1 //===-- Operator.cpp - Implement the LLVM operators -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the non-inline methods for the LLVM Operator classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Operator.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/GetElementPtrTypeIterator.h" 16 #include "llvm/IR/Instructions.h" 17 18 #include "ConstantsContext.h" 19 20 namespace llvm { 21 bool Operator::hasPoisonGeneratingFlags() const { 22 switch (getOpcode()) { 23 case Instruction::Add: 24 case Instruction::Sub: 25 case Instruction::Mul: 26 case Instruction::Shl: { 27 auto *OBO = cast<OverflowingBinaryOperator>(this); 28 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 29 } 30 case Instruction::UDiv: 31 case Instruction::SDiv: 32 case Instruction::AShr: 33 case Instruction::LShr: 34 return cast<PossiblyExactOperator>(this)->isExact(); 35 case Instruction::GetElementPtr: { 36 auto *GEP = cast<GEPOperator>(this); 37 // Note: inrange exists on constexpr only 38 return GEP->isInBounds() || GEP->getInRangeIndex() != None; 39 } 40 default: 41 if (const auto *FP = dyn_cast<FPMathOperator>(this)) 42 return FP->hasNoNaNs() || FP->hasNoInfs(); 43 return false; 44 } 45 } 46 47 Type *GEPOperator::getSourceElementType() const { 48 if (auto *I = dyn_cast<GetElementPtrInst>(this)) 49 return I->getSourceElementType(); 50 return cast<GetElementPtrConstantExpr>(this)->getSourceElementType(); 51 } 52 53 Type *GEPOperator::getResultElementType() const { 54 if (auto *I = dyn_cast<GetElementPtrInst>(this)) 55 return I->getResultElementType(); 56 return cast<GetElementPtrConstantExpr>(this)->getResultElementType(); 57 } 58 59 Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const { 60 /// compute the worse possible offset for every level of the GEP et accumulate 61 /// the minimum alignment into Result. 62 63 Align Result = Align(llvm::Value::MaximumAlignment); 64 for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); 65 GTI != GTE; ++GTI) { 66 int64_t Offset = 1; 67 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 68 69 if (StructType *STy = GTI.getStructTypeOrNull()) { 70 const StructLayout *SL = DL.getStructLayout(STy); 71 Offset = SL->getElementOffset(OpC->getZExtValue()); 72 } else { 73 assert(GTI.isSequential() && "should be sequencial"); 74 /// If the index isn't know we take 1 because it is the index that will 75 /// give the worse alignment of the offset. 76 int64_t ElemCount = 1; 77 if (OpC) 78 ElemCount = OpC->getZExtValue(); 79 Offset = DL.getTypeAllocSize(GTI.getIndexedType()) * ElemCount; 80 } 81 Result = Align(MinAlign(Offset, Result.value())); 82 } 83 return Result; 84 } 85 86 bool GEPOperator::accumulateConstantOffset( 87 const DataLayout &DL, APInt &Offset, 88 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 89 assert(Offset.getBitWidth() == 90 DL.getIndexSizeInBits(getPointerAddressSpace()) && 91 "The offset bit width does not match DL specification."); 92 SmallVector<const Value *> Index(llvm::drop_begin(operand_values())); 93 return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index, 94 DL, Offset, ExternalAnalysis); 95 } 96 97 bool GEPOperator::accumulateConstantOffset( 98 Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL, 99 APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) { 100 bool UsedExternalAnalysis = false; 101 auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool { 102 Index = Index.sextOrTrunc(Offset.getBitWidth()); 103 APInt IndexedSize = APInt(Offset.getBitWidth(), Size); 104 // For array or vector indices, scale the index by the size of the type. 105 if (!UsedExternalAnalysis) { 106 Offset += Index * IndexedSize; 107 } else { 108 // External Analysis can return a result higher/lower than the value 109 // represents. We need to detect overflow/underflow. 110 bool Overflow = false; 111 APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow); 112 if (Overflow) 113 return false; 114 Offset = Offset.sadd_ov(OffsetPlus, Overflow); 115 if (Overflow) 116 return false; 117 } 118 return true; 119 }; 120 auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin( 121 SourceType, Index.begin()); 122 auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end()); 123 for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) { 124 // Scalable vectors are multiplied by a runtime constant. 125 bool ScalableType = false; 126 if (isa<ScalableVectorType>(GTI.getIndexedType())) 127 ScalableType = true; 128 129 Value *V = GTI.getOperand(); 130 StructType *STy = GTI.getStructTypeOrNull(); 131 // Handle ConstantInt if possible. 132 if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { 133 if (ConstOffset->isZero()) 134 continue; 135 // if the type is scalable and the constant is not zero (vscale * n * 0 = 136 // 0) bailout. 137 if (ScalableType) 138 return false; 139 // Handle a struct index, which adds its field offset to the pointer. 140 if (STy) { 141 unsigned ElementIdx = ConstOffset->getZExtValue(); 142 const StructLayout *SL = DL.getStructLayout(STy); 143 // Element offset is in bytes. 144 if (!AccumulateOffset( 145 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)), 146 1)) 147 return false; 148 continue; 149 } 150 if (!AccumulateOffset(ConstOffset->getValue(), 151 DL.getTypeAllocSize(GTI.getIndexedType()))) 152 return false; 153 continue; 154 } 155 156 // The operand is not constant, check if an external analysis was provided. 157 // External analsis is not applicable to a struct type. 158 if (!ExternalAnalysis || STy || ScalableType) 159 return false; 160 APInt AnalysisIndex; 161 if (!ExternalAnalysis(*V, AnalysisIndex)) 162 return false; 163 UsedExternalAnalysis = true; 164 if (!AccumulateOffset(AnalysisIndex, 165 DL.getTypeAllocSize(GTI.getIndexedType()))) 166 return false; 167 } 168 return true; 169 } 170 171 bool GEPOperator::collectOffset( 172 const DataLayout &DL, unsigned BitWidth, 173 MapVector<Value *, APInt> &VariableOffsets, 174 APInt &ConstantOffset) const { 175 assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) && 176 "The offset bit width does not match DL specification."); 177 178 auto CollectConstantOffset = [&](APInt Index, uint64_t Size) { 179 Index = Index.sextOrTrunc(BitWidth); 180 APInt IndexedSize = APInt(BitWidth, Size); 181 ConstantOffset += Index * IndexedSize; 182 }; 183 184 for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); 185 GTI != GTE; ++GTI) { 186 // Scalable vectors are multiplied by a runtime constant. 187 bool ScalableType = isa<ScalableVectorType>(GTI.getIndexedType()); 188 189 Value *V = GTI.getOperand(); 190 StructType *STy = GTI.getStructTypeOrNull(); 191 // Handle ConstantInt if possible. 192 if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { 193 if (ConstOffset->isZero()) 194 continue; 195 // If the type is scalable and the constant is not zero (vscale * n * 0 = 196 // 0) bailout. 197 // TODO: If the runtime value is accessible at any point before DWARF 198 // emission, then we could potentially keep a forward reference to it 199 // in the debug value to be filled in later. 200 if (ScalableType) 201 return false; 202 // Handle a struct index, which adds its field offset to the pointer. 203 if (STy) { 204 unsigned ElementIdx = ConstOffset->getZExtValue(); 205 const StructLayout *SL = DL.getStructLayout(STy); 206 // Element offset is in bytes. 207 CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)), 208 1); 209 continue; 210 } 211 CollectConstantOffset(ConstOffset->getValue(), 212 DL.getTypeAllocSize(GTI.getIndexedType())); 213 continue; 214 } 215 216 if (STy || ScalableType) 217 return false; 218 APInt IndexedSize = 219 APInt(BitWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 220 // Insert an initial offset of 0 for V iff none exists already, then 221 // increment the offset by IndexedSize. 222 if (!IndexedSize.isZero()) { 223 VariableOffsets.insert({V, APInt(BitWidth, 0)}); 224 VariableOffsets[V] += IndexedSize; 225 } 226 } 227 return true; 228 } 229 230 void FastMathFlags::print(raw_ostream &O) const { 231 if (all()) 232 O << " fast"; 233 else { 234 if (allowReassoc()) 235 O << " reassoc"; 236 if (noNaNs()) 237 O << " nnan"; 238 if (noInfs()) 239 O << " ninf"; 240 if (noSignedZeros()) 241 O << " nsz"; 242 if (allowReciprocal()) 243 O << " arcp"; 244 if (allowContract()) 245 O << " contract"; 246 if (approxFunc()) 247 O << " afn"; 248 } 249 } 250 } // namespace llvm 251