1 //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Run a sanity check on the IR to ensure that Safepoints - if they've been 10 // inserted - were inserted correctly. In particular, look for use of 11 // non-relocated values after a safepoint. It's primary use is to check the 12 // correctness of safepoint insertion immediately after insertion, but it can 13 // also be used to verify that later transforms have not found a way to break 14 // safepoint semenatics. 15 // 16 // In its current form, this verify checks a property which is sufficient, but 17 // not neccessary for correctness. There are some cases where an unrelocated 18 // pointer can be used after the safepoint. Consider this example: 19 // 20 // a = ... 21 // b = ... 22 // (a',b') = safepoint(a,b) 23 // c = cmp eq a b 24 // br c, ..., .... 25 // 26 // Because it is valid to reorder 'c' above the safepoint, this is legal. In 27 // practice, this is a somewhat uncommon transform, but CodeGenPrep does create 28 // idioms like this. The verifier knows about these cases and avoids reporting 29 // false positives. 30 // 31 //===----------------------------------------------------------------------===// 32 33 #include "llvm/IR/SafepointIRVerifier.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/PostOrderIterator.h" 36 #include "llvm/ADT/SetOperations.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Statepoint.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Support/Allocator.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 53 #define DEBUG_TYPE "safepoint-ir-verifier" 54 55 using namespace llvm; 56 57 /// This option is used for writing test cases. Instead of crashing the program 58 /// when verification fails, report a message to the console (for FileCheck 59 /// usage) and continue execution as if nothing happened. 60 static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only", 61 cl::init(false)); 62 63 namespace { 64 65 /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set 66 /// of blocks unreachable from entry then propagates deadness using foldable 67 /// conditional branches without modifying CFG. So GVN does but it changes CFG 68 /// by splitting critical edges. In most cases passes rely on SimplifyCFG to 69 /// clean up dead blocks, but in some cases, like verification or loop passes 70 /// it's not possible. 71 class CFGDeadness { 72 const DominatorTree *DT = nullptr; 73 SetVector<const BasicBlock *> DeadBlocks; 74 SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks. 75 76 public: 77 /// Return the edge that coresponds to the predecessor. 78 static const Use& getEdge(const_pred_iterator &PredIt) { 79 auto &PU = PredIt.getUse(); 80 return PU.getUser()->getOperandUse(PU.getOperandNo()); 81 } 82 83 /// Return true if there is at least one live edge that corresponds to the 84 /// basic block InBB listed in the phi node. 85 bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const { 86 assert(!isDeadBlock(InBB) && "block must be live"); 87 const BasicBlock* BB = PN->getParent(); 88 bool Listed = false; 89 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { 90 if (InBB == *PredIt) { 91 if (!isDeadEdge(&getEdge(PredIt))) 92 return true; 93 Listed = true; 94 } 95 } 96 (void)Listed; 97 assert(Listed && "basic block is not found among incoming blocks"); 98 return false; 99 } 100 101 102 bool isDeadBlock(const BasicBlock *BB) const { 103 return DeadBlocks.count(BB); 104 } 105 106 bool isDeadEdge(const Use *U) const { 107 assert(cast<Instruction>(U->getUser())->isTerminator() && 108 "edge must be operand of terminator"); 109 assert(cast_or_null<BasicBlock>(U->get()) && 110 "edge must refer to basic block"); 111 assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) && 112 "isDeadEdge() must be applied to edge from live block"); 113 return DeadEdges.count(U); 114 } 115 116 bool hasLiveIncomingEdges(const BasicBlock *BB) const { 117 // Check if all incoming edges are dead. 118 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { 119 auto &PU = PredIt.getUse(); 120 const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo()); 121 if (!isDeadBlock(*PredIt) && !isDeadEdge(&U)) 122 return true; // Found a live edge. 123 } 124 return false; 125 } 126 127 void processFunction(const Function &F, const DominatorTree &DT) { 128 this->DT = &DT; 129 130 // Start with all blocks unreachable from entry. 131 for (const BasicBlock &BB : F) 132 if (!DT.isReachableFromEntry(&BB)) 133 DeadBlocks.insert(&BB); 134 135 // Top-down walk of the dominator tree 136 ReversePostOrderTraversal<const Function *> RPOT(&F); 137 for (const BasicBlock *BB : RPOT) { 138 const Instruction *TI = BB->getTerminator(); 139 assert(TI && "blocks must be well formed"); 140 141 // For conditional branches, we can perform simple conditional propagation on 142 // the condition value itself. 143 const BranchInst *BI = dyn_cast<BranchInst>(TI); 144 if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition())) 145 continue; 146 147 // If a branch has two identical successors, we cannot declare either dead. 148 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 149 continue; 150 151 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 152 if (!Cond) 153 continue; 154 155 addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2)); 156 } 157 } 158 159 protected: 160 void addDeadBlock(const BasicBlock *BB) { 161 SmallVector<const BasicBlock *, 4> NewDead; 162 SmallSetVector<const BasicBlock *, 4> DF; 163 164 NewDead.push_back(BB); 165 while (!NewDead.empty()) { 166 const BasicBlock *D = NewDead.pop_back_val(); 167 if (isDeadBlock(D)) 168 continue; 169 170 // All blocks dominated by D are dead. 171 SmallVector<BasicBlock *, 8> Dom; 172 DT->getDescendants(const_cast<BasicBlock*>(D), Dom); 173 // Do not need to mark all in and out edges dead 174 // because BB is marked dead and this is enough 175 // to run further. 176 DeadBlocks.insert(Dom.begin(), Dom.end()); 177 178 // Figure out the dominance-frontier(D). 179 for (BasicBlock *B : Dom) 180 for (BasicBlock *S : successors(B)) 181 if (!isDeadBlock(S) && !hasLiveIncomingEdges(S)) 182 NewDead.push_back(S); 183 } 184 } 185 186 void addDeadEdge(const Use &DeadEdge) { 187 if (!DeadEdges.insert(&DeadEdge)) 188 return; 189 190 BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get()); 191 if (hasLiveIncomingEdges(BB)) 192 return; 193 194 addDeadBlock(BB); 195 } 196 }; 197 } // namespace 198 199 static void Verify(const Function &F, const DominatorTree &DT, 200 const CFGDeadness &CD); 201 202 namespace llvm { 203 PreservedAnalyses SafepointIRVerifierPass::run(Function &F, 204 FunctionAnalysisManager &AM) { 205 const auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 206 CFGDeadness CD; 207 CD.processFunction(F, DT); 208 Verify(F, DT, CD); 209 return PreservedAnalyses::all(); 210 } 211 } // namespace llvm 212 213 namespace { 214 215 struct SafepointIRVerifier : public FunctionPass { 216 static char ID; // Pass identification, replacement for typeid 217 SafepointIRVerifier() : FunctionPass(ID) { 218 initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry()); 219 } 220 221 bool runOnFunction(Function &F) override { 222 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 223 CFGDeadness CD; 224 CD.processFunction(F, DT); 225 Verify(F, DT, CD); 226 return false; // no modifications 227 } 228 229 void getAnalysisUsage(AnalysisUsage &AU) const override { 230 AU.addRequiredID(DominatorTreeWrapperPass::ID); 231 AU.setPreservesAll(); 232 } 233 234 StringRef getPassName() const override { return "safepoint verifier"; } 235 }; 236 } // namespace 237 238 void llvm::verifySafepointIR(Function &F) { 239 SafepointIRVerifier pass; 240 pass.runOnFunction(F); 241 } 242 243 char SafepointIRVerifier::ID = 0; 244 245 FunctionPass *llvm::createSafepointIRVerifierPass() { 246 return new SafepointIRVerifier(); 247 } 248 249 INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir", 250 "Safepoint IR Verifier", false, false) 251 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 252 INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir", 253 "Safepoint IR Verifier", false, false) 254 255 static bool isGCPointerType(Type *T) { 256 if (auto *PT = dyn_cast<PointerType>(T)) 257 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 258 // GC managed heap. We know that a pointer into this heap needs to be 259 // updated and that no other pointer does. 260 return (1 == PT->getAddressSpace()); 261 return false; 262 } 263 264 static bool containsGCPtrType(Type *Ty) { 265 if (isGCPointerType(Ty)) 266 return true; 267 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 268 return isGCPointerType(VT->getScalarType()); 269 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 270 return containsGCPtrType(AT->getElementType()); 271 if (StructType *ST = dyn_cast<StructType>(Ty)) 272 return llvm::any_of(ST->elements(), containsGCPtrType); 273 return false; 274 } 275 276 // Debugging aid -- prints a [Begin, End) range of values. 277 template<typename IteratorTy> 278 static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) { 279 OS << "[ "; 280 while (Begin != End) { 281 OS << **Begin << " "; 282 ++Begin; 283 } 284 OS << "]"; 285 } 286 287 /// The verifier algorithm is phrased in terms of availability. The set of 288 /// values "available" at a given point in the control flow graph is the set of 289 /// correctly relocated value at that point, and is a subset of the set of 290 /// definitions dominating that point. 291 292 using AvailableValueSet = DenseSet<const Value *>; 293 294 /// State we compute and track per basic block. 295 struct BasicBlockState { 296 // Set of values available coming in, before the phi nodes 297 AvailableValueSet AvailableIn; 298 299 // Set of values available going out 300 AvailableValueSet AvailableOut; 301 302 // AvailableOut minus AvailableIn. 303 // All elements are Instructions 304 AvailableValueSet Contribution; 305 306 // True if this block contains a safepoint and thus AvailableIn does not 307 // contribute to AvailableOut. 308 bool Cleared = false; 309 }; 310 311 /// A given derived pointer can have multiple base pointers through phi/selects. 312 /// This type indicates when the base pointer is exclusively constant 313 /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively 314 /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is 315 /// NonConstant. 316 enum BaseType { 317 NonConstant = 1, // Base pointers is not exclusively constant. 318 ExclusivelyNull, 319 ExclusivelySomeConstant // Base pointers for a given derived pointer is from a 320 // set of constants, but they are not exclusively 321 // null. 322 }; 323 324 /// Return the baseType for Val which states whether Val is exclusively 325 /// derived from constant/null, or not exclusively derived from constant. 326 /// Val is exclusively derived off a constant base when all operands of phi and 327 /// selects are derived off a constant base. 328 static enum BaseType getBaseType(const Value *Val) { 329 330 SmallVector<const Value *, 32> Worklist; 331 DenseSet<const Value *> Visited; 332 bool isExclusivelyDerivedFromNull = true; 333 Worklist.push_back(Val); 334 // Strip through all the bitcasts and geps to get base pointer. Also check for 335 // the exclusive value when there can be multiple base pointers (through phis 336 // or selects). 337 while(!Worklist.empty()) { 338 const Value *V = Worklist.pop_back_val(); 339 if (!Visited.insert(V).second) 340 continue; 341 342 if (const auto *CI = dyn_cast<CastInst>(V)) { 343 Worklist.push_back(CI->stripPointerCasts()); 344 continue; 345 } 346 if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) { 347 Worklist.push_back(GEP->getPointerOperand()); 348 continue; 349 } 350 // Push all the incoming values of phi node into the worklist for 351 // processing. 352 if (const auto *PN = dyn_cast<PHINode>(V)) { 353 append_range(Worklist, PN->incoming_values()); 354 continue; 355 } 356 if (const auto *SI = dyn_cast<SelectInst>(V)) { 357 // Push in the true and false values 358 Worklist.push_back(SI->getTrueValue()); 359 Worklist.push_back(SI->getFalseValue()); 360 continue; 361 } 362 if (isa<Constant>(V)) { 363 // We found at least one base pointer which is non-null, so this derived 364 // pointer is not exclusively derived from null. 365 if (V != Constant::getNullValue(V->getType())) 366 isExclusivelyDerivedFromNull = false; 367 // Continue processing the remaining values to make sure it's exclusively 368 // constant. 369 continue; 370 } 371 // At this point, we know that the base pointer is not exclusively 372 // constant. 373 return BaseType::NonConstant; 374 } 375 // Now, we know that the base pointer is exclusively constant, but we need to 376 // differentiate between exclusive null constant and non-null constant. 377 return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull 378 : BaseType::ExclusivelySomeConstant; 379 } 380 381 static bool isNotExclusivelyConstantDerived(const Value *V) { 382 return getBaseType(V) == BaseType::NonConstant; 383 } 384 385 namespace { 386 class InstructionVerifier; 387 388 /// Builds BasicBlockState for each BB of the function. 389 /// It can traverse function for verification and provides all required 390 /// information. 391 /// 392 /// GC pointer may be in one of three states: relocated, unrelocated and 393 /// poisoned. 394 /// Relocated pointer may be used without any restrictions. 395 /// Unrelocated pointer cannot be dereferenced, passed as argument to any call 396 /// or returned. Unrelocated pointer may be safely compared against another 397 /// unrelocated pointer or against a pointer exclusively derived from null. 398 /// Poisoned pointers are produced when we somehow derive pointer from relocated 399 /// and unrelocated pointers (e.g. phi, select). This pointers may be safely 400 /// used in a very limited number of situations. Currently the only way to use 401 /// it is comparison against constant exclusively derived from null. All 402 /// limitations arise due to their undefined state: this pointers should be 403 /// treated as relocated and unrelocated simultaneously. 404 /// Rules of deriving: 405 /// R + U = P - that's where the poisoned pointers come from 406 /// P + X = P 407 /// U + U = U 408 /// R + R = R 409 /// X + C = X 410 /// Where "+" - any operation that somehow derive pointer, U - unrelocated, 411 /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or 412 /// nothing (in case when "+" is unary operation). 413 /// Deriving of pointers by itself is always safe. 414 /// NOTE: when we are making decision on the status of instruction's result: 415 /// a) for phi we need to check status of each input *at the end of 416 /// corresponding predecessor BB*. 417 /// b) for other instructions we need to check status of each input *at the 418 /// current point*. 419 /// 420 /// FIXME: This works fairly well except one case 421 /// bb1: 422 /// p = *some GC-ptr def* 423 /// p1 = gep p, offset 424 /// / | 425 /// / | 426 /// bb2: | 427 /// safepoint | 428 /// \ | 429 /// \ | 430 /// bb3: 431 /// p2 = phi [p, bb2] [p1, bb1] 432 /// p3 = phi [p, bb2] [p, bb1] 433 /// here p and p1 is unrelocated 434 /// p2 and p3 is poisoned (though they shouldn't be) 435 /// 436 /// This leads to some weird results: 437 /// cmp eq p, p2 - illegal instruction (false-positive) 438 /// cmp eq p1, p2 - illegal instruction (false-positive) 439 /// cmp eq p, p3 - illegal instruction (false-positive) 440 /// cmp eq p, p1 - ok 441 /// To fix this we need to introduce conception of generations and be able to 442 /// check if two values belong to one generation or not. This way p2 will be 443 /// considered to be unrelocated and no false alarm will happen. 444 class GCPtrTracker { 445 const Function &F; 446 const CFGDeadness &CD; 447 SpecificBumpPtrAllocator<BasicBlockState> BSAllocator; 448 DenseMap<const BasicBlock *, BasicBlockState *> BlockMap; 449 // This set contains defs of unrelocated pointers that are proved to be legal 450 // and don't need verification. 451 DenseSet<const Instruction *> ValidUnrelocatedDefs; 452 // This set contains poisoned defs. They can be safely ignored during 453 // verification too. 454 DenseSet<const Value *> PoisonedDefs; 455 456 public: 457 GCPtrTracker(const Function &F, const DominatorTree &DT, 458 const CFGDeadness &CD); 459 460 bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const { 461 return CD.hasLiveIncomingEdge(PN, InBB); 462 } 463 464 BasicBlockState *getBasicBlockState(const BasicBlock *BB); 465 const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const; 466 467 bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); } 468 469 /// Traverse each BB of the function and call 470 /// InstructionVerifier::verifyInstruction for each possibly invalid 471 /// instruction. 472 /// It destructively modifies GCPtrTracker so it's passed via rvalue reference 473 /// in order to prohibit further usages of GCPtrTracker as it'll be in 474 /// inconsistent state. 475 static void verifyFunction(GCPtrTracker &&Tracker, 476 InstructionVerifier &Verifier); 477 478 /// Returns true for reachable and live blocks. 479 bool isMapped(const BasicBlock *BB) const { 480 return BlockMap.find(BB) != BlockMap.end(); 481 } 482 483 private: 484 /// Returns true if the instruction may be safely skipped during verification. 485 bool instructionMayBeSkipped(const Instruction *I) const; 486 487 /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for 488 /// each of them until it converges. 489 void recalculateBBsStates(); 490 491 /// Remove from Contribution all defs that legally produce unrelocated 492 /// pointers and saves them to ValidUnrelocatedDefs. 493 /// Though Contribution should belong to BBS it is passed separately with 494 /// different const-modifier in order to emphasize (and guarantee) that only 495 /// Contribution will be changed. 496 /// Returns true if Contribution was changed otherwise false. 497 bool removeValidUnrelocatedDefs(const BasicBlock *BB, 498 const BasicBlockState *BBS, 499 AvailableValueSet &Contribution); 500 501 /// Gather all the definitions dominating the start of BB into Result. This is 502 /// simply the defs introduced by every dominating basic block and the 503 /// function arguments. 504 void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result, 505 const DominatorTree &DT); 506 507 /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS, 508 /// which is the BasicBlockState for BB. 509 /// ContributionChanged is set when the verifier runs for the first time 510 /// (in this case Contribution was changed from 'empty' to its initial state) 511 /// or when Contribution of this BB was changed since last computation. 512 static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS, 513 bool ContributionChanged); 514 515 /// Model the effect of an instruction on the set of available values. 516 static void transferInstruction(const Instruction &I, bool &Cleared, 517 AvailableValueSet &Available); 518 }; 519 520 /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the 521 /// instruction (which uses heap reference) is legal or not, given our safepoint 522 /// semantics. 523 class InstructionVerifier { 524 bool AnyInvalidUses = false; 525 526 public: 527 void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I, 528 const AvailableValueSet &AvailableSet); 529 530 bool hasAnyInvalidUses() const { return AnyInvalidUses; } 531 532 private: 533 void reportInvalidUse(const Value &V, const Instruction &I); 534 }; 535 } // end anonymous namespace 536 537 GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT, 538 const CFGDeadness &CD) : F(F), CD(CD) { 539 // Calculate Contribution of each live BB. 540 // Allocate BB states for live blocks. 541 for (const BasicBlock &BB : F) 542 if (!CD.isDeadBlock(&BB)) { 543 BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState; 544 for (const auto &I : BB) 545 transferInstruction(I, BBS->Cleared, BBS->Contribution); 546 BlockMap[&BB] = BBS; 547 } 548 549 // Initialize AvailableIn/Out sets of each BB using only information about 550 // dominating BBs. 551 for (auto &BBI : BlockMap) { 552 gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT); 553 transferBlock(BBI.first, *BBI.second, true); 554 } 555 556 // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out 557 // sets of each BB until it converges. If any def is proved to be an 558 // unrelocated pointer, it will be removed from all BBSs. 559 recalculateBBsStates(); 560 } 561 562 BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) { 563 return BlockMap.lookup(BB); 564 } 565 566 const BasicBlockState *GCPtrTracker::getBasicBlockState( 567 const BasicBlock *BB) const { 568 return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB); 569 } 570 571 bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const { 572 // Poisoned defs are skipped since they are always safe by itself by 573 // definition (for details see comment to this class). 574 return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I); 575 } 576 577 void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker, 578 InstructionVerifier &Verifier) { 579 // We need RPO here to a) report always the first error b) report errors in 580 // same order from run to run. 581 ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F); 582 for (const BasicBlock *BB : RPOT) { 583 BasicBlockState *BBS = Tracker.getBasicBlockState(BB); 584 if (!BBS) 585 continue; 586 587 // We destructively modify AvailableIn as we traverse the block instruction 588 // by instruction. 589 AvailableValueSet &AvailableSet = BBS->AvailableIn; 590 for (const Instruction &I : *BB) { 591 if (Tracker.instructionMayBeSkipped(&I)) 592 continue; // This instruction shouldn't be added to AvailableSet. 593 594 Verifier.verifyInstruction(&Tracker, I, AvailableSet); 595 596 // Model the effect of current instruction on AvailableSet to keep the set 597 // relevant at each point of BB. 598 bool Cleared = false; 599 transferInstruction(I, Cleared, AvailableSet); 600 (void)Cleared; 601 } 602 } 603 } 604 605 void GCPtrTracker::recalculateBBsStates() { 606 SetVector<const BasicBlock *> Worklist; 607 // TODO: This order is suboptimal, it's better to replace it with priority 608 // queue where priority is RPO number of BB. 609 for (auto &BBI : BlockMap) 610 Worklist.insert(BBI.first); 611 612 // This loop iterates the AvailableIn/Out sets until it converges. 613 // The AvailableIn and AvailableOut sets decrease as we iterate. 614 while (!Worklist.empty()) { 615 const BasicBlock *BB = Worklist.pop_back_val(); 616 BasicBlockState *BBS = getBasicBlockState(BB); 617 if (!BBS) 618 continue; // Ignore dead successors. 619 620 size_t OldInCount = BBS->AvailableIn.size(); 621 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { 622 const BasicBlock *PBB = *PredIt; 623 BasicBlockState *PBBS = getBasicBlockState(PBB); 624 if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt))) 625 set_intersect(BBS->AvailableIn, PBBS->AvailableOut); 626 } 627 628 assert(OldInCount >= BBS->AvailableIn.size() && "invariant!"); 629 630 bool InputsChanged = OldInCount != BBS->AvailableIn.size(); 631 bool ContributionChanged = 632 removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution); 633 if (!InputsChanged && !ContributionChanged) 634 continue; 635 636 size_t OldOutCount = BBS->AvailableOut.size(); 637 transferBlock(BB, *BBS, ContributionChanged); 638 if (OldOutCount != BBS->AvailableOut.size()) { 639 assert(OldOutCount > BBS->AvailableOut.size() && "invariant!"); 640 Worklist.insert(succ_begin(BB), succ_end(BB)); 641 } 642 } 643 } 644 645 bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB, 646 const BasicBlockState *BBS, 647 AvailableValueSet &Contribution) { 648 assert(&BBS->Contribution == &Contribution && 649 "Passed Contribution should be from the passed BasicBlockState!"); 650 AvailableValueSet AvailableSet = BBS->AvailableIn; 651 bool ContributionChanged = false; 652 // For explanation why instructions are processed this way see 653 // "Rules of deriving" in the comment to this class. 654 for (const Instruction &I : *BB) { 655 bool ValidUnrelocatedPointerDef = false; 656 bool PoisonedPointerDef = false; 657 // TODO: `select` instructions should be handled here too. 658 if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 659 if (containsGCPtrType(PN->getType())) { 660 // If both is true, output is poisoned. 661 bool HasRelocatedInputs = false; 662 bool HasUnrelocatedInputs = false; 663 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 664 const BasicBlock *InBB = PN->getIncomingBlock(i); 665 if (!isMapped(InBB) || 666 !CD.hasLiveIncomingEdge(PN, InBB)) 667 continue; // Skip dead block or dead edge. 668 669 const Value *InValue = PN->getIncomingValue(i); 670 671 if (isNotExclusivelyConstantDerived(InValue)) { 672 if (isValuePoisoned(InValue)) { 673 // If any of inputs is poisoned, output is always poisoned too. 674 HasRelocatedInputs = true; 675 HasUnrelocatedInputs = true; 676 break; 677 } 678 if (BlockMap[InBB]->AvailableOut.count(InValue)) 679 HasRelocatedInputs = true; 680 else 681 HasUnrelocatedInputs = true; 682 } 683 } 684 if (HasUnrelocatedInputs) { 685 if (HasRelocatedInputs) 686 PoisonedPointerDef = true; 687 else 688 ValidUnrelocatedPointerDef = true; 689 } 690 } 691 } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) && 692 containsGCPtrType(I.getType())) { 693 // GEP/bitcast of unrelocated pointer is legal by itself but this def 694 // shouldn't appear in any AvailableSet. 695 for (const Value *V : I.operands()) 696 if (containsGCPtrType(V->getType()) && 697 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) { 698 if (isValuePoisoned(V)) 699 PoisonedPointerDef = true; 700 else 701 ValidUnrelocatedPointerDef = true; 702 break; 703 } 704 } 705 assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) && 706 "Value cannot be both unrelocated and poisoned!"); 707 if (ValidUnrelocatedPointerDef) { 708 // Remove def of unrelocated pointer from Contribution of this BB and 709 // trigger update of all its successors. 710 Contribution.erase(&I); 711 PoisonedDefs.erase(&I); 712 ValidUnrelocatedDefs.insert(&I); 713 LLVM_DEBUG(dbgs() << "Removing urelocated " << I 714 << " from Contribution of " << BB->getName() << "\n"); 715 ContributionChanged = true; 716 } else if (PoisonedPointerDef) { 717 // Mark pointer as poisoned, remove its def from Contribution and trigger 718 // update of all successors. 719 Contribution.erase(&I); 720 PoisonedDefs.insert(&I); 721 LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of " 722 << BB->getName() << "\n"); 723 ContributionChanged = true; 724 } else { 725 bool Cleared = false; 726 transferInstruction(I, Cleared, AvailableSet); 727 (void)Cleared; 728 } 729 } 730 return ContributionChanged; 731 } 732 733 void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB, 734 AvailableValueSet &Result, 735 const DominatorTree &DT) { 736 DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)]; 737 738 assert(DTN && "Unreachable blocks are ignored"); 739 while (DTN->getIDom()) { 740 DTN = DTN->getIDom(); 741 auto BBS = getBasicBlockState(DTN->getBlock()); 742 assert(BBS && "immediate dominator cannot be dead for a live block"); 743 const auto &Defs = BBS->Contribution; 744 Result.insert(Defs.begin(), Defs.end()); 745 // If this block is 'Cleared', then nothing LiveIn to this block can be 746 // available after this block completes. Note: This turns out to be 747 // really important for reducing memory consuption of the initial available 748 // sets and thus peak memory usage by this verifier. 749 if (BBS->Cleared) 750 return; 751 } 752 753 for (const Argument &A : BB->getParent()->args()) 754 if (containsGCPtrType(A.getType())) 755 Result.insert(&A); 756 } 757 758 void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS, 759 bool ContributionChanged) { 760 const AvailableValueSet &AvailableIn = BBS.AvailableIn; 761 AvailableValueSet &AvailableOut = BBS.AvailableOut; 762 763 if (BBS.Cleared) { 764 // AvailableOut will change only when Contribution changed. 765 if (ContributionChanged) 766 AvailableOut = BBS.Contribution; 767 } else { 768 // Otherwise, we need to reduce the AvailableOut set by things which are no 769 // longer in our AvailableIn 770 AvailableValueSet Temp = BBS.Contribution; 771 set_union(Temp, AvailableIn); 772 AvailableOut = std::move(Temp); 773 } 774 775 LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from "; 776 PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end()); 777 dbgs() << " to "; 778 PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end()); 779 dbgs() << "\n";); 780 } 781 782 void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared, 783 AvailableValueSet &Available) { 784 if (isa<GCStatepointInst>(I)) { 785 Cleared = true; 786 Available.clear(); 787 } else if (containsGCPtrType(I.getType())) 788 Available.insert(&I); 789 } 790 791 void InstructionVerifier::verifyInstruction( 792 const GCPtrTracker *Tracker, const Instruction &I, 793 const AvailableValueSet &AvailableSet) { 794 if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 795 if (containsGCPtrType(PN->getType())) 796 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 797 const BasicBlock *InBB = PN->getIncomingBlock(i); 798 const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB); 799 if (!InBBS || 800 !Tracker->hasLiveIncomingEdge(PN, InBB)) 801 continue; // Skip dead block or dead edge. 802 803 const Value *InValue = PN->getIncomingValue(i); 804 805 if (isNotExclusivelyConstantDerived(InValue) && 806 !InBBS->AvailableOut.count(InValue)) 807 reportInvalidUse(*InValue, *PN); 808 } 809 } else if (isa<CmpInst>(I) && 810 containsGCPtrType(I.getOperand(0)->getType())) { 811 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 812 enum BaseType baseTyLHS = getBaseType(LHS), 813 baseTyRHS = getBaseType(RHS); 814 815 // Returns true if LHS and RHS are unrelocated pointers and they are 816 // valid unrelocated uses. 817 auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS, 818 &LHS, &RHS] () { 819 // A cmp instruction has valid unrelocated pointer operands only if 820 // both operands are unrelocated pointers. 821 // In the comparison between two pointers, if one is an unrelocated 822 // use, the other *should be* an unrelocated use, for this 823 // instruction to contain valid unrelocated uses. This unrelocated 824 // use can be a null constant as well, or another unrelocated 825 // pointer. 826 if (AvailableSet.count(LHS) || AvailableSet.count(RHS)) 827 return false; 828 // Constant pointers (that are not exclusively null) may have 829 // meaning in different VMs, so we cannot reorder the compare 830 // against constant pointers before the safepoint. In other words, 831 // comparison of an unrelocated use against a non-null constant 832 // maybe invalid. 833 if ((baseTyLHS == BaseType::ExclusivelySomeConstant && 834 baseTyRHS == BaseType::NonConstant) || 835 (baseTyLHS == BaseType::NonConstant && 836 baseTyRHS == BaseType::ExclusivelySomeConstant)) 837 return false; 838 839 // If one of pointers is poisoned and other is not exclusively derived 840 // from null it is an invalid expression: it produces poisoned result 841 // and unless we want to track all defs (not only gc pointers) the only 842 // option is to prohibit such instructions. 843 if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) || 844 (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull)) 845 return false; 846 847 // All other cases are valid cases enumerated below: 848 // 1. Comparison between an exclusively derived null pointer and a 849 // constant base pointer. 850 // 2. Comparison between an exclusively derived null pointer and a 851 // non-constant unrelocated base pointer. 852 // 3. Comparison between 2 unrelocated pointers. 853 // 4. Comparison between a pointer exclusively derived from null and a 854 // non-constant poisoned pointer. 855 return true; 856 }; 857 if (!hasValidUnrelocatedUse()) { 858 // Print out all non-constant derived pointers that are unrelocated 859 // uses, which are invalid. 860 if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS)) 861 reportInvalidUse(*LHS, I); 862 if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS)) 863 reportInvalidUse(*RHS, I); 864 } 865 } else { 866 for (const Value *V : I.operands()) 867 if (containsGCPtrType(V->getType()) && 868 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) 869 reportInvalidUse(*V, I); 870 } 871 } 872 873 void InstructionVerifier::reportInvalidUse(const Value &V, 874 const Instruction &I) { 875 errs() << "Illegal use of unrelocated value found!\n"; 876 errs() << "Def: " << V << "\n"; 877 errs() << "Use: " << I << "\n"; 878 if (!PrintOnly) 879 abort(); 880 AnyInvalidUses = true; 881 } 882 883 static void Verify(const Function &F, const DominatorTree &DT, 884 const CFGDeadness &CD) { 885 LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() 886 << "\n"); 887 if (PrintOnly) 888 dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n"; 889 890 GCPtrTracker Tracker(F, DT, CD); 891 892 // We now have all the information we need to decide if the use of a heap 893 // reference is legal or not, given our safepoint semantics. 894 895 InstructionVerifier Verifier; 896 GCPtrTracker::verifyFunction(std::move(Tracker), Verifier); 897 898 if (PrintOnly && !Verifier.hasAnyInvalidUses()) { 899 dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName() 900 << "\n"; 901 } 902 } 903