xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Operator.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- Operator.cpp - Implement the LLVM operators -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the non-inline methods for the LLVM Operator classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Operator.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/GetElementPtrTypeIterator.h"
16 #include "llvm/IR/Instructions.h"
17 
18 #include "ConstantsContext.h"
19 
20 namespace llvm {
21 bool Operator::hasPoisonGeneratingFlags() const {
22   switch (getOpcode()) {
23   case Instruction::Add:
24   case Instruction::Sub:
25   case Instruction::Mul:
26   case Instruction::Shl: {
27     auto *OBO = cast<OverflowingBinaryOperator>(this);
28     return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
29   }
30   case Instruction::Trunc: {
31     if (auto *TI = dyn_cast<TruncInst>(this))
32       return TI->hasNoUnsignedWrap() || TI->hasNoSignedWrap();
33     return false;
34   }
35   case Instruction::UDiv:
36   case Instruction::SDiv:
37   case Instruction::AShr:
38   case Instruction::LShr:
39     return cast<PossiblyExactOperator>(this)->isExact();
40   case Instruction::Or:
41     return cast<PossiblyDisjointInst>(this)->isDisjoint();
42   case Instruction::GetElementPtr: {
43     auto *GEP = cast<GEPOperator>(this);
44     // Note: inrange exists on constexpr only
45     return GEP->getNoWrapFlags() != GEPNoWrapFlags::none() ||
46            GEP->getInRange() != std::nullopt;
47   }
48   case Instruction::UIToFP:
49   case Instruction::ZExt:
50     if (auto *NNI = dyn_cast<PossiblyNonNegInst>(this))
51       return NNI->hasNonNeg();
52     return false;
53   default:
54     if (const auto *FP = dyn_cast<FPMathOperator>(this))
55       return FP->hasNoNaNs() || FP->hasNoInfs();
56     return false;
57   }
58 }
59 
60 bool Operator::hasPoisonGeneratingAnnotations() const {
61   if (hasPoisonGeneratingFlags())
62     return true;
63   auto *I = dyn_cast<Instruction>(this);
64   return I && (I->hasPoisonGeneratingReturnAttributes() ||
65                I->hasPoisonGeneratingMetadata());
66 }
67 
68 Type *GEPOperator::getSourceElementType() const {
69   if (auto *I = dyn_cast<GetElementPtrInst>(this))
70     return I->getSourceElementType();
71   return cast<GetElementPtrConstantExpr>(this)->getSourceElementType();
72 }
73 
74 Type *GEPOperator::getResultElementType() const {
75   if (auto *I = dyn_cast<GetElementPtrInst>(this))
76     return I->getResultElementType();
77   return cast<GetElementPtrConstantExpr>(this)->getResultElementType();
78 }
79 
80 std::optional<ConstantRange> GEPOperator::getInRange() const {
81   if (auto *CE = dyn_cast<GetElementPtrConstantExpr>(this))
82     return CE->getInRange();
83   return std::nullopt;
84 }
85 
86 Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const {
87   /// compute the worse possible offset for every level of the GEP et accumulate
88   /// the minimum alignment into Result.
89 
90   Align Result = Align(llvm::Value::MaximumAlignment);
91   for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
92        GTI != GTE; ++GTI) {
93     uint64_t Offset;
94     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
95 
96     if (StructType *STy = GTI.getStructTypeOrNull()) {
97       const StructLayout *SL = DL.getStructLayout(STy);
98       Offset = SL->getElementOffset(OpC->getZExtValue());
99     } else {
100       assert(GTI.isSequential() && "should be sequencial");
101       /// If the index isn't known, we take 1 because it is the index that will
102       /// give the worse alignment of the offset.
103       const uint64_t ElemCount = OpC ? OpC->getZExtValue() : 1;
104       Offset = GTI.getSequentialElementStride(DL) * ElemCount;
105     }
106     Result = Align(MinAlign(Offset, Result.value()));
107   }
108   return Result;
109 }
110 
111 bool GEPOperator::accumulateConstantOffset(
112     const DataLayout &DL, APInt &Offset,
113     function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
114   assert(Offset.getBitWidth() ==
115              DL.getIndexSizeInBits(getPointerAddressSpace()) &&
116          "The offset bit width does not match DL specification.");
117   SmallVector<const Value *> Index(llvm::drop_begin(operand_values()));
118   return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index,
119                                                DL, Offset, ExternalAnalysis);
120 }
121 
122 bool GEPOperator::accumulateConstantOffset(
123     Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL,
124     APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) {
125   // Fast path for canonical getelementptr i8 form.
126   if (SourceType->isIntegerTy(8) && !ExternalAnalysis) {
127     if (auto *CI = dyn_cast<ConstantInt>(Index.front())) {
128       Offset += CI->getValue().sextOrTrunc(Offset.getBitWidth());
129       return true;
130     }
131     return false;
132   }
133 
134   bool UsedExternalAnalysis = false;
135   auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool {
136     Index = Index.sextOrTrunc(Offset.getBitWidth());
137     APInt IndexedSize = APInt(Offset.getBitWidth(), Size);
138     // For array or vector indices, scale the index by the size of the type.
139     if (!UsedExternalAnalysis) {
140       Offset += Index * IndexedSize;
141     } else {
142       // External Analysis can return a result higher/lower than the value
143       // represents. We need to detect overflow/underflow.
144       bool Overflow = false;
145       APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow);
146       if (Overflow)
147         return false;
148       Offset = Offset.sadd_ov(OffsetPlus, Overflow);
149       if (Overflow)
150         return false;
151     }
152     return true;
153   };
154   auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin(
155       SourceType, Index.begin());
156   auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end());
157   for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) {
158     // Scalable vectors are multiplied by a runtime constant.
159     bool ScalableType = GTI.getIndexedType()->isScalableTy();
160 
161     Value *V = GTI.getOperand();
162     StructType *STy = GTI.getStructTypeOrNull();
163     // Handle ConstantInt if possible.
164     if (auto ConstOffset = dyn_cast<ConstantInt>(V)) {
165       if (ConstOffset->isZero())
166         continue;
167       // if the type is scalable and the constant is not zero (vscale * n * 0 =
168       // 0) bailout.
169       if (ScalableType)
170         return false;
171       // Handle a struct index, which adds its field offset to the pointer.
172       if (STy) {
173         unsigned ElementIdx = ConstOffset->getZExtValue();
174         const StructLayout *SL = DL.getStructLayout(STy);
175         // Element offset is in bytes.
176         if (!AccumulateOffset(
177                 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)),
178                 1))
179           return false;
180         continue;
181       }
182       if (!AccumulateOffset(ConstOffset->getValue(),
183                             GTI.getSequentialElementStride(DL)))
184         return false;
185       continue;
186     }
187 
188     // The operand is not constant, check if an external analysis was provided.
189     // External analsis is not applicable to a struct type.
190     if (!ExternalAnalysis || STy || ScalableType)
191       return false;
192     APInt AnalysisIndex;
193     if (!ExternalAnalysis(*V, AnalysisIndex))
194       return false;
195     UsedExternalAnalysis = true;
196     if (!AccumulateOffset(AnalysisIndex, GTI.getSequentialElementStride(DL)))
197       return false;
198   }
199   return true;
200 }
201 
202 bool GEPOperator::collectOffset(
203     const DataLayout &DL, unsigned BitWidth,
204     MapVector<Value *, APInt> &VariableOffsets,
205     APInt &ConstantOffset) const {
206   assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) &&
207          "The offset bit width does not match DL specification.");
208 
209   auto CollectConstantOffset = [&](APInt Index, uint64_t Size) {
210     Index = Index.sextOrTrunc(BitWidth);
211     APInt IndexedSize = APInt(BitWidth, Size);
212     ConstantOffset += Index * IndexedSize;
213   };
214 
215   for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
216        GTI != GTE; ++GTI) {
217     // Scalable vectors are multiplied by a runtime constant.
218     bool ScalableType = GTI.getIndexedType()->isScalableTy();
219 
220     Value *V = GTI.getOperand();
221     StructType *STy = GTI.getStructTypeOrNull();
222     // Handle ConstantInt if possible.
223     if (auto ConstOffset = dyn_cast<ConstantInt>(V)) {
224       if (ConstOffset->isZero())
225         continue;
226       // If the type is scalable and the constant is not zero (vscale * n * 0 =
227       // 0) bailout.
228       // TODO: If the runtime value is accessible at any point before DWARF
229       // emission, then we could potentially keep a forward reference to it
230       // in the debug value to be filled in later.
231       if (ScalableType)
232         return false;
233       // Handle a struct index, which adds its field offset to the pointer.
234       if (STy) {
235         unsigned ElementIdx = ConstOffset->getZExtValue();
236         const StructLayout *SL = DL.getStructLayout(STy);
237         // Element offset is in bytes.
238         CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)),
239                               1);
240         continue;
241       }
242       CollectConstantOffset(ConstOffset->getValue(),
243                             GTI.getSequentialElementStride(DL));
244       continue;
245     }
246 
247     if (STy || ScalableType)
248       return false;
249     APInt IndexedSize = APInt(BitWidth, GTI.getSequentialElementStride(DL));
250     // Insert an initial offset of 0 for V iff none exists already, then
251     // increment the offset by IndexedSize.
252     if (!IndexedSize.isZero()) {
253       auto *It = VariableOffsets.insert({V, APInt(BitWidth, 0)}).first;
254       It->second += IndexedSize;
255     }
256   }
257   return true;
258 }
259 
260 void FastMathFlags::print(raw_ostream &O) const {
261   if (all())
262     O << " fast";
263   else {
264     if (allowReassoc())
265       O << " reassoc";
266     if (noNaNs())
267       O << " nnan";
268     if (noInfs())
269       O << " ninf";
270     if (noSignedZeros())
271       O << " nsz";
272     if (allowReciprocal())
273       O << " arcp";
274     if (allowContract())
275       O << " contract";
276     if (approxFunc())
277       O << " afn";
278   }
279 }
280 } // namespace llvm
281