xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Module.cpp (revision 6580f5c38dd5b01aeeaed16b370f1a12423437f0)
1 //===- Module.cpp - Implement the Module class ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Module class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Module.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/Comdat.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DebugInfoMetadata.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GVMaterializer.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalIFunc.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/ModuleSummaryIndex.h"
35 #include "llvm/IR/SymbolTableListTraits.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/TypeFinder.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueSymbolTable.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CodeGen.h"
42 #include "llvm/Support/Error.h"
43 #include "llvm/Support/MemoryBuffer.h"
44 #include "llvm/Support/Path.h"
45 #include "llvm/Support/RandomNumberGenerator.h"
46 #include "llvm/Support/VersionTuple.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <memory>
51 #include <optional>
52 #include <utility>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 //===----------------------------------------------------------------------===//
58 // Methods to implement the globals and functions lists.
59 //
60 
61 // Explicit instantiations of SymbolTableListTraits since some of the methods
62 // are not in the public header file.
63 template class llvm::SymbolTableListTraits<Function>;
64 template class llvm::SymbolTableListTraits<GlobalVariable>;
65 template class llvm::SymbolTableListTraits<GlobalAlias>;
66 template class llvm::SymbolTableListTraits<GlobalIFunc>;
67 
68 //===----------------------------------------------------------------------===//
69 // Primitive Module methods.
70 //
71 
72 Module::Module(StringRef MID, LLVMContext &C)
73     : Context(C), ValSymTab(std::make_unique<ValueSymbolTable>(-1)),
74       ModuleID(std::string(MID)), SourceFileName(std::string(MID)), DL(""),
75       IsNewDbgInfoFormat(false) {
76   Context.addModule(this);
77 }
78 
79 Module::~Module() {
80   Context.removeModule(this);
81   dropAllReferences();
82   GlobalList.clear();
83   FunctionList.clear();
84   AliasList.clear();
85   IFuncList.clear();
86 }
87 
88 std::unique_ptr<RandomNumberGenerator>
89 Module::createRNG(const StringRef Name) const {
90   SmallString<32> Salt(Name);
91 
92   // This RNG is guaranteed to produce the same random stream only
93   // when the Module ID and thus the input filename is the same. This
94   // might be problematic if the input filename extension changes
95   // (e.g. from .c to .bc or .ll).
96   //
97   // We could store this salt in NamedMetadata, but this would make
98   // the parameter non-const. This would unfortunately make this
99   // interface unusable by any Machine passes, since they only have a
100   // const reference to their IR Module. Alternatively we can always
101   // store salt metadata from the Module constructor.
102   Salt += sys::path::filename(getModuleIdentifier());
103 
104   return std::unique_ptr<RandomNumberGenerator>(
105       new RandomNumberGenerator(Salt));
106 }
107 
108 /// getNamedValue - Return the first global value in the module with
109 /// the specified name, of arbitrary type.  This method returns null
110 /// if a global with the specified name is not found.
111 GlobalValue *Module::getNamedValue(StringRef Name) const {
112   return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
113 }
114 
115 unsigned Module::getNumNamedValues() const {
116   return getValueSymbolTable().size();
117 }
118 
119 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
120 /// This ID is uniqued across modules in the current LLVMContext.
121 unsigned Module::getMDKindID(StringRef Name) const {
122   return Context.getMDKindID(Name);
123 }
124 
125 /// getMDKindNames - Populate client supplied SmallVector with the name for
126 /// custom metadata IDs registered in this LLVMContext.   ID #0 is not used,
127 /// so it is filled in as an empty string.
128 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const {
129   return Context.getMDKindNames(Result);
130 }
131 
132 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const {
133   return Context.getOperandBundleTags(Result);
134 }
135 
136 //===----------------------------------------------------------------------===//
137 // Methods for easy access to the functions in the module.
138 //
139 
140 // getOrInsertFunction - Look up the specified function in the module symbol
141 // table.  If it does not exist, add a prototype for the function and return
142 // it.  This is nice because it allows most passes to get away with not handling
143 // the symbol table directly for this common task.
144 //
145 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty,
146                                            AttributeList AttributeList) {
147   // See if we have a definition for the specified function already.
148   GlobalValue *F = getNamedValue(Name);
149   if (!F) {
150     // Nope, add it
151     Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage,
152                                      DL.getProgramAddressSpace(), Name);
153     if (!New->isIntrinsic())       // Intrinsics get attrs set on construction
154       New->setAttributes(AttributeList);
155     FunctionList.push_back(New);
156     return {Ty, New}; // Return the new prototype.
157   }
158 
159   // Otherwise, we just found the existing function or a prototype.
160   return {Ty, F};
161 }
162 
163 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) {
164   return getOrInsertFunction(Name, Ty, AttributeList());
165 }
166 
167 // getFunction - Look up the specified function in the module symbol table.
168 // If it does not exist, return null.
169 //
170 Function *Module::getFunction(StringRef Name) const {
171   return dyn_cast_or_null<Function>(getNamedValue(Name));
172 }
173 
174 //===----------------------------------------------------------------------===//
175 // Methods for easy access to the global variables in the module.
176 //
177 
178 /// getGlobalVariable - Look up the specified global variable in the module
179 /// symbol table.  If it does not exist, return null.  The type argument
180 /// should be the underlying type of the global, i.e., it should not have
181 /// the top-level PointerType, which represents the address of the global.
182 /// If AllowLocal is set to true, this function will return types that
183 /// have an local. By default, these types are not returned.
184 ///
185 GlobalVariable *Module::getGlobalVariable(StringRef Name,
186                                           bool AllowLocal) const {
187   if (GlobalVariable *Result =
188       dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
189     if (AllowLocal || !Result->hasLocalLinkage())
190       return Result;
191   return nullptr;
192 }
193 
194 /// getOrInsertGlobal - Look up the specified global in the module symbol table.
195 ///   1. If it does not exist, add a declaration of the global and return it.
196 ///   2. Else, the global exists but has the wrong type: return the function
197 ///      with a constantexpr cast to the right type.
198 ///   3. Finally, if the existing global is the correct declaration, return the
199 ///      existing global.
200 Constant *Module::getOrInsertGlobal(
201     StringRef Name, Type *Ty,
202     function_ref<GlobalVariable *()> CreateGlobalCallback) {
203   // See if we have a definition for the specified global already.
204   GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
205   if (!GV)
206     GV = CreateGlobalCallback();
207   assert(GV && "The CreateGlobalCallback is expected to create a global");
208 
209   // Otherwise, we just found the existing function or a prototype.
210   return GV;
211 }
212 
213 // Overload to construct a global variable using its constructor's defaults.
214 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) {
215   return getOrInsertGlobal(Name, Ty, [&] {
216     return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
217                               nullptr, Name);
218   });
219 }
220 
221 //===----------------------------------------------------------------------===//
222 // Methods for easy access to the global variables in the module.
223 //
224 
225 // getNamedAlias - Look up the specified global in the module symbol table.
226 // If it does not exist, return null.
227 //
228 GlobalAlias *Module::getNamedAlias(StringRef Name) const {
229   return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
230 }
231 
232 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const {
233   return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name));
234 }
235 
236 /// getNamedMetadata - Return the first NamedMDNode in the module with the
237 /// specified name. This method returns null if a NamedMDNode with the
238 /// specified name is not found.
239 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const {
240   SmallString<256> NameData;
241   StringRef NameRef = Name.toStringRef(NameData);
242   return NamedMDSymTab.lookup(NameRef);
243 }
244 
245 /// getOrInsertNamedMetadata - Return the first named MDNode in the module
246 /// with the specified name. This method returns a new NamedMDNode if a
247 /// NamedMDNode with the specified name is not found.
248 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
249   NamedMDNode *&NMD = NamedMDSymTab[Name];
250   if (!NMD) {
251     NMD = new NamedMDNode(Name);
252     NMD->setParent(this);
253     insertNamedMDNode(NMD);
254   }
255   return NMD;
256 }
257 
258 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and
259 /// delete it.
260 void Module::eraseNamedMetadata(NamedMDNode *NMD) {
261   NamedMDSymTab.erase(NMD->getName());
262   eraseNamedMDNode(NMD);
263 }
264 
265 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) {
266   if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) {
267     uint64_t Val = Behavior->getLimitedValue();
268     if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) {
269       MFB = static_cast<ModFlagBehavior>(Val);
270       return true;
271     }
272   }
273   return false;
274 }
275 
276 bool Module::isValidModuleFlag(const MDNode &ModFlag, ModFlagBehavior &MFB,
277                                MDString *&Key, Metadata *&Val) {
278   if (ModFlag.getNumOperands() < 3)
279     return false;
280   if (!isValidModFlagBehavior(ModFlag.getOperand(0), MFB))
281     return false;
282   MDString *K = dyn_cast_or_null<MDString>(ModFlag.getOperand(1));
283   if (!K)
284     return false;
285   Key = K;
286   Val = ModFlag.getOperand(2);
287   return true;
288 }
289 
290 /// getModuleFlagsMetadata - Returns the module flags in the provided vector.
291 void Module::
292 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
293   const NamedMDNode *ModFlags = getModuleFlagsMetadata();
294   if (!ModFlags) return;
295 
296   for (const MDNode *Flag : ModFlags->operands()) {
297     ModFlagBehavior MFB;
298     MDString *Key = nullptr;
299     Metadata *Val = nullptr;
300     if (isValidModuleFlag(*Flag, MFB, Key, Val)) {
301       // Check the operands of the MDNode before accessing the operands.
302       // The verifier will actually catch these failures.
303       Flags.push_back(ModuleFlagEntry(MFB, Key, Val));
304     }
305   }
306 }
307 
308 /// Return the corresponding value if Key appears in module flags, otherwise
309 /// return null.
310 Metadata *Module::getModuleFlag(StringRef Key) const {
311   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
312   getModuleFlagsMetadata(ModuleFlags);
313   for (const ModuleFlagEntry &MFE : ModuleFlags) {
314     if (Key == MFE.Key->getString())
315       return MFE.Val;
316   }
317   return nullptr;
318 }
319 
320 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that
321 /// represents module-level flags. This method returns null if there are no
322 /// module-level flags.
323 NamedMDNode *Module::getModuleFlagsMetadata() const {
324   return getNamedMetadata("llvm.module.flags");
325 }
326 
327 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that
328 /// represents module-level flags. If module-level flags aren't found, it
329 /// creates the named metadata that contains them.
330 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() {
331   return getOrInsertNamedMetadata("llvm.module.flags");
332 }
333 
334 /// addModuleFlag - Add a module-level flag to the module-level flags
335 /// metadata. It will create the module-level flags named metadata if it doesn't
336 /// already exist.
337 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
338                            Metadata *Val) {
339   Type *Int32Ty = Type::getInt32Ty(Context);
340   Metadata *Ops[3] = {
341       ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)),
342       MDString::get(Context, Key), Val};
343   getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops));
344 }
345 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
346                            Constant *Val) {
347   addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val));
348 }
349 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
350                            uint32_t Val) {
351   Type *Int32Ty = Type::getInt32Ty(Context);
352   addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val));
353 }
354 void Module::addModuleFlag(MDNode *Node) {
355   assert(Node->getNumOperands() == 3 &&
356          "Invalid number of operands for module flag!");
357   assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) &&
358          isa<MDString>(Node->getOperand(1)) &&
359          "Invalid operand types for module flag!");
360   getOrInsertModuleFlagsMetadata()->addOperand(Node);
361 }
362 
363 void Module::setModuleFlag(ModFlagBehavior Behavior, StringRef Key,
364                            Metadata *Val) {
365   NamedMDNode *ModFlags = getOrInsertModuleFlagsMetadata();
366   // Replace the flag if it already exists.
367   for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
368     MDNode *Flag = ModFlags->getOperand(I);
369     ModFlagBehavior MFB;
370     MDString *K = nullptr;
371     Metadata *V = nullptr;
372     if (isValidModuleFlag(*Flag, MFB, K, V) && K->getString() == Key) {
373       Flag->replaceOperandWith(2, Val);
374       return;
375     }
376   }
377   addModuleFlag(Behavior, Key, Val);
378 }
379 
380 void Module::setDataLayout(StringRef Desc) {
381   DL.reset(Desc);
382 }
383 
384 void Module::setDataLayout(const DataLayout &Other) { DL = Other; }
385 
386 DICompileUnit *Module::debug_compile_units_iterator::operator*() const {
387   return cast<DICompileUnit>(CUs->getOperand(Idx));
388 }
389 DICompileUnit *Module::debug_compile_units_iterator::operator->() const {
390   return cast<DICompileUnit>(CUs->getOperand(Idx));
391 }
392 
393 void Module::debug_compile_units_iterator::SkipNoDebugCUs() {
394   while (CUs && (Idx < CUs->getNumOperands()) &&
395          ((*this)->getEmissionKind() == DICompileUnit::NoDebug))
396     ++Idx;
397 }
398 
399 iterator_range<Module::global_object_iterator> Module::global_objects() {
400   return concat<GlobalObject>(functions(), globals());
401 }
402 iterator_range<Module::const_global_object_iterator>
403 Module::global_objects() const {
404   return concat<const GlobalObject>(functions(), globals());
405 }
406 
407 iterator_range<Module::global_value_iterator> Module::global_values() {
408   return concat<GlobalValue>(functions(), globals(), aliases(), ifuncs());
409 }
410 iterator_range<Module::const_global_value_iterator>
411 Module::global_values() const {
412   return concat<const GlobalValue>(functions(), globals(), aliases(), ifuncs());
413 }
414 
415 //===----------------------------------------------------------------------===//
416 // Methods to control the materialization of GlobalValues in the Module.
417 //
418 void Module::setMaterializer(GVMaterializer *GVM) {
419   assert(!Materializer &&
420          "Module already has a GVMaterializer.  Call materializeAll"
421          " to clear it out before setting another one.");
422   Materializer.reset(GVM);
423 }
424 
425 Error Module::materialize(GlobalValue *GV) {
426   if (!Materializer)
427     return Error::success();
428 
429   return Materializer->materialize(GV);
430 }
431 
432 Error Module::materializeAll() {
433   if (!Materializer)
434     return Error::success();
435   std::unique_ptr<GVMaterializer> M = std::move(Materializer);
436   return M->materializeModule();
437 }
438 
439 Error Module::materializeMetadata() {
440   if (!Materializer)
441     return Error::success();
442   return Materializer->materializeMetadata();
443 }
444 
445 //===----------------------------------------------------------------------===//
446 // Other module related stuff.
447 //
448 
449 std::vector<StructType *> Module::getIdentifiedStructTypes() const {
450   // If we have a materializer, it is possible that some unread function
451   // uses a type that is currently not visible to a TypeFinder, so ask
452   // the materializer which types it created.
453   if (Materializer)
454     return Materializer->getIdentifiedStructTypes();
455 
456   std::vector<StructType *> Ret;
457   TypeFinder SrcStructTypes;
458   SrcStructTypes.run(*this, true);
459   Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end());
460   return Ret;
461 }
462 
463 std::string Module::getUniqueIntrinsicName(StringRef BaseName, Intrinsic::ID Id,
464                                            const FunctionType *Proto) {
465   auto Encode = [&BaseName](unsigned Suffix) {
466     return (Twine(BaseName) + "." + Twine(Suffix)).str();
467   };
468 
469   {
470     // fast path - the prototype is already known
471     auto UinItInserted = UniquedIntrinsicNames.insert({{Id, Proto}, 0});
472     if (!UinItInserted.second)
473       return Encode(UinItInserted.first->second);
474   }
475 
476   // Not known yet. A new entry was created with index 0. Check if there already
477   // exists a matching declaration, or select a new entry.
478 
479   // Start looking for names with the current known maximum count (or 0).
480   auto NiidItInserted = CurrentIntrinsicIds.insert({BaseName, 0});
481   unsigned Count = NiidItInserted.first->second;
482 
483   // This might be slow if a whole population of intrinsics already existed, but
484   // we cache the values for later usage.
485   std::string NewName;
486   while (true) {
487     NewName = Encode(Count);
488     GlobalValue *F = getNamedValue(NewName);
489     if (!F) {
490       // Reserve this entry for the new proto
491       UniquedIntrinsicNames[{Id, Proto}] = Count;
492       break;
493     }
494 
495     // A declaration with this name already exists. Remember it.
496     FunctionType *FT = dyn_cast<FunctionType>(F->getValueType());
497     auto UinItInserted = UniquedIntrinsicNames.insert({{Id, FT}, Count});
498     if (FT == Proto) {
499       // It was a declaration for our prototype. This entry was allocated in the
500       // beginning. Update the count to match the existing declaration.
501       UinItInserted.first->second = Count;
502       break;
503     }
504 
505     ++Count;
506   }
507 
508   NiidItInserted.first->second = Count + 1;
509 
510   return NewName;
511 }
512 
513 // dropAllReferences() - This function causes all the subelements to "let go"
514 // of all references that they are maintaining.  This allows one to 'delete' a
515 // whole module at a time, even though there may be circular references... first
516 // all references are dropped, and all use counts go to zero.  Then everything
517 // is deleted for real.  Note that no operations are valid on an object that
518 // has "dropped all references", except operator delete.
519 //
520 void Module::dropAllReferences() {
521   for (Function &F : *this)
522     F.dropAllReferences();
523 
524   for (GlobalVariable &GV : globals())
525     GV.dropAllReferences();
526 
527   for (GlobalAlias &GA : aliases())
528     GA.dropAllReferences();
529 
530   for (GlobalIFunc &GIF : ifuncs())
531     GIF.dropAllReferences();
532 }
533 
534 unsigned Module::getNumberRegisterParameters() const {
535   auto *Val =
536       cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters"));
537   if (!Val)
538     return 0;
539   return cast<ConstantInt>(Val->getValue())->getZExtValue();
540 }
541 
542 unsigned Module::getDwarfVersion() const {
543   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version"));
544   if (!Val)
545     return 0;
546   return cast<ConstantInt>(Val->getValue())->getZExtValue();
547 }
548 
549 bool Module::isDwarf64() const {
550   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("DWARF64"));
551   return Val && cast<ConstantInt>(Val->getValue())->isOne();
552 }
553 
554 unsigned Module::getCodeViewFlag() const {
555   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView"));
556   if (!Val)
557     return 0;
558   return cast<ConstantInt>(Val->getValue())->getZExtValue();
559 }
560 
561 unsigned Module::getInstructionCount() const {
562   unsigned NumInstrs = 0;
563   for (const Function &F : FunctionList)
564     NumInstrs += F.getInstructionCount();
565   return NumInstrs;
566 }
567 
568 Comdat *Module::getOrInsertComdat(StringRef Name) {
569   auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first;
570   Entry.second.Name = &Entry;
571   return &Entry.second;
572 }
573 
574 PICLevel::Level Module::getPICLevel() const {
575   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level"));
576 
577   if (!Val)
578     return PICLevel::NotPIC;
579 
580   return static_cast<PICLevel::Level>(
581       cast<ConstantInt>(Val->getValue())->getZExtValue());
582 }
583 
584 void Module::setPICLevel(PICLevel::Level PL) {
585   // The merge result of a non-PIC object and a PIC object can only be reliably
586   // used as a non-PIC object, so use the Min merge behavior.
587   addModuleFlag(ModFlagBehavior::Min, "PIC Level", PL);
588 }
589 
590 PIELevel::Level Module::getPIELevel() const {
591   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level"));
592 
593   if (!Val)
594     return PIELevel::Default;
595 
596   return static_cast<PIELevel::Level>(
597       cast<ConstantInt>(Val->getValue())->getZExtValue());
598 }
599 
600 void Module::setPIELevel(PIELevel::Level PL) {
601   addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL);
602 }
603 
604 std::optional<CodeModel::Model> Module::getCodeModel() const {
605   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model"));
606 
607   if (!Val)
608     return std::nullopt;
609 
610   return static_cast<CodeModel::Model>(
611       cast<ConstantInt>(Val->getValue())->getZExtValue());
612 }
613 
614 void Module::setCodeModel(CodeModel::Model CL) {
615   // Linking object files with different code models is undefined behavior
616   // because the compiler would have to generate additional code (to span
617   // longer jumps) if a larger code model is used with a smaller one.
618   // Therefore we will treat attempts to mix code models as an error.
619   addModuleFlag(ModFlagBehavior::Error, "Code Model", CL);
620 }
621 
622 std::optional<uint64_t> Module::getLargeDataThreshold() const {
623   auto *Val =
624       cast_or_null<ConstantAsMetadata>(getModuleFlag("Large Data Threshold"));
625 
626   if (!Val)
627     return std::nullopt;
628 
629   return cast<ConstantInt>(Val->getValue())->getZExtValue();
630 }
631 
632 void Module::setLargeDataThreshold(uint64_t Threshold) {
633   // Since the large data threshold goes along with the code model, the merge
634   // behavior is the same.
635   addModuleFlag(ModFlagBehavior::Error, "Large Data Threshold",
636                 ConstantInt::get(Type::getInt64Ty(Context), Threshold));
637 }
638 
639 void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) {
640   if (Kind == ProfileSummary::PSK_CSInstr)
641     setModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M);
642   else
643     setModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M);
644 }
645 
646 Metadata *Module::getProfileSummary(bool IsCS) const {
647   return (IsCS ? getModuleFlag("CSProfileSummary")
648                : getModuleFlag("ProfileSummary"));
649 }
650 
651 bool Module::getSemanticInterposition() const {
652   Metadata *MF = getModuleFlag("SemanticInterposition");
653 
654   auto *Val = cast_or_null<ConstantAsMetadata>(MF);
655   if (!Val)
656     return false;
657 
658   return cast<ConstantInt>(Val->getValue())->getZExtValue();
659 }
660 
661 void Module::setSemanticInterposition(bool SI) {
662   addModuleFlag(ModFlagBehavior::Error, "SemanticInterposition", SI);
663 }
664 
665 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) {
666   OwnedMemoryBuffer = std::move(MB);
667 }
668 
669 bool Module::getRtLibUseGOT() const {
670   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT"));
671   return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0);
672 }
673 
674 void Module::setRtLibUseGOT() {
675   addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1);
676 }
677 
678 bool Module::getDirectAccessExternalData() const {
679   auto *Val = cast_or_null<ConstantAsMetadata>(
680       getModuleFlag("direct-access-external-data"));
681   if (Val)
682     return cast<ConstantInt>(Val->getValue())->getZExtValue() > 0;
683   return getPICLevel() == PICLevel::NotPIC;
684 }
685 
686 void Module::setDirectAccessExternalData(bool Value) {
687   addModuleFlag(ModFlagBehavior::Max, "direct-access-external-data", Value);
688 }
689 
690 UWTableKind Module::getUwtable() const {
691   if (auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("uwtable")))
692     return UWTableKind(cast<ConstantInt>(Val->getValue())->getZExtValue());
693   return UWTableKind::None;
694 }
695 
696 void Module::setUwtable(UWTableKind Kind) {
697   addModuleFlag(ModFlagBehavior::Max, "uwtable", uint32_t(Kind));
698 }
699 
700 FramePointerKind Module::getFramePointer() const {
701   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("frame-pointer"));
702   return static_cast<FramePointerKind>(
703       Val ? cast<ConstantInt>(Val->getValue())->getZExtValue() : 0);
704 }
705 
706 void Module::setFramePointer(FramePointerKind Kind) {
707   addModuleFlag(ModFlagBehavior::Max, "frame-pointer", static_cast<int>(Kind));
708 }
709 
710 StringRef Module::getStackProtectorGuard() const {
711   Metadata *MD = getModuleFlag("stack-protector-guard");
712   if (auto *MDS = dyn_cast_or_null<MDString>(MD))
713     return MDS->getString();
714   return {};
715 }
716 
717 void Module::setStackProtectorGuard(StringRef Kind) {
718   MDString *ID = MDString::get(getContext(), Kind);
719   addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard", ID);
720 }
721 
722 StringRef Module::getStackProtectorGuardReg() const {
723   Metadata *MD = getModuleFlag("stack-protector-guard-reg");
724   if (auto *MDS = dyn_cast_or_null<MDString>(MD))
725     return MDS->getString();
726   return {};
727 }
728 
729 void Module::setStackProtectorGuardReg(StringRef Reg) {
730   MDString *ID = MDString::get(getContext(), Reg);
731   addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard-reg", ID);
732 }
733 
734 StringRef Module::getStackProtectorGuardSymbol() const {
735   Metadata *MD = getModuleFlag("stack-protector-guard-symbol");
736   if (auto *MDS = dyn_cast_or_null<MDString>(MD))
737     return MDS->getString();
738   return {};
739 }
740 
741 void Module::setStackProtectorGuardSymbol(StringRef Symbol) {
742   MDString *ID = MDString::get(getContext(), Symbol);
743   addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard-symbol", ID);
744 }
745 
746 int Module::getStackProtectorGuardOffset() const {
747   Metadata *MD = getModuleFlag("stack-protector-guard-offset");
748   if (auto *CI = mdconst::dyn_extract_or_null<ConstantInt>(MD))
749     return CI->getSExtValue();
750   return INT_MAX;
751 }
752 
753 void Module::setStackProtectorGuardOffset(int Offset) {
754   addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard-offset", Offset);
755 }
756 
757 unsigned Module::getOverrideStackAlignment() const {
758   Metadata *MD = getModuleFlag("override-stack-alignment");
759   if (auto *CI = mdconst::dyn_extract_or_null<ConstantInt>(MD))
760     return CI->getZExtValue();
761   return 0;
762 }
763 
764 unsigned Module::getMaxTLSAlignment() const {
765   Metadata *MD = getModuleFlag("MaxTLSAlign");
766   if (auto *CI = mdconst::dyn_extract_or_null<ConstantInt>(MD))
767     return CI->getZExtValue();
768   return 0;
769 }
770 
771 void Module::setOverrideStackAlignment(unsigned Align) {
772   addModuleFlag(ModFlagBehavior::Error, "override-stack-alignment", Align);
773 }
774 
775 static void addSDKVersionMD(const VersionTuple &V, Module &M, StringRef Name) {
776   SmallVector<unsigned, 3> Entries;
777   Entries.push_back(V.getMajor());
778   if (auto Minor = V.getMinor()) {
779     Entries.push_back(*Minor);
780     if (auto Subminor = V.getSubminor())
781       Entries.push_back(*Subminor);
782     // Ignore the 'build' component as it can't be represented in the object
783     // file.
784   }
785   M.addModuleFlag(Module::ModFlagBehavior::Warning, Name,
786                   ConstantDataArray::get(M.getContext(), Entries));
787 }
788 
789 void Module::setSDKVersion(const VersionTuple &V) {
790   addSDKVersionMD(V, *this, "SDK Version");
791 }
792 
793 static VersionTuple getSDKVersionMD(Metadata *MD) {
794   auto *CM = dyn_cast_or_null<ConstantAsMetadata>(MD);
795   if (!CM)
796     return {};
797   auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue());
798   if (!Arr)
799     return {};
800   auto getVersionComponent = [&](unsigned Index) -> std::optional<unsigned> {
801     if (Index >= Arr->getNumElements())
802       return std::nullopt;
803     return (unsigned)Arr->getElementAsInteger(Index);
804   };
805   auto Major = getVersionComponent(0);
806   if (!Major)
807     return {};
808   VersionTuple Result = VersionTuple(*Major);
809   if (auto Minor = getVersionComponent(1)) {
810     Result = VersionTuple(*Major, *Minor);
811     if (auto Subminor = getVersionComponent(2)) {
812       Result = VersionTuple(*Major, *Minor, *Subminor);
813     }
814   }
815   return Result;
816 }
817 
818 VersionTuple Module::getSDKVersion() const {
819   return getSDKVersionMD(getModuleFlag("SDK Version"));
820 }
821 
822 GlobalVariable *llvm::collectUsedGlobalVariables(
823     const Module &M, SmallVectorImpl<GlobalValue *> &Vec, bool CompilerUsed) {
824   const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used";
825   GlobalVariable *GV = M.getGlobalVariable(Name);
826   if (!GV || !GV->hasInitializer())
827     return GV;
828 
829   const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
830   for (Value *Op : Init->operands()) {
831     GlobalValue *G = cast<GlobalValue>(Op->stripPointerCasts());
832     Vec.push_back(G);
833   }
834   return GV;
835 }
836 
837 void Module::setPartialSampleProfileRatio(const ModuleSummaryIndex &Index) {
838   if (auto *SummaryMD = getProfileSummary(/*IsCS*/ false)) {
839     std::unique_ptr<ProfileSummary> ProfileSummary(
840         ProfileSummary::getFromMD(SummaryMD));
841     if (ProfileSummary) {
842       if (ProfileSummary->getKind() != ProfileSummary::PSK_Sample ||
843           !ProfileSummary->isPartialProfile())
844         return;
845       uint64_t BlockCount = Index.getBlockCount();
846       uint32_t NumCounts = ProfileSummary->getNumCounts();
847       if (!NumCounts)
848         return;
849       double Ratio = (double)BlockCount / NumCounts;
850       ProfileSummary->setPartialProfileRatio(Ratio);
851       setProfileSummary(ProfileSummary->getMD(getContext()),
852                         ProfileSummary::PSK_Sample);
853     }
854   }
855 }
856 
857 StringRef Module::getDarwinTargetVariantTriple() const {
858   if (const auto *MD = getModuleFlag("darwin.target_variant.triple"))
859     return cast<MDString>(MD)->getString();
860   return "";
861 }
862 
863 void Module::setDarwinTargetVariantTriple(StringRef T) {
864   addModuleFlag(ModFlagBehavior::Override, "darwin.target_variant.triple",
865                 MDString::get(getContext(), T));
866 }
867 
868 VersionTuple Module::getDarwinTargetVariantSDKVersion() const {
869   return getSDKVersionMD(getModuleFlag("darwin.target_variant.SDK Version"));
870 }
871 
872 void Module::setDarwinTargetVariantSDKVersion(VersionTuple Version) {
873   addSDKVersionMD(Version, *this, "darwin.target_variant.SDK Version");
874 }
875