1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/DerivedUser.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 static cl::opt<unsigned> UseDerefAtPointSemantics( 42 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 43 cl::desc("Deref attributes and metadata infer facts at definition only")); 44 45 //===----------------------------------------------------------------------===// 46 // Value Class 47 //===----------------------------------------------------------------------===// 48 static inline Type *checkType(Type *Ty) { 49 assert(Ty && "Value defined with a null type: Error!"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 55 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 56 IsUsedByMD(false), HasName(false), HasMetadata(false) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 unsigned OpCode = 0; 62 if (SubclassID >= InstructionVal) 63 OpCode = SubclassID - InstructionVal; 64 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || 65 OpCode == Instruction::CallBr) 66 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 67 "invalid CallBase type!"); 68 else if (SubclassID != BasicBlockVal && 69 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 70 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 71 "Cannot create non-first-class values except for constants!"); 72 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 73 "Value too big"); 74 } 75 76 Value::~Value() { 77 // Notify all ValueHandles (if present) that this value is going away. 78 if (HasValueHandle) 79 ValueHandleBase::ValueIsDeleted(this); 80 if (isUsedByMetadata()) 81 ValueAsMetadata::handleDeletion(this); 82 83 // Remove associated metadata from context. 84 if (HasMetadata) 85 clearMetadata(); 86 87 #ifndef NDEBUG // Only in -g mode... 88 // Check to make sure that there are no uses of this value that are still 89 // around when the value is destroyed. If there are, then we have a dangling 90 // reference and something is wrong. This code is here to print out where 91 // the value is still being referenced. 92 // 93 // Note that use_empty() cannot be called here, as it eventually downcasts 94 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 95 // been destructed, so accessing it is UB. 96 // 97 if (!materialized_use_empty()) { 98 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 99 for (auto *U : users()) 100 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 101 } 102 #endif 103 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 104 105 // If this value is named, destroy the name. This should not be in a symtab 106 // at this point. 107 destroyValueName(); 108 } 109 110 void Value::deleteValue() { 111 switch (getValueID()) { 112 #define HANDLE_VALUE(Name) \ 113 case Value::Name##Val: \ 114 delete static_cast<Name *>(this); \ 115 break; 116 #define HANDLE_MEMORY_VALUE(Name) \ 117 case Value::Name##Val: \ 118 static_cast<DerivedUser *>(this)->DeleteValue( \ 119 static_cast<DerivedUser *>(this)); \ 120 break; 121 #define HANDLE_CONSTANT(Name) \ 122 case Value::Name##Val: \ 123 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 124 break; 125 #define HANDLE_INSTRUCTION(Name) /* nothing */ 126 #include "llvm/IR/Value.def" 127 128 #define HANDLE_INST(N, OPC, CLASS) \ 129 case Value::InstructionVal + Instruction::OPC: \ 130 delete static_cast<CLASS *>(this); \ 131 break; 132 #define HANDLE_USER_INST(N, OPC, CLASS) 133 #include "llvm/IR/Instruction.def" 134 135 default: 136 llvm_unreachable("attempting to delete unknown value kind"); 137 } 138 } 139 140 void Value::destroyValueName() { 141 ValueName *Name = getValueName(); 142 if (Name) { 143 MallocAllocator Allocator; 144 Name->Destroy(Allocator); 145 } 146 setValueName(nullptr); 147 } 148 149 bool Value::hasNUses(unsigned N) const { 150 return hasNItems(use_begin(), use_end(), N); 151 } 152 153 bool Value::hasNUsesOrMore(unsigned N) const { 154 return hasNItemsOrMore(use_begin(), use_end(), N); 155 } 156 157 bool Value::hasOneUser() const { 158 if (use_empty()) 159 return false; 160 if (hasOneUse()) 161 return true; 162 return std::equal(++user_begin(), user_end(), user_begin()); 163 } 164 165 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 166 167 Use *Value::getSingleUndroppableUse() { 168 Use *Result = nullptr; 169 for (Use &U : uses()) { 170 if (!U.getUser()->isDroppable()) { 171 if (Result) 172 return nullptr; 173 Result = &U; 174 } 175 } 176 return Result; 177 } 178 179 bool Value::hasNUndroppableUses(unsigned int N) const { 180 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 181 } 182 183 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 184 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 185 } 186 187 void Value::dropDroppableUses( 188 llvm::function_ref<bool(const Use *)> ShouldDrop) { 189 SmallVector<Use *, 8> ToBeEdited; 190 for (Use &U : uses()) 191 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 192 ToBeEdited.push_back(&U); 193 for (Use *U : ToBeEdited) 194 dropDroppableUse(*U); 195 } 196 197 void Value::dropDroppableUsesIn(User &Usr) { 198 assert(Usr.isDroppable() && "Expected a droppable user!"); 199 for (Use &UsrOp : Usr.operands()) { 200 if (UsrOp.get() == this) 201 dropDroppableUse(UsrOp); 202 } 203 } 204 205 void Value::dropDroppableUse(Use &U) { 206 U.removeFromList(); 207 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 208 unsigned OpNo = U.getOperandNo(); 209 if (OpNo == 0) 210 U.set(ConstantInt::getTrue(Assume->getContext())); 211 else { 212 U.set(UndefValue::get(U.get()->getType())); 213 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 214 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 215 } 216 return; 217 } 218 219 llvm_unreachable("unkown droppable use"); 220 } 221 222 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 223 // This can be computed either by scanning the instructions in BB, or by 224 // scanning the use list of this Value. Both lists can be very long, but 225 // usually one is quite short. 226 // 227 // Scan both lists simultaneously until one is exhausted. This limits the 228 // search to the shorter list. 229 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 230 const_user_iterator UI = user_begin(), UE = user_end(); 231 for (; BI != BE && UI != UE; ++BI, ++UI) { 232 // Scan basic block: Check if this Value is used by the instruction at BI. 233 if (is_contained(BI->operands(), this)) 234 return true; 235 // Scan use list: Check if the use at UI is in BB. 236 const auto *User = dyn_cast<Instruction>(*UI); 237 if (User && User->getParent() == BB) 238 return true; 239 } 240 return false; 241 } 242 243 unsigned Value::getNumUses() const { 244 return (unsigned)std::distance(use_begin(), use_end()); 245 } 246 247 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 248 ST = nullptr; 249 if (Instruction *I = dyn_cast<Instruction>(V)) { 250 if (BasicBlock *P = I->getParent()) 251 if (Function *PP = P->getParent()) 252 ST = PP->getValueSymbolTable(); 253 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 254 if (Function *P = BB->getParent()) 255 ST = P->getValueSymbolTable(); 256 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 257 if (Module *P = GV->getParent()) 258 ST = &P->getValueSymbolTable(); 259 } else if (Argument *A = dyn_cast<Argument>(V)) { 260 if (Function *P = A->getParent()) 261 ST = P->getValueSymbolTable(); 262 } else { 263 assert(isa<Constant>(V) && "Unknown value type!"); 264 return true; // no name is setable for this. 265 } 266 return false; 267 } 268 269 ValueName *Value::getValueName() const { 270 if (!HasName) return nullptr; 271 272 LLVMContext &Ctx = getContext(); 273 auto I = Ctx.pImpl->ValueNames.find(this); 274 assert(I != Ctx.pImpl->ValueNames.end() && 275 "No name entry found!"); 276 277 return I->second; 278 } 279 280 void Value::setValueName(ValueName *VN) { 281 LLVMContext &Ctx = getContext(); 282 283 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 284 "HasName bit out of sync!"); 285 286 if (!VN) { 287 if (HasName) 288 Ctx.pImpl->ValueNames.erase(this); 289 HasName = false; 290 return; 291 } 292 293 HasName = true; 294 Ctx.pImpl->ValueNames[this] = VN; 295 } 296 297 StringRef Value::getName() const { 298 // Make sure the empty string is still a C string. For historical reasons, 299 // some clients want to call .data() on the result and expect it to be null 300 // terminated. 301 if (!hasName()) 302 return StringRef("", 0); 303 return getValueName()->getKey(); 304 } 305 306 void Value::setNameImpl(const Twine &NewName) { 307 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 308 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 309 return; 310 311 // Fast path for common IRBuilder case of setName("") when there is no name. 312 if (NewName.isTriviallyEmpty() && !hasName()) 313 return; 314 315 SmallString<256> NameData; 316 StringRef NameRef = NewName.toStringRef(NameData); 317 assert(NameRef.find_first_of(0) == StringRef::npos && 318 "Null bytes are not allowed in names"); 319 320 // Name isn't changing? 321 if (getName() == NameRef) 322 return; 323 324 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 325 326 // Get the symbol table to update for this object. 327 ValueSymbolTable *ST; 328 if (getSymTab(this, ST)) 329 return; // Cannot set a name on this value (e.g. constant). 330 331 if (!ST) { // No symbol table to update? Just do the change. 332 if (NameRef.empty()) { 333 // Free the name for this value. 334 destroyValueName(); 335 return; 336 } 337 338 // NOTE: Could optimize for the case the name is shrinking to not deallocate 339 // then reallocated. 340 destroyValueName(); 341 342 // Create the new name. 343 MallocAllocator Allocator; 344 setValueName(ValueName::Create(NameRef, Allocator)); 345 getValueName()->setValue(this); 346 return; 347 } 348 349 // NOTE: Could optimize for the case the name is shrinking to not deallocate 350 // then reallocated. 351 if (hasName()) { 352 // Remove old name. 353 ST->removeValueName(getValueName()); 354 destroyValueName(); 355 356 if (NameRef.empty()) 357 return; 358 } 359 360 // Name is changing to something new. 361 setValueName(ST->createValueName(NameRef, this)); 362 } 363 364 void Value::setName(const Twine &NewName) { 365 setNameImpl(NewName); 366 if (Function *F = dyn_cast<Function>(this)) 367 F->recalculateIntrinsicID(); 368 } 369 370 void Value::takeName(Value *V) { 371 ValueSymbolTable *ST = nullptr; 372 // If this value has a name, drop it. 373 if (hasName()) { 374 // Get the symtab this is in. 375 if (getSymTab(this, ST)) { 376 // We can't set a name on this value, but we need to clear V's name if 377 // it has one. 378 if (V->hasName()) V->setName(""); 379 return; // Cannot set a name on this value (e.g. constant). 380 } 381 382 // Remove old name. 383 if (ST) 384 ST->removeValueName(getValueName()); 385 destroyValueName(); 386 } 387 388 // Now we know that this has no name. 389 390 // If V has no name either, we're done. 391 if (!V->hasName()) return; 392 393 // Get this's symtab if we didn't before. 394 if (!ST) { 395 if (getSymTab(this, ST)) { 396 // Clear V's name. 397 V->setName(""); 398 return; // Cannot set a name on this value (e.g. constant). 399 } 400 } 401 402 // Get V's ST, this should always succed, because V has a name. 403 ValueSymbolTable *VST; 404 bool Failure = getSymTab(V, VST); 405 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 406 407 // If these values are both in the same symtab, we can do this very fast. 408 // This works even if both values have no symtab yet. 409 if (ST == VST) { 410 // Take the name! 411 setValueName(V->getValueName()); 412 V->setValueName(nullptr); 413 getValueName()->setValue(this); 414 return; 415 } 416 417 // Otherwise, things are slightly more complex. Remove V's name from VST and 418 // then reinsert it into ST. 419 420 if (VST) 421 VST->removeValueName(V->getValueName()); 422 setValueName(V->getValueName()); 423 V->setValueName(nullptr); 424 getValueName()->setValue(this); 425 426 if (ST) 427 ST->reinsertValue(this); 428 } 429 430 #ifndef NDEBUG 431 std::string Value::getNameOrAsOperand() const { 432 if (!getName().empty()) 433 return std::string(getName()); 434 435 std::string BBName; 436 raw_string_ostream OS(BBName); 437 printAsOperand(OS, false); 438 return OS.str(); 439 } 440 #endif 441 442 void Value::assertModuleIsMaterializedImpl() const { 443 #ifndef NDEBUG 444 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 445 if (!GV) 446 return; 447 const Module *M = GV->getParent(); 448 if (!M) 449 return; 450 assert(M->isMaterialized()); 451 #endif 452 } 453 454 #ifndef NDEBUG 455 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 456 Constant *C) { 457 if (!Cache.insert(Expr).second) 458 return false; 459 460 for (auto &O : Expr->operands()) { 461 if (O == C) 462 return true; 463 auto *CE = dyn_cast<ConstantExpr>(O); 464 if (!CE) 465 continue; 466 if (contains(Cache, CE, C)) 467 return true; 468 } 469 return false; 470 } 471 472 static bool contains(Value *Expr, Value *V) { 473 if (Expr == V) 474 return true; 475 476 auto *C = dyn_cast<Constant>(V); 477 if (!C) 478 return false; 479 480 auto *CE = dyn_cast<ConstantExpr>(Expr); 481 if (!CE) 482 return false; 483 484 SmallPtrSet<ConstantExpr *, 4> Cache; 485 return contains(Cache, CE, C); 486 } 487 #endif // NDEBUG 488 489 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 490 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 491 assert(!contains(New, this) && 492 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 493 assert(New->getType() == getType() && 494 "replaceAllUses of value with new value of different type!"); 495 496 // Notify all ValueHandles (if present) that this value is going away. 497 if (HasValueHandle) 498 ValueHandleBase::ValueIsRAUWd(this, New); 499 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 500 ValueAsMetadata::handleRAUW(this, New); 501 502 while (!materialized_use_empty()) { 503 Use &U = *UseList; 504 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 505 // constant because they are uniqued. 506 if (auto *C = dyn_cast<Constant>(U.getUser())) { 507 if (!isa<GlobalValue>(C)) { 508 C->handleOperandChange(this, New); 509 continue; 510 } 511 } 512 513 U.set(New); 514 } 515 516 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 517 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 518 } 519 520 void Value::replaceAllUsesWith(Value *New) { 521 doRAUW(New, ReplaceMetadataUses::Yes); 522 } 523 524 void Value::replaceNonMetadataUsesWith(Value *New) { 525 doRAUW(New, ReplaceMetadataUses::No); 526 } 527 528 void Value::replaceUsesWithIf(Value *New, 529 llvm::function_ref<bool(Use &U)> ShouldReplace) { 530 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 531 assert(New->getType() == getType() && 532 "replaceUses of value with new value of different type!"); 533 534 SmallVector<TrackingVH<Constant>, 8> Consts; 535 SmallPtrSet<Constant *, 8> Visited; 536 537 for (use_iterator UI = use_begin(), E = use_end(); UI != E;) { 538 Use &U = *UI; 539 ++UI; 540 if (!ShouldReplace(U)) 541 continue; 542 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 543 // constant because they are uniqued. 544 if (auto *C = dyn_cast<Constant>(U.getUser())) { 545 if (!isa<GlobalValue>(C)) { 546 if (Visited.insert(C).second) 547 Consts.push_back(TrackingVH<Constant>(C)); 548 continue; 549 } 550 } 551 U.set(New); 552 } 553 554 while (!Consts.empty()) { 555 // FIXME: handleOperandChange() updates all the uses in a given Constant, 556 // not just the one passed to ShouldReplace 557 Consts.pop_back_val()->handleOperandChange(this, New); 558 } 559 } 560 561 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 562 /// with New. 563 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 564 SmallVector<DbgVariableIntrinsic *> DbgUsers; 565 findDbgUsers(DbgUsers, V); 566 for (auto *DVI : DbgUsers) { 567 if (DVI->getParent() != BB) 568 DVI->replaceVariableLocationOp(V, New); 569 } 570 } 571 572 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 573 // This routine leaves uses within BB. 574 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 575 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 576 assert(!contains(New, this) && 577 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 578 assert(New->getType() == getType() && 579 "replaceUses of value with new value of different type!"); 580 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 581 582 replaceDbgUsesOutsideBlock(this, New, BB); 583 replaceUsesWithIf(New, [BB](Use &U) { 584 auto *I = dyn_cast<Instruction>(U.getUser()); 585 // Don't replace if it's an instruction in the BB basic block. 586 return !I || I->getParent() != BB; 587 }); 588 } 589 590 namespace { 591 // Various metrics for how much to strip off of pointers. 592 enum PointerStripKind { 593 PSK_ZeroIndices, 594 PSK_ZeroIndicesAndAliases, 595 PSK_ZeroIndicesSameRepresentation, 596 PSK_ForAliasAnalysis, 597 PSK_InBoundsConstantIndices, 598 PSK_InBounds 599 }; 600 601 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 602 603 template <PointerStripKind StripKind> 604 static const Value *stripPointerCastsAndOffsets( 605 const Value *V, 606 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 607 if (!V->getType()->isPointerTy()) 608 return V; 609 610 // Even though we don't look through PHI nodes, we could be called on an 611 // instruction in an unreachable block, which may be on a cycle. 612 SmallPtrSet<const Value *, 4> Visited; 613 614 Visited.insert(V); 615 do { 616 Func(V); 617 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 618 switch (StripKind) { 619 case PSK_ZeroIndices: 620 case PSK_ZeroIndicesAndAliases: 621 case PSK_ZeroIndicesSameRepresentation: 622 case PSK_ForAliasAnalysis: 623 if (!GEP->hasAllZeroIndices()) 624 return V; 625 break; 626 case PSK_InBoundsConstantIndices: 627 if (!GEP->hasAllConstantIndices()) 628 return V; 629 LLVM_FALLTHROUGH; 630 case PSK_InBounds: 631 if (!GEP->isInBounds()) 632 return V; 633 break; 634 } 635 V = GEP->getPointerOperand(); 636 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 637 V = cast<Operator>(V)->getOperand(0); 638 if (!V->getType()->isPointerTy()) 639 return V; 640 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 641 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 642 // TODO: If we know an address space cast will not change the 643 // representation we could look through it here as well. 644 V = cast<Operator>(V)->getOperand(0); 645 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 646 V = cast<GlobalAlias>(V)->getAliasee(); 647 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 648 cast<PHINode>(V)->getNumIncomingValues() == 1) { 649 V = cast<PHINode>(V)->getIncomingValue(0); 650 } else { 651 if (const auto *Call = dyn_cast<CallBase>(V)) { 652 if (const Value *RV = Call->getReturnedArgOperand()) { 653 V = RV; 654 continue; 655 } 656 // The result of launder.invariant.group must alias it's argument, 657 // but it can't be marked with returned attribute, that's why it needs 658 // special case. 659 if (StripKind == PSK_ForAliasAnalysis && 660 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 661 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 662 V = Call->getArgOperand(0); 663 continue; 664 } 665 } 666 return V; 667 } 668 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 669 } while (Visited.insert(V).second); 670 671 return V; 672 } 673 } // end anonymous namespace 674 675 const Value *Value::stripPointerCasts() const { 676 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 677 } 678 679 const Value *Value::stripPointerCastsAndAliases() const { 680 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 681 } 682 683 const Value *Value::stripPointerCastsSameRepresentation() const { 684 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 685 } 686 687 const Value *Value::stripInBoundsConstantOffsets() const { 688 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 689 } 690 691 const Value *Value::stripPointerCastsForAliasAnalysis() const { 692 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 693 } 694 695 const Value *Value::stripAndAccumulateConstantOffsets( 696 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 697 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 698 if (!getType()->isPtrOrPtrVectorTy()) 699 return this; 700 701 unsigned BitWidth = Offset.getBitWidth(); 702 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 703 "The offset bit width does not match the DL specification."); 704 705 // Even though we don't look through PHI nodes, we could be called on an 706 // instruction in an unreachable block, which may be on a cycle. 707 SmallPtrSet<const Value *, 4> Visited; 708 Visited.insert(this); 709 const Value *V = this; 710 do { 711 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 712 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 713 if (!AllowNonInbounds && !GEP->isInBounds()) 714 return V; 715 716 // If one of the values we have visited is an addrspacecast, then 717 // the pointer type of this GEP may be different from the type 718 // of the Ptr parameter which was passed to this function. This 719 // means when we construct GEPOffset, we need to use the size 720 // of GEP's pointer type rather than the size of the original 721 // pointer type. 722 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 723 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 724 return V; 725 726 // Stop traversal if the pointer offset wouldn't fit in the bit-width 727 // provided by the Offset argument. This can happen due to AddrSpaceCast 728 // stripping. 729 if (GEPOffset.getMinSignedBits() > BitWidth) 730 return V; 731 732 // External Analysis can return a result higher/lower than the value 733 // represents. We need to detect overflow/underflow. 734 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 735 if (!ExternalAnalysis) { 736 Offset += GEPOffsetST; 737 } else { 738 bool Overflow = false; 739 APInt OldOffset = Offset; 740 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 741 if (Overflow) { 742 Offset = OldOffset; 743 return V; 744 } 745 } 746 V = GEP->getPointerOperand(); 747 } else if (Operator::getOpcode(V) == Instruction::BitCast || 748 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 749 V = cast<Operator>(V)->getOperand(0); 750 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 751 if (!GA->isInterposable()) 752 V = GA->getAliasee(); 753 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 754 if (const Value *RV = Call->getReturnedArgOperand()) 755 V = RV; 756 } 757 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 758 } while (Visited.insert(V).second); 759 760 return V; 761 } 762 763 const Value * 764 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 765 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 766 } 767 768 bool Value::canBeFreed() const { 769 assert(getType()->isPointerTy()); 770 771 // Cases that can simply never be deallocated 772 // *) Constants aren't allocated per se, thus not deallocated either. 773 if (isa<Constant>(this)) 774 return false; 775 776 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 777 // lifetime is guaranteed to be longer than the callee's lifetime. 778 if (auto *A = dyn_cast<Argument>(this)) { 779 if (A->hasPointeeInMemoryValueAttr()) 780 return false; 781 // A pointer to an object in a function which neither frees, nor can arrange 782 // for another thread to free on its behalf, can not be freed in the scope 783 // of the function. Note that this logic is restricted to memory 784 // allocations in existance before the call; a nofree function *is* allowed 785 // to free memory it allocated. 786 const Function *F = A->getParent(); 787 if (F->doesNotFreeMemory() && F->hasNoSync()) 788 return false; 789 } 790 791 const Function *F = nullptr; 792 if (auto *I = dyn_cast<Instruction>(this)) 793 F = I->getFunction(); 794 if (auto *A = dyn_cast<Argument>(this)) 795 F = A->getParent(); 796 797 if (!F) 798 return true; 799 800 // With garbage collection, deallocation typically occurs solely at or after 801 // safepoints. If we're compiling for a collector which uses the 802 // gc.statepoint infrastructure, safepoints aren't explicitly present 803 // in the IR until after lowering from abstract to physical machine model. 804 // The collector could chose to mix explicit deallocation and gc'd objects 805 // which is why we need the explicit opt in on a per collector basis. 806 if (!F->hasGC()) 807 return true; 808 809 const auto &GCName = F->getGC(); 810 if (GCName == "statepoint-example") { 811 auto *PT = cast<PointerType>(this->getType()); 812 if (PT->getAddressSpace() != 1) 813 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 814 // our GC managed heap. This must match the same check in 815 // RewriteStatepointsForGC (and probably needs better factored.) 816 return true; 817 818 // It is cheaper to scan for a declaration than to scan for a use in this 819 // function. Note that gc.statepoint is a type overloaded function so the 820 // usual trick of requesting declaration of the intrinsic from the module 821 // doesn't work. 822 for (auto &Fn : *F->getParent()) 823 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 824 return true; 825 return false; 826 } 827 return true; 828 } 829 830 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 831 bool &CanBeNull, 832 bool &CanBeFreed) const { 833 assert(getType()->isPointerTy() && "must be pointer"); 834 835 uint64_t DerefBytes = 0; 836 CanBeNull = false; 837 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 838 if (const Argument *A = dyn_cast<Argument>(this)) { 839 DerefBytes = A->getDereferenceableBytes(); 840 if (DerefBytes == 0) { 841 // Handle byval/byref/inalloca/preallocated arguments 842 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 843 if (ArgMemTy->isSized()) { 844 // FIXME: Why isn't this the type alloc size? 845 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 846 } 847 } 848 } 849 850 if (DerefBytes == 0) { 851 DerefBytes = A->getDereferenceableOrNullBytes(); 852 CanBeNull = true; 853 } 854 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 855 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex); 856 if (DerefBytes == 0) { 857 DerefBytes = 858 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex); 859 CanBeNull = true; 860 } 861 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 862 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 863 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 864 DerefBytes = CI->getLimitedValue(); 865 } 866 if (DerefBytes == 0) { 867 if (MDNode *MD = 868 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 869 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 870 DerefBytes = CI->getLimitedValue(); 871 } 872 CanBeNull = true; 873 } 874 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 875 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 876 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 877 DerefBytes = CI->getLimitedValue(); 878 } 879 if (DerefBytes == 0) { 880 if (MDNode *MD = 881 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 882 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 883 DerefBytes = CI->getLimitedValue(); 884 } 885 CanBeNull = true; 886 } 887 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 888 if (!AI->isArrayAllocation()) { 889 DerefBytes = 890 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 891 CanBeNull = false; 892 CanBeFreed = false; 893 } 894 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 895 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 896 // TODO: Don't outright reject hasExternalWeakLinkage but set the 897 // CanBeNull flag. 898 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 899 CanBeNull = false; 900 CanBeFreed = false; 901 } 902 } 903 return DerefBytes; 904 } 905 906 Align Value::getPointerAlignment(const DataLayout &DL) const { 907 assert(getType()->isPointerTy() && "must be pointer"); 908 if (auto *GO = dyn_cast<GlobalObject>(this)) { 909 if (isa<Function>(GO)) { 910 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 911 switch (DL.getFunctionPtrAlignType()) { 912 case DataLayout::FunctionPtrAlignType::Independent: 913 return FunctionPtrAlign; 914 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 915 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 916 } 917 llvm_unreachable("Unhandled FunctionPtrAlignType"); 918 } 919 const MaybeAlign Alignment(GO->getAlignment()); 920 if (!Alignment) { 921 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 922 Type *ObjectType = GVar->getValueType(); 923 if (ObjectType->isSized()) { 924 // If the object is defined in the current Module, we'll be giving 925 // it the preferred alignment. Otherwise, we have to assume that it 926 // may only have the minimum ABI alignment. 927 if (GVar->isStrongDefinitionForLinker()) 928 return DL.getPreferredAlign(GVar); 929 else 930 return DL.getABITypeAlign(ObjectType); 931 } 932 } 933 } 934 return Alignment.valueOrOne(); 935 } else if (const Argument *A = dyn_cast<Argument>(this)) { 936 const MaybeAlign Alignment = A->getParamAlign(); 937 if (!Alignment && A->hasStructRetAttr()) { 938 // An sret parameter has at least the ABI alignment of the return type. 939 Type *EltTy = A->getParamStructRetType(); 940 if (EltTy->isSized()) 941 return DL.getABITypeAlign(EltTy); 942 } 943 return Alignment.valueOrOne(); 944 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 945 return AI->getAlign(); 946 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 947 MaybeAlign Alignment = Call->getRetAlign(); 948 if (!Alignment && Call->getCalledFunction()) 949 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 950 return Alignment.valueOrOne(); 951 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 952 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 953 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 954 return Align(CI->getLimitedValue()); 955 } 956 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 957 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 958 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 959 /*OnlyIfReduced=*/true))) { 960 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 961 // While the actual alignment may be large, elsewhere we have 962 // an arbitrary upper alignmet limit, so let's clamp to it. 963 return Align(TrailingZeros < Value::MaxAlignmentExponent 964 ? uint64_t(1) << TrailingZeros 965 : Value::MaximumAlignment); 966 } 967 } 968 return Align(1); 969 } 970 971 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 972 const BasicBlock *PredBB) const { 973 auto *PN = dyn_cast<PHINode>(this); 974 if (PN && PN->getParent() == CurBB) 975 return PN->getIncomingValueForBlock(PredBB); 976 return this; 977 } 978 979 LLVMContext &Value::getContext() const { return VTy->getContext(); } 980 981 void Value::reverseUseList() { 982 if (!UseList || !UseList->Next) 983 // No need to reverse 0 or 1 uses. 984 return; 985 986 Use *Head = UseList; 987 Use *Current = UseList->Next; 988 Head->Next = nullptr; 989 while (Current) { 990 Use *Next = Current->Next; 991 Current->Next = Head; 992 Head->Prev = &Current->Next; 993 Head = Current; 994 Current = Next; 995 } 996 UseList = Head; 997 Head->Prev = &UseList; 998 } 999 1000 bool Value::isSwiftError() const { 1001 auto *Arg = dyn_cast<Argument>(this); 1002 if (Arg) 1003 return Arg->hasSwiftErrorAttr(); 1004 auto *Alloca = dyn_cast<AllocaInst>(this); 1005 if (!Alloca) 1006 return false; 1007 return Alloca->isSwiftError(); 1008 } 1009 1010 bool Value::isTransitiveUsedByMetadataOnly() const { 1011 if (use_empty()) 1012 return false; 1013 llvm::SmallVector<const User *, 32> WorkList; 1014 llvm::SmallPtrSet<const User *, 32> Visited; 1015 WorkList.insert(WorkList.begin(), user_begin(), user_end()); 1016 while (!WorkList.empty()) { 1017 const User *U = WorkList.back(); 1018 WorkList.pop_back(); 1019 Visited.insert(U); 1020 // If it is transitively used by a global value or a non-constant value, 1021 // it's obviously not only used by metadata. 1022 if (!isa<Constant>(U) || isa<GlobalValue>(U)) 1023 return false; 1024 for (const User *UU : U->users()) 1025 if (!Visited.count(UU)) 1026 WorkList.push_back(UU); 1027 } 1028 return true; 1029 } 1030 1031 //===----------------------------------------------------------------------===// 1032 // ValueHandleBase Class 1033 //===----------------------------------------------------------------------===// 1034 1035 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1036 assert(List && "Handle list is null?"); 1037 1038 // Splice ourselves into the list. 1039 Next = *List; 1040 *List = this; 1041 setPrevPtr(List); 1042 if (Next) { 1043 Next->setPrevPtr(&Next); 1044 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1045 } 1046 } 1047 1048 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1049 assert(List && "Must insert after existing node"); 1050 1051 Next = List->Next; 1052 setPrevPtr(&List->Next); 1053 List->Next = this; 1054 if (Next) 1055 Next->setPrevPtr(&Next); 1056 } 1057 1058 void ValueHandleBase::AddToUseList() { 1059 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1060 1061 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1062 1063 if (getValPtr()->HasValueHandle) { 1064 // If this value already has a ValueHandle, then it must be in the 1065 // ValueHandles map already. 1066 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1067 assert(Entry && "Value doesn't have any handles?"); 1068 AddToExistingUseList(&Entry); 1069 return; 1070 } 1071 1072 // Ok, it doesn't have any handles yet, so we must insert it into the 1073 // DenseMap. However, doing this insertion could cause the DenseMap to 1074 // reallocate itself, which would invalidate all of the PrevP pointers that 1075 // point into the old table. Handle this by checking for reallocation and 1076 // updating the stale pointers only if needed. 1077 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1078 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1079 1080 ValueHandleBase *&Entry = Handles[getValPtr()]; 1081 assert(!Entry && "Value really did already have handles?"); 1082 AddToExistingUseList(&Entry); 1083 getValPtr()->HasValueHandle = true; 1084 1085 // If reallocation didn't happen or if this was the first insertion, don't 1086 // walk the table. 1087 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1088 Handles.size() == 1) { 1089 return; 1090 } 1091 1092 // Okay, reallocation did happen. Fix the Prev Pointers. 1093 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1094 E = Handles.end(); I != E; ++I) { 1095 assert(I->second && I->first == I->second->getValPtr() && 1096 "List invariant broken!"); 1097 I->second->setPrevPtr(&I->second); 1098 } 1099 } 1100 1101 void ValueHandleBase::RemoveFromUseList() { 1102 assert(getValPtr() && getValPtr()->HasValueHandle && 1103 "Pointer doesn't have a use list!"); 1104 1105 // Unlink this from its use list. 1106 ValueHandleBase **PrevPtr = getPrevPtr(); 1107 assert(*PrevPtr == this && "List invariant broken"); 1108 1109 *PrevPtr = Next; 1110 if (Next) { 1111 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1112 Next->setPrevPtr(PrevPtr); 1113 return; 1114 } 1115 1116 // If the Next pointer was null, then it is possible that this was the last 1117 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1118 // map. 1119 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1120 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1121 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1122 Handles.erase(getValPtr()); 1123 getValPtr()->HasValueHandle = false; 1124 } 1125 } 1126 1127 void ValueHandleBase::ValueIsDeleted(Value *V) { 1128 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1129 1130 // Get the linked list base, which is guaranteed to exist since the 1131 // HasValueHandle flag is set. 1132 LLVMContextImpl *pImpl = V->getContext().pImpl; 1133 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1134 assert(Entry && "Value bit set but no entries exist"); 1135 1136 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1137 // and remove themselves from the list without breaking our iteration. This 1138 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1139 // Note that we deliberately do not the support the case when dropping a value 1140 // handle results in a new value handle being permanently added to the list 1141 // (as might occur in theory for CallbackVH's): the new value handle will not 1142 // be processed and the checking code will mete out righteous punishment if 1143 // the handle is still present once we have finished processing all the other 1144 // value handles (it is fine to momentarily add then remove a value handle). 1145 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1146 Iterator.RemoveFromUseList(); 1147 Iterator.AddToExistingUseListAfter(Entry); 1148 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1149 1150 switch (Entry->getKind()) { 1151 case Assert: 1152 break; 1153 case Weak: 1154 case WeakTracking: 1155 // WeakTracking and Weak just go to null, which unlinks them 1156 // from the list. 1157 Entry->operator=(nullptr); 1158 break; 1159 case Callback: 1160 // Forward to the subclass's implementation. 1161 static_cast<CallbackVH*>(Entry)->deleted(); 1162 break; 1163 } 1164 } 1165 1166 // All callbacks, weak references, and assertingVHs should be dropped by now. 1167 if (V->HasValueHandle) { 1168 #ifndef NDEBUG // Only in +Asserts mode... 1169 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1170 << "\n"; 1171 if (pImpl->ValueHandles[V]->getKind() == Assert) 1172 llvm_unreachable("An asserting value handle still pointed to this" 1173 " value!"); 1174 1175 #endif 1176 llvm_unreachable("All references to V were not removed?"); 1177 } 1178 } 1179 1180 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1181 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1182 assert(Old != New && "Changing value into itself!"); 1183 assert(Old->getType() == New->getType() && 1184 "replaceAllUses of value with new value of different type!"); 1185 1186 // Get the linked list base, which is guaranteed to exist since the 1187 // HasValueHandle flag is set. 1188 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1189 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1190 1191 assert(Entry && "Value bit set but no entries exist"); 1192 1193 // We use a local ValueHandleBase as an iterator so that 1194 // ValueHandles can add and remove themselves from the list without 1195 // breaking our iteration. This is not really an AssertingVH; we 1196 // just have to give ValueHandleBase some kind. 1197 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1198 Iterator.RemoveFromUseList(); 1199 Iterator.AddToExistingUseListAfter(Entry); 1200 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1201 1202 switch (Entry->getKind()) { 1203 case Assert: 1204 case Weak: 1205 // Asserting and Weak handles do not follow RAUW implicitly. 1206 break; 1207 case WeakTracking: 1208 // Weak goes to the new value, which will unlink it from Old's list. 1209 Entry->operator=(New); 1210 break; 1211 case Callback: 1212 // Forward to the subclass's implementation. 1213 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1214 break; 1215 } 1216 } 1217 1218 #ifndef NDEBUG 1219 // If any new weak value handles were added while processing the 1220 // list, then complain about it now. 1221 if (Old->HasValueHandle) 1222 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1223 switch (Entry->getKind()) { 1224 case WeakTracking: 1225 dbgs() << "After RAUW from " << *Old->getType() << " %" 1226 << Old->getName() << " to " << *New->getType() << " %" 1227 << New->getName() << "\n"; 1228 llvm_unreachable( 1229 "A weak tracking value handle still pointed to the old value!\n"); 1230 default: 1231 break; 1232 } 1233 #endif 1234 } 1235 1236 // Pin the vtable to this file. 1237 void CallbackVH::anchor() {} 1238