xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Module.cpp (revision f976241773df2260e6170317080761d1c5814fe5)
1 //===- Module.cpp - Implement the Module class ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Module class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Module.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/Comdat.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GVMaterializer.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/SymbolTableListTraits.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/TypeFinder.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/Error.h"
45 #include "llvm/Support/MemoryBuffer.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/RandomNumberGenerator.h"
48 #include "llvm/Support/VersionTuple.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <memory>
53 #include <utility>
54 #include <vector>
55 
56 using namespace llvm;
57 
58 //===----------------------------------------------------------------------===//
59 // Methods to implement the globals and functions lists.
60 //
61 
62 // Explicit instantiations of SymbolTableListTraits since some of the methods
63 // are not in the public header file.
64 template class llvm::SymbolTableListTraits<Function>;
65 template class llvm::SymbolTableListTraits<GlobalVariable>;
66 template class llvm::SymbolTableListTraits<GlobalAlias>;
67 template class llvm::SymbolTableListTraits<GlobalIFunc>;
68 
69 //===----------------------------------------------------------------------===//
70 // Primitive Module methods.
71 //
72 
73 Module::Module(StringRef MID, LLVMContext &C)
74     : Context(C), Materializer(), ModuleID(MID), SourceFileName(MID), DL("") {
75   ValSymTab = new ValueSymbolTable();
76   NamedMDSymTab = new StringMap<NamedMDNode *>();
77   Context.addModule(this);
78 }
79 
80 Module::~Module() {
81   Context.removeModule(this);
82   dropAllReferences();
83   GlobalList.clear();
84   FunctionList.clear();
85   AliasList.clear();
86   IFuncList.clear();
87   NamedMDList.clear();
88   delete ValSymTab;
89   delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab);
90 }
91 
92 std::unique_ptr<RandomNumberGenerator> Module::createRNG(const Pass* P) const {
93   SmallString<32> Salt(P->getPassName());
94 
95   // This RNG is guaranteed to produce the same random stream only
96   // when the Module ID and thus the input filename is the same. This
97   // might be problematic if the input filename extension changes
98   // (e.g. from .c to .bc or .ll).
99   //
100   // We could store this salt in NamedMetadata, but this would make
101   // the parameter non-const. This would unfortunately make this
102   // interface unusable by any Machine passes, since they only have a
103   // const reference to their IR Module. Alternatively we can always
104   // store salt metadata from the Module constructor.
105   Salt += sys::path::filename(getModuleIdentifier());
106 
107   return std::unique_ptr<RandomNumberGenerator>(new RandomNumberGenerator(Salt));
108 }
109 
110 /// getNamedValue - Return the first global value in the module with
111 /// the specified name, of arbitrary type.  This method returns null
112 /// if a global with the specified name is not found.
113 GlobalValue *Module::getNamedValue(StringRef Name) const {
114   return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
115 }
116 
117 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
118 /// This ID is uniqued across modules in the current LLVMContext.
119 unsigned Module::getMDKindID(StringRef Name) const {
120   return Context.getMDKindID(Name);
121 }
122 
123 /// getMDKindNames - Populate client supplied SmallVector with the name for
124 /// custom metadata IDs registered in this LLVMContext.   ID #0 is not used,
125 /// so it is filled in as an empty string.
126 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const {
127   return Context.getMDKindNames(Result);
128 }
129 
130 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const {
131   return Context.getOperandBundleTags(Result);
132 }
133 
134 //===----------------------------------------------------------------------===//
135 // Methods for easy access to the functions in the module.
136 //
137 
138 // getOrInsertFunction - Look up the specified function in the module symbol
139 // table.  If it does not exist, add a prototype for the function and return
140 // it.  This is nice because it allows most passes to get away with not handling
141 // the symbol table directly for this common task.
142 //
143 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty,
144                                            AttributeList AttributeList) {
145   // See if we have a definition for the specified function already.
146   GlobalValue *F = getNamedValue(Name);
147   if (!F) {
148     // Nope, add it
149     Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage,
150                                      DL.getProgramAddressSpace(), Name);
151     if (!New->isIntrinsic())       // Intrinsics get attrs set on construction
152       New->setAttributes(AttributeList);
153     FunctionList.push_back(New);
154     return {Ty, New}; // Return the new prototype.
155   }
156 
157   // If the function exists but has the wrong type, return a bitcast to the
158   // right type.
159   auto *PTy = PointerType::get(Ty, F->getAddressSpace());
160   if (F->getType() != PTy)
161     return {Ty, ConstantExpr::getBitCast(F, PTy)};
162 
163   // Otherwise, we just found the existing function or a prototype.
164   return {Ty, F};
165 }
166 
167 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) {
168   return getOrInsertFunction(Name, Ty, AttributeList());
169 }
170 
171 // getFunction - Look up the specified function in the module symbol table.
172 // If it does not exist, return null.
173 //
174 Function *Module::getFunction(StringRef Name) const {
175   return dyn_cast_or_null<Function>(getNamedValue(Name));
176 }
177 
178 //===----------------------------------------------------------------------===//
179 // Methods for easy access to the global variables in the module.
180 //
181 
182 /// getGlobalVariable - Look up the specified global variable in the module
183 /// symbol table.  If it does not exist, return null.  The type argument
184 /// should be the underlying type of the global, i.e., it should not have
185 /// the top-level PointerType, which represents the address of the global.
186 /// If AllowLocal is set to true, this function will return types that
187 /// have an local. By default, these types are not returned.
188 ///
189 GlobalVariable *Module::getGlobalVariable(StringRef Name,
190                                           bool AllowLocal) const {
191   if (GlobalVariable *Result =
192       dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
193     if (AllowLocal || !Result->hasLocalLinkage())
194       return Result;
195   return nullptr;
196 }
197 
198 /// getOrInsertGlobal - Look up the specified global in the module symbol table.
199 ///   1. If it does not exist, add a declaration of the global and return it.
200 ///   2. Else, the global exists but has the wrong type: return the function
201 ///      with a constantexpr cast to the right type.
202 ///   3. Finally, if the existing global is the correct declaration, return the
203 ///      existing global.
204 Constant *Module::getOrInsertGlobal(
205     StringRef Name, Type *Ty,
206     function_ref<GlobalVariable *()> CreateGlobalCallback) {
207   // See if we have a definition for the specified global already.
208   GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
209   if (!GV)
210     GV = CreateGlobalCallback();
211   assert(GV && "The CreateGlobalCallback is expected to create a global");
212 
213   // If the variable exists but has the wrong type, return a bitcast to the
214   // right type.
215   Type *GVTy = GV->getType();
216   PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace());
217   if (GVTy != PTy)
218     return ConstantExpr::getBitCast(GV, PTy);
219 
220   // Otherwise, we just found the existing function or a prototype.
221   return GV;
222 }
223 
224 // Overload to construct a global variable using its constructor's defaults.
225 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) {
226   return getOrInsertGlobal(Name, Ty, [&] {
227     return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
228                               nullptr, Name);
229   });
230 }
231 
232 //===----------------------------------------------------------------------===//
233 // Methods for easy access to the global variables in the module.
234 //
235 
236 // getNamedAlias - Look up the specified global in the module symbol table.
237 // If it does not exist, return null.
238 //
239 GlobalAlias *Module::getNamedAlias(StringRef Name) const {
240   return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
241 }
242 
243 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const {
244   return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name));
245 }
246 
247 /// getNamedMetadata - Return the first NamedMDNode in the module with the
248 /// specified name. This method returns null if a NamedMDNode with the
249 /// specified name is not found.
250 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const {
251   SmallString<256> NameData;
252   StringRef NameRef = Name.toStringRef(NameData);
253   return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef);
254 }
255 
256 /// getOrInsertNamedMetadata - Return the first named MDNode in the module
257 /// with the specified name. This method returns a new NamedMDNode if a
258 /// NamedMDNode with the specified name is not found.
259 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
260   NamedMDNode *&NMD =
261     (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name];
262   if (!NMD) {
263     NMD = new NamedMDNode(Name);
264     NMD->setParent(this);
265     NamedMDList.push_back(NMD);
266   }
267   return NMD;
268 }
269 
270 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and
271 /// delete it.
272 void Module::eraseNamedMetadata(NamedMDNode *NMD) {
273   static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName());
274   NamedMDList.erase(NMD->getIterator());
275 }
276 
277 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) {
278   if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) {
279     uint64_t Val = Behavior->getLimitedValue();
280     if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) {
281       MFB = static_cast<ModFlagBehavior>(Val);
282       return true;
283     }
284   }
285   return false;
286 }
287 
288 /// getModuleFlagsMetadata - Returns the module flags in the provided vector.
289 void Module::
290 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
291   const NamedMDNode *ModFlags = getModuleFlagsMetadata();
292   if (!ModFlags) return;
293 
294   for (const MDNode *Flag : ModFlags->operands()) {
295     ModFlagBehavior MFB;
296     if (Flag->getNumOperands() >= 3 &&
297         isValidModFlagBehavior(Flag->getOperand(0), MFB) &&
298         dyn_cast_or_null<MDString>(Flag->getOperand(1))) {
299       // Check the operands of the MDNode before accessing the operands.
300       // The verifier will actually catch these failures.
301       MDString *Key = cast<MDString>(Flag->getOperand(1));
302       Metadata *Val = Flag->getOperand(2);
303       Flags.push_back(ModuleFlagEntry(MFB, Key, Val));
304     }
305   }
306 }
307 
308 /// Return the corresponding value if Key appears in module flags, otherwise
309 /// return null.
310 Metadata *Module::getModuleFlag(StringRef Key) const {
311   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
312   getModuleFlagsMetadata(ModuleFlags);
313   for (const ModuleFlagEntry &MFE : ModuleFlags) {
314     if (Key == MFE.Key->getString())
315       return MFE.Val;
316   }
317   return nullptr;
318 }
319 
320 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that
321 /// represents module-level flags. This method returns null if there are no
322 /// module-level flags.
323 NamedMDNode *Module::getModuleFlagsMetadata() const {
324   return getNamedMetadata("llvm.module.flags");
325 }
326 
327 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that
328 /// represents module-level flags. If module-level flags aren't found, it
329 /// creates the named metadata that contains them.
330 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() {
331   return getOrInsertNamedMetadata("llvm.module.flags");
332 }
333 
334 /// addModuleFlag - Add a module-level flag to the module-level flags
335 /// metadata. It will create the module-level flags named metadata if it doesn't
336 /// already exist.
337 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
338                            Metadata *Val) {
339   Type *Int32Ty = Type::getInt32Ty(Context);
340   Metadata *Ops[3] = {
341       ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)),
342       MDString::get(Context, Key), Val};
343   getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops));
344 }
345 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
346                            Constant *Val) {
347   addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val));
348 }
349 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
350                            uint32_t Val) {
351   Type *Int32Ty = Type::getInt32Ty(Context);
352   addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val));
353 }
354 void Module::addModuleFlag(MDNode *Node) {
355   assert(Node->getNumOperands() == 3 &&
356          "Invalid number of operands for module flag!");
357   assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) &&
358          isa<MDString>(Node->getOperand(1)) &&
359          "Invalid operand types for module flag!");
360   getOrInsertModuleFlagsMetadata()->addOperand(Node);
361 }
362 
363 void Module::setDataLayout(StringRef Desc) {
364   DL.reset(Desc);
365 }
366 
367 void Module::setDataLayout(const DataLayout &Other) { DL = Other; }
368 
369 const DataLayout &Module::getDataLayout() const { return DL; }
370 
371 DICompileUnit *Module::debug_compile_units_iterator::operator*() const {
372   return cast<DICompileUnit>(CUs->getOperand(Idx));
373 }
374 DICompileUnit *Module::debug_compile_units_iterator::operator->() const {
375   return cast<DICompileUnit>(CUs->getOperand(Idx));
376 }
377 
378 void Module::debug_compile_units_iterator::SkipNoDebugCUs() {
379   while (CUs && (Idx < CUs->getNumOperands()) &&
380          ((*this)->getEmissionKind() == DICompileUnit::NoDebug))
381     ++Idx;
382 }
383 
384 //===----------------------------------------------------------------------===//
385 // Methods to control the materialization of GlobalValues in the Module.
386 //
387 void Module::setMaterializer(GVMaterializer *GVM) {
388   assert(!Materializer &&
389          "Module already has a GVMaterializer.  Call materializeAll"
390          " to clear it out before setting another one.");
391   Materializer.reset(GVM);
392 }
393 
394 Error Module::materialize(GlobalValue *GV) {
395   if (!Materializer)
396     return Error::success();
397 
398   return Materializer->materialize(GV);
399 }
400 
401 Error Module::materializeAll() {
402   if (!Materializer)
403     return Error::success();
404   std::unique_ptr<GVMaterializer> M = std::move(Materializer);
405   return M->materializeModule();
406 }
407 
408 Error Module::materializeMetadata() {
409   if (!Materializer)
410     return Error::success();
411   return Materializer->materializeMetadata();
412 }
413 
414 //===----------------------------------------------------------------------===//
415 // Other module related stuff.
416 //
417 
418 std::vector<StructType *> Module::getIdentifiedStructTypes() const {
419   // If we have a materializer, it is possible that some unread function
420   // uses a type that is currently not visible to a TypeFinder, so ask
421   // the materializer which types it created.
422   if (Materializer)
423     return Materializer->getIdentifiedStructTypes();
424 
425   std::vector<StructType *> Ret;
426   TypeFinder SrcStructTypes;
427   SrcStructTypes.run(*this, true);
428   Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end());
429   return Ret;
430 }
431 
432 // dropAllReferences() - This function causes all the subelements to "let go"
433 // of all references that they are maintaining.  This allows one to 'delete' a
434 // whole module at a time, even though there may be circular references... first
435 // all references are dropped, and all use counts go to zero.  Then everything
436 // is deleted for real.  Note that no operations are valid on an object that
437 // has "dropped all references", except operator delete.
438 //
439 void Module::dropAllReferences() {
440   for (Function &F : *this)
441     F.dropAllReferences();
442 
443   for (GlobalVariable &GV : globals())
444     GV.dropAllReferences();
445 
446   for (GlobalAlias &GA : aliases())
447     GA.dropAllReferences();
448 
449   for (GlobalIFunc &GIF : ifuncs())
450     GIF.dropAllReferences();
451 }
452 
453 unsigned Module::getNumberRegisterParameters() const {
454   auto *Val =
455       cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters"));
456   if (!Val)
457     return 0;
458   return cast<ConstantInt>(Val->getValue())->getZExtValue();
459 }
460 
461 unsigned Module::getDwarfVersion() const {
462   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version"));
463   if (!Val)
464     return 0;
465   return cast<ConstantInt>(Val->getValue())->getZExtValue();
466 }
467 
468 unsigned Module::getCodeViewFlag() const {
469   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView"));
470   if (!Val)
471     return 0;
472   return cast<ConstantInt>(Val->getValue())->getZExtValue();
473 }
474 
475 unsigned Module::getInstructionCount() {
476   unsigned NumInstrs = 0;
477   for (Function &F : FunctionList)
478     NumInstrs += F.getInstructionCount();
479   return NumInstrs;
480 }
481 
482 Comdat *Module::getOrInsertComdat(StringRef Name) {
483   auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first;
484   Entry.second.Name = &Entry;
485   return &Entry.second;
486 }
487 
488 PICLevel::Level Module::getPICLevel() const {
489   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level"));
490 
491   if (!Val)
492     return PICLevel::NotPIC;
493 
494   return static_cast<PICLevel::Level>(
495       cast<ConstantInt>(Val->getValue())->getZExtValue());
496 }
497 
498 void Module::setPICLevel(PICLevel::Level PL) {
499   addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL);
500 }
501 
502 PIELevel::Level Module::getPIELevel() const {
503   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level"));
504 
505   if (!Val)
506     return PIELevel::Default;
507 
508   return static_cast<PIELevel::Level>(
509       cast<ConstantInt>(Val->getValue())->getZExtValue());
510 }
511 
512 void Module::setPIELevel(PIELevel::Level PL) {
513   addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL);
514 }
515 
516 Optional<CodeModel::Model> Module::getCodeModel() const {
517   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model"));
518 
519   if (!Val)
520     return None;
521 
522   return static_cast<CodeModel::Model>(
523       cast<ConstantInt>(Val->getValue())->getZExtValue());
524 }
525 
526 void Module::setCodeModel(CodeModel::Model CL) {
527   // Linking object files with different code models is undefined behavior
528   // because the compiler would have to generate additional code (to span
529   // longer jumps) if a larger code model is used with a smaller one.
530   // Therefore we will treat attempts to mix code models as an error.
531   addModuleFlag(ModFlagBehavior::Error, "Code Model", CL);
532 }
533 
534 void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) {
535   if (Kind == ProfileSummary::PSK_CSInstr)
536     addModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M);
537   else
538     addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M);
539 }
540 
541 Metadata *Module::getProfileSummary(bool IsCS) {
542   return (IsCS ? getModuleFlag("CSProfileSummary")
543                : getModuleFlag("ProfileSummary"));
544 }
545 
546 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) {
547   OwnedMemoryBuffer = std::move(MB);
548 }
549 
550 bool Module::getRtLibUseGOT() const {
551   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT"));
552   return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0);
553 }
554 
555 void Module::setRtLibUseGOT() {
556   addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1);
557 }
558 
559 void Module::setSDKVersion(const VersionTuple &V) {
560   SmallVector<unsigned, 3> Entries;
561   Entries.push_back(V.getMajor());
562   if (auto Minor = V.getMinor()) {
563     Entries.push_back(*Minor);
564     if (auto Subminor = V.getSubminor())
565       Entries.push_back(*Subminor);
566     // Ignore the 'build' component as it can't be represented in the object
567     // file.
568   }
569   addModuleFlag(ModFlagBehavior::Warning, "SDK Version",
570                 ConstantDataArray::get(Context, Entries));
571 }
572 
573 VersionTuple Module::getSDKVersion() const {
574   auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version"));
575   if (!CM)
576     return {};
577   auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue());
578   if (!Arr)
579     return {};
580   auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> {
581     if (Index >= Arr->getNumElements())
582       return None;
583     return (unsigned)Arr->getElementAsInteger(Index);
584   };
585   auto Major = getVersionComponent(0);
586   if (!Major)
587     return {};
588   VersionTuple Result = VersionTuple(*Major);
589   if (auto Minor = getVersionComponent(1)) {
590     Result = VersionTuple(*Major, *Minor);
591     if (auto Subminor = getVersionComponent(2)) {
592       Result = VersionTuple(*Major, *Minor, *Subminor);
593     }
594   }
595   return Result;
596 }
597 
598 GlobalVariable *llvm::collectUsedGlobalVariables(
599     const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) {
600   const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used";
601   GlobalVariable *GV = M.getGlobalVariable(Name);
602   if (!GV || !GV->hasInitializer())
603     return GV;
604 
605   const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
606   for (Value *Op : Init->operands()) {
607     GlobalValue *G = cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
608     Set.insert(G);
609   }
610   return GV;
611 }
612