xref: /freebsd/contrib/llvm-project/llvm/lib/IR/SafepointIRVerifier.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Run a sanity check on the IR to ensure that Safepoints - if they've been
10 // inserted - were inserted correctly.  In particular, look for use of
11 // non-relocated values after a safepoint.  It's primary use is to check the
12 // correctness of safepoint insertion immediately after insertion, but it can
13 // also be used to verify that later transforms have not found a way to break
14 // safepoint semenatics.
15 //
16 // In its current form, this verify checks a property which is sufficient, but
17 // not neccessary for correctness.  There are some cases where an unrelocated
18 // pointer can be used after the safepoint.  Consider this example:
19 //
20 //    a = ...
21 //    b = ...
22 //    (a',b') = safepoint(a,b)
23 //    c = cmp eq a b
24 //    br c, ..., ....
25 //
26 // Because it is valid to reorder 'c' above the safepoint, this is legal.  In
27 // practice, this is a somewhat uncommon transform, but CodeGenPrep does create
28 // idioms like this.  The verifier knows about these cases and avoids reporting
29 // false positives.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "llvm/IR/SafepointIRVerifier.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/SetOperations.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Statepoint.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 
52 #define DEBUG_TYPE "safepoint-ir-verifier"
53 
54 using namespace llvm;
55 
56 /// This option is used for writing test cases.  Instead of crashing the program
57 /// when verification fails, report a message to the console (for FileCheck
58 /// usage) and continue execution as if nothing happened.
59 static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
60                                cl::init(false));
61 
62 namespace {
63 
64 /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
65 /// of blocks unreachable from entry then propagates deadness using foldable
66 /// conditional branches without modifying CFG. So GVN does but it changes CFG
67 /// by splitting critical edges. In most cases passes rely on SimplifyCFG to
68 /// clean up dead blocks, but in some cases, like verification or loop passes
69 /// it's not possible.
70 class CFGDeadness {
71   const DominatorTree *DT = nullptr;
72   SetVector<const BasicBlock *> DeadBlocks;
73   SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
74 
75 public:
76   /// Return the edge that coresponds to the predecessor.
77   static const Use& getEdge(const_pred_iterator &PredIt) {
78     auto &PU = PredIt.getUse();
79     return PU.getUser()->getOperandUse(PU.getOperandNo());
80   }
81 
82   /// Return true if there is at least one live edge that corresponds to the
83   /// basic block InBB listed in the phi node.
84   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
85     assert(!isDeadBlock(InBB) && "block must be live");
86     const BasicBlock* BB = PN->getParent();
87     bool Listed = false;
88     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
89       if (InBB == *PredIt) {
90         if (!isDeadEdge(&getEdge(PredIt)))
91           return true;
92         Listed = true;
93       }
94     }
95     (void)Listed;
96     assert(Listed && "basic block is not found among incoming blocks");
97     return false;
98   }
99 
100 
101   bool isDeadBlock(const BasicBlock *BB) const {
102     return DeadBlocks.count(BB);
103   }
104 
105   bool isDeadEdge(const Use *U) const {
106     assert(cast<Instruction>(U->getUser())->isTerminator() &&
107            "edge must be operand of terminator");
108     assert(cast_or_null<BasicBlock>(U->get()) &&
109            "edge must refer to basic block");
110     assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) &&
111            "isDeadEdge() must be applied to edge from live block");
112     return DeadEdges.count(U);
113   }
114 
115   bool hasLiveIncomingEdges(const BasicBlock *BB) const {
116     // Check if all incoming edges are dead.
117     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
118       auto &PU = PredIt.getUse();
119       const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
120       if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
121         return true; // Found a live edge.
122     }
123     return false;
124   }
125 
126   void processFunction(const Function &F, const DominatorTree &DT) {
127     this->DT = &DT;
128 
129     // Start with all blocks unreachable from entry.
130     for (const BasicBlock &BB : F)
131       if (!DT.isReachableFromEntry(&BB))
132         DeadBlocks.insert(&BB);
133 
134     // Top-down walk of the dominator tree
135     ReversePostOrderTraversal<const Function *> RPOT(&F);
136     for (const BasicBlock *BB : RPOT) {
137       const Instruction *TI = BB->getTerminator();
138       assert(TI && "blocks must be well formed");
139 
140       // For conditional branches, we can perform simple conditional propagation on
141       // the condition value itself.
142       const BranchInst *BI = dyn_cast<BranchInst>(TI);
143       if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
144         continue;
145 
146       // If a branch has two identical successors, we cannot declare either dead.
147       if (BI->getSuccessor(0) == BI->getSuccessor(1))
148         continue;
149 
150       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
151       if (!Cond)
152         continue;
153 
154       addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
155     }
156   }
157 
158 protected:
159   void addDeadBlock(const BasicBlock *BB) {
160     SmallVector<const BasicBlock *, 4> NewDead;
161     SmallSetVector<const BasicBlock *, 4> DF;
162 
163     NewDead.push_back(BB);
164     while (!NewDead.empty()) {
165       const BasicBlock *D = NewDead.pop_back_val();
166       if (isDeadBlock(D))
167         continue;
168 
169       // All blocks dominated by D are dead.
170       SmallVector<BasicBlock *, 8> Dom;
171       DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
172       // Do not need to mark all in and out edges dead
173       // because BB is marked dead and this is enough
174       // to run further.
175       DeadBlocks.insert(Dom.begin(), Dom.end());
176 
177       // Figure out the dominance-frontier(D).
178       for (BasicBlock *B : Dom)
179         for (BasicBlock *S : successors(B))
180           if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
181             NewDead.push_back(S);
182     }
183   }
184 
185   void addDeadEdge(const Use &DeadEdge) {
186     if (!DeadEdges.insert(&DeadEdge))
187       return;
188 
189     BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
190     if (hasLiveIncomingEdges(BB))
191       return;
192 
193     addDeadBlock(BB);
194   }
195 };
196 } // namespace
197 
198 static void Verify(const Function &F, const DominatorTree &DT,
199                    const CFGDeadness &CD);
200 
201 namespace llvm {
202 PreservedAnalyses SafepointIRVerifierPass::run(Function &F,
203                                                FunctionAnalysisManager &AM) {
204   const auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
205   CFGDeadness CD;
206   CD.processFunction(F, DT);
207   Verify(F, DT, CD);
208   return PreservedAnalyses::all();
209 }
210 }
211 
212 namespace {
213 
214 struct SafepointIRVerifier : public FunctionPass {
215   static char ID; // Pass identification, replacement for typeid
216   SafepointIRVerifier() : FunctionPass(ID) {
217     initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
218   }
219 
220   bool runOnFunction(Function &F) override {
221     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
222     CFGDeadness CD;
223     CD.processFunction(F, DT);
224     Verify(F, DT, CD);
225     return false; // no modifications
226   }
227 
228   void getAnalysisUsage(AnalysisUsage &AU) const override {
229     AU.addRequiredID(DominatorTreeWrapperPass::ID);
230     AU.setPreservesAll();
231   }
232 
233   StringRef getPassName() const override { return "safepoint verifier"; }
234 };
235 } // namespace
236 
237 void llvm::verifySafepointIR(Function &F) {
238   SafepointIRVerifier pass;
239   pass.runOnFunction(F);
240 }
241 
242 char SafepointIRVerifier::ID = 0;
243 
244 FunctionPass *llvm::createSafepointIRVerifierPass() {
245   return new SafepointIRVerifier();
246 }
247 
248 INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
249                       "Safepoint IR Verifier", false, false)
250 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
251 INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
252                     "Safepoint IR Verifier", false, false)
253 
254 static bool isGCPointerType(Type *T) {
255   if (auto *PT = dyn_cast<PointerType>(T))
256     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
257     // GC managed heap.  We know that a pointer into this heap needs to be
258     // updated and that no other pointer does.
259     return (1 == PT->getAddressSpace());
260   return false;
261 }
262 
263 static bool containsGCPtrType(Type *Ty) {
264   if (isGCPointerType(Ty))
265     return true;
266   if (VectorType *VT = dyn_cast<VectorType>(Ty))
267     return isGCPointerType(VT->getScalarType());
268   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
269     return containsGCPtrType(AT->getElementType());
270   if (StructType *ST = dyn_cast<StructType>(Ty))
271     return llvm::any_of(ST->elements(), containsGCPtrType);
272   return false;
273 }
274 
275 // Debugging aid -- prints a [Begin, End) range of values.
276 template<typename IteratorTy>
277 static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
278   OS << "[ ";
279   while (Begin != End) {
280     OS << **Begin << " ";
281     ++Begin;
282   }
283   OS << "]";
284 }
285 
286 /// The verifier algorithm is phrased in terms of availability.  The set of
287 /// values "available" at a given point in the control flow graph is the set of
288 /// correctly relocated value at that point, and is a subset of the set of
289 /// definitions dominating that point.
290 
291 using AvailableValueSet = DenseSet<const Value *>;
292 
293 /// State we compute and track per basic block.
294 struct BasicBlockState {
295   // Set of values available coming in, before the phi nodes
296   AvailableValueSet AvailableIn;
297 
298   // Set of values available going out
299   AvailableValueSet AvailableOut;
300 
301   // AvailableOut minus AvailableIn.
302   // All elements are Instructions
303   AvailableValueSet Contribution;
304 
305   // True if this block contains a safepoint and thus AvailableIn does not
306   // contribute to AvailableOut.
307   bool Cleared = false;
308 };
309 
310 /// A given derived pointer can have multiple base pointers through phi/selects.
311 /// This type indicates when the base pointer is exclusively constant
312 /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
313 /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
314 /// NonConstant.
315 enum BaseType {
316   NonConstant = 1, // Base pointers is not exclusively constant.
317   ExclusivelyNull,
318   ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
319                           // set of constants, but they are not exclusively
320                           // null.
321 };
322 
323 /// Return the baseType for Val which states whether Val is exclusively
324 /// derived from constant/null, or not exclusively derived from constant.
325 /// Val is exclusively derived off a constant base when all operands of phi and
326 /// selects are derived off a constant base.
327 static enum BaseType getBaseType(const Value *Val) {
328 
329   SmallVector<const Value *, 32> Worklist;
330   DenseSet<const Value *> Visited;
331   bool isExclusivelyDerivedFromNull = true;
332   Worklist.push_back(Val);
333   // Strip through all the bitcasts and geps to get base pointer. Also check for
334   // the exclusive value when there can be multiple base pointers (through phis
335   // or selects).
336   while(!Worklist.empty()) {
337     const Value *V = Worklist.pop_back_val();
338     if (!Visited.insert(V).second)
339       continue;
340 
341     if (const auto *CI = dyn_cast<CastInst>(V)) {
342       Worklist.push_back(CI->stripPointerCasts());
343       continue;
344     }
345     if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
346       Worklist.push_back(GEP->getPointerOperand());
347       continue;
348     }
349     // Push all the incoming values of phi node into the worklist for
350     // processing.
351     if (const auto *PN = dyn_cast<PHINode>(V)) {
352       for (Value *InV: PN->incoming_values())
353         Worklist.push_back(InV);
354       continue;
355     }
356     if (const auto *SI = dyn_cast<SelectInst>(V)) {
357       // Push in the true and false values
358       Worklist.push_back(SI->getTrueValue());
359       Worklist.push_back(SI->getFalseValue());
360       continue;
361     }
362     if (isa<Constant>(V)) {
363       // We found at least one base pointer which is non-null, so this derived
364       // pointer is not exclusively derived from null.
365       if (V != Constant::getNullValue(V->getType()))
366         isExclusivelyDerivedFromNull = false;
367       // Continue processing the remaining values to make sure it's exclusively
368       // constant.
369       continue;
370     }
371     // At this point, we know that the base pointer is not exclusively
372     // constant.
373     return BaseType::NonConstant;
374   }
375   // Now, we know that the base pointer is exclusively constant, but we need to
376   // differentiate between exclusive null constant and non-null constant.
377   return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
378                                       : BaseType::ExclusivelySomeConstant;
379 }
380 
381 static bool isNotExclusivelyConstantDerived(const Value *V) {
382   return getBaseType(V) == BaseType::NonConstant;
383 }
384 
385 namespace {
386 class InstructionVerifier;
387 
388 /// Builds BasicBlockState for each BB of the function.
389 /// It can traverse function for verification and provides all required
390 /// information.
391 ///
392 /// GC pointer may be in one of three states: relocated, unrelocated and
393 /// poisoned.
394 /// Relocated pointer may be used without any restrictions.
395 /// Unrelocated pointer cannot be dereferenced, passed as argument to any call
396 /// or returned. Unrelocated pointer may be safely compared against another
397 /// unrelocated pointer or against a pointer exclusively derived from null.
398 /// Poisoned pointers are produced when we somehow derive pointer from relocated
399 /// and unrelocated pointers (e.g. phi, select). This pointers may be safely
400 /// used in a very limited number of situations. Currently the only way to use
401 /// it is comparison against constant exclusively derived from null. All
402 /// limitations arise due to their undefined state: this pointers should be
403 /// treated as relocated and unrelocated simultaneously.
404 /// Rules of deriving:
405 /// R + U = P - that's where the poisoned pointers come from
406 /// P + X = P
407 /// U + U = U
408 /// R + R = R
409 /// X + C = X
410 /// Where "+" - any operation that somehow derive pointer, U - unrelocated,
411 /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
412 /// nothing (in case when "+" is unary operation).
413 /// Deriving of pointers by itself is always safe.
414 /// NOTE: when we are making decision on the status of instruction's result:
415 /// a) for phi we need to check status of each input *at the end of
416 ///    corresponding predecessor BB*.
417 /// b) for other instructions we need to check status of each input *at the
418 ///    current point*.
419 ///
420 /// FIXME: This works fairly well except one case
421 ///     bb1:
422 ///     p = *some GC-ptr def*
423 ///     p1 = gep p, offset
424 ///         /     |
425 ///        /      |
426 ///    bb2:       |
427 ///    safepoint  |
428 ///        \      |
429 ///         \     |
430 ///      bb3:
431 ///      p2 = phi [p, bb2] [p1, bb1]
432 ///      p3 = phi [p, bb2] [p, bb1]
433 ///      here p and p1 is unrelocated
434 ///           p2 and p3 is poisoned (though they shouldn't be)
435 ///
436 /// This leads to some weird results:
437 ///      cmp eq p, p2 - illegal instruction (false-positive)
438 ///      cmp eq p1, p2 - illegal instruction (false-positive)
439 ///      cmp eq p, p3 - illegal instruction (false-positive)
440 ///      cmp eq p, p1 - ok
441 /// To fix this we need to introduce conception of generations and be able to
442 /// check if two values belong to one generation or not. This way p2 will be
443 /// considered to be unrelocated and no false alarm will happen.
444 class GCPtrTracker {
445   const Function &F;
446   const CFGDeadness &CD;
447   SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
448   DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
449   // This set contains defs of unrelocated pointers that are proved to be legal
450   // and don't need verification.
451   DenseSet<const Instruction *> ValidUnrelocatedDefs;
452   // This set contains poisoned defs. They can be safely ignored during
453   // verification too.
454   DenseSet<const Value *> PoisonedDefs;
455 
456 public:
457   GCPtrTracker(const Function &F, const DominatorTree &DT,
458                const CFGDeadness &CD);
459 
460   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
461     return CD.hasLiveIncomingEdge(PN, InBB);
462   }
463 
464   BasicBlockState *getBasicBlockState(const BasicBlock *BB);
465   const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
466 
467   bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
468 
469   /// Traverse each BB of the function and call
470   /// InstructionVerifier::verifyInstruction for each possibly invalid
471   /// instruction.
472   /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
473   /// in order to prohibit further usages of GCPtrTracker as it'll be in
474   /// inconsistent state.
475   static void verifyFunction(GCPtrTracker &&Tracker,
476                              InstructionVerifier &Verifier);
477 
478   /// Returns true for reachable and live blocks.
479   bool isMapped(const BasicBlock *BB) const {
480     return BlockMap.find(BB) != BlockMap.end();
481   }
482 
483 private:
484   /// Returns true if the instruction may be safely skipped during verification.
485   bool instructionMayBeSkipped(const Instruction *I) const;
486 
487   /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
488   /// each of them until it converges.
489   void recalculateBBsStates();
490 
491   /// Remove from Contribution all defs that legally produce unrelocated
492   /// pointers and saves them to ValidUnrelocatedDefs.
493   /// Though Contribution should belong to BBS it is passed separately with
494   /// different const-modifier in order to emphasize (and guarantee) that only
495   /// Contribution will be changed.
496   /// Returns true if Contribution was changed otherwise false.
497   bool removeValidUnrelocatedDefs(const BasicBlock *BB,
498                                   const BasicBlockState *BBS,
499                                   AvailableValueSet &Contribution);
500 
501   /// Gather all the definitions dominating the start of BB into Result. This is
502   /// simply the defs introduced by every dominating basic block and the
503   /// function arguments.
504   void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
505                             const DominatorTree &DT);
506 
507   /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
508   /// which is the BasicBlockState for BB.
509   /// ContributionChanged is set when the verifier runs for the first time
510   /// (in this case Contribution was changed from 'empty' to its initial state)
511   /// or when Contribution of this BB was changed since last computation.
512   static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
513                             bool ContributionChanged);
514 
515   /// Model the effect of an instruction on the set of available values.
516   static void transferInstruction(const Instruction &I, bool &Cleared,
517                                   AvailableValueSet &Available);
518 };
519 
520 /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
521 /// instruction (which uses heap reference) is legal or not, given our safepoint
522 /// semantics.
523 class InstructionVerifier {
524   bool AnyInvalidUses = false;
525 
526 public:
527   void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
528                          const AvailableValueSet &AvailableSet);
529 
530   bool hasAnyInvalidUses() const { return AnyInvalidUses; }
531 
532 private:
533   void reportInvalidUse(const Value &V, const Instruction &I);
534 };
535 } // end anonymous namespace
536 
537 GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
538                            const CFGDeadness &CD) : F(F), CD(CD) {
539   // Calculate Contribution of each live BB.
540   // Allocate BB states for live blocks.
541   for (const BasicBlock &BB : F)
542     if (!CD.isDeadBlock(&BB)) {
543       BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
544       for (const auto &I : BB)
545         transferInstruction(I, BBS->Cleared, BBS->Contribution);
546       BlockMap[&BB] = BBS;
547     }
548 
549   // Initialize AvailableIn/Out sets of each BB using only information about
550   // dominating BBs.
551   for (auto &BBI : BlockMap) {
552     gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
553     transferBlock(BBI.first, *BBI.second, true);
554   }
555 
556   // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
557   // sets of each BB until it converges. If any def is proved to be an
558   // unrelocated pointer, it will be removed from all BBSs.
559   recalculateBBsStates();
560 }
561 
562 BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
563   auto it = BlockMap.find(BB);
564   return it != BlockMap.end() ? it->second : nullptr;
565 }
566 
567 const BasicBlockState *GCPtrTracker::getBasicBlockState(
568     const BasicBlock *BB) const {
569   return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
570 }
571 
572 bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
573   // Poisoned defs are skipped since they are always safe by itself by
574   // definition (for details see comment to this class).
575   return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
576 }
577 
578 void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
579                                   InstructionVerifier &Verifier) {
580   // We need RPO here to a) report always the first error b) report errors in
581   // same order from run to run.
582   ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
583   for (const BasicBlock *BB : RPOT) {
584     BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
585     if (!BBS)
586       continue;
587 
588     // We destructively modify AvailableIn as we traverse the block instruction
589     // by instruction.
590     AvailableValueSet &AvailableSet = BBS->AvailableIn;
591     for (const Instruction &I : *BB) {
592       if (Tracker.instructionMayBeSkipped(&I))
593         continue; // This instruction shouldn't be added to AvailableSet.
594 
595       Verifier.verifyInstruction(&Tracker, I, AvailableSet);
596 
597       // Model the effect of current instruction on AvailableSet to keep the set
598       // relevant at each point of BB.
599       bool Cleared = false;
600       transferInstruction(I, Cleared, AvailableSet);
601       (void)Cleared;
602     }
603   }
604 }
605 
606 void GCPtrTracker::recalculateBBsStates() {
607   SetVector<const BasicBlock *> Worklist;
608   // TODO: This order is suboptimal, it's better to replace it with priority
609   // queue where priority is RPO number of BB.
610   for (auto &BBI : BlockMap)
611     Worklist.insert(BBI.first);
612 
613   // This loop iterates the AvailableIn/Out sets until it converges.
614   // The AvailableIn and AvailableOut sets decrease as we iterate.
615   while (!Worklist.empty()) {
616     const BasicBlock *BB = Worklist.pop_back_val();
617     BasicBlockState *BBS = getBasicBlockState(BB);
618     if (!BBS)
619       continue; // Ignore dead successors.
620 
621     size_t OldInCount = BBS->AvailableIn.size();
622     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
623       const BasicBlock *PBB = *PredIt;
624       BasicBlockState *PBBS = getBasicBlockState(PBB);
625       if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
626         set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
627     }
628 
629     assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
630 
631     bool InputsChanged = OldInCount != BBS->AvailableIn.size();
632     bool ContributionChanged =
633         removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
634     if (!InputsChanged && !ContributionChanged)
635       continue;
636 
637     size_t OldOutCount = BBS->AvailableOut.size();
638     transferBlock(BB, *BBS, ContributionChanged);
639     if (OldOutCount != BBS->AvailableOut.size()) {
640       assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
641       Worklist.insert(succ_begin(BB), succ_end(BB));
642     }
643   }
644 }
645 
646 bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
647                                               const BasicBlockState *BBS,
648                                               AvailableValueSet &Contribution) {
649   assert(&BBS->Contribution == &Contribution &&
650          "Passed Contribution should be from the passed BasicBlockState!");
651   AvailableValueSet AvailableSet = BBS->AvailableIn;
652   bool ContributionChanged = false;
653   // For explanation why instructions are processed this way see
654   // "Rules of deriving" in the comment to this class.
655   for (const Instruction &I : *BB) {
656     bool ValidUnrelocatedPointerDef = false;
657     bool PoisonedPointerDef = false;
658     // TODO: `select` instructions should be handled here too.
659     if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
660       if (containsGCPtrType(PN->getType())) {
661         // If both is true, output is poisoned.
662         bool HasRelocatedInputs = false;
663         bool HasUnrelocatedInputs = false;
664         for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
665           const BasicBlock *InBB = PN->getIncomingBlock(i);
666           if (!isMapped(InBB) ||
667               !CD.hasLiveIncomingEdge(PN, InBB))
668             continue; // Skip dead block or dead edge.
669 
670           const Value *InValue = PN->getIncomingValue(i);
671 
672           if (isNotExclusivelyConstantDerived(InValue)) {
673             if (isValuePoisoned(InValue)) {
674               // If any of inputs is poisoned, output is always poisoned too.
675               HasRelocatedInputs = true;
676               HasUnrelocatedInputs = true;
677               break;
678             }
679             if (BlockMap[InBB]->AvailableOut.count(InValue))
680               HasRelocatedInputs = true;
681             else
682               HasUnrelocatedInputs = true;
683           }
684         }
685         if (HasUnrelocatedInputs) {
686           if (HasRelocatedInputs)
687             PoisonedPointerDef = true;
688           else
689             ValidUnrelocatedPointerDef = true;
690         }
691       }
692     } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
693                containsGCPtrType(I.getType())) {
694       // GEP/bitcast of unrelocated pointer is legal by itself but this def
695       // shouldn't appear in any AvailableSet.
696       for (const Value *V : I.operands())
697         if (containsGCPtrType(V->getType()) &&
698             isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
699           if (isValuePoisoned(V))
700             PoisonedPointerDef = true;
701           else
702             ValidUnrelocatedPointerDef = true;
703           break;
704         }
705     }
706     assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
707            "Value cannot be both unrelocated and poisoned!");
708     if (ValidUnrelocatedPointerDef) {
709       // Remove def of unrelocated pointer from Contribution of this BB and
710       // trigger update of all its successors.
711       Contribution.erase(&I);
712       PoisonedDefs.erase(&I);
713       ValidUnrelocatedDefs.insert(&I);
714       LLVM_DEBUG(dbgs() << "Removing urelocated " << I
715                         << " from Contribution of " << BB->getName() << "\n");
716       ContributionChanged = true;
717     } else if (PoisonedPointerDef) {
718       // Mark pointer as poisoned, remove its def from Contribution and trigger
719       // update of all successors.
720       Contribution.erase(&I);
721       PoisonedDefs.insert(&I);
722       LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
723                         << BB->getName() << "\n");
724       ContributionChanged = true;
725     } else {
726       bool Cleared = false;
727       transferInstruction(I, Cleared, AvailableSet);
728       (void)Cleared;
729     }
730   }
731   return ContributionChanged;
732 }
733 
734 void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
735                                         AvailableValueSet &Result,
736                                         const DominatorTree &DT) {
737   DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
738 
739   assert(DTN && "Unreachable blocks are ignored");
740   while (DTN->getIDom()) {
741     DTN = DTN->getIDom();
742     auto BBS = getBasicBlockState(DTN->getBlock());
743     assert(BBS && "immediate dominator cannot be dead for a live block");
744     const auto &Defs = BBS->Contribution;
745     Result.insert(Defs.begin(), Defs.end());
746     // If this block is 'Cleared', then nothing LiveIn to this block can be
747     // available after this block completes.  Note: This turns out to be
748     // really important for reducing memory consuption of the initial available
749     // sets and thus peak memory usage by this verifier.
750     if (BBS->Cleared)
751       return;
752   }
753 
754   for (const Argument &A : BB->getParent()->args())
755     if (containsGCPtrType(A.getType()))
756       Result.insert(&A);
757 }
758 
759 void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
760                                  bool ContributionChanged) {
761   const AvailableValueSet &AvailableIn = BBS.AvailableIn;
762   AvailableValueSet &AvailableOut = BBS.AvailableOut;
763 
764   if (BBS.Cleared) {
765     // AvailableOut will change only when Contribution changed.
766     if (ContributionChanged)
767       AvailableOut = BBS.Contribution;
768   } else {
769     // Otherwise, we need to reduce the AvailableOut set by things which are no
770     // longer in our AvailableIn
771     AvailableValueSet Temp = BBS.Contribution;
772     set_union(Temp, AvailableIn);
773     AvailableOut = std::move(Temp);
774   }
775 
776   LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
777              PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
778              dbgs() << " to ";
779              PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
780              dbgs() << "\n";);
781 }
782 
783 void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
784                                        AvailableValueSet &Available) {
785   if (isStatepoint(I)) {
786     Cleared = true;
787     Available.clear();
788   } else if (containsGCPtrType(I.getType()))
789     Available.insert(&I);
790 }
791 
792 void InstructionVerifier::verifyInstruction(
793     const GCPtrTracker *Tracker, const Instruction &I,
794     const AvailableValueSet &AvailableSet) {
795   if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
796     if (containsGCPtrType(PN->getType()))
797       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
798         const BasicBlock *InBB = PN->getIncomingBlock(i);
799         const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
800         if (!InBBS ||
801             !Tracker->hasLiveIncomingEdge(PN, InBB))
802           continue; // Skip dead block or dead edge.
803 
804         const Value *InValue = PN->getIncomingValue(i);
805 
806         if (isNotExclusivelyConstantDerived(InValue) &&
807             !InBBS->AvailableOut.count(InValue))
808           reportInvalidUse(*InValue, *PN);
809       }
810   } else if (isa<CmpInst>(I) &&
811              containsGCPtrType(I.getOperand(0)->getType())) {
812     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
813     enum BaseType baseTyLHS = getBaseType(LHS),
814                   baseTyRHS = getBaseType(RHS);
815 
816     // Returns true if LHS and RHS are unrelocated pointers and they are
817     // valid unrelocated uses.
818     auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
819                                    &LHS, &RHS] () {
820         // A cmp instruction has valid unrelocated pointer operands only if
821         // both operands are unrelocated pointers.
822         // In the comparison between two pointers, if one is an unrelocated
823         // use, the other *should be* an unrelocated use, for this
824         // instruction to contain valid unrelocated uses. This unrelocated
825         // use can be a null constant as well, or another unrelocated
826         // pointer.
827         if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
828           return false;
829         // Constant pointers (that are not exclusively null) may have
830         // meaning in different VMs, so we cannot reorder the compare
831         // against constant pointers before the safepoint. In other words,
832         // comparison of an unrelocated use against a non-null constant
833         // maybe invalid.
834         if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
835              baseTyRHS == BaseType::NonConstant) ||
836             (baseTyLHS == BaseType::NonConstant &&
837              baseTyRHS == BaseType::ExclusivelySomeConstant))
838           return false;
839 
840         // If one of pointers is poisoned and other is not exclusively derived
841         // from null it is an invalid expression: it produces poisoned result
842         // and unless we want to track all defs (not only gc pointers) the only
843         // option is to prohibit such instructions.
844         if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
845             (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
846             return false;
847 
848         // All other cases are valid cases enumerated below:
849         // 1. Comparison between an exclusively derived null pointer and a
850         // constant base pointer.
851         // 2. Comparison between an exclusively derived null pointer and a
852         // non-constant unrelocated base pointer.
853         // 3. Comparison between 2 unrelocated pointers.
854         // 4. Comparison between a pointer exclusively derived from null and a
855         // non-constant poisoned pointer.
856         return true;
857     };
858     if (!hasValidUnrelocatedUse()) {
859       // Print out all non-constant derived pointers that are unrelocated
860       // uses, which are invalid.
861       if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
862         reportInvalidUse(*LHS, I);
863       if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
864         reportInvalidUse(*RHS, I);
865     }
866   } else {
867     for (const Value *V : I.operands())
868       if (containsGCPtrType(V->getType()) &&
869           isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
870         reportInvalidUse(*V, I);
871   }
872 }
873 
874 void InstructionVerifier::reportInvalidUse(const Value &V,
875                                            const Instruction &I) {
876   errs() << "Illegal use of unrelocated value found!\n";
877   errs() << "Def: " << V << "\n";
878   errs() << "Use: " << I << "\n";
879   if (!PrintOnly)
880     abort();
881   AnyInvalidUses = true;
882 }
883 
884 static void Verify(const Function &F, const DominatorTree &DT,
885                    const CFGDeadness &CD) {
886   LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
887                     << "\n");
888   if (PrintOnly)
889     dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
890 
891   GCPtrTracker Tracker(F, DT, CD);
892 
893   // We now have all the information we need to decide if the use of a heap
894   // reference is legal or not, given our safepoint semantics.
895 
896   InstructionVerifier Verifier;
897   GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
898 
899   if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
900     dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
901            << "\n";
902   }
903 }
904