1 //===-- Operator.cpp - Implement the LLVM operators -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the non-inline methods for the LLVM Operator classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Operator.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/GetElementPtrTypeIterator.h" 16 #include "llvm/IR/Instructions.h" 17 18 #include "ConstantsContext.h" 19 20 namespace llvm { 21 bool Operator::hasPoisonGeneratingFlags() const { 22 switch (getOpcode()) { 23 case Instruction::Add: 24 case Instruction::Sub: 25 case Instruction::Mul: 26 case Instruction::Shl: { 27 auto *OBO = cast<OverflowingBinaryOperator>(this); 28 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 29 } 30 case Instruction::UDiv: 31 case Instruction::SDiv: 32 case Instruction::AShr: 33 case Instruction::LShr: 34 return cast<PossiblyExactOperator>(this)->isExact(); 35 case Instruction::GetElementPtr: { 36 auto *GEP = cast<GEPOperator>(this); 37 // Note: inrange exists on constexpr only 38 return GEP->isInBounds() || GEP->getInRangeIndex() != std::nullopt; 39 } 40 default: 41 if (const auto *FP = dyn_cast<FPMathOperator>(this)) 42 return FP->hasNoNaNs() || FP->hasNoInfs(); 43 return false; 44 } 45 } 46 47 bool Operator::hasPoisonGeneratingFlagsOrMetadata() const { 48 if (hasPoisonGeneratingFlags()) 49 return true; 50 auto *I = dyn_cast<Instruction>(this); 51 return I && I->hasPoisonGeneratingMetadata(); 52 } 53 54 Type *GEPOperator::getSourceElementType() const { 55 if (auto *I = dyn_cast<GetElementPtrInst>(this)) 56 return I->getSourceElementType(); 57 return cast<GetElementPtrConstantExpr>(this)->getSourceElementType(); 58 } 59 60 Type *GEPOperator::getResultElementType() const { 61 if (auto *I = dyn_cast<GetElementPtrInst>(this)) 62 return I->getResultElementType(); 63 return cast<GetElementPtrConstantExpr>(this)->getResultElementType(); 64 } 65 66 Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const { 67 /// compute the worse possible offset for every level of the GEP et accumulate 68 /// the minimum alignment into Result. 69 70 Align Result = Align(llvm::Value::MaximumAlignment); 71 for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); 72 GTI != GTE; ++GTI) { 73 uint64_t Offset; 74 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 75 76 if (StructType *STy = GTI.getStructTypeOrNull()) { 77 const StructLayout *SL = DL.getStructLayout(STy); 78 Offset = SL->getElementOffset(OpC->getZExtValue()); 79 } else { 80 assert(GTI.isSequential() && "should be sequencial"); 81 /// If the index isn't known, we take 1 because it is the index that will 82 /// give the worse alignment of the offset. 83 const uint64_t ElemCount = OpC ? OpC->getZExtValue() : 1; 84 Offset = DL.getTypeAllocSize(GTI.getIndexedType()) * ElemCount; 85 } 86 Result = Align(MinAlign(Offset, Result.value())); 87 } 88 return Result; 89 } 90 91 bool GEPOperator::accumulateConstantOffset( 92 const DataLayout &DL, APInt &Offset, 93 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 94 assert(Offset.getBitWidth() == 95 DL.getIndexSizeInBits(getPointerAddressSpace()) && 96 "The offset bit width does not match DL specification."); 97 SmallVector<const Value *> Index(llvm::drop_begin(operand_values())); 98 return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index, 99 DL, Offset, ExternalAnalysis); 100 } 101 102 bool GEPOperator::accumulateConstantOffset( 103 Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL, 104 APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) { 105 bool UsedExternalAnalysis = false; 106 auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool { 107 Index = Index.sextOrTrunc(Offset.getBitWidth()); 108 APInt IndexedSize = APInt(Offset.getBitWidth(), Size); 109 // For array or vector indices, scale the index by the size of the type. 110 if (!UsedExternalAnalysis) { 111 Offset += Index * IndexedSize; 112 } else { 113 // External Analysis can return a result higher/lower than the value 114 // represents. We need to detect overflow/underflow. 115 bool Overflow = false; 116 APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow); 117 if (Overflow) 118 return false; 119 Offset = Offset.sadd_ov(OffsetPlus, Overflow); 120 if (Overflow) 121 return false; 122 } 123 return true; 124 }; 125 auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin( 126 SourceType, Index.begin()); 127 auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end()); 128 for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) { 129 // Scalable vectors are multiplied by a runtime constant. 130 bool ScalableType = false; 131 if (isa<ScalableVectorType>(GTI.getIndexedType())) 132 ScalableType = true; 133 134 Value *V = GTI.getOperand(); 135 StructType *STy = GTI.getStructTypeOrNull(); 136 // Handle ConstantInt if possible. 137 if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { 138 if (ConstOffset->isZero()) 139 continue; 140 // if the type is scalable and the constant is not zero (vscale * n * 0 = 141 // 0) bailout. 142 if (ScalableType) 143 return false; 144 // Handle a struct index, which adds its field offset to the pointer. 145 if (STy) { 146 unsigned ElementIdx = ConstOffset->getZExtValue(); 147 const StructLayout *SL = DL.getStructLayout(STy); 148 // Element offset is in bytes. 149 if (!AccumulateOffset( 150 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)), 151 1)) 152 return false; 153 continue; 154 } 155 if (!AccumulateOffset(ConstOffset->getValue(), 156 DL.getTypeAllocSize(GTI.getIndexedType()))) 157 return false; 158 continue; 159 } 160 161 // The operand is not constant, check if an external analysis was provided. 162 // External analsis is not applicable to a struct type. 163 if (!ExternalAnalysis || STy || ScalableType) 164 return false; 165 APInt AnalysisIndex; 166 if (!ExternalAnalysis(*V, AnalysisIndex)) 167 return false; 168 UsedExternalAnalysis = true; 169 if (!AccumulateOffset(AnalysisIndex, 170 DL.getTypeAllocSize(GTI.getIndexedType()))) 171 return false; 172 } 173 return true; 174 } 175 176 bool GEPOperator::collectOffset( 177 const DataLayout &DL, unsigned BitWidth, 178 MapVector<Value *, APInt> &VariableOffsets, 179 APInt &ConstantOffset) const { 180 assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) && 181 "The offset bit width does not match DL specification."); 182 183 auto CollectConstantOffset = [&](APInt Index, uint64_t Size) { 184 Index = Index.sextOrTrunc(BitWidth); 185 APInt IndexedSize = APInt(BitWidth, Size); 186 ConstantOffset += Index * IndexedSize; 187 }; 188 189 for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); 190 GTI != GTE; ++GTI) { 191 // Scalable vectors are multiplied by a runtime constant. 192 bool ScalableType = isa<ScalableVectorType>(GTI.getIndexedType()); 193 194 Value *V = GTI.getOperand(); 195 StructType *STy = GTI.getStructTypeOrNull(); 196 // Handle ConstantInt if possible. 197 if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { 198 if (ConstOffset->isZero()) 199 continue; 200 // If the type is scalable and the constant is not zero (vscale * n * 0 = 201 // 0) bailout. 202 // TODO: If the runtime value is accessible at any point before DWARF 203 // emission, then we could potentially keep a forward reference to it 204 // in the debug value to be filled in later. 205 if (ScalableType) 206 return false; 207 // Handle a struct index, which adds its field offset to the pointer. 208 if (STy) { 209 unsigned ElementIdx = ConstOffset->getZExtValue(); 210 const StructLayout *SL = DL.getStructLayout(STy); 211 // Element offset is in bytes. 212 CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)), 213 1); 214 continue; 215 } 216 CollectConstantOffset(ConstOffset->getValue(), 217 DL.getTypeAllocSize(GTI.getIndexedType())); 218 continue; 219 } 220 221 if (STy || ScalableType) 222 return false; 223 APInt IndexedSize = 224 APInt(BitWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 225 // Insert an initial offset of 0 for V iff none exists already, then 226 // increment the offset by IndexedSize. 227 if (!IndexedSize.isZero()) { 228 VariableOffsets.insert({V, APInt(BitWidth, 0)}); 229 VariableOffsets[V] += IndexedSize; 230 } 231 } 232 return true; 233 } 234 235 void FastMathFlags::print(raw_ostream &O) const { 236 if (all()) 237 O << " fast"; 238 else { 239 if (allowReassoc()) 240 O << " reassoc"; 241 if (noNaNs()) 242 O << " nnan"; 243 if (noInfs()) 244 O << " ninf"; 245 if (noSignedZeros()) 246 O << " nsz"; 247 if (allowReciprocal()) 248 O << " arcp"; 249 if (allowContract()) 250 O << " contract"; 251 if (approxFunc()) 252 O << " afn"; 253 } 254 } 255 } // namespace llvm 256