1 //===- Module.cpp - Implement the Module class ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Module class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Module.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/Comdat.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GVMaterializer.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalValue.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/SymbolTableListTraits.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/TypeFinder.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/Error.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/Path.h" 47 #include "llvm/Support/RandomNumberGenerator.h" 48 #include "llvm/Support/VersionTuple.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <memory> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 //===----------------------------------------------------------------------===// 59 // Methods to implement the globals and functions lists. 60 // 61 62 // Explicit instantiations of SymbolTableListTraits since some of the methods 63 // are not in the public header file. 64 template class llvm::SymbolTableListTraits<Function>; 65 template class llvm::SymbolTableListTraits<GlobalVariable>; 66 template class llvm::SymbolTableListTraits<GlobalAlias>; 67 template class llvm::SymbolTableListTraits<GlobalIFunc>; 68 69 //===----------------------------------------------------------------------===// 70 // Primitive Module methods. 71 // 72 73 Module::Module(StringRef MID, LLVMContext &C) 74 : Context(C), Materializer(), ModuleID(MID), SourceFileName(MID), DL("") { 75 ValSymTab = new ValueSymbolTable(); 76 NamedMDSymTab = new StringMap<NamedMDNode *>(); 77 Context.addModule(this); 78 } 79 80 Module::~Module() { 81 Context.removeModule(this); 82 dropAllReferences(); 83 GlobalList.clear(); 84 FunctionList.clear(); 85 AliasList.clear(); 86 IFuncList.clear(); 87 NamedMDList.clear(); 88 delete ValSymTab; 89 delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); 90 } 91 92 std::unique_ptr<RandomNumberGenerator> Module::createRNG(const Pass* P) const { 93 SmallString<32> Salt(P->getPassName()); 94 95 // This RNG is guaranteed to produce the same random stream only 96 // when the Module ID and thus the input filename is the same. This 97 // might be problematic if the input filename extension changes 98 // (e.g. from .c to .bc or .ll). 99 // 100 // We could store this salt in NamedMetadata, but this would make 101 // the parameter non-const. This would unfortunately make this 102 // interface unusable by any Machine passes, since they only have a 103 // const reference to their IR Module. Alternatively we can always 104 // store salt metadata from the Module constructor. 105 Salt += sys::path::filename(getModuleIdentifier()); 106 107 return std::unique_ptr<RandomNumberGenerator>(new RandomNumberGenerator(Salt)); 108 } 109 110 /// getNamedValue - Return the first global value in the module with 111 /// the specified name, of arbitrary type. This method returns null 112 /// if a global with the specified name is not found. 113 GlobalValue *Module::getNamedValue(StringRef Name) const { 114 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); 115 } 116 117 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. 118 /// This ID is uniqued across modules in the current LLVMContext. 119 unsigned Module::getMDKindID(StringRef Name) const { 120 return Context.getMDKindID(Name); 121 } 122 123 /// getMDKindNames - Populate client supplied SmallVector with the name for 124 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, 125 /// so it is filled in as an empty string. 126 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { 127 return Context.getMDKindNames(Result); 128 } 129 130 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const { 131 return Context.getOperandBundleTags(Result); 132 } 133 134 //===----------------------------------------------------------------------===// 135 // Methods for easy access to the functions in the module. 136 // 137 138 // getOrInsertFunction - Look up the specified function in the module symbol 139 // table. If it does not exist, add a prototype for the function and return 140 // it. This is nice because it allows most passes to get away with not handling 141 // the symbol table directly for this common task. 142 // 143 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, 144 AttributeList AttributeList) { 145 // See if we have a definition for the specified function already. 146 GlobalValue *F = getNamedValue(Name); 147 if (!F) { 148 // Nope, add it 149 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, 150 DL.getProgramAddressSpace(), Name); 151 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction 152 New->setAttributes(AttributeList); 153 FunctionList.push_back(New); 154 return {Ty, New}; // Return the new prototype. 155 } 156 157 // If the function exists but has the wrong type, return a bitcast to the 158 // right type. 159 auto *PTy = PointerType::get(Ty, F->getAddressSpace()); 160 if (F->getType() != PTy) 161 return {Ty, ConstantExpr::getBitCast(F, PTy)}; 162 163 // Otherwise, we just found the existing function or a prototype. 164 return {Ty, F}; 165 } 166 167 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) { 168 return getOrInsertFunction(Name, Ty, AttributeList()); 169 } 170 171 // getFunction - Look up the specified function in the module symbol table. 172 // If it does not exist, return null. 173 // 174 Function *Module::getFunction(StringRef Name) const { 175 return dyn_cast_or_null<Function>(getNamedValue(Name)); 176 } 177 178 //===----------------------------------------------------------------------===// 179 // Methods for easy access to the global variables in the module. 180 // 181 182 /// getGlobalVariable - Look up the specified global variable in the module 183 /// symbol table. If it does not exist, return null. The type argument 184 /// should be the underlying type of the global, i.e., it should not have 185 /// the top-level PointerType, which represents the address of the global. 186 /// If AllowLocal is set to true, this function will return types that 187 /// have an local. By default, these types are not returned. 188 /// 189 GlobalVariable *Module::getGlobalVariable(StringRef Name, 190 bool AllowLocal) const { 191 if (GlobalVariable *Result = 192 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) 193 if (AllowLocal || !Result->hasLocalLinkage()) 194 return Result; 195 return nullptr; 196 } 197 198 /// getOrInsertGlobal - Look up the specified global in the module symbol table. 199 /// 1. If it does not exist, add a declaration of the global and return it. 200 /// 2. Else, the global exists but has the wrong type: return the function 201 /// with a constantexpr cast to the right type. 202 /// 3. Finally, if the existing global is the correct declaration, return the 203 /// existing global. 204 Constant *Module::getOrInsertGlobal( 205 StringRef Name, Type *Ty, 206 function_ref<GlobalVariable *()> CreateGlobalCallback) { 207 // See if we have a definition for the specified global already. 208 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); 209 if (!GV) 210 GV = CreateGlobalCallback(); 211 assert(GV && "The CreateGlobalCallback is expected to create a global"); 212 213 // If the variable exists but has the wrong type, return a bitcast to the 214 // right type. 215 Type *GVTy = GV->getType(); 216 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); 217 if (GVTy != PTy) 218 return ConstantExpr::getBitCast(GV, PTy); 219 220 // Otherwise, we just found the existing function or a prototype. 221 return GV; 222 } 223 224 // Overload to construct a global variable using its constructor's defaults. 225 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { 226 return getOrInsertGlobal(Name, Ty, [&] { 227 return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 228 nullptr, Name); 229 }); 230 } 231 232 //===----------------------------------------------------------------------===// 233 // Methods for easy access to the global variables in the module. 234 // 235 236 // getNamedAlias - Look up the specified global in the module symbol table. 237 // If it does not exist, return null. 238 // 239 GlobalAlias *Module::getNamedAlias(StringRef Name) const { 240 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); 241 } 242 243 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { 244 return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name)); 245 } 246 247 /// getNamedMetadata - Return the first NamedMDNode in the module with the 248 /// specified name. This method returns null if a NamedMDNode with the 249 /// specified name is not found. 250 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { 251 SmallString<256> NameData; 252 StringRef NameRef = Name.toStringRef(NameData); 253 return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef); 254 } 255 256 /// getOrInsertNamedMetadata - Return the first named MDNode in the module 257 /// with the specified name. This method returns a new NamedMDNode if a 258 /// NamedMDNode with the specified name is not found. 259 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { 260 NamedMDNode *&NMD = 261 (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name]; 262 if (!NMD) { 263 NMD = new NamedMDNode(Name); 264 NMD->setParent(this); 265 NamedMDList.push_back(NMD); 266 } 267 return NMD; 268 } 269 270 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and 271 /// delete it. 272 void Module::eraseNamedMetadata(NamedMDNode *NMD) { 273 static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName()); 274 NamedMDList.erase(NMD->getIterator()); 275 } 276 277 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { 278 if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) { 279 uint64_t Val = Behavior->getLimitedValue(); 280 if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { 281 MFB = static_cast<ModFlagBehavior>(Val); 282 return true; 283 } 284 } 285 return false; 286 } 287 288 /// getModuleFlagsMetadata - Returns the module flags in the provided vector. 289 void Module:: 290 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { 291 const NamedMDNode *ModFlags = getModuleFlagsMetadata(); 292 if (!ModFlags) return; 293 294 for (const MDNode *Flag : ModFlags->operands()) { 295 ModFlagBehavior MFB; 296 if (Flag->getNumOperands() >= 3 && 297 isValidModFlagBehavior(Flag->getOperand(0), MFB) && 298 dyn_cast_or_null<MDString>(Flag->getOperand(1))) { 299 // Check the operands of the MDNode before accessing the operands. 300 // The verifier will actually catch these failures. 301 MDString *Key = cast<MDString>(Flag->getOperand(1)); 302 Metadata *Val = Flag->getOperand(2); 303 Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); 304 } 305 } 306 } 307 308 /// Return the corresponding value if Key appears in module flags, otherwise 309 /// return null. 310 Metadata *Module::getModuleFlag(StringRef Key) const { 311 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 312 getModuleFlagsMetadata(ModuleFlags); 313 for (const ModuleFlagEntry &MFE : ModuleFlags) { 314 if (Key == MFE.Key->getString()) 315 return MFE.Val; 316 } 317 return nullptr; 318 } 319 320 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that 321 /// represents module-level flags. This method returns null if there are no 322 /// module-level flags. 323 NamedMDNode *Module::getModuleFlagsMetadata() const { 324 return getNamedMetadata("llvm.module.flags"); 325 } 326 327 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that 328 /// represents module-level flags. If module-level flags aren't found, it 329 /// creates the named metadata that contains them. 330 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { 331 return getOrInsertNamedMetadata("llvm.module.flags"); 332 } 333 334 /// addModuleFlag - Add a module-level flag to the module-level flags 335 /// metadata. It will create the module-level flags named metadata if it doesn't 336 /// already exist. 337 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 338 Metadata *Val) { 339 Type *Int32Ty = Type::getInt32Ty(Context); 340 Metadata *Ops[3] = { 341 ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), 342 MDString::get(Context, Key), Val}; 343 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); 344 } 345 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 346 Constant *Val) { 347 addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); 348 } 349 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 350 uint32_t Val) { 351 Type *Int32Ty = Type::getInt32Ty(Context); 352 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); 353 } 354 void Module::addModuleFlag(MDNode *Node) { 355 assert(Node->getNumOperands() == 3 && 356 "Invalid number of operands for module flag!"); 357 assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) && 358 isa<MDString>(Node->getOperand(1)) && 359 "Invalid operand types for module flag!"); 360 getOrInsertModuleFlagsMetadata()->addOperand(Node); 361 } 362 363 void Module::setDataLayout(StringRef Desc) { 364 DL.reset(Desc); 365 } 366 367 void Module::setDataLayout(const DataLayout &Other) { DL = Other; } 368 369 const DataLayout &Module::getDataLayout() const { return DL; } 370 371 DICompileUnit *Module::debug_compile_units_iterator::operator*() const { 372 return cast<DICompileUnit>(CUs->getOperand(Idx)); 373 } 374 DICompileUnit *Module::debug_compile_units_iterator::operator->() const { 375 return cast<DICompileUnit>(CUs->getOperand(Idx)); 376 } 377 378 void Module::debug_compile_units_iterator::SkipNoDebugCUs() { 379 while (CUs && (Idx < CUs->getNumOperands()) && 380 ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) 381 ++Idx; 382 } 383 384 //===----------------------------------------------------------------------===// 385 // Methods to control the materialization of GlobalValues in the Module. 386 // 387 void Module::setMaterializer(GVMaterializer *GVM) { 388 assert(!Materializer && 389 "Module already has a GVMaterializer. Call materializeAll" 390 " to clear it out before setting another one."); 391 Materializer.reset(GVM); 392 } 393 394 Error Module::materialize(GlobalValue *GV) { 395 if (!Materializer) 396 return Error::success(); 397 398 return Materializer->materialize(GV); 399 } 400 401 Error Module::materializeAll() { 402 if (!Materializer) 403 return Error::success(); 404 std::unique_ptr<GVMaterializer> M = std::move(Materializer); 405 return M->materializeModule(); 406 } 407 408 Error Module::materializeMetadata() { 409 if (!Materializer) 410 return Error::success(); 411 return Materializer->materializeMetadata(); 412 } 413 414 //===----------------------------------------------------------------------===// 415 // Other module related stuff. 416 // 417 418 std::vector<StructType *> Module::getIdentifiedStructTypes() const { 419 // If we have a materializer, it is possible that some unread function 420 // uses a type that is currently not visible to a TypeFinder, so ask 421 // the materializer which types it created. 422 if (Materializer) 423 return Materializer->getIdentifiedStructTypes(); 424 425 std::vector<StructType *> Ret; 426 TypeFinder SrcStructTypes; 427 SrcStructTypes.run(*this, true); 428 Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); 429 return Ret; 430 } 431 432 // dropAllReferences() - This function causes all the subelements to "let go" 433 // of all references that they are maintaining. This allows one to 'delete' a 434 // whole module at a time, even though there may be circular references... first 435 // all references are dropped, and all use counts go to zero. Then everything 436 // is deleted for real. Note that no operations are valid on an object that 437 // has "dropped all references", except operator delete. 438 // 439 void Module::dropAllReferences() { 440 for (Function &F : *this) 441 F.dropAllReferences(); 442 443 for (GlobalVariable &GV : globals()) 444 GV.dropAllReferences(); 445 446 for (GlobalAlias &GA : aliases()) 447 GA.dropAllReferences(); 448 449 for (GlobalIFunc &GIF : ifuncs()) 450 GIF.dropAllReferences(); 451 } 452 453 unsigned Module::getNumberRegisterParameters() const { 454 auto *Val = 455 cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters")); 456 if (!Val) 457 return 0; 458 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 459 } 460 461 unsigned Module::getDwarfVersion() const { 462 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version")); 463 if (!Val) 464 return 0; 465 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 466 } 467 468 unsigned Module::getCodeViewFlag() const { 469 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView")); 470 if (!Val) 471 return 0; 472 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 473 } 474 475 unsigned Module::getInstructionCount() { 476 unsigned NumInstrs = 0; 477 for (Function &F : FunctionList) 478 NumInstrs += F.getInstructionCount(); 479 return NumInstrs; 480 } 481 482 Comdat *Module::getOrInsertComdat(StringRef Name) { 483 auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; 484 Entry.second.Name = &Entry; 485 return &Entry.second; 486 } 487 488 PICLevel::Level Module::getPICLevel() const { 489 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level")); 490 491 if (!Val) 492 return PICLevel::NotPIC; 493 494 return static_cast<PICLevel::Level>( 495 cast<ConstantInt>(Val->getValue())->getZExtValue()); 496 } 497 498 void Module::setPICLevel(PICLevel::Level PL) { 499 addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL); 500 } 501 502 PIELevel::Level Module::getPIELevel() const { 503 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level")); 504 505 if (!Val) 506 return PIELevel::Default; 507 508 return static_cast<PIELevel::Level>( 509 cast<ConstantInt>(Val->getValue())->getZExtValue()); 510 } 511 512 void Module::setPIELevel(PIELevel::Level PL) { 513 addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL); 514 } 515 516 Optional<CodeModel::Model> Module::getCodeModel() const { 517 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model")); 518 519 if (!Val) 520 return None; 521 522 return static_cast<CodeModel::Model>( 523 cast<ConstantInt>(Val->getValue())->getZExtValue()); 524 } 525 526 void Module::setCodeModel(CodeModel::Model CL) { 527 // Linking object files with different code models is undefined behavior 528 // because the compiler would have to generate additional code (to span 529 // longer jumps) if a larger code model is used with a smaller one. 530 // Therefore we will treat attempts to mix code models as an error. 531 addModuleFlag(ModFlagBehavior::Error, "Code Model", CL); 532 } 533 534 void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) { 535 if (Kind == ProfileSummary::PSK_CSInstr) 536 addModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M); 537 else 538 addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); 539 } 540 541 Metadata *Module::getProfileSummary(bool IsCS) { 542 return (IsCS ? getModuleFlag("CSProfileSummary") 543 : getModuleFlag("ProfileSummary")); 544 } 545 546 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) { 547 OwnedMemoryBuffer = std::move(MB); 548 } 549 550 bool Module::getRtLibUseGOT() const { 551 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT")); 552 return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0); 553 } 554 555 void Module::setRtLibUseGOT() { 556 addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1); 557 } 558 559 void Module::setSDKVersion(const VersionTuple &V) { 560 SmallVector<unsigned, 3> Entries; 561 Entries.push_back(V.getMajor()); 562 if (auto Minor = V.getMinor()) { 563 Entries.push_back(*Minor); 564 if (auto Subminor = V.getSubminor()) 565 Entries.push_back(*Subminor); 566 // Ignore the 'build' component as it can't be represented in the object 567 // file. 568 } 569 addModuleFlag(ModFlagBehavior::Warning, "SDK Version", 570 ConstantDataArray::get(Context, Entries)); 571 } 572 573 VersionTuple Module::getSDKVersion() const { 574 auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version")); 575 if (!CM) 576 return {}; 577 auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue()); 578 if (!Arr) 579 return {}; 580 auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> { 581 if (Index >= Arr->getNumElements()) 582 return None; 583 return (unsigned)Arr->getElementAsInteger(Index); 584 }; 585 auto Major = getVersionComponent(0); 586 if (!Major) 587 return {}; 588 VersionTuple Result = VersionTuple(*Major); 589 if (auto Minor = getVersionComponent(1)) { 590 Result = VersionTuple(*Major, *Minor); 591 if (auto Subminor = getVersionComponent(2)) { 592 Result = VersionTuple(*Major, *Minor, *Subminor); 593 } 594 } 595 return Result; 596 } 597 598 GlobalVariable *llvm::collectUsedGlobalVariables( 599 const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) { 600 const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; 601 GlobalVariable *GV = M.getGlobalVariable(Name); 602 if (!GV || !GV->hasInitializer()) 603 return GV; 604 605 const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); 606 for (Value *Op : Init->operands()) { 607 GlobalValue *G = cast<GlobalValue>(Op->stripPointerCasts()); 608 Set.insert(G); 609 } 610 return GV; 611 } 612