 844 } 845 846 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 847 bool &CanBeNull, 848 bool &CanBeFreed) const { 849 assert(getType()->isPointerTy() && "must be pointer"); 850 851 uint64_t DerefBytes = 0; 852 CanBeNull = false; 853 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 854 if (const Argument *A = dyn_cast<Argument>(this)) { 855 DerefBytes = A->getDereferenceableBytes(); 856 if (DerefBytes == 0) { 857 // Handle byval/byref/inalloca/preallocated arguments 858 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 859 if (ArgMemTy->isSized()) { 860 // FIXME: Why isn't this the type alloc size? 861 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinValue(); 862 } 863 } 864 } 865 866 if (DerefBytes == 0) { 867 DerefBytes = A->getDereferenceableOrNullBytes(); 868 CanBeNull = true; 869 } 870 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 871 DerefBytes = Call->getRetDereferenceableBytes(); 872 if (DerefBytes == 0) { 873 DerefBytes = Call->getRetDereferenceableOrNullBytes(); 874 CanBeNull = true; 875 } 876 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 877 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 878 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 879 DerefBytes = CI->getLimitedValue(); 880 } 881 if (DerefBytes == 0) { 882 if (MDNode *MD = 883 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 884 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 885 DerefBytes = CI->getLimitedValue(); 886 } 887 CanBeNull = true; 888 } 889 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 890 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 891 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 892 DerefBytes = CI->getLimitedValue(); 893 } 894 if (DerefBytes == 0) { 895 if (MDNode *MD = 896 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 897 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 898 DerefBytes = CI->getLimitedValue(); 899 } 900 CanBeNull = true; 901 } 902 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 903 if (!AI->isArrayAllocation()) { 904 DerefBytes = 905 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinValue(); 906 CanBeNull = false; 907 CanBeFreed = false; 908 } 909 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 910 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 911 // TODO: Don't outright reject hasExternalWeakLinkage but set the 912 // CanBeNull flag. 913 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedValue(); 914 CanBeNull = false; 915 CanBeFreed = false; 916 } 917 } 918 return DerefBytes; 919 } 920 921 Align Value::getPointerAlignment(const DataLayout &DL) const { 922 assert(getType()->isPointerTy() && "must be pointer"); 923 if (auto *GO = dyn_cast<GlobalObject>(this)) { 924 if (isa<Function>(GO)) { 925 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 926 switch (DL.getFunctionPtrAlignType()) { 927 case DataLayout::FunctionPtrAlignType::Independent: 928 return FunctionPtrAlign; 929 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 930 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 931 } 932 llvm_unreachable("Unhandled FunctionPtrAlignType"); 933 } 934 const MaybeAlign Alignment(GO->getAlign()); 935 if (!Alignment) { 936 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 937 Type *ObjectType = GVar->getValueType(); 938 if (ObjectType->isSized()) { 939 // If the object is defined in the current Module, we'll be giving 940 // it the preferred alignment. Otherwise, we have to assume that it 941 // may only have the minimum ABI alignment. 942 if (GVar->isStrongDefinitionForLinker()) 943 return DL.getPreferredAlign(GVar); 944 else 945 return DL.getABITypeAlign(ObjectType); 946 } 947 } 948 } 949 return Alignment.valueOrOne(); 950 } else if (const Argument *A = dyn_cast<Argument>(this)) { 951 const MaybeAlign Alignment = A->getParamAlign(); 952 if (!Alignment && A->hasStructRetAttr()) { 953 // An sret parameter has at least the ABI alignment of the return type. 954 Type *EltTy = A->getParamStructRetType(); 955 if (EltTy->isSized()) 956 return DL.getABITypeAlign(EltTy); 957 } 958 return Alignment.valueOrOne(); 959 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 960 return AI->getAlign(); 961 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 962 MaybeAlign Alignment = Call->getRetAlign(); 963 if (!Alignment && Call->getCalledFunction()) 964 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 965 return Alignment.valueOrOne(); 966 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 967 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 968 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 969 return Align(CI->getLimitedValue()); 970 } 971 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 972 // Strip pointer casts to avoid creating unnecessary ptrtoint expression 973 // if the only "reduction" is combining a bitcast + ptrtoint. 974 CstPtr = CstPtr->stripPointerCasts(); 975 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 976 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 977 /*OnlyIfReduced=*/true))) { 978 size_t TrailingZeros = CstInt->getValue().countr_zero(); 979 // While the actual alignment may be large, elsewhere we have 980 // an arbitrary upper alignmet limit, so let's clamp to it. 981 return Align(TrailingZeros < Value::MaxAlignmentExponent 982 ? uint64_t(1) << TrailingZeros 983 : Value::MaximumAlignment); 984 } 985 } 986 return Align(1); 987 } 988 989 static std::optional<int64_t> 990 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 991 // Skip over the first indices. 992 gep_type_iterator GTI = gep_type_begin(GEP); 993 for (unsigned i = 1; i != Idx; ++i, ++GTI) 994 /*skip along*/; 995 996 // Compute the offset implied by the rest of the indices. 997 int64_t Offset = 0; 998 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 999 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1000 if (!OpC) 1001 return std::nullopt; 1002 if (OpC->isZero()) 1003 continue; // No offset. 1004 1005 // Handle struct indices, which add their field offset to the pointer. 1006 if (StructType *STy = GTI.getStructTypeOrNull()) { 1007 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1008 continue; 1009 } 1010 1011 // Otherwise, we have a sequential type like an array or fixed-length 1012 // vector. Multiply the index by the ElementSize. 1013 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 1014 if (Size.isScalable()) 1015 return std::nullopt; 1016 Offset += Size.getFixedValue() * OpC->getSExtValue(); 1017 } 1018 1019 return Offset; 1020 } 1021 1022 std::optional<int64_t> Value::getPointerOffsetFrom(const Value *Other, 1023 const DataLayout &DL) const { 1024 const Value *Ptr1 = Other; 1025 const Value *Ptr2 = this; 1026 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); 1027 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); 1028 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); 1029 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); 1030 1031 // Handle the trivial case first. 1032 if (Ptr1 == Ptr2) 1033 return Offset2.getSExtValue() - Offset1.getSExtValue(); 1034 1035 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 1036 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 1037 1038 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 1039 // base. After that base, they may have some number of common (and 1040 // potentially variable) indices. After that they handle some constant 1041 // offset, which determines their offset from each other. At this point, we 1042 // handle no other case. 1043 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 1044 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 1045 return std::nullopt; 1046 1047 // Skip any common indices and track the GEP types. 1048 unsigned Idx = 1; 1049 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 1050 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 1051 break; 1052 1053 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); 1054 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); 1055 if (!IOffset1 || !IOffset2) 1056 return std::nullopt; 1057 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - 1058 Offset1.getSExtValue(); 1059 } 1060 1061 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 1062 const BasicBlock *PredBB) const { 1063 auto *PN = dyn_cast<PHINode>(this); 1064 if (PN && PN->getParent() == CurBB) 1065 return PN->getIncomingValueForBlock(PredBB); 1066 return this; 1067 } 1068 1069 LLVMContext &Value::getContext() const { return VTy->getContext(); } 1070 1071 void Value::reverseUseList() { 1072 if (!UseList || !UseList->Next) 1073 // No need to reverse 0 or 1 uses. 1074 return; 1075 1076 Use *Head = UseList; 1077 Use *Current = UseList->Next; 1078 Head->Next = nullptr; 1079 while (Current) { 1080 Use *Next = Current->Next; 1081 Current->Next = Head; 1082 Head->Prev = &Current->Next; 1083 Head = Current; 1084 Current = Next; 1085 } 1086 UseList = Head; 1087 Head->Prev = &UseList; 1088 } 1089 1090 bool Value::isSwiftError() const { 1091 auto *Arg = dyn_cast<Argument>(this); 1092 if (Arg) 1093 return Arg->hasSwiftErrorAttr(); 1094 auto *Alloca = dyn_cast<AllocaInst>(this); 1095 if (!Alloca) 1096 return false; 1097 return Alloca->isSwiftError(); 1098 } 1099 1100 //===----------------------------------------------------------------------===// 1101 // ValueHandleBase Class 1102 //===----------------------------------------------------------------------===// 1103 1104 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1105 assert(List && "Handle list is null?"); 1106 1107 // Splice ourselves into the list. 1108 Next = *List; 1109 *List = this; 1110 setPrevPtr(List); 1111 if (Next) { 1112 Next->setPrevPtr(&Next); 1113 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1114 } 1115 } 1116 1117 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1118 assert(List && "Must insert after existing node"); 1119 1120 Next = List->Next; 1121 setPrevPtr(&List->Next); 1122 List->Next = this; 1123 if (Next) 1124 Next->setPrevPtr(&Next); 1125 } 1126 1127 void ValueHandleBase::AddToUseList() { 1128 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1129 1130 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1131 1132 if (getValPtr()->HasValueHandle) { 1133 // If this value already has a ValueHandle, then it must be in the 1134 // ValueHandles map already. 1135 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1136 assert(Entry && "Value doesn't have any handles?"); 1137 AddToExistingUseList(&Entry); 1138 return; 1139 } 1140 1141 // Ok, it doesn't have any handles yet, so we must insert it into the 1142 // DenseMap. However, doing this insertion could cause the DenseMap to 1143 // reallocate itself, which would invalidate all of the PrevP pointers that 1144 // point into the old table. Handle this by checking for reallocation and 1145 // updating the stale pointers only if needed. 1146 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1147 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1148 1149 ValueHandleBase *&Entry = Handles[getValPtr()]; 1150 assert(!Entry && "Value really did already have handles?"); 1151 AddToExistingUseList(&Entry); 1152 getValPtr()->HasValueHandle = true; 1153 1154 // If reallocation didn't happen or if this was the first insertion, don't 1155 // walk the table. 1156 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1157 Handles.size() == 1) { 1158 return; 1159 } 1160 1161 // Okay, reallocation did happen. Fix the Prev Pointers. 1162 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1163 E = Handles.end(); I != E; ++I) { 1164 assert(I->second && I->first == I->second->getValPtr() && 1165 "List invariant broken!"); 1166 I->second->setPrevPtr(&I->second); 1167 } 1168 } 1169 1170 void ValueHandleBase::RemoveFromUseList() { 1171 assert(getValPtr() && getValPtr()->HasValueHandle && 1172 "Pointer doesn't have a use list!"); 1173 1174 // Unlink this from its use list. 1175 ValueHandleBase **PrevPtr = getPrevPtr(); 1176 assert(*PrevPtr == this && "List invariant broken"); 1177 1178 *PrevPtr = Next; 1179 if (Next) { 1180 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1181 Next->setPrevPtr(PrevPtr); 1182 return; 1183 } 1184 1185 // If the Next pointer was null, then it is possible that this was the last 1186 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1187 // map. 1188 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1189 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1190 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1191 Handles.erase(getValPtr()); 1192 getValPtr()->HasValueHandle = false; 1193 } 1194 } 1195 1196 void ValueHandleBase::ValueIsDeleted(Value *V) { 1197 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1198 1199 // Get the linked list base, which is guaranteed to exist since the 1200 // HasValueHandle flag is set. 1201 LLVMContextImpl *pImpl = V->getContext().pImpl; 1202 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1203 assert(Entry && "Value bit set but no entries exist"); 1204 1205 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1206 // and remove themselves from the list without breaking our iteration. This 1207 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1208 // Note that we deliberately do not the support the case when dropping a value 1209 // handle results in a new value handle being permanently added to the list 1210 // (as might occur in theory for CallbackVH's): the new value handle will not 1211 // be processed and the checking code will mete out righteous punishment if 1212 // the handle is still present once we have finished processing all the other 1213 // value handles (it is fine to momentarily add then remove a value handle). 1214 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1215 Iterator.RemoveFromUseList(); 1216 Iterator.AddToExistingUseListAfter(Entry); 1217 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1218 1219 switch (Entry->getKind()) { 1220 case Assert: 1221 break; 1222 case Weak: 1223 case WeakTracking: 1224 // WeakTracking and Weak just go to null, which unlinks them 1225 // from the list. 1226 Entry->operator=(nullptr); 1227 break; 1228 case Callback: 1229 // Forward to the subclass's implementation. 1230 static_cast<CallbackVH*>(Entry)->deleted(); 1231 break; 1232 } 1233 } 1234 1235 // All callbacks, weak references, and assertingVHs should be dropped by now. 1236 if (V->HasValueHandle) { 1237 #ifndef NDEBUG // Only in +Asserts mode... 1238 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1239 << "\n"; 1240 if (pImpl->ValueHandles[V]->getKind() == Assert) 1241 llvm_unreachable("An asserting value handle still pointed to this" 1242 " value!"); 1243 1244 #endif 1245 llvm_unreachable("All references to V were not removed?"); 1246 } 1247 } 1248 1249 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1250 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1251 assert(Old != New && "Changing value into itself!"); 1252 assert(Old->getType() == New->getType() && 1253 "replaceAllUses of value with new value of different type!"); 1254 1255 // Get the linked list base, which is guaranteed to exist since the 1256 // HasValueHandle flag is set. 1257 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1258 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1259 1260 assert(Entry && "Value bit set but no entries exist"); 1261 1262 // We use a local ValueHandleBase as an iterator so that 1263 // ValueHandles can add and remove themselves from the list without 1264 // breaking our iteration. This is not really an AssertingVH; we 1265 // just have to give ValueHandleBase some kind. 1266 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1267 Iterator.RemoveFromUseList(); 1268 Iterator.AddToExistingUseListAfter(Entry); 1269 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1270 1271 switch (Entry->getKind()) { 1272 case Assert: 1273 case Weak: 1274 // Asserting and Weak handles do not follow RAUW implicitly. 1275 break; 1276 case WeakTracking: 1277 // Weak goes to the new value, which will unlink it from Old's list. 1278 Entry->operator=(New); 1279 break; 1280 case Callback: 1281 // Forward to the subclass's implementation. 1282 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1283 break; 1284 } 1285 } 1286 1287 #ifndef NDEBUG 1288 // If any new weak value handles were added while processing the 1289 // list, then complain about it now. 1290 if (Old->HasValueHandle) 1291 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1292 switch (Entry->getKind()) { 1293 case WeakTracking: 1294 dbgs() << "After RAUW from " << *Old->getType() << " %" 1295 << Old->getName() << " to " << *New->getType() << " %" 1296 << New->getName() << "\n"; 1297 llvm_unreachable( 1298 "A weak tracking value handle still pointed to the old value!\n"); 1299 default: 1300 break; 1301 } 1302 #endif 1303 } 1304 1305 // Pin the vtable to this file. 1306 void CallbackVH::anchor() {} 1307